WO2012128015A1 - 鋼管用ねじ継手 - Google Patents

鋼管用ねじ継手 Download PDF

Info

Publication number
WO2012128015A1
WO2012128015A1 PCT/JP2012/055293 JP2012055293W WO2012128015A1 WO 2012128015 A1 WO2012128015 A1 WO 2012128015A1 JP 2012055293 W JP2012055293 W JP 2012055293W WO 2012128015 A1 WO2012128015 A1 WO 2012128015A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
seal
nose
screw
shoulder
Prior art date
Application number
PCT/JP2012/055293
Other languages
English (en)
French (fr)
Inventor
吉川 正樹
拓也 長濱
博 近常
順 高野
孝将 川井
高橋 一成
植田 正輝
園部 治
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2013146969/06A priority Critical patent/RU2541364C1/ru
Priority to MX2013010500A priority patent/MX335962B/es
Priority to US14/006,245 priority patent/US8991875B2/en
Priority to BR112013024151-9A priority patent/BR112013024151B1/pt
Priority to CA2827922A priority patent/CA2827922C/en
Priority to EP12760806.5A priority patent/EP2690336B1/en
Priority to ES12760806T priority patent/ES2762248T3/es
Priority to AU2012232466A priority patent/AU2012232466B2/en
Publication of WO2012128015A1 publication Critical patent/WO2012128015A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/004Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/06Screw-threaded joints; Forms of screw-threads for such joints characterised by the shape of the screw-thread

