WO2012126328A1 - 照明装置、包括该装置的高通量培养设备 - Google Patents

照明装置、包括该装置的高通量培养设备 Download PDF

Info

Publication number
WO2012126328A1
WO2012126328A1 PCT/CN2012/072364 CN2012072364W WO2012126328A1 WO 2012126328 A1 WO2012126328 A1 WO 2012126328A1 CN 2012072364 W CN2012072364 W CN 2012072364W WO 2012126328 A1 WO2012126328 A1 WO 2012126328A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guiding
guiding layer
culture
layer
Prior art date
Application number
PCT/CN2012/072364
Other languages
English (en)
French (fr)
Inventor
吴洪
王媛媛
郝玉有
袁旭军
张明
张引锋
缪寿洪
王振煜
Original Assignee
新奥科技发展有限公司
华东理工大学
上海科源电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥科技发展有限公司, 华东理工大学, 上海科源电子科技有限公司 filed Critical 新奥科技发展有限公司
Publication of WO2012126328A1 publication Critical patent/WO2012126328A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/16Vibrating; Shaking; Tilting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers

Definitions

  • Lighting device, high-throughput culture device including the same
  • the present invention relates to the field of industrial applications of photosynthetic organisms, including but not limited to microalgae, and in particular to apparatus suitable for high throughput culture of photosynthetic organisms for use in high throughput screening of photosynthetic organisms. Background technique
  • Microalgae are a class of autotrophic microorganisms that are widely distributed on land and in the sea, rich in nutrients and high in photosynthetic availability. Many microalgae can accumulate a large amount of oil in cells. Some algae can reach 80% of the dry weight of nitrogen in the absence of nitrogen. The bio-refining method can extract oil from such microalgae for preparation. Oil and biodiesel; Microalgae can also be used in industrial processes such as wastewater treatment to reduce environmental pollution.
  • microalgae The environmentally friendly nature of microalgae, the health-care properties of humans and animals, and the good applicability of bioenergy have led to a global micro-algae bioenergy research and development boom, which is gradually becoming larger and more industrialized, but there are many commercial developments.
  • Technical bottlenecks need to be broken, among which the improvement of microalgae algae is the most important, and the screening of excellent microalgae strains is the most important. Screening of elite microalgae strains must be compared by their different properties, such as growth rate, biochemical composition in cells, resistance to the environment, etc., and comprehensive selection of algae strains suitable for large-scale culture is selected.
  • High throughput screening (HTS) technology is a high-tech developed in the 1980s for the development of new compounds and the breeding of target strains. Its basic feature is the use of microplates as a carrier, using high-density, micro-automated sample loading methods, which can quickly test a large number of samples in parallel. High-throughput technology combines the advantages of parallelization, automation, micro-quantification and intensification. High-throughput screening has become a number of successful applications in the field of drug development and microbiology.
  • the artificial climate chamber is a closed isolation device that can manually control factors such as light, temperature, humidity, air pressure and gas composition. Also known as the Controlled Environment Laboratory. It is not restricted by natural conditions such as geography and seasons, and shortens the research cycle. It has become an important equipment for research, teaching and production.
  • the artificial climate box can be divided into three types: room type, box type and hybrid type.
  • the system used for high-throughput culture of algae is relatively simple, and the cultivation of algae is generally placed in an artificial climate chamber in a triangular flask system, and a non-ventilated culture or a single-tube insertion ventilator culture.
  • the light and temperature are controlled by the artificial climate chamber, and the temperature control is more uniform, but this method is difficult to achieve the same effect of illumination and ventilation.
  • there is a culture system which is placed in a shaker.
  • the light and temperature are controlled by the shaker.
  • the gas exchange is accelerated by shaking.
  • the ventilation effect and temperature are relatively consistent, but the illumination is also uneven. Unable to meet the needs of algae growth and high-throughput screening.
  • the above two methods also have problems in that the system and the microalgae grow slowly.
  • the existing light incubator or the light shaker is illuminated by a fluorescent tube, which not only has problems such as uneven illumination and obvious attenuation of illumination, but also has defects such as large heat generation, short life, and discontinuous illumination adjustment.
  • a culture device is currently only suitable for use in a triangular flask culture mode, and these problems are more prominent if used to culture miniaturized experimental samples.
  • the top illumination and sub-fixation of conventional shakers also limit the use of microplates, particularly in terms of ventilation, mixing, cross-contamination, evaporation, and illumination, to meet the implementation of miniaturized high-throughput experimental techniques. Summary of the invention
  • a lighting device includes a light source and a light guiding structure, the light source is disposed on a peripheral side of the light guiding structure, and the light guiding structure is a multi-layer structure, including: The light layer is adapted to emit light from the light source in all directions, the light from the light source is incident into the light guiding layer from the peripheral side surface of the light guiding layer; the bottom surface reflecting film covers the light guiding, preferably, the light source is disposed On one side or both sides of the light guiding structure, from The light of the light source is incident into the light guiding layer from the one side or both sides of the light guiding layer, and the light guiding structure further comprises: a side reflecting film covering the other side of the light guiding layer, suitable for being guided by the light guiding layer Light emitted toward the other side is reflected back to the light guiding layer.
  • the light sources are disposed on opposite sides of the light guiding structure.
  • the ratio of the area of the top surface of the light guiding layer to the area of each of the pair of sides is greater than 10:1.
  • an upper reflection film is further provided on a top surface portion of the light guiding layer near the edge, and preferably, at least one of the bottom surface reflection film and the side reflection film is a total reflection film.
  • the light guiding layer is composed of a base material and at least one of light guiding powder or light guiding and transmitting uniformly distributed in the base material, and the base material comprises a polydecyl acrylate material, a light guiding powder or The light guiding particles comprise nanostructures.
  • the multilayer structure further comprises: a uniform light film on a top surface of the light guiding layer, adapted to emit light uniformly emitted from a top surface of the light guiding layer.
  • the multi-layer structure further comprises: an upper leveling plate disposed above the light guiding layer and adapted to emit light emitted from the top surface of the light guiding layer.
  • the upper leveling plate and the smoothing film are spaced apart by a predetermined distance to form a predetermined space between the upper leveling plate and the smoothing film.
  • a support means is provided between the upper leveling plate and the smoothing film, the supporting means being adapted to adjust the spaced apart predetermined distance to adjust the volume of the predetermined space.
  • the light source comprises an array of LEDs
  • a lens is disposed between the LED array and the light guiding structure, the lens being adapted to condense light from the LED array and project into the light guiding layer.
  • a high throughput culture apparatus comprising the above illumination apparatus.
  • This high-throughput culture device can improve the illumination and light intensity of high-throughput cultures for photosynthetic organisms, including but not limited to microalgae, to meet the needs of photosynthetic organism growth and high-throughput screening.
  • the high-flux culture apparatus further comprises: for placing a culture capable of accommodating photosynthetic organisms A microplate of the structure is provided, the illumination device being located below the microplate to provide illumination to the photosynthetic organism.
  • the culture structure includes a culture flask.
  • the apparatus comprises 4 to 64 orifice plates, and each orifice plate may be any one or more selected from the group of commercially available orifice plates.
  • each orifice plate may be any one or more selected from the group of commercially available orifice plates.
  • the apparatus further includes an oscillating mechanism for providing oscillation to the photosynthetic organism, the oscillating mechanism comprising a shaker platform and a transmission mechanism oscillating the shaker platform, wherein the illuminating device is disposed at the Shaker on the platform.
  • an oscillating mechanism for providing oscillation to the photosynthetic organism, the oscillating mechanism comprising a shaker platform and a transmission mechanism oscillating the shaker platform, wherein the illuminating device is disposed at the Shaker on the platform.
  • the shaker platform surface is provided with an orifice plate fixing device for accommodating and fixing the microplate, and the shaker platform further comprises an upper cover plate covering only a corner portion of the illumination device and a completely covered illumination device And provide a support for the bottom plate.
  • the orifice plate fixing device is preferably a transparent orifice plate fixing device, more preferably a transparent orifice plate holder.
  • the device further comprises: a light intensity control device, by controlling at least one of an LED light wavelength, an LED lamp number, an arrangement of the LED lamps, and a current supplied to the LED array in the LED array included in the light source One to control the intensity of light emitted from the LED array.
  • the photosynthetic organism comprises: algae, photosynthetic bacteria, plant cells, plant tissue.
  • the apparatus further includes temperature control means for controlling the temperature of the photosynthetic organism culture environment, humidity control means for controlling the humidity of the photosynthetic organism culture environment, ventilation control means for controlling ventilation in the photosynthetic biological culture environment, and At least one of gas component regulators that control the concentration of gas in the photosynthetic organism culture environment.
  • the gas includes C0 2 .
  • the gas component regulator (not shown) of the control device is used to adjust the concentration of gas (mainly C0 2 component) in the culture environment to meet the artificial climate culture requirements for simulating photosynthetic organisms.
  • a high-flux culture apparatus set comprising at least two of the above-described high-flux culture apparatus and a control apparatus for controlling the at least two high-flux culture apparatuses.
  • control device includes a temperature control device that controls a temperature of the photosynthetic organism culture environment, a humidity control device that controls humidity of the photosynthetic organism culture environment, a ventilation control device that controls ventilation in the photosynthetic biological culture environment, and Controlling the environment in photosynthetic organisms At least one of gas component regulators of gas concentration.
  • the gas includes co 2 .
  • the illuminating device can be combined with a conventional shaker to enable high-throughput culture of photosynthetic organisms such as microalgae to control illumination, temperature control, humidity control and gas control in a shaking state, and is suitable for photosynthetic organisms such as algae plant height.
  • Temperature, humidity, shaker speed, and illuminance are continuously adjustable within the conditions of flux culture.
