WO2012127153A2 - Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation - Google Patents

Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation Download PDF

Info

Publication number
WO2012127153A2
WO2012127153A2 PCT/FR2012/050538 FR2012050538W WO2012127153A2 WO 2012127153 A2 WO2012127153 A2 WO 2012127153A2 FR 2012050538 W FR2012050538 W FR 2012050538W WO 2012127153 A2 WO2012127153 A2 WO 2012127153A2
Authority
WO
WIPO (PCT)
Prior art keywords
main
plate
rotation
tools
motor
Prior art date
Application number
PCT/FR2012/050538
Other languages
English (en)
Other versions
WO2012127153A3 (fr
Inventor
Christian Fromholz
Laurent BERVILLER
Philippe Roser
Original Assignee
Siimo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siimo filed Critical Siimo
Priority to EP12714781.7A priority Critical patent/EP2686149B1/fr
Priority to CA2829077A priority patent/CA2829077A1/fr
Priority to US14/005,355 priority patent/US20140000762A1/en
Publication of WO2012127153A2 publication Critical patent/WO2012127153A2/fr
Publication of WO2012127153A3 publication Critical patent/WO2012127153A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27CPLANING, DRILLING, MILLING, TURNING OR UNIVERSAL MACHINES FOR WOOD OR SIMILAR MATERIAL
    • B27C7/00Wood-turning machines; Equipment therefor
    • B27C7/005Wood-turning machines; Equipment therefor by means of a rotating tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27CPLANING, DRILLING, MILLING, TURNING OR UNIVERSAL MACHINES FOR WOOD OR SIMILAR MATERIAL
    • B27C5/00Machines designed for producing special profiles or shaped work, e.g. by rotary cutters; Equipment therefor
    • B27C5/08Rounding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L9/00Manufacture of wooden sticks, e.g. toothpicks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2527Lathe having hollow cutter head