Definitions

  • the present invention relates to a threaded joint for steel pipe, and more particularly, to a tube and casing generally used for exploration and production of oil wells and gas wells. Sealability and compression resistance suitable for use in connecting steel pipes such as OCTG (oil country tubular goods), riser pipes, and line pipes.
  • OCTG oil country tubular goods
  • riser pipes riser pipes
  • line pipes line pipes
  • Threaded joints are widely used to connect steel pipes used in oil industry equipment such as oil well pipes.
  • API American Petroleum Institute
  • standard threaded joints specified in the API have been typically used to connect steel pipes used for searching and producing oil and gas.
  • wells for crude oil and natural gas have been deepened, and vertical wells, horizontal wells, gradient wells, etc. have increased. For this reason, the drilling and production environment has become severe.
  • compression resistance, bending resistance, external pressure seal performance (External pressure resistance) )) Etc. the required performance for threaded joints is diversifying. Therefore, the use of high-performance special thread joints (premium joints) called premium joints is increasing, and the demand for performance is also increasing.
  • Premium joints usually have a tapered thread, a seal part (more specifically, a metal touch seal part (more specifically, a metal to metal seal portion), a shoulder part (more specifically, a torque shoulder part), and more specifically, a torque shoulder part (more specifically, a torque shoulder part).
  • a male thread member (externally-threaded member) (hereinafter referred to as “pin”) formed on the pipe end portion and an internally threaded member (hereinafter referred to as “box”) connecting the pins to each other.
  • pin internally threaded member
  • the seal part plays the role of ensuring the sealing performance by the metal contact of the box and the pin at this part
  • the shoulder part is the shoulder surface (bearing surface (bearing) that plays the role of the stopper during the tightening of the joint. face)).
  • FIG. 4 is a schematic explanatory view of a premium joint for oil well pipes, and these are longitudinal sectional views of a threaded joint of a circular pipe.
  • the threaded joint includes a pin 3 and a box 1 corresponding to the pin 3, and the pin 3 has a male screw portion 7 on the outer surface thereof, and has no screw provided adjacent to the male screw portion 7 on the tip end side of the pin 3.
  • It has a nose portion (pin nose 8) which is a length portion.
  • the nose portion 8 has a seal portion 11 on its outer peripheral surface and a torque shoulder portion 12 on its end surface.
  • the opposing box 1 has a female screw part 5, a seal part 13, and a part that can be screwed or brought into contact with the male screw part 7, the seal part 11, and the shoulder part 12 of the pin 3, respectively. And it has the shoulder part 14.
  • Patent Documents 1 to 3 are given as conventional techniques related to the premium joint.
  • the metal touch seal portion is at the tip of the pin nose 8.
  • a metal touch seal portion is provided near the screw portion of the pin nose 8 to increase the external pressure resistance performance. It has also been proposed to extend the length from the seal part to the shoulder part.
  • the pin nose that is not in contact with the box member is configured to be elongated so as to be discontinuous with the seal portion so that the thickness of the pin nose is not reduced.
  • the axial compression resistance is also improved.
  • an appendix is provided from the seal portion to the pin nose tip, which also has a discontinuous shape with the seal portion to ensure radial rigidity and axial rigidity. It is described that the appendix is deformed at the time of tightening and the tensile resistance is improved by recovering the appendix when it is loaded.
  • placing the seal portion near the screw portion of the pin and separating it from the tip of the pin nose is an external pressure resistance and a tension resistance. This is effective in giving stable performance to the screw, and can be confirmed from an FEM simulation (fine element method simulation) or the like.
  • the pin nose that is discontinuous with the seal part deforms itself when a strong axial compression force is applied, reducing plastic deformation of the torque shoulder part of the box member. There is also an effect. However, on the other hand, excessive deformation may occur in the discontinuity at the boundary between the screw and the nose, which is considered to depend on the tightening torque.
  • Tightening torque is affected by lubrication conditions, surface properties, etc.
  • the radial seal contact pressure is made stronger by making the radial component of the seal contact pressure relatively stronger.
  • a radial seal method discloses an example of a radial seal method having a large pin seal R shape and a small seal taper angle.
  • the problem with the radial seal method in which the seal taper angle is reduced in this way is that a galling is likely to occur during tightening, and in particular, in order to ensure sealing performance and seal stability, When it is necessary to increase the amount of interference, the ease of occurrence of goling is further increased.
  • the conventionally proposed threaded joints still have some problems, such as resistance to compression, sealability against external pressure (sealability external pressure), and resistance to bending (resistance to resistance).
  • resistance to compression sealability against external pressure
  • bending resistance to resistance
  • a large bending load acts on the threaded joint in addition to axial tension as shown in FIG.
  • relative displacement is generated on the tension side of the bending so that the mating between the male thread 7 and the female thread 5 is weakened on the load flank surface 15 (see FIG. 4).
  • the screw falls off when the bending load is further increased.
  • the torque shoulder portions 12 and 14 of the pin 3 and the box 1 serve as a support to suppress the movement of the seal portion, but when the bending load further increases, the slipping on the shoulder portions 12 and 14 occurs. It is considered that the sealing performance cannot be maintained.
  • the load flank angle of the threaded portion that can maintain sufficient sealing performance against such bending load, the torque shoulder angle of the shoulder portions 12 and 14 adjacent to the seal portion, and the nose shape pointer There was no knowledge to show in the past.
  • the load flank angle is an angle formed by the load flank surface 15 with respect to an orthogonal line to the threaded joint axis (angle ⁇ in FIG. 1B), and the orthogonal line is the lower end of the load flank surface (on the pin inner diameter side).
  • angle ⁇ in FIG. 1B an orthogonal line to the threaded joint axis
  • the orthogonal line is the lower end of the load flank surface (on the pin inner diameter side).