  • the temperature can be adjusted by a sensor
  • the humidity can be adjusted by a humidifier
  • the continuous adjustment of the illuminance can be controlled by controlling the current supplied to the LED array of the light source.
  • the high-flux culture equipment of the present invention can adopt a module superposition method, and can stack a plurality of groups, and each group module can independently control temperature, control humidity, control speed, and control light, and further improve the flexibility for screening and contrast research.
  • each group module can independently control temperature, control humidity, control speed, and control light, and further improve the flexibility for screening and contrast research.
  • by stacking a plurality of high-flux culture devices on each other the temperature, humidity, shaker speed, illuminance, and the like of the plurality of culture devices are controlled by the same control device, thereby Design, cost savings.
  • the illumination device of the present invention can achieve more uniform illumination by means of side light illumination, diffuse reflection, and uniform light. Therefore, the apparatus suitable for high-throughput culture of microalgae according to the present invention can be applied to the screening, mutation breeding and genetic engineering breeding of a large number of natural algae species, photosynthetic bacteria, plant cells, plant tissues and the like in nature. technology.
  • Fig. 1 is a schematic view showing the constitution of a device suitable for high-throughput cultivation of photosynthetic organisms such as microalgae according to the present invention
  • Figure 2 shows a shaker platform in which a lighting device according to the present invention is provided for apparatus for performing high-throughput cultivation of photosynthetic organisms such as microalgae;
  • Figure 3A is an enlarged schematic view of a portion A in Figure 2;
  • Figure 3B is an enlarged schematic view of a portion B in Figure 2;
  • 3C is an enlarged schematic view of a portion C of FIG. 2;
  • 3D is an enlarged schematic view of a portion D in FIG. 2;
  • Fig. 4 is a schematic view showing the direction of travel of light from a light source in a light guiding structure; and Fig. 5 illustrates the correlation between microalgae culture and conventional culture mode using the high-throughput culture apparatus of the present invention.
  • the high-throughput culture apparatus of the present invention can be used not only for high-throughput culture of microalgae, but also for high-throughput cultivation of all photosynthetic organisms such as algae, photosynthetic bacteria, plant cells, and plant tissues.
  • photosynthetic organisms such as algae, photosynthetic bacteria, plant cells, and plant tissues.
  • the present invention is described by taking only microalgae as an example.
  • FIG. 1 shows an apparatus suitable for high flux culture of microalgae in accordance with the present invention.
  • an apparatus 100 suitable for high-throughput culture of microalgae includes a culture unit 1 and a control unit 4.
  • the culture unit 1 and the control device 4 are left and right structures, wherein in the left side portion of FIG. 1, a shaker table 2 and a support shaker table 2 are disposed.
  • the transmission mechanism 3 adapted to oscillate the shaker table 2 enables oscillation culture of the microalgae.
  • a illuminating device 5 is provided on the shaker platform 2 for providing illumination to the microplate 10 seeded with microalgae placed above the shaker platform 2.
  • the microplate 10 may include any one or more of general-purpose microplates of 6 holes, 12 holes, 24 holes, 48 holes, 96 holes, 384 holes, 1536 holes, and the like. According to one embodiment of the invention, the microplate 10 may be replaced by other microalgae culture bearing structures, such as shake flasks or flasks. According to another embodiment of the present invention, the culture unit 1 and the control device 4 may also be upper and lower structures, wherein the control device 4 is located in the casing of the apparatus 100 and is located above the culture unit 1. According to still another embodiment of the present invention, the culture unit 1 and the control device 4 may also be integrated, that is, the control device 4 and the culture unit 1 are inside the casing of the apparatus 100, as shown in FIG. 1; That is, the control device 4 is not inside the casing of the device 100.
  • the culture unit 1 and the control device 4 may also be integrated, that is, the control device 4 and the culture unit 1 are inside the casing of the apparatus 100, as shown in FIG. 1; That is,
  • the microplate 10 is secured within the housing of the device 100 by an orifice plate fixture or stage (not shown), and the illumination device 5 is positioned below the microplate 10 to supply a light source from the bottom thereof.
  • This facilitates sealing of the top of the microplate, preventing cross-contamination, ensuring ventilation, evaporating consistency, increasing the rotational speed, and increasing the ventilation effect.
  • a plurality of microplates 10, for example, 24, may be disposed in the high-flux culture apparatus.
  • each of the microplates 10 may be any one or more selected from the group consisting of general-purpose microplates of 6 holes, 12 holes, 24 holes, 48 holes, 96 holes, 384 holes, 1536 holes, and the like.
  • a temperature sensor 6, a humidifying hole 7, a heating fan 8, a cooling fan 9, a gas component regulator (such as a C0 2 concentration sensor) (not shown), an evaporator, and a compressor may be further provided. (not shown) or the like, in which the control device 4 is provided in the right side portion of FIG. 1, thereby controlling the environment in which the microalgae is cultured in the tank of the apparatus 100, including temperature, humidity, ventilation, C0 2 concentration, and the like. A good environment suitable for microalgae cultivation is achieved.
  • the gas composition regulator is used to adjust the concentration of gas (mainly C0 2 component) in the culture environment to meet the artificial climate culture requirements for simulating photosynthetic organisms.
  • Fig. 2 shows a shaker platform in which a lighting device in a device suitable for high-throughput cultivation of microalgae according to the present invention is provided.
  • the lower left is the top view of the shaker platform
  • the upper left is the sectional view taken along line I - 1
  • the lower right is the sectional view taken along line 11 - 11 of it.
  • the lighting device 5 is disposed in the shaker platform 2, can be rocked with the shaker platform 2, and provides illumination to the microplate 10 inoculated with the microalgae above the shaker platform 2, Thereby, the microalgae can be shake-cultured.
  • the surface of the shaker platform 2 is provided with an orifice holder 201, such as a square orifice holder, for accommodating and fixing the microplate, preferably a transparent orifice holder, so as to be placed from the shaker.
  • an orifice holder 201 such as a square orifice holder, for accommodating and fixing the microplate, preferably a transparent orifice holder, so as to be placed from the shaker.
  • Light from the illumination device 5 under the surface of the platform 2 can be projected through the transparent orifice holder 201 to the microplate.
  • the orifice holder 201 can also be mounted on the inner wall surface of the apparatus 100 by screwing to achieve the effect that the orifice holder 201 is disposed on the surface of the shaker table 2.
  • the shaker platform 2 and the lighting device 5 therebelow can be assembled by screws 202 or the like.
  • the illumination device 5 is located between the upper cover 203 and the bottom plate 204.
  • the upper cover 203 covers only the corner portion of
  • the illuminating device 5 includes a light source 501 and a light guiding structure.
  • the light source 501 is disposed on two sides of the light guiding structure, preferably disposed on opposite sides of the light guiding structure, and the light is incident on the light guiding structure.
  • the light source can also be disposed on the peripheral side of the light guiding structure, for example, the light source can be set
  • the light sources may be symmetrically disposed on four sides of the light guiding structure.
  • the light source may also be disposed on one or both sides of the light guiding structure, such as a pair of symmetrically disposed sides.
  • the light source 501 adopts an LED array, which can overcome the defects such as large heat dissipation of a conventional light source such as a fluorescent tube, uneven illumination, obvious illuminance attenuation, short life, and discontinuous illumination adjustment.
  • the illumination intensity can be adjusted by adjusting the current supplied to the LED array.
  • the light guiding structure is configured to provide light from the light source to the microplate 10 inoculated with the microalgae.
  • the embodiment of the present invention employs a bottom light supply mode in which the illumination device 5 is disposed under the microplate 10, and the light guiding structure directs light from the light source 501 to be uniformly projected upward toward the microplate 10.
  • FIG. 3A-3D show the structure of the illumination device according to the present invention in detail, wherein FIG. 3A is an enlarged schematic view of a portion A of FIG. 2, FIG. 3B is an enlarged schematic view of a portion B of FIG. 2, and FIG. 3C is an enlarged view of FIG. An enlarged view of the C portion, and FIG. 3D is an enlarged view of the portion D of FIG. 2.
  • the light guiding structure is a multi-layer structure including a light guiding layer 503 and a bottom surface reflecting film 504 covering the bottom surface of the light guiding layer 503, and the light guiding layer 503 is adapted to the light source.
  • the incident light 501 is reflected, refracted or transmitted in various directions, and the bottom reflective film 504 is adapted to reflect the light incident on the bottom surface of the light guiding layer 503 back into the light guiding layer 503.
  • a reflection plate 506 may be further disposed below the bottom surface reflection film 504, which can further reflect the light that is incident on the bottom surface of the light guide layer 503 and the light that exits the bottom surface reflection film 503 back into the light guide layer 503.
  • a uniform light film 507 may be disposed on the top surface of the light guiding layer 503, and the uniform light film 507 may homogenize the light emitted from the light guiding layer 503.
  • an upper reflecting film 509 may be further disposed, and the upper reflecting film 509 is adapted to reflect light rays which are intended to be obliquely emitted from the periphery of the top surface. The light layer 503 is returned.
  • the reflecting plate 506, the bottom reflecting film 504, the light guiding layer 503, the uniform light film 507, and the upper reflecting film 509 are sequentially disposed between the bottom plate 204 and the upper cover 203, and the upper cover 203 is formed therein.
  • an upper leveling plate 508 may be disposed above the light guiding layer 503, and the upper plate 203 is located on the upper cover plate 203.
  • the lower surface supports the upper cover 203 and is adapted to further homogenize the light emitted from the light guiding layer 503. According to an embodiment of the present invention, as shown in FIGS.
  • the upper leveling plate 508 and the light guiding layer 503 may be spaced apart by a predetermined distance to form a certain boundary between the upper leveling plate 508 and the light guiding layer 503.
  • Space 510 The light emitted from the light guiding layer 503 collides with air such as air in the space 510, and diffuse reflection occurs, so that the emitted light is more evenly hooked.
  • a height-adjustable supporting device is disposed between the upper light-homogenizing plate 508 and the light guiding layer 503, and the supporting copper pillar 21 1 as shown in FIG. 3B can adjust the predetermined distance.
  • the volume of the space 510 is adjusted so that the degree of diffuse reflection of the light emitted from the light guiding layer 503 can be adjusted, that is, the larger the space, the more sufficient the diffused reflection is performed, and the more uniform the emitted light is.
