WO2012126414A2 - 一种波长通道光性能监测的方法、系统和节点设备 - Google Patents

一种波长通道光性能监测的方法、系统和节点设备 Download PDF

Info

Publication number
WO2012126414A2
WO2012126414A2 PCT/CN2012/074969 CN2012074969W WO2012126414A2 WO 2012126414 A2 WO2012126414 A2 WO 2012126414A2 CN 2012074969 W CN2012074969 W CN 2012074969W WO 2012126414 A2 WO2012126414 A2 WO 2012126414A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
node
wavelength
node device
Prior art date
Application number
PCT/CN2012/074969
Other languages
English (en)
French (fr)
Other versions
WO2012126414A3 (zh
Inventor
周恩波
张森
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000574.8A priority Critical patent/CN102763350B/zh
Priority to ES12761234.9T priority patent/ES2625073T3/es
Priority to PCT/CN2012/074969 priority patent/WO2012126414A2/zh
Priority to EP12761234.9A priority patent/EP2827517B1/en
Publication of WO2012126414A2 publication Critical patent/WO2012126414A2/zh
Publication of WO2012126414A3 publication Critical patent/WO2012126414A3/zh
Priority to US14/521,956 priority patent/US9531470B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing

Definitions

  • the present invention relates to network communication technologies, and in particular, to a method, system and node device for monitoring optical channel optical performance. Background technique
  • the WDM network constitutes the basic physical layer of the communication network.
  • the optical performance of the wavelength channel is particularly important in the design and maintenance of the WDM network.
  • the optical performance monitoring can be performed directly on the node.
  • optical performance monitoring is also required to ensure that the performance of the service can be met after the wavelength channel is established.
  • an optical signal is provided for an unbuilt wavelength channel by an external light source, a virtual wavelength channel is constructed, and then optical performance monitoring is performed on the node.
  • the external light source brings complexity and additional monitoring cost, and the working parameters of the external light source need to be manually adjusted, the reliability is low, and the dynamic monitoring of the optical performance cannot be realized.
  • Embodiments of the present invention provide a method, system, and node device for monitoring optical performance of a wavelength channel, which solves the problem of high cost and dynamic monitoring of optical performance in the prior art.
  • An aspect of the present invention provides a method for monitoring optical performance of a wavelength channel, including:
  • the first node receives the optical signal at the working wavelength of the undefined wavelength channel; the optical signal is obtained by the second node amplifying the adjusted noise signal by the second tunable optical attenuator; and the adjusted noise signal is Obtaining, by the second tunable optical attenuator, the optical power of the noise signal at the working wavelength; the noise signal at the working wavelength is the second node An tunable bandpass optical filter is filtered out in the amplified spontaneous emission signal; the amplified spontaneous emission signal is generated by the second node through the optical amplifier;
  • the first node obtains optical performance of the unbuilt wavelength channel by monitoring the optical signal at the receiving end.
  • Another aspect of the present invention provides a method for monitoring optical performance of a wavelength channel, comprising: a first node receiving an optical signal at an operating wavelength of an uncreated wavelength channel; and the optical signal being a second node amplifying the second optical amplifier Obtaining an adjusted noise signal of the dimming attenuator; the adjusted noise signal is obtained by the second node adjusting an optical power of the noise signal at the working wavelength by the second dimming attenuator; The noise signal at the operating wavelength is filtered by the second node through the tunable bandpass optical filter in the amplified spontaneous emission signal; the amplified spontaneous emission signal is generated by the second node through the optical amplifier;
  • the first node obtains optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • a still further aspect of the present invention provides a method for monitoring optical performance of a wavelength channel, comprising: generating, by an optical amplifier, an amplified spontaneous emission signal;
  • the second node filters out a noise signal at an operating wavelength of an uncreated wavelength channel in the amplified spontaneous emission signal through an adjustable bandpass optical filter;
  • the second node adjusts the optical power of the noise signal at the working wavelength by the second tunable optical attenuator until the condition is met, the condition includes: the monitoring port of the optical amplifier detects the noise at the working wavelength Signal
  • the second node amplifies the adjusted noise of the second tunable attenuator by using the optical amplifier Acoustic signal, obtaining an optical signal at the working wavelength;
  • the second node adjusts optical power of the optical signal by using a third tunable optical attenuator until the transmitting end of the second node detects the optical signal;
  • the second node obtains optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • a node device including:
  • a first receiving unit configured to receive an optical signal at an operating wavelength of the undefined wavelength channel; the optical signal is obtained by the second node device amplifying the noise signal adjusted by the second tunable optical attenuator by the optical amplifier; The noise signal is obtained by the second node device adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator; the noise signal at the working wavelength is the second node device Filtering out in the amplified spontaneous emission signal by the tunable bandpass optical filter; the amplified spontaneous emission signal is generated by the second node device by the optical amplifier; and the first monitoring unit is configured to pass at the receiving end Monitoring the optical signal results in optical performance of the unbuilt wavelength channel.
  • a node device including:
  • a first receiving unit configured to receive an optical signal at an operating wavelength of the undefined wavelength channel;
  • the optical signal is obtained by the second node device amplifying the noise signal adjusted by the second tunable optical attenuator by the optical amplifier;
  • the noise signal is obtained by the second node device adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator;
  • the noise signal at the working wavelength is the second node device Filtering out in the amplified spontaneous emission signal by the tunable bandpass optical filter;
  • the amplified spontaneous emission signal is generated by the second node device by the optical amplifier;
  • the first intersection unit is configured to establish the Establish a cross-connection of wavelength channels;
  • a first tunable optical attenuator for adjusting optical power of the optical signal until a first control signal Stop adjusting when it is valid
  • a first monitoring unit configured to: when the optical signal is detected by the transmitting end of the local node device, generate the first control signal; to obtain the unbuilt by monitoring the optical signal at the transmitting end Optical performance of the wavelength channel.
  • An optical amplifier for generating an amplified spontaneous emission signal; for amplifying the adjusted noise signal of the second tunable optical attenuator to obtain an optical signal at an operating wavelength of the undefined wavelength channel;
  • a tunable bandpass optical filter for filtering out a noise signal on the operating wavelength in the amplified spontaneous emission signal
  • a second tunable optical attenuator for adjusting optical power of the noise signal at the working wavelength until the second control signal is valid
  • a second intersecting unit configured to establish a cross connection of the unbuilt wavelength channel
  • a third tunable optical attenuator for adjusting optical power of the optical signal until the third control signal is valid
  • a further aspect of the present invention provides a system for monitoring optical performance of a wavelength channel, where the system includes at least a first node device and a second node device, where the second node device is a transmitting node on an unwavelength channel, The first node device is a non-sending node on the unbuilt wavelength channel:
  • a first node device configured to receive an optical signal at an operating wavelength of the uncreated wavelength channel; and configured to obtain optical performance of the unbuilt wavelength channel by monitoring the optical signal at a receiving end of the first node device ;
  • a second node device configured to generate an amplified spontaneous emission signal by using an optical amplifier; and filtering, by the adjustable bandpass optical filter, a noise signal at the working wavelength in the amplified spontaneous emission signal;
  • a second tunable optical attenuator adjusts optical power of the noise signal at the operating wavelength until a monitoring port of the optical amplifier detects a noise signal at the operating wavelength; for amplifying the first by the optical amplifier Adjusting the noise signal of the tunable optical attenuator to obtain an optical signal at the working wavelength; establishing a cross connection of the uncreated wavelength channel; and adjusting, by the third tunable optical attenuator The optical power of the optical signal until the transmitting end of the second node device detects the optical signal; after establishing the cross-connection of the unbuilt wavelength channel,
  • a further aspect of the present invention provides a system for monitoring optical performance of a wavelength channel, where the system includes at least a first node device and a second node device, where the second node device is a transmitting node on an unwavelength channel, The first node device is a non-sending node on the unbuilt wavelength channel:
  • a first node device configured to receive an optical signal at an operating wavelength of an uncreated wavelength channel; to establish a cross connection of the unbuilt wavelength channel; and to adjust the light of the optical signal by using the first tunable optical attenuator Power, until the transmitting end of the first node device detects the optical signal; and is configured to obtain optical performance of the unbuilt wavelength channel by monitoring the optical signal at a transmitting end of the first node device;
  • a second node device configured to generate an amplified spontaneous emission signal by using an optical amplifier; and filtering, by the adjustable bandpass optical filter, a noise signal at the working wavelength in the amplified spontaneous emission signal; a second tunable optical attenuator adjusts optical power of the noise signal at the operating wavelength until a monitoring port of the optical amplifier detects a noise signal at the operating wavelength; for amplifying the first by the optical amplifier Adjusting the noise signal of the tunable optical attenuator to obtain an optical signal at the working wavelength; establishing a cross connection of the unbuilt wavelength channel; and adjusting the optical signal by using a third tunable optical attenuator The optical power until the transmitting end of the second node device detects the optical signal; after establishing the cross-connection of the unbuilt wavelength channel, the downstream adjacent node The device transmits the optical signal.
  • the method, system and node device for monitoring the optical performance of the wavelength channel provided by the embodiment of the invention do not need to add an external light source, and enhance the working wavelength of the unbuilt wavelength channel by enhancing the noise signal at the working wavelength of the unbuilt wavelength channel.
  • the optical signal is on, and the optical power adjustment process can be automatically completed, thereby realizing the dynamic monitoring of the optical performance of the unbuilt wavelength channel, realizing the single order and high reliability.
  • FIG. 1 is a flow chart of a method for monitoring optical performance of a wavelength channel according to an embodiment of the present invention
  • FIG. 1b is a flow chart of a method for wavelength channel optical performance monitoring according to another embodiment of the present invention.
  • Figure lc is a flow chart of a method for wavelength channel optical performance monitoring according to still another embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a topology of a wavelength division network according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a node device according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a node device according to still another embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a node device according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a system for monitoring optical performance of a wavelength channel according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method, system, and node device for monitoring optical performance of a wavelength channel.
  • FIG. 1a a flow of a method for monitoring optical performance of a wavelength channel is shown in FIG. 1a, and the method includes the following steps:
  • Step S10a the first node receives the optical signal at the working wavelength of the undefined wavelength channel; the optical signal is obtained by the second node amplifying the adjusted noise signal by the second tunable optical attenuator; the adjusted noise signal is The two nodes are obtained by adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator; the noise signal at the working wavelength is filtered by the second node through the tunable bandpass optical filter in the amplified spontaneous emission signal; The amplified spontaneous emission signal is generated by the optical amplifier for the second node.
  • Step S102a the first node obtains the optical performance of the unbuilt wavelength channel by monitoring the optical signal at the receiving end.
  • a flow of a method for monitoring optical performance of a wavelength channel is shown in FIG. 1b, and the method includes the following steps:
  • Step S10b the first node receives the optical signal at the working wavelength of the undefined wavelength channel; the optical signal is obtained by the second node amplifying the adjusted noise signal by the second tunable optical attenuator; the adjusted noise signal is The two nodes are obtained by adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator; the noise signal at the working wavelength is filtered by the second node through the tunable bandpass optical filter in the amplified spontaneous emission signal; The amplified spontaneous emission signal is generated by the optical amplifier for the second node.