Definitions

  • the present invention relates to a novel method and a new device for producing parts, in particular pieces of elongated revolution and of variable section in the longitudinal direction, by machining a bar held fixed in rotation.
  • machining it will be understood in general any method of forming by removal of material, whether by cutting tools, abrasive, etc..
  • the invention aims in particular, but not exclusively, the production of elongate wooden parts in a main axial direction, in particular axisymmetric, from long wooden bars. It can also be applied to the production of parts made of other materials, especially plastics, synthetic materials.
  • the invention is particularly applicable to the realization, from a long bar, small parts section in relation to their length. It also applies to the production of larger parts by a machining transformation of a bar of typically square section, of any length, straight or curved, into parts of axisymmetric section: circular, oval, square, possibly helical etc. variable longitudinal profile and respectively straight or curved.
  • WO2010 / 046570 already discloses a method and a device for producing parts of revolution, or of a similar general shape, in particular of elongate and longitudinally variable wooden pieces in the longitudinal direction, which make it possible to machine, from straight or bent bars of any length held fixed in rotation, parts of sections both circular and axisymmetric any, and in a given longitudinal profile.
  • This machining device makes it possible, among other things, to machine heavy and bulky parts such as profiled bars, beam columns and the like, obtained from bars made of machinable materials, such as hard or soft wood, or other materials.
  • the device comprises a fixed frame carrying guide means for guiding said bar in translation along a main axis and maintaining it fixed in rotation, and a rotating assembly driven in rotation relative to the frame along the main axis.
  • the rotating assembly comprises a plate and at least two rotary tools supported by pivoting arms relative to the plate in a plane orthogonal to the main axis. The tools are rotated along respective axes of rotation substantially parallel to the main axis.
  • Means for controlling the position of the pivoting arms are provided for adjusting the radial positioning of the tools relative to the main axis.
  • control means comprise motor means fixed to the frame and mechanical transmission means ensuring the connection between said motor means and said supports, so that the distance between the axes of the tools and the main axis is continuously adjustable by command said fixed motor means.
  • the device uses a first system that converts a rotation of a fixed motor on the frame in an axial translation of a turntable, connected to the arms tool holder by a reversible nut screw system, which makes it possible to transform said axial translation into a pivoting of the arms.
  • the first transformation of the rotation of the motor in axial translation is performed either by a rack-and-pinion system, or by a screw-nut system.
  • One of the advantages of this device is to allow the machining of parts of revolution, according to the definition which was given at the beginning of this description, from long bars of substantially square section, or rectangular, by rotating tools according to a epicyclic type movement around said bar, and this by a device that does not require the use of embedded motors on rotating bodies.
  • the rotating assembly is generally compact in order to minimize the centrifugal forces and thus reduce the weight of the rotating structures, their cost and the energy requirements necessary for their rotation.
  • a motor located mainly outside the rotating structure allows to lighten the structure and, especially in the case of high rotation speed of the plate, to reduce any undesirable vibrations.
  • the present invention therefore aims to provide a new system to ensure continuous radial positioning of the tools during the rotation of the plate, which is simpler to achieve, more reliable, requiring fewer moving mechanical parts.
  • the subject of the invention is a process for producing parts, in particular elongated parts of revolution and of variable section in the longitudinal direction, by machining a bar held fixed in rotation, according to which relatively a frame relative to said bar, or vice versa, in a main direction corresponding to the longitudinal direction of the bar, and the bar is machined, according to a desired longitudinal and circumferential profile, by rotary tools carried by a main plate driven in rotation on the frame in a plane transverse to said axial direction, the tools being connected to the plate by radially movable tool supports on this plate, and, depending on said desired profile, a radial displacement of the tool supports in function is controlled the axial position of the bar relative to the frame and the circumferential position of the tools relative to the bar.
  • the method is characterized in that, in order to control said radial displacement, a secondary plate is driven in rotation, coaxially with the main plate, comprising means for actuating the tool supports arranged in such a way that the position of the tool supports is a function of the relative angular position between the main plate and the secondary plate and, to adjust the positioning radial tools permanently during the rotation of the plate, modifies said relative angular position.
  • each plate has its own rotation drive motor, and the modification of the relative angular position of the plates is achieved by a speed variation control of at least one of the motors, for example by means of electronic speed control means, which make it possible to ensure very fast and very precise speed variations.
  • a computer controlling the motors according to a suitable program, predetermined according to the desired shapes of the circumferential and longitudinal profiles.
  • the modification of the relative angular position of the trays is carried out by control means mechanical means varying the length of the strand tension of a belt or chain transmission used to transmit the rotation of an engine to at least one of the trays, more particularly the secondary tray.
  • control means mechanical means varying the length of the strand tension of a belt or chain transmission used to transmit the rotation of an engine to at least one of the trays, more particularly the secondary tray.
  • a single motor is used to drive the two trays by different belts, and the length of the stretched strand of one of the belts is varied by means of a pulley tensioner, whose position can be controlled by a cylinder or other suitable actuator.
  • the modification of the relative angular position of the trays is performed by a dedicated motor mounted between a driving element of the main plate and the secondary plate.
  • Another subject of the invention is a device intended for implementing the method indicated above, which comprises means for displacing a chassis in translation relative to the bar, or conversely, in a main direction corresponding to the longitudinal direction of the bar, and a rotating assembly driven in rotation relative to the frame along a main axis, the rotating assembly comprising a main plate and at least two rotary tools supported by movable supports guided relative to the plate in a plane orthogonal to the main axis, and the device comprising means for controlling the position of the supports for adjusting the radial positioning of the tools relative to the main axis.
  • the device is characterized in that said means for controlling the position of the tool supports comprise
  • a secondary plate comprising means for actuating the tool supports arranged so that the position of the tool supports is a function of the relative angular position between the main plateau and the secondary plateau and
  • said actuating means comprise main cams and the tool supports are connected to main fingers applied to said cams.
  • the cams have a shape such that their radius is increasing over a predetermined angle corresponding to the maximum angular offset between the plates, and the amplitude of the radius variation is determined so as to generate a radial displacement of the tools of a desired maximum amplitude.
  • the tool supports are arms mounted pivoting on the main plate and connected in rotation to the fingers resting on the cams.
  • each main finger is constituted by an end of a lever pivotally connected to a tool support arm, the opposite end of the lever constituting a secondary finger resting on a secondary cam associated with the main cam on which the main finger is supported, the shapes and dimensions of the main and secondary cams and those of the lever being determined so that the secondary finger is in contact with the secondary cam when the main finger is in contact with the main cam, regardless of the position of the point of contact on the cam.
  • the main finger is moved on the main cam and thus causes the pivoting of the tool support arm. More precisely, when the relative angular position between the trays varies in the direction leading to the main finger moving on the cam to a position of increasing radius, the tool is moved towards the axis of the rotating assembly. As a result, it is the main cam that supports the support of the main finger corresponding to the plunging force of the tool during machining.
  • the cam and the secondary finger ensure the radial displacement of the tool in the opposite direction, that is to say outwards, when the relative angular position of the plates is varied in the opposite direction, the finger moving on the main cam to a position of decreasing radius.
  • the finger and the secondary cam also make it possible to compensate for play between the fingers and the cams; for this purpose, the secondary finger is resiliently mounted on the end of the lever, for example by means of a pivoting rod and a return spring between the lever and said link.
  • the secondary fingers which ensure the radial displacement of the tools in the direction of a distance from the main axis, it is the contact of the main fingers on the main cams which determines the radial position of said tools.
  • the fingers will advantageously be in the form of rollers mounted rotating on the lever.
  • the rotational drive of the tools is preferably provided by a fixed motor on the frame and transmitting its rotation via a rotating ring, the latter in turn driving by a belt pulleys with two grooves mounted in rotation on the pivot axes of the tool support arms, each of said pulleys rotating a tool by another belt extending along the tool support arm.
  • the trays are rotated by one or more engines to which they are connected by pulleys and toothed belts or chains of in order to prevent any slippage of these transmission means between motors and trays.
  • each plate has its own motor, and means for adjusting the speed of the motors are provided to be able to momentarily vary the speed of at least one of the motors so as to generate a variation of the angular offset between trays.
  • one of the plates is rotated by a belt passing over a first translating pulley in translation over which the stretched strand of the belt passes; that is, the strand transmitting the rotational force, said first pulley being movable so as to be able to vary the length of the strand stretched.
  • a variation in the length of this stretched strand during the rotation drive, at constant speed of the motor, generates a temporary variation in the speed of the driven plate, and therefore a relative angular offset with respect to its anterior position, this offset allowing to create the relative angular offset between the plates, if for example the other plate is maintained at a constant speed of rotation.
  • the two plates are driven by the same motor, connected by a belt without sliding to the main plate and which therefore gives the rotational speed of the rotating assembly, and the secondary plate is connected to the same motor by a belt passing over the first return pulley.
  • the return pulley for example by means of a cylinder controlled according to the profile of the desired machined part.