  • a sealing pad 210 is disposed between the upper leveling plate 508 and the upper reflecting film 509 to protect the light source from changes in the humidity of the culture environment.
  • LED P ⁇ l 501 is disposed on a substrate 502, such as an aluminum substrate.
  • the substrate 502 is fixed to the side substrate 205, and the LED array 501 projects light onto the two light incident sides of the light layer 503.
  • the side substrate 205 may have an L shape, completely covering the side of the light guiding structure, and extending a certain length below the light guiding structure.
  • the side substrate 205 extending under the light guiding structure and the bottom plate 204 are fixed together by a connecting means such as a screw 206.
  • Supporting means 208 and 209 such as pads may be disposed between the light guiding layer 503 and the side substrate 205 and between the upper leveling plate 508 and the light guiding layer 503.
  • a side reflection film 505 is also provided at the other two sides of the light guiding structure, that is, on the two sides of the light guiding layer 503 in the non-lighting direction (for example, two sides perpendicular to the light incident side)
  • a side reflection film 505 is also provided.
  • the light from the LED P ⁇ l 501 is concentrated by the lens 51 1 (shown in FIG. 3D) and then incident on the light guiding layer 503, and reflected from the bottom reflecting film 504 and the side reflecting film 505 from the top of the light guiding layer 503.
  • the face is ejected and projected onto the microplate 10 inoculated with microalgae.
  • Fig. 3D shows the detailed structure of the light source.
  • the LED array 501 is electrically connected to the substrate 502, and a lens 511 is disposed on the upper surface of each of the LED units, and the lens 51 1 is used to concentrate the light emitted from the LED array into the light guiding layer 503.
  • the light guiding layer 503 is composed of a base material 5030 and a light guiding powder or light guiding particles 5031 uniformly distributed in the base material 5030.
  • the base material 5030 can be, for example, a poly A decyl acrylate (PMMA) material, which typically has a high refractive index.
  • PMMA poly A decyl acrylate
  • the light guiding powder or light guiding particles 5031 may be nano light guiding powder or particles.
  • the light beam emitted by the LED array 501 is concentrated by the lens 511 and projected into the light guiding layer 503. Since the light guiding particles 5031 are distributed in the base material 5030, each light enters the light guiding layer. There are two possibilities: one is to follow the original route, and the other is to refract, reflect or transmit with the light guiding particles 5031. The light entering the light guiding layer 503 uniformly passes through the six faces of the light guiding layer after undergoing multiple refractions and reflections.
  • a reflective film or a reflecting plate such as 504, 506, and 505
  • the bottom surface reflecting film 504 covering the bottom surface of the light guiding layer 503 will attempt to pass the light guiding layer.
  • the light emitted from the bottom surface of 503 is again reflected back to the light guiding layer 503, and the side reflecting film 505 will attempt to exit from the top surface of the light guiding layer 503 and the two light incident sides from the final light.
  • the area of the top surface of the light guiding layer 503 is set to be much larger than the area of the light incident side surface, and all of the light lines are almost all ejected from the top surface side of the light guiding layer 503.
  • a ratio of an area of a top surface of the light guiding layer to each of the other pair of side surfaces is set to be greater than about 10:1 such that light entering the light guiding structure from the light source is almost entirely
  • the microporous plate 10 inoculated with the microalgae is uniformly emitted from the top surface side of the light guiding layer, thereby improving the light efficiency.
  • the apparatus when a light source is disposed on a peripheral side surface of the light guiding structure, the apparatus does not need to provide a side reflection film.
  • the light emitted from the top surface side of the light guiding layer 503 is homogenized by the gas passing through the homogenizing film 507 and the upper homogenizing plate 508 and the space therebetween, and is projected onto the microplate 10 inoculated with the microalgae to the microalgae Light culture.
  • the bottom reflecting film 504 and the side reflecting film 505 may be composed of a total reflection layer or a total reflection film.
  • the light intensity distribution of the designed shaker reaches the requirement of high-throughput screening of microalgae by measuring the light intensity at different positions.
  • the experimental procedure was as follows: setting the temperature of the shaker to 25 ° C and the light intensity to 40001 ux, and measuring the light intensity at the upper left corner, the upper right corner, the lower left corner, the lower right corner and the center position of the designed shaker by an illuminometer.
  • a 96-well plate was used as a measurement standard in the measurement.
  • Data processing uses SPSS Statistics 17.0 software.
  • the uniformity of illumination between the wells of each microplate was evaluated by calculation of the coefficient of variation (CV) of the illumination intensity at each well in each microplate and one-way analysis of variance (ANOVA).
  • the uniformity of illumination at different locations was evaluated by the calculation of the coefficient of variation (CV) and the one-way analysis of variance (ANOVA) of the light intensity averages in five microplates at different locations.
  • the above data processing is measured by the error P ⁇ 0.05 as a significant level.
  • the CV between each hole of each microplate was calculated as: 9.32% in the upper left corner, 9.85% in the upper right corner, 9.43% in the lower left corner, 10.22% in the lower right corner, and 8.34% in the center.
  • the degree of freedom F > Fo.os between the wells of each microplate was obtained by one-way analysis of variance, and the error P ⁇ 0.05. Therefore, the difference in growth of algae between the wells did not reach a significant level, indicating the micro at each position.
  • the light intensity distribution between the holes of the orifice plate is relatively uniform, which can meet the high-throughput screening of microalgae.
  • a 96-well plate, a 48-well plate, a 24-well plate, and a 12-well plate are respectively selected, and illumination is provided by the illumination device of the present invention, and the algae Chlorella vulgaris (purchased in the freshwater algae of the Institute of Hydrobiology, Chinese Academy of Sciences) Library, No. 1068) was cultured using BG11 medium (see Table 1-3 below).
  • the correlation between the microalgae culture and the conventional culture mode using the high-flux culture apparatus of the present invention will be analyzed.
  • the cultivation of microalgae through a microplate using the high-throughput culture apparatus of the present invention was carried out by comparing the growth ability of three different algae species under shaking under a certain experimental condition in a shake flask and a microplate. Whether there is a high correlation between microalgae.
  • the algae species used in the experiment were: Chlorella vulgaris, Scenedesmus quadricauda, Oscillatoria sp (the above algae species were purchased from the Institute of Aquatic Biology of the Chinese Academy of Sciences), all using BG1 1 medium (see Table 1), selected
  • the microplate type was 48 wells and the microplate was sealed by a silica gel plate cover.
  • the experimental procedure is as follows: a certain amount of algal liquid in the logarithmic growth phase is inoculated into the sterilized medium at a 20% inoculation amount, and the volume of the shake flask is The volume of the 48-well microplate was 500 ⁇ , the shake flask was sealed with 8 layers of gauze, and the microplate was sealed with a silica gel plate cover (the above experiments were carried out under aseptic conditions).
  • the experimental conditions were as follows: temperature 25 °C, light SO mol. mAs- 1 , photoperiod 12 hL/12 hD, shaker speed 180 rpm, culture period 14 days.
  • the growth trends of the growth curves of the various algae species on the shake flask and the microplate can be obtained from Fig. 5, indicating that the algae species used in the high-throughput screening device for each algae species Its own characteristics will not have an impact. And pass the OD 75 at each time point in the shake flask and microplate.
  • the light from the light source is mainly emitted from the top surface of the light guiding layer, thereby improving the high flux for the microalgae.
  • the light intensity and light intensity of the culture are met to meet the needs of microalgae growth and high-throughput screening.
  • the LED array as a light source, it can overcome the defects of large heat dissipation such as fluorescent tubes, uneven illumination, obvious illuminance attenuation, short life, and discontinuous illumination adjustment.
  • By adjusting the current supplied to the LED array it can be easily Adjust the light intensity to achieve algae cultivation under uniform light conditions.
  • the entire shaker table can be provided as a uniform illuminant, and the use of the microplates of various forms can be satisfied at the same time, without being restricted by the morphological configuration of the orifice.
  • the present invention adopts a bottom light supply mode, which is convenient for sealing the upper portion of the microplate, thereby preventing cross contamination, ensuring ventilation, evaporating consistency, increasing the rotation speed, and increasing the ventilation effect.
  • the skilled person has tried to install the light source in the microbial incubator, so as not to affect the experimental operation, it can only be installed in the microbial culture.
  • the top or side of the box however, the light supply on the top or side causes uneven illumination inside the incubator, affecting the screening results, and the optical path is longer, the illuminance is high, the light utilization is low, and the light adjustment is not sensitive.
  • the light supply at the bottom of the stage is realized, and the illumination of the microalgae in the high-flux culture is achieved, the illumination is reduced, the light utilization is improved, the light adjustment is sensitive, and the microalgae is high.
  • the need for flux cultivation The LED array used in the illumination device of the present invention does not have the disadvantage of much heat dissipation from ordinary fluorescent tubes.
  • the illuminating device can be combined with a conventional shaker to realize high-flux culture of microalgae under controlled lighting, temperature control, humidity control and gas control, in a condition range suitable for high-throughput culture of algae strains.
  • the temperature, humidity, shaker speed and illuminance are continuously adjustable.
  • the temperature can be adjusted by a temperature sensor
  • the humidity can be adjusted by a humidifier
  • the C0 2 concentration can be adjusted by a C0 2 sensor
  • the illuminance can be continuously adjusted by controlling the current supplied to the LED array included in the light source. .
  • the high-flux culture equipment of the present invention can adopt a module superposition method, and can stack a plurality of groups, and each group module can independently control temperature, control humidity, control speed, and control light, and further improve the flexibility for screening and comparative research.
  • the temperature, humidity, shaker speed, illuminance, and the like of the plurality of culture devices are controlled by the same control device, thereby Design, cost savings.
  • the illumination device of the present invention can achieve more uniform illumination by means of side light illumination, diffuse reflection, and uniform light.
  • the apparatus suitable for high-throughput culture of microalgae according to the present invention can be applied to the screening, mutation breeding and genetic engineering breeding of a large number of natural algae species, photosynthetic bacteria, plant cells, plant tissues and the like in nature. technology.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