  • the torque shoulder angle is the angle (angle ⁇ in FIG. 1C) that the shoulder surface forming the shoulder portions 12 and 14 forms with the orthogonal line to the threaded joint axis.
  • angle ⁇ in FIG. 1C
  • the lower end of the shoulder surface is located on the front end side of the pin with respect to the orthogonal line. If it is located at, it is negative.
  • the present invention is as follows. (1) A male screw part, a pin having a nose part extending from the male screw part to the tube end side, a shoulder part provided at the tip of the nose part, and a female screw part screwed to the male screw part to form a screw part; And a box having an inner peripheral surface of the nose portion opposed to an outer peripheral surface of the nose portion of the pin and a shoulder portion that contacts the shoulder portion of the pin, and the pin and the box are coupled by the screw coupling.
  • the threaded joint for steel pipes according to (1) wherein the strain ⁇ in the pipe circumferential direction of the seal portion calculated in (1) is 0.30% or more.
  • FIG. 1A It is a whole sectional view showing an example of an embodiment of the present invention. It is an expanded sectional view which shows the thread part in FIG. 1A. It is an expanded sectional view showing the pin nose vicinity in Drawing 1A. It is sectional drawing which shows the definition of the distortion
  • a threaded joint for steel pipes according to the present invention includes, as shown in FIGS. 1A to 1C, for example, a male screw portion 7, a nose portion 8 extending from the male screw portion 7 toward the pipe end side, and a tip of the nose portion 8.
  • a pin 3 having a shoulder portion 12 provided; a female screw portion 5 screwed to the male screw portion 7 to form a screw portion; an inner peripheral surface of the nose portion facing the outer peripheral surface of the nose portion of the pin 1;
  • a box 1 having a shoulder portion 14 that contacts one shoulder portion 12, and the pin and the box are coupled by the screw coupling, and the nose portion outer peripheral surface of the pin member and the nose portion inner peripheral surface of the box Is a threaded joint for steel pipes in which the metal-metal contact and the contact portion form the seal portion 20, and the seal portion of the pin is in a toroid shape (conical curved surface shape (toroidal sealing surface shape)).
  • the load flank angle ⁇ of the threaded portion is set to the negative side as shown in FIG. 1B, and the torque of the shoulder portions 12 and 14 is used.
  • the shoulder angle ⁇ is set to the negative side, and the ratio L / d 0 between the length L of the nose portion 8 and the tube outer diameter d 0 is set to 0.08 or more.
  • the load flank angle ⁇ By setting the load flank angle ⁇ to the negative side, preferably ⁇ 4 degrees or less, it is possible to prevent the screws from dropping off on the bending tension side. Further, by setting the torque shoulder angle ⁇ to the negative side, preferably less than ⁇ 15 degrees, it becomes a fulcrum against the bending on the compression side of the bending, and suppresses the movement to leave the seal portion. Further, by the length of the nose portion of the ratio L / d 0 of (nose length) L and outer diameter d 0 and 0.08 or more, the flexible nose portion between the threaded portion and the shoulder portion It is possible to reduce the deformation of the threaded portion and the shoulder portion that serve as bending fulcrums. By combining these, slippage at the contact surface between the pipe and the threaded joint can be prevented, and airtightness can be ensured by maintaining the fitted state.
  • the load flank angle ⁇ is preferably ⁇ 7 degrees or more, because if the absolute value of the negative side angle is too large, it becomes disadvantageous in terms of galling resistance. More preferably, it is -5.5 to -4.5 degrees.
  • the torque shoulder angle ⁇ is preferably ⁇ 20 degrees or more, because if the absolute value of the negative angle is excessively increased, it is disadvantageous in terms of ensuring airtightness after the compression load. More preferably, it is ⁇ 18 to ⁇ 16 degrees. If the ratio L / d 0 between the nose length and the pipe outer diameter is too large, the peristaltic distance of the seal portion during tightening becomes long, which is disadvantageous in terms of galling resistance, and the processing time of the seal portion is large. Therefore, L / d 0 is preferably 0.14 or less. More preferably, it is 0.08 to 0.11.
  • the seal diameter D and the interference amount ⁇ are as shown in FIG. 2.
  • the seal diameter D is the outer peripheral surface of the nose portion on the pin 3 side that first contacts the inner peripheral surface of the nose portion on the box 1 side during screw connection.
  • the outer diameter of the pin at the seal point, which is the upper part, and the amount of interference ⁇ is the amount of diameter reduction when the seal point is reduced by the box 1 at the time of screw connection.
  • strain (epsilon) of the pipe peripheral direction of a seal part will become disadvantageous at the point of galling resistance if too large, 0.7% or less is preferable. More preferably, it is 0.3% to 0.6%.
  • the pipe end of the steel pipe having the outer diameter d 0 (inch) shown in Table 1-1, Table 1-2, and Table 1-3 is machined, and the pin seal portion 21 has a toroid shape (conical curve rotation surface shape) and has a pin seal surface.
  • an airtight A test (Sealability leak test A or tightness leak test A), an airtight B (including bending) test, and an airtight C test were performed.
  • the results are also shown in Table 1.
  • Table 1 shows those with seal expired as x (bad), and those without seal expired as ⁇ (good).
  • the test was completed without causing the seal to expire, and excellent sealing performance was exhibited.
  • seal expiration was recognized.
  • FIG. 5 is a graph showing the load condition of the airtight B test defined in ISO 13679 as an example.
  • the horizontal axis indicates the axial stress generated in the pipe by tension (compression) / bending, and the vertical axis indicates the internal pressure acting on the inner surface of the pipe.
  • the curve indicated by the broken line on the outside indicates that the equivalent stress when combined with tension (compression) / bending / internal pressure is equivalent to the yield stress of the material (100% of the yield stress).
  • the curve shown by the inner solid line is a curve in which the equivalent stress corresponds to 90% of the yield stress of the material.
  • the airtight B test of the above-described test type 1 determines whether or not the seal has expired by using each point of the 90% load curve as an evaluation point.
  • Table 1-1 and Table 1-2 in Invention Examples 1 to 12 where the ratio L / d 0 of the nose length to the outer diameter of the tube is 0.08 or more, the airtight test result of Test Type 1 There was no seal expiration in (A, B, C).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Gasket Seals (AREA)

