WO2012126270A1 - 矿热炉低压无功补偿兼滤波装置 - Google Patents

矿热炉低压无功补偿兼滤波装置 Download PDF

Info

Publication number
WO2012126270A1
WO2012126270A1 PCT/CN2012/000308 CN2012000308W WO2012126270A1 WO 2012126270 A1 WO2012126270 A1 WO 2012126270A1 CN 2012000308 W CN2012000308 W CN 2012000308W WO 2012126270 A1 WO2012126270 A1 WO 2012126270A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
transformer
compensation
reactive power
submerged arc
Prior art date
Application number
PCT/CN2012/000308
Other languages
English (en)
French (fr)
Inventor
傅光祖
史广福
Original Assignee
山西广福工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西广福工程技术有限公司 filed Critical 山西广福工程技术有限公司
Publication of WO2012126270A1 publication Critical patent/WO2012126270A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the invention relates to a reactive power compensation technology for a submerged arc furnace transformer, in particular to a low-voltage reactive power compensation and filtering device for a submerged arc furnace.
  • the submerged arc furnace is also called arc electric furnace or electric resistance electric furnace. It is a smelting equipment used for smelting silicon, manganese, chromium, calcium carbide and other products. In order to solve the problem of low power factor of the submerged arc furnace, it is necessary to perform reactive power compensation on the submerged arc furnace transformer.
  • the current reactive power compensation technology is mainly divided into the following types: 1. Reactive power compensation filtering is performed on the high pressure side of the submerged arc furnace.
  • the high-voltage reactive power compensation filter device is connected to the high-voltage side of the submerged arc furnace transformer, and the high-voltage side compensation is usually a fixed compensation, which has the advantages of simple equipment structure, low investment, small maintenance workload, and non-interaction between the device and the transformer, but
  • the access point is on the high voltage side, the power factor of the submerged arc furnace transformer cannot be improved, so the problem of three-phase voltage unbalance cannot be solved, and the high-voltage side compensation can neither effectively improve the low-voltage side voltage and power factor, nor increase the ore heat.
  • the output of the furnace transformer can only improve the power factor of the high-voltage side of the transformer of the submerged arc furnace, that is, the power supply line end; at the same time, the high-voltage side compensation is easy to form over-compensation and under-compensation due to the reactive load change, and the effect of stable compensation cannot be achieved;
  • the low temperature side of the submerged arc furnace is subjected to reactive power compensation filtering, that is, low voltage is installed on the low voltage side of the submerged arc furnace transformer.
  • the power compensation capacitor performs reactive compensation filtering, which can greatly improve the power factor, improve and stabilize the low-voltage side voltage, absorb harmonics, reduce the furnace power consumption and improve the furnace output, but because of the high price of the low-voltage reactive compensation capacitor, It affects its promotion and application.
  • the reactive power compensation filter device is installed at the same time as the high temperature and low pressure side of the submerged arc furnace.
  • the disadvantage is that the best effect of low voltage reactive power compensation and filtering cannot be achieved.
  • the existing reactive power compensation technology of the submerged arc furnace transformer generally has the problem that the power factor of the submerged arc furnace transformer cannot be effectively improved, the promotion is not easy, and the compensation effect is not good. Therefore, it is necessary to invent a mine that can effectively improve the mine.
  • the power factor of the hot-melt transformer, the regenerative compensation device of the submerged arc furnace transformer which is easy to promote and has good compensation effect. Summary of the invention
  • the invention provides a low-voltage reactive power compensation and filtering of a submerged arc furnace in order to solve the problem that the existing regenerative compensation technology of the submersible furnace transformer can not effectively improve the power factor of the submerged furnace transformer, is not convenient to promote, and the compensation effect is not good.
  • Device
  • a low-voltage reactive power compensation and filtering device of a submerged arc furnace comprising a compensation filtering branch;