  • the first node may also pass the receiving end. Monitoring the optical signal to obtain the optical performance of the unbuilt wavelength channel.
  • Step S102b the first node establishes a cross connection of the unbuilt wavelength channel.
  • Step S103b The first node adjusts the optical power of the optical signal by using the first tunable optical attenuator until the transmitting end of the first node detects the optical signal.
  • the transmitting end still cannot detect the optical signal, and the first node may further send an adjustment signal to the upstream neighboring node, so that the upstream neighboring node increases the light of the optical signal. power.
  • Step S104b The first node obtains the optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • the first node may also establish an optical signal to the downstream adjacent node after the intersection of the unestablished wavelength channels.
  • FIG. 1c a flow of a method for monitoring optical performance of a wavelength channel is shown in FIG. 1c, and the method includes the following steps:
  • Step SlOlc the second node generates an amplified spontaneous emission signal through the optical amplifier.
  • Step S102c The second node filters the noise signal at the operating wavelength of the undefined wavelength channel in the amplified spontaneous emission signal through the adjustable bandpass optical filter.
  • Step S103c The second node adjusts the optical power of the noise signal at the working wavelength by the second tunable optical attenuator until the condition is met, and the condition includes: the monitoring port of the optical amplifier detects the noise signal at the working wavelength.
  • the above condition may further include: the optical signal to noise ratio margin at the corresponding working wavelength detected by the receiving node of the established wavelength channel of the second node is greater than the margin threshold.
  • Step S104c The second node amplifies the noise signal adjusted by the second tunable optical attenuator through the optical amplifier to obtain an optical signal at the working wavelength.
  • Step S105c The second node establishes a cross connection of the unbuilt wavelength channel.
  • the second adjacent node After the second node establishes a cross-connection of the unestablished wavelength channel, the second adjacent node Send an optical signal.
  • Step S106c The second node adjusts the optical power of the optical signal by using the third tunable optical attenuator until the transmitting end of the second node detects the optical signal.
  • Step S107c The second node obtains the optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • a method, device and system for monitoring wavelength channel optical performance provided by an embodiment of the present invention are described in detail below with reference to the accompanying drawings.
  • Embodiment 1 The embodiment of the present invention provides a method for monitoring optical performance of a wavelength channel.
  • the connections between nodes represent fiber links.
  • Pathl wavelength channel is not built for the operating wavelength ⁇ 1 is ACDH routing node to transmit ⁇ node, the node is a receiving node H, node D, C is the wavelength of the upper and lower nodes.
  • Step 201 Node A generates an amplified Amplified Spontaneous Emission (ASE) signal through an optical amplifier, and filters the working wavelength ⁇ i of the uncreated wavelength channel Path1 in the amplified spontaneous emission signal through the adjustable bandpass optical filter. Noise signal.
  • ASE Amplified Spontaneous Emission
  • the adjustable bandpass optical filter can be implemented by a TOF (Tunable Optical Filter) or a WSS (Wavelength Selective Switch).
  • TOF Tunable Optical Filter
  • WSS Widelength Selective Switch
  • Step 202 the node A adjusts the optical power of the noise signal at the working wavelength through the variable optical attenuator (VOA) VOAO thereon until the monitoring port of the optical amplifier detects the noise signal at the working wavelength;
  • the amplifier amplifies the adjusted noise signal of the tunable optical attenuator VOA0 to obtain an optical signal at the working wavelength ⁇ i .
  • node A adjusts the optical power of the noise signal at the working wavelength by VOA0 to make the working wavelength ⁇ !
  • the noise power is greater than the power threshold required for optical performance monitoring to ensure that the node can detect the noise signal at the monitoring port of the optical amplifier. Therefore, node A adjusts the optical power of the noise signal at the operating wavelength.
  • the optical power of the noise signal at the operating wavelength is such that the noise signal at the operating wavelength ⁇ 1 is detected at the monitoring port of the optical amplifier.
  • the optical power of the noise signal on the working wavelength of the human 1 cannot be too large, and it is ensured that the signal quality at the wavelength of the established wavelength channel is not affected, and the OSNR margin at the corresponding working wavelength at the receiving node of the established wavelength channel is ensured to be larger than The margin threshold. Therefore, the node ⁇ adjusts the optical power of the noise signal with the working wavelength of 1 and needs to satisfy another condition: OSNR (Optical Signal Noise Ratio) at the corresponding working wavelength detected by the receiving node of the established wavelength channel of the node A. Optical signal to noise ratio) The margin is greater than the margin threshold.
  • OSNR Optical Signal Noise Ratio
  • the established wavelength channel Path2 and Path3 are both established wavelength channels of node A, as shown in Figure 2.
  • the route of the established wavelength channel Path2 is EABG, and the working wavelength is ⁇ 2 .
  • the route of the established wavelength channel Path3 is ABGH, the working wavelength is ⁇ 3 , it is required that the receiving node G of the established wavelength channel Path2 detects that the OSNR margin at the working wavelength ⁇ 2 is greater than the margin threshold, and the receiving node H of the established wavelength channel Path3 detects The OSNR margin at the operating wavelength ⁇ 3 is greater than the margin threshold.
  • the receiving node of the established wavelength channel can transmit the OSNR margin value to the node A through the network management or channel signal, etc., the node A compares the OSNR margin and the margin threshold value, and then adjusts the noise signal of the working wavelength into the work.
  • the optical power can also be transmitted to the node A when the OSNR margin is greater than the margin threshold by means of a network management or channel signal, and then the node A adjusts the working wavelength ⁇ according to the notification signal! The optical power of the noise signal.
  • the node ⁇ can adjust the optical power of the noise signal on the working wavelength person 1 through VOA0 from small to large, until the optical power of the noise signal at the working wavelength of 1 satisfies the above two conditions.
  • the tunable optical attenuator can be realized by an eVOA (electronically variable optical Attenuator).
  • eVOA electronically variable optical Attenuator
  • the node A establishes a cross connection of the unestablished wavelength channel Path1.
  • Node A establishes the cross-connection of the unestablished wavelength channel Pathl, making the working wavelength ⁇ !
  • the upper optical signal is output to the transmitting end of the node ⁇ .
  • Step 204 node A adjusts the working wavelength ⁇ through the tunable optical attenuator VOA1 thereon! The optical power of the optical signal on the node until the transmitting end of the node ⁇ detects the optical signal at the operating wavelength ⁇ i .
  • the node A adjusts the optical power of the optical signal of the working wavelength into 1 through the tunable optical attenuator VOA1 until the transmitting end of the node A detects the optical signal at the working wavelength ⁇ i .
  • Step 205 After establishing the cross-connection of the undefined wavelength channel Path1, the node A sends the working wavelength ⁇ to the downstream adjacent node C! The light signal on it.
  • the node C receives the optical signal at the working wavelength ⁇ i and establishes a cross-connection of the uncreated wavelength channel Path1.
  • Node C receives the operating wavelength ⁇ !
  • the optical signal on the upper side establishes a cross connection of the unestablished wavelength channel Path1, so that the optical signal at the working wavelength ⁇ 1 is output to the transmitting end of the node C.
  • Step 207 the node C adjusts the optical power of the optical signal at the working wavelength ⁇ i through the tunable optical attenuator VOA2 thereon until the transmitting end of the node C detects the optical signal at the working wavelength ⁇ i .
  • the node C adjusts the optical power of the optical signal at the working wavelength to the maximum, and the transmitting end of the node C still cannot detect the optical signal on the working wavelength ⁇ i , the node C sends the uplink node A to its upstream node A. Adjust the signal so that node A increases the operating wavelength ⁇ ! The optical power of the optical signal on it.
  • the node C can adjust the optical power of the optical signal on the operating wavelength ⁇ 1 from small to large through the tunable optical attenuator VOA2 until the transmitting end of the node C detects the optical signal at the operating wavelength.
  • the maximum value of the optical power of the optical signal at the operating wavelength ⁇ i is the gain budget value.
  • Step 208 After establishing a cross-connection of the undefined wavelength channel Path1, the node C sends the working wavelength ⁇ to the downstream adjacent node D! The light signal on it.
  • the node D receives the optical signal at the working wavelength ⁇ i and establishes a cross-connection of the uncreated wavelength channel Path1.
  • Node D receives the working wavelength ⁇ ! On the optical signal, establish the intersection of the unbuilt wavelength channel Pathl Connected so that the optical signal at the operating wavelength ⁇ 1 is output to the transmitting end of the node D.
  • Step 210 node D adjusts the working wavelength ⁇ through the tunable optical attenuator VOA3 thereon!
  • the optical power of the optical signal is up until the transmitting end of node D detects the optical signal at the operating wavelength ⁇ i .
  • the node D adjusts the optical power of the optical signal at the working wavelength to the maximum, and the transmitting end of the node D still cannot detect the optical signal at the working wavelength, the node D sends an adjustment signal to the upstream neighboring node C thereof. So that the node C increases the optical power of the optical signal at the working wavelength ⁇ 1 so that the transmitting end of the node D detects the operating wavelength ⁇ ! The light signal on it.
  • the node D sends an adjustment signal to the node A, so that the node A The optical power of the optical signal with the working wavelength of 1 is increased, so that the transmitting end of the node D detects the working wavelength ⁇ ! The light signal on it.
  • the node D can adjust the optical power of the optical signal on the working wavelength ⁇ i from d to the large by the tunable optical attenuator VO A3 until the transmitting end of the node D detects the optical signal at the working wavelength ⁇ i .
  • Step 211 After establishing the cross-connection of the unestablished wavelength channel Path1, the node D sends the optical signal at the working wavelength ⁇ i to the downstream adjacent node H.
  • Step 212 the node H receives the optical signal at the working wavelength ⁇ , and establishes a cross-connection of the uncreated wavelength channel Path1.
  • the node H receives the optical signal of the working wavelength into 1 , and establishes a cross connection of the uncreated wavelength channel Path1, so that the optical signal at the working wavelength ⁇ 1 is output to the transmitting end of the node ⁇ .
  • Step 213 the node ⁇ adjusts the optical power of the optical signal at the working wavelength ⁇ i through the tunable optical attenuator VOA4 thereon, so that the transmitting end of the node H detects the optical signal at the working wavelength ⁇ i .
  • the node H adjusts the optical power of the optical signal at the working wavelength to the maximum, and the transmitting end of the node H still cannot detect the optical signal at the working wavelength, the node H sends an adjustment signal to the upstream neighboring node D. , so that node D can increase the working wavelength ⁇ !
  • the optical power of the optical signal on the node causes the transmitting end of the node ⁇ to detect the operating wavelength ⁇ ! The light signal on it.
  • the node D adjusts the optical power of the optical signal at the operating wavelength to the maximum
  • the node H sends an adjustment signal to the node C, so that the node C increases the optical power of the optical signal with the working wavelength of 1 to enable the transmitting end of the node H to detect.
  • the working wavelength ⁇ The light signal on it.
  • the node H adjusts the optical power of the optical signal at the working wavelength to the maximum, and the transmitting end of the node H still cannot detect the optical signal at the working wavelength, the node H sends an adjustment signal to the node A, so that the node A The optical power of the optical signal with the working wavelength of 1 is increased, so that the transmitting end of the node H detects the working wavelength ⁇ ! The light signal on it.
  • the node ⁇ can adjust the optical power of the optical signal on the working wavelength ⁇ i from d to the large by the tunable optical attenuator VO ⁇ 4 until the transmitting end of the node H detects the optical signal at the working wavelength ⁇ i .
  • Step S214 the wavelength channel is not built.
  • One or more nodes on the Pathl route monitor the working wavelength ⁇ !
  • the optical signal on the optical signal obtained the optical performance of the undefined wavelength channel Pathl.
  • the node on the route of the wavelength channel Path1 is not built, including node VIII, node C, node D, and node 11.
  • Node A monitors the optical performance of the unestablished wavelength channel Path1 at its transmitting end; nodes C, D, and H can be monitored at their respective receiving or transmitting ends, or they can monitor the unestablished wavelength channel Pathl at their respective receiving and transmitting ends.
  • Light performance In another embodiment, based on steps 201 to 214 of the first embodiment, real-time performance detection of multiple unbuilt wavelength channels can be implemented.
  • the working wavelengths in the first embodiment are replaced with the working wavelengths ⁇ 1 ⁇ 4 and ⁇ 5 , and the three unbuilt wavelength channels are simultaneously enhanced.
  • the noise signals at operating wavelengths ⁇ 1 ⁇ 4 and ⁇ 5 construct optical signals at their operating wavelengths for three unbuilt wavelength channels.