Abstract

 曲げ負荷を受けたときでも優れたシール性を示す鋼管用ねじ継手を提供する。 具体的には、ねじ結合によりピン3とボックス1とが結合されてピンのノーズ部8外周面とボックスのノーズ部内周面とがメタル‐メタル接触しその接触部がシール部20をなす鋼管用ねじ継手であって、ねじ部(雄ねじ部7と雌ねじ部5とのねじ結合部)のロードフランク角度αを負側とし、ショルダ部12,14のトルクショルダ角度βを負側とし、ノーズ部の長さLと管外径d0の比L/d0を0.08以上とした。

Description

鋼管用ねじ継手
 本発明は、鋼管用ねじ継手(threaded joint for steel pipe)に関し、詳しくは一般に油井(oil wells)やガス井(gas wells)の探査や生産に使用されるチュービング(tubing)およびケーシング(casing)を包含するOCTG(oil country tubular goods)、ライザー管(riser pipes)、ならびにラインパイプ(line pipes)などの鋼管の接続に用いるのに好適な、シール性(sealability)と耐圧縮性(compression resistance)に優れた管用ねじ継手に関する。
 ねじ継手は、油井管など産油産業設備に使用される鋼管の接続に広く使用されている。オイルやガスの探索や生産に使用される鋼管の接続には、従来API(米国石油協会(American Petroleum Institute))規格に規定された標準的なねじ継手が典型的には使用されてきた。しかし、近年、原油(crude oil)や天然ガス(natural gas)の井戸は深井戸化が進み、垂直井(vertical well)から水平井(horizontal well)や傾斜井(directional well)等が増えていることから、掘削・生産環境は苛酷化している。また、海洋や極地(polar region)など劣悪な環境での井戸の開発が増加していることなどから、耐圧縮性能、耐曲げ性能(bending resistance)、外圧シール性能(耐外圧性能(External pressure resistance))など、ねじ継手への要求性能は多様化している。そのため、プレミアムジョイント(premium joints)と呼ばれる高性能の特殊ねじ継手(special high−performance threaded joints)を使用することが増加しており、その性能への要求もますます増加している。
 プレミアムジョイントは、通常、テーパねじ(tapered thread)、シール部(詳しくはメタルタッチシール部(metal to metal seal portion)、ショルダ部(shoulder portion)(詳しくはトルクショルダ部(torque shoulder portion))とをそれぞれ備える、管端部に形成した雄ねじ部材(externally−threaded member)(以下、ピン(pin)と呼ぶ)と該ピン同士を連結する雌ねじ部材(internally−threaded member)(以下、ボックス(box)と呼ぶ)とを結合したカップリング形式(coupling−type)の継手である。テーパねじは管継手を強固に固定するために重要であり、シール部はボックスとピンとがこの部分でメタル接触することでシール性を確保する役目を担い、ショルダ部は継手の締付け中にストッパ(abutment)の役目を担うショルダ面(受け面(bearing face))となる。
 図4は、油井管用プレミアムジョイントの模式的説明図であり、これらは、円管のねじ継手の縦断面図である。ねじ継手は、ピン3とこれに対応するボックス1とを備えており、ピン3は、その外面に雄ねじ部7と、ピン3の先端側に雄ねじ部7に隣接して設けられたねじの無い長さ部分であるノーズ部(nose)8(ピンノーズ(pin nose)8)と有する。ノーズ部8は、その外周面にシール部11を、その端面にはトルクショルダ部12を有する。相対するボックス1は、その内面に、それぞれピン3の雄ねじ部7、シール部11、およびショルダ部12と螺合するか、または接触することができる部分である、雌ねじ部5、シール部13、および、ショルダ部14を有している。
 前記プレミアムジョイントに関する従来技術として、特許文献1~3が挙げられる。
 図4の例では、メタルタッチシール部はピンノーズ8の先端部にあるが、特許文献1には、耐外圧性能を増すために、ピンノーズ8のねじ部近くにメタルタッチシール部を設け、ノーズ部をシール部からショルダ部まで長く伸ばすものも提案されている。この特許文献1に開示されるねじ継手においては、ボックス部材と非接触なピンノーズを、シール部とは不連続な形状となるように長く伸ばしてピンノーズの厚みが薄くならないように構成されており、前述の耐外圧性能の他に、耐軸圧縮性能の向上も実現している。
 また、特許文献2には、同様にシール部からピンノーズ先端にアペンディックス(appendix)なる、これもシール部と不連続な形状を有する部位を設けて、半径方向の剛性を確保し軸方向の剛性を下げて、締付け時にこのアペンディックスを変形させ、引張力の負荷時にその回復により、耐引張性能を向上させることが記載されている。
 これら、特許文献1,2に記載されるように、シール部位置をピンのねじ部位置近くに置き、ピンノーズ先端から離すことは、耐外圧性能(external pressure resistance)、耐引張性能(tension resistance)の向上とともに、ねじに対して安定的な性能を持たせる上で有効であり、それはFEMシミュレーション(finite element method simulation)等からも確認できる。またシール部と不連続な形状となるピンノーズは、強い軸圧縮力(axial compression)が負荷された場合に、それ自体が変形し、ボックス部材のトルクショルダ部の塑性変形(plastic deformation)を軽減させる効果もある。しかし、一方で、ねじとノーズの境界の不連続部に過度な変形が入ることもあり、これは締付けトルク(make up torque)に依存すると考えられる。
 締付けトルクは潤滑条件(lubrication condition)、表面性状等に影響されるので、これに大きくは依存しない設計として、シール接触圧力の半径方向成分を相対的に強くした半径方向のシール接触圧力を強くした半径方向シール方式がある。例えば、特許文献3には、大きなピンシールR形状を持ち、シールテーパ角(seal taper angle)を小さくした半径方向シール方式の例が開示されている。しかし、このようにシールテーパ角を小さくした、半径方向シール方式の問題点は、締付け時にゴーリング(galling)が発生し易い点にあり、特にシール性能の確保およびシールの安定性のために、シール干渉量を大きくとる必要がある場合には、ゴーリングの発生のし易さは更に大きくなる。
特許第4535064号公報 特許第4208192号公報 実公昭61−44068号公報