  • the compensation filtering branch comprises a three-phase switch, a three-phase step-up transformer, and a contactor; wherein, the three-phase The primary windings of each phase of the step-up transformer are connected to each other, and the secondary windings of the phases of the three-phase step-up transformer are connected to each other, and the primary winding of the three-phase step-up transformer is connected with the three-phase switch, and each of the three-phase step-up transformers
  • the phase secondary winding is connected to the filter capacitor through a contactor.
  • the number of the compensation filter branches is determined according to actual needs; the connection between the phase windings of the three-phase step-up transformer is a structure that is easily realized by a person skilled in the art, and may have various structural deformations.
  • the compensation filtering branch is divided into three, four, and five times compensation filtering branches, wherein the three compensation filtering branches adopt three-phase and minute Phase-controlled combined multi-stage switching compensation filtering, that is, one part is multi-stage three-phase switching compensation filtering branch, and the other part is multi-stage single-phase switching compensation filtering branch, four-time, five-time compensation filtering branch All are multi-stage three-phase switching compensation filter branches; several groups of the same compensation filter branch can use one three-phase step-up transformer for each group, or one group can share one three-phase step-up transformer;
  • the leakage resistance value of the step-up transformer is the corresponding secondary, tertiary, quadruple, fifth, sixth or seventh filter reactor inductance value according to the filtering requirement; compared with the existing submerged arc furnace transformer reactive power compensation technology, hair
  • the low-voltage reactive power compensation and filtering device of the submerged arc furnace described in the Ming Dynasty improves the three-phase voltage imbalance by using multi-stage switching compensation filtering combined
  • the low-pressure reactive power compensation and filtering device of the submerged arc furnace of the invention can not only compensate the reactive power of the submerged arc furnace, improve the electric power factor of the submerged arc furnace, stabilize the voltage level of the submerged arc furnace, and can suppress the higher harmonics. Injecting into the power grid, whether it is to improve the power factor, absorb harmonics, or increase production and reduce consumption, has the advantages that the existing mine furnace transformer reactive power compensation technology can not match.
  • the invention effectively solves the problem that the existing regenerative compensation technology of the submerged arc furnace transformer can not effectively improve the power factor of the submerged arc furnace transformer, is inconvenient to promote, and has poor compensation effect, and is suitable for reactive power compensation of the submerged arc furnace transformer.
  • Figure 1 is a schematic view showing the first structure of the present invention.
  • Figure 2 is a schematic view of the second structure of the present invention.
  • Figure 3 is a schematic view showing the third structure of the present invention.
  • Figure 4 is a fourth structural view of the present invention.
  • Figure 5 is a reference view of the use state of the present invention.
  • the low-temperature reactive power compensation and filtering device of the submerged arc furnace includes a compensation filtering branch;
  • the compensation filtering branch includes a three-phase switch 1, a three-phase step-up transformer 2, and a contactor; wherein, the three-phase boosting The primary windings of the phases of the transformer 2 are connected to each other, and the secondary windings of the phases of the three-phase step-up transformer 2 are connected to each other, and the primary winding of the three-phase step-up transformer 2 is connected to the three-phase switch 1, the three-phase step-up transformer The secondary windings of each phase of the two phases are connected to the filter capacitor 3 through the contactor; the connection between the primary windings of the phases of the three-phase step-up transformer 2 is a star connection, and the secondary windings of the phases of the three-phase step-up transformer 2 It The connection between the two is a delta connection; the contactor is a three-phase contactor 4.
  • the three-phase switch adopts a knife-melt switch or a circuit breaker
  • the three-phase step-up transformer adopts an auto-transformer transformer or a common-type transformer
  • the three-phase contactor adopts a composite switch or a non-contact switch.
  • the low-temperature reactive power compensation and filtering device of the submerged arc furnace includes a compensation filtering branch;
