WO2012127595A1 - 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム - Google Patents

電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム Download PDF

Info

Publication number
WO2012127595A1
WO2012127595A1 PCT/JP2011/056665 JP2011056665W WO2012127595A1 WO 2012127595 A1 WO2012127595 A1 WO 2012127595A1 JP 2011056665 W JP2011056665 W JP 2011056665W WO 2012127595 A1 WO2012127595 A1 WO 2012127595A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
leveling
value
remaining
target value
Prior art date
Application number
PCT/JP2011/056665
Other languages
English (en)
French (fr)
Inventor
舟久保利昭
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013505670A priority Critical patent/JP5664763B2/ja
Priority to PCT/JP2011/056665 priority patent/WO2012127595A1/ja
Publication of WO2012127595A1 publication Critical patent/WO2012127595A1/ja
Priority to US14/023,879 priority patent/US20140012426A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network

Definitions

  • the present invention relates to a power leveling control device, a power leveling storage device, a power leveling control method, and a leveling program.
  • the trend of demand power changes with various factors.
  • the major causes of change include the day of the week, the season, office personnel, and the change in equipment arrangement.
  • the daily power of the users also fluctuates the demand power, though small. For this reason, the power equipment is usually designed to meet the peak demand so that the power does not run out when the power demand is at a maximum.
  • the electricity storage device is used to meet the demand with stored electricity when demand is large, and when the demand is small, equalization is performed by storing electricity in the electricity storage device. Attempts have been made to lower the peak.
  • the demand peak can be reduced and fluctuations in demand can be leveled, for example, the demand burden ratio by nuclear power generation, which is an operation mode in which output fluctuation is not performed as much as possible, can be increased, carbon dioxide (CO 2 ) emissions reduced, cost It will also be possible to reduce.
  • an output target value is provided, and when the output of the power supply is larger than the output target value, the surplus is charged to the storage device, and when the output is smaller than the output target value, the shortage is displayed.
  • the storage battery may be discharged.
  • the output of the power supply and the storage amount of the storage device are detected, the average value of the output of the preset period is corrected with the target value set according to the storage amount, and the output target value is set.
  • the average value of the used power from the start of the demand time period to the present is calculated based on the used power information, and when the average value exceeds the first predetermined value, the power storage device is discharged, and is less than the second predetermined value.
  • charging There are also examples of charging.
  • power control is performed based on time fluctuation data of load energy amount stored in advance corresponding to data of predicted representative air temperature.
  • the present invention provides a power leveling device, a power storage device, and a leveling program capable of performing power leveling based on the remaining amount of power in consideration of periodic characteristics of change in power demand without using demand forecast. Intended to be provided.
  • the electric power leveling device which is one mode equalizes the electric power supplied from the power source in a system in which a power source is connected with a power storage device and a load.
  • the storage residual amount acquisition unit acquires the storage residual amount of the power storage device for each monitoring time.
  • the storage storage unit stores the storage residual amount acquired by the storage residual amount acquisition unit.
  • the target determination unit is configured to store the electricity of the cycle within the remaining charge amount stored in the electricity storage unit at the end of a cycle in which it is predicted that a high period and a low period of power demand of the load occur alternately.
  • the control unit controls the power supplied from the power supply and the power storage device to the load based on the leveling target value for power leveling used in the next period determined by the target determining unit.
  • the capacity of the power storage device can be effectively utilized, and a power leveling control device capable of performing power leveling with simple processing without demand forecasting, power leveling power storage device, power leveling control A method and leveling program are provided.
  • FIG. 1 is a diagram showing a power leveling system according to a first embodiment. It is a figure which shows notionally the electric power leveling control by 1st Embodiment. It is a figure which shows an example of the electric power leveling control by 1st Embodiment. It is a figure explaining an example of the electric power equalization control in the equalization period by a 1st embodiment. It is a figure explaining the definition of the electrical storage residual amount allowable lower limit in the electric power leveling control by 1st Embodiment. It is a figure explaining the definition of the electrical storage residual amount use lower limit in the electric power leveling control by 1st Embodiment.
  • FIG. 2 is a block diagram showing an example of a standard computer hardware configuration.
  • FIG. 1 is a diagram showing a power leveling system 1 according to a first embodiment.
  • the power leveling system 1 includes a leveling control unit 20 for controlling the operation of the switch 5 while the power storage device 7 and the variable load 13 are connected to the power source 3 via the switch 5.
  • the power source 3 is a commercial power source.
  • Switch 5 is connected between power supply 3 and power storage device 7 and variable load 13 so as to be openable / closable, and controlled by leveling control unit 20 to open / close the connection, power supply 3, power storage device 7 and variable load Switch the connection between 13 and
  • the storage device 7 is connected to the switch 5 and the variable load 13, and includes a received power measurement unit 9, a storage battery 11, and a remaining charge measurement unit 12.
  • the received power measuring unit 9 measures the received power from the power source 3 and outputs the measured power to the leveling control unit 20.
  • the capacitor 11 supplies power to the variable load 13 by charging or discharging a part of the power received from the power source 3 according to the opening and closing of the switch 5.
  • the remaining charge measuring unit 12 measures the remaining charge of the storage battery 11 and outputs the measured remaining charge to the leveling control unit 20.
  • the variable load 13 is a load that fluctuates in power consumption supplied with power, such as general households and companies. In FIG. 1, when the output of the power supply 3, the input / output of the storage battery 11, and the input of the variable load 13 are different for AC power and DC power, an AC / DC converter is appropriately inserted.
  • the leveling control unit 20 includes a target determination unit 22, a storage unit 24, and a switch control unit 26.
  • the target determination unit 22 determines a leveling target value based on the remaining charge amount stored in the storage unit 24 described later, and outputs the same to the switch control unit 26. Further, the target determining unit 22 stores the remaining amount of charge and the determined leveling target value in the storage unit 24. Furthermore, the target determination unit 22 includes a leveling cycle timer, a demand time-period timer, and a monitoring control cycle timer (not shown), and manages each cycle. Details of the method of determining the leveling target value will be described later.
  • the storage unit 24 is, for example, a random access memory (RAM) or the like.
  • the storage unit 24 stores a program for controlling the operation of the leveling control unit 20, the remaining amount of stored power input from the power storage device 7, the determined leveling target value, and the like.
  • the switch control unit 26 outputs an operation signal to switch the connection state of the switch 5 based on the leveling target value determined by the target determination unit 22 and the received power and the remaining amount of stored power input from the storage device 7. Control.
  • FIG. 2 is a diagram conceptually showing power leveling control with power consumption on the vertical axis and time on the horizontal axis. As shown in FIG. 2, when the power consumption is lower than the target value, the storage battery 11 is charged, and when the power consumption is higher than the target value, the switch 5 is opened to supply power from the storage battery 11 to the variable load 13.
  • the power consumption and the target value may be the amount of power per unit time.
  • FIG. 3 is a diagram showing an example of power leveling control, in which the vertical axis represents power and electric energy, and the horizontal axis represents time.
  • the power leveling control for example, the total amount of power received from the commercial power source within a predetermined demand time period is measured, and power reception from the power source is controlled based on comparison of the measured received power amount with the leveling target value.
  • received power measuring unit 9 measures the sum of the consumed power of variable load 13 and the charged power of capacitor 11 as received power Pin from power supply 3. Therefore, referring to FIG. 3, an example in which the switch 5 is opened or closed depending on whether the accumulated electric energy Ein accumulated the received power Pin from the power source 3 exceeds the leveling target value at a certain point during the demand time period T1.
  • FIG. 3 shows temporal changes in received power Pin, accumulated power amount Ein, and load power Pl.
  • the received power Pin is the power measured by the received power measuring unit 9, and the accumulated power amount Ein is an elapsed time from the start of the demand time period, assuming that the received power Pin measured by the received power measuring unit 9 is continued for the monitoring time.
  • the load power P1 is the power consumption of the variable load 13.
  • the switch 5 is opened, and the storage battery 11 starts discharging.
  • the same operation is repeated.
  • the received power Pin is the sum of the load power P1 and the charge power to the capacitor 11. It becomes electric power.
  • power leveling control is performed in which the received power amount Ein within the demand time period is limited to a value equal to the leveling target value x.
  • a method of determining the leveling target value in the power leveling system 1 according to the first embodiment configured as described above will be described.
  • a leveling cycle is determined, and feedback control is performed to update a future leveling target value based on the past leveling cycle.
  • the variable load 13 usually fluctuates according to the human activity status, for example, a period with high and low power demand often occurs alternately in a cycle of 1 day. For this reason, in the present embodiment, a period in which a high period and a low period of the power demand of the variable load 13 are predicted to occur alternately, for example, one day (24 hours) with high daytime demand and low nighttime demand is balanced.
  • the conversion period T0 is determined.
  • T0 may be a year with high summer demand and low winter demand. Then, the power leveling system 1 stores the capacitor 11 up to the upper limit of the storage capacity within the leveling cycle T0, and is in a lower limit state where the electricity stored in the leveling cycle is used up. At the end, it is preferable to make it equal to the initial charge remaining amount of the leveling cycle.
  • FIG. 4 is a diagram for explaining an example of power leveling control in the leveling period.
  • the horizontal axis represents time, and the vertical axis represents power, the amount of power, and the remaining charge amount.
  • FIG. 4 shows an example of changes in the received power Pin, the accumulated power Ein, the load power Pl, and the remaining charge amount Br in the leveling cycle T0, and the leveling target value x and the remaining charge initial value B0.
  • the remaining charge amount Br B0.
  • the leveling target value x when such an operation result is obtained is an ideal value that can effectively reduce the peak of the received power amount within the demand time period by effectively utilizing the storage capacity.
  • FIG. 5 is a diagram for explaining the definition of the storage residual amount lower limit, showing an example of a state where the storage residual amount Br becomes zero and can not be discharged.
  • the horizontal axis represents time
  • the vertical axis represents power, the amount of power, and the remaining amount of power, and an example of changes in received power Pin, accumulated power Ein, load power P1, and remaining amount of power Br, and equalization Shows the conversion target value x.
  • the lower limit of the storage residual amount Br for performing the determination of “no storage residual amount” is not “zero”, but needs to be a value leaving a residual amount sufficient to cover the demand until the next monitoring time.
  • This value is referred to as a storage remaining amount lower limit Blim.
  • the storage residual capacity lower limit Blim is determined as the value of the storage residual amount Br that can cover the product of the monitoring control time T2 and the maximum dischargeable power Pmax of the storage battery 11 or the maximum power of the variable load 13, and a margin for safety ⁇ may be added.
  • the storage residual amount lower limit Blim is expressed by, for example, Formula 1.
  • Blim 100 ⁇ Pmax ⁇ T2 / Brmax + ⁇ (%) (Equation 1)
  • Brmax is the capacity of the battery.
  • FIG. 6 is a diagram for explaining the definition of the storage residual amount use lower limit, showing an example of leveling control when the leveling target value x is lower than necessary
  • FIG. 7 shows the storage residual amount use lower limit Bl. It is a figure which shows an example of excess / deficiency determination of the electrical storage residual amount state in, when it determines. 6 and 7, the horizontal axis represents time, and the vertical axis represents power, the amount of power, and the remaining amount of charge.
  • FIG. 6 and FIG. 7 an example of changes in received power Pin, accumulated power Ein, load power Pl, and remaining power amount Br in 24 hours which is an example of leveling cycle T0, and leveling target value x, power storage The remaining amount initial value B0 is shown.
  • the power storage residual capacity lower limit Blim is provided, and a power supply is provided to avoid a power failure when the power storage residual capacity lower limit Blim is exceeded.
  • the value for determining that the storage residual amount Br is insufficient includes a margin for absorbing a control error with respect to “zero”. Should be set as.
  • This value is referred to as a storage residual amount use lower limit B1 and is a value designated in advance or a value determined according to the excess / deficiency amount of the storage residual amount state.
  • the target determining unit 22 sets the storage residual amount use lower limit Bl, and the storage residual amount minimum value in the front equalization period falls below the storage residual amount use lower limit Bl. At this time, it is determined that the state of charge storage is insufficient. As a result, the possibility of the storage residual amount Br becoming "zero" is reduced, and the occurrence of a high peak of the accumulated electric energy Ein can also be prevented.
  • FIG. 8 is a diagram showing a change in the state of charge remaining Br at the time of charging of the storage battery 11.
  • the horizontal axis represents time
  • the vertical axis represents power, the amount of power, and the remaining charge, and shows an example of changes in received power Pin, accumulated power Ein, and remaining charge Br.
  • the storage battery Since the storage battery is not a power supply, it is necessary to recover the discharged power by charging for leveling. Here, if the storage battery is fully charged, it can not be charged even if a charge opportunity is obtained, and the amount of power that can be discharged may also be reduced. As a result, since the peak reduction capability also deteriorates in the same manner, it is necessary to determine that the battery is fully charged with a margin for the upper limit as well as the lower limit of use of the remaining charge amount. The value used for this determination is referred to as the remaining charge usage upper limit Bu, and is designated in advance by the target determination unit 22.
  • the upper limit of the charge voltage is determined for the storage battery, and the charge current decreases as the difference between the charge voltage and the storage battery voltage decreases when the battery approaches full charge, so the charge rate decreases. Go.
  • the state of charge remaining amount Br 85 85 [%] the slope of the state of charge remaining amount Br changes, and the charging speed obviously decreases.
  • the region of the storage capacity at which the charge rate decreases is referred to as a constant voltage charge region.
  • the power leveling system 1 charges the amount of power to be discharged for leveling. Depending on the need to suppress. However, since the charge rate in the constant voltage charge region decreases exponentially as shown in FIG. 8, the amount of power that can be discharged is significantly reduced, and the peak reduction capability is degraded as well. Therefore, in the power leveling system 1, the constant voltage charging region may not be actively used, and it may be regarded as fully charged if the remaining amount of charge reaches the lower limit of this region.
  • the lower limit of the constant voltage charging region is generally indicated as the specification of the capacitor 11.
  • the power leveling control for determining the leveling target value x based on the change of the remaining charge Br in the leveling period T0 requires the following reference input element. That is, they are the maximum remaining charge Bmax, the minimum remaining charge Bmin, the final remaining charge B, and the charge balance Bd in the equalization cycle T0.
  • the final charge remaining amount B is the difference between the charge remaining amount Br at the end of the leveling cycle and the charge balance Bd is the difference between the charge remaining amount Br at the start and the end of the leveling period.
  • FIGS. 9 to 11 are flowcharts showing the operation of the power leveling system 1 according to the first embodiment.
  • initial parameter setting of power leveling control is performed in advance (S51). That is, the leveling cycle T0, the demand time period T1, the monitoring control time T2, and the leveling cycle start time are set and stored in the storage unit 24.
  • upper limit of battery use upper limit Bu (%), lower limit of battery use lower limit Bl (%) for leveling target value determination control, leveling target value increase / decrease value dx (Wh), initial value of leveling target value x X0 (Wh) is set and stored in the storage unit 24 (S52).
  • the target determination unit 22 monitors whether or not the leveling cycle start time set in S51 has arrived by comparing the time period acquiring section not shown with the leveling cycle start time stored in the storage section 24. Yes (S53: No). When the leveling cycle start time comes (S53: Yes), the target determining unit 22 first obtains the remaining power amount B (%) as an initial value of the remaining power amount Br (S54), and starts the leveling control (S55).
  • the target determination unit 22 outputs an operation signal for closing the switch 5 to start power reception to the switch control unit 26, and the switch 5 closes the connection according to an instruction signal from the switch control unit 26 (S64).
  • the target determining unit 22 monitors until the monitoring control cycle timer expires (S67: No), and when it expires (S67: Yes), acquires the remaining charge Br measured by the remaining charge measuring unit 12 as B ((S67: Yes) S68).
  • the target determining unit 22 compares the acquired remaining power B with the maximum remaining power Bmax, and when the final remaining power B is equal to or less than the maximum remaining power Bmax, the process proceeds to S71 ( S69: Yes). If the storage residual amount B is larger than the storage residual amount maximum value Bmax (S69: No), the storage residual amount maximum value Bmax is updated to the storage residual amount B (S70), and the process proceeds to S71.
  • the target determination unit 22 compares the acquired remaining charge B with the minimum remaining charge Bmin, and when the remaining charge B is equal to or greater than the minimum remaining charge Bmin, the process proceeds to S73 (S71). : Yes). If the storage residual amount B is smaller than the storage residual amount minimum value Bmin (S71: No), the target determining unit 22 updates the storage residual amount minimum value Bmin to the storage residual amount B (S72), and the process proceeds to S73. move on.
  • the target determination unit 22 acquires the received power Pin (W) by the received power measurement unit 9 (S73).
  • the switch control unit 26 compares the cumulative received power amount Ein calculated in S81 with the current leveling target value x, and if the cumulative received power amount Ein is less than the leveling target value x (S82: No), the process proceeds to S84.
  • the switch control unit 26 outputs an operation signal for disconnecting the connection to the switch 5, and the switch 5 is connected Cut.
  • the storage battery detects a loss of input, and starts supplying power to the load by discharging (S83).
  • the target determination unit 22 stores the maximum remaining power Bmax, the minimum remaining power Bmin, the initial storage B0, and the like in the storage unit 24 or reads out the storage unit 24 to perform determination processing and the like. Is going.
  • FIGS. 12 to 15 are diagrams showing an example of the result of the leveling control according to the first embodiment, where the horizontal axis is time, and the vertical axis is the power, the amount of power, and the remaining amount of charge.
  • FIGS. 12 to 15 show the change of the storage residual amount Br in the leveling cycle T0, the storage residual amount initial value B0, the storage residual amount use upper limit Bu, and the storage residual amount use lower limit Bl. Further, for comparison, the received power Pin, the accumulated received power Ein, the load power Pl, and the leveling target value x are shown.
  • FIG. 12 is a diagram showing the result of leveling control in the case where the leveling target value x is optimal with respect to the device configuration of the variable load 13 and fluctuations in demand power.
  • the leveling period T0 is 24 hours.
  • the storage residual amount Br records the storage residual amount minimum value Bmin before 12 hours and rises again and becomes the final storage residual amount B at the end of 24 hours of the end of the leveling cycle T0.
  • the storage residual amount maximum value Bmax is a storage residual amount use upper limit Bu
  • the storage residual amount minimum value Bmin is a storage residual amount use lower limit Bl.
  • the charge balance Bd is zero. Therefore, in the power leveling system 1 according to the first embodiment in this leveling cycle T0, the optimum leveling target value x is set, and the leveling target value x in the next leveling cycle T0 Is not corrected.