  • the tunable bandpass filter needs to be implemented in WSS to simultaneously filter out the noise signals at the three operating wavelengths ⁇ 1 ⁇ 4 and ⁇ 5 .
  • the foregoing step 201 to step 214 may be performed for polling all the unestablished wavelength channels with the node ⁇ as the sending node to implement real-time performance detection of the unbuilt wavelength channel.
  • the optical parameter input value is used to pre-open the link configuration of the wavelength channel, thereby realizing online preset of the unbuilt wavelength channel.
  • the method for monitoring the optical performance of the wavelength channel provided by the embodiment of the invention does not require an external light source, and the optical signal at the working wavelength is constructed for the unbuilt wavelength channel by enhancing the noise signal at the working wavelength of the unbuilt wavelength channel, and The optical power adjustment process can be automatically completed, thereby realizing the dynamic monitoring of the optical performance of the unbuilt wavelength channel, realizing the single order and high reliability.
  • optical performance monitoring is performed on all un-wavelength channel polling with a node as a transmitting node, thereby real-time dynamic monitoring of the optical performance of the un-established wavelength channel, and realizing the recording of parameters in the real-time monitoring process.
  • Embodiment 2 The embodiment of the present invention provides a node device, as shown in FIG. 3, including: a first receiving unit 310, configured to receive an optical signal at an operating wavelength of an uncreated wavelength channel; and the optical signal is a second node.
  • the device obtains the noise signal adjusted by the second tunable optical attenuator by the optical amplifier; the adjusted noise signal is obtained by the second node device adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator; The noise signal at the wavelength is filtered by the second node device in the amplified spontaneous emission signal by the tunable bandpass optical filter; the amplified spontaneous emission signal is generated by the second node device through the optical amplifier;
  • the first monitoring unit 320 is configured to obtain optical performance of the unbuilt wavelength channel by monitoring the optical signal at the receiving end.
  • the third embodiment of the present invention provides a node device. As shown in FIG. 4, the method includes: a first receiving unit 410, configured to receive an optical signal at an operating wavelength of an uncreated wavelength channel; and the optical signal is a second node.
  • the device obtains the adjusted noise signal of the second tunable optical attenuator through the optical amplifier
  • the adjusted noise signal is obtained by the second node device adjusting the optical power of the noise signal at the working wavelength by the second tunable optical attenuator; the noise signal at the working wavelength is filtered by the second node device through the adjustable band pass filter
  • the filter is filtered out in the amplified spontaneous emission signal; the amplified spontaneous emission signal is generated by the second node device through the optical amplifier.
  • the first cross unit 420 is configured to establish a cross connection of the unbuilt wavelength channel.
  • the first tunable optical attenuator 430 is configured to adjust the optical power of the optical signal until the first control signal is valid.
  • the first monitoring unit 440 is configured to generate a valid first control signal when the optical signal is detected by the transmitting end of the node device, and to obtain optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • the first monitoring unit 440 can also be used to obtain the optical performance of the unbuilt wavelength channel by monitoring the optical signal at the receiving end after the first receiving unit receives the optical signal.
  • the node device may further include a first sending unit 450, configured to: if the local node device adjusts the optical power of the optical signal to a maximum, the transmitting end still does not detect the optical signal, and sends an adjustment signal to the upstream neighboring node device for upstream.
  • the adjacent node device increases the optical power of the optical signal.
  • the first sending unit 450 may be further configured to: after establishing a cross connection of the unestablished wavelength channel, send an optical signal to the downstream neighboring node device.
  • Embodiment 4 The embodiment of the present invention provides a node device, as shown in FIG. 5, including: an optical amplifier 510, configured to generate an amplified spontaneous emission signal; and used to amplify the adjusted noise of the second tunable optical attenuator The signal obtains an optical signal at the operating wavelength of the uncreated wavelength channel.
  • a tunable band pass filter 520 is provided for filtering out the noise signal at the operating wavelength in the amplified spontaneous emission signal.
  • the adjustable band pass filter 520 can be implemented by TOF (Tunable Optical Filter) or WSS (Wavelength Selective Switch).
  • the second tunable attenuator 530 is configured to adjust the optical power of the noise signal at the operating wavelength until the second control signal is valid. Can adjust the noise signal at the working wavelength from small to large Optical power, stops adjusting until the second control signal is active.
  • the second cross unit 540 is configured to establish a cross connection of the unbuilt wavelength channel.
  • the third dimmable attenuator 550 is configured to adjust the optical power of the optical signal until the third control signal is valid.
  • the optical power of the optical signal can be adjusted from small to large until the third control signal is active.
  • the second monitoring unit 560 is configured to generate a valid second control signal when the monitoring port of the optical amplifier detects the noise signal at the working wavelength, and is configured to generate an effective signal when the optical signal is detected by the transmitting end of the node device.
  • a third control signal configured to obtain optical performance of an unbuilt wavelength channel by monitoring the optical signal at the transmitting end.
  • the second dimmable optical attenuator 530 and the third dimmable optical attenuator 550 can be implemented by an eVOA (electronically variable optical Attenuator).
  • eVOA electronically variable optical Attenuator
  • condition that the second monitoring unit 560 generates the valid second control signal may further include: the optical signal to noise ratio margin at the corresponding working wavelength detected by the receiving node device of the established wavelength channel of the node device is greater than The margin threshold.
  • the node device may further include a second sending unit 570, configured to send an optical signal to the downstream neighboring node device after the second intersecting unit establishes a cross-connection of the unbuilt wavelength channel.
  • the node device of the second, third, and fourth embodiments may be a transmitting device, such as a wavelength division device.
  • the content of the information exchange, the execution process, and the like between the modules in the second, third, and fourth node devices are based on the same concept as the method embodiment of the present invention. For details, refer to the description in the method embodiment of the present invention. I won't go into details here.
  • the node device provided by the embodiment of the invention does not need an external light source, and enhances the optical signal at the working wavelength of the unbuilt wavelength channel by enhancing the noise signal at the working wavelength of the unbuilt wavelength channel, and can automatically complete the optical power.
  • the adjustment process thereby realizing the dynamic monitoring of the optical performance of the unbuilt wavelength channel, realizing the single order and high reliability.
  • Embodiment 5 The embodiment of the present invention provides a system for monitoring optical performance of a wavelength channel. As shown in FIG. 6, the method includes at least a first node device 610 and a second node device 620.
  • the second node device 620 is an unbuilt wavelength channel.
  • the sending node on the first node device 610 is a non-transmitting node 2 on the unbuilt wavelength channel.
  • the first node device 610 is configured to receive an optical signal at an operating wavelength of the unestablished wavelength channel; and configured to obtain optical performance of the unbuilt wavelength channel by monitoring the optical signal at the receiving end of the first node device 610.
  • the first node device 610 may include: a first receiving unit and a first monitoring unit.
  • a first receiving unit and a first monitoring unit.
  • the first receiving unit 310 and the first monitoring unit 320 of the second embodiment and details are not described herein again.
  • a second node device 620 configured to generate an amplified spontaneous emission signal by using an optical amplifier; and filtering, by using an adjustable bandpass optical filter, the noise signal at the working wavelength in the amplified spontaneous emission signal;
  • the tunable optical attenuator adjusts the optical power of the noise signal at the working wavelength until the monitoring port of the optical amplifier detects the noise signal at the working wavelength; and is used to amplify the adjusted noise of the second tunable optical attenuator by the optical amplifier a signal, an optical signal at the working wavelength is obtained; a cross-connection for establishing an unestablished wavelength channel; and an optical power for adjusting the optical signal by the third tunable optical attenuator until the transmitting end of the second node device 620 detects
  • the optical signal is used to establish a cross-connection of an unestablished wavelength channel, and then send an optical signal to a downstream neighboring node device.
  • the second node device 620 may include: an optical amplifier, an adjustable bandpass optical filter, a second tunable optical attenuator, a second intersecting unit, a third tunable optical attenuator, and a second transmitting unit.
  • an optical amplifier 510, the adjustable bandpass optical filter 520, the second tunable optical attenuator 530, the second intersecting unit 540, the third tunable optical attenuator 550, and the second transmitting unit 570 are not described herein. .
  • Embodiment 6 The embodiment of the present invention provides a system for monitoring optical performance of a wavelength channel. As shown in FIG.
  • At least the first node device 610 and the second node device 620 are included, and the second node device 620 is an unbuilt wavelength channel.
  • the first node device 610 is non-transmitted on the unestablished wavelength channel.
  • a first node device 610 configured to receive an optical signal at an operating wavelength of an uncreated wavelength channel; a cross-connection for establishing an unestablished wavelength channel; and configured to adjust an optical power of the optical signal by using the first tunable optical attenuator, Until the transmitting end of the first node device 610 detects the optical signal; for obtaining the optical performance of the unbuilt wavelength channel by monitoring the optical signal at the transmitting end of the first node device.
  • the first node device 610 may include: a first receiving unit, a first intersecting unit, a first tunable optical attenuator, and a first monitoring unit.
  • a first receiving unit a first intersecting unit
  • a first tunable optical attenuator a first monitoring unit.
  • the first tunable optical attenuator 430 and the first monitoring unit 440 are not described herein again.
  • a second node device 620 configured to generate an amplified spontaneous emission signal by using an optical amplifier; and filtering, by using an adjustable bandpass optical filter, the noise signal at the working wavelength in the amplified spontaneous emission signal;
  • the tunable optical attenuator adjusts the optical power of the noise signal at the working wavelength until the monitoring port of the optical amplifier detects the noise signal at the working wavelength; and is used to amplify the adjusted noise of the second tunable optical attenuator by the optical amplifier a signal, an optical signal at the working wavelength is obtained; a cross-connection for establishing an unestablished wavelength channel; and an optical power for adjusting the optical signal by the third tunable optical attenuator until the transmitting end of the second node device 620 detects
  • the optical signal is used to establish a cross-connection of an unestablished wavelength channel, and then send the optical signal to a downstream neighboring node device.
  • the second node device 620 may include: an optical amplifier, a tunable bandpass optical filter, a second tunable optical attenuator, a second intersecting unit, a third tunable optical attenuator, and a second transmitting unit.
  • an optical amplifier 510, the adjustable bandpass optical filter 520, the second tunable optical attenuator 530, the second intersecting unit 540, the third tunable optical attenuator 550, and the second transmitting unit 570 are not described herein. .
  • a third node device 630 may exist between the first node device 610 and the second node device 620, which may be specifically:
  • a third node device 630 configured to receive an optical signal at an operating wavelength of the uncreated wavelength channel; to establish a cross-connection of the unbuilt wavelength channel; and adjust the optical power of the optical signal through the fourth tunable optical attenuator until the third
  • the transmitting end of the node device 630 detects the optical signal; and is used to establish the intersection of the unbuilt wavelength channel. After the fork is connected, the optical signal is sent to the downstream neighbor node device.
  • the third node device 630 may include: a third receiving unit, a third intersecting unit, a fourth tunable optical attenuator, and a third transmitting unit.
  • a third receiving unit a third intersecting unit
  • a fourth tunable optical attenuator a third transmitting unit.
  • the technical solution provided by the embodiment of the invention does not require an external light source, and enhances the optical signal at the working wavelength of the unbuilt wavelength channel by enhancing the noise signal at the working wavelength of the unbuilt wavelength channel, and can automatically complete the optical power.
  • the adjustment process is implemented to realize the dynamic monitoring of the optical performance of the unbuilt wavelength channel, thereby realizing the single order and high reliability.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