  • the compensation filtering branch includes a three-phase switch 1, a three-phase step-up transformer 2, and a contactor; wherein, the three-phase boosting The primary windings of the phases of the transformer 2 are connected to each other, and the secondary windings of the phases of the three-phase step-up transformer 2 are connected to each other, and the primary winding of the three-phase step-up transformer 2 is connected to the three-phase switch 1, the three-phase step-up transformer
  • the secondary windings of each phase of the two phases are connected to the filter capacitor 3 through the contactor;
  • the connection between the primary windings of the phases of the three-phase step-up transformer 2 is a delta connection, and the secondary windings of the phases of the three-phase step-up transformer 2 are The connection between the two is a star connection;
  • the contactor is a three-phase contactor 4.
  • the three-phase switch adopts a knife-melt switch or a circuit breaker
  • the three-phase step-up transformer adopts an auto-transformer transformer or a common-type transformer
  • the three-phase contactor adopts a composite switch or a non-contact switch.
  • the low-temperature reactive power compensation and filtering device of the submerged arc furnace includes a compensation filtering branch;
  • the compensation filtering branch includes a three-phase switch 1, a three-phase step-up transformer 2, and a contactor; wherein, the three-phase boosting The primary windings of the phases of the transformer 2 are connected to each other, and the secondary windings of the phases of the three-phase step-up transformer 2 are connected to each other, and the primary winding of the three-phase step-up transformer 2 is connected to the three-phase switch 1, the three-phase step-up transformer The secondary windings of each phase of the two phases are connected to the filter capacitor 3 through the contactor; the connection between the primary windings of the phases of the three-phase step-up transformer 2 is a star connection, and the secondary windings of the phases of the three-phase step-up transformer 2 The connection between them is a star connection; the contactor is a three-phase contactor 4.
  • the three-phase switch adopts a knife-melt switch or a circuit breaker
  • the three-phase step-up transformer adopts an auto-transformer transformer or a common-type transformer
  • the three-phase contactor adopts a composite switch or a non-contact switch. As shown in FIG.
  • the low-temperature reactive power compensation and filtering device of the submerged arc furnace includes a compensation filtering branch;
  • the compensation filtering branch includes a three-phase switch 1, a three-phase step-up transformer 2, and a contactor; wherein, the three-phase boosting The primary windings of the phases of the transformer 2 are connected to each other, and the secondary windings of the phases of the three-phase step-up transformer 2 are connected to each other, and the primary winding of the three-phase step-up transformer 2 is connected to the three-phase switch 1, the three-phase step-up transformer The secondary windings of each phase of the two phases are connected to the filter capacitor 3 through the contactor; the connection between the primary windings of the phases of the three-phase step-up transformer 2 is a delta connection, and the secondary windings of the phases of the three-phase step-up transformer 2 are The connections are star connections; the contactors are three single phase contacts 5.
  • the three-phase switch adopts a knife-melt switch or a circuit breaker
  • the three-phase step-up transformer adopts an auto-transformer transformer or a common-type transformer
  • the three single-phase contactors adopt a composite switch or a non-contact switch.
  • the application of the above four embodiments is selected according to the operating conditions and harmonic content of different submerged arc furnaces.
  • the selection principle is beneficial to improve the utilization of the compensation capacitor, and is beneficial to the reactive compensation of the asymmetric load, which is beneficial to different times. Filtration of harmonic content.
  • the low-temperature reactive power compensation and filtering device of the submerged arc furnace is based on the reactive power consumption and harmonic content of the submerged arc furnace, and a partial fixed compensation filter branch and a partial dynamic compensation filter branch are set, and the computer measurement and control system is adopted. After the sampling analysis, a compensation switching command is issued to each dynamic compensation filter branch to complete the reactive power dynamic compensation of the submerged arc furnace.
  • Fixed compensation filter branch In addition to compensating part of the basic reactive power, the main function is to filter out higher harmonics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