照明装置、 包括该装置的高通量培养设备
技术领域
本发明涉及光合生物 (包括但不限于微藻) 产业化应用领域, 且具体 地, 涉及用在光合生物的高通量筛选中的适于进行光合生物高通量培养的 设备。 背景技术
微藻是一类在陆地、 海洋分布广泛, 营养丰富、 光合利用度高的自养 微生物。 许多微藻能够在细胞中积累大量的油脂, 有些藻类在氮元素缺乏 时脂肪酸含量可达细胞干重的 80% , 通过生物炼制的方法可从这类微藻中 提取油脂, 用于制备食用油和生物柴油; 微藻还可用于废水处理等工业处 理过程中, 以减少环境污染。
微藻的环境友好特性、 对人和动物的保健特性及其生物能源的良好应 用性, 引发了全球微藻生物能源研发热潮, 并逐渐朝规模化、 产业化靠近, 但是商业化开发还有许多技术瓶颈需要突破, 其中微藻藻种的改良最为重 要, 而优良微藻藻株的筛选又是重中之重。 优良微藻藻株的筛选必须通过 它们不同性能进行比较, 如生长速度、 细胞中的生化组成成分、 对环境的 抗性等, 进而综合考虑选出适用于规模化培养的藻株。
高通量筛选 (High throughput screening, HTS)技术是 20世纪 80年代发 展起来的一种用于新化合物开发及目的菌种选育等方面的高新技术。 它的 基本特点是以微孔板为载体, 采用高密度、 微量自动化加样的方法, 能快 速平行地测试大量样本。 高通量技术兼具平行化、 自动化、 微量化及集约 化的优点。 高通量筛选成为药物开发和微生物领域有很多较为成功的应用。
在利用微藻制备生物柴油及高附加值产品的研究中, 藻种的筛选占据 重要的位置, 其中高通量筛选将发挥重要的作用, 大大地降低研究过程中 对于人力、 物力和时间的消耗。 另外, 还可以为发展潜力较大的基因工程 育种提供强有力的技术保障, 推进微藻相关产业化的进程。 合理有效的培 养方法及条件控制对于藻种高通量培养具有重要的作用。
人工气候箱是可人工控制光照、 温度、 湿度、 气压和气体成分等因素 的密闭隔离设备。 又称可控环境实验室。 它不受地理、 季节等自然条件的 限制并能缩短研究的周期, 已成为科研、 教学和生产的一种重要设备。 人 工气候箱可分为房式、 箱式和混合式 3种。
目前, 实验室用于藻种高通量培养的体系相对比较筒单, 藻株的培养 一般都是在三角瓶系统置于人工气候箱中, 不通气培养或筒单的插入通气 管通气培养, 光照和温度均由人工气候箱来调控, 温度控制较均勾, 但是 这种方式难以实现光照和通气效果的一致。 另外还有一种培养系统就是置 于摇床中, 光照和温度均由摇床来调控, 通过摇动加速气体交换, 这种方 式的通气效果和温度相对一致, 但是同样面临光照不均勾、 光照强度无法 满足藻类生长和高通量筛选需要的问题。 另外, 上述两种方式还存在体系 大和微藻生长緩慢的问题。
并且, 现有的光照培养箱或光照摇床是采用日光灯管进行光照, 不仅 存在光照不均勾、 光照度衰减明显等问题外, 还存在产热大、 寿命短、 光 照度调节不连续等缺陷。这样的培养装置目前只适合采用三角瓶培养方式, 如果用于培养微型化实验样品, 这些问题会更加突出。 此外, 传统摇床的 顶部光照和器亚固定方式也限制了微孔板的使用, 特别在解决通气、 混合、 交叉污染、 蒸发和光照方面, 无法满足微型化高通量的实验技术实施。 发明内容
有鉴于此, 本发明的目的在于解决现有技术中存在的上述问题和缺陷 的至少一个方面。
根据本发明的一个方面, 提供一种照明装置, 该照明装置包括光源和 导光结构, 所述光源设置在所述导光结构的周边侧面, 所述导光结构为多 层结构, 包括: 导光层, 适于将来自光源的光向各个方向均勾地射出, 来 自光源的光从导光层的周边侧面入射到导光层中; 底面反射膜, 覆盖导光 优选地, 所述光源设置在所述导光结构的一个侧面或两个侧面, 来自 光源的光从导光层的所述一个侧面或两个侧面入射到导光层中, 所述导光 结构还包括: 侧面反射膜, 覆盖导光层的另外的侧面, 适于将由导光层向 所述另外的侧面射出的光反射回导光层。
优选地, 所述光源设置在所述导光结构的相对的两侧。
优选地, 导光层的顶面的面积与所述一对侧面中的每一个侧面的面积 之比大于 10: 1。
优选地, 在导光层的靠近边缘的顶面部分上, 还设置有上反射膜, 上 优选地, 所述底面反射膜和侧面反射膜中的至少一个为全反射膜。 优选地, 导光层由基底材料和均勾地分布在基底材料中的导光粉或导 射和透射中的至少一种, 并且, 基底材料包括聚曱基丙烯酸曱酯材料, 导 光粉或导光颗粒包括纳米结构。
优选地, 该多层结构还包括: 位于导光层顶面上的均光膜, 适于将从 导光层的顶面出射的光均勾地发射。
优选地, 该多层结构还包括: 上均光板, 设置在导光层的上方, 适于 将从导光层的顶面出射的光均勾地发射。
优选地, 上均光板和均光膜之间隔开预定的距离, 以在上均光板和均 光膜之间形成预定的空间。
优选地, 在上均光板和均光膜之间设置有支撑装置, 该支撑装置适于 调整所述隔开预定的距离, 以调整所述预定的空间的体积。
优选地, 其中, 所述光源包括 LED阵列, 并且, 在 LED阵列和导光 结构之间设置有透镜, 该透镜适于将来自 LED阵列的光会聚后投射到导光 层中。
根据本发明的另一方面, 提供一种高通量培养设备, 该设备包括上述 的照明装置。 该高通量培养设备能够改善用于光合生物 (包括但不限于微 藻) 的高通量培养的光照均勾度和光照强度, 满足光合生物的生长和高通 量筛选的需要。
优选地, 所述高通量培养设备还包括: 用于放置可容纳光合生物的培 养结构的微孔板, 所述照明装置位于所述微孔板的下方以对所述光合生物 提供光照。 所述培养结构包括培养瓶。
优选地, 所述设备包括 4~64个 孔板, 每个 孔板可以是选自市场上 通用的敫孔板中的任何一种或几种。 例如, 6孔、 12孔、 24孔、 48孔、 96 孔、 384孔、 1536孔等通用的 孔板中任何一种或几种, 更优选为 24个 孔板, 96孔的 孔板。
优选地, 所述设备还包括用于对光合生物提供振荡的振荡机构, 所述 振荡机构包括摇床平台和对所述摇床平台进行振荡的传动机构, 其中, 所 述照明装置设置在所述摇床平台上。
优选地, 所述摇床平台表面上设置用于容纳并固定微孔板的孔板固定 装置, 并且, 所述摇床平台还包括仅覆盖照明装置的角落部分的上盖板和 完全覆盖照明装置并向其提供支撑的底板。 孔板固定装置优选为透明孔板 固定装置, 更优选为透明孔板固定架。
优选地, 其中, 该设备还包括: 光强度控制装置, 通过控制所述光源 所包括的 LED阵列中 LED灯光波长、 LED灯的数量、 LED灯的排布以及 提供至 LED阵列的电流中的至少一个来控制从 LED阵列出射的光的强度 优选地, 所述光合生物包括: 藻类、 光合细菌、 植物细胞、 植物组织。 优选地, 所述设备还包括控制所述光合生物培养环境温度的温度控制 装置、 用于控制所述光合生物培养环境湿度的湿度控制装置、 控制光合生 物培养环境中的通气的通风控制装置、 以及控制光合生物培养环境中的气 体的浓度的气体成分调节器中的至少一个。 所述气体包括 C02。 其中, 控 制装置的气体成分调节器 (未图示) , 用于调节培养环境中气体 (主要是 C02成分) 的浓度, 以达到模拟光合生物的人工气候培养要求。
根据本发明的再一方面, 提供一种高通量培养设备组, 所述设备组包 括至少两个上述的高通量培养设备以及对该至少两个高通量培养设备进行 控制的控制装置。
优选地, 所述控制装置包括控制所述光合生物培养环境温度的温度控 制装置、 用于控制所述光合生物培养环境湿度的湿度控制装置、 控制光合 生物培养环境中的通气的通风控制装置、 以及控制光合生物培养环境中的 气体的浓度的气体成分调节器中的至少一个。 所述气体包括 co2
根据本发明的照明装置可以和常规摇床相结合, 能够实现光合生物例 如微藻在摇动状态下控光照、 控温、 控湿和控气的高通量培养, 在适合光 合生物例如藻株高通量培养的条件范围内, 温度、 湿度、 摇床速度、 光照 度连续可调。 根据本发明的一实施方式, 可以通过传感器来调节温度, 通 过加湿器来调节湿度, 通过控制提供至所述光源的 LED阵列的电流来控制 光照度的连续可调。
并且, 本发明的高通量培养设备可以采用模块叠加方式, 可叠加多组, 每组模块可独立控温、 控湿、 控速、 控光, 进一步提高其用于筛选对比研 究的灵活性。 根据本发明的一实施方式, 通过将多个高通量培养设备相互 叠放, 而通过同一个控制装置来对该多个培养设备的温度、 湿度、 摇床速 度、 光照度等进行控制, 从而筒化设计, 节省成本。
进一步, 本发明中的照明装置采用侧光照射、 漫反射、 均光等手段能 够实现更均勾的光照度。 由此, 根据本发明的适于进行微藻高通量培养的 设备能够应用于自然界大量藻种、 光合细菌、 植物细胞、 植物组织等一切 光合生物的筛选、 诱变育种和基因工程育种等育种技术。 附图说明
参阅后续的图示与描述将可更好地了解本发明的上述和其它特征和优 点。 文中未详列暨非限制性的实施例则请参考该后续图示的描述。 图示中 的组成元件并不一定符合比例, 而系以强调的方式描绘出本发明的原理。 在各图示中, 相同的元件在不同图示中用相同的附图标记表示。 在附图中: 图 1 为示出根据本发明的适于进行微藻等光合生物高通量培养的设备 的构成部分的示意图;
图 2示出了其中设置有根据本发明的适于进行微藻等光合生物高通量 培养的设备的照明装置的摇床平台;
图 3A为图 2中的 A部分的放大示意图;
图 3B为图 2中的 B部分的放大示意图;
图 3C为图 2中的 C部分的放大示意图; 图 3D为图 2中的 D部分的放大示意图;
图 4为示出来自光源的光线在导光结构中的行进方向的示意图; 以及 图 5 图示了利用本发明的高通量培养设备的藻细胞微型化培养和常规 培养方式下的相关性。 具体实施方式