 以上説明したように、従来提案されているねじ継手においては、未だ何らかの問題を有しており、耐圧縮性能(resistance to compression)、外圧シール性能(sealability against external pressure)、耐曲げ性能(resistance to bending)など、ねじ継手への要求性能の多様化に十分応えるためには、更なる改良の余地がある。近年、水平井や傾斜井の増加に伴い、ねじ継手には、図3に示すように、軸力引張に加えて大きな曲げ負荷が作用する。ねじ継手に曲げ負荷が作用した場合、曲げの引張側では雄ねじ部7と雌ねじ部5のロードフランク面(load flank face)15(図4参照)に互いの嵌合が弱まるような相対変位が生じ、更に曲げ負荷が強まるとねじが脱落することが考えられる。一方、曲げの圧縮側ではピン3とボックス1のトルクショルダ部12,14が支えとなり、シール部の離れようとする動きを抑えているが、更に曲げ負荷が強まるとショルダ部12,14に滑りが生じ、シール性が保持できなくなることが考えられる。
 このような曲げ負荷に対しても十分なシール性を保持できるねじ部のロードフランク角度(load flank angle)、シール部に隣接するショルダ部12,14のトルクショルダ角度、及びノーズ部形状の指針を示す知見は過去に無かった。
 尚、ロードフランク角度とは、ロードフランク面15がねじ継手軸との直交線に対してなす角度(図1B中の角度α)であり、該直交線がロードフランク面の下端(ピン内径側の端)を通るとき、該直交線に対して前記ロードフランク面の上端(ピン外径側の端)が、ピン先端側に位置する場合は正、ピン後端側に位置する場合は負とされる。
 又、トルクショルダ角度(torque shoulder angle)とは、ショルダ部12,14をなすショルダ面がねじ継手軸との直交線に対してなす角度(図1C中の角度β)であり、該直交線がショルダ面の上端(ピン外径側の端)を通るとき、該直交線に対して前記ショルダ面の下端(ピン内径側の端)が、ピン先端側に位置する場合は正、ピン後端側に位置する場合は負とされる。
 発明者らは、上記の課題を解決するために、ロードフランク角度を負の角度とすること及びトルクショルダ角度を負の角度とすることと、ノーズ部の長さと管外径の比との組み合わせを実験的検討により見出した。
 すなわち本発明は次のとおりである。
(1)
 雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピンと、前記雄ねじ部とねじ結合されてねじ部をなす雌ねじ部と、前記ピンのノーズ部外周面に相対するノーズ部内周面と、前記ピンのショルダ部に当接するショルダ部とを有するボックスとを有し、前記ねじ結合により前記ピンとボックスとが結合されてピンの前記ノーズ部外周面とボックスの前記ノーズ部内周面とがメタル‐メタル接触しその接触部がシール部をなす鋼管用ねじ継手であって、前記ねじ部のロードフランク角度を負側とし、前記ショルダ部のトルクショルダ角度を負側とし、前記ノーズ部の長さLと管外径dの比L/dを0.08以上としたことを特徴とする鋼管用ねじ継手。
(2)
 前記ねじ結合の際にボックス側のノーズ部内周面と最初に接触するピン側のノーズ部外周面上の部位であるシールポイント(seal point)におけるピン外径で定義したシール径Dと、前記シールポイントがボックスで縮径されたとしたときの該縮径量で定義した干渉量δとから、ε=δ/D*100(%)
で算出されるシール部の管周方向のひずみεが0.30%以上であることを特徴とする(1)に記載の鋼管用ねじ継手。
(3)
 前記ピンおよび前記ボックスのショルダ部のトルクショルダ角度が−15°未満であることを特徴とする(1)または(2)に記載の鋼管用ねじ継手。
 本発明によれば、曲げ負荷を受けたときでも優れたシール性を示す鋼管用ねじ継手が実現する。
本発明の実施形態の1例を示す全体断面図である。 図1Aにおけるねじ部分を示す拡大断面図である。 図1Aにおけるピンノーズ付近を示す拡大断面図である。 シール部の管周方向のひずみεの定義を示す断面図である。 ねじ継手の曲げ負荷状態を示す模式図である。 従来の鋼管用ねじ継手を示す全体断面図である。 図4Aにおけるねじ部分を示す拡大断面図である。 図4Aにおけるピンノーズ付近を示す拡大断面図である。 気密B試験の荷重条件、および、試験タイプ2の荷重条件を示すグラフである。 ピンシール部のピンシール面の継手軸を通る断面内のプロフィールが、半径R=3inchの円弧であるピンを示す断面図である。 図6Bのピンに嵌合するボックスのシール部のテーパ角度γが3°の直線テーパであるボックスを示す断面図である。
 本発明に係る鋼管用ねじ継手は、例えば図1A~図1Cに示すように、雄ねじ部7と、該雄ねじ部7より管端側に延在するノーズ部8と、該ノーズ部8の先端に設けられたショルダ部12とを有するピン3と、前記雄ねじ部7とねじ結合されてねじ部をなす雌ねじ部5と、前記ピン1のノーズ部外周面に相対するノーズ部内周面と、前記ピン1のショルダ部12に当接するショルダ部14とを有するボックス1とを有し、前記ねじ結合により前記ピンとボックスとが結合されてピン部材の前記ノーズ部外周面とボックスの前記ノーズ部内周面とがメタル‐メタル接触しその接触部がシール部20をなす鋼管用ねじ継手であり、ピンのシール部がトロイド状(円錐曲線回転面形状(toroidal sealing surface))で、ボックスが直線テーパであるラジアルシールタイプのねじ継手であるが、このねじ継ぎ手において、前記ねじ部のロードフランク角度αを、図1Bに示すとおり負側とし、且つ、前記ショルダ部12,14のトルクショルダ角度βを図1Cに示すとおり負側とし、且つ、前記ノーズ部8の長さLと管外径dの比L/dを0.08以上としたものである。
 ロードフランク角度αを負側、好ましくは−4度以下とすることで、曲げの引張側でのねじの脱落を防止することができる。
さらに、トルクショルダ角度βを負側、好ましくは−15度未満とすることで、曲げの圧縮側での曲げに抗する支点となり、シール部の離れようとする動きを抑える。
さらに、ノーズ部の長さ(ノーズ長さ)Lと管外径dの比L/dを0.08以上とすることで、ねじ部とショルダ部の間のノーズ部に可撓性を与え、曲げの支点となるねじ部とショルダ部の変形を低減することができる。
 これらを組み合わせることにより、管とねじ継手の接触面での滑りを防ぎ、嵌め合い状態を維持することで気密性を確保することができる。
 尚、ロードフランク角度αは、負側の角度の絶対値を大きくしすぎると耐ゴーリング性の点で不利となるため、−7度以上が好ましい。さらに好ましくは、−5.5~−4.5度である。
 トルクショルダ角度βは、負側の角度の絶対値を大きくしすぎると圧縮負荷後の気密性の確保の点で不利となるため、−20度以上が好ましい。さらに好ましくは、−18~−16度である。
 ノーズ長さと管外径の比L/dは、大きくしすぎると締付けのときのシール部の褶動距離が長くなり耐ゴーリング性の点で不利となることと、シール部の加工時間が大となるためL/dは0.14以下とすることが好ましい。さらに好ましくは、0.08~0.11である。
 更に気密性を向上させるためには、シール径Dと干渉量δとから、ε=δ/D*100(%)で算出されるシール部の管周方向のひずみεが0.30%以上であるものとすることが有効である。ここで、シール径D、干渉量δとは、図2に示すとおり、シール径Dは、ねじ結合の際にボックス1側のノーズ部内周面と最初に接触するピン3側のノーズ部外周面上の部位であるシールポイントにおけるピン外径のことであり、干渉量δは、ねじ結合の際に前記シールポイントがボックス1で縮径されたとしたときの該縮径量のことである。