一种波长通道光性能监测的方法、 系统和节点设备
技术领域
本发明涉及网络通信技术, 尤其涉及一种波长通道光性能监测的方法、 系统和节点设备。 背景技术
波分网络构成了通信网络的基础物理层, 作为衡量波分网络健康度的重 要指标, 波长通道的光性能在波分网络的设计和维护中显得尤为重要。
对于已建波长通道, 可以直接在其节点上进行光性能监测; 对于未建波 长通道, 也需要进行光性能监测, 以确保该波长通道建立之后能够满足业务 开通的性能要求。
现有技术中, 通过外接光源为未建波长通道提供光信号, 构建虚拟波长 通道, 继而在其节点上进行光性能监测。 但这种方法中, 外接光源带来了复 杂性和额外的监测成本, 并且外接光源的工作参数需要手动调整, 可靠性低, 且无法实现光性能的动态监测。 发明内容
本发明的实施例提供了一种波长通道光性能监测的方法、 系统和节点设 备, 解决现有技术成本高、 无法实现光性能动态监测的问题。
本发明的实施例采用如下技术方案:
本发明一方面提供了一种波长通道光性能监测的方法, 包括:
第一节点接收未建波长通道的工作波长上的光信号; 所述光信号为第二 节点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 所述调整 后的噪声信号为所述第二节点通过所述第二可调光衰减器调整所述工作波长 上的噪声信号的光功率获得; 所述工作波长上的噪声信号为所述第二节点通 过可调带通光滤波器在放大的自发辐射信号中滤出; 所述放大的自发辐射信 号为所述第二节点通过所述光放大器产生;
所述第一节点通过在接收端监测所述光信号获得所述未建波长通道的光 性能。 本发明另一方面提供了一种波长通道光性能监测的方法, 包括: 第一节点接收未建波长通道的工作波长上的光信号; 所述光信号为第二 节点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 所述调整 后的噪声信号为所述第二节点通过所述第二可调光衰减器调整所述工作波长 上的噪声信号的光功率获得; 所述工作波长上的噪声信号为所述第二节点通 过可调带通光滤波器在放大的自发辐射信号中滤出; 所述放大的自发辐射信 号为所述第二节点通过所述光放大器产生;
所述第一节点建立所述未建波长通道的交叉连接;
所述第一节点通过所述第一可调光衰减器调整所述光信号的光功率, 直 到所述第一节点的发送端检测到所述光信号;
所述第一节点通过在所述发送端监测所述光信号获得所述未建波长通道 的光性能。 本发明再一方面提供了一种波长通道光性能监测的方法, 包括: 第二节点通过光放大器产生放大的自发辐射信号;
所述第二节点通过可调带通光滤波器在所述放大的自发辐射信号中滤出 未建波长通道的工作波长上的噪声信号;
所述第二节点通过第二可调光衰减器调整所述工作波长上的噪声信号的 光功率直到满足条件, 所述条件包括: 所述光放大器的监测端口检测到所述 工作波长上的噪声信号;
所述第二节点通过所述光放大器放大所述第二可调光衰减器调整后的噪 声信号, 得到所述工作波长上的光信号;
所述第二节点建立所述未建波长通道的交叉连接;
所述第二节点通过第三可调光衰减器调整所述光信号的光功率, 直到所 述第二节点的发送端检测到所述光信号;
所述第二节点通过在所述发送端监测所述光信号获得所述未建波长通道 的光性能。 本发明又一方面提供了一种节点设备, 包括:
第一接收单元, 用于接收未建波长通道的工作波长上的光信号; 所述光 信号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号 获得; 所述调整后的噪声信号为所述第二节点设备通过所述第二可调光衰减 器调整所述工作波长上的噪声信号的光功率获得; 所述工作波长上的噪声信 号为所述第二节点设备通过可调带通光滤波器在放大的自发辐射信号中滤 出; 所述放大的自发辐射信号为所述第二节点设备通过所述光放大器产生; 第一监测单元, 用于通过在接收端监测所述光信号获得所述未建波长通 道的光性能。 本发明又一方面提供了一种节点设备, 包括:
第一接收单元, 用于接收未建波长通道的工作波长上的光信号; 所述光 信号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号 获得; 所述调整后的噪声信号为所述第二节点设备通过所述第二可调光衰减 器调整所述工作波长上的噪声信号的光功率获得; 所述工作波长上的噪声信 号为所述第二节点设备通过可调带通光滤波器在放大的自发辐射信号中滤 出; 所述放大的自发辐射信号为所述第二节点设备通过所述光放大器产生; 第一交叉单元, 用于建立所述未建波长通道的交叉连接;
第一可调光衰减器, 用于调整所述光信号的光功率, 直到第一控制信号 有效时停止调整;
第一监测单元, 用于在本节点设备的发送端检测到所述光信号时, 产生 有效的所述第一控制信号; 用于通过在所述发送端监测所述光信号获得所述 未建波长通道的光性能。 本发明又一方面提供了一种节点设备, 包括:
光放大器, 用于产生放大的自发辐射信号; 用于放大第二可调光衰减器 调整后的噪声信号, 得到未建波长通道的工作波长上的光信号;
可调带通光滤波器, 用于在所述放大的自发辐射信号中滤出所述工作波 长上的噪声信号;
第二可调光衰减器, 用于调整所述工作波长上的噪声信号的光功率, 直 到第二控制信号有效时停止调整;
第二交叉单元, 用于建立所述未建波长通道的交叉连接;
第三可调光衰减器, 用于调整所述光信号的光功率, 直到第三控制信号 有效时停止调整;
第二监测单元, 用于在所述光放大器的监测端口检测到所述工作波长上 的噪声信号时, 产生有效的所述第二控制信号; 用于在本节点设备的发送端 检测到所述光信号时, 产生有效的所述第三控制信号; 用于通过在所述发送 端监测所述光信号获得所述未建波长通道的光性能。 本发明又一方面提供了一种波长通道光性能监测的系统, 所述系统至少 包括第一节点设备和第二节点设备, 所述第二节点设备为未建波长通道上的 发送节点, 所述第一节点设备为所述未建波长通道上的非发送节点:
第一节点设备, 用于接收所述未建波长通道的工作波长上的光信号; 用 于通过在所述第一节点设备的接收端监测所述光信号获得所述未建波长通道 的光性能; 第二节点设备, 用于通过光放大器产生放大的自发辐射信号; 用于通过 可调带通光滤波器在所述放大的自发辐射信号中滤出所述工作波长上的噪声 信号; 用于通过第二可调光衰减器调整所述工作波长上的噪声信号的光功率, 直到所述光放大器的监测端口检测到所述工作波长上的噪声信号; 用于通过 所述光放大器放大所述第二可调光衰减器调整后的噪声信号, 得到所述工作 波长上的光信号; 用于建立所述未建波长通道的交叉连接; 用于通过所述第 三可调光衰减器调整所述光信号的光功率, 直到所述第二节点设备的发送端 检测到所述光信号; 用于建立所述未建波长通道的交叉连接后, 向下游相邻 节点设备发送所述光信号。 本发明又一方面提供了一种波长通道光性能监测的系统, 所述系统至少 包括第一节点设备和第二节点设备, 所述第二节点设备为未建波长通道上的 发送节点, 所述第一节点设备为所述未建波长通道上的非发送节点:
第一节点设备, 用于接收未建波长通道的工作波长上的光信号; 用于建 立所述未建波长通道的交叉连接; 用于通过第一可调光衰减器调整所述光信 号的光功率, 直到所述第一节点设备的发送端检测到所述光信号; 用于通过 在所述第一节点设备的发送端监测所述光信号获得所述未建波长通道的光性 能;
第二节点设备, 用于通过光放大器产生放大的自发辐射信号; 用于通过 可调带通光滤波器在所述放大的自发辐射信号中滤出所述工作波长上的噪声 信号; 用于通过第二可调光衰减器调整所述工作波长上的噪声信号的光功率, 直到所述光放大器的监测端口检测到所述工作波长上的噪声信号; 用于通过 所述光放大器放大所述第二可调光衰减器调整后的噪声信号, 得到所述工作 波长上的光信号; 用于建立所述未建波长通道的交叉连接; 用于通过第三可 调光衰减器调整所述光信号的光功率, 直到所述第二节点设备的发送端检测 到所述光信号; 用于建立所述未建波长通道的交叉连接后, 向下游相邻节点 设备发送所述光信号。 本发明实施例提供的一种波长通道光性能监测的方法、 系统和节点设备, 无需增加外接光源, 通过增强未建波长通道的工作波长上的噪声信号, 为未 建波长通道构造出其工作波长上的光信号, 并且能够自动完成光功率的调整 过程, 从而实现未建波长通道光性能的动态监测, 实现筒单、 可靠性高。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要 使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提 下, 还可以根据这些附图获得其它的附图。
图 la为本发明的一实施例提供的一种波长通道光性能监测的方法的流程 图;
图 lb为本发明的另一实施例提供的一种波长通道光性能监测的方法的流 程图;
图 lc为本发明的再一实施例提供的一种波长通道光性能监测的方法的流 程图;
图 2为本发明的实施例提供的波分网络拓朴示意图;
图 3为本发明的一实施例提供的一种节点设备的结构框图;
图 4为本发明的再一实施例提供的一种节点设备的结构框图;
图 5为本发明的又一实施例提供的一种节点设备的结构框图;
图 6为本发明的实施例提供的一种波长通道光性能监测的系统示意图。 具体实施方式
本发明实施例提供了一种波长通道光性能监测的方法、 系统和节点设备。 为了更好的理解本发明的技术方案, 下面结合附图对本发明实施例进行详细 描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其它实施例, 都属于本发明保护的范围。 本发明实施例, 一种波长通道光性能监测的方法的流程如图 la所示, 该方法包括以下步骤:
步骤 SlOla, 第一节点接收未建波长通道的工作波长上的光信号; 光信号 为第二节点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 调 整后的噪声信号为第二节点通过第二可调光衰减器调整工作波长上的噪声信 号的光功率获得; 工作波长上的噪声信号为第二节点通过可调带通光滤波器 在放大的自发辐射信号中滤出; 放大的自发辐射信号为第二节点通过光放大 器产生。
步骤 S102a,第一节点通过在接收端监测光信号获得未建波长通道的光性 能。 本发明另一实施例, 一种波长通道光性能监测的方法的流程如图 lb所 示, 该方法包括以下步骤:
步骤 SlOlb, 第一节点接收未建波长通道的工作波长上的光信号; 光信号 为第二节点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 调 整后的噪声信号为第二节点通过第二可调光衰减器调整工作波长上的噪声信 号的光功率获得; 工作波长上的噪声信号为第二节点通过可调带通光滤波器 在放大的自发辐射信号中滤出; 放大的自发辐射信号为第二节点通过光放大 器产生。