  • FIG. 13 is a diagram showing an example of the result of leveling control.
  • the storage residual amount minimum value Bmin is less than the storage residual amount use lower limit Bl.
  • the maximum remaining power amount Bmax exceeds the storage remaining amount upper limit Bu, and in the region 13C, the storage balance Bd exceeds zero.
  • the leveling target value x is increased.
  • FIG. 14 is a diagram showing another example of the result of leveling control.
  • the maximum remaining charge amount value Bmax is less than the upper limit usage amount Bu of remaining charge.
  • the storage residual amount minimum value Bmin exceeds the storage residual amount use lower limit Bl.
  • the charge balance Bd is substantially zero.
  • the leveling target value x is maintained. In such a case, once the leveling target value x is increased to make the storage balance Bd a positive value, and the leveling target value x is returned again, the remaining amount of storage Br becomes excessive even with the same leveling target value x. In some cases.
  • FIG. 15 is a diagram showing still another example of the result of leveling control.
  • the storage residual amount minimum value Bmin exceeds the storage residual amount use lower limit Bl.
  • the maximum remaining power amount Bmax exceeds the storage remaining amount upper limit Bu, and in the region 15C, the storage balance Bd exceeds zero.
  • the leveling target value x is decreased.
  • FIG. 16 is a diagram showing an example of the result when the above leveling control is performed for about 1000 days.
  • the horizontal axis is the number of days
  • the vertical axis is the accumulated power and the remaining power.
  • the peak power amount exceeds the leveling target value The days are almost gone.
  • the reduction effect of the peak power amount of about 10% can be obtained by the leveling control.
  • the power supply 3, the power storage device 7 and the variable load 13 are connected via the switch 5, and the operation of the switch 5 is controlled.
  • the leveling control unit 20 of FIG. The leveling control unit 20 updates the leveling target value x in the next leveling cycle T0 based on the maximum remaining power value Bmax in the leveling cycle T0, the minimum remaining power level Bmin, and the storage balance Bd. Further, the leveling control unit 20 performs leveling control in the power leveling system 1 by controlling the opening and closing of the switch 5 based on the updated leveling target value x.
  • the loss of the capacitor 11 and its charge / discharge circuit, the charge rate, etc. appear as an increase or decrease in the remaining charge Br even if it changes in any way. . Therefore, in the power leveling control based on the remaining charge amount in the power leveling system 1 according to the first embodiment, the leveling target value including the influence of the characteristic is calculated without modeling the characteristic of the power leveling system 1. It can be decided. Further, the power leveling system 1 performs control regardless of how the power demand of the variable load 13 changes. The power leveling system 1 determines the leveling target value x based on the value representing the transition of the remaining power amount Br in the leveling cycle T0 stored in the storage unit 24 at the end of the leveling cycle T0.
  • the demand forecast of the variable load 13 is unnecessary, and the leveling target value can be determined by simple processing.
  • power leveling control can be performed according to the actual power leveling system 1 and power consumption can be reduced.
  • a cycle in which a high power demand period and a low power demand period are predicted to occur alternately is defined as a leveling cycle T0, and storage within the leveling cycle T0 is established. Control according to the fluctuation of the remaining amount Br. As a result, the storage capacity can be effectively used, and control can be made using the characteristics of load fluctuation.
  • the storage residual amount use lower limit Bl which is not “zero” is set as a threshold for the storage residual amount minimum value Bmin
  • the storage residual amount Br may become "zero" Is reduced.
  • the storage residual amount use upper limit Bu is provided as a threshold for the storage residual amount maximum value Bmax, the use of the region of the storage residual amount Br in which the amount of dischargeable electric power is significantly reduced due to the reduction of the charging speed is restricted It is possible to prevent the deterioration of the leveling performance.
  • the present modification 1 is a modification of the determination processing (S100) of the leveling target value x described in the first embodiment.
  • S100 determination processing
  • the configuration of the power leveling system 1 and the processes other than S100 are the same as those of the first embodiment, and thus the description thereof will not be repeated.
  • the condition regarding the reference input element described in the first embodiment is determined as follows depending on whether the leveling target value x is increased or decreased in the next leveling cycle T0.
  • At least one is selected as the determination condition.
  • their logical sum or logical product is taken.
  • priority is given to an increase condition for increasing the leveling target value x in order to avoid a power failure. I will take the sum.
  • 15 conditions can be obtained for the decrease condition and 15 conditions for the increase condition.
  • it is considered whether first to determine whether the reduction condition is met that is, whether to apply the condition to increase the leveling target value x first, and if it is first determined whether the increase condition is met.
  • the 450 conditions include the conditions for determining the leveling target value x described in the first embodiment.
  • FIG. 17 shows an example in which the condition 1a is adopted for the decrease condition and the condition adopted for the increase condition is changed.
  • FIG. 17 (a) is an example in which one condition is adopted, (b) is an example in which two conditions are adopted, (c) is an example in which three conditions are adopted, (d) is four conditions.
  • one condition is adopted for each of the decrease condition and the increase condition.
  • the target determining unit 22 determines whether or not the maximum remaining power Bmax> the upper limit Bu of remaining power, and the condition is satisfied (S111: Yes).
  • one condition is adopted as the decrease condition, and two conditions are adopted as the increase condition.
  • one condition is adopted as the decrease condition, and four conditions are adopted as the increase condition.
  • FIG. 18 shows an example in which the condition 2a is adopted for the increase condition and the condition adopted for the decrease condition is changed.
  • FIG. 18 (a) is an example in which one condition is adopted
  • (b) is an example in which two conditions are adopted
  • (c) is an example in which three conditions are adopted
  • (d) is four conditions.
  • one condition is adopted in the increasing condition, and four conditions are adopted in the decreasing condition.
  • the same effect can be obtained although the effect and the degree of the effect exhibited by the power leveling system 1 according to the first embodiment are different.
  • FIG. 19 is a flowchart showing a method of determining the leveling target value x in the second modification of the first embodiment.
  • FIG. 19 is a diagram showing processing of a portion of S100 of the flowchart according to the first embodiment. A method of determining the leveling target value x according to the second modification of the first embodiment will be described using the conditions described in the first embodiment.
  • the same effect can be obtained regardless of whether each condition includes the equal sign, and thus the equal condition may or may not be included in any condition.
  • priority is given to the reduction condition for reducing the leveling target value x, and the same effect can be obtained by reversing the logical product or the logical sum.
  • similar effects can be obtained although the degree of effect is different even if the logical sum of each condition, the priority and combination of the logical product are arbitrarily modified.
  • FIG. 20 is a diagram showing the configuration of a power leveling system 50 according to the second embodiment.
  • the power leveling system 50 according to the second embodiment has substantially the same configuration as that of the power leveling system 1 according to the first embodiment and its first modification and second modification.
  • a leveling control unit 21 having a switch control unit 25 instead of the target determination unit 23 and the switch control unit 26 is provided.
  • the switch control unit 25 is configured to output the switch state of the switch 5 to the target determination unit 23, as indicated by the arrow 27.
  • the target determination unit 23 detects the discharge of the capacitor 11 based on the acquired switch state, and stores the discharge result in the storage unit 24.
  • the target determination unit 23 stores the received power Pin in the storage unit 24, and calculates the peak value CF (the ratio of the maximum accumulated power Epk to the average accumulated power Eav) based on the stored received power Pin.
  • determination conditions are further added to the increase condition and the decrease condition of the leveling target value x.
  • the condition for the newly added increase determination is that, in the determination of the leveling target value x, even if the minimum amount of remaining power Bmin is less than the lower limit of remaining amount of stored power Bl, no discharge has occurred even once. Because it means that the target value is too high, it is a condition not to increase it.
  • FIG. 21 shows the change in the storage residual amount Br in the equalization period T0, the initial charge residual amount B0, the storage residual amount use upper limit Bu, and the storage residual amount use lower limit Bl in the case where discharge does not occur even once in the equalization period T0. Is shown. Further, for comparison, the received power Pin, the accumulated power amount Ein, the load power Pl, and the leveling target value x are shown.
  • the state of charge remaining Br As shown in FIG. 21, in the area 19A including the start time of the leveling cycle T0, the state of charge remaining Br ⁇ the state of charge remaining use lower limit B1. Therefore, the state of charge remaining Br shown in FIG. 21 is satisfied by the state of charge remaining minimum Bmin ⁇ the state of charge remaining use lower limit B1.
  • the range 19B shown in FIG. 21 is considered to be a range in which the leveling target value x is excessively high, and the example in FIG.
  • the condition to be newly added is a condition that the leveling target value x is not decreased if the ratio of the maximum accumulated received power amount Ein to the average received power in the leveling cycle T0 is smaller than a predetermined value.
  • FIG. 22 and 23 are diagrams showing received power Pin, accumulated received power amount Ein, load power Pl, remaining power amount Br, and leveling target value x in accordance with the operating condition of variable load 13 in the leveling cycle T0.
  • the continuous leveling period T0 is shown.
  • FIG. 22 shows the first leveling period T0
  • FIG. 23 shows the third leveling cycle T0, where (a) shows the case where the leveling target value x is decreased, and (b) shows the case where the leveling target value x is maintained. .
  • the first leveling period T0 is, for example, a weekday, and the variable load 13 is in operation.
  • the second time shown in FIG. In the leveling cycle T0 the leveling target value x is decreasing.
  • the variable load 13 has stopped operation because it is a holiday.
  • the storage residual amount Br is also excessive, and the condition for reducing the leveling target value x in the first embodiment is satisfied, so the third leveling period T0 Then, the leveling target value x is further reduced (FIG. 23A).
  • the leveling target value x is too low as shown in FIG. It runs short.
  • the target determination control is stopped. That is, it is preferable not to decrease the leveling target value x in the next leveling cycle T0 and not to make the leveling target value x too low.
  • the operation suspension determination of the variable load 13 is performed based on the fact that the peak value CF in the leveling cycle T0 falls below the operation determination threshold value Scf specified in advance. In practice, even if the peak value CF is small, the variable load 13 may be operating. However, the fact that the peak value CF is small means that the load fluctuation is originally equalized. In this case, since the meaning of reducing the leveling period T0 is small, it is included in the non-operational treatment. In the operation suspension determination based on the magnitude of the average accumulated power amount Eav or the maximum accumulated power amount Epk, since the suspension determination is performed even when the load power actually decreases, the determination based on the peak value is adopted as described above. Is preferred.
  • the received power does not accurately reflect the demand trend due to the load because of charge and discharge by leveling control. Therefore, in a system having means for measuring load power, it is preferable to calculate the crest value CF based on the load power measurement value, not the received power, in order to increase the accuracy of the operation stop determination.
  • the power leveling system 50 according to the second embodiment is preferable from the viewpoint of simplification of the system because the operation judgment can be realized by diverting the received power measuring means already provided for leveling control.
  • FIGS. 24 to 27 are flowcharts showing the operation of the power leveling system 50 according to the second embodiment.
  • initial parameter settings for power leveling control are performed in advance (S 201). That is, the leveling cycle T0, the demand time period T1, the monitoring control time T2, and the leveling cycle start time are set and stored in the storage unit 24.
  • upper limit of battery use upper limit Bu (%), lower limit of battery use lower limit Bl (%) for leveling target value determination control, leveling target value increase / decrease value dx (Wh), initial value of leveling target value x X0 (Wh) is set and stored in the storage unit 24 (S202). Furthermore, in the second embodiment, the operation determination threshold value Scf is set and stored in the storage unit 24 (S203).
  • the target determination unit 23 monitors whether or not the leveling cycle start time set in S201 has arrived by comparing the time period acquiring section not shown with the leveling cycle start time stored in the storage section 24. Yes (S204: No). When the leveling cycle start time arrives (S204: Yes), first, the target determining unit 23 acquires the remaining charge B (%) as the initial value of the remaining charge Br (S205), and starts the leveling control. (S206).
  • the target determination unit 23 outputs an instruction signal for closing the switch 5 to start power reception to the switch control unit 25, and the switch 5 closes the connection according to the operation signal from the switch control unit 25 (S212).
  • the target determining unit 23 compares the acquired remaining power B with the maximum remaining power Bmax, and if the remaining power B is equal to or less than the maximum remaining power Bmax. The process proceeds to S222 (S220: Yes). If the storage residual amount B is larger than the storage residual amount maximum value Bmax (S220: No), the storage residual amount maximum value Bmax is updated to the storage residual amount B (S221), and the process proceeds to S222.
  • the target determination unit 23 compares the acquired remaining charge B with the minimum remaining charge Bmin, and if the remaining charge B is equal to or greater than the minimum remaining charge Bmin, the process proceeds to S224 (S222). : Yes).
  • the storage residual amount minimum value Bmin is updated to the storage residual amount B (S223), and the process proceeds to S224.
  • the target determination unit 23 acquires the received power Pin (W) by the received power measurement unit 9 (S224).
  • the switch control unit 25 compares the accumulated received power amount Ein calculated in S224 with the current leveling target value x, and if the accumulated received power amount Ein is less than the leveling target value x (S226: No), the process proceeds to S229.
  • the target determination unit 23 determines that the demand time-out timer has not expired (S229: No)
  • the processing from S214 of FIG. 25 to S229 of FIG. 26 is repeated.
  • the target determination unit 23 determines the maximum remaining power Bmax, the minimum remaining power Bmin, the initial storage B0, the discharge flag Fdc, the peak accumulated received power Epk, the average accumulated received power Eav, etc.
  • a determination process or the like is performed by storing in the storage unit 24 or reading from the storage unit 24.
  • the increase determination condition and the decrease determination condition of the leveling target value x under specific conditions are added. That is, when discharge is not performed in the equalization period T0, an increase determination condition that no increase in the equalization target value x is performed, and equalization is performed when the crest factor is less than the threshold in the fluctuating load 13 in the equalization period T0. A reduction prevention condition was added to not decrease the target value x.
  • the switch control unit 25 may detect the measurement value of the remaining charge amount Br for the determination of the forced charge on to prevent the addition stop.
  • the switch control unit 25 detects that the storage residual amount Br has become equal to or less than a predetermined value, the switch 5 can be forcibly turned on to prevent the load from being stopped.
  • the following additional effects can be obtained in addition to the effects exhibited by the power leveling system 1 according to the first embodiment. That is, when discharge does not occur even once in the equalization period T0, the probability that the equalization target value x in the next equalization period T0 is increased by discrimination of only the remaining charge amount Br and the equalization control does not operate Can be lowered. Further, in the leveling cycle T0 in which the variable load 13 is not operating, the leveling target value x is decreased by determining only the remaining charge amount Br, and when the variable load 13 is operated in the next leveling cycle T0 It is possible to reduce the probability that the leveling control is stopped due to the shortage of the remaining amount Br. By the above, it is possible to prevent the deterioration of the power leveling performance under specific conditions.
  • FIG. 28 is a block diagram showing an example of a standard computer hardware configuration.
  • a Central Processing Unit (CPU) 302 In the computer 300, a Central Processing Unit (CPU) 302, a memory 304, an input device 306, an output device 308, an external storage device 312, a medium drive 314, a network connection device 318, etc. Is connected.
  • CPU Central Processing Unit
  • the CPU 302 is an arithmetic processing unit that controls the overall operation of the computer 300.
  • the memory 304 is a storage unit for storing in advance a program for controlling the operation of the computer 300 or for using it as a work area as needed when executing the program.
  • the memory 304 is, for example, Random Access Memory (RAM), Read. Only Memory (ROM) or the like.
  • the input device 306 is a device that, when operated by the user of the computer, acquires inputs of various information from the user associated with the operation content, and sends the acquired input information to the CPU 302, for example. It is a keyboard device, a mouse device, etc.
  • the output device 308 is a device that outputs the processing result of the computer 300, and includes a display device and the like. For example, the display device displays a text or an image according to the display data sent by the CPU 302.
  • the external storage device 312 is, for example, a storage device such as a hard disk, and is a device for storing various control programs executed by the CPU 302, acquired data, and the like.
  • the medium drive device 314 is a device for writing to and reading from a portable storage medium 316.
  • the CPU 302 can also perform various control processes by reading out and executing a predetermined control program recorded in the portable recording medium 316 via the recording medium driving device 314.
  • the portable recording medium 316 is, for example, a Compact Disc (CD) -ROM, a Digital Versatile Disc (DVD), a Universal Serial Bus (USB) memory, or the like.
  • the network connection device 318 is an interface device that manages exchange of various data performed with the outside by wire or wirelessly.
  • the bus 310 is a communication path for mutually connecting the above-described devices and the like and exchanging data.
  • a program that causes the computer 300 to execute the leveling control according to the first embodiment, the first variation, the second variation, and the second embodiment is stored, for example, in the external storage device 312.
  • the CPU 302 reads a program from the external storage device 312 and performs an operation of power leveling control.
  • a control program for causing the CPU 302 to perform the leveling control process is created and stored in the external storage device 312.
  • a predetermined instruction is given from the input device 306 to the CPU 302, and the control program is read from the external storage device 312 and executed.
  • this program may be stored in the portable storage medium 316.
  • the process of S73 by the target determination unit 23 is an example of the operation as the received power acquisition unit of the present invention.
  • the process of S68 is an example of the operation as a storage unit
  • the process of S100 is a target determination unit
  • the processes of S230 and S241 are calculation units.
  • the storage unit 24 is an example of a maximum remaining power storage unit, a minimum remaining power storage unit, a storage initial value storage unit, a discharge flag storage unit, a peak accumulated received power amount storage unit, and an average accumulated received power amount storage unit. is there.
  • the demand time limit T1 is an example of the unit time of the present invention.
  • the present invention is not limited to the embodiments described above, and various configurations or embodiments can be adopted without departing from the scope of the present invention.
  • the power storage device 7 the leveling control unit 20 and the switch 5 are configured to be independent, for example, the leveling control unit 20 or the control unit 21 and the switch 5 are provided.
  • a storage device or the like may be arbitrarily combined.
  • the increase determination and the decrease determination of the leveling target value x described in the second embodiment can be used in combination with any of the first embodiment and the first and second modifications thereof. Further, all possible combinations, such as using the increase determination of the first modification and the decrease determination of the second modification, can be applied. Also, in the power leveling system 1, the power leveling control illustrated a system for leveling the amount of received power per unit time, but even in a system where the received power is leveled, the leveling target value determination control is the same Applicable to