矿热炉低压无功补偿兼滤波装置
技术领域
本发明涉及矿热炉变压器无功补偿技术,具体是一种矿热炉低压无功补偿 兼滤波装置。
背景技术
矿热炉又称电弧电炉或电阻电炉, 是一种用于冶炼硅系、 锰系、 铬系、 电 石等产品的冶炼设备。为解决矿热炉功率因数低下的问题, 需要对矿热炉变 压器进行无功补偿, 目前的无功补偿技术主要分为以下几种: 一、在矿热炉变 高压侧进行无功补偿滤波, 即在矿热炉变压器高压侧连接高压无功补偿滤波装 置, 高压侧补偿通常为固定式补偿, 其具有设备结构简单、 投资少、 维护工作 量小、 装置与变压器不相互影响等优点, 但由于其接入点在高压侧, 矿热炉变 压器的功率因数并不能提高, 因而不能解决三相电压不平衡的问题, 而且高压 侧补偿既不能有效提高低压侧电压与功率因数, 也不能增加矿热炉变压器出 力, 只能提高矿热炉变压器高压侧即电网进线端的功率因数; 同时, 高压侧补 偿容易因无功负载变化形成过补偿和欠补偿, 达不到稳定补偿的效果; 二、在 矿热炉变低压侧进行无功补偿滤波, 即在矿热炉变压器低压侧安装低电压无功 补偿电容器进行无功补偿滤波, 其能够大幅提高功率因数, 提高和稳定低压侧 电压, 吸收谐波, 降低炉变电耗和提高炉变出力, 但由于低电压无功补偿电容 器价格很高, 影响了其推广应用; 三、 在矿热炉变高、 低压侧同时安装无功补 偿滤波装置,其缺点在于无法达到低压无功补偿兼滤波的最佳效果。综上所述, 现有矿热炉变压器无功补偿技术普遍存在无法有效提高矿热炉变压器的功率 因数、 不便于推广、 补偿效果不佳的问题, 为此有必要发明一种能有效提高矿 热炉变压器的功率因数、 便于推广且补偿效果佳的矿热炉变压器无功补偿装 置。 发明内容
本发明为了解决现有矿热炉变压器无功补偿技术无法有效提高矿热炉变 压器的功率因数、 不便于推广、 以及补偿效果不佳的问题, 提供了一种矿热炉 低压无功补偿兼滤波装置。
本发明是采用如下技术方案实现的: 矿热炉低压无功补偿兼滤波装置, 包 括补偿滤波支路;补偿滤波支路包括三相开关、三相升压变压器、以及接触器; 其中, 三相升压变压器的各相一次绕组之间相互连接, 三相升压变压器的各相 二次绕组之间相互连接, 三相升压变压器的一次绕组与三相开关相连, 三相升 压变压器的各相二次绕组均通过接触器连接有滤波电容器。所述补偿滤波支路 的数目根据实际需要而定;三相升压变压器的各相绕组之间的连接为本领域技 术人员容易实现的结构, 可以有多种结构变形。
工作时, 如图 5所示, 根据矿热炉变压器低压侧的无功功率补偿和滤波 要求, 即需要补偿的无功容量和抑制滤波次数及谐波量, 在矿热炉变压器 低压母线上连接若干个补偿滤波支路,对矿热炉变压器低压侧进行无功补偿 和滤波, 补偿滤波支路分为三次、 四次、 五次补偿滤波支路, 其中三次补偿滤 波支路采用三相与分相控制结合的多级投切补偿滤波, 即一部分为多级三相的 投切补偿滤波支路, 另一部分为多级单相的投切补偿滤波支路, 四次、 五次补 偿滤波支路均为多级三相的投切补偿滤波支路; 若干组同次补偿滤波支路可 每组各用一台三相升压变压器, 也可多组共用一台三相升压变压器; 三相 升压变压器的漏抗值按滤波要求为相应的二次、 三次、 四次、 五次、 六次 或七次滤波电抗器电感值; 与现有矿热炉变压器无功补偿技术相比, 本发明 所述的矿热炉低压无功补偿兼滤波装置通过采用三相与分相控制相结合的多 级投切补偿滤波, 改善了三相电压不平衡状况, 有效提高了矿热炉变压器的功 率因数, 同时其由于三相升压变压器的二次电压的升高,使无功补偿电容器 造价降低, 从而便于推广应用。本发明所述的矿热炉低压无功补偿兼滤波装 置不仅可以补偿矿热炉的无功功率, 提高矿热炉的用电功率因数, 稳定矿热炉 的电压水平, 而且能够抑制高次谐波注入电网, 其无论在提高功率因数、 吸 收谐波方面, 还是在增产降耗方面, 都有着现有矿热炉变压器无功补偿技术 无法比拟的优势。
本发明有效解决了现有矿热炉变压器无功补偿技术无法有效提高矿热炉 变压器的功率因数、 不便于推广、 以及补偿效果不佳的问题, 适用于矿热炉变 压器的无功补偿。