  • a second idler pulley acting as a tensioner is mounted on the free end of the belt.
  • the device comprises drive means for rotating the two plates by a same main motor, said drive means comprising an auxiliary motor mounted between the main motor and the secondary plate, and control means of the auxiliary motor for generating a variation of the angular offset between the plates.
  • the auxiliary engine has for example its shaft connected in rotation with a drive shaft of the main motor and its stator connected to the secondary plate by a toothed belt.
  • the auxiliary motor shaft is stationary in rotation relative to its stator, the two plates are fixed in rotation relative to each other.
  • the auxiliary motor may be a stepper motor or any other motor unit mounted on a drive shaft of the main plate and adapted, alternatively, to rotate this drive shaft in solidarity with the secondary plate or to create a controlled angular offset between these.
  • FIG. 1 represents a machining machine provided with a device according to the invention
  • FIG. 2 is a simplified representation showing in particular the rotational drive of the tools
  • FIG. 3 shows the arrangement of the motors on the frame of the device
  • FIG. 4a is a perspective view showing the rotating assembly with the two plates, the tool support arms not being represented,
  • FIG. 4b is a perspective view similar to that of FIG. 4a but having additionally removed the main plate to make it possible to see more clearly the system of cams and levers controlling the pivoting of the tool support arms,
  • FIG. 5 is a schematic view illustrating the principle of the second embodiment
  • FIG. 6 is a schematic view illustrating the principle of the third embodiment.
  • the machining machine represented in FIG. 1 comprises a gantry 1 on which the machining device 2 is mounted, which comprises a frame 20 on which is mounted a rotating assembly 21 having a bore 22 in which the machined part 9 passes during of its machining.
  • the rotating assembly 21 carries machining tools 3 driven in rotation and radially movable, so that the distance between the axis of rotation of the rotating assembly and the tools can be modified during the rotation of said rotating assembly. It is thus possible to vary the section of the machined part 9, when the latter is moved relative to the gantry in the direction of the arrow F, oriented substantially along the main axis A of rotation of the rotating assembly. Note that the part can be moved relative to the gantry remaining fixed, or the gantry moved, according to the arrow F ', relative to the piece held fixed.
  • the main axis of rotation A may be oriented in the longitudinal direction of the part 9, or obliquely with respect to this direction.
  • the rotating assembly 21 comprises a main plate 5 driven in rotation along the arrow Fl.
  • arms 4 which are themselves pivotally mounted on the main plate 5 along axes B parallel to the main axis A, so as to be able to pivot according to the arrow F2 in a plane perpendicular to the axis A.
  • each arm 4 is secured to a shaft 41 guided in rotation along the axis B in a bearing 54 of the plate 5.
  • the main plate 5 is rotated by a motor 50 on the shaft of which is mounted a pulley 51 connected to the plate 5 by a belt 52.
  • a secondary plate 6 is rotatably mounted, also along the main axis A, between the main plate and the frame 20.
  • the secondary plate 6 is driven by a motor 60 a pulley 61 and a belt 62.
  • the secondary plate 6 carries two cam assemblies 7, symmetrical about the axis A, on which support fingers constituted by rollers 43, 44 carried by the respective ends of levers 42 pivoting along the axes B and integral with the shafts 41.
  • the levers 42 are therefore secured to the arms 4 in pivoting along the axes B.
  • One of the rollers 43 is mounted at the end of a rigid arm 421 of the lever 42; the other roller 44 is mounted on a pivoting arm 422 of the lever 42.
  • Each set of cams 7 comprises a main cam 71 and a secondary cam 72.
  • the main cam 71 is arranged so that, when the secondary plate 6 rotates relative to the main plate 5 in the direction of the arrow F3 (see Figure 4) , the cam 71 pushes the roller 43, mounted on the rigid bottom 421 of the lever 42, radially outwardly, so as to pivot the lever, and therefore the arms 4, in the direction of the arrow F21, which direction also corresponds to a bringing of the tool 3 towards the axis main A.
  • the cam 72 has a profile whose radius varies inversely to that of the main cam 71 so that when the secondary plate 6 carrying the cams 7 rotates relative to the main plate 5 carrying the levers, the roller 44 rolling on the cam 72 keeps the roller 43 in contact with the cam 71.
  • the cam 72 pushes the roller 44 mounted on the pivoting bottom 422 of the lever 42, radially outwardly, so as to pivot the lever, and therefore the arms 4, in the opposite direction of the arrow F21, which direction also corresponds to a spacing of the tool 3 of the A.
  • the arm 422 which is pivotally mounted on the lever 42 is also connected to said lever 42 by a spring 423, so as to ensure that the two rollers 43 and 44 are always in contact with the respective cams 71, 72, and thus ensure that there is at no time games between levers and cams may leave a pivotal freedom to the tool arm 4.
  • a spring 423 so as to ensure that the two rollers 43 and 44 are always in contact with the respective cams 71, 72, and thus ensure that there is at no time games between levers and cams may leave a pivotal freedom to the tool arm 4.
  • the machining radius can be varied rapidly, and thus not only machining a part with any longitudinal profile, within the limit well sure of the maximum movement of the tools, but also machining a workpiece with a variable radius in the same section orthogonal to the main axis.
  • This latter possibility makes it possible in particular to machine parts of polygonal section, in particular square or rectangular, oval, and as well as parts of helical shape for example, or generally any part whose envelope, that is to say say the volume form, is defined by a cross section whose shape and area may vary in the longitudinal direction of the part.
  • the speed control of the motors 50 and 60 may be of any type adapted to ensure the greatest possible accuracy of the relative speed variations, in particular by electronic control.
  • stops 55 are fixed on the main plate, so as to block the movement of the cams.
  • FIG. 4b does not show the plate 5
  • the stops 55 are shown to illustrate their function of limiting the pivoting of the plate 6 with respect to the plate 5.
  • the rotational drive of the tools 3 is carried out as follows:
  • a motor 30 rotates, by a toothed belt 31, an inner ring 32 rotatable along the main axis A, the inner cylindrical wall defines the bore 22 allowing the passage of the workpiece.
  • the front end of the ring 32 comprises a toothed pulley groove 321 which receives a toothed belt 33 passing over one of the grooves of two pulleys with two grooves 34 rotatably mounted on the shafts 41 of pivoting axes B of the arms 4, as shown in FIG. 2.
  • the second grooves of the pulleys 34 are connected to the tools 3 by a belt 35.
  • the tools 3 are rotated by the motor 30 mounted in a fixed position on the frame 20, and their rotational speed can be adjusted directly by a speed controller of the motor 30.
  • a speed controller of the motor 30 of the motor 30.
  • part of the rotational drive of the tools results directly from the drive in rotation of the trays.
  • the motor 30, and therefore the inner ring 32 are immobilized in rotation, the rotation of the plate 5 causes a rotation of the pulleys with two grooves 34 on their axes B, and therefore a rotation of the tools.
  • the motor 20 makes it possible, by rotating the ring 32 in the opposite direction (arrow F4) of the rotation of the plate 5, as shown in FIG. 2, to increase the speed of rotation of the tools which would result from the only rotation of the plate 5, and the motor 20 also makes it possible to adjust the effective rotational speed of the tools, independently of that of the plate.
  • FIG. 5 diagrammatically represents another embodiment making it possible to control the relative angular offset of the plates 5 and 6.
  • the main plate 5 is rotated directly by a motor 59 carrying a drive pulley 51, via the belt 52.
  • the motor shaft 59 carries a second pulley 68, rotating the secondary plate 6 via the belt 69.
  • the reduction ratios of the drives of the two trays are the same to ensure steady state, the same speed of rotation of the two trays.
  • the drive belt 69 of the secondary plate 6 passes over a set of return pulleys comprising in particular two pulleys 81, 82 rotatably mounted on the same slide 83 whose sliding, transverse to the general direction of travel of the belt 69, is controlled by a cylinder 84.
  • the other pulleys 85 are fixed.
  • the displacement of the pulley 81 located on the stretched strand 691 of the belt 69 causes a variation in length of this stretched strand and therefore an angular offset between the two plates.
  • the variation in length of the stretched strand is compensated by an inverse length variation of the free strand 692, authorized and controlled by the displacement of the pulley 82, simultaneously with that of the pulley 81, the pulley 82 thus acting in the manner of a belt tensioner to compensate for variations in length of the stretched strand.
  • FIG. 6 schematically represents yet another embodiment making it possible to control the relative angular offset of the plates 5 and 6.
  • the device comprises drive means 90 for rotating the two plates 5, 6 by one and the same.
  • main motor 91 via a main drive shaft 92.
  • the main plate 5 is driven from this main shaft by a connection without sliding, for example by a toothed belt 931 passing on a pulley 932 integral with the shaft 92.
  • the speed of rotation of the plate 5 can therefore be adjusted by adjusting the speed of the motor 91.
  • the secondary plate 6 is driven from this main shaft 92 via an on-board auxiliary engine 94, the rotor 941 of which is rotatably connected to the shaft 92.
  • the stator housing 942 of the engine 94 carries a pulley 943 which drives the secondary plate 6 by a non-slip connection, for example by toothed belt 944.
  • the ratio of the diameters of the pulley 932 and the plate 5 is the same as that of the pulley 941 and the plate 6, so that the two plates 5 and 6 rotate at the same angular speed if the pulleys 932 and 943 also rotate at the same speed.
  • the motor 94 is powered by a regulator via a rotary electrical collector 945, which makes it possible to precisely control the speed and the angular position between the rotor and the stator.
  • the motor 90 In steady state, without variation of the machining radius, the motor 90 is not powered and its stator and its rotor are fixed in relative rotation. Both trays 5 and 6 are driven at exactly the same speed.
  • it is sufficient to control a rotation of the motor 94, which will cause an angular offset of the plates 5 and 6, and thus a pivoting of the tool arms as previously indicated.
  • the invention is not limited to the examples described above and encompasses all the variants of systems making it possible to ensure a controlled relative angular offset between the two plates 5 and 6 during the rotation thereof.
  • the rotation drive system of the tools can be modified.
  • the tool arms may also be curved, with a concavity oriented towards the main axis, so as to avoid any risk of contact between the arm and the workpiece, for example at the angles when machining parts having a square or rectangular section.
  • the arms 4 may also be made in two parts, adjustable in angular position relative to each other, for example along the axis B, so as to allow fine adjustment, with an accuracy of 0.05 mm, the radial position, relative to the axis A, of each tool, independently of one another. This makes it possible to ensure the equidistance of the tools relative to the main axis of the machine, and thus allows precise and identical machining by the two tools.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transmission Devices (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Turning (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