进一步地, 在第一节点接收到光信号后, 第一节点还可以通过在接收端 监测光信号获得未建波长通道的光性能。
步骤 S102b, 第一节点建立未建波长通道的交叉连接。
步骤 S103b, 第一节点通过第一可调光衰减器调整光信号的光功率, 直到 第一节点的发送端检测到光信号。
进一步地, 如果第一节点将光信号的光功率调至最大时, 发送端仍然检 测不到光信号, 第一节点还可以向上游相邻节点发送调整信号, 以便上游相 邻节点调大光信号的光功率。
步骤 S104b,第一节点通过在发送端监测光信号获得未建波长通道的光性 能。
进一步地, 第一节点还可以建立未建波长通道的交叉后, 向下游相邻节 点发送光信号。 本发明再一实施例, 一种波长通道光性能监测的方法的流程如图 lc所 示, 该方法包括以下步骤:
步骤 SlOlc, 第二节点通过光放大器产生放大的自发辐射信号。
步骤 S102c,第二节点通过可调带通光滤波器在放大的自发辐射信号中滤 出未建波长通道的工作波长上的噪声信号。
步骤 S103c,第二节点通过第二可调光衰减器调整工作波长上的噪声信号 的光功率直到满足条件, 条件包括: 光放大器的监测端口检测到工作波长上 的噪声信号。
上述条件可以进一步包括: 经过第二节点的已建波长通道的接收节点检 测到的相应工作波长上的光信噪比余量大于余量门限值。
步骤 S104c,第二节点通过光放大器放大第二可调光衰减器调整后的噪声 信号, 得到工作波长上的光信号。
步骤 S105c, 第二节点建立未建波长通道的交叉连接。
进一步地, 第二节点建立未建波长通道的交叉连接后, 向下游相邻节点 发送光信号。
步骤 S106c, 第二节点通过第三可调光衰减器调整光信号的光功率, 直到 第二节点的发送端检测到光信号。
步骤 S107c,第二节点通过在发送端监测光信号获得未建波长通道的光性 能。 下面结合附图对本发明实施例提供的一种波长通道光性能监测的方法、 装置和系统进行详细描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
实施例一, 本发明实施例提供了一种波长通道光性能监测的方法。如图 2 所示的波分网络, 节点间的连线表示光纤链路。 未建波长通道 Pathl的工作波 长为 λ 1 路由为 A-C-D-H,节点 Α为发送节点,节点 H为接收节点,节点 D、 C为上下波长节点。 对未建波长通道 Pathl进行性能监测, 该方法具体包括如 下步骤:
步骤 201 , 节点 A 通过光放大器产生放大的自发辐射 (Amplified Spontaneous Emission, ASE )信号, 通过可调带通光滤波器在放大的自发辐 射信号中滤出未建波长通道 Pathl的工作波长 λ i上的噪声信号。
本实施例中, 可调带通光滤波器可以通过 TOF ( Tunable Optical Filter, 可调光滤波器)或者 WSS ( Wavelength Selective Switch, 波长选择开关) 实 现。
步骤 202, 节点 A通过其上的可调光衰减器( Variable Optical Attenuator, VOA ) VOAO调整工作波长 上的噪声信号的光功率, 直到光放大器的监测 端口检测到工作波长 上的噪声信号; 通过光放大器放大可调光衰减器 VOA0调整后的噪声信号, 得到工作波长 λ i上的光信号。 本实施例中,节点 A通过 VOA0调整工作波长 上的噪声信号的光功率, 使得工作波长 λ!上的噪声功率要大于光性能监测所需的功率门限值, 以保证 节点 Α能够在光放大器的监测端口能够检测到该噪声信号, 因此, 节点 A调 整工作波长 上的噪声信号的光功率, 使得工作波长 上的噪声信号的光 功率满足下述条件:在光放大器的监测端口检测到工作波长 λ 1上的噪声信号。
此外, 工作波长人1上的噪声信号的光功率不能过大, 要确保不影响已建 波长通道波长上的信号质量, 保证已建波长通道的接收节点处的相应工作波 长上的 OSNR余量大于余量门限值。 因此,节点 Α调整工作波长入1上的噪声 信号的光功率, 还需要满足另一条件: 经过节点 A的已建波长通道的接收节 点检测到的相应工作波长上的 OSNR ( Optical Signal Noise Ratio , 光信噪比 ) 余量大于余量门限值。
例如, 已建波长通道 Path2和 Path3都是经过节点 A的已建波长通道,如 图 2所示: 已建波长通道 Path2的路由为 E-A-B-G, 工作波长为 λ 2; 已建波 长通道 Path3的路由为 A-B-G-H,工作波长为 λ 3,则要求:已建波长通道 Path2 的接收节点 G检测到工作波长 λ 2上的 OSNR余量大于余量门限值,已建波长 通道 Path3的接收节点 H检测到的工作波长 λ 3上的 OSNR余量大于余量门限 值。
已建波长通道的接收节点可以通过网管或通道信号等方式将 OSNR余量 值传递给节点 A, 节点 A比较 OSNR余量与余量门限值的大小, 继而调整工 作波长入工上的噪声信号的光功率; 也可以通过网管或通道信号等方式在 OSNR余量大于余量门限值时向节点 A传递通告信号, 继而节点 A根据该通 告信号调整工作波长 λ!上的噪声信号的光功率。
节点 Α可以通过 VOA0由小到大调整工作波长人1上的噪声信号的光功 率, 直到工作波长入1上的噪声信号的光功率满足上述两个条件。
可调光衰减器可以通过 eVOA ( electronically Variable Optical Attenuator, 电可调光衰减器) 实现。 步骤 203, 节点 A建立未建波长通道 Pathl的交叉连接。
节点 A建立未建波长通道 Pathl的交叉连接, 使得工作波长 λ!上的光信 号输出至节点 Α的发送端。
步骤 204, 节点 A通过其上的可调光衰减器 VOA1调整工作波长 λ!上的 光信号的光功率, 直到节点 Α的发送端检测到工作波长 λ i上的光信号。
本实施例中,节点 A通过可调光衰减器 VOA1由小到大调整工作波长入1 上的光信号的光功率, 直到节点 A的发送端检测到工作波长 λ i上的光信号。
步骤 205, 节点 A建立未建波长通道 Pathl的交叉连接后, 向下游相邻节 点 C发送工作波长 λ!上的光信号。
步骤 206,节点 C接收到工作波长 λ i上的光信号,建立未建波长通道 Pathl 的交叉连接。
节点 C接收到工作波长 λ!上的光信号, 建立未建波长通道 Pathl的交叉 连接, 使得工作波长 λ 1上的光信号输出至节点 C的发送端。
步骤 207, 节点 C通过其上的可调光衰减器 VOA2调整工作波长 λ i上的 光信号的光功率, 直到节点 C的发送端检测到工作波长 λ i上的光信号。
进一步地, 如果节点 C将工作波长 上的光信号的光功率调至最大时, 节点 C的发送端仍然检测不到工作波长 λ i上的光信号,则节点 C向其上游相 邻节点 A发送调整信号, 以便节点 A调大工作波长 λ!上的光信号的光功率。
节点 C可以通过可调光衰减器 VOA2由小到大调整工作波长 λ 1上的光信 号的光功率, 直到节点 C的发送端检测到工作波长 上的光信号。 工作波长 λ i上的光信号的光功率的最大值即增益预算值。
步骤 208, 节点 C建立未建波长通道 Pathl的交叉连接后, 向下游相邻节 点 D发送工作波长 λ!上的光信号。
步骤 209,节点 D接收到工作波长 λ i上的光信号,建立未建波长通道 Pathl 的交叉连接。
节点 D接收到工作波长 λ!上的光信号, 建立未建波长通道 Pathl的交叉 连接, 使得工作波长 λ 1上的光信号输出至节点 D的发送端。
步骤 210, 节点 D通过其上的可调光衰减器 VOA3调整工作波长 λ!上的 光信号的光功率, 直到节点 D的发送端检测到工作波长 λ i上的光信号。
进一步地, 如果节点 D将工作波长 上的光信号的光功率调至最大时, 节点 D的发送端仍然检测不到工作波长 上的光信号, 则节点 D向其上游 相邻节点 C发送调整信号,以便节点 C调大工作波长 λ 1上的光信号的光功率, 使得节点 D的发送端检测到工作波长 λ!上的光信号。
进一步地, 如果节点 C将工作波长 上的光信号的光功率调至最大时, 节点 D的发送端仍然检测不到工作波长 上的光信号, 则节点 D向节点 A 发送调整信号, 以便节点 A调大工作波长入1上的光信号的光功率, 使得节点 D的发送端检测到工作波长 λ!上的光信号。
节点 D可以通过可调光衰减器 VO A3由 d、到大调整工作波长 λ i上的光信 号的光功率, 直到节点 D的发送端检测到工作波长 λ i上的光信号。
步骤 211 , 节点 D建立未建波长通道 Pathl的交叉连接后, 向下游相邻节 点 H发送工作波长 λ i上的光信号。
步骤 212,节点 H接收到工作波长 λ 上的光信号,建立未建波长通道 Pathl 的交叉连接。
节点 H接收到工作波长入1上的光信号, 建立未建波长通道 Pathl的交叉 连接, 使得工作波长 λ 1上的光信号输出至节点 Η的发送端。
步骤 213, 节点 Η通过其上的可调光衰减器 VOA4调整工作波长 λ i上的 光信号的光功率, 使得节点 H的发送端检测到工作波长 λ i上的光信号。
进一步地, 如果节点 H将工作波长 上的光信号的光功率调至最大时, 节点 H的发送端仍然检测不到工作波长 上的光信号, 则节点 H向其上游 相邻节点 D发送调整信号, 以便节点 D调大工作波长 λ!上的光信号的光功 率, 使得节点 Η的发送端检测到工作波长 λ!上的光信号。
进一步地, 如果节点 D将工作波长 上的光信号的光功率调至最大时, 节点 H的发送端仍然检测不到工作波长 上的光信号, 则节点 H向节点 C 发送调整信号, 以便节点 C调大工作波长入1上的光信号的光功率, 使得节点 H的发送端检测到工作波长 λ!上的光信号。
进一步地, 如果节点 C将工作波长 上的光信号的光功率调至最大时, 节点 H的发送端仍然检测不到工作波长 上的光信号, 则节点 H向节点 A 发送调整信号, 以便节点 A调大工作波长入1上的光信号的光功率, 使得节点 H的发送端检测到工作波长 λ!上的光信号。
节点 Η可以通过可调光衰减器 VO Α4由 d、到大调整工作波长 λ i上的光信 号的光功率, 直到节点 H的发送端检测到工作波长 λ i上的光信号。
步骤 S214, 未建波长通道 Pathl路由上的一个或者多个节点通过监测工 作波长 λ!上的光信号获得未建波长通道 Pathl的光性能。