 尚、シール部の管周方向のひずみεは、大きくしすぎると耐ゴーリング性の点で不利となるため、0.7%以下が好ましい。さらに好ましくは、0.3%~0.6%である。
 表1−1、表1−2および表1−3に示す鋼管外径d(inch)の鋼管の管端を加工して、ピンシール部21がトロイド状(円錐曲線回転面形状)でピンシール面の、継手軸を通る断面内のプロフィール(図6AのR)が、半径R=3inchの円弧であるピン3とし、これに嵌合するボックス1としてのシール部20がテーパ角度(図6Bのγ)が3°の直線テーパであるボックス1を作成し、ラジアルシールタイプ(radial seal type)のねじ継手とした。このねじ継手を対象に、試験タイプ1として、L/d、ε=δ/d(%)を表1−1、表1−2および表1−3に示す種々の値とし、ISO 13679に基づき気密A試験(Sealability leak test A or tightness leak test A)、気密B(曲げを含む)試験、気密C試験を実施した。その結果を表1に併せて示す。表1には、シール失効有のものを×(bad)、シール失効無のものを○(good)として示した。本発明例では、シール失効することなく試験を完了し、優れたシール性を示した。一方、比較例では、シール失効が認められた。
 次に、さらに前述の気密試験Bに対してさらに負荷を増大させた試験を試験タイプ2として実施した。以下のこの試験について説明する。
 図5は、例としてISO 13679に規定されている気密B試験の荷重条件を示すグラフである。横軸は引張(圧縮)/曲げによってパイプに生じる軸方向応力を、縦軸はパイプ内面に作用する内圧を示す。外側の破線で示した曲線は引張(圧縮)/曲げ/内圧が複合して作用した場合の相当応力が材料の降伏応力と等価(降伏応力の100%)であることを示している。内側の実線で示した曲線は相当応力が材料の降伏応力の90%に対応する曲線である。前述の試験タイプ1の気密B試験は、この90%の荷重曲線の各点を評価点としてシール失効の有無を判定するものである。
 その結果、表1−1および表1−2に示すように、ノーズ長さと管外径の比L/dが0.08以上である発明例1~12では、試験タイプ1の気密試験結果(A,B,C)でシール失効が無かった。
 試験タイプ2では、シール失効の無かった発明例1~12のサンプルを用いて、前述の気密B試験(曲げを含む)のLP5の点において、規格に規定されている最大曲げ条件を超えた曲げ負荷を付与してシール失効のない曲げ条件限度を調査した。すなわち、図5に実線で示す気密B試験の試験荷重曲線におけるLP5の点において、材料の降伏応力の90%の相当応力から、さらに曲げ負荷を増大させて図中の矢印に示すように相当応力を増大させ、シール失効が始まる負荷条件を調査した。
 その結果、表1−1および表1−2に示すように、さらに干渉量εが0.30%以上である発明例1~10では、相当応力を降伏応力の100%(図5中の矢印と破線が交わる点)まで負荷してもシール失効がないことが確認された。
 また、トルクショルダ角度βが、−15度未満である発明例6~10では、相当応力を降伏応力の105%まで負荷してもシール失効がないことが確認された。
1 ボックス
3 ピン
5 雌ねじ部
7 雄ねじ部
8 ノーズ部(ピンノーズ)
11,13,20 シール部(詳しくはメタルタッチシール部)
12,14 ショルダ部(詳しくはトルクショルダ部)
15 ロードフランク面
21 ピンシール部
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  雄ねじ部と、該雄ねじ部より管端側に延在するノーズ部と、該ノーズ部の先端に設けられたショルダ部とを有するピンと、
    前記雄ねじ部とねじ結合されてねじ部をなす雌ねじ部と、前記ピンのノーズ部外周面に相対する内周面と、前記ピンのショルダ部に当接するショルダ部とを有するボックスとを有し、
    前記ねじ結合により前記ピンとボックスとが結合されてピンの前記ノーズ部外周面とボックスの前記ノーズ部内周面とがメタル‐メタル接触しその接触部がシール部をなす鋼管用ねじ継手であって、
    前記ねじ部のロードフランク角度を負側とし、前記ショルダ部のトルクショルダ角度を負側とし、前記ノーズ部の長さLと管外径dの比L/dを0.08以上とした鋼管用ねじ継手。
  2.  前記ねじ結合の際にボックス側のノーズ部内周面と最初に接触するピン側のノーズ部外周面上の部位であるシールポイントにおけるピン外径で定義したシール径Dと、前記シールポイントがボックスで縮径されたとしたときの該縮径量で定義した干渉量δとから、ε=δ/D*100(%)
    で算出されるシール部の管周方向のひずみεが0.30%以上である請求項1に記載の鋼管用ねじ継手。
  3.  前記ピンおよび前記ボックスのショルダ部のトルクショルダ角度が−15°未満である請求項1または2に記載の鋼管用ねじ継手。
PCT/JP2012/055293 2011-03-22 2012-02-24 鋼管用ねじ継手 WO2012128015A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2013146969/06A RU2541364C1 (ru) 2011-03-22 2012-02-24 Резьбовое соединение для стальных труб
MX2013010500A MX335962B (es) 2011-03-22 2012-02-24 Union roscada para tuberias de acero.
US14/006,245 US8991875B2 (en) 2011-03-22 2012-02-24 Threaded joint for steel pipes
BR112013024151-9A BR112013024151B1 (pt) 2011-03-22 2012-02-24 Junta roscada para tubos de aço
CA2827922A CA2827922C (en) 2011-03-22 2012-02-24 Threaded joint for steel pipes
EP12760806.5A EP2690336B1 (en) 2011-03-22 2012-02-24 Threaded joint for steel pipes
ES12760806T ES2762248T3 (es) 2011-03-22 2012-02-24 Junta roscada para tuberías de acero
AU2012232466A AU2012232466B2 (en) 2011-03-22 2012-02-24 Threaded joint for steel pipes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-061942 2011-03-22
JP2011061942 2011-03-22
JP2011210031A JP5923911B2 (ja) 2011-03-22 2011-09-27 鋼管用ねじ継手
JP2011-210031 2011-09-27