下面将结合附图及具体实施方式对本发明做进一步的说明。
本发明的高通量培养设备不仅可以用于微藻的高通量培养, 也可以用 于任何藻类、 光合细菌、 植物细胞、 植物组织等一切光合生物的高通量培 养。 为了便于理解, 本发明仅以微藻为例进行说明。
图 1示出了根据本发明的适于进行微藻高通量培养的设备。 如图 1所 示, 适于进行微藻高通量培养的设备 100 包括培养单元 1和控制装置 4。 根据本发明的一个实施例, 如图 1所示, 培养单元 1和控制装置 4为左右 结构, 其中, 在图 1 中的左侧部分中, 设置有摇床平台 2和支撑摇床平台 2并适于对摇床平台 2进行振荡的传动机构 3 , 由此能够实现微藻的振荡培 养。 其中, 在摇床平台 2上设置有照明装置 5 , 其用于向放置在摇床平台 2 上方的接种有微藻的微孔板 10提供光照。微孔板 10可以包括 6孔、 12孔、 24孔、 48孔、 96孔、 384孔、 1536孔等通用的微孔板中任何一种或几种。 根据本发明的一种实施方式, 微孔板 10 可以由其它微藻培养承载结构代 替, 如摇瓶或三角瓶等。 根据本发明的另一实施方式, 培养单元 1 和控制 装置 4也可以为上下结构, 其中控制装置 4位于设备 100的箱体内, 并且 位于培养单元 1的上方。 根据本发明的再一实施方式, 培养单元 1和控制 装置 4还可是一体式的, 即控制装置 4和培养单元 1在设备 100的箱体内 部, 如图 1所示; 也可是分体式的, 即控制装置 4不在设备 100的箱体内 部。
在一种实施方式中, 微孔板 10通过孔板固定装置或载物台(未图示)固 定在设备 100的箱体内, 照明装置 5位于微孔板 10的下方, 从其底部供给 光源, 从而便于将微孔板上方密封, 能够防止交叉污染、 保证通气、 蒸发 一致性、 增加转速、 增加通气效果等。 根据本发明的一个实施方式, 在该高通量培养设备中可以设置多个微 孔板 10, 例如, 24个。 并且, 每个微孔板 10可以是选自市场上的 6孔、 12孔、 24孔、 48孔、 96孔、 384孔、 1536孔等通用的微孔板中任何一种 或几种。
在箱体结构 1中, 还可以设置有温度传感器 6、 加湿孔 7、 加热风机 8、 制冷风机 9、 气体成分调节器(诸如, C02浓度传感器) (未图示) 、 蒸发 器和压缩机 (未图示)等, 在图 1中的右侧部分中设置有控制装置 4, 由此对 设备 100的箱体内培养微藻的环境, 包括温度、 湿度、 通风、 C02浓度等 进行控制, 实现适于微藻培养的良好环境。 其中, 气体成分调节器用于调 节培养环境中气体(主要是 C02成分) 的浓度, 以达到模拟光合生物的人 工气候培养要求。
图 2示出了其中设置有根据本发明的适于进行微藻高通量培养的设备 中的照明装置的摇床平台。 其中在图 2 中, 左下方为摇床平台的俯视图, 左上方为沿其中的 I - 1线截取的剖视图,右下方为沿其中的 11 - 11线截取的剖 视图。 根据本发明的一种实施方式, 照明装置 5设置在摇床平台 2中, 能 够随摇床平台 2—起摇动, 并向摇床平台 2上方的接种有微藻的微孔板 10 提供光照, 由此能够对微藻进行摇动培养。
如图 2所示, 摇床平台 2表面上设置有孔板固定架 201 , 如方形孔板 固定架, 用于容纳并固定微孔板, 优选为透明孔板固定架, 使得来自设置 在摇床平台 2表面下的照明装置 5的光线可以穿过透明孔板固定架 201投 射向微孔板。 孔板固定架 201也可安装在设备 100的箱体内壁面, 通过螺 釘固定, 达到孔板固定架 201设置在摇床平台 2表面上的效果。 摇床平台 2和其下的照明装置 5之间可以通过螺釘 202等组装在一起。 根据本发明 的实施方式, 照明装置 5位于上盖板 203和底板 204之间。 上盖板 203仅 覆盖照明装置 5的角部部分, 以便于光线出射。 底板 204完全覆盖照明装 置 5并向其提供支撑。
如图 2所示, 照明装置 5包括光源 501和导光结构, 光源 501设置在 导光结构的两侧, 优选设置在导光结构的相对的两侧, 向导光结构中入射 光线。 当然, 光源也可以设置在导光结构的周边侧面, 诸如, 光源可以设 置在导光结构的四个侧面, 例如, 导光结构为板式形状结构时, 光源可对 称设置在导光结构的四个侧面。 或者, 光源也可以设置在导光结构的单侧 或两个侧面, 例如一对对称设置的两个侧面。 根据本发明的一种实施方式, 光源 501采用 LED阵列, 这可以克服诸如日光灯管等常规光源的散热大、 光照不均勾、 光照度衰减明显、 寿命短、 光照度调节不连续等缺陷。 通过 调节供给至 LED阵列的电流, 可以调节其光照强度。
在本发明中, 导光结构构造为适于将来自光源的光均勾地提供至接种 有微藻的微孔板 10。 本发明的实施方式采用底部供光方式, 照明装置 5设 置在微孔板 10 的下方, 导光结构引导来自光源 501 的光向上向着微孔板 10均匀地投射。
图 3A-3D详细示出了根据本发明的照明装置的结构,其中图 3A为图 2 中的 A部分的放大示意图, 图 3B为图 2中的 B部分的放大示意图, 图 3C 为图 2中的 C部分的放大示意图, 以及图 3D为图 2中的 D部分的放大示 意图。
根据本发明的实施方式, 如图 3A和 3B所示, 导光结构为多层结构, 包括导光层 503和覆盖导光层 503底面的底面反射膜 504 , 导光层 503适 于将从光源 501入射的光线均勾地向各个方向反射、 折射或透射, 底面反 射膜 504适于将射向导光层 503底面的光线反射回导光层 503中。 在底面 反射膜 504的下方还可以设置反射板 506 ,其能够进一步将射向导光层 503 底面的光线和射出底面反射膜 503的光线反射回导光层 503中。
根据本发明的一种实施方式, 在导光层 503 的顶面上还可以设置有均 光膜 507, 均光膜 507可以对从导光层 503 出射的光线进行均化。 在本发 明的另一种实施方式中, 在导光层 503 的靠近边缘的顶面部分上, 还可以 设置上反射膜 509 , 上反射膜 509适于将试图从顶面周边倾斜出射的光线 反射回导光层 503。
在本发明中, 反射板 506、 底面反射膜 504、 导光层 503、 均光膜 507、 上反射膜 509顺次设置在底板 204和上盖板 203之间, 且上盖板 203中形 成有适于从导光层 503 出射的光线通过的开口。 根据本发明的一种实施方 式, 在导光层 503 的上方还可以设置有上均光板 508 , 其位于上盖板 203 的下面并支撑上盖板 203 , 且适于进一步均化从导光层 503出射的光线。 根据本发明的一种实施方式, 如图 3A-3C所示, 上均光板 508与导光 层 503之间可以隔开预定距离, 以便在上均光板 508与导光层 503之间形 成一定的空间 510。 从导光层 503 出射的光线在该空间 510 内与例如空气 之类的空气碰撞, 发生漫反射, 使得出射的光更加均勾。 在一种实施方式 中, 在上均光板 508与导光层 503之间设置有高度可调的支撑装置, 如图 3B所示的支撑铜柱 21 1 , 其能够调整上述预定距离的大小, 以便调整所述 空间 510的容积,从而可调整从导光层 503出射的光线发生漫反射的程度, 即所述空间越大, 漫反射进行的越充分, 出射的光越均勾。 在上均光板 508 和上反射膜 509之间设置密封胶垫 210, 以保护光源不受培养环境湿度变 化的影响。
根据本发明的实施方式, 如图 3A和 3B所示, LED P车歹l 501设置在基 板 502上, 如铝基板。 基板 502固定至侧基板 205上, LED阵列 501向导 光层 503的两个光入射侧面投射光线。 侧基板 205可以为 L形状, 完全覆 盖导光结构的侧面, 并在导光结构下面延伸一定长度。 导光结构下面延伸 的侧基板 205与底板 204通过诸如螺釘 206之类的连接装置固定一起。 在 导光层 503和侧基板 205之间以及上均光板 508和导光层 503之间可以设 置诸如垫圏之类的支撑装置 208和 209。
在本发明中, 如图 3C所示, 在导光结构的另外两个侧面处, 即在导光 层 503的非来光方向的两个侧面(例如, 垂直于光入射侧面的两个侧面) , 还设置有侧面反射膜 505。来自其中 LED P车歹l 501的光经透镜 51 1(如图 3D 所示)会聚后入射到导光层 503中, 经过底面反射膜 504和侧面反射膜 505 反射后从导光层 503的顶面出射,均勾地投射到接种有微藻的微孔板 10上。
图 3D示出了光源的详细结构。其中, LED阵列 501电连接至基板 502 , 在每个 LED单元的上面设置有透镜 511 ,透镜 51 1用于将从 LED阵列射出 的光会聚到导光层 503中。
图 4更详细地图示了来自 LED阵列的入射光在导光结构中的光路或行 进方向。 如图 4所示, 导光层 503由基底材料 5030和均勾地分布在基底材 料 5030中的导光粉或导光颗粒 5031构成。基底材料 5030例如可以为聚曱 基丙烯酸曱酯 (PMMA)材料,其通常具有高折射率。导光粉或导光颗粒 5031 可以为纳米导光粉或颗粒。
根据本发明的实施方式, LED阵列 501发出的光束经透镜 511会聚后 投射进入导光层 503中, 由于导光颗粒 5031在基底材料 5030中均勾地分 布, 因此每束光线进入导光层后必然有两种可能, 一是沿原来的路线前行, 另一种则是与导光颗粒 5031相遇发生折射、 反射或透射。 进入导光层 503 的光线在经历了多次折射、 反射之后, 均匀地射向导光层的六个面。 由于 在导光层的非来光方向的两个侧面和底面处分别设置了反射膜或反射板, 如 504、 506和 505 , 覆盖导光层 503底面的底面反射膜 504将试图从导光 层 503底面射出的光线再次反射回导光层 503 , 侧面反射膜 505将试图从 最终光线只能从导光层 503 的顶面和两个光入射侧面出射。 根据本发明, 将导光层 503 的顶面的面积设置为远大于光入射侧面的面积, 则所有的光 线几乎全部从导光层 503 的顶面侧均勾地出射。 根据本发明的一种实施方 式, 导光层的顶面与所述另一对侧面中的每一个侧面的面积之比设置为大 于约 10: 1 , 使得从光源进入导光结构的光几乎全部从导光层的顶面侧均 匀出射至接种有微藻的微孔板 10 , 从而提高光照效率。