On usine la barre, selon un profil longitudinal et/ou circonférentiel souhaité, par des outils rotatifs (3) portés par un plateau principal (5) entraîné en rotation sur le châssis (20), les outils étant liés au plateau par des supports d'outils (4) mobiles radialement sur ce plateau, et on commande, en fonction dudit profil souhaité, un déplacement radial des supports d'outils en fonction de la position axiale de la barre par rapport au châssis et/ou de la position circonférentielle des outils par rapport à la barre. Pour commander ledit déplacement radial, on entraîne en rotation, coaxialement au plateau principal (5), un plateau secondaire (6) comportant des moyens d' actionnement (42) des supports d'outils (4), agencés de manière que la position des supports d'outils soit fonction de la position angulaire relative entre le plateau principal et le plateau secondaire et, pour ajuster le positionnement radial des outils en permanence lors de la rotation du plateau principal (5), on modifie ladite position angulaire relative.

Description

Procédé et dispositif de réalisation de pièces , notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation
La présente invention concerne un nouveau procédé et un nouveau dispositif de réalisation de pièces, notamment de pièces de révolution allongées et de section variable selon la direction longitudinale, par usinage d'une barre maintenue fixe en rotation.
Par pièces de révolution, on entendra par la suite toute pièce de section circulaire, mais aussi des pièces de section de forme générale elliptique ou même, pour certaines applications possibles, de forme générale polygonale, ou encore des pièces torsadées, etc.
Par usinage, on comprendra de manière générale tout procédé de façonnage par enlèvement de matière, que ce soit par des outils coupants, abrasifs, etc.
L'invention vise notamment, mais non exclusivement, la réalisation de pièces en bois allongées selon une direction axiale principale, en particulier axisymétriques , à partir de barres en bois longues. Elle peut aussi s'appliquer à la réalisation de pièces en d'autres matériaux, notamment en matières plastiques, synthétiques. L'invention s'applique particulièrement à la réalisation, à partir d'une barre longue, de pièces de petites dimensions en section par rapport à leur longueur. Elle s'applique aussi à la réalisation de pièces plus volumineuses par une transformation par usinage d'une barre de section typiquement sensiblement carrée, de longueur quelconque, droite ou cintrée, en des pièces de section axisymétrique : circulaire, ovale, carrée, éventuellement hélicoïdale, etc. de profil longitudinal variable et respectivement droite ou cintrée.
On connaît déjà des procédés, et des machines de fabrication, basées sur le principe de faire tourner un ou des outils autour de la pièce usinée qui reste fixe en rotation .
On connaît déjà, par WO2010/046570, un procédé et un dispositif de fabrication de pièces de révolution, ou de forme générale similaire, notamment de pièces en bois, allongées et de section variable selon la direction longitudinale, permettant d'usiner, à partir de barres droites ou cintrées de longueur quelconque maintenues fixes en rotation, des pièces de sections aussi bien circulaires qu' axisymétriques quelconques, et selon un profil longitudinal donné. Ce dispositif d'usinage permet entre autres l'usinage de pièces lourdes et volumineuses telles que barreaux profilés, poteaux poutres et analogues, obtenus à partir de barres en matériaux usinables, tels que du bois dur ou tendre, ou autres matériaux .
Le dispositif comporte un châssis fixe portant des moyens de guidage pour guider ladite barre en translation selon un axe principal et la maintenir fixe en rotation, et un ensemble tournant entraîné en rotation par rapport au châssis selon l'axe principal. L'ensemble tournant comporte un plateau et au moins deux outils rotatifs supportés par des bras pivotants par rapport au plateau dans un plan orthogonal à l'axe principal. Les outils sont entraînés en rotation selon des axes de rotation respectifs sensiblement parallèles à l'axe principal. Des moyens de commande de la position des bras pivotants sont prévus pour régler le positionnement radial des outils par rapport à l'axe principal. Ces moyens de commande comportent des moyens moteurs fixés sur le châssis et des moyens de transmission mécaniques assurant la liaison entre lesdits moyens moteurs et lesdits supports, de manière que la distance entre les axes des outils et l'axe principal soit ajustable en continu par commande desdits moyens moteurs fixes. Pour permettre d'ajuster en continu lors de l'usinage le positionnement radial des bras supportant les outils, alors que ces bras sont supportés sur un plateau tournant, le dispositif utilise un premier système qui transforme une rotation d'un moteur fixe sur le châssis en une translation axiale d'un plateau tournant, relié aux bras support d'outils par un système vis écrou réversible, qui permet de transformer ladite translation axiale en un pivotement des bras. La première transformation de la rotation du moteur en translation axiale est effectuée soit par un système pignon- crémaillère, soit par un système vis-écrou. Ce dispositif permet ainsi d'assurer une variation continue de la position radiale des outils lors de la mise en œuvre du dispositif, et donc lors de la rotation du plateau, sans besoin pour cela d'utiliser une motorisation embarquée sur le plateau à cet effet.
Un des avantages de ce dispositif est de permettre l'usinage de pièces de révolution, selon la définition qui en a été donnée en début de cette description, à partir de barres longues de section sensiblement carrée, ou rectangulaires, par des outils tournants selon un mouvement de type épicycloïdal autour de ladite barre, et cela par un dispositif ne nécessitant pas l'utilisation de moteurs embarqués sur des organes en rotation. De ce fait, l'ensemble tournant est globalement compact pour minimiser les efforts centrifuges et réduire ainsi le poids des structures en rotation, leur coût et les besoins d'énergie nécessaire à leur rotation. Une motorisation située principalement à l'extérieur de la structure tournante permet d'alléger la structure et, notamment dans le cas de vitesse de rotation importante du plateau, de réduire d'éventuelles vibrations indésirables .
Par contre, les mécanismes permettant d'assurer en continu le positionnement radial des outils par la commande d'un moteur fixe sur le châssis, sont mécaniquement complexes, nécessitant une double conversion de mouvement de rotation en mouvement translation puis de ce mouvement de translation à nouveau en une rotation pour faire pivoter les bras supports d'outil.
La présente invention a donc pour but de proposer un nouveau système permettant d'assurer en continu le positionnement radial des outils lors de la rotation du plateau, qui soit plus simple à réaliser, plus fiable, nécessitant moins d'organes mécaniques en mouvement.
Avec ces objectifs en vue, l'invention a pour objet un procédé de réalisation de pièces, notamment de pièces de révolution allongées et de section variable selon la direction longitudinale, par usinage d'une barre maintenue fixe en rotation, selon lequel on déplace relativement un châssis par rapport à ladite barre, ou inversement, selon une direction principale correspondant à la direction longitudinale de la barre, et on usine la barre, selon un profil longitudinal et circonférentiel souhaité, par des outils rotatifs portés par un plateau principal entraîné en rotation sur le châssis dans un plan transversal à ladite direction axiale, les outils étant liés au plateau par des supports d'outils mobiles radialement sur ce plateau, et on commande, en fonction dudit profil souhaité, un déplacement radial des supports d'outils en fonction de la position axiale de la barre par rapport au châssis et de la position circonférentielle des outils par rapport à la barre.
Selon l'invention le procédé est caractérisé en ce que, pour commander le dit déplacement radial, on entraîne en rotation, coaxialement au plateau principal, un plateau secondaire comportant des moyens d' actionnement des supports d'outils agencés de manière que la position des supports d'outils soit fonction de la position angulaire relative entre le plateau principal et le plateau secondaire et, pour ajuster le positionnement radial des outils en permanence lors de la rotation du plateau, on modifie ladite position angulaire relative.
En régime stationnaire, les deux plateaux sont fixes l'un par rapport à l'autre, et la position radiale des outils reste fixe, pour réaliser l'usinage de parties cylindriques de la pièce. Pour modifier cette position radiale pendant la rotation des plateaux, il suffit de modifier temporairement la vitesse d'un des plateaux, et donc le rapport des vitesses de rotation des deux plateaux, ce qui provoque un décalage angulaire entre ceux-ci, et donc la variation de la position radiale des outils .
Ainsi, pour adapter en continu lors de l'usinage la position des outils en fonction du profil en long souhaité de la pièce, il suffit de faire varier temporairement la vitesse du plateau secondaire, en accélération ou en décélération par rapport à celle du plateau principal, pour modifier le décalage angulaire entre les plateaux. Les plateaux sont conçus, comme on le verra par la suite de manière que la position radiale des supports d'outils, et donc des outils eux-mêmes, soit fonction de ce décalage angulaire entre les plateaux.
Selon un premier mode de réalisation, chaque plateau a son propre moteur d'entraînement en rotation, et la modification de la position angulaire relative des plateaux est réalisée par une commande de variation de vitesse d'au moins un des moteurs, par exemple par des moyens de commande de vitesse électroniques, qui permettent d'assurer des variations de vitesse très rapides et très précises. On pourra notamment utiliser à cette fin un calculateur pilotant les moteurs selon un programme adapté, prédéterminé en fonction des formes souhaitées des profils circonférentiels et longitudinaux.
Selon un deuxième mode de réalisation, la modification de la position angulaire relative des plateaux est réalisée par des moyens de commande mécanique faisant varier la longueur du brin tendu d'une transmission par courroie ou chaîne utilisée pour transmettre la rotation d'un moteur à au moins un des plateaux, plus particulièrement le plateau secondaire. Selon une disposition particulièrement avantageuse, on utilise un seul moteur pour entraîner les deux plateaux par des courroies différentes, et on fait varier la longueur du brin tendu d'une des courroies au moyen d'un tendeur à poulie, dont la position peut être commandé par un vérin ou tout autre actionneur adapté.
Selon encore un autre mode de réalisation, la modification de la position angulaire relative des plateaux est réalisée par un moteur dédié monté entre un élément d' entraînement du plateau principal et le plateau secondaire.