未建波长通道 Pathl的路由上的节点, 包括节点八、 节点 C、 节点 D、 节 点11。 节点 A在其发送端监测未建波长通道 Pathl的光性能; 节点 C、 D、 H 可以在各自的接收端或者发送端监测, 也可以在各自的接收端和发送端都监 测未建波长通道 Pathl的光性能。 另一实施例中,基于上述实施例一的步骤 201至步骤 214, 可以实现多个 未建波长通道的实时性能检测。 例如, 对于未建波长通道工作波长 λ 1 λ 4、 λ 5, 将上述实施例一中的工作波长人 替换为工作波长 λ 1 λ 4、 λ 5, 同时增 强三个未建波长通道对应的三个工作波长 λ 1 λ 4和 λ 5上的噪声信号, 为三 个未建波长通道构造出其工作波长上的光信号。 此种情况下, 可调带通光滤 波器需要采用 WSS实现,用于同时滤出三个工作波长 λ 1 λ 4和 λ 5上的噪声 信号。 再一实施例中, 可以对以节点 Α为发送节点的所有未建波长通道轮询执 行上述步骤 201至步骤 214, 实现未建波长通道的实时性能检测。 还可以记录轮询执行上述步骤 201至步骤 214时每个未建波长通道的交 叉连接和光功率的调整值, 当出现业务开通请求时, 以最近记录的交叉连接 和光功率的调整值作为网管软件的光参输入值进行预开通波长通道的链路配 置, 由此实现未建波长通道的在线预置。 本发明实施例提供的一种波长通道光性能监测的方法, 无需外接光源, 通过增强未建波长通道的工作波长上的噪声信号, 为未建波长通道构造出其 工作波长上的光信号, 并且能够自动完成光功率的调整过程, 从而实现未建 波长通道光性能的动态监测, 实现筒单、 可靠性高。
此外, 对以某节点作为发送节点的所有未建波长通道轮询进行光性能监 测, 从而实现对未建波长通道光性能的实时动态监测, 并且能够通过对实时 监测过程中参数的记录, 实现未建波长通道的在线预置。 实施例二, 本发明实施例提供了一种节点设备, 如图 3所示, 包括: 第一接收单元 310, 用于接收未建波长通道的工作波长上的光信号; 光信 号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号获 得; 调整后的噪声信号为第二节点设备通过第二可调光衰减器调整工作波长 上的噪声信号的光功率获得; 工作波长上的噪声信号为第二节点设备通过可 调带通光滤波器在放大的自发辐射信号中滤出; 放大的自发辐射信号为第二 节点设备通过光放大器产生;
第一监测单元 320,用于通过在接收端监测光信号获得未建波长通道的光 性能。 实施例三, 本发明实施例提供了一种节点设备, 如图 4所示, 包括: 第一接收单元 410, 用于接收未建波长通道的工作波长上的光信号; 光信 号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号获 得; 调整后的噪声信号为第二节点设备通过第二可调光衰减器调整工作波长 上的噪声信号的光功率获得; 工作波长上的噪声信号为第二节点设备通过可 调带通光滤波器在放大的自发辐射信号中滤出; 放大的自发辐射信号为第二 节点设备通过光放大器产生。
第一交叉单元 420, 用于建立未建波长通道的交叉连接。
第一可调光衰减器 430, 用于调整光信号的光功率, 直到第一控制信号有 效时停止调整。
第一监测单元 440, 用于在本节点设备的发送端检测到光信号时, 产生有 效的第一控制信号; 用于通过在发送端监测光信号获得未建波长通道的光性 能。
进一步地, 第一监测单元 440还可以用于第一接收单元接收到光信号后, 通过在接收端监测光信号获得未建波长通道的光性能。
进一步地, 节点设备还可以包括第一发送单元 450, 用于如果本节点设备 将光信号的光功率调至最大时, 发送端仍然检测不到光信号, 向上游相邻节 点设备发送调整信号, 以便上游相邻节点设备调大光信号的光功率。
进一步地, 第一发送单元 450还可以用于建立未建波长通道的交叉连接 后, 向下游相邻节点设备发送光信号。 实施例四, 本发明实施例提供了一种节点设备, 如图 5所示, 包括: 光放大器 510, 用于产生放大的自发辐射信号; 用于放大第二可调光衰减 器调整后的噪声信号, 得到未建波长通道的工作波长上的光信号。
可调带通光滤波器 520,用于在放大的自发辐射信号中滤出工作波长上的 噪声信号。 可调带通光滤波器 520可以通过 TOF ( Tunable Optical Filter, 可 调光滤波器)或者 WSS ( Wavelength Selective Switch, 波长选择开关) 实现。
第二可调光衰减器 530, 用于调整工作波长上的噪声信号的光功率, 直到 第二控制信号有效时停止调整。 可以由小到大调整工作波长上的噪声信号的 光功率, 直到第二控制信号有效时停止调整。
第二交叉单元 540, 用于建立未建波长通道的交叉连接。
第三可调光衰减器 550, 用于调整光信号的光功率, 直到第三控制信号有 效时停止调整。 可以由小到大调整光信号的光功率, 直到第三控制信号有效 时停止调整。
第二监测单元 560,用于在光放大器的监测端口检测到工作波长上的噪声 信号时, 产生有效的第二控制信号; 用于在本节点设备的发送端检测到光信 号时, 产生有效的第三控制信号; 用于通过在发送端监测光信号获得未建波 长通道的光性能。
第二可调光衰减器 530 和第三可调光衰减器 550 可以通过 eVOA ( electronically Variable Optical Attenuator , 电可调光衰减器) 实现。
进一步地, 第二监测单元 560 中产生有效的第二控制信号的条件可以进 一步包括: 经过本节点设备的已建波长通道的接收节点设备检测到的相应工 作波长上的光信噪比余量大于余量门限值。
进一步地, 节点设备还可以包括第二发送单元 570, 用于第二交叉单元建 立未建波长通道的交叉连接后, 向下游相邻节点设备发送光信号。 上述实施例二、 三、 四的节点设备可以是传送设备, 如波分设备。 实施 例二、 三、 四的节点设备内的各模块之间的信息交互、 执行过程等内容, 由 于与本发明方法实施例基于同一构思, 具体内容可参见本发明方法实施例中 的叙述, 此处不再赘述。 本发明实施例提供的一种节点设备, 无需外接光源, 通过增强未建波长 通道的工作波长上的噪声信号, 为未建波长通道构造出其工作波长上的光信 号, 并且能够自动完成光功率的调整过程, 从而实现未建波长通道光性能的 动态监测, 实现筒单、 可靠性高。 实施例五, 本发明实施例提供了一种波长通道光性能监测的系统, 如图 6 所示, 至少包括第一节点设备 610和第二节点设备 620, 第二节点设备 620为 未建波长通道上的发送节点, 第一节点设备 610为未建波长通道上的非发送 节点二
第一节点设备 610, 用于接收未建波长通道的工作波长上的光信号; 用于 通过在第一节点设备 610的接收端监测光信号获得未建波长通道的光性能。
第一节点设备 610 可以包括: 第一接收单元和第一监测单元, 具体内容 参见实施例二的第一接收单元 310和第一监测单元 320, 此处不再赘述。
第二节点设备 620, 用于通过光放大器产生放大的自发辐射信号; 用于通 过可调带通光滤波器在放大的自发辐射信号中滤出该工作波长上的噪声信 号; 用于通过第二可调光衰减器调整该工作波长上的噪声信号的光功率, 直 到光放大器的监测端口检测到该工作波长上的噪声信号; 用于通过光放大器 放大第二可调光衰减器调整后的噪声信号, 得到该工作波长上的光信号; 用 于建立未建波长通道的交叉连接; 用于通过第三可调光衰减器调整光信号的 光功率, 直到第二节点设备 620的发送端检测到光信号; 用于建立未建波长 通道的交叉连接后, 向下游相邻节点设备发送光信号。
第二节点设备 620 可以包括: 光放大器、 可调带通光滤波器、 第二可调 光衰减器、 第二交叉单元、 第三可调光衰减器、 第二发送单元, 具体内容参 见实施例四的光放大器 510、 可调带通光滤波器 520、 第二可调光衰减器 530、 第二交叉单元 540、 第三可调光衰减器 550和第二发送单元 570, 此处不再赘 述。 实施例六, 本发明实施例提供了一种波长通道光性能监测的系统, 如图 6 所示, 至少包括第一节点设备 610和第二节点设备 620, 第二节点设备 620为 未建波长通道上的发送节点, 第一节点设备 610为未建波长通道上的非发送 节点:
第一节点设备 610, 用于接收未建波长通道的工作波长上的光信号; 用于 建立未建波长通道的交叉连接; 用于通过第一可调光衰减器调整该光信号的 光功率, 直到第一节点设备 610的发送端检测到该光信号; 用于通过在第一 节点设备的发送端监测该光信号获得未建波长通道的光性能。
第一节点设备 610 可以包括: 第一接收单元、 第一交叉单元、 第一可调 光衰减器和第一监测单元, 具体内容参见实施例三的第一接收单元 410、 第一 交叉单元 420、 第一可调光衰减器 430和第一监测单元 440, 此处不再赘述。
第二节点设备 620, 用于通过光放大器产生放大的自发辐射信号; 用于通 过可调带通光滤波器在放大的自发辐射信号中滤出该工作波长上的噪声信 号; 用于通过第二可调光衰减器调整该工作波长上的噪声信号的光功率, 直 到光放大器的监测端口检测到该工作波长上的噪声信号; 用于通过光放大器 放大第二可调光衰减器调整后的噪声信号, 得到该工作波长上的光信号; 用 于建立未建波长通道的交叉连接; 用于通过第三可调光衰减器调整光信号的 光功率, 直到第二节点设备 620的发送端检测到该光信号; 用于建立未建波 长通道的交叉连接后, 向下游相邻节点设备发送该光信号。
第二节点设备 620 可以包括: 光放大器、 可调带通光滤波器、 第二可调 光衰减器、 第二交叉单元、 第三可调光衰减器和第二发送单元, 具体内容参 见实施例四的光放大器 510、 可调带通光滤波器 520、 第二可调光衰减器 530、 第二交叉单元 540、 第三可调光衰减器 550和第二发送单元 570, 此处不再赘 述。
进一步地, 在第一节点设备 610和第二节点设备 620之间还可以存在第 三节点设备 630, 可以具体为:
第三节点设备 630, 用于接收未建波长通道的工作波长上的光信号; 用于 建立未建波长通道的交叉连接; 通过第四可调光衰减器调整光信号的光功率, 直到第三节点设备 630的发送端检测到光信号; 用于建立未建波长通道的交 叉连接后, 向下游相邻节点设备发送该光信号。
第三节点设备 630可以包括: 第三接收单元、 第三交叉单元、 第四可调 光衰减器和第三发送单元, 具体内容参见实施例三的第一接收单元 410、 第一 交叉单元 420、 第一可调光衰减器 430和第一发送单元 450, 此处不再赘述。 采用本发明实施例提供的技术方案, 无需外接光源, 通过增强未建波长 通道的工作波长上的噪声信号, 为未建波长通道构造出其工作波长上的光信 号, 并且能够自动完成光功率的调整过程, 从而实现未建波长通道光性能的 动态监测, 实现筒单、 可靠性高。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存者 i己忆体 ( Random Access Memory, RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应以权利要求的保护范围为准。