附图说明
图 1是本发明的第一种结构示意图。
图 2是本发明的第二种结构示意图。
图 3是本发明的第三种结构示意图。
图 4是本发明的第四种结构示意图。
图 5是本发明的使用状态参考图。
图中: 1-三相开关, 2-三相升压变压器, 3-滤波电容器, 4-三相接触器, 5-单相接触器。
具体实施方式
实施例一
如图 1所示, 矿热炉低压无功补偿兼滤波装置, 包括补偿滤波支路; 补偿 滤波支路包括三相开关 1、 三相升压变压器 2、 以及接触器; 其中, 三相升压 变压器 2的各相一次绕组之间相互连接,三相升压变压器 2的各相二次绕组之 间相互连接, 三相升压变压器 2的一次绕组与三相开关 1相连, 三相升压变压 器 2的各相二次绕组均通过接触器连接有滤波电容器 3 ; 三相升压变压器 2的 各相一次绕组之间的连接为星形连接,三相升压变压器 2的各相二次绕组 3之 间的连接为三角形连接; 所述接触器为三相接触器 4。 具体实施时, 三相开关 采用刀熔开关或断路器, 三相升压变压器采用自耦型变压器或普通型变压器, 三相接触器采用复合开关或无触点开关。
实施例二
如图 2所示, 矿热炉低压无功补偿兼滤波装置, 包括补偿滤波支路; 补偿 滤波支路包括三相开关 1、 三相升压变压器 2、 以及接触器; 其中, 三相升压 变压器 2的各相一次绕组之间相互连接,三相升压变压器 2的各相二次绕组之 间相互连接, 三相升压变压器 2的一次绕组与三相开关 1相连, 三相升压变压 器 2的各相二次绕组均通过接触器连接有滤波电容器 3 ; 三相升压变压器 2的 各相一次绕组之间的连接为三角形连接, 三相升压变压器 2的各相二次绕组 3 之间的连接为星形连接; 所述接触器为三相接触器 4。 具体实施时, 三相开关 采用刀熔开关或断路器, 三相升压变压器采用自耦型变压器或普通型变压器, 三相接触器采用复合开关或无触点开关。
实施例三
如图 3所示, 矿热炉低压无功补偿兼滤波装置, 包括补偿滤波支路; 补偿 滤波支路包括三相开关 1、 三相升压变压器 2、 以及接触器; 其中, 三相升压 变压器 2的各相一次绕组之间相互连接,三相升压变压器 2的各相二次绕组之 间相互连接, 三相升压变压器 2的一次绕组与三相开关 1相连, 三相升压变压 器 2的各相二次绕组均通过接触器连接有滤波电容器 3 ; 三相升压变压器 2的 各相一次绕组之间的连接为星形连接,三相升压变压器 2的各相二次绕组 3之 间的连接为星形连接; 所述接触器为三相接触器 4。 具体实施时, 三相开关采 用刀熔开关或断路器, 三相升压变压器采用自耦型变压器或普通型变压器, 三 相接触器采用复合开关或无触点开关。 如图 4所示, 矿热炉低压无功补偿兼滤波装置, 包括补偿滤波支路; 补偿 滤波支路包括三相开关 1、 三相升压变压器 2、 以及接触器; 其中, 三相升压 变压器 2的各相一次绕组之间相互连接,三相升压变压器 2的各相二次绕组之 间相互连接, 三相升压变压器 2的一次绕组与三相开关 1相连, 三相升压变压 器 2的各相二次绕组均通过接触器连接有滤波电容器 3 ; 三相升压变压器 2的 各相一次绕组之间的连接为三角形连接, 三相升压变压器 2的各相二次绕组 3 之间的连接为星形连接; 所述接触器为三个单相接触器 5。 具体实施时, 三相 开关采用刀熔开关或断路器,三相升压变压器采用自耦型变压器或普通型变压 器, 三个单相接触器均采用复合开关或无触点开关。
上述四种实施方案的应用是根据不同矿热炉的运行工况和谐波含量进行 选择, 选择原则是有利于提高补偿电容器的利用率, 有利于不对称负荷的无功 补偿, 有利于不同次谐波含量的滤除。 无论哪种补偿方案, 矿热炉低压无功补 偿兼滤波装置均根据矿热炉无功功率的消耗和谐波含量,设置部分固定补偿滤 波支路和部分动态补偿滤波支路,经计算机测控系统采样分析后对各动态补偿 滤波支路发出补偿投切指令, 完成矿热炉的无功动态补偿。 固定补偿滤波支路 除补偿部分基本无功功率外, 主要功能是滤除高次谐波。