根据本发明的另一实施方式, 当在导光结构的周边侧面均设置有光源 时, 则该设备不需要设置侧面反射膜。
从导光层 503的顶面侧出射的光线在经均光膜 507和上均光板 508以 及其间空间中的气体均化后投射到上方的接种有微藻的微孔板 10 , 对微藻 藻种进行光照培养。 根据本发明的一种实施方式, 为了避免入射光线在导 光结构内的损失, 底面反射膜 504和侧面反射膜 505可以由全反射层或全 反射膜构成。 以下将通过具体实施例来验证设置有本发明的用于微藻高通 量培养的照明装置的摇床的性能。 实施例 1
在本实施例中, 通过测定不同位置处的光强来评价所设计的摇床的光 强分布是否达到微藻高通量筛选的要求。 实验步骤为, 设定摇床的温度为 25°C , 光强为 40001ux, 用照度计测 定所设计的摇床左上角、 右上角、 左下角、 右下角和中心位置处的光照强 度。 测定时以 96微孔板作为测量基准。
数据处理采用 SPSS Statistics 17.0软件。通过对各微孔板中的每个孔处 光照强度的变异系数( CV )的计算和单因素方差分析 (ANOVA)来评价每个 微孔板的各孔之间的光照均一性。 通过对不同位置的 5个微孔板中光强平 均值的变异系数( CV )的计算和单因素方差分析 (ANOVA)来评价不同位置 处的光照均一性。 以上数据处理中以误差 P < 0.05作为显著水平的衡量。
通过计算得到每个微孔板各孔间的 CV分别为: 左上角 9.32%,右上角 9.85%, 左下角 9.43%, 右下角 10.22%, 中心 8.34%。 通过单因素方差分析 得到各微孔板各孔间的自由度 F > Fo.os , 误差 P < 0.05 , 因此说明各孔间的 藻株的生长差异未达到显著水平, 即说明各位置处的微孔板各孔间的光强 分布较均一, 可以满足微藻的高通量筛选。
通过计算得到各位置处微孔板间的 CV 为 9.58%, 方差分析得到 F > Fo.os , P < 0.05 , 因此说明各微孔板间光强间的差异未达到显著水平, 即整 个载物台不同位置处的光强分布是均一的, 可以满足微藻的高通量筛选。 实施例 2
在本实施例中, 分别选择 96孔板、 48孔板、 24孔板、 12孔板, 采用 本发明中的照明装置提供光照, 对藻株 Chlorella vulgaris (购于中科院水生 生物研究所淡水藻种库, 编号为 1068 )进行培养, 采用 BG11培养基 (见下 表 1-3)。
表 1 BG11培养基的组成及其含量
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0002
表 3 Fe-EDTA储液的组成及其含量
序号 成分 量 ( g/L )
1 FeCl3-6H20 3.15
2 Na2EDTA-2H20 4.36 将一定数量的指数生长期的藻株按 20%的接种量接种于 300mL已灭菌 的培养基中, 混合均勾后用 8通道移液器, 按下述的加液量取相应藻液加 入到各微孔板中: 96微孔板、 48微孔板、 24微孔板、 12微孔板的装液量 分别为 200μΙ^、 500μΙ^、 ΙΟΟΟμΚ 2000μ1。 每种类型的板做 3个平行, 最后 盖上板盖密封(以上实验均在无菌条件下进行)。 其它实验条件为: 温度 25 °C , 光照 30μηιο1·ηι-2· 8 , 光周期 12hL/12hD, 摇床转速 180rpm。 培养 14 天后分别测定各孔中的 OD75。(表示藻细胞密度) 。
分析同一类型微孔板各孔中的藻株生物量, 得到各孔板的孔间 CV数 据见下表。 从下表 4中数据可见, 无论采用哪种类型的微孔板(96孔板、 48孔板、 24孔板、 12孔板) , 各孔间藻细胞生物量的平行性都非常好, 这表明设置有本发明中的照明装置的高通量培养设备的适用于市场上各种 类型的微孔板。 表 4
Figure imgf000015_0002
实施例 3
在实施例中, 将对利用本发明的高通量培养设备的藻细胞微型化培养 和常规培养方式下的相关性进行分析。 通过三种不同藻种在一定的实验条 件下, 在摇瓶和微孔板中的生长能力的比较来评价用本发明的高通量培养 设备通过微孔板来培养微藻和用摇瓶培养微藻间是否具有较高的相关性。
实验所用的藻种分另 ll为: Chlorella vulgaris , Scenedesmus quadricauda, Oscillatoria sp (上述藻种均购于中科院水生生物研究所淡水藻种库),均采用 BG1 1培养基(见表 1 ) , 选用的微孔板类型为 48孔, 通过硅胶板盖密封 微孔板。
实验步骤为: 将一定数量处于对数生长期的藻液按 20%的接种量接种 于已灭菌的培养基中, 摇瓶的装液量为
Figure imgf000015_0001
48微孔板的装液量 为 500μ , 摇瓶用 8层纱布封口, 微孔板用硅胶板盖密封(以上实验均在无 菌条件下进行)。 实验设定的培养条件为: 温度 25 °C , 光照 SO mol.mAs-1 , 光周期 12hL/12hD, 摇床转速 180rpm, 培养周期为 14天。 培养中每天定时 从摇瓶中取 2mL的藻液, 从 48微孔板中取 5个孔的藻液进行 OD75。 (表示 藻细胞密度)的测定。 最后以时间为横坐标, OD75。为纵坐标绘制出各藻种 的生长曲线, 如图 5所示, 再对摇瓶和微孔板中各时间点处的 OD75()值进 行曲线估计和线性回归处理。 其中, 在图 5 中, Cv,Sq,Os 分别代表藻种 Chlorella vulgaris, Scenedesmus quadricauda, Oscillatoria sp , MTP表示微孑 L 板中的生长曲线。
通过上述数据处理可以从图 5得到各藻种在摇瓶和微孔板上生长曲线 的变化趋势都表现出各自的特点, 说明所用藻种高通量筛选装置对各藻种 自身的特征不会有影响。 而通过对摇瓶和微孔板中各时间点处的 OD75。值 线性回归处理可以得到各藻种在二种培养方式下的相关性 R 值分别为 RCv=0.986 , RSq=0.991 , ROs=0.985 , 即在所用藻种高通量筛选装置中这 两种培养方式表现出较高的相关性。
根据以上描述可以看出, 在本发明中, 通过在导光层的侧面反射膜和 底面反射膜, 以便引导来自光源的光线主要从导光层的顶面射出, 提高用 于微藻高通量培养的光照均勾度和光照强度, 满足微藻生长和高通量筛选 的需要。 并且, 采用 LED阵列作为光源, 可以克服诸如日光灯管等常规光 源的散热大、 光照不均匀、 光照度衰减明显、 寿命短、 光照度调节不连续 等缺陷, 通过调节供给至 LED阵列的电流, 可以容易地调节其光照强度, 从而实现藻种在均一光照条件下培养。 另外, 通过调节具有不同光波长的 LED灯的数量和排布(例如将 LED灯设置在导光结构的一对侧面或两对侧 面上或是设置在导光结构的周边侧面) , 或者控制提供至 LED阵列的电流 强度, 调整出适合微藻生长的光照条件。 优选发射光谱在 380nm-780nm的 LED灯。 根据本发明的照明装置, 可以将整个摇床台面设置为均匀的发光 体, 能够同时满足各种形式微孔板的使用, 不受孔板形态构造的限制。 而 且, 本发明采用底部供光方式, 便于将微孔板的上部密封, 能够防止交叉 污染、 保证通气、 蒸发一致性、 增加转速、 增加通气效果等。
目前, 尚未有微藻高通量培养的装置, 本领域技术人员为实现微藻的 高通量培养, 曾尝试将光源安装在微生物培养箱中, 为不影响实验操作, 只能安装在微生物培养箱的顶部或侧面, 但是, 顶部或侧面供光导致培养 箱内部受光不均匀, 影响筛选结果, 而且光程较长, 光照度衰减高, 光利 用率底, 光照调节不敏感。 通过本发明人设计多种方案的尝试实现在载物 台底部供光, 实现了微藻高通量培养中光照均勾, 降低光照度衰减, 提高 光利用率, 光照调节敏感, 能满足微藻高通量培养的需求。 本发明的照明 装置采用的 LED阵列没有普通日光灯管散热多的缺点。
根据本发明的照明装置可以和常规摇床相结合, 能够实现微藻在摇动 状态下控光照、 控温、 控湿和控气的高通量培养, 在适合藻株高通量培养 的条件范围内, 温度、 湿度、 摇床速度、 光照度连续可调。 根据本发明的 一实施例, 可以通过温度传感器来调节温度, 通过加湿器来调节湿度, 通 过 C02传感器来调节 C02浓度,通过控制提供至所述光源所包括的 LED阵 列的电流来控制光照度的连续可调。 并且, 本发明的高通量培养设备可以 采用模块叠加方式, 可叠加多组, 每组模块可独立控温、 控湿、 控速、 控 光, 进一步提高其用于筛选对比研究的灵活性。 根据本发明的一实施方式, 通过将多个高通量培养设备相互叠放, 而通过同一个控制装置来对该多个 培养设备的温度、 湿度、 摇床速度、 光照度等进行控制, 从而筒化设计, 节省成本。 进一步, 本发明中的照明装置采用侧光照射、 漫反射、 匀光等 手段能够实现更均勾的光照度。 由此, 根据本发明的适于进行微藻高通量 培养的设备能够应用于自然界大量藻种、 光合细菌、 植物细胞、 植物组织 等一切光合生物的筛选、 诱变育种和基因工程育种等育种技术。
虽然以上已经参照较佳实施例描述了本发明, 本领域技术人员将会认 识到, 在不偏离本发明的精髓或范围的前提下, 可在形式和细节上进行改 变。