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電源が、切換部を介して蓄電装置および負荷と接続されたシステムにおいて、累積電力量が平準化目標値を上回ると、電源と蓄電装置及び負荷との接続を切断し、単位時間が経過すると、電源に蓄電装置と負荷とを接続させるように切換部を制御する際に、目標決定部は、平準化周期の終了時に、蓄電装置の蓄電残量がその平準化周期内で遷移した実績の内の、遷移を代表する値に基づき、次の平準化周期で用いる平準化目標値として、現在の平準化目標値に対し増加、減少、または維持のいずれを行わせた値を設定するかを決定する電力平準化制御装置により、蓄電装置の容量を有効に活用でき、需要予測が不要で簡易な処理で電力平準化を行うことの可能な電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラムが提供される。

Description

電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム
 本発明は、電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラムに関する。
 需要電力の傾向は、さまざまな要因で変わる。変化が大きい要因としては、曜日、季節、オフィスの人員、設備配置の変化などがある。利用者の毎日の行動によっても、小さいながらも需用電力は変動する。このため、通常電力設備は、電力需要が最大のときに電力が不足しないように、需要ピークに合わせて設計される。
 しかし、環境問題やコストの問題などに鑑みて、蓄電装置を利用して需要の大きい時に蓄電電力で需要を賄い、需要の小さい時に蓄電装置に電力を蓄えるようにして平準化を行い、電力需要ピークを下げるようにすることが試みられている。このように需要ピークを減らし、需要の変動を平準化できれば、例えば出力変動を極力行わない運用形態である原子力発電による需要負担率を上げることができ、二酸化炭素(CO)排出量低減、コスト削減も可能となる。
 蓄電装置を用いた平準化制御においては、出力目標値を設け、電源の出力が出力目標値よりも大きいときには余剰分を蓄電装置に充電し、出力が出力目標値よりも小さいときには、不足分を蓄電装置から放電するようにすることがある。このとき、電源の出力と蓄電装置の蓄電量とを検出し、予め設定された期間の出力の平均値を蓄電量に応じて設定された目標値で補正して、出力目標値を設定している例がある。また、使用電力の情報を元にデマンド時限開始から現在までの使用電力の平均値を算出し、平均値が第1の所定値を越えると蓄電装置を放電し、第2の所定値を下回ると充電する例もある。外気温度、負荷電力などを検出して電力需要予測値を算出し、予測値と設定値と比較することによって放電モードを制御する例や、過去の蓄電装置の蓄電残量のパターンを手動で設定し、設定したパターンに基づき出力目標値を設定する例もある。さらに、予測した代表気温のデータに対応する、予め記憶された負荷電力量の時間変動データに基づき電力制御する例もある。
特開2002-17044号公報 特開2003-299247号公報 特開2003-244840号公報 特開平8-287958号公報 特開2001-8385号公報 特開2005-218193号公報
 上記のような電力平準化制御においては、目標値の定め方が重要となる。しかしながら、例えば、出力電力の目標値を一定期間の供給電力の平均値に基づく値と比べる方式など、平均値を用いる方式は、季節や時間の変動に応じた変動が繰り返し起こるという電力需要の特徴を十分に生かした制御とはいえない。
 一方、目標値や、目標値を設定するためのパターンを手動で設定しなければならない場合には、手間がかかる。需要予測を行う例では、予測を行うには何某かの予測アルゴリズムが必要であるのに加え、予測は必ずしも信頼できるものとは限らない。高精度の需要予測アルゴリズムの実装は、大きな処理量を要するとともに、需要予測に対する最適な目標値を用いて制御を行う為、需要予測の精度に平準化性能が大きく依存する。さらに、最適な目標値を探索する為には、バッテリーや充放電回路の損失、充電特性等、実機特性の正確なモデル化が必要である。しかしながら、このようなモデル化のためには、蓄電装置等の機種毎に、特性の取得とシミュレータ内部の実機モデルの変更等が必要であり、調整工数が膨大となるという問題がある。
 そこで本発明は、需要予測は用いずに、電力需要の変化の周期的な特性を考慮して蓄電残量に基づき電力平準化を行なうことができる電力平準化装置、蓄電装置、平準化プログラムを提供することを目的とする。
 上記課題を解決するため、ひとつの態様である電力平準化装置は、電源が、蓄電装置および負荷と接続されたシステムにおいて、前記電源から供給する電力を平準化する。蓄電残量取得部は、前記蓄電装置の蓄電残量を監視時間毎に取得する。蓄電記憶部は、前記蓄電残量取得部が取得した前記蓄電残量を記憶する。目標決定部は、前記負荷の電力需要の高い期間と低い期間とが交互に発生すると予測される周期の終了時に、前記蓄電記憶部が記憶した前記蓄電残量の内の、前記周期の前記蓄電残量の遷移を代表する値に基づき、次の前記周期で用いる電力平準化のための平準化目標値として、現在の前記平準化目標値に対し増加、減少、または維持のいずれを行わせた値を設定するかを決定する。制御部は、前記目標決定部により決定された次の前記周期で用いる電力平準化のための平準化目標値を基に、前記電源及び前記蓄電装置から前記負荷へ供給する電力を制御する。
 本発明によれば、蓄電装置の容量を有効に活用でき、需要予測が不要で簡易な処理で電力平準化を行うことの可能な電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラムが提供される。
第1の実施の形態による電力平準化システムを示す図である。 第1の実施の形態による電力平準化制御を概念的に示す図である。 第1の実施の形態による電力平準化制御の一例を示す図である。 第1の実施の形態による平準化周期における電力平準化制御の一例を説明する図である。 第1の実施の形態による電力平準化制御において蓄電残量許容下限の定義を説明する図である。 第1の実施の形態による電力平準化制御において蓄電残量使用下限の定義を説明する図である。 第1の実施の形態による電力平準化制御において蓄電残量使用下限を定めた場合における蓄電残量の過不足判定の一例を示す図である。 第1の実施の形態による電力平準化制御において蓄電残量使用上限の定義を説明する図である。 第1の実施の形態による電力平準化システムの動作を示すフローチャートである。 第1の実施の形態による電力平準化システムの動作を示すフローチャートである。 第1の実施の形態による電力平準化システムの動作を示すフローチャートである。 第1の実施の形態による電力平準化制御の結果の一例を示す図である。 第1の実施の形態による電力平準化制御の結果の一例を示す図である。 第1の実施の形態による電力平準化制御の結果の一例を示す図である。 第1の実施の形態による電力平準化制御の結果の一例を示す図である。 第1の実施の形態による電力平準化制御の結果の一例を示す図である。 第1の実施の形態の変形例1による平準化目標値決定方法を示すフローチャートであり、(a)は、増加条件として1つの条件を採用した例、(b)は2つの条件を採用した例、(c)は3つの条件を採用した例、(d)は4つの条件を採用した例である。 第1の実施の形態の変形例1による平準化目標値決定方法を示すフローチャートであり、(a)は、減少条件として1つの条件を採用した例、(b)は2つの条件を採用した例、(c)は3つの条件を採用した例、(d)は4つの条件を採用した例である。 第1の実施の形態の変形例2による平準化目標値決定方法を示すフローチャートである。 第2の実施の形態による電力平準化システムを示す図である。 第2の実施の形態による電力平準化制御において放電の有無の影響を説明する図である。 第2の実施の形態による電力平準化制御において変動負荷の稼動状況の影響を説明する図であり、(a)は、第1回目の平準化周期に関して示し、(b)は第2回目の平準化周期に関して示す。 第2の実施の形態による電力平準化制御において変動負荷の稼動状況の影響を説明する図であり、(a)は、平準化目標値を減少させた場合を示し、(b)は、平準化目標値を維持した場合を示す。 第2の実施の形態による電力平準化システムの動作を示すフローチャートである。 第2の実施の形態による電力平準化システムの動作を示すフローチャートである。 第2の実施の形態による電力平準化システムの動作を示すフローチャートである。 第2の実施の形態による電力平準化システムの動作を示すフローチャートである。 標準的なコンピュータのハードウエア構成の一例を示すブロック図である。
 (第1の実施の形態)
 以下、実施の形態を図面に基づいて説明する。まず、図1から図3を参照しながら、第1の実施の形態による電力平準化システム1の構成および電力平準化制御の概要について説明する。図1は、第1の実施の形態による電力平準化システム1を示す図である。電力平準化システム1は、電源3に、蓄電装置7および変動負荷13がスイッチ5を介して接続されるとともに、スイッチ5の動作を制御するための平準化制御部20を備えている。
 電源3は、商用電源である。スイッチ5は、電源3と蓄電装置7および変動負荷13との間に開閉可能に接続され、平準化制御部20に制御されて接続を開閉することにより、電源3と、蓄電装置7および変動負荷13との間の接続を切り換える。蓄電装置7は、スイッチ5と変動負荷13とに接続され、受電電力計測部9、蓄電機11、および蓄電残量計測部12を有している。受電電力計測部9は、電源3からの受電電力を計測し、平準化制御部20に出力する。蓄電機11は、スイッチ5の開閉に応じて、電源3から受電する電力の一部を充電しつつ、または放電することにより変動負荷13に電力を供給する。蓄電残量計測部12は、蓄電機11の蓄電残量を計測し、平準化制御部20に出力する。変動負荷13は、一般家庭や企業など、電力供給を受けている消費電力が変動する負荷である。尚、図1において、電源3の出力、蓄電機11の入出力、変動負荷13の入力が交流電力用と直流電力用で異なる場合は、適宜交流/直流変換器が挿入される。
 平準化制御部20は、目標決定部22、記憶部24およびスイッチ制御部26を有している。目標決定部22は、後述の記憶部24に記憶された蓄電残量に基づき平準化目標値を決定し、スイッチ制御部26に出力する。また、目標決定部22は、蓄電残量、および決定した平準化目標値を記憶部24に記憶させる。さらに、目標決定部22は、図示せぬ平準化周期タイマ、デマンド時限タイマ、監視制御周期タイマを備えており、各周期の管理を行う。平準化目標値の決定方法の詳細については後述する。
 記憶部24は、例えばRandom Access Memory(RAM)等である。記憶部24は、平準化制御部20の動作を制御するプログラム、蓄電装置7から入力される蓄電残量、決定した平準化目標値等を記憶する。スイッチ制御部26は、目標決定部22により決定された平準化目標値および蓄電装置7から入力される受電電力および蓄電残量に基づき、スイッチ5の接続状態を切り換える動作信号を出力し、スイッチ5を制御する。
 図2は、縦軸に消費電力、横軸に時間をとり、電力平準化制御を概念的に示した図である。図2に示すように、消費電力が目標値より低いときには蓄電機11を充電し、消費電力が目標値より高いときには、スイッチ5を開放して蓄電機11から変動負荷13に電力を供給する。尚、消費電力と目標値は単位時間当りの電力量であっても良い。
 図3は、縦軸に電力および電力量、横軸に時間をとり、電力平準化制御の一例を示す図である。電力平準化制御においては、例えば、所定のデマンド時限内で商用電源から受電した総電力量を計量し、計量した受電電力量と平準化目標値との比較に基づき、電源からの受電を制御する。本実施の形態においては、受電電力計測部9が、変動負荷13の消費電力と蓄電機11の充電電力の和を電源3からの受電電力Pinとして計量している。よって図3を用いて、デマンド時限T1の間のある時点で、電源3からの受電電力Pinを累積した累積電力量Einが平準化目標値を超えるか否かで、スイッチ5を開閉する例について説明する。図3では、受電電力Pin、累積電力量Ein、負荷電力Plの時間変化を示している。受電電力Pinは、受電電力計測部9で計測された電力、累積電力量Einは、受電電力計測部9で計測された受電電力Pinが監視時間継続されているとして、デマンド時限の開始時から経過した時間の間累積した電力量である。また、負荷電力Plは、変動負荷13の消費電力である。
 図3に示すように、変動負荷13の消費電力が負荷電力Plのように変化するとき、受電電力Pinは、累積電力量Einが平準化目標値xに達する時刻t=0~t1では、蓄電機が満充電である前提で負荷電力Plと等しくなる。また、累積電力量Einは、デマンド時限T1内で累積された電力量であり、平準化目標値xに達しない時刻t=0~2T1では、負荷電力が一定の場合ノコギリ波のような軌跡を描く。図3の例では、時刻t=2T1付近で負荷電力Plが上昇する。負荷電力Plの上昇により受電電力Pinも上昇し、時刻t=t1で累積電力量Einが平準化目標値xを超えることになり、スイッチ5が開放され、蓄電機11は放電を開始する。スイッチ5が開放されている間は、受電電力Pin=0である。蓄電機11は、時刻t=t1~3T1の間、放電を行う。
 次のデマンド時限に変わる時刻t=3T1で、累積電力量Einがリセットされるため、再びスイッチ5が閉じ、電源3からの受電が開始され、時刻t=3T~t2の間、受電が行われる。時刻t=t2で累積電力量Einが再び平準化目標値xを超えることになり、スイッチ5が開放され、蓄電機11は放電を開始する。以下、同様の動作を繰り返す。なお、本例では蓄電機11が放電された後の時刻t=3T1以降は蓄電機11が充電されるため、受電電力Pinは、負荷電力Plと蓄電機11への充電電力とを足し合わせた電力となる。以上のようにして、デマンド時限内の受電電力量Einが平準化目標値xと同等の値に制限される電力平準化制御が行われる。
 以上のように構成される、第1の実施の形態による電力平準化システム1における平準化目標値の決定方法について説明する。上記のような電力平準化制御において、平準化周期を定め、過去の平準化周期に基づき今後の平準化目標値を更新するフィードバック制御を行う。変動負荷13は、通常、人間の活動状況に応じて変動するため、例えば1日の周期で電力需要の高い期間と低い期間とが交互に発生することが多い。このため、本実施の形態においては、変動負荷13の電力需要の高い期間と低い期間とが交互に発生すると予測される周期、例えば昼需要が高く夜需要の低い1日(24時間)を平準化周期T0に定める。T0の別の例では夏需要が高く冬需要の低い1年と定めても良い。そして、電力平準化システム1は、平準化周期T0内で、蓄電機11を蓄電容量の上限まで蓄電するとともに、平準化周期内で蓄えた電気を使いきった下限の状態となり、平準化周期の終わりには、平準化周期の初期の蓄電残量と同じになるようにすることが好ましい。
 図4は、平準化周期における電力平準化制御の一例を説明する図である。図4において、横軸は時間、縦軸は電力、電力量、および蓄電残量である。図4は、平準化周期T0における受電電力Pin、累積電力量Ein、負荷電力Pl、および蓄電残量Brの変化の一例、および平準化目標値x、蓄電残量初期値B0を示している。図4に示すように、蓄電残量Brは、平準化周期T0の開始時刻t=0において蓄電残量初期値B0である。そして、電力平準化システム1において電力平準化制御を行った結果、蓄電残量Brは時刻t=t5で最大となり、時刻t=t6で最低となり、再び平準化周期T0の終了時刻t=T0において蓄電残量Br=B0となる。このような動作結果となった場合の平準化目標値xが、蓄電容量を有効に活用し、デマンド時限内の受電電力量のピークを最も低減することが出来る理想の値である。
 次に、蓄電残量Brの許容下限について、図5を参照しながら説明する。図5は、蓄電残量許容下限の定義を説明する図であり、蓄電残量Brがゼロになり放電できなくなる状態の例を示す図である。図5においては、横軸は時間、縦軸は電力、電力量、および蓄電残量であり、受電電力Pin、累積電力量Ein、負荷電力Pl、および蓄電残量Brの変化の一例、および平準化目標値xを示している。図5に示すように、蓄電残量Brは、監視制御時間T2毎に蓄電残量計測部12により計測される。時刻t=0~t7では、蓄電機11は充電されるため、蓄電残量Brは上昇し、時刻t=t7~T1では、放電が行われるため、蓄電残量Brは減少する。