Claims

权利要求书
1、 一种矿热炉低压无功补偿兼滤波装置, 其特征在于: 包括补偿滤波支 路; 补偿滤波支路包括三相开关 (1 )、 三相升压变压器(2)、 以及接触器; 其 中,三相升压变压器(2)的各相一次绕组之间相互连接, 三相升压变压器(2) 的各相二次绕组之间相互连接, 三相升压变压器 (2) 的一次绕组与三相开关
( 1 )相连, 三相升压变压器(2) 的各相二次绕组均通过接触器连接有滤波电 容器 (3 )。
2、根据权利要求 1所述的矿热炉低压无功补偿兼滤波装置, 其特征在于: 三相升压变压器 (2) 的各相一次绕组之间的连接为星形连接, 三相升压变压 器 (2) 的各相二次绕组 (3 ) 之间的连接为三角形连接。
3、根据权利要求 1所述的矿热炉低压无功补偿兼滤波装置, 其特征在于: 三相升压变压器 (2) 的各相一次绕组之间的连接为三角形连接, 三相升压变 压器 (2) 的各相二次绕组 (3 ) 之间的连接为星形连接。
4、根据权利要求 1所述的矿热炉低压无功补偿兼滤波装置, 其特征在于: 三相升压变压器 (2) 的各相一次绕组之间的连接为星形连接, 三相升压变压 器 (2) 的各相二次绕组 (3 ) 之间的连接为星形连接。
5、根据权利要求 1或 2或 3或 4所述的矿热炉低压无功补偿兼滤波装置, 其特征在于: 所述接触器为三相接触器 (4)。
6、根据权利要求 1或 2或 3或 4所述的矿热炉低压无功补偿兼滤波装置, 其特征在于: 所述接触器为三个单相接触器 (5 )。
PCT/CN2012/000308 2011-03-21 2012-03-12 矿热炉低压无功补偿兼滤波装置 WO2012126270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110067668.4A CN102163847B (zh) 2011-03-21 2011-03-21 矿热炉低压无功补偿兼滤波装置
CN201110067668.4 2011-03-21

Publications (1)

Publication Number Publication Date
WO2012126270A1 true WO2012126270A1 (zh) 2012-09-27

Family

ID=44464892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000308 WO2012126270A1 (zh) 2011-03-21 2012-03-12 矿热炉低压无功补偿兼滤波装置

Country Status (2)