Claims

权利要求书
1. 一种照明装置, 所述照明装置包括光源和导光结构, 所述光源设置 在所述导光结构的周边侧面, 所述导光结构为多层结构, 包括:
导光层, 适于将来自光源的光向各个方向均勾地射出, 来自光源的光 从导光层的周边侧面入射到导光层中;
底面反射膜, 覆盖导光层的底面, 适于将由导光层向所述底面射出的 光反射回导光层。
2. 根据权利要求 1所述的照明装置, 其中, 所述光源设置在所述导光 结构的一个侧面或两个侧面, 来自光源的光从导光层的所述一个侧面或两 个侧面入射到导光层中, 所述导光结构还包括: 侧面反射膜, 覆盖导光层
3. 根据权利要求 1或 2所述的照明装置, 其中, 所述光源设置在所述 导光结构的相对的两侧。
4. 根据权利要求 1-3 中任一项所述的照明装置, 其中, 导光层的顶面 的面积与所述另外的侧面中的每一个侧面的面积之比大于 10: 1。
5. 根据权利要求 1-3 中任一项所述的照明装置, 其中, 在导光层的靠 近边缘的顶面部分上, 还设置有上反射膜, 上反射膜适于将从顶面周边倾 斜出射的光线反射回导光层。
6. 根据权利要求 1-3 中任一项所述的照明装置, 其中, 所述底面反射 膜和侧面反射膜中的至少一个为全反射膜。
7. 根据权利要求 1-3 中任一项所述的照明装置, 其中, 导光层由基底 材料和均勾地分布在基底材料中的导光粉或导光颗粒构成, 进入导光层的 光在与导光粉或导光颗粒相遇时发生折射、 反射和透射中的至少一种, 并 且
基底材料包括聚曱基丙烯酸曱酯材料, 导光粉或导光颗粒包括纳米结 构。
8. 根据权利要求 1-3任一项所述的照明装置, 其中, 该多层结构还包 括: 位于导光层顶面上的均光膜, 适于将从导光层的顶面出射的光均匀地 发射。
9. 根据权利要求 8所述的照明装置, 其中, 该多层结构还包括: 上均 光板, 设置在导光层的上方, 适于将从导光层的顶面出射的光均勾地发射。
10. 根据权利要求 9所述的照明装置, 其中, 上均光板和均光膜之间隔 开预定的距离, 以在上均光板和均光膜之间形成预定的空间。
11. 根据权利要求 10所述的照明装置, 其中, 在上均光板和均光膜之 间设置有支撑装置, 该支撑装置适于调整所述隔开预定的距离, 以调整所 述预定的空间的体积。
12. 根据权利要求 1-3 任一项所述的照明装置, 其中, 所述光源包括 LED阵列, 并且
在 LED阵列和导光结构之间设置有透镜, 该透镜适于将来自 LED阵 列的光会聚后投射到导光层中。
13. 一种高通量培养设备, 其中, 所述设备包括根据上述权利要求中 任一项所述的照明装置。
14. 根据权利要求 13所述的高通量培养设备,其中,所述设备还包括: 用于放置可容纳光合生物的培养结构的微孔板, 所述照明装置位于所述微 孔板的下方以对所述光合生物提供光照。
15. 根据权利要求 14所述的高通量培养设备,其中,所述设备包括 4~64 个微孔板, 每个微孔板可以是选自市场上通用的微孔板中的任何一种或几 种。
16. 根据权利要求 15所述的高通量培养设备, 其中, 所述设备包括 24 个微孔板, 每个微孔板上设置有 96个微孔。
17. 根据权利要求 13或 14所述的高通量培养设备, 其中, 所述设备还 包括用于对光合生物提供振荡的振荡机构, 所述振荡机构包括摇床平台和 对所述摇床平台进行振荡的传动机构, 其中, 所述照明装置设置在所述摇 床平台上。
18. 根据权利要求 17所述的高通量培养设备, 其中, 所述摇床平台表 面上设置有用于容纳并固定微孔板的孔板固定装置, 并且, 所述摇床平台 还包括仅覆盖照明装置的角落部分的上盖板和完全覆盖照明装置并向其提 供支撑的底板。
19. 根据权利要求 18所述的高通量培养设备, 其中, 所述孔板固定装 置是透明的。
20. 根据权利要求 13所述的高通量培养设备, 其中, 该设备还包括: 光强度控制装置, 通过控制所述光源所包括的 LED阵列中 LED灯光 波长、 LED灯的数量、 LED灯的排布以及提供至 LED阵列的电流中的至 少一个来控制从 LED阵列出射的光的强度。
21. 根据权利要求 13所述的高通量培养设备, 其中, 所述光合生物包 括: 藻类、 光合细菌、 植物细胞、 植物组织。
22. 根据权利要求 21所述的高通量培养设备, 其中, 所述藻类包括微 藻。
23. 根据权利要求 17所述的高通量培养设备, 其中, 所述设备还包括 控制所述光合生物培养环境温度的温度控制装置、 用于控制所述光合生物 培养环境湿度的湿度控制装置、 控制所述光合生物培养环境中的通气的通 风控制装置、 以及控制所述光合生物培养环境中的气体的浓度的气体成分 调节器中的至少一个。
24. 一种高通量培养设备组, 所述设备组包括至少两个根据前述权利要 求 13-22 中任一项所述的高通量培养设备以及对至少两个所述的高通量培 养设备进行控制的控制装置。
25. 根据权利要求 24所述的高通量培养设备组, 其中, 所述控制装置 包括控制所述光合生物培养环境温度的温度控制装置、 用于控制所述光合 生物培养环境湿度的湿度控制装置、 控制所述光合生物培养环境中的通气 的通风控制装置、 以及控制所述光合生物培养环境中的气体的浓度的气体 成分调节器中的至少一个。
PCT/CN2012/072364 2011-03-15 2012-03-15 照明装置、包括该装置的高通量培养设备 WO2012126328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110071318 CN102212471B (zh) 2011-03-15 2011-03-15 微藻高通量培养设备
CN201110071318.5 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012126328A1 true WO2012126328A1 (zh) 2012-09-27