L'invention a aussi pour objet un dispositif, destiné à la mise en œuvre du procédé indiqué ci-dessus, qui comporte des moyens de déplacement en translation d'un châssis par rapport à la barre, ou inversement, selon une direction principale correspondant à la direction longitudinale de la barre, et un ensemble tournant entraîné en rotation par rapport au châssis selon un axe principal, l'ensemble tournant comportant un plateau principal et au moins deux outils rotatifs supportés par des supports mobiles guidés par rapport au plateau dans un plan orthogonal à l'axe principal, et le dispositif comportant des moyens de commande de la position des supports pour régler le positionnement radial des outils par rapport à l'axe principal.
Selon l'invention, le dispositif est caractérisé en ce que lesdits moyens de commande de la position des supports d'outils comportent
un plateau secondaire comprenant des moyens d' actionnement des supports d'outils agencés de manière que la position des supports d'outils soit fonction de la position angulaire relative entre le plateau principal et le plateau secondaire et
des moyens de commande de ladite position angulaire relative, agencés pour pouvoir faire varier ladite position angulaire relative pendant la rotation des plateaux.
Selon une disposition particulière, lesdits moyens d' actionnement comportent des cames principales et les supports d'outils sont liés à des doigts principaux appliqués sur les dites cames. Les cames ont une forme telle que leur rayon est croissant sur un angle prédéterminé correspondant au décalage angulaire maximum entre les plateaux, et l'amplitude de la variation de rayon est déterminée de manière à générer un déplacement radial des outils d'une amplitude maximale souhaitée.
Préférentiellement , les supports d'outils sont des bras montés pivotant sur le plateau principal et liés en rotation aux doigts en appui sur les cames.
Préférentiellement encore, chaque doigt principal est constitué par une extrémité d'un levier lié en pivotement à un bras de support d'outil, l'extrémité opposée du levier constituant un doigt secondaire en appui sur une came secondaire associée à la came principale sur laquelle le doigt principal est en appui, les formes et dimensions des cames principales et secondaires et celles du levier étant déterminées de manière que le doigt secondaire soit en contact avec la came secondaire lorsque le doigt principal est en contact avec la came principale, quelle que soit la position du point de contact sur la came.
Suite à une variation de la position angulaire relative entre les plateaux, le doigt principal est déplacé sur la came principale et provoque ainsi le pivotement du bras support d'outil. Plus précisément, lorsque la position angulaire relative entre les plateaux varie dans le sens conduisant à ce que le doigt principal se déplace sur la came vers une position de rayon croissant, l'outil est déplacé vers l'axe de l'ensemble tournant. En conséquence, c'est la came principale qui supporte l'appui du doigt principal correspondant à l'effort de plongée de l'outil lors de l'usinage. La came et le doigt secondaires assurent le déplacement radial de l'outil dans le sens inverse, c'est-à-dire vers l'extérieur, lorsque l'on fait varier la position angulaire relative des plateaux dans le sens inverse, le doigt principal se déplaçant sur la came principale vers une position de rayon décroissant. Le doigt et la came secondaires permettent aussi d'assurer un rattrapage de jeu entre les doigts et les cames ; à cet effet, le doigt secondaire est monté de manière élastique sur l'extrémité du levier, par exemple par l'intermédiaire d'une biellette pivotante et d'un ressort de rappel entre le levier et ladite biellette. Bien que ce soit les doigts secondaires qui assurent le déplacement radial des outils dans le sens d'un éloignement par rapport à l'axe principal, c'est le contact des doigts principaux sur les cames principales qui détermine la position radiale des dits outils. Les doigts seront avantageusement réalisés sous forme de galets montés tournant sur le levier.
L'entraînement en rotation des outils est préférentiellement assuré par un moteur fixe sur le châssis et transmettant sa rotation par l'intermédiaire d'une bague tournante, celle-ci entraînant à son tour par une courroie des poulies à deux gorges montées en rotation sur les axes de pivotement des bras support d'outils, chacune des dites poulies entraînant en rotation un outil par une autre courroie s' étendant le long du bras support d'outil.
Préférentiellement les plateaux sont entraînés en rotation par un ou des moteurs auxquels ils sont reliés par des poulies et courroies crantées ou des chaînes de manière à éviter tout glissement de ces moyens de transmission entre moteurs et plateaux.
Selon un premier mode de réalisation, chaque plateau a son propre moteur, et des moyens de réglage de la vitesse des moteurs sont prévus pour pouvoir faire varier momentanément la vitesse d'au moins un des moteurs de manière à générer une variation du décalage angulaire entre les plateaux.
Selon un deuxième mode de réalisation, un des plateaux, de préférence le plateau secondaire portant les cames, est entraîné en rotation par une courroie passant sur une première poulie de renvoi mobile en translation sur laquelle passe le brin tendu de la courroie, c'est-à- dire le brin transmettant l'effort de rotation, ladite première poulie étant déplaçable de manière à pouvoir faire varier la longueur du brin tendu. Une variation de longueur de ce brin tendu au cours de l'entraînement en rotation, à vitesse constante du moteur, génère une variation temporaire de la vitesse du plateau entraîné, et donc un décalage angulaire relatif par rapport à sa position antérieure, ce décalage permettant de créer le décalage angulaire relatif entre les plateaux, si par exemple l'autre plateau est maintenu à vitesse de rotation constante.
Préférentiellement alors, les deux plateaux sont entraînés par le même moteur, relié par une courroie sans glissement au plateau principal et qui donne donc la vitesse de rotation de l'ensemble tournant, et le plateau secondaire est relié au même moteur par une courroie passant sur la première poulie de renvoi. Pour générer le décalage angulaire entre les deux plateaux, il suffit donc de déplacer la poulie de renvoi, par exemple au moyen d'un vérin piloté en fonction du profil de la pièce usinée désirée. Pour compenser les variations de longueur du brin tendu lors du déplacement de la première poulie de renvoi, une deuxième poulie de renvoi agissant comme tendeur est montée sur le brin libre de la courroie.
Selon encore un autre mode de réalisation, le dispositif comporte des moyens d'entraînement pour entraîner en rotation les deux plateaux par un même moteur principal, lesdits moyens d'entraînement comportant un moteur annexe monté entre le moteur principal et le plateau secondaire, et des moyens de commande du moteur annexe pour générer une variation du décalage angulaire entre les plateaux. Le moteur annexe a par exemple son arbre lié en rotation avec un arbre d'entraînement du moteur principal et son stator relié au plateau secondaire par une courroie crantée. Lorsque l'arbre du moteur annexe est immobile en rotation par rapport à son stator, les deux plateaux sont fixes en rotation l'un par rapport à l'autre. Pour obtenir un décalage angulaire entre les plateaux, il suffit de commander le moteur annexe de manière à provoquer une rotation relative entre son rotor et son stator. Le moteur annexe peut être un moteur pas à pas ou tout autre organe moteur embarqué sur un arbre d' entraînement du plateau principal et apte à, alternativement, solidariser en rotation cet arbre d'entraînement avec le plateau secondaire ou créer un décalage angulaire contrôlé entre ceux-ci .
D'autres caractéristiques et avantages apparaîtront dans la description qui va être faite d'une machine conforme à l'invention, ainsi que de sa mise en œuvre.
On se reportera aux dessins annexés dans lesquels : la figure 1 représente une machine d'usinage pourvue d'un dispositif conforme à l'invention,
la figure 2 est une représentation simplifiée montrant en particulier de l'entraînement en rotation des outils , - la figure 3 montre l'arrangement des moteurs sur le châssis du dispositif,
- la figure 4a est une vue en perspective montrant l'ensemble tournant avec les deux plateaux, les bras supports d'outils n'étant pas représentés,
- la figure 4b est une vue en perspective similaire à celle de la figue 4a mais en ayant enlevé en plus le plateau principal pour permettre de voir plus clairement le système de cames et leviers commandant le pivotement des bras supports d'outils,
- la figure 5 est une vue schématique illustrant le principe du second mode de réalisation,
- la figure 6 est une vue schématique illustrant le principe du troisième mode de réalisation.
La machine d'usinage représentée figure 1 comporte un portique 1 sur lequel est monté le dispositif d'usinage 2, qui comporte un châssis 20 sur lequel est monté un ensemble tournant 21 doté d'un alésage 22 dans lequel la pièce usinée 9 passe lors de son usinage.
Pour plus de détails sur le principe de l'usinage de pièces de révolution allongées et de section variable selon la direction longitudinale, par usinage d'une barre maintenue fixe en rotation, on pourra se reporter au document précité WO2010/046570.
Il est seulement rappelé sommairement ici que l'ensemble tournant 21 porte des outils d'usinage 3 entraînés en rotation et mobiles radialement, de sorte que la distance entre l'axe de rotation de l'ensemble tournant et les outils peut être modifiée pendant la rotation dudit ensemble tournant. On peut ainsi faire varier la section de la pièce usinée 9, lorsque celle-ci est déplacée relativement par rapport au portique selon la direction de la flèche F, orientée sensiblement selon l'axe principal A de rotation de l'ensemble tournant. On notera que la pièce peut être déplacée par rapport au portique restant fixe, ou le portique déplacé, selon la flèche F', par rapport à la pièce maintenue fixe. L'axe principal de rotation A peut être orienté selon la direction longitudinale de la pièce 9, ou obliquement par rapport à cette direction.
L'ensemble tournant 21 comporte un plateau principal 5 entraîné en rotation selon la flèche Fl . Pour assurer le déplacement radial des outils 3, ceux-ci sont montés sur des bras 4 qui sont eux-mêmes montés pivotants sur le plateau principal 5 selon des axes B parallèles à l'axe principal A, de manière à pouvoir pivoter selon la flèche F2 dans un plan perpendiculaire à l'axe A. Pour cela, chaque bras 4 est solidaire d'un arbre 41 guidé en rotation selon l'axe B dans un palier 54 du plateau 5. Le plateau principal 5 est entraîné en rotation par un moteur 50 sur l'arbre duquel est montée une poulie 51 reliée au plateau 5 par une courroie 52.
Un plateau secondaire 6 est monté en rotation, également selon l'axe principal A, entre le plateau principal et le châssis 20. Le plateau secondaire 6 est entraîné par un moteur 60 une poulie 61 et une courroie 62. Le plateau secondaire 6 porte deux ensembles de cames 7, symétriques par rapport à l'axe A, sur lesquelles appuient des doigts constitués par des galets 43, 44 portés par les extrémités respectives de leviers 42 pivotant selon les axes B et solidaires des arbres 41. Les leviers 42 sont donc solidaires des bras 4 en pivotement selon les axes B. Un des galets 43 est monté à l'extrémité d'un bras rigide 421 du levier 42 ; l'autre galet 44 est monté sur un bras pivotant 422 du levier 42.