Publications (1)

Publication Number Publication Date
WO2012128015A1 true WO2012128015A1 (ja) 2012-09-27

Family

ID=46857201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055293 WO2012128015A1 (ja) 2011-03-22 2012-02-24 鋼管用ねじ継手

Country Status (12)

Country Link
US (1) US8991875B2 (ja)
EP (1) EP2690336B1 (ja)
JP (1) JP5923911B2 (ja)
CN (2) CN102691481A (ja)
AR (1) AR085462A1 (ja)
AU (1) AU2012232466B2 (ja)
BR (1) BR112013024151B1 (ja)
CA (1) CA2827922C (ja)
ES (1) ES2762248T3 (ja)
MX (1) MX335962B (ja)
RU (1) RU2541364C1 (ja)
WO (1) WO2012128015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113790A1 (ja) * 2015-01-15 2016-07-21 Jfeスチール株式会社 管用ねじ継手

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923911B2 (ja) * 2011-03-22 2016-05-25 Jfeスチール株式会社 鋼管用ねじ継手
JP5891700B2 (ja) * 2011-10-17 2016-03-23 Jfeスチール株式会社 管のねじ継手
US10025889B2 (en) * 2013-11-06 2018-07-17 Vetco Gray, LLC Stress amplification factor analysis methodology for assessing fatigue performance of threaded connectors
JP5971264B2 (ja) * 2014-01-10 2016-08-17 Jfeスチール株式会社 極厚肉油井管用ねじ継手
WO2015147936A1 (en) * 2014-03-24 2015-10-01 Materion Corporation Drilling component
US9683684B1 (en) 2015-12-09 2017-06-20 Certus Energy Solutions, Llc Tubular coupling
US11466800B2 (en) 2015-12-09 2022-10-11 Certus Energy Solutions, Llc Tubular coupling
EP3260649B1 (en) * 2016-06-21 2019-12-18 Energy Frontier Solutions S.L. Threaded joint for oil and gas pipes
US20200141522A1 (en) * 2017-05-25 2020-05-07 Nippon Steel Corporation Threaded Connection for Steel Pipe
US11391399B2 (en) * 2018-08-21 2022-07-19 Nippon Steel Corporation Threaded connection for steel pipes
CN113227626B (zh) * 2018-12-25 2022-11-29 日本制铁株式会社 钢管用螺纹接头
CN110159844A (zh) * 2019-06-26 2019-08-23 柳道万和(苏州)热流道系统有限公司 密封装置及密封装置的安装方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144068A (ja) 1984-08-07 1986-03-03 三菱電機株式会社 鉄道車両の蛇行動防止装置
JPS6144068Y2 (ja) * 1982-04-16 1986-12-12
JPH0231271B2 (ja) * 1984-06-20 1990-07-12 Nippon Kokan Kk
JPH06281061A (ja) * 1993-03-24 1994-10-07 Sumitomo Metal Ind Ltd 油井管用ねじ継手
JP2000081173A (ja) * 1998-07-08 2000-03-21 Sumitomo Metal Ind Ltd 油井管用ねじ継手
JP2005351324A (ja) * 2004-06-09 2005-12-22 Metal One Corp 油井管用ネジ継手
JP2006526747A (ja) * 2003-06-06 2006-11-24 住友金属工業株式会社 鋼管用ねじ継手
JP4208192B2 (ja) 2001-12-07 2009-01-14 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231271A (ja) 1988-07-21 1990-02-01 Toshiba Corp マルチプロセッサシステム
US5092635A (en) * 1990-04-27 1992-03-03 Baker Hughes Incorporated Buttress thread form
FR2761450B1 (fr) * 1997-03-27 1999-05-07 Vallourec Mannesmann Oil & Gas Joint filete pour tubes
WO1999018382A1 (fr) * 1997-10-08 1999-04-15 Sumitomo Metal Industries, Ltd. Joint a vis destine a des tuyaux de puits de petrole, et procede de fabrication associe
WO2000006937A1 (fr) * 1998-07-31 2000-02-10 Kawasaki Steel Corporation Joint a vis pour canalisation de puits de petrole et procede et appareil de vissage pour ce dernier
JP2001124253A (ja) * 1999-10-29 2001-05-11 Kawasaki Steel Corp 鋼管用ネジ継手
US6626471B2 (en) * 2000-08-10 2003-09-30 Hydril Company Double flex seal for tubular connection
JP2002250485A (ja) * 2001-02-23 2002-09-06 Kawasaki Steel Corp 油井鋼管用継手
FR2863681B1 (fr) * 2003-12-11 2006-02-24 Vallourec Mannesmann Oil & Gas Joint tubulaire a filetages coniques resistant a la fatigue
JP2007205361A (ja) * 2004-08-27 2007-08-16 Sumitomo Metal Ind Ltd 鋼管用ねじ継手
CN200946463Y (zh) * 2006-06-08 2007-09-12 天津钢管集团有限公司 螺旋密封型套管连接结构
WO2009060552A1 (en) * 2007-11-08 2009-05-14 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipes
CN201412077Y (zh) * 2009-06-10 2010-02-24 成都岷江精密刀具有限公司 一种偏梯形负扣螺纹套管
JP4930647B1 (ja) * 2010-06-30 2012-05-16 Jfeスチール株式会社 管用ねじ継手
CN201756922U (zh) * 2010-08-19 2011-03-09 杨林 带有单台肩密封变螺距的油套管
JP5923911B2 (ja) * 2011-03-22 2016-05-25 Jfeスチール株式会社 鋼管用ねじ継手