Claims

权利要求书
1、 一种波长通道光性能监测的方法, 其特征在于, 包括:
第一节点接收未建波长通道的工作波长上的光信号; 所述光信号为第二节 点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 所述调整后的 噪声信号为所述第二节点通过所述第二可调光衰减器调整所述工作波长上的噪 声信号的光功率获得; 所述工作波长上的噪声信号为所述第二节点通过可调带 通光滤波器在放大的自发辐射信号中滤出; 所述放大的自发辐射信号为所述第 二节点通过所述光放大器产生;
所述第一节点通过在接收端监测所述光信号获得所述未建波长通道的光性 能。
2、 一种波长通道光性能监测的方法, 其特征在于, 包括:
第一节点接收未建波长通道的工作波长上的光信号; 所述光信号为第二节 点通过光放大器放大第二可调光衰减器调整后的噪声信号获得; 所述调整后的 噪声信号为所述第二节点通过所述第二可调光衰减器调整所述工作波长上的噪 声信号的光功率获得; 所述工作波长上的噪声信号为所述第二节点通过可调带 通光滤波器在放大的自发辐射信号中滤出; 所述放大的自发辐射信号为所述第 二节点通过所述光放大器产生;
所述第一节点建立所述未建波长通道的交叉连接;
所述第一节点通过所述第一可调光衰减器调整所述光信号的光功率, 直到 所述第一节点的发送端检测到所述光信号;
所述第一节点通过在所述发送端监测所述光信号获得所述未建波长通道的 光性能。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 所述第一节点接收到所述光信号后, 所述第一节点通过在接收端监测所述 光信号获得所述未建波长通道的光性能。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述方法还包括: 如果所述第一节点将所述光信号的光功率调至最大时, 所述发送端仍然检 测不到所述光信号, 则所述第一节点向所述上游相邻节点发送调整信号, 以便 所述上游相邻节点调大所述光信号的光功率。
5、 根据权利要求 2、 3或 4所述的方法, 其特征在于, 所述方法还包括: 所述第一节点建立所述未建波长通道的交叉连接后, 向下游相邻节点发送 所述光信号。
6、 一种波长通道光性能监测的方法, 其特征在于, 包括:
第二节点通过光放大器产生放大的自发辐射信号;
所述第二节点通过可调带通光滤波器在所述放大的自发辐射信号中滤出未 建波长通道的工作波长上的噪声信号;
所述第二节点通过第二可调光衰减器调整所述工作波长上的噪声信号的光 功率直到满足条件, 所述条件包括: 所述光放大器的监测端口检测到所述工作 波长上的噪声信号;
所述第二节点通过所述光放大器放大所述第二可调光衰减器调整后的噪声 信号, 得到所述工作波长上的光信号;
所述第二节点建立所述未建波长通道的交叉连接;
所述第二节点通过第三可调光衰减器调整所述光信号的光功率, 直到所述 第二节点的发送端检测到所述光信号;
所述第二节点通过在所述发送端监测所述光信号获得所述未建波长通道的 光性能。
7、 根据权利要求 6所述的方法, 其特征在于, 所述条件进一步包括: 经过所述第二节点的已建波长通道的接收节点检测到的相应工作波长上的 光信噪比余量大于余量门限值。
8、 根据权利要求 6或 7 所述的方法, 其特征在于, 所述方法还包括: 所述第二节点建立所述未建波长通道的交叉连接后, 向下游相邻节点发送 所述光信号。
9、 一种节点设备, 其特征在于, 包括第一接收单元和第一监测单元: 第一接收单元, 用于接收未建波长通道的工作波长上的光信号; 所述光信 号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号获 得; 所述调整后的噪声信号为所述第二节点设备通过所述第二可调光衰减器调 整所述工作波长上的噪声信号的光功率获得; 所述工作波长上的噪声信号为所 述第二节点设备通过可调带通光滤波器在放大的自发辐射信号中滤出; 所述放 大的自发辐射信号为所述第二节点设备通过所述光放大器产生;
第一监测单元, 用于通过在接收端监测所述光信号获得所述未建波长通道 的光性能。
10、 一种节点设备, 其特征在于, 包括第一接收单元、 第一交叉单元、 第 一可调光衰减器和第一监测单元:
第一接收单元, 用于接收未建波长通道的工作波长上的光信号; 所述光信 号为第二节点设备通过光放大器放大第二可调光衰减器调整后的噪声信号获 得; 所述调整后的噪声信号为所述第二节点设备通过所述第二可调光衰减器调 整所述工作波长上的噪声信号的光功率获得; 所述工作波长上的噪声信号为所 述第二节点设备通过可调带通光滤波器在放大的自发辐射信号中滤出; 所述放 大的自发辐射信号为所述第二节点设备通过所述光放大器产生;
第一交叉单元, 用于建立所述未建波长通道的交叉连接;
第一可调光衰减器, 用于调整所述光信号的光功率, 直到第一控制信号有 效时停止调整;
第一监测单元, 用于在本节点设备的发送端检测到所述光信号时, 产生有 效的所述第一控制信号; 用于通过在所述发送端监测所述光信号获得所述未建 波长通道的光性能。
11、 根据权利要求 10所述的节点设备, 其特征在于, 所述第一监测单元还 用于所述第一接收单元接收到所述光信号后, 通过在接收端监测所述光信号获 得所述未建波长通道的光性能。
12、 根据权利要求 10或 11所述的节点设备, 其特征在于, 所述节点设备 还包括:
第一发送单元, 用于如果本节点设备将所述光信号的光功率调至最大时, 所述发送端仍然检测不到所述光信号, 向所述上游相邻节点设备发送调整信号, 以便所述上游相邻节点设备调大所述光信号的光功率。
13、 根据权利要求 10、 11或 12所述的节点设备, 其特征在于, 所述第一 发送单元还用于建立所述未建波长通道的交叉连接后, 向下游相邻节点设备发 送所述光信号。
14、 一种节点设备, 其特征在于, 包括光放大器、 可调带通光滤波器、 第 二可调光衰减器、 第二交叉单元、 第三可调光衰减器和第二监测单元:
光放大器, 用于产生放大的自发辐射信号; 用于放大第二可调光衰减器调 整后的噪声信号, 得到未建波长通道的工作波长上的光信号;
可调带通光滤波器, 用于在所述放大的自发辐射信号中滤出所述工作波长 上的噪声信号;
第二可调光衰减器, 用于调整所述工作波长上的噪声信号的光功率, 直到 第二控制信号有效时停止调整;
第二交叉单元, 用于建立所述未建波长通道的交叉连接;
第三可调光衰减器, 用于调整所述光信号的光功率, 直到第三控制信号有 效时停止调整;
第二监测单元, 用于在所述光放大器的监测端口检测到所述工作波长上的 噪声信号时, 产生有效的所述第二控制信号; 用于在本节点设备的发送端检测 到所述光信号时, 产生有效的所述第三控制信号; 用于通过在所述发送端监测 所述光信号获得所述未建波长通道的光性能。
15、 根据权利要求 14所述的节点设备, 其特征在于, 所述第二监测单元中 所述产生有效的所述第二控制信号的条件进一步包括: 经过本节点设备的已建 波长通道的接收节点设备检测到的相应工作波长上的光信噪比余量大于余量门 限值;
16、 根据权利要求 14或 15所述的节点设备, 其特征在于, 所述节点设备 还包括:
第二发送单元, 用于所述第二交叉单元建立所述未建波长通道的交叉连接 后, 向下游相邻节点设备发送所述光信号。
17、 一种波长通道光性能监测的系统, 其特征在于, 所述系统至少包括第 一节点设备和第二节点设备, 所述第二节点设备为未建波长通道上的发送节点, 所述第一节点设备为所述未建波长通道上的非发送节点:
第一节点设备, 用于接收所述未建波长通道的工作波长上的光信号; 用于 通过在所述第一节点设备的接收端监测所述光信号获得所述未建波长通道的光 性能;
第二节点设备, 用于通过光放大器产生放大的自发辐射信号; 用于通过可 调带通光滤波器在所述放大的自发辐射信号中滤出所述工作波长上的噪声信 号; 用于通过第二可调光衰减器调整所述工作波长上的噪声信号的光功率, 直 到所述光放大器的监测端口检测到所述工作波长上的噪声信号; 用于通过所述 光放大器放大所述第二可调光衰减器调整后的噪声信号, 得到所述工作波长上 的光信号; 用于建立所述未建波长通道的交叉连接; 用于通过所述第三可调光 衰减器调整所述光信号的光功率, 直到所述第二节点设备的发送端检测到所述 光信号; 用于建立所述未建波长通道的交叉连接后, 向下游相邻节点设备发送 所述光信号。
18、 一种波长通道光性能监测的系统, 其特征在于, 所述系统至少包括第 一节点设备和第二节点设备, 所述第二节点设备为未建波长通道上的发送节点, 所述第一节点设备为所述未建波长通道上的非发送节点:
第一节点设备, 用于接收未建波长通道的工作波长上的光信号; 用于建立 所述未建波长通道的交叉连接; 用于通过第一可调光衰减器调整所述光信号的 光功率, 直到所述第一节点设备的发送端检测到所述光信号; 用于通过在所述 第一节点设备的发送端监测所述光信号获得所述未建波长通道的光性能; 第二节点设备, 用于通过光放大器产生放大的自发辐射信号; 用于通过可 调带通光滤波器在所述放大的自发辐射信号中滤出所述工作波长上的噪声信 号; 用于通过第二可调光衰减器调整所述工作波长上的噪声信号的光功率, 直 到所述光放大器的监测端口检测到所述工作波长上的噪声信号; 用于通过所述 光放大器放大所述第二可调光衰减器调整后的噪声信号, 得到所述工作波长上 的光信号; 用于建立所述未建波长通道的交叉连接; 用于通过第三可调光衰减 器调整所述光信号的光功率, 直到所述第二节点设备的发送端检测到所述光信 号; 用于建立所述未建波长通道的交叉连接后, 向下游相邻节点设备发送所述 光信号。
PCT/CN2012/074969 2012-05-02 2012-05-02 一种波长通道光性能监测的方法、系统和节点设备 WO2012126414A2 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280000574.8A CN102763350B (zh) 2012-05-02 2012-05-02 一种波长通道光性能监测的方法、系统和节点设备
ES12761234.9T ES2625073T3 (es) 2012-05-02 2012-05-02 Procedimiento, sistema y dispositivo de nodo para supervisar el rendimiento óptico de un canal de longitud de onda
PCT/CN2012/074969 WO2012126414A2 (zh) 2012-05-02 2012-05-02 一种波长通道光性能监测的方法、系统和节点设备
EP12761234.9A EP2827517B1 (en) 2012-05-02 2012-05-02 Method, system and node device for monitoring optical performance of wavelength channel
US14/521,956 US9531470B2 (en) 2012-05-02 2014-10-23 Method, system, and node device for monitoring optical performance of wavelength channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074969 WO2012126414A2 (zh) 2012-05-02 2012-05-02 一种波长通道光性能监测的方法、系统和节点设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/521,956 Continuation US9531470B2 (en) 2012-05-02 2014-10-23 Method, system, and node device for monitoring optical performance of wavelength channel