Family

ID=44744012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072364 WO2012126328A1 (zh) 2011-03-15 2012-03-15 照明装置、包括该装置的高通量培养设备

Country Status (2)

Country Link
CN (1) CN102212471B (zh)
WO (1) WO2012126328A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212471B (zh) * 2011-03-15 2013-08-21 新奥科技发展有限公司 微藻高通量培养设备
CN103131638A (zh) * 2011-11-30 2013-06-05 中国科学院大连化学物理研究所 一种生物培养方法及所使用的光生物反应器系统
KR101304599B1 (ko) * 2012-02-23 2013-10-07 박승민 이산화탄소 제거율을 극대화한 광생물학적 앨지 배앙기 및 이를 이용한 앨지 제조방법
CN102618445A (zh) * 2012-04-13 2012-08-01 暨南大学 利用类波氏真眼点藻生产微藻油脂的方法及其培养方法
CN104017726A (zh) * 2014-06-30 2014-09-03 张玟籍 一种内置光源生物反应器及微藻养殖方法
CN106771029A (zh) * 2016-12-16 2017-05-31 常州市环境监测中心 一种用于大型蚤急性毒性检测试剂盒
TWI674318B (zh) * 2017-08-16 2019-10-11 日商日本曹達股份有限公司 微生物培養系統
CN110106064B (zh) * 2019-06-03 2020-06-16 中国矿业大学 一种微藻快速筛选装置及微藻快速筛选方法
CN111437716B (zh) * 2020-04-03 2021-11-26 北京航空航天大学 一种基于自然环境调控的微藻固碳方法
CN112920952A (zh) * 2021-03-25 2021-06-08 广东轻工职业技术学院 光合生物培养装置
CN113214961A (zh) * 2021-05-10 2021-08-06 东台市赐百年生物工程有限公司 一种基于led光源的微藻养殖装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242801A (zh) * 1997-10-17 2000-01-26 松下电器产业株式会社 光合成培养系统和集合的光合成培养系统
JP2003322610A (ja) * 2002-04-30 2003-11-14 Omron Corp 光学装置、被測定体載置部品、光出射位置制御装置、分析システム、本人照合方法及びアレルギー・副作用検査方法
CN2677383Y (zh) * 2004-02-10 2005-02-09 李勇 往复式自动恒温摇瓶机
CN2824090Y (zh) * 2005-01-21 2006-10-04 谢剑斌 航天级加固液晶显示器用背光模组
CN2862099Y (zh) * 2005-12-21 2007-01-24 上海铂美自动化有限公司 电子设备上超薄导光型led背光源装置
CN101255396A (zh) * 2007-02-27 2008-09-03 索尼株式会社 核酸扩增装置
CN201162013Y (zh) * 2007-10-30 2008-12-10 陈禹保 大规模筛选培养板
CN102212471A (zh) * 2011-03-15 2011-10-12 新奥科技发展有限公司 微藻高通量培养设备
CN202139240U (zh) * 2011-03-15 2012-02-08 新奥科技发展有限公司 微藻高通量培养设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918387B1 (fr) * 2007-07-03 2009-09-18 Dominique Patrick Delobel Systeme de production de micro organismes
CN101748054B (zh) * 2008-12-17 2013-06-19 新奥科技发展有限公司 微藻培养的光生物反应器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242801A (zh) * 1997-10-17 2000-01-26 松下电器产业株式会社 光合成培养系统和集合的光合成培养系统
JP2003322610A (ja) * 2002-04-30 2003-11-14 Omron Corp 光学装置、被測定体載置部品、光出射位置制御装置、分析システム、本人照合方法及びアレルギー・副作用検査方法
CN2677383Y (zh) * 2004-02-10 2005-02-09 李勇 往复式自动恒温摇瓶机
CN2824090Y (zh) * 2005-01-21 2006-10-04 谢剑斌 航天级加固液晶显示器用背光模组
CN2862099Y (zh) * 2005-12-21 2007-01-24 上海铂美自动化有限公司 电子设备上超薄导光型led背光源装置
CN101255396A (zh) * 2007-02-27 2008-09-03 索尼株式会社 核酸扩增装置
CN201162013Y (zh) * 2007-10-30 2008-12-10 陈禹保 大规模筛选培养板
CN102212471A (zh) * 2011-03-15 2011-10-12 新奥科技发展有限公司 微藻高通量培养设备
CN202139240U (zh) * 2011-03-15 2012-02-08 新奥科技发展有限公司 微藻高通量培养设备

Also Published As

Publication number Publication date
CN102212471A (zh) 2011-10-12
CN102212471B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2012126328A1 (zh) 照明装置、包括该装置的高通量培养设备
Benner et al. Lab-scale photobioreactor systems: principles, applications, and scalability
WO2012019539A1 (zh) 一种用于微藻工业化生产的半固态培养方法
CN105368699B (zh) 利用纳米导光板作光分散介质的微藻光生物反应器
CN101899391A (zh) 特定光谱气升式光生物反应器
CN111647501A (zh) 一种基于导光载体的多层堆叠吸附式微藻生物膜光生物反应器
CN102115776B (zh) 一种微藻筛选方法及系统
Sergejevová et al. Photobioreactors with internal illumination
US20090303706A1 (en) Wave length light optimizer for human driven biological processes
Dillschneider et al. Closed bioreactors as tools for microalgae production
Gabrielyan et al. Laboratory system for intensive cultivation of microalgae and cyanobacteria
WO2005058022A1 (fr) Dispositif combine pour la reproduction de tissus vegetaux sans sucre et procede associe
CN202139240U (zh) 微藻高通量培养设备
CN102787069B (zh) 一种基于方形硅藻培养架的硅藻生长变量研究系统
RU82457U1 (ru) Многоячейковое устройство для культивирования и проведения экспериментов с микроводорослями
CN210048747U (zh) 粪大肠菌群培养箱
CN210085466U (zh) 用于细胞实验的太赫兹波垂直暴露系统
JP2006075088A (ja) 培養・育成装置
CN104232471A (zh) 一种培养光合生物的方法
CN102864070A (zh) 一种可调式微藻高密度培养光生物反应器
CN202865219U (zh) 一种可调式微藻高密度培养光生物反应器
CN207193255U (zh) 一种蓝光光照培养摇床
CN111134017A (zh) 一种间距可调的多功能组织培养架及其应用
CN2666132Y (zh) 组合式植物人工培养装置
WO2014115924A1 (ko) 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15-01-2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12760578

Country of ref document: EP

Kind code of ref document: A1