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144068Y2 (ja) * 1982-04-16 1986-12-12
JPH0231271B2 (ja) * 1984-06-20 1990-07-12 Nippon Kokan Kk
JPS6144068A (ja) 1984-08-07 1986-03-03 三菱電機株式会社 鉄道車両の蛇行動防止装置
JPH06281061A (ja) * 1993-03-24 1994-10-07 Sumitomo Metal Ind Ltd 油井管用ねじ継手
JP2000081173A (ja) * 1998-07-08 2000-03-21 Sumitomo Metal Ind Ltd 油井管用ねじ継手
JP4208192B2 (ja) 2001-12-07 2009-01-14 バローレック・マネスマン・オイル・アンド・ガス・フランス 端部リップを備える少なくとも1つのねじ部分を含む高品質なねじ付き管継手
JP2006526747A (ja) * 2003-06-06 2006-11-24 住友金属工業株式会社 鋼管用ねじ継手
JP4535064B2 (ja) 2003-06-06 2010-09-01 住友金属工業株式会社 鋼管用ねじ継手
JP2005351324A (ja) * 2004-06-09 2005-12-22 Metal One Corp 油井管用ネジ継手

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113790A1 (ja) * 2015-01-15 2016-07-21 Jfeスチール株式会社 管用ねじ継手
JPWO2016113790A1 (ja) * 2015-01-15 2017-04-27 Jfeスチール株式会社 管用ねじ継手
US20180258709A1 (en) * 2015-01-15 2018-09-13 Jfe Steel Corporation Screw joint for pipe (as amended)

Also Published As

Publication number Publication date
BR112013024151A2 (pt) 2016-12-20
EP2690336B1 (en) 2019-10-02
AU2012232466A1 (en) 2013-09-12
CA2827922C (en) 2016-10-11
EP2690336A1 (en) 2014-01-29
JP5923911B2 (ja) 2016-05-25
CN102691481A (zh) 2012-09-26
ES2762248T3 (es) 2020-05-22
AR085462A1 (es) 2013-10-02
AU2012232466B2 (en) 2015-09-03
RU2541364C1 (ru) 2015-02-10
JP2012211683A (ja) 2012-11-01
EP2690336A4 (en) 2015-11-11
US8991875B2 (en) 2015-03-31
CA2827922A1 (en) 2012-09-27
MX335962B (es) 2016-01-05
BR112013024151B1 (pt) 2020-06-16
CN202612908U (zh) 2012-12-19
US20140049045A1 (en) 2014-02-20
MX2013010500A (es) 2013-10-01

Similar Documents

Publication Publication Date Title
WO2012128015A1 (ja) 鋼管用ねじ継手
WO2012002409A1 (ja) 管用ねじ継手
JP5891700B2 (ja) 管のねじ継手
JP5849749B2 (ja) 管用ねじ継手
JP5660308B2 (ja) 鋼管用ねじ継手
WO2015104739A1 (ja) 極厚肉油井管用ねじ継手
WO2018061767A1 (ja) 油井鋼管用ねじ継手
JP6103137B2 (ja) 管用ねじ継手
JP5673089B2 (ja) 鋼管用ねじ継手
JP6020087B2 (ja) 管用ねじ継手
JP5776222B2 (ja) 鋼管用ねじ継手
JP5906588B2 (ja) 鋼管用ねじ継手の製造方法
WO2014125545A1 (ja) 管接続用ねじ継手
JP2013029174A (ja) 鋼管用ねじ継手
JP5673090B2 (ja) 鋼管用ねじ継手
JP2014105761A (ja) 管用ねじ継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2827922

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012232466

Country of ref document: AU

Date of ref document: 20120224

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/010500

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14006245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013146969

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024151

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024151

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130920