 図5のように、充放電を繰り返した場合に充電で蓄えられる蓄電残量Brよりも放電される電力の方が大きい場合には、例えば放電中の監視時刻t=t10で蓄電残量Br≠0であっても、次の監視時刻前の時刻t=t11で蓄電残量Br=0となることが考えられる。すなわち、監視制御時間T2は有限である為、ある監視時刻に蓄電残量Brが存在することが計測されても、次の監視時刻までに残量を使い切り、変動負荷13への電力供給が停止し、負荷停止が発生してしまう。このため、蓄電残量Brを監視し、空となる前にスイッチ5を閉じることにより電源3からの受電を行うように切り換える制御が必要である。
 よって「蓄電残量無し」の判定を行う蓄電残量Brの下限は、「ゼロ」でなく、次の監視時刻まで需要を賄えるだけの残量を残した値にする必要がある。この値を、蓄電残量許容下限Blimという。蓄電残量許容下限Blimは、監視制御時間T2と蓄電機11の放電可能最大電力Pmaxあるいは変動負荷13の最大電力の積を賄えるだけの蓄電残量Brの値として決定し、安全の為にマージンαを加えてもよい。蓄電残量許容下限Blimは、例えば式1で表される。
 Blim=100×Pmax×T2/Brmax+α (%)・・・(式1)
ここで、Brmaxは、蓄電機容量である。
 次に、図6、図7を参照しながら、蓄電残量使用下限Blについて説明する。図6は、蓄電残量使用下限の定義を説明する図であり、平準化目標値xが必要以上に低い場合の平準化制御の一例を示す図、図7は、蓄電残量使用下限Blを定めた場合における蓄電残量状態の過不足判定の一例を示す図である。図6、図7において、横軸は時間、縦軸は電力、電力量、および蓄電残量である。図6、図7においては、平準化周期T0の一例である24時間における受電電力Pin、累積電力量Ein、負荷電力Pl、および蓄電残量Brの変化の一例、並びに平準化目標値x、蓄電残量初期値B0を示している。
 第1の実施の形態による電力平準化システム1では、図5を参照しながら説明したように、蓄電残量許容下限Blimを設け、蓄電残量許容下限Blimを下回った場合に停電を避けるため電源3からの受電を再開する。よって、平準化目標値xの制御誤差が生じ、必要以上に平準化目標値xが低くなった場合、図6のように、蓄電残量Brが蓄電残量許容下限Blimを下回り、累積電力量Einにおいて電力量Epのように受電電力量の高いピークが生じてしまうことがある。このような累積電力量Einのピーク発生を避けるため、図7に示すように、蓄電残量Brが不足であると判定する値は、「ゼロ」に対して、制御誤差を吸収するマージンを含むように設定しなければならない。この値を、蓄電残量使用下限Blといい、予め指定した値、または蓄電残量状態の過不足量に応じて決定した値とする。
 このように、電力平準化システム1において、目標決定部22は、蓄電残量使用下限Blを設定されており、この蓄電残量使用下限Blを前平準化周期における蓄電残量最小値が下回ったときに蓄電残量状態が不足であると判定する。これにより、蓄電残量Brは「ゼロ」になる可能性が縮小されるとともに、累積電力量Einの高いピークの発生も防止できる。
 さらに、図8を参照しながら、蓄電残量使用上限Buについて説明する。図8は、蓄電機11の充電時の蓄電残量Brの変化を示す図である。図8において、横軸は時間、縦軸は電力、電力量、および蓄電残量であり、受電電力Pin、累積電力量Ein、および蓄電残量Brの変化の一例を示している。
 蓄電機は電源ではないので、平準化の為に放電した電力は充電により取り戻す必要がある。ここで、蓄電機が満充電を維持すると充電機会が得られても充電することが出来ず、放電可能な電力量も減少する場合がある。その結果ピーク削減能力も同様に劣化する為、蓄電残量使用下限と同様に上限に対してもマージンをもって満充電と判定する必要がある。この判定に用いる値を蓄電残量使用上限Buといい、目標決定部22において予め指定される。また、一般に蓄電機は、充電電圧の上限が決まっており、満充電に近づくと充電電圧と蓄電機の電圧との差分が小さくなることに伴い充電電流も小さくなるため、充電速度が低下していく。図8に示す例では、時刻t=t12において、蓄電残量Br≒85[%]となると、蓄電残量Brの傾きが変わり、明らかに充電速度が低下する。この充電速度が低下する蓄電容量の領域を、定電圧充電領域という。
 ところで、定電圧充電領域を含めて蓄電容量を最大限使う場合、放出した電力を平準化周期内で取り戻す為には、電力平準化システム1は、平準化の為に放電する電力量を充電速度に応じて抑えなければならない。しかし、定電圧充電領域の充電速度は、図8に示すように指数関数的に減少するので、放電可能な電力量は著しく減少し、ピーク削減能力も同様に劣化する。よって、電力平準化システム1では、定電圧充電領域は積極的に用いず、この領域の下限まで蓄電残量が到達していれば満充電とみなしてもよい。この満充電とみなす際の蓄電残量Brの値を、蓄電残量使用上限Buとして設定すれば、満充電維持と充電速度の低下による性能劣化を回避出来る為、好ましい。定電圧充電領域の下限は、一般に蓄電器11の仕様として示される。
 上記のような電力平準化システム1において、蓄電残量Brの平準化周期T0における変化を基に平準化目標値xを決定する電力平準化制御は、以下の基準入力要素を必要とする。すなわち、平準化周期T0における蓄電残量最大値Bmax、蓄電残量最小値Bmin、最終蓄電残量B、および蓄電収支Bdである。最終蓄電残量Bは、平準化周期終了時での蓄電残量Br、蓄電収支Bdは、平準化周期開始時と終了時の蓄電残量Brの差分である。
 以下、第1の実施の形態による電力平準化システム1の動作を、図9~図11のフローチャートを参照しながら説明する。図9~図11は、第1の実施の形態による電力平準化システム1の動作を示すフローチャートである。図9に示すように、目標決定部22において、予め電力平準化制御の初期パラメータ設定が行われる(S51)。すなわち平準化周期T0、デマンド時限T1、監視制御時間T2、平準化周期開始時刻が設定され、記憶部24に格納される。また、平準化目標値決定制御の為の蓄電残量使用上限Bu(%)、蓄電残量使用下限Bl(%)、平準化目標値増減値dx(Wh)、平準化目標値の初期値x=x0(Wh)が設定され、記憶部24に格納される(S52)。
 目標決定部22は、S51で設定された平準化周期開始時刻が到来したか否かを、図示せぬ時刻取得部と記憶部24に格納された平準化周期開始時刻とを比較することにより監視する(S53:No)。平準化周期開始時刻が到来すると(S53:Yes)、目標決定部22は、まず、蓄電残量Brの初期値として蓄電残量B(%)を取得し(S54)、平準化制御を開始する(S55)。
 図10の処理に進み、目標決定部22は、平準化周期タイマ(図示せず)をリセットする(S61)。また、目標決定部22は、蓄電残量最大値Bmax=B(%)、蓄電残量最小値Bmin=B(%)、蓄電残量初期値B0=Bにリセットし(S62)、デマンド時限タイマ(図示せず)をリセットする(S63)。目標決定部22は、スイッチ制御部26に、スイッチ5を閉じて受電を開始させるための動作信号を出力し、スイッチ5は、スイッチ制御部26からの指示信号により接続を閉じる(S64)。目標決定部22は、累積電力量Ein=0(Wh)にリセットするとともに(S65)、監視制御周期タイマ(図示せず)をリセットする(S66)。
 目標決定部22は、監視制御周期タイマが満了するまで監視し(S67:No)、満了すると(S67:Yes)、蓄電残量計測部12で計測された蓄電残量BrをBとして取得する(S68)。目標決定部22は、取得された蓄電残量Bと蓄電残量最大値Bmaxとを比較し、最終蓄電残量Bが蓄電残量最大値Bmax以下である場合には、処理はS71に進む(S69:Yes)。蓄電残量Bが蓄電残量最大値Bmaxより大きい場合には(S69:No)、蓄電残量最大値Bmaxを蓄電残量Bに更新し(S70)、処理はS71に進む。目標決定部22は、取得された蓄電残量Bと蓄電残量最小値Bminとを比較し、蓄電残量Bが蓄電残量最小値Bmin以上である場合には、処理はS73に進む(S71:Yes)。蓄電残量Bが蓄電残量最小値Bminより小さい場合には(S71:No)、目標決定部22は、蓄電残量最小値Bminを蓄電残量Bに更新し(S72)、処理はS73に進む。目標決定部22は、受電電力計測部9により受電電力Pin(W)を取得する(S73)。
 図11の処理に進み、目標決定部22は、累積受電電力量Ein=Ein+Pin×T2を計算する(S81)。スイッチ制御部26は、S81で計算された累積受電電力量Einと現在の平準化目標値xとを比較し、累積受電電力量Einが平準化目標値xを下回っている場合には(S82:No)、処理をS84に進める。スイッチ制御部26は、S81で計算された累積受電電力量Einが平準化目標値x以上の場合には(S82:Yes)、スイッチ5に接続を切断する動作信号を出力し、スイッチ5は接続を切断する。このとき蓄電機は入力断を検出し、放電による負荷への給電を開始する(S83)。
 目標決定部22が、デマンド時限タイマが満了しないと判別している間は(S84:No)、S66からS84の処理が繰り返される。目標決定部22は、デマンド時限タイマが満了したことを判別すると(S84:Yes)、平準化周期タイマが満了したか否かを判別する(S85)。目標決定部22が、平準化周期タイマが満了しないと判別している間は(S85:No)、S63からS85の処理が繰り返される。目標決定部22は、平準化周期タイマが満了したことを判別すると(S85:Yes)、蓄電残量収支Bd=B-B0を計算し(S86)、処理を平準化目標値xの決定処理(S100)に進める。
 S100において、目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Bu、かつ、蓄電残量最小値Bmin>蓄電残量使用下限Bl、かつ、蓄電収支Bd>0であるという条件に合致するか否かを判別する(S87)。判別結果が条件に合致する場合には、平準化目標値x=x-dxに更新し(S88)、S61に戻る。判別結果が条件に合致しない場合には、S89に進む。
 目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Bu、または、蓄電残量最小値Bmin<蓄電残量使用下限Bl、または、蓄電収支Bd<0であるという条件に合致するか否かを判別する(S89)。判別結果が条件に合致する場合には、平準化目標値x=x+dxに更新し(S90)、処理はS61に戻る。判別結果が条件に合致しない場合には、処理はそのままS61に戻る。
 なお、上記の処理において目標決定部22は、蓄電残量最大値Bmax、蓄電残量最小値Bmin、蓄電初期値B0等を記憶部24に格納、または記憶部24から読み出すことにより判別処理などを行っている。
 以上のような処理により電力平準化システム1で平準化制御を行った場合の結果について、図12~図15を参照しながら説明する。図12~図15は、第1の実施の形態による平準化制御の結果の例を示す図であり、横軸は時間、縦軸は電力、電力量、および蓄電残量である。図12~図15においては、平準化周期T0における蓄電残量Brの変化、蓄電残量初期値B0、蓄電残量使用上限Bu、蓄電残量使用下限Blを示している。また比較のため、受電電力Pin、累積受電電力量Ein、負荷電力Plおよび平準化目標値xを示している。
 図12は、平準化目標値xが変動負荷13の機器構成および需用電力変動に対し最適であった場合の平準化制御の結果を示す図である。図12において、平準化周期T0は24時間である。図12に示すように、蓄電残量Brは、平準化周期T0の開始時、蓄電残量Br=B0であり、その後、3時間経過前に蓄電残量最大値Bmaxを記録している。蓄電残量Brは、12時間経過前には、蓄電残量最小値Bminを記録し、再び上昇して平準化周期T0の終わりの24時経過時に最終蓄電残量Bとなっている。このとき、蓄電残量最大値Bmaxは蓄電残量使用上限Buであり、蓄電残量最小値Bminは、蓄電残量使用下限Blである。また、蓄電収支Bdはゼロである。よって、この平準化周期T0における第1の実施の形態による電力平準化システム1においては最適な平準化目標値xが設定されていることになり、次の平準化周期T0において平準化目標値xは修正されない。
 図13は、平準化制御の結果の一例を示す図である。図13の例では、領域13Aにおいて、蓄電残量最小値Bminが蓄電残量使用下限Blを下回っている。領域13Bでは、蓄電残量最大値Bmaxが蓄電残量使用上限Buを超えており、領域13Cでは、蓄電収支Bdがゼロを上回っている。上述の処理100により、このとき蓄電残量Brは不足であると判定される。よって、次の平準化周期T0では、平準化目標値xを増加させることになる。
 図14は、平準化制御の結果の別の一例を示す図である。図14の例では、領域14Aにおいて、蓄電残量最大値Bmaxは、蓄電残量使用上限Buを下回っている。領域14Bでは、蓄電残量最小値Bminが蓄電残量使用下限Blを上回っている。領域14Cでは、蓄電収支Bdはほぼゼロである。上述の処理100により、このとき蓄電残量Brは過多でも不足でもないと判定される。よって、次の平準化周期T0では、平準化目標値xを維持させることになる。このような場合に、一旦平準化目標値xを増加させて蓄電収支Bdを正の値にし、再度平準化目標値xを戻すと、同じ平準化目標値xでも蓄電残量Brが過多になる場合もある。
 図15は、平準化制御の結果のさらに別の一例を示す図である。図15の例では、領域15Aにおいて、蓄電残量最小値Bminが蓄電残量使用下限Blを上回っている。領域15Bでは、蓄電残量最大値Bmaxが蓄電残量使用上限Buを超えており、領域15Cでは、蓄電収支Bdがゼロを上回っている。上述の処理100により、このとき蓄電残量Brは過多であると判定される。よって、次の平準化周期T0では、平準化目標値xを減少させることになる。
 図16は、上記のような平準化制御を約1000日間行った場合の結果の一例を示す図である。図16において、横軸は日数、縦軸は累積電力および蓄電残量である。図16に示すように、平準化制御前は、平準化目標値xを上回るピーク電力量を示す日が多いのに対し、平準化制御を行うことにより、ピーク電力量が平準化目標値を超える日がほとんどなくなっている。図16の例では、平準化制御により1割程度のピーク電力量の削減効果が得られる。
 以上説明したように、第1の実施の形態による電力平準化システム1は、電源3と、蓄電装置7および変動負荷13がスイッチ5を介して接続されるとともに、スイッチ5の動作を制御するための平準化制御部20を備えている。平準化制御部20は、平準化周期T0における蓄電残量最大値Bmax、蓄電残量最小値Bmin、および蓄電収支Bdに基づき次の平準化周期T0における平準化目標値xを更新する。また、平準化制御部20は、更新された平準化目標値xに基づきスイッチ5の開閉を制御することにより、電力平準化システム1において平準化制御を行う。
 第1の実施の形態による電力平準化システム1によれば、蓄電機11や、その充放電回路の損失、充電速度等は、それがどのように変化したとしても蓄電残量Brの増減として現れる。よって、第1の実施の形態による電力平準化システム1における蓄電残量に基づく電力平準化制御では、電力平準化システム1の特性をモデル化せずとも、特性の影響を含む平準化目標値を決定することができる。また、電力平準化システム1は、変動負荷13の電力需要がどのように変化するかに依らない制御を行っている。電力平準化システム1は、平準化周期T0の終了時に記憶部24に記憶された、平準化周期T0における蓄電残量Brの遷移を代表する値に基づき、平準化目標値xを決定するため、蓄電容量が有効に使用されていることよってのみの制御である。よって、変動負荷13の需要予測が不要であり、簡易な処理で平準化目標値を決定することができる。また、システムのモデル化および需要予測を用いていないので、より実際の電力平準化システム1に則した電力平準化制御が可能であり、消費電力の削減効果を奏することもできる。また、第1の実施の形態による電力平準化制御は、電力需要の高い期間と低い期間とが交互に発生すると予測される周期を平準化周期T0として定め、その平準化周期T0内での蓄電残量Brの変動に応じた制御である。これにより、蓄電容量を有効に活用できるとともに、負荷の変動の特徴を生かした制御とすることができる。