Chaque ensemble de cames 7 comporte une came principale 71 et une came secondaire 72. La came principale 71 est agencée de manière que, lorsque le plateau secondaire 6 tourne par rapport au plateau principal 5 dans le sens de la flèche F3 (voir figure 4), la came 71 pousse le galet 43, monté sur le bas rigide 421 du levier 42, radialement vers l'extérieur, de manière à faire pivoter le levier, et donc les bras 4, dans le sens de la flèche F21, sens qui par ailleurs correspond à un rapprochement de l'outil 3 vers l'axe principal A. La came 72 a un profil dont le rayon varie inversement à celui de la came principale 71 de manière que, lorsque le plateau secondaire 6 portant les cames 7 tourne par rapport au plateau principal 5 portant les leviers, le galet 44 roulant sur la came 72 maintienne le galet 43 en contact avec la came 71. Ainsi, lorsque le plateau secondaire 6 tourne par rapport au plateau principal 5 dans le sens inverse de la flèche F3, la came 72 pousse le galet 44, monté sur le bas pivotant 422 du levier 42, radialement vers l'extérieur, de manière à faire pivoter le levier, et donc les bras 4, dans le sens inverse de la flèche F21, sens qui par ailleurs correspond à un écartement de l'outil 3 de l'axe principal A. De plus, le bras 422 qui est monté pivotant sur le levier 42 est également relié audit levier 42 par un ressort 423, de manière à assurer que les deux galets 43 et 44 sont toujours en contact avec les cames respectives 71, 72, et garantir ainsi qu'il n'y ait à aucun moment des jeux entre leviers et cames susceptibles de laisser une liberté de pivotement au bras porte outil 4. En conséquence, il y a toujours un positionnement précis de l'outil 3 en fonction de la position du galet 43 sur la came principale 71, et donc en fonction de la position angulaire relative des deux plateaux 5 et 6.
Ainsi compte tenu du sens de rotation Fl de l'ensemble tournant 21, et donc des deux plateaux 5 et 6, si le plateau secondaire 6 qui porte les cames est temporairement ralenti, un décalage angulaire relatif entre les deux plateaux est créé, dans le sens de la flèche F3, provoquant donc un pivotement des leviers 42 et des bras 4 dans le sens des flèches F21, et une avance de l'outil 3 vers l'axe A, et donc une réduction du rayon de la pièce usinée. Inversement si on accélère momentanément le plateau secondaire 6 alors que la vitesse de rotation du plateau principal 5 reste fixe, les leviers 42 et les bras 4 vont pivoter en sens inverse de la flèche F21, conduisant à une augmentation de rayon de la pièce usinée. On comprendra donc que, par une simple commande des vitesses de rotation des moteurs 50 et/ou 60, on peut faire varier rapidement le rayon d'usinage, et donc non seulement usiner une pièce avec un profil en long quelconque, dans la limite bien sûr du débattement maximal des outils, mais aussi usiner une pièce avec un rayon variable dans une même section orthogonale à l'axe principal. Cette dernière possibilité permet en particulier d'usiner des pièces de section polygonale, notamment carrée ou rectangulaire, ovale, et ainsi que des pièces de forme hélicoïdales par exemple, ou de manière générale toute pièce dont l'enveloppe, c'est-à-dire la forme volumique, est définie par une section transversale dont la forme et l'aire peuvent varier selon la direction longitudinale de la pièce.
La commande de vitesse des moteurs 50 et 60 pourra être de tout type adapté pour assurer la plus grande précision possible des variations de vitesses relatives, en particulier par commande électronique.
Par sécurité, pour éviter tout risque d'un décalage angulaire relatif trop important entre les plateaux, des butées 55 sont fixées sur le plateau principal, de manière à bloquer le débattement des cames. Bien que la figure 4b ne montre pas le plateau 5, on y a représenté les butées 55 pour illustrer leur fonction de limitation du pivotement du plateau 6 par rapport au plateau 5.
L'entraînement en rotation des outils 3 est réalisé de la manière suivante :
Du côté arrière du dispositif, c'est-à-dire du côté opposé à celui où se trouvent les outils, et visible figure 3, un moteur 30 entraîne en rotation, par une courroie crantée 31, une bague intérieure 32 rotative selon l'axe principal A, dont la paroi cylindrique interne définit l'alésage 22 permettant le passage de la pièce usinée. L'extrémité frontale de la bague 32 comporte une gorge de poulie crantée 321 qui reçoit une courroie crantée 33 passant sur une des gorges de deux poulies à deux gorges 34 montées en rotation sur les arbres 41 d'axes B de pivotement des bras 4, comme on le voit figure 2. Les deuxièmes gorges des poulies 34 sont reliées aux outils 3 par une courroie 35. Ainsi, indépendamment de la rotation de l'ensemble tournant 2 et de la position des bras 4, les outils 3 sont entraînés en rotation par le moteur 30 monté en position fixe sur le châssis 20, et leur vitesse de rotation peut être ajustée directement par un régulateur de vitesse du moteur 30. On notera cependant qu'une part de l'entraînement en rotation des outils résulte directement de l'entraînement en rotation des plateaux. En effet, si le moteur 30, et donc la bague intérieure 32, sont immobilisés en rotation, la rotation du plateau 5 provoque une rotation des poulies à deux gorges 34 sur leurs axes B, et donc une rotation des outils. En fait le moteur 20 permet, par un entraînement en rotation de la bague 32 dans le sens inverse (flèche F4) de la rotation du plateau 5, comme montré figure 2, d'augmenter la vitesse de rotation des outils qui résulterait de la seule rotation du plateau 5, et le moteur 20 permet aussi d'ajuster la vitesse de rotation effective des outils, indépendamment de celle du plateau.
La figure 5 représente schématiquement un autre mode de réalisation permettant de commander le décalage angulaire relatif des plateaux 5 et 6. Dans ce cas, le plateau principal 5 est entraîné en rotation directement par un moteur 59 portant une poulie d'entraînement 51, via la courroie 52. L'arbre du moteur 59 porte une deuxième poulie 68, entraînant en rotation le plateau secondaire 6 via la courroie 69. Les rapports de réduction des entraînements des deux plateaux sont les mêmes pour assurer en régime établi, la même vitesse de rotation des deux plateaux. La courroie 69 d'entraînement du plateau secondaire 6 passe sur un jeu de poulies de renvoi comportant notamment deux poulies 81, 82 montées tournantes sur un même coulisseau 83 dont le coulissement , transversal à la direction générale de défilement de la courroie 69, est commandé par un vérin 84. Les autres poulies 85 sont fixes. Le déplacement de la poulie 81 située sur le brin tendu 691 de la courroie 69 provoque une variation de longueur de ce brin tendu et donc un décalage angulaire entre les deux plateaux. La variation de longueur du brin tendu est compensée par une variation de longueur inverse du brin libre 692, autorisée et contrôlée par le déplacement de la poulie 82, simultanément à celui de la poulie 81, la poulie 82 agissant donc à la manière d'un tendeur de courroie pour compenser les variations de longueur du brin tendu.
La figure 6 représente schématiquement encore un autre mode de réalisation permettant de commander le décalage angulaire relatif des plateaux 5 et 6. Dans ce cas, le dispositif comporte des moyens d'entraînement 90 pour entraîner en rotation les deux plateaux 5, 6 par un même moteur principal 91, via un arbre d'entraînement principal 92. Le plateau principal 5 est entraîné à partir de cet arbre principal par une liaison sans glissement, par exemple par une courroie crantée 931 passant sur une poulie 932 solidaire de l'arbre 92. La vitesse de rotation du plateau 5 peut donc être ajustée par réglage de la vitesse du moteur 91.
Le plateau secondaire 6 est entraîné à partir de cet arbre principal 92 par l'intermédiaire d'un moteur annexe embarqué 94, dont le rotor 941 est lié en rotation à l'arbre 92. Le boîtier stator 942 du moteur 94 porte une poulie 943 qui entraîne le plateau secondaire 6 par une liaison sans glissement, par exemple par courroie crantée 944. Le rapport des diamètres de la poulie 932 et du plateau 5 est le même que celui de la poulie 941 et du plateau 6, de sorte que les deux plateaux 5 et 6 tournent à la même vitesse angulaire si les poulies 932 et 943 tournent aussi à la même vitesse.
Le moteur 94 est alimenté par un régulateur via un collecteur électrique rotatif 945, permettant de commander précisément la vitesse et la position angulaire entre rotor et stator. En régime stable, sans variation du rayon d'usinage, le moteur 90 n'est pas alimenté et son stator et son rotor sont fixes en rotation relative. Les deux plateaux 5 et 6 sont donc entraînés exactement à la même vitesse. Pour commander une variation du rayon d'usinage, il suffit de commander une rotation du moteur 94, qui va provoquer un décalage angulaire des plateaux 5 et 6, et donc un pivotement des bras porte outils comme indiqué précédemment.
On pourra aussi, de manière équivalente, lier le stator du moteur annexe 94 à l'arbre d'entraînement principal 92, et le rotor à la poulie 943. On pourra aussi remplacer le moteur 94 par tout moyen de commande équivalent permettant de générer un décalage angulaire entre l'arbre d'entraînement principal 92 et la poulie 943.
L'invention n'est pas limitée aux exemples précédemment décrits et englobe toutes les variantes de systèmes permettant d'assurer un décalage angulaire relatif contrôlé entre les deux plateaux 5 et 6, pendant la rotation de ceux-ci. Egalement, le système d'entraînement en rotation des outils pourra être modifié. En particulier, il serait possible d'assurer la rotation des outils par des moteurs embarqués sur le plateau 5 ou sur les bras 4. Les bras porte-outils pourront aussi être incurvés, avec une concavité orientée vers l'axe principal, de manière à éviter tout risque de contact entre le bras et la pièce usinée, par exemple au niveau des angles lors de l'usinage de pièces ayant une section carrée ou rectangulaire. On pourra aussi utiliser une ou des poulies de renvoi intermédiaires pour assurer la transmission du mouvement de rotation depuis la poulie 34 montée sur l'axe de pivotement des bras jusqu'à l'outil rotatif, pour que la courroie 35 suive la courbure du bras, et/ou pour faire varier le rapport de vitesse entre la poulie 34 et l'outil 3.
Les bras 4 pourront aussi être réalisés en deux parties, ajustables en position angulaire l'une par rapport à l'autre, par exemple selon l'axe B, de manière à permettre un réglage fin, avec une précision de 0,05 mm, de la position radiale, par rapport à l'axe A, de chaque outil, indépendamment l'un de l'autre. Ceci permet d'assurer 1 ' équidistance des outils par rapport à l'axe principal de la machine, et donc permet un usinage précis et identique par les deux outils.