Country Link
CN (1) CN102163847B (zh)
WO (1) WO2012126270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952858A (zh) * 2019-12-10 2021-06-11 中国石油化工股份有限公司 电弧炉功率补偿控制装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163847B (zh) * 2011-03-21 2014-03-19 山西广福工程技术有限公司 矿热炉低压无功补偿兼滤波装置
CN102761131A (zh) * 2012-07-11 2012-10-31 深圳市普顺科技有限公司 矿热炉低压侧升压无功补偿滤波装置
CN113285468B (zh) * 2021-07-26 2021-09-24 广东电网有限责任公司中山供电局 一种单星形框架式电容器组自动调平衡装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182296A (ja) * 1995-12-20 1997-07-11 Aichi Electric Co Ltd 無効電力補償装置
CN201048291Y (zh) * 2007-05-16 2008-04-16 郑学超 并联高压动态无功补偿装置
CN201051672Y (zh) * 2007-04-27 2008-04-23 叶选茂 矿热炉电网低压滤波补偿节电装置
CN101656420A (zh) * 2009-09-09 2010-02-24 西安兴汇电力科技有限公司 无功补偿型智能调压器
CN101800416A (zh) * 2010-04-27 2010-08-11 宁夏回族自治区电力公司 电炉变压器中性点横差保护方法
CN102163847A (zh) * 2011-03-21 2011-08-24 山西广福工程技术有限公司 矿热炉低压无功补偿兼滤波装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259806C (zh) * 2003-06-25 2006-06-14 陈君诚 电弧炉无功功率补偿装置
CN101394694B (zh) * 2008-10-28 2011-04-27 福建敏讯上润电气科技有限公司 电弧炉低压侧电压调节及动态补偿装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182296A (ja) * 1995-12-20 1997-07-11 Aichi Electric Co Ltd 無効電力補償装置
CN201051672Y (zh) * 2007-04-27 2008-04-23 叶选茂 矿热炉电网低压滤波补偿节电装置
CN201048291Y (zh) * 2007-05-16 2008-04-16 郑学超 并联高压动态无功补偿装置
CN101656420A (zh) * 2009-09-09 2010-02-24 西安兴汇电力科技有限公司 无功补偿型智能调压器
CN101800416A (zh) * 2010-04-27 2010-08-11 宁夏回族自治区电力公司 电炉变压器中性点横差保护方法
CN102163847A (zh) * 2011-03-21 2011-08-24 山西广福工程技术有限公司 矿热炉低压无功补偿兼滤波装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952858A (zh) * 2019-12-10 2021-06-11 中国石油化工股份有限公司 电弧炉功率补偿控制装置及方法
CN112952858B (zh) * 2019-12-10 2024-05-31 中国石油化工股份有限公司 电弧炉功率补偿控制装置及方法

Also Published As

Publication number Publication date
CN102163847B (zh) 2014-03-19
CN102163847A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
CN102130461B (zh) 一种变压器隔离静止无功发生装置及其控制方法
CN106972505A (zh) 统一电能质量治理的混合型电力电子变压器及其控制方法
WO2014101282A1 (zh) 一种单相三相组合式同相供变电装置
CN101795080A (zh) 一种配电用三相电力电子变压器
WO2014169618A1 (zh) 一种磁控型可控并联电抗器联合调节试验装置
CN102882208A (zh) 一种电气化铁路电能质量综合治理装置控制方法
WO2012126270A1 (zh) 矿热炉低压无功补偿兼滤波装置
CN105048825B (zh) 超大功率级联型高压变频器及其抑制浪涌的方法
CN201937279U (zh) 一种变压器隔离静止无功发生装置
CN201230213Y (zh) 磁控调压式无功自动补偿装置
CN103490639A (zh) 一种基于全柔性控制的柔性配电变压器
CN203491694U (zh) 一种风场升压系统主变压器
CN110739701A (zh) 一种低压配电网线路低电压治理系统及治理方法
CN109217326B (zh) 一种降压式角型statcom及其控制方法
CN202260466U (zh) 低压动态无功功率三相单相混合滤波补偿装置
CN202474860U (zh) 一种数码节能器
CN201489964U (zh) 一种大容量电弧炉变压器
CN203673043U (zh) 一种大功率全范围电压输出的电池测试装置
CN202957609U (zh) 400v电网线路动态无功补偿装置
CN2798390Y (zh) 一种变压器隔离型静止无功发生装置的主电路
CN203193283U (zh) 一种电压偏差调节器
CN203026954U (zh) 矿热炉低压动态无功功率补偿装置
CN203466050U (zh) 一种新型的交流变频器用隔离变压器
CN203039367U (zh) 一种低压滤波无功补偿电路结构
CN202276152U (zh) 一种用于工频感应熔炼炉功率因数的补偿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.02.14)

122 Ep: pct application non-entry in european phase

Ref document number: 12760124

Country of ref document: EP

Kind code of ref document: A1