Publications (2)

Publication Number Publication Date
WO2012126414A2 true WO2012126414A2 (zh) 2012-09-27
WO2012126414A3 WO2012126414A3 (zh) 2013-04-11

Family

ID=46879791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074969 WO2012126414A2 (zh) 2012-05-02 2012-05-02 一种波长通道光性能监测的方法、系统和节点设备

Country Status (5)

Country Link
US (1) US9531470B2 (zh)
EP (1) EP2827517B1 (zh)
CN (1) CN102763350B (zh)
ES (1) ES2625073T3 (zh)
WO (1) WO2012126414A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037424A (zh) * 2021-03-12 2021-06-25 广东科学技术职业学院 弹性光网络的信道选择方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099956B (zh) 2015-06-25 2018-08-14 华为技术有限公司 交换网系统和数据交换方法
CN106559133B (zh) 2015-09-28 2020-02-14 华为技术有限公司 光信号检测的方法及其网络设备
CN110933005B (zh) * 2019-12-09 2020-11-06 北京理工大学 一种密度聚类的调制格式识别与osnr估计的联合方法
US11546062B1 (en) * 2020-04-22 2023-01-03 Meta Platforms, Inc. Wavelength-selectable free-space optical communication
CN115603803A (zh) * 2021-06-28 2023-01-13 中兴通讯股份有限公司(Cn) 光信噪比检测方法、装置及计算机存储介质
CN115704956A (zh) * 2021-08-03 2023-02-17 中兴通讯股份有限公司 一种波长选择开关的通道衰减调整方法、装置及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2195153C (en) 1997-01-15 2003-12-30 Dennis K. W. Lam Surveillance system for passive branched optical networks
US6400479B1 (en) * 1999-12-20 2002-06-04 Sycamore Networks, Inc. Optical power balancer for optical amplified WDM networks
KR100419424B1 (ko) * 2001-09-22 2004-02-19 삼성전자주식회사 파장 분할 다중화 시스템에서의 광신호 성능 검사 장치
US7526201B2 (en) * 2004-06-25 2009-04-28 Tyco Telecommunications (Us) Inc. Optical fiber transmission system with noise loading
WO2006005174A1 (en) 2004-07-13 2006-01-19 Tropic Networks Inc. A method for network commissioning using amplified spontaneous emission (ase) sources
JP4645183B2 (ja) * 2004-10-15 2011-03-09 日本電気株式会社 光伝送路損失調整方法及び光伝送システム
US20060140626A1 (en) * 2004-12-24 2006-06-29 Optovia Corporation Optical Supervisory Channel for High Span Loss Optical Communication Systems
US7457032B2 (en) * 2005-09-22 2008-11-25 Bti Photonic Systems Inc. Arrangement, system, and method for accurate power measurements using an optical performance monitor (OPM)
FR2901936B1 (fr) * 2006-06-06 2008-08-01 Alcatel Sa Dispositif opto-electronique d'etalonnage et d'asservissement pour systeme de transmissions optiques a multiplexage en longueur d'onde
CN101141219B (zh) * 2007-05-23 2012-11-28 中兴通讯股份有限公司 实现波分复用系统通道功率斜度动态补偿的装置及方法
JP5267119B2 (ja) * 2008-12-26 2013-08-21 富士通株式会社 光受信装置および波長多重伝送システム
JP5633266B2 (ja) * 2010-09-15 2014-12-03 富士通株式会社 Wdm光伝送システムおよびその制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2827517A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037424A (zh) * 2021-03-12 2021-06-25 广东科学技术职业学院 弹性光网络的信道选择方法及装置
CN113037424B (zh) * 2021-03-12 2023-05-09 广东科学技术职业学院 弹性光网络的信道选择方法及装置

Also Published As

Publication number Publication date
US20150043906A1 (en) 2015-02-12
US9531470B2 (en) 2016-12-27
CN102763350B (zh) 2016-11-09
EP2827517A4 (en) 2015-04-08
WO2012126414A3 (zh) 2013-04-11
EP2827517A2 (en) 2015-01-21
EP2827517B1 (en) 2017-03-29
ES2625073T3 (es) 2017-07-18
CN102763350A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2012126414A2 (zh) 一种波长通道光性能监测的方法、系统和节点设备
US7697842B2 (en) Automated optical transport system
JP6621846B2 (ja) ハードウェア構成ネットワークのための方法および装置
US7609964B2 (en) Power level management in optical networks
US20040208513A1 (en) Management of optical links using power level information
EP2765717B1 (en) Method for capacity expansion and commissioning of wavelength multiplexing optical network, and controller
WO2007095805A1 (en) A loading, detecting and monitoring method and apparatus for optical channel-associated signal
US20130251367A1 (en) Control method, optical transmission device, and control device for optical transmission system, and optical transmission system
US7327954B2 (en) Optical signaling to share active channel information
US9300426B2 (en) Transmission apparatus, transmission system, and method of controlling average optical input power
US9647751B2 (en) Out-of band management of fiber optics systems and devices
JP2012058252A (ja) ファイバスパンの損失および分散の測定
JP2012015675A (ja) Wdm信号光の監視装置
CN101594557A (zh) 无源光网络系统中定位恶意用户的方法及光纤线路终端
JP4378882B2 (ja) 光通信ネットワーク、中継増幅装置及びそれらに用いる通信制御方法
Tessema et al. SDN enabled dynamically re-configurable low-cost ROADM nodes for metro networks
US20020101637A1 (en) Method for channel balance
JP5796634B2 (ja) 波長パス制御システム、波長パス制御方法および波長パス制御用プログラム記憶媒体
WO2019091350A1 (zh) 双上联方法、光网络管理设备以及光传输系统
US20020122219A1 (en) Optical supervisory channel
Paolucci et al. Demonstration of effective OAM for alien wavelength and transport network
KR101640149B1 (ko) 광이더넷 통신망의 실시간 광선로 감시 시스템
Yan et al. Demonstration of an SDN based monitoring framework for converged packet and optical networks analytics
JP5465694B2 (ja) 光パケット送受信装置および光パケット受信装置
Ou et al. Investigation of optical impacts on virtualization using SDN-enabled transceiver and optical monitoring

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000574.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761234

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012761234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012761234

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761234

Country of ref document: EP

Kind code of ref document: A2