Claims

REVENDICATIONS
1. Procédé de réalisation de pièces, notamment de pièces de révolution allongées et de section variable selon la direction longitudinale, par usinage d'une barre (9) maintenue fixe en rotation, selon lequel on déplace relativement un châssis (20) par rapport à ladite barre, ou inversement, selon une direction principale correspondant à la direction longitudinale de la barre, et on usine la barre, selon un profil longitudinal et circonférentiel souhaité, par des outils rotatifs (3) portés par un plateau principal (5) entraîné en rotation sur le châssis (20), les outils étant liés au plateau par des supports d'outils (4) mobiles radialement sur ce plateau, et on commande, en fonction dudit profil souhaité, un déplacement radial des supports d'outils en fonction de la position axiale de la barre par rapport au châssis et de la position circonférentielle des outils par rapport à la barre,
caractérisé en ce que, pour commander le dit déplacement radial, on entraîne en rotation, coaxialement au plateau principal (5), un plateau secondaire (6) comportant des moyens d' actionnement (42) des supports d'outils (4), agencés de manière que la position des supports d'outils soit fonction de la position angulaire relative entre le plateau principal et le plateau secondaire et, pour ajuster le positionnement radial des outils en permanence lors de la rotation du plateau principal (5) , on modifie ladite position angulaire relative .
2. Procédé selon la revendication 1, caractérisé en ce que chaque plateau (5, 6) a son propre moteur d'entraînement en rotation (50, 60), et la modification de la position angulaire relative des plateaux est réalisée par une commande de variation de vitesse d'au moins un des moteurs.
3. Procédé selon la revendication 1, caractérisé en ce que la modification de la position angulaire relative des plateaux (5, 6) est réalisée par des moyens de commande mécanique (81, 84) faisant varier la longueur du brin tendu (691) d'une transmission par courroie (69) ou chaîne utilisée pour transmettre la rotation d'un moteur (59) à au moins un des plateaux (6) .
4. Procédé selon la revendication 1, caractérisé en ce que la modification de la position angulaire relative des plateaux (5, 6) est réalisée par un moteur dédié monté entre un élément d'entraînement du plateau principal et le plateau secondaire.
5. Dispositif de réalisation de pièces notamment de pièces de révolution allongées et de section variable selon la direction longitudinale, par usinage d'une barre (9) maintenue fixe en rotation, comportant des moyens (1) de déplacement en translation d'un châssis (20) par rapport à la barre, ou inversement, selon une direction principale correspondant à la direction longitudinale de la barre, un ensemble tournant (21) entraîné en rotation par rapport au châssis selon un axe principal (A) , l'ensemble tournant comportant un plateau principal (5) et au moins deux outils (3) rotatifs supportés par des supports mobiles (4) guidés par rapport au plateau dans un plan orthogonal à l'axe principal, et le dispositif comportant des moyens de commande de la position des supports pour régler le positionnement radial des outils par rapport à l'axe principal,
caractérisé en ce que lesdits moyens de commande de la position des supports d'outils comportent - un plateau secondaire (6) comprenant des moyens d' actionnement (7) des supports d'outils, agencés de manière que la position des supports d'outils soit fonction de la position angulaire relative entre le plateau principal (5) et le plateau secondaire (6) et
des moyens de commande de ladite position angulaire relative, agencés pour pouvoir faire varier ladite position angulaire relative pendant la rotation des plateaux.
6. Dispositif selon la revendication 5, caractérisé en ce que lesdits moyens d' actionnement comportent des cames principales (71) et les supports d'outils (4) sont liés à des doigts principaux (43) appliqués sur les dites cames .
7. Dispositif selon la revendication 6, caractérisé en ce que les supports d'outils sont des bras (4) montés pivotants sur le plateau principal (5) et liés en rotation aux doigts (43) en appui sur les cames (71) .
8. Dispositif selon la revendication 7, caractérisé en ce que chaque doigt principal est constitué par une extrémité (43) d'un levier (42) lié en pivotement à un bras (4) de support d'outil.
9. Dispositif selon la revendication 8, caractérisé en ce que l'extrémité du levier opposée au doigt principal (43) constitue un doigt secondaire (44) en appui sur une came secondaire (71) associée à la came principale, les formes et dimensions des cames principales et secondaires et celles du levier (42) étant déterminées de manière que le doigt secondaire (44) soit en contact avec la came secondaire (72) lorsque le doigt principal (43) , est en contact avec la came principale (71), quelle que soit la position du point de contact du doigt principal sur la came.
10. Dispositif selon la revendication 9, caractérisé en ce que le doigt secondaire (44) est monté de manière élastique sur l'extrémité du levier (42) .
11. Dispositif selon la revendication 7, caractérisé en ce que l'entraînement en rotation des outils (3) est assuré par un moteur (30) fixe sur le châssis et transmettant sa rotation par l'intermédiaire d'une bague tournante (32), celle-ci entraînant à son tour, par une courroie (31), des poulies (34) à deux gorges montées en rotation sur les axes de pivotement (B) des bras (4) support d'outils, chacune des dites poulies entraînant en rotation un outil par une autre courroie (35) s' étendant le long du bras support d'outil.
12. Dispositif selon la revendication 5, caractérisé en ce que chaque plateau (5, 6) a son propre moteur (50,
60), et des moyens de réglage de la vitesse des moteurs sont prévus pour pouvoir faire varier momentanément la vitesse d'au moins un des moteurs de manière à générer une variation du décalage angulaire entre les plateaux.
13. Dispositif selon la revendication 5, caractérisé en ce qu'un des plateaux (6) est entraîné en rotation par une courroie (69) passant sur une première poulie de renvoi (81) mobile en translation sur laquelle passe le brin tendu (691) de la courroie, ladite première poulie étant déplaçable de manière à pouvoir faire varier la longueur du brin tendu, de manière à générer une variation du décalage angulaire entre les plateaux.
14. Dispositif selon la revendication 13, caractérisé en ce que les deux plateaux (5, 6) sont entraînés par le même moteur (59) , relié par une courroie (52) sans glissement au plateau principal (5), et le plateau secondaire (6) est relié au même moteur par une courroie (69) passant sur la première poulie de renvoi (81) .
15. Dispositif selon la revendication 5, caractérisé en ce qu'il comporte des moyens d'entraînement pour entraîner en rotation les deux plateaux (5, 6) par un même moteur principal, lesdits moyens d'entraînement comportant un moteur annexe monté entre le moteur principal et le plateau secondaire, et des moyens de commande du moteur annexe pour générer une variation du décalage angulaire entre les plateaux.
PCT/FR2012/050538 2011-03-18 2012-03-15 Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation WO2012127153A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12714781.7A EP2686149B1 (fr) 2011-03-18 2012-03-15 Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation
CA2829077A CA2829077A1 (fr) 2011-03-18 2012-03-15 Procede et dispositif de realisation de pieces, notamment de pieces de revolution allongees, par usinage d'une barre maintenue fixe en rotation
US14/005,355 US20140000762A1 (en) 2011-03-18 2012-03-15 Process and Device for Producing Parts, Notably Elongated Revolving Parts, by Machining a Bar Held Fixed in Rotation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152237 2011-03-18
FR1152237A FR2972670B1 (fr) 2011-03-18 2011-03-18 Procede et dispositif de realisation de pieces, notamment de pieces de revolution allongees, par usinage d'une barre maintenue fixe en rotation