 蓄電残量Brに基づく制御を行う際に、蓄電残量最小値Bminに対する閾値として「ゼロ」でない蓄電残量使用下限Blが設定されているため、蓄電残量Brが「ゼロ」になる可能性が縮小される。また、蓄電残量最大値Bmaxに対する閾値として蓄電残量使用上限Buが設けられているため、充電速度が減少することにより放電可能な電力量が著しく減少する蓄電残量Brの領域の使用を制限することができ、平準化性能の劣化を防止することが可能である。
 (第1の実施の形態の変形例1)
 以下、第1の実施の形態による電力平準化システム1の変形例1について説明する。本変形例1は、第1の実施の形態において説明した平準化目標値xの決定処理(S100)の変形例である。本変形例において、電力平準化システム1の構成およびS100以外の処理は第1の実施の形態と同様であるため、重複説明を省略する。本変形例においては、第1の実施の形態において説明した基準入力要素に関する条件を、次の平準化周期T0において、平準化目標値xを増加させるか減少させるかにより以下のように定める。
 減少条件)平準化目標値xを減少させる場合
  条件1a) 蓄電残量最大値Bmax>蓄電残量使用上限Bu
  条件1b) 蓄電残量最小値Bmin>蓄電残量使用下限Bl
  条件1c) 蓄電収支Bd>0
  条件1d) 最終蓄電残量B>蓄電残量使用上限Bu
 増加条件)平準化目標値xを増加させる場合
  条件2a) 蓄電残量最大値Bmax<蓄電残量使用上限Bu
  条件2b) 蓄電残量最小値Bmin<蓄電残量使用下限Bl
  条件2c) 蓄電収支Bd<0
  条件2d) 最終蓄電残量B<蓄電残量使用上限Bu
 上記、減少条件について4通り、増加条件について4通りの条件から、決定条件としてそれぞれ少なくとも一つを選ぶ。複数の条件を選んだ場合には、それらの論理和または論理積をとる。本変形例においては、例えば蓄電容量に充分な余裕がない場合について、停電を避けるため、平準化目標値xを増加させる増加条件を優先することにし、減少条件においては論理積、増加条件では論理和をとることにする。このようにすると、減少条件について15通り、増加条件について15通りの条件が得られる。さらに、減少条件に当てはまるか否か、すなわち、平準化目標値xを増加させる条件に当てはまるか否かを先に判別する場合と、増加条件に当てはまるか否かを先に判別する場合とを考慮すると、15×15×2=450通りの条件が得られる。これらの条件は全て、電力平準化システム1において適用可能であり、第1の実施の形態による変形例1に含まれる。なお、この450通りの中には、第1の実施の形態において説明した平準化目標値xの決定条件も含まれることになる。
 第1の実施の形態において説明した条件は、以下のように表される。
減少条件):条件1a、かつ、条件1b、かつ、条件1c(論理積)
増加条件):条件2a、または、条件2b、または、条件2c(論理和)
 以下、上記の450通りの条件の中から、いくつかの例について説明する。まず、図17を参照しながら、平準化目標値xを減少させるか否かを判別する処理を先に行う例について説明する。図17は、減少条件について条件1aを採用し、増加条件について採用した条件を変えた例である。ここで図17(a)は、1つの条件を採用した例、(b)は2つの条件を採用した例、(c)は3つの条件を採用した例、(d)は4つの条件を採用した例である。
 図17(a)においては、減少条件、増加条件ともに一つずつの条件を採用している。図17(a)に示すように、目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buであるか否かを判別し、条件に当てはまる場合には(S111:Yes)、平準化目標値x=x-dxに更新し(S112)、図10のS61に戻る。条件に当てはまらない場合には(S111:No)、S113に進む。続いて目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buであるか否か判別し、条件に当てはまる場合には(S113:Yes)、平準化目標値x=x+dxに更新し(S114)、図10のS61に戻る。条件に当てはまらない場合には(S113:No)、そのままS61に戻る。
 図17(b)においては、減少条件では1つの条件、増加条件では2つの条件を採用している。図17(b)に示すように、目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S115:Yes)、平準化目標値x=x-dxに更新し(S116)、図10のS61に戻る。条件に当てはまらない場合には(S115:No)、S117に進む。続いて目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buまたは、蓄電残量最小値Bmin<蓄電残量使用下限Blであるか否かを判別する。条件に当てはまる場合には(S117:Yes)、平準化目標値x=x+dxに更新し(S118)、図10のS61に戻る。条件に当てはまらない場合には(S117:No)、そのままS61に戻る。
 図17(c)においては、減少条件では1つの条件、増加条件では3つの条件を採用している。図17(c)に示すように、目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S119:Yes)、平準化目標値x=x-dxに更新し(S120)、図10のS61に戻る。条件に当てはまらない場合には(S119:No)、S121に進む。続いて目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buまたは、蓄電残量最小値Bmin<蓄電残量使用下限Bl、または蓄電収支Bd<0であるか否かを判別する(S121)。条件に当てはまる場合には(S121:Yes)、平準化目標値x=x+dxに更新し(S122)、図10のS61に戻る。条件に当てはまらない場合には(S121:No)、そのままS61に戻る。
 図17(d)においては、減少条件では1つの条件、増加条件では4つの条件を採用している。図17(d)に示すように、目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S123:Yes)、平準化目標値x=x-dxに更新し(S124)、図10のS61に戻る。条件に当てはまらない場合には(S123:No)、処理はS125に進む。続いて目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buまたは、蓄電残量最小値Bmin<蓄電残量使用下限Bl、または蓄電収支Bd<0、または最終蓄電残量B<蓄電残量使用上限Buであるか否かを判別する(S125)。条件に当てはまる場合には(S125:Yes)、平準化目標値x=x+dxに更新し(S126)、図10のS61に戻る。条件に当てはまらない場合には(S125:No)、そのままS61に戻る。
 次に、図18を参照しながら、平準化目標値xを増加させる処理を先に行う場合について説明する。図18は、増加条件について条件2aを採用し、減少条件について採用した条件を変えた例である。ここで図18(a)は、1つの条件を採用した例、(b)は2つの条件を採用した例、(c)は3つの条件を採用した例、(d)は4つの条件を採用した例である。
 図18(a)においては、減少条件、増加条件ともに一つずつの条件を採用している。図18(a)に示すように、目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buであるか否かを判別し、条件に当てはまる場合には(S131:Yes)、平準化目標値x=x+dxに更新し(S132)、図10のS61に戻る。条件に当てはまらない場合には(S131:No)、S133に進む。続いて目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buであるか否か判別し、条件に当てはまる場合には(S133:Yes)、平準化目標値x=x-dxに更新し(S134)、図10のS61に戻る。条件に当てはまらない場合には(S133:No)、そのままS61に戻る。
 図18(b)においては、増加条件では1つの条件、減少条件では2つの条件を採用している。図18(b)に示すように、目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S135:Yes)、平準化目標値x=x+dxに更新し(S136)、図10のS61に戻る。条件に当てはまらない場合には(S135:No)、S137に進む。続いて目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buまたは、蓄電残量最小値Bmin>蓄電残量使用下限Blであるか否かを判別する。条件に当てはまる場合には(S137:Yes)、平準化目標値x=x-dxに更新し(S138)、図10のS61に戻る。条件に当てはまらない場合には(S137:No)、そのままS61に戻る。
 図18(c)においては、増加条件では1つの条件、減少条件では3つの条件を採用している。図18(c)に示すように、目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S139:Yes)、平準化目標値x=x+dxに更新し(S140)、図10のS61に戻る。条件に当てはまらない場合には(S139:No)、S141に進む。続いて目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buまたは、蓄電残量最小値Bmin>蓄電残量使用下限Bl、または蓄電収支Bd>0であるか否かを判別する(S141)。条件に当てはまる場合には(S141:Yes)、平準化目標値x=x-dxに更新し(S142)、図10のS61に戻る。条件に当てはまらない場合には(S141:No)、そのままS61に戻る。
 図18(d)においては、増加条件では1つの条件、減少条件では4つの条件を採用している。図18(d)に示すように、目標決定部22は、蓄電残量最大値Bmax<蓄電残量使用上限Buであるか否かを判別する。条件に当てはまる場合には(S143:Yes)、平準化目標値x=x+dxに更新し(S144)、図10のS61に戻る。条件に当てはまらない場合には(S145:No)、処理はS145に進む。続いて目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Buまたは、蓄電残量最小値Bmin>蓄電残量使用下限Bl、または蓄電収支Bd>0、または最終蓄電残量B>蓄電残量使用上限Buであるか否かを判別する(S145)。条件に当てはまる場合には(S145:Yes)、平準化目標値x=x-dxに更新し(S146)、図10のS61に戻る。条件に当てはまらない場合には(S145:No)、そのままS61に戻る。
 以上説明したように、第1の実施の形態による変形例1によれば、第1の実施の形態による電力平準化システム1が奏する効果と効果の度合いは異なるものの同様の効果が得られる。
 なお、例えば蓄電容量に充分な余裕が有る場合について、平準化目標値xを減少させる減少条件を優先することにし、論理積または論理和については、逆にしても同様の効果が得られる。また、本変形例において、各条件においては不等号のみを用いたが、等号を含む、含まないに関わらず、同様の効果が得られるため、任意の条件に等号を含めるようにしてもよい。
 (第1の実施の形態の変形例2)
 以下、第1の実施の形態の変形例2について説明する。第1の実施の形態の変形例2において、第1の実施の形態およびその変形例1と同様の構成および動作については、重複説明を省略する。
 図19は、第1の実施の形態の変形例2における平準化目標値xの決定方法を示すフローチャートである。図19は、第1の実施の形態によるフローチャートのS100の部分の処理を示した図である。第1の実施の形態の変形例2による平準化目標値xの決定方法を、第1の実施の形態において説明した条件を用いて説明する。
 図19においては、減少条件、増加条件として共に3つの条件を採用している。図19に示すように、目標決定部22は、蓄電残量最小値Bmin≦蓄電残量使用下限Blであるか否か、または最終蓄電残量B<蓄電残量使用上限Bu、かつ蓄電収支Bd<0であるか否かを判別する。条件に当てはまる場合には(S151:Yes)、平準化目標値x=x+dxに更新し(S152)、図10のS61に戻る。条件に当てはまらない場合には(S151:No)、S153に進む。続いて目標決定部22は、蓄電残量最大値Bmax>蓄電残量使用上限Bu、かつ、蓄電収支Bd≧0または最終蓄電残量B>蓄電残量使用上限Buであるか否かを判別する(S153)。条件に当てはまる場合には(S153:Yes)、平準化目標値x=x-dxに更新し(S154)、図10のS61に戻る。条件に当てはまらない場合には(S153:No)、そのままS61に戻る。
 以上説明したように、第1の実施の形態の変形例2による平準化目標値xの決定方法によれば、第1の実施の形態およびその変形例による効果と同様の効果を奏するとともに、さらに実際の電力平準化システム1にあった電力平準化制御が可能になる。
 なお、第1の実施の形態の変形例2において、各条件において等号を含む、含まないに関わらず、同様の効果が得られるため、任意の条件について等号を含んでも含まなくてもよい。また、例えば蓄電容量に充分な余裕が有る場合について、平準化目標値xを減少させる減少条件を優先することにし、論理積または論理和について、逆にしても同様の効果が得られる。さらに、各条件同士の論理和、論理積の優先度や組み合わせを任意に変形しても効果の度合いは異なるものの同様の効果を得ることができる。
 (第2の実施の形態)
 以下、第2の実施の形態による電力平準化システムについて説明する。本実施の形態において、第1の実施の形態およびその変形例1、2と同様の構成および動作については、重複説明を省略する。
 図20は、第2の実施の形態による電力平準化システム50の構成を示す図である。第2の実施の形態による電力平準化システム50は、第1の実施の形態およびその変形例1、変形例2による電力平準化システム1とほぼ同様の構成であるが、目標決定部22に代えて目標決定部23、スイッチ制御部26に代えてスイッチ制御部25を有する平準化制御部21を備えている。
 図20に示すように、電力平準化システム50においては、スイッチ制御部25は、矢印27に示したように、スイッチ5のスイッチ状態を目標決定部23に出力するように構成されている。目標決定部23は、取得したスイッチ状態に基づき、蓄電機11の放電を検出し、放電実績を記憶部24に格納する。また、目標決定部23は、受電電力Pinを記憶部24に格納し、格納した受電電力Pinに基づき波高値CF(平均累積電力量Eavに対する最大累積電力量Epkの比)を算出する。第2の実施の形態による電力平準化システム50では、平準化目標値xの増加条件および減少条件にさらに判定条件が追加される。
 まず、図21を参照しながら、増加判定の条件について説明する。新たに追加する増加判定の条件は、平準化目標値xの決定において、蓄電残量最小値Bminが蓄電残量使用下限Blを下回っていたとしても、放電が1度も発生していない場合は、目標値が高すぎることを意味するので、増加させないという条件である。
 図21は、平準化周期T0において一度も放電が発生しない場合について、平準化周期T0における蓄電残量Brの変化、蓄電残量初期値B0、蓄電残量使用上限Bu、蓄電残量使用下限Blを示している。また比較のため、受電電力Pin、累積電力量Ein、負荷電力Plおよび平準化目標値xを示している。
 図21に示すように、平準化周期T0の開始時を含め領域19Aにおいて、蓄電残量Br<蓄電残量使用下限Blである。よって、図21に示した蓄電残量Brは、蓄電残量最小値Bmin<蓄電残量使用下限Blに当てはまり、例えば第1の実施の形態によれば、平準化目標値xを増加させる条件に当てはまる。しかしながら、図21の例では平準化目標値xが平準化周期内の受電電力量ピークよりも高い為、一度も放電が起きていない。このことから、例えば図21に示した範囲19Bは、平準化目標値xが過剰に高い範囲と考えられ、図21の例は明らかに平準化目標値xを上げる必要がない。すなわち、平準化周期T0において、一度も放電が行なわれない場合には、平準化目標値xを増加させないようにすることが好ましい。このため、放電フラグFdcを設定し、電力平準化システム50の平準化制御中にスイッチ5が切断されたときに、放電フラグFdc=1として記憶部24に格納することにより放電を記録し、放電フラグFdcを平準化目標値x決定の一つの条件とする。尚、平準化周期開始時には、Fdc=0としてリセットを行う。
 次に、図22、図23を参照しながら、平準化目標値xの減少判定の条件について説明する。新たに追加する条件は、平準化周期T0における最大の累積受電電力量Einの、平均受電電力に対する比が所定値よりも小さい場合には、平準化目標値xを減少させないという条件である。
 図22、図23は、平準化周期T0における変動負荷13の稼動状況に応じた受電電力Pin、累積受電電力量Ein、負荷電力Pl、蓄電残量Brおよび平準化目標値xを示す図であり、連続した平準化周期T0について示している。図22において、(a)は、第1回目の平準化周期T0に関して示し、(b)は第2回目の平準化周期T0に関して示している。図23は、3回目の平準化周期T0について示しており、(a)は、平準化目標値xを減少させた場合を示し、(b)は、平準化目標値xを維持した場合を示す。
 図22(a)に示すように、1回目の平準化周期T0は例えば平日であり、変動負荷13は稼動している状態である。このとき、蓄電残量Brは平準化周期T0を通して過多であり、例えば第1の実施の形態における平準化目標値xを減少させる条件を満たしているため、図22(b)に示す2回目の平準化周期T0では、平準化目標値xは減少している。2回目の平準化周期T0は、例えば休日のため変動負荷13が稼動を休止しているとする。しかし、負荷が休止していたとしても、やはり蓄電残量Brが過多であり、第1の実施の形態における平準化目標値xを減少させる条件を満たしているため、3回目の平準化周期T0では、さらに平準化目標値xを減少させることとなる(図23(a))。
 3回目の平準化周期T0では、変動負荷13は稼動しているとすると、図23(a)のように、平準化目標値xが低すぎ、放電により蓄電残量Brが急激に減少し、不足してしまう。そこで、このように変動負荷13が稼動していない平準化周期T0では、そもそも需要が低く平準化の必要が無い為、目標決定制御を停止する。即ち、次の平準化周期T0における平準化目標値xを減少させず、平準化目標値xが低くなりすぎないようにすることが好ましい。
 変動負荷13の稼働休止判定は、平準化周期T0における波高値CFが、予め指定した稼動判定閾値Scfを下回ることを以て行う。実際には、波高値CFが小さくても変動負荷13が稼働している場合があるが、波高値CFが小さいということは、もともと負荷変動が平準化されていることを意味する。この場合、平準化周期T0を減少させる意味が小さいので、稼働休止扱いに含める。単純に平均累積電力量Eavや最大累積電力量Epkの大きさによる稼働休止判定では、実際に負荷電力が減少した際にも休止判定されてしまうため、上記のように波高値による判定を採用することが好ましい。
 尚、受電電力は平準化制御による充放電の為に、負荷による需要傾向が正確には反映されない。よって、負荷電力を計測する手段を有するシステムにおいては、波高値CFは受電電力ではなく、負荷電力計測値を基に計算することが稼働停止判定の精度が高まる為に好ましい。第2の実施の形態電力平準化システム50は、平準化制御の為に既に備えている受電電力計測手段を流用して稼働判定が実現できる為、システムの簡素化の点で好ましい。
 以下、図24~図27を参照しながら、第2の実施の形態による電力平準化システム50の動作について説明する。図24~図27は、第2の実施の形態による電力平準化システム50の動作を示すフローチャートである。図24に示すように、第1の実施の形態による電力平準化システム1の動作と同様、目標決定部23において、予め電力平準化制御の初期パラメータ設定が行われている(S201)。すなわち平準化周期T0、デマンド時限T1、監視制御時間T2、平準化周期開始時刻が設定され、記憶部24に格納される。また、平準化目標値決定制御の為の蓄電残量使用上限Bu(%)、蓄電残量使用下限Bl(%)、平準化目標値増減値dx(Wh)、平準化目標値の初期値x=x0(Wh)が設定され、記憶部24に格納される(S202)。さらに第2の実施の形態において、稼動判定閾値Scfが設定され、記憶部24に格納される(S203)。
 目標決定部23は、S201で設定された平準化周期開始時刻が到来したか否かを、図示せぬ時刻取得部と記憶部24に格納された平準化周期開始時刻とを比較することにより監視する(S204:No)。平準化周期開始時刻が到来すると(S204:Yes)、目標決定部23は、まず、蓄電残量Brの初期値として蓄電残量B(%)を取得し(S205)、平準化制御を開始する(S206)。
 図25の処理に進み、目標決定部23は、平準化周期タイマをリセットする(S207)。また、目標決定部23は、蓄電残量最大値Bmax=B(%)、蓄電残量最小値Bmin=B(%)、蓄電残量初期値B0=Bにリセット(S208)する。第2の実施の形態においては、目標決定部23は、放電フラグFdc=0にリセットし(S209)、平均累積電力量Eav=0(Wh)、ピーク累積電力量Epk=0(Wh)(S210)にリセットする。さらに目標決定部23は、デマンド時限タイマ(図示せず)をリセットする(S211)。
 目標決定部23は、スイッチ制御部25に、スイッチ5を閉じて受電を開始させるための指示信号を出力し、スイッチ5は、スイッチ制御部25からの動作信号により接続を閉じる(S212)。目標決定部23は、累積電力量Ein=0(Wh)にリセットするとともに(S213)、監視制御周期タイマ(図示せず)をリセットする(S214)。また、目標決定部23は、監視制御周期タイマが満了するまで監視し(S215:No)、満了すると(S215:Yes)、蓄電残量計測部12で計測された蓄電残量BrをBとして取得する(S216)。
 図26の処理に進んで、目標決定部23は、取得された蓄電残量Bと蓄電残量最大値Bmaxとを比較し、蓄電残量Bが蓄電残量最大値Bmax以下である場合には、処理はS222に進む(S220:Yes)。蓄電残量Bが蓄電残量最大値Bmaxより大きい場合には(S220:No)、蓄電残量最大値Bmaxを蓄電残量Bに更新し(S221)、処理はS222に進む。目標決定部23は、取得された蓄電残量Bと蓄電残量最小値Bminとを比較し、蓄電残量Bが蓄電残量最小値Bmin以上である場合には、処理はS224に進む(S222:Yes)。蓄電残量Bが蓄電残量最小値Bminより小さい場合には(S222:No)、蓄電残量最小値Bminを蓄電残量Bに更新し(S223)、処理はS224に進む。目標決定部23は、受電電力計測部9により受電電力Pin(W)を取得する(S224)。
 目標決定部23は、累積受電電力量Ein=Ein+Pin×T2を計算する(S224)。スイッチ制御部25は、S224で計算された累積受電電力量Einと現在の平準化目標値xとを比較し、累積受電電力量Einが平準化目標値xを下回っている場合には(S226:No)、処理をS229に進める。スイッチ制御部25は、S225で計算された累積受電電力量Einが平準化目標値x以上の場合には(S226:Yes)、スイッチ5に接続を切断する動作信号を出力し、スイッチ5は接続を切断する(S227)とともに、放電フラグFdc=1とする(S228)。
 目標決定部23が、デマンド時限タイマが満了しないと判別している間は(S229:No)、図25のS214から図26のS229の処理が繰り返される。目標決定部23は、デマンド時限タイマが満了したことを判別すると(S229:Yes)、平均累積受電電力量Eav=Eav+Ein/(T0/T2)を算出する(S230)。
 図27の処理に進んで、目標決定部23は、累積受電電力量Ein≦ピーク累積受電電力量Epkであるか否かを判別する(S240)。判別の結果が条件に合わない場合には(S240:No)、ピーク累積受電電力量Epk=Einとして(S241)S242に進み、条件に合った場合にはそのままS242に進む(S240:Yes)。続いて、目標決定部23は、平準化周期タイマが満了したか否かを判別する(S242)。目標決定部23が、平準化周期タイマが満了しないと判別している間は(S242:No)、図25のS221から図27のS242までの処理が繰り返される。目標決定部23は、平準化周期タイマが満了したことを判別すると(S242:Yes)、波高率CF=Epk/Eavと設定する。ここで0/0は「1」と定義する(S243)。また、目標決定部23は、蓄電残量収支Bd=B-B0を計算し(S244)、処理を平準化目標値xの決定処理に進める。
 目標決定部23は、蓄電残量最大値Bmax>蓄電残量使用上限Bu、かつ、蓄電残量最小値Bmin>蓄電残量使用下限Bl、かつ、蓄電収支Bd>0であるという条件に合致するか否かを判別する(S245)。比較した各値が条件に合致する場合には(S245:Yes)、波高率CF≧稼動判定閾値Scfであるか否か判別する(S246)。判別結果が条件に合う場合には(S246:Yes)、平準化目標値x=x-dxに更新し(S247)、処理は、図25のS207に戻る。比較した各値が条件に合致しない場合には、処理はそのままS207に戻る。S245において、比較した各値が条件に合致しないと判別された場合には(S245:No)、処理はS248に進む。
 目標決定部23は、蓄電残量最大値Bmax<蓄電残量使用上限Bu、または、蓄電残量最小値Bmin<蓄電残量使用下限Bl、または、蓄電収支Bd<0であるという条件に合致するか否かを判別する(S248)。比較した各値が条件に合致する場合には(S248:Yes)、目標決定部23は、放電フラグFdc=1であるか否か判別する(S249)。判別結果が条件に合う場合には(S249:Yes)、平準化目標値x=x+dxに更新し(S250)、図25のS207に戻り、条件が合わない場合にはそのままS207に戻る。S248で比較した各値が条件に合致しない場合には(S248:No)、そのまま図25のS207に戻る。
 なお、上記の処理において目標決定部23は、蓄電残量最大値Bmax、蓄電残量最小値Bmin、蓄電初期値B0、放電フラグFdc、ピーク累積受電電力量Epk、平均累積受電電力量Eav等を記憶部24に格納、または記憶部24から読み出すことにより判別処理などを行っている。
 以上説明したように、第2の実施の形態による電力平準化システム50の電力平準化制御においては、特定条件下における平準化目標値xの増加判定条件および減少判定条件を追加した。すなわち、平準化周期T0において放電が行なわれない場合、平準化目標値xの増加を行わないという増加判定条件、および平準化周期T0において変動負荷13において波高率が閾値以下の場合には平準化目標値xを減少させないという減少防止条件を追加した。
 さらに、平準化システム50において、矢印29のように、付加停止を防ぐための強制充電オン判定のため、スイッチ制御部25において蓄電残量Brの計測値を検出するようにしてもよい。スイッチ制御部25において、蓄電残量Brが一定値以下になったことを検出すると、スイッチ5を強制的にオンすることにより、負荷の停止を防止することができる。
 以上のように、第2の実施の形態による電力平準化システム50によれば、第1の実施の形態による電力平準化システム1が奏する効果に加え、以下の付加的な効果を奏する。すなわち、平準化周期T0において放電が一回も起きていない場合に、蓄電残量Brのみの判別により次の平準化周期T0における平準化目標値xが増加されて、平準化制御が動作しない確率を低下することができる。また、変動負荷13が稼動していない平準化周期T0において、蓄電残量Brのみの判別により平準化目標値xが減少させられ、次の平準化周期T0において変動負荷13が稼動した際に蓄電残量Brが不足して平準化制御が中止される確率を低下することができる。以上により、特定条件下における電力平準化性能の低下を防止することが可能である。
 ここで、以上説明した第1の実施の形態、その変形例1、変形例2、および第2の実施の形態による平準化制御をコンピュータに行わせるために共通に適用されるコンピュータの例について説明する。図28は、標準的なコンピュータのハードウエア構成の一例を示すブロック図である。図28に示すように、コンピュータ300は、Central Processing Unit(CPU)302、メモリ304、入力装置306、出力装置308、外部記憶装置312、媒体駆動装置314、ネットワーク接続装置318等がバス310を介して接続されている。
 CPU302は、コンピュータ300全体の動作を制御する演算処理装置である。メモリ304は、コンピュータ300の動作を制御するプログラムを予め記憶したり、プログラムを実行する際に必要に応じて作業領域として使用したりするための記憶部である。メモリ304は、例えばRandom Access Memory(RAM)、Read
 Only Memory(ROM)等である。入力装置306は、コンピュータの使用者により操作されると、その操作内容に対応付けられている使用者からの各種情報の入力を取得し、取得した入力情報をCPU302に送付する装置であり、例えばキーボード装置、マウス装置などである。出力装置308は、コンピュータ300による処理結果を出力する装置であり、表示装置などが含まれる。例えば表示装置は、CPU302により送付される表示データに応じてテキストや画像を表示する。
 外部記憶装置312は、例えば、ハードディスクなどの記憶装置であり、CPU302により実行される各種制御プログラムや、取得したデータ等を記憶しておく装置である。媒体駆動装置314は、可搬記録媒体316に書き込みおよび読み出しを行うための装置である。CPU302は、可搬型記録媒体316に記録されている所定の制御プログラムを、記録媒体駆動装置314を介して読み出して実行することによって、各種の制御処理を行うようにすることもできる。可搬記録媒体316は、例えばConpact Disc(CD)-ROM、Digital Versatile Disc(DVD)、Universal Serial Bus(USB)メモリ等である。ネットワーク接続装置318は、有線または無線により外部との間で行われる各種データの授受の管理を行うインタフェース装置である。バス310は、上記各装置等を互いに接続し、データのやり取りを行う通信経路である。
 上記第1の実施の形態、その変形例1、変形例2、および第2の実施の形態による平準化制御をコンピュータ300に実行させるプログラムは、例えば外部記憶装置312に記憶される。CPU302は、外部記憶装置312からプログラムを読み出し、電力平準化制御の動作を行う。このとき、まず、平準化制御の処理をCPU302に行わせるための制御プログラムを作成して外部記憶装置312に記憶させておく。そして、入力装置306から所定の指示をCPU302に与えて、この制御プログラムを外部記憶装置312から読み出させて実行させるようにする。また、このプログラムは、可搬記録媒体316に記憶するようにしてもよい。
 上記実施の形態において、目標決定部23による例えばS73の処理は、本発明の受電電力取得部としての動作の一例である。同様に、S68の処理は、蓄電残量取得部、S100の処理は、目標決定部、S230、241の処理は、算出部としての動作の一例である。記憶部24は、蓄電残量最大値記憶部、蓄電残量最小値記憶部、蓄電初期値記憶部、放電フラグ記憶部、ピーク累積受電電力量記憶部、平均累積受電電力量記憶部の一例である。デマンド時限T1は、本発明の単位時間の一例である。
 なお、本発明は、以上に述べた実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または実施形態を採ることができる。例えば、電力平準化システム1、50において、蓄電装置7、平準化制御部20およびスイッチ5はそれぞれ独立した構成としたが、例えば、平準化制御部20または制御部21、およびスイッチ5を備えた蓄電装置等、これらを任意に組み合わせた構成としてもよい。
 第2の実施の形態において説明した平準化目標値xの増加判定および減少判定は、第1の実施の形態およびその変形例1、変形例2のいずれとも組み合わせて用いることができる。また、例えば変形例1の増加判定と、変形例2の減少判定とを組み合わせて用いるなど、可能な組み合わせは全て適用することができる。
 また、電力平準化システム1において、電力平準化制御は単位時間当りの受電電力量を平準化するシステムを例示したが、受電電力を平準化するシステムであっても平準化目標値決定制御は同様に適用可能である。
  1   電力平準化システム
  3   電源
  5   スイッチ
  7   蓄電装置
  9   受電電力計測部
 11   蓄電機
 12   蓄電残量計測部
 13   変動負荷
 20   平準化制御部
 22   目標決定部
 24   記憶部
 26   スイッチ制御部

Claims (10)

  1.  電源が、蓄電装置および負荷と接続されたシステムにおいて、前記電源から供給する電力を平準化する電力平準化制御装置であって、
     前記蓄電装置の蓄電残量を監視時間毎に取得する蓄電残量取得部と、
     前記蓄電残量取得部が取得した前記蓄電残量を記憶する蓄電記憶部と、
     前記負荷の電力需要の高い期間と低い期間とが交互に発生すると予測される周期の終了時に、前記蓄電記憶部が記憶した前記蓄電残量の内の、前記周期の前記蓄電残量の遷移を代表する値に基づき、次の前記周期で用いる電力平準化のための平準化目標値として、現在の前記平準化目標値に対し増加、減少、または維持のいずれを行わせた値を設定するかを決定する目標決定部と、
     前記目標決定部により決定された次の前記周期で用いる電力平準化のための平準化目標値を基に、前記電源及び前記蓄電装置から前記負荷へ供給する電力を制御する制御部と
     を有することを特徴とする電力平準化制御装置。
  2.  前記目標決定部は、
      前記周期内に記憶された前記蓄電残量の最大値、最小値、最後の値、または最初の値と最後の値の差分のうち少なくとも一つに基づき、次の周期で用いる平準化目標値として、現在の前記平準化目標値に対し、増加、減少または維持のいずれを行わせた値を設定するかを決定することを特徴とする請求項1に記載の電力平準化制御方法。
  3.  前記目標決定部は、
      前記周期において、前記最大値が予め決められた第1の閾値を下回る、前記最小値が予め決められた第2の閾値を下回る、前記最後の値が予め決められた第3の閾値を下回る、または前記最初の値と最後の値の差分が予め決められた第4の閾値を下回る、のいずれか少なくとも一つを満たす場合に、次の周期で用いる平準化目標値を現在の前記平準化目標値に対し増加させることを特徴とする請求項2に記載の電力平準化制御装置。
  4.  前記目標決定部は、
      前記周期において、前記最大値が前記第1の閾値を超える、前記最小値が前記第2の閾値を超える、前記最後の値が前記第3の閾値を超える、または前記最初の値と最後の値との差分が前記第4の閾値を超える、のいずれか少なくとも一つを満たす場合に、次の周期で用いる平準化目標値を現在の前記平準化目標値に対し減少させることを特徴とする請求項2に記載の電力平準化制御装置。
  5.  前記目標決定部は、
      前記周期において、前記最大値が前記第1の閾値を下回り、または前記最小値が前記第2の閾値を下回り、または前記最初の値と最後の値との差分が前記第4の閾値を下回る場合に、次の周期で用いる平準化目標値を現在の前記平準化目標値に対し減少させることを特徴とする請求項2に記載の電力平準化制御装置。
  6.  前記目標決定部は、
      前記周期において、前記最大値が前記第1の閾値を超え、かつ前記最小値が前記第2の閾値を超え、かつ前記最初の値と最後の値との差分が正の値となった場合に、次の周期で用いる平準化目標値を現在の前記平準化目標値に対し減少させることを特徴とする請求項2に記載の電力平準化制御装置。
  7.  前記目標決定部は、
      前記周期において、前記最後の値が前記第3の閾値を下回り、かつ前記最初の値と最後の値との差分が前記第4の閾値を下回る場合、または、前記最小値が予め決められた第2の閾値を下回る場合に、次の周期で用いる平準化目標値を現在の前記平準化目標値に対し増加させることを特徴とする請求項2に記載の電力平準化制御装置。
  8.  電源と切換可能に接続されるとともに負荷と接続され、前記電源との接続状態を制御することにより充電および放電を行い、前記電源が供給する電力を平準化する蓄電装置であって、
     前記電源との間に設けられ、前記接続状態を切り換えるスイッチと、
     前記スイッチにより前記電源と接続されることにより充電され、前記電源との接続が切断されると放電することにより前記負荷に電力を供給する蓄電機と、
     前記請求項1から請求項7のいずれか一項に記載の平準化制御装置と、
    を有することを特徴とする電力平準化蓄電装置。
  9.  電源が、蓄電装置および負荷と接続されたシステムにおいて、前記電源から供給する電力を平準化する電力平準化制御方法であって、
     前記蓄電装置の蓄電残量を監視時間毎に取得する蓄電取得工程と、
     前記蓄電取得工程において取得した前記蓄電残量を記憶する蓄電記憶工程と、
     前記負荷の電力需要の高い期間と低い期間とが交互に発生すると予測される周期の終了時に、前記蓄電記憶工程において記憶した前記蓄電残量の内の、前記周期の前記蓄電残量の遷移を代表する値に基づき、次の前記周期で用いる電力平準化のための平準化目標値として、現在の前記平準化目標値に対し増加、減少、または維持のいずれを行わせた値を設定するかを決定する目標決定工程と、
     前記目標決定工程で決定された次の前記周期で用いる電力平準化のための平準化目標値を基に、前記電源及び前記蓄電装置から前記負荷へ供給する電力を制御する制御工程と
     を有することを特徴とする電力平準化制御方法。
  10.  電源が、蓄電装置および負荷と接続されたシステムにおいて、前記電源から供給する電力を平準化する電力平準化制御をコンピュータに行わせるプログラムであって、
     前記電源からの受電電力を監視時間毎に予め決められた単位時間まで累積して取得し、
     前記蓄電装置の蓄電残量を監視時間毎に取得し、
     前記蓄電取得工程において取得した前記蓄電残量を記憶し、
     前記負荷の電力需要の高い期間と低い期間とが交互に発生すると予測される周期の終了時に、記憶した前記蓄電残量の内の、前記周期の前記蓄電残量の遷移を代表する値に基づき、次の前記周期で用いる電力平準化のための平準化目標値として、現在の前記平準化目標値に対し増加、減少、または維持のいずれを行わせた値を設定するかを決定しと、
     決定された次の前記周期で用いる電力平準化のための平準化目標値を基に、前記電源及び前記蓄電装置から前記負荷へ供給する電力を制御する処理をコンピュータに行わせることを特徴とする電力平準化プログラム。
PCT/JP2011/056665 2011-03-18 2011-03-18 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム WO2012127595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013505670A JP5664763B2 (ja) 2011-03-18 2011-03-18 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム
PCT/JP2011/056665 WO2012127595A1 (ja) 2011-03-18 2011-03-18 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム
US14/023,879 US20140012426A1 (en) 2011-03-18 2013-09-11 Power leveling controller, power leveling storage battery, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056665 WO2012127595A1 (ja) 2011-03-18 2011-03-18 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/023,879 Continuation US20140012426A1 (en) 2011-03-18 2013-09-11 Power leveling controller, power leveling storage battery, and method

Publications (1)

Publication Number Publication Date
WO2012127595A1 true WO2012127595A1 (ja) 2012-09-27

Family

ID=46878792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056665 WO2012127595A1 (ja) 2011-03-18 2011-03-18 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム

Country Status (3)

Country Link
US (1) US20140012426A1 (ja)
JP (1) JP5664763B2 (ja)
WO (1) WO2012127595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501001A (zh) * 2013-10-09 2014-01-08 河海大学 一种基于负荷曲线交替注入的智能配电网调度系统和方法
US10756540B2 (en) 2015-11-18 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Received power control device and received power control method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928908B2 (ja) * 2013-09-30 2016-06-01 カシオ計算機株式会社 電子機器、給電制御方法、及びプログラム
EP3136533B1 (en) * 2014-04-24 2019-11-13 Kyocera Corporation Control method and control device
JP6624416B2 (ja) * 2014-09-11 2019-12-25 清水建設株式会社 需要電力の目標値算出方法及び目標値算出装置
EP3017993B1 (en) * 2014-11-07 2021-04-21 Volvo Car Corporation Power and current estimation for batteries
US10248177B2 (en) * 2015-05-22 2019-04-02 Advanced Micro Devices, Inc. Droop detection and regulation for processor tiles
US10355517B2 (en) * 2015-06-22 2019-07-16 Mitsubishi Electric Corporation Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
JP7008503B2 (ja) * 2015-08-31 2022-01-25 シャープ株式会社 電力情報管理装置、電力情報管理システム、および、電力情報管理方法
CN106529694A (zh) * 2015-09-15 2017-03-22 中兴通讯股份有限公司 一种数据优化方法及装置
JP5975163B1 (ja) * 2015-09-29 2016-08-23 日本電気株式会社 演算装置
WO2018152650A1 (en) * 2017-02-27 2018-08-30 G.A. Power Solutions Inc. System and method for managing power generation
JP6599960B2 (ja) * 2017-11-10 2019-10-30 ファナック株式会社 蓄電装置を有するモータ駆動システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287958A (ja) * 1995-04-18 1996-11-01 Tokyo Electric Power Co Inc:The 二次電池電力貯蔵システムの運転方法及びその装置
JP2001008385A (ja) * 1999-06-22 2001-01-12 Sekisui Chem Co Ltd 電力貯蔵システム
JP2002017044A (ja) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP2003244840A (ja) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The 負荷平準化装置
JP2003299247A (ja) * 2002-03-29 2003-10-17 Ntt Power & Building Facilities Inc 交流電源供給システム
JP2005218193A (ja) * 2004-01-28 2005-08-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2009213319A (ja) * 2008-03-06 2009-09-17 Toshiba Corp 自然エネルギー発電装置の出力変動抑制装置
WO2009156261A2 (en) * 2008-06-24 2009-12-30 Abb Research Ltd Method for operating a battery energy storage system
WO2010073394A1 (ja) * 2008-12-26 2010-07-01 日本風力開発株式会社 蓄電池併設型の風力発電システムおよび蓄電池の充放電制御装置
US20100270974A1 (en) * 2009-04-22 2010-10-28 Denso Corporation Charging control device and electricity storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA952456B (en) * 1994-03-28 1996-03-29 John York Seymour A method and apparatus for processing batteries
JP3730614B2 (ja) * 2002-11-26 2006-01-05 株式会社東芝 電子機器における電源制御方法及び電力管理システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287958A (ja) * 1995-04-18 1996-11-01 Tokyo Electric Power Co Inc:The 二次電池電力貯蔵システムの運転方法及びその装置
JP2001008385A (ja) * 1999-06-22 2001-01-12 Sekisui Chem Co Ltd 電力貯蔵システム
JP2002017044A (ja) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP2003244840A (ja) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The 負荷平準化装置
JP2003299247A (ja) * 2002-03-29 2003-10-17 Ntt Power & Building Facilities Inc 交流電源供給システム
JP2005218193A (ja) * 2004-01-28 2005-08-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2009213319A (ja) * 2008-03-06 2009-09-17 Toshiba Corp 自然エネルギー発電装置の出力変動抑制装置
WO2009156261A2 (en) * 2008-06-24 2009-12-30 Abb Research Ltd Method for operating a battery energy storage system
WO2010073394A1 (ja) * 2008-12-26 2010-07-01 日本風力開発株式会社 蓄電池併設型の風力発電システムおよび蓄電池の充放電制御装置
US20100270974A1 (en) * 2009-04-22 2010-10-28 Denso Corporation Charging control device and electricity storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501001A (zh) * 2013-10-09 2014-01-08 河海大学 一种基于负荷曲线交替注入的智能配电网调度系统和方法
US10756540B2 (en) 2015-11-18 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Received power control device and received power control method

Also Published As

Publication number Publication date
JP5664763B2 (ja) 2015-02-04
JPWO2012127595A1 (ja) 2014-07-24
US20140012426A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
WO2012127595A1 (ja) 電力平準化制御装置、電力平準化蓄電装置、電力平準化制御方法、及び平準化プログラム
JP5737409B2 (ja) 電力平準化制御装置および電力平準化制御方法
US20160064960A1 (en) User-behavior-driven battery charging
CA3082974A1 (en) Energy management system, power demand plan optimization method, and power demand plan optimization program
US20190137956A1 (en) Battery lifetime maximization in behind-the-meter energy management systems
US10680455B2 (en) Demand charge minimization in behind-the-meter energy management systems
CN104466994A (zh) 通信电源错峰储能系统
US20140297055A1 (en) Power leveling control device and power leveling control method
CN117254464B (zh) 一种储能系统的控制方法及系统
CN113131574A (zh) 一种储能系统的充电控制方法及装置
WO2012019484A1 (zh) 一种电源电压调节的控制方法和系统
US10637247B2 (en) System and method for minimizing storage demand charges by weight assignments to different demand categories
KR101736717B1 (ko) 에너지 저장 장치 및 그의 제어 방법
US20230148201A1 (en) Method and system for supplying power to device, and related device
KR102332937B1 (ko) 지역 기반 에너지 저장 장치의 제어 시스템 및 이를 이용한 에너지 관리 방법
US20140288721A1 (en) Power leveling control method and power leveling control device
JP2005332040A (ja) 電気料金の省コスト評価方法
CN116008846A (zh) 一种面向空间站电源系统的蓄电池组健康状态估计方法
CN113224813B (zh) 离网光伏储能系统控制方法、装置、计算机及存储介质
US20210075242A1 (en) Charge and discharge control apparatus and method for an energy storage system
US20150039141A1 (en) System and method using fuzzy logic for resource conservation
US20240088661A1 (en) Command device, charge-discharge control system, power control system, central command device, setting value management device, charge-discharge control method, and storage medium
CN118316168A (en) Self-adaptive charge and discharge rate control method and system for super-capacity energy storage unit
CN117578483A (zh) 微储能电池电量资源优化与充放电控制方法
CN117439145A (zh) 储能系统的控制方法、储能系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861403

Country of ref document: EP

Kind code of ref document: A1