Publications (2)

Publication Number Publication Date
WO2012127153A2 true WO2012127153A2 (fr) 2012-09-27
WO2012127153A3 WO2012127153A3 (fr) 2012-12-20

Family

ID=45974404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050538 WO2012127153A2 (fr) 2011-03-18 2012-03-15 Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation

Country Status (5)

Country Link
US (1) US20140000762A1 (fr)
EP (1) EP2686149B1 (fr)
CA (1) CA2829077A1 (fr)
FR (1) FR2972670B1 (fr)
WO (1) WO2012127153A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586748B1 (ko) 2014-03-04 2016-01-19 주식회사 포스코 커버장치
GB201501308D0 (fr) * 2015-01-27 2015-03-11 Knauf Insulation And Knauf Insulation Llc And Knauf Insulation Gmbh And Knauf Insulation Doo Skofja
EP3275581A1 (fr) * 2016-07-26 2018-01-31 Aisapack Holding SA Couteau rotatif pour machine de production d'emballages et procede utilisant ledit couteau
RU184234U1 (ru) * 2017-11-17 2018-10-18 Евгений Юрьевич Чирков Механизм фиксации материала в заданном размере
CN108422523B (zh) * 2018-04-25 2019-07-05 浦江会亿智能科技有限公司 一种自动化的火柴制造设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046570A1 (fr) 2008-10-23 2010-04-29 Société Française De Fabrication D'articles De Peche Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre fixe en rotation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115167A (en) * 1960-03-22 1963-12-24 Valo Veikko Lennart Debarking machine
DE9209221U1 (fr) * 1992-07-09 1992-10-01 Nowey, Werner, 8900 Augsburg, De
US20050121106A1 (en) * 2002-02-20 2005-06-09 Rastatter Daniel J. Apparatus for surfacing flitch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046570A1 (fr) 2008-10-23 2010-04-29 Société Française De Fabrication D'articles De Peche Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre fixe en rotation

Also Published As

Publication number Publication date
CA2829077A1 (fr) 2012-09-27
FR2972670A1 (fr) 2012-09-21
EP2686149A2 (fr) 2014-01-22
US20140000762A1 (en) 2014-01-02
EP2686149B1 (fr) 2015-10-21
WO2012127153A3 (fr) 2012-12-20
FR2972670B1 (fr) 2013-03-22

Similar Documents

Publication Publication Date Title
EP2686149B1 (fr) Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation
CA2557717C (fr) Bielle a longueur evolutive en fonctionnement
EP2032294B1 (fr) Roulement a bague, a deplacement axial et outillage de faconnage equipe d'un tel roulement
EP0371896B1 (fr) Dispositif de marquage par micro-percussion
EP0192584B1 (fr) Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution
EP1370388B1 (fr) Dispositif d'entrainement et outil de serrage equipe d'un tel dispositif
CH641391A5 (fr) Machine-outil.
EP3003616B1 (fr) Dispositif d'usinage vibratoire
EP3209458A1 (fr) Dispositif d'usinage vibratoire ameliore
EP2361173B1 (fr) Dispositif de fabrication de pièces de révolution allongées
WO2014125182A1 (fr) Systeme vibratoire
WO2018020379A1 (fr) Couteau rotatif pour machine de production d'emballages et procede utilisant ledit couteau
FR2971176A1 (fr) Dispositif de soudure par ultrasons
WO2018167021A1 (fr) Laminoir multimandrin, méthode de réglage de la position des mandrins d'un tel laminoir et procédé de laminage en continu au moyen d'un tel laminoir
EP1670621A1 (fr) Procede de coupe d'un tube en ligne et dispositif de coupe mettant en oeuvre ledit procede
FR2495992A1 (fr) Scie perfectionnee pour operations de sciage commandee et controlee
FR2696961A1 (fr) Procédé et appareil pour former par tournage une entaille concave dans une pièce, telle qu'une fiche de connexion souple et connexion souple obtenue à l'aide de ce procédé.
FR3035057A1 (fr) Mecanisme de serrage a cames et colonne de direction associee
FR2722553A1 (fr) Dispositif a cames pour la transformation a'un mouvement de rotation en un mouvement de translation rectiligne d'amplitude variable
WO2023047383A1 (fr) Rotor a pales orientables
FR2679817A1 (fr) Dispositif de decoupe d'un pain de savon.
FR2915785A1 (fr) Actionneur a transfert d'effort eleve.
FR2571990A1 (fr) Procede et machine pour la fabrication de corps de revolution comportant des rainures formees par empreinte
BE355398A (fr)
FR2749199A1 (fr) Machine de cambrage de fils metalliques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12714781

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2829077

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012714781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14005355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE