WO2014169618A1 - 一种磁控型可控并联电抗器联合调节试验装置 - Google Patents

一种磁控型可控并联电抗器联合调节试验装置 Download PDF

Info

Publication number
WO2014169618A1
WO2014169618A1 PCT/CN2013/086601 CN2013086601W WO2014169618A1 WO 2014169618 A1 WO2014169618 A1 WO 2014169618A1 CN 2013086601 W CN2013086601 W CN 2013086601W WO 2014169618 A1 WO2014169618 A1 WO 2014169618A1
Authority
WO
WIPO (PCT)
Prior art keywords
side winding
shunt reactor
test
excitation
controllable shunt
Prior art date
Application number
PCT/CN2013/086601
Other languages
English (en)
French (fr)
Inventor
雷晰
徐桂芝
蒋大鹏
张振环
刘洋
Original Assignee
国家电网公司
国网智能电网研究院
中电普瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院, 中电普瑞科技有限公司 filed Critical 国家电网公司
Publication of WO2014169618A1 publication Critical patent/WO2014169618A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings

Definitions

  • the invention belongs to the technical field of ultra-high voltage and ultra-high voltage, and particularly relates to a joint regulation test device for a magnetic control type controllable shunt reactor suitable for a super/UHV transmission system. Background technique
  • the controllable shunt reactor is one of the key technical means to solve the contradiction between the reactive voltage regulation in the ultra/UHV transmission system and the limitation of the overvoltage to the different requirements of the shunt reactor.
  • the controllable shunt reactor can not only automatically and continuously adjust its own capacity as the transmission capacity of the line changes, but when the line is lightly loaded, once the transient process occurs, it will quickly adjust the capacity to the maximum value, limiting the fault.
  • the power frequency overvoltage increases the transient stability of the system. At the same time, it can also inhibit the various oscillations of the system, and improve the dynamic stability of the system to a certain extent.
  • the working principle is as follows: Under the normal condition of the system, the purpose of reactive power and voltage regulation can be achieved by adjusting the capacity of the controllable shunt reactor. In the transient state of the system (such as ground fault), the appropriate neutral point small reactance is matched. It can suppress the power frequency overvoltage and the substation current, improve the success rate of the reclosing, and ensure the safe and stable operation of the system.
  • These functions of the controllable shunt reactor can effectively improve the operating efficiency of the power grid, and also improve the line transmission capacity and upgrade.
  • the grid stabilizes the level and reduces the loss of the grid.
  • UHV transmission the role of controllable shunt reactors will be more obvious.
  • the controllable shunt reactor mainly includes two methods: a magnetically controlled shunt reactor (MCSR) and a stepped controlled Shunt Reactor (SCSR).
  • MCSR magnetically controlled shunt reactor
  • SCSR stepped controlled Shunt Reactor
  • MCSR has the advantages of continuous smooth adjustment.
  • the magnetic control type controllable shunt reactor changes the magnetic saturation of the core by changing the magnitude of the DC excitation current of the core, thereby achieving continuous smooth adjustment of the reactance value and capacity.
  • the stability and reliability of the excitation system directly affect the operation of the magnetron controlled shunt reactor in the system, so the design of the excitation system needs to be considered.
  • the joint regulation test of the magnetron controllable shunt reactor is a necessary guarantee for the safe operation of the controllable shunt reactor equipment.
  • the joint regulation test is carried out before the actual project, combined with the controllable shunt reactor body, excitation rectification device and filter device. Complete functional test, the device can be tested as a whole according to the actual working conditions, verify the overall equipment design and parameter selection, detect and discover equipment problems, and solve the hidden dangers.
  • the present invention provides a magnetic control type controllable shunt reactor combined adjustment test equipment With the use of parallel capacitors in the general laboratory, it is possible to simulate the actual working conditions of the site and complete the overall performance test of the device before leaving the factory.
  • the present invention adopts the following technical solutions:
  • the invention provides a magnetic control type controllable shunt reactor combined regulation test device, the device comprises a single-phase body of a magnetic control type controllable shunt reactor, a test power source, a field rectifying device, a filtering device and a parallel capacitor;
  • the single-phase body of the controllable shunt reactor comprises a grid side winding, a control side winding and a compensation side winding;
  • the test power source, the excitation rectifying device and the filtering device respectively connect the grid side winding, the control side winding and the compensation side winding respectively
  • the parallel capacitor is connected in parallel with the grid side winding.
  • the test power source is composed of a test transformer or a series connection of an electric motor and a generator.
  • the primary side of the test transformer is connected to a three-phase power supply, and the secondary side output is connected to the mesh side winding.
  • One side of the motor is connected to the three-phase power source, the other side of the motor outputs a drag generator, and the generator output is connected to the net side winding.
  • the excitation rectifying device comprises a self-excited or externally-excited rectifier transformer, a rectifier valve, a self-excited or externally-excited rectifier transformer input end connected to the compensation side winding or an external power source, the output end is connected to the rectifier valve, and the rectifier valve output is connected to the control Side winding.
  • the self-excited rectifier transformer When the excitation rectification device adopts the self-excitation mode, the self-excited rectifier transformer is connected to the compensation side winding; when the external excitation mode is used, the external excitation rectifier transformer is connected to the external excitation power supply.
  • the filtering device is connected in parallel on the compensation side winding bus, and the filtered harmonics include 5th and 7th harmonics.
  • the parallel capacitor outputs capacitive reactive power, and the capacitive reactive power generated by the parallel capacitor increases with the increase of the inductive reactive capacity of the single-phase body output of the magnetic control type controllable shunt reactor to ensure the bus voltage Stable, and maintain the reactive power balance of the power supply.
  • the grid side winding is connected to the test power supply, and the parallel capacitor and the grid side winding are simultaneously connected to the test power supply.
  • the parallel capacitor output reactive power can change accordingly. It can effectively simulate the output capacity, output characteristics and excitation characteristics of the single-phase main body of the magnetron controllable shunt reactor of the controllable shunt reactor, and ensure the stability of the bus voltage on the power supply side, effectively reducing the capacity requirement for the test power supply. And basically simulate the on-site working conditions of the device;
  • Excitation rectification device adopts self-excitation mode or external excitation mode, high flexibility, high overall reliability, and can be combined Compensating side windings, filtering devices, etc., can effectively realize the flexible control mode of the magnetron-controlled shunt reactor, simulate the actual working condition of the site to the maximum extent, and achieve a small impact on the system;
  • Figure 1 is a structural diagram of a combined control test device for a magnetically controlled type controllable shunt reactor
  • the magnetic control type shunt reactor changes the magnetic saturation of the reactor core through the intergranular tube control excitation system, thus achieving the reactance. Smooth adjustment of the capacity of the device can be used to solve the contradiction between overvoltage and reactive compensation in the UHV/UHV transmission line.
  • the invention provides a 750kV magnetic control type controllable shunt reactor combined regulation test device suitable for a super/UHV transmission system, as shown in Fig. 1, including a test power source (composed of an electric motor and a generator), and a magnetic control type controllable Shunt reactor single-phase body, excitation rectification device, shunt capacitor, filter device and necessary switches;
  • the single-phase body of the magnetic control type controllable shunt reactor is divided into a grid side winding, a compensation side winding and a control side winding, wherein the grid side winding is connected to the AC power source in a single phase, and the AC power supply of the excitation rectifying device is taken from the compensation side winding
  • the control side winding is applied with a DC excitation current on the core by means of external DC or auto-coupling.
  • the compensation side winding provides excitation power for the control side winding, and the parallel side reactor is installed on the grid side winding side.
  • the device can be capacitively reactive according to the inductive reactive output of the single-phase body output of the magnetic control type controllable shunt reactor.
  • the system bus provides capacitive reactive power to ensure system reactive power balance.
  • the compensation side winding outlet is connected to the excitation rectifying device, and the output of the excitation rectifying device is connected to both ends of the control side winding.
  • the shunt capacitor and the grid side winding are simultaneously connected to the test power bus position.
  • the parallel capacitor output reactive power can change accordingly, and the main body output capacity and output of the controllable shunt reactor can be effectively simulated.
  • the characteristics and excitation characteristics ensure the stability of the bus voltage on the power supply side, effectively reducing the capacity requirement for the test power supply, and basically The field conditions used by the device are simulated.
  • the excitation system can switch between different modes of self-excitation and external excitation, and the output characteristics of the device are investigated under different excitation conditions.
  • any two-phase outlet of the three-phase power supply is connected to the grid side winding, the compensation side winding outlet is connected to the excitation rectification device, and the output of the excitation rectification device is connected to both ends of the control side winding.
  • the filter device is connected in parallel to the compensation side winding, which can effectively eliminate the harmonics generated during the test of the magnetron type controllable shunt reactor.
  • the test power source is composed of a test transformer or a series connection of an electric motor and a generator.
  • the primary side of the test transformer is connected to a three-phase power supply, and the secondary side output is connected to the mesh side winding.
  • One side of the motor is connected to the three-phase power source, the other side of the motor outputs a drag generator, and the generator output is connected to the net side winding.
  • the excitation rectifying device comprises a self-excited or externally-excited rectifier transformer, a rectifier valve, a self-excited or externally-excited rectifier transformer input end connected to the compensation side winding or an external power source, the output end is connected to the rectifier valve, and the rectifier valve output is connected to the control Side winding.
  • the self-excited rectifier transformer When the excitation rectification device adopts the self-excitation mode, the self-excited rectifier transformer is connected to the compensation side winding; when the external excitation mode is used, the external excitation rectifier transformer is connected to the external excitation power supply.
  • the filtering device is connected in parallel on the compensation side winding bus, and the filtered harmonics include 5th and 7th harmonics.
  • the parallel capacitor outputs capacitive reactive power, and the capacitive reactive power generated by the parallel capacitor increases with the increase of the inductive reactive capacity of the single-phase body output of the magnetic control type controllable shunt reactor to ensure the bus voltage Stable, and maintain the reactive power balance of the power supply.
  • the single-phase body of the magnetic control type controllable shunt reactor includes three sides of the grid side, control and compensation.
  • the excitation rectification device adopts self-excitation or external excitation mode, and the excitation rectification device is composed of a rectifier transformer and a rectifier valve.
  • a parallel capacitor is arranged in the mesh side winding of the magnetron controllable shunt reactor, and the device can output the inductive reactive power according to the controllable reactor body output. Corresponding capacitive and reactive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种适用于超/特高压输电系统的磁控式可控并联电抗器联合调节试验装置,包括磁控式可控并联电抗器单相本体、试验电源、整流装置、滤波装置和并联电容器;所述磁控式可控并联电抗器单相本体包括网侧绕组、控制侧绕组和补偿侧绕组;所述试验电源、整流装置和滤波装置分别对应连接所述网侧绕组、控制侧绕组和补偿侧绕组;所述并联电容器与网侧绕组并联。该试验装置利用一般试验室并联电容器模拟现场实际工况,在出厂前完成装置整体性能测试。

Description

一种磁控型可控并联电抗器 调节试验装置
技术领域
本发明属于超高压、 特高压技术领域, 具体涉及一种适用于超 /特高压输电系统的磁控型 可控并联电抗器联合调节试验装置。 背景技术
可控并联电抗器是解决超 /特高压输电系统中无功电压调节和限制过电压对并联电抗器 不同需求之间矛盾的关键技术手段之一。 可控并联电抗器不仅能随着线路传输容量的变化而 自动连续或分级调节自身的容量, 而且当线路轻载时, 一旦发生暂态过程, 它会迅速将容量 调节至最大值, 限制故障引起的工频过电压, 提高系统的暂态稳定性。 同时, 对于系统的各 种震荡也可起到一定的抑制作用, 在一定程度上提高了系统的动态稳定性。 其工作原理为: 在系统正常的情况下, 通过调节可控并联电抗器的容量可以达到无功和电压调节的目的, 在 系统暂态 (如接地故障)时, 配合合适的中性点小电抗, 可以抑制工频过电压和潜供电流, 提 高重合闸成功率, 保证系统的安全稳定运行, 可控并联电抗器的这些作用可有效提高电网的 运行效益, 其还具有提高线路输送能力、 提升电网稳定水平、 减少电网损耗等作用。 现今, 在特高压输电中, 可控并联电抗器的作用将更加明显。
可控并联电抗器主要包括磁控型可控并联电抗器 (magnetically controlled shunt reactor, MCSR) 和分级式可控并联电抗器 (Stepped Controlled Shunt Reactor, SCSR) 两种方式。 其 中, MCSR具有可连续平滑调节等优点。 磁控型可控并联电抗器通过改变铁心直流励磁电流 的大小来改变铁心的磁饱和度, 从而可以实现电抗值和容量的连续平滑调节。 励磁系统的稳 定性和可靠性直接影响磁控型可控并联电抗器在系统中的运行, 因此励磁系统的设计需要重 点考虑。
磁控型可控并联电抗器联合调节试验是可控并联电抗器设备安全运行的必要保证, 联合 调节试验是在投入实际工程前, 结合可控并联电抗器本体、 励磁整流装置、 滤波装置进行的 完整的功能性试验, 可按照实际工况对装置进行整体测试, 验证整体设备的设计和参数选择, 检测和发现设备问题, 解决存在的隐患。 发明内容
为了克服上述现有技术的不足, 本发明提供一种磁控型可控并联电抗器联合调节试验装 置, 利用一般试验室并联电容器, 可以模拟现场实际工况, 出厂前完成装置整体性能测试。 为了实现上述发明目的, 本发明采取如下技术方案:
本发明提供一种磁控型可控并联电抗器联合调节试验装置, 所述装置包括磁控型可控并 联电抗器单相本体、 试验电源、 励磁整流装置、 滤波装置和并联电容器; 所述磁控型可控并 联电抗器单相本体包括网侧绕组、 控制侧绕组和补偿侧绕组; 所述试验电源、 励磁整流装置 和滤波装置分别对应连接所述网侧绕组、 控制侧绕组和补偿侧绕组; 所述并联电容器与网侧 绕组并联。
所述试验电源采用试验变压器或采用电动机和发电机串联组成。
所述试验变压器一次侧连接到三相电源, 二次侧输出连接所述网侧绕组。
所述电动机一侧连接到三相电源, 另一侧机械输出拖动发电机, 发电机输出连接所述网 侧绕组。
所述励磁整流装置包括自励或外励整流变压器、 整流阀, 自励或外励整流变压器输入端 与补偿侧绕组或外部电源连接, 输出端连接到整流阀, 整流阀输出连接到所述控制侧绕组。
所述励磁整流装置采用自励方式时, 自励整流变压器连接到补偿侧绕组; 其采用外励方 式时, 外励整流变压器连接到外励电源。
所述滤波装置并联在补偿侧绕组母线上, 滤除的谐波包括 5次以及 7次谐波。
所述并联电容器输出容性无功, 所述并联电容器发出的容性无功随着磁控型可控并联电 抗器单相本体输出感性无功容量的增大而增大, 以保证母线电压的稳定, 且保持电源的无功 平衡。
与现有技术相比, 本发明的有益效果在于:
( 1)可联合单相磁控型可控并联电抗器本体、励磁整流装置及滤波装置, 出厂前在试验 室近似模拟实际工况进行试验;
(2)网侧绕组与试验电源连接, 并联电容器与网侧绕组同时接入试验电源, 随着磁控型 可控并联电抗器单相本体输出容量的变化, 并联电容器输出无功可随之变化, 可以在有效模 拟可控并联电抗器的磁控型可控并联电抗器单相本体输出容量、输出特性、励磁特性的同时, 保证电源侧母线电压的稳定, 有效减少对于测试电源的容量需求, 并基本模拟了装置使用的 现场工况;
( 3 )不需要特殊试验设备, 利用一般试验室并联电容器、发电机及电动机的试验电路条 件即可实现, 节省了成本;
( 4)励磁整流装置采用自励磁方式或外励磁方式, 灵活度高, 整体可靠性高, 并可结合 补偿侧绕组、 滤波装置等, 可以有效实现磁控型控并联电抗器的灵活控制方式, 最大限度模 拟现场的实际工作状况, 实现对系统的较小冲击;
( 5 )可以检验励磁系统工作过程中, 断路器电流、 晶闸管阀电压、 电流以及晶闸管阀触 发角度设置等的实际工况, 来检验设计、 制造和装配中的问题, 可模拟磁控型可控并联电抗 器在现场运行, 等效提供实际工况中各设备在容量调节切换前后及切换暂态过程中的各设备 电气条件, 验证励磁系统输出直流调节过程中触发角度的有效范围, 励磁与本体容量输出之 间的有效关系、 断路器的电气工作强度等电气性能。
( 6 )可以短时间内实现磁控型可控并联电抗器容量的多次、 多等级输出调节, 具有较好 的工程试验实用前景。 附图说明
图 1 是磁控型可控并联电抗器联合调节试验装置结构图; 具体实》式
下面结合附图对本发明作进一步详细说明。
我国新建的超 /特高压输电系统具有电压等级高、 容量调节频繁、 功率波动大等特点, 磁 控型控并联电抗器通过晶间管控制励磁系统改变电抗器铁心的磁饱和程度, 从而实现电抗器 容量的平滑调节, 可以用于解决超 /特高压输电线路限制过电压和无功补偿之间的矛盾。 本发 明提供了一种适用于超 /特高压输电系统的 750kV磁控型可控并联电抗器联合调节试验装置, 如图 1, 包括试验电源 (由电动机和发电机组成)、 磁控型可控并联电抗器单相本体、 励磁整 流装置、 并联电容器、 滤波装置和必要的开关;
所述磁控型可控并联电抗器单相本体分为网侧绕组、 补偿侧绕组和控制侧绕组, 所述网 侧绕组与交流电源单相连接, 励磁整流装置的交流电源取自补偿侧绕组, 控制侧绕组通过外 加直流或自耦整流的形式, 在铁心上施加直流励磁电流。 补偿侧绕组为控制侧绕组提供励磁 电源, 网侧绕组侧装设并联电抗器, 该装置可根据磁控型可控并联电抗器单相本体输出的感 性无功输出相应的容性无功, 为系统母线提供容性无功以保证系统无功平衡。
补偿侧绕组出线连接到励磁整流装置, 励磁整流装置输出端连接到控制侧绕组两端。 试 验时, 并联电容器与网侧绕组同时接入测试电源母线位置, 随着本体输出容量的变化, 并联 电容器输出无功可随之变化, 可以在有效模拟可控并联电抗器的本体输出容量、 输出特性、 励磁特性的同时, 保证电源侧母线电压的稳定, 有效减少对于测试电源的容量需求, 并基本 模拟了装置使用的现场工况; 同时, 励磁系统可以在自励磁和外励磁的不同方式之间进行切 换, 在不同的励磁工况考察装置的输出特性。
三相电源任意两相出线连接到网侧绕组, 补偿侧绕组出线连接到励磁整流装置, 励磁整 流装置输出端连接到控制侧绕组两端。 滤波装置并联在补偿侧绕组, 可以有效消除磁控型可 控并联电抗器试验过程中产生的谐波。
所述试验电源采用试验变压器或采用电动机和发电机串联组成。
所述试验变压器一次侧连接到三相电源, 二次侧输出连接所述网侧绕组。
所述电动机一侧连接到三相电源, 另一侧机械输出拖动发电机, 发电机输出连接所述网 侧绕组。
所述励磁整流装置包括自励或外励整流变压器、 整流阀, 自励或外励整流变压器输入端 与补偿侧绕组或外部电源连接, 输出端连接到整流阀, 整流阀输出连接到所述控制侧绕组。
所述励磁整流装置采用自励方式时, 自励整流变压器连接到补偿侧绕组; 其采用外励方 式时, 外励整流变压器连接到外励电源。
所述滤波装置并联在补偿侧绕组母线上, 滤除的谐波包括 5次以及 7次谐波。
所述并联电容器输出容性无功, 所述并联电容器发出的容性无功随着磁控型可控并联电 抗器单相本体输出感性无功容量的增大而增大, 以保证母线电压的稳定, 且保持电源的无功 平衡。
本发明所设计的磁控型可控并联电抗器联合试验方法设计方案的具体实现方式如下所 述:
1) 磁控型可控并联电抗器单相本体包括网侧、控制、补偿三个绕组。励磁整流装置采用 自励或外励方式, 励磁整流装置由整流变压器与整流阀组成。
2) 为保证测试系统的母线无功平衡, 降低对电源容量的要求, 在磁控型可控并联电抗器 网侧绕组设置并联电容器, 该装置可根据可控电抗器本体输出的感性无功输出相应的容性无 功。
3)可联合可控并联电抗器本体、 励磁装置及滤波装置, 出厂前在试验室实现等效实际工 况的试验。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照 上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然可以对本 发明的具体实施方式进行修改或者等同替换, 而未脱离本发明精神和范围的任何修改或者等 同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求
1. 一种磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述装置包括磁控型可 控并联电抗器单相本体、 试验电源、 励磁整流装置、 滤波装置和并联电容器; 所述磁控型可 控并联电抗器单相本体包括网侧绕组、 控制侧绕组和补偿侧绕组; 所述试验电源、 励磁整流 装置、 滤波装置分别对应连接所述网侧绕组、 控制侧绕组和补偿侧绕组; 所述并联电容器与 网侧绕组并联。
2. 根据权利要求 1所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 试验电源采用试验变压器或采用电动机和发电机串联组成。
3. 根据权利要求 2所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 试验变压器一次侧连接到三相电源, 二次侧输出连接所述网侧绕组。
4. 根据权利要求 2所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 电动机一侧连接到三相电源, 另一侧机械输出拖动发电机, 发电机输出连接所述网侧绕组。
5. 根据权利要求 1所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 励磁整流装置包括自励或外励整流变压器、 整流阀, 自励或外励整流变压器输入端与补偿侧 绕组或外部电源连接, 输出端连接到整流阀, 整流阀输出连接到所述控制侧绕组。
6. 根据权利要求 5所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 励磁整流装置采用自励方式时, 自励整流变压器连接到补偿侧绕组; 其采用外励方式时, 外 励整流变压器连接到外励电源。
7. 根据权利要求 1所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 滤波装置并联在补偿侧绕组母线上, 滤除的谐波包括 5次以及 7次谐波。
8. 根据权利要求 1所述的磁控型可控并联电抗器联合调节试验装置, 其特征在于: 所述 并联电容器输出容性无功, 所述并联电容器发出的容性无功随着磁控型可控并联电抗器单相 本体输出感性无功容量的增大而增大, 以保证母线电压的稳定, 且保持电源的无功平衡。
PCT/CN2013/086601 2013-04-19 2013-11-06 一种磁控型可控并联电抗器联合调节试验装置 WO2014169618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310137356.5 2013-04-19
CN201310137356.5A CN103383419B (zh) 2013-04-19 2013-04-19 一种磁控式可控并联电抗器联合调节试验装置

Publications (1)

Publication Number Publication Date
WO2014169618A1 true WO2014169618A1 (zh) 2014-10-23

Family

ID=49491262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086601 WO2014169618A1 (zh) 2013-04-19 2013-11-06 一种磁控型可控并联电抗器联合调节试验装置

Country Status (2)

Country Link
CN (1) CN103383419B (zh)
WO (1) WO2014169618A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646029A (zh) * 2016-11-18 2017-05-10 武汉电联电力电气技术有限公司 一种电容器测量装置及电抗器特性测试方法
RU183616U1 (ru) * 2017-12-11 2018-09-28 Открытое Акционерное Общество Холдинговая Компания "Электрозавод" (Оао "Электрозавод") Трехфазный управляемый шунтирующий реактор - статический компенсатор реактивной мощности
CN111145978A (zh) * 2020-01-17 2020-05-12 山东泰开电力电子有限公司 一种自励磁双绕组110kV磁控电抗器
CN111651953A (zh) * 2020-05-22 2020-09-11 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种磁阀式可控电抗器电磁仿真建模方法
CN112952854A (zh) * 2021-03-22 2021-06-11 赵忠臣 可控串联补偿装置
CN115902480A (zh) * 2022-11-29 2023-04-04 西安西电电力电容器有限责任公司 一种集合式电力电容器试验回路及其调谐方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383419B (zh) * 2013-04-19 2016-02-24 国家电网公司 一种磁控式可控并联电抗器联合调节试验装置
CN104836244A (zh) * 2014-02-08 2015-08-12 国家电网公司 一种磁控式可控并联电抗器电路
CN104777379A (zh) * 2015-03-31 2015-07-15 华北电力大学 一种单相可控并联电抗器动态特性测试系统
CN107240499A (zh) * 2017-06-21 2017-10-10 国家电网公司 750kV电抗器局部放电试验装置用电容器
CN107228998B (zh) * 2017-08-03 2019-12-10 南京国电南自电网自动化有限公司 基于参数识别的磁控型并联电抗器运行容量自动追踪方法
CN109188085A (zh) * 2018-09-11 2019-01-11 国网青海省电力公司检修公司 磁控式高抗本体测试方法
CN110492495A (zh) * 2019-09-04 2019-11-22 国网电力科学研究院武汉南瑞有限责任公司 一种移动式紧凑型现场高压试验装置
CN111812544A (zh) * 2020-06-17 2020-10-23 天津中铁电气化设计研究院有限公司 一种整流器交流侧零序电压保护及断线监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933054A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 外接电源可控电抗器
CN1933056A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 带补偿绕组可控电抗器
CN1933053A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 自馈式可控电抗器
US7619452B2 (en) * 2008-03-28 2009-11-17 Intel Corporation Mutual charge cancelling sample-reset loop filter for phase locked loops
CN101860035A (zh) * 2010-05-11 2010-10-13 青岛海电电气有限公司 晶闸管控制磁控电抗器的无功补偿系统
CN102810867A (zh) * 2011-05-30 2012-12-05 青岛海电电气有限公司 基于磁控电抗器的动态无功补偿系统
CN103383419A (zh) * 2013-04-19 2013-11-06 国家电网公司 一种磁控式可控并联电抗器联合调节试验装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200990285Y (zh) * 2006-09-04 2007-12-12 特变电工沈阳变压器集团有限公司技术中心 一种带补偿绕组可控电抗器
CN200990284Y (zh) * 2006-09-04 2007-12-12 特变电工沈阳变压器集团有限公司技术中心 一种外接电源可控电抗器
CN101609742B (zh) * 2008-06-18 2011-08-31 特变电工沈阳变压器集团有限公司 一种自身取能的快速响应可控电抗器
CN101741307B (zh) * 2010-01-13 2012-07-04 中国电力科学研究院 一种超、特高压磁控式可控并联电抗器的动态模拟装置及其方法
CN202084937U (zh) * 2011-05-23 2011-12-21 扬州新扬开关设备有限公司 Mcr型svc装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933054A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 外接电源可控电抗器
CN1933056A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 带补偿绕组可控电抗器
CN1933053A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 自馈式可控电抗器
US7619452B2 (en) * 2008-03-28 2009-11-17 Intel Corporation Mutual charge cancelling sample-reset loop filter for phase locked loops
CN101860035A (zh) * 2010-05-11 2010-10-13 青岛海电电气有限公司 晶闸管控制磁控电抗器的无功补偿系统
CN102810867A (zh) * 2011-05-30 2012-12-05 青岛海电电气有限公司 基于磁控电抗器的动态无功补偿系统
CN103383419A (zh) * 2013-04-19 2013-11-06 国家电网公司 一种磁控式可控并联电抗器联合调节试验装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646029A (zh) * 2016-11-18 2017-05-10 武汉电联电力电气技术有限公司 一种电容器测量装置及电抗器特性测试方法
RU183616U1 (ru) * 2017-12-11 2018-09-28 Открытое Акционерное Общество Холдинговая Компания "Электрозавод" (Оао "Электрозавод") Трехфазный управляемый шунтирующий реактор - статический компенсатор реактивной мощности
CN111145978A (zh) * 2020-01-17 2020-05-12 山东泰开电力电子有限公司 一种自励磁双绕组110kV磁控电抗器
CN111651953A (zh) * 2020-05-22 2020-09-11 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种磁阀式可控电抗器电磁仿真建模方法
CN112952854A (zh) * 2021-03-22 2021-06-11 赵忠臣 可控串联补偿装置
CN115902480A (zh) * 2022-11-29 2023-04-04 西安西电电力电容器有限责任公司 一种集合式电力电容器试验回路及其调谐方法
CN115902480B (zh) * 2022-11-29 2023-11-03 西安西电电力电容器有限责任公司 一种集合式电力电容器试验回路及其调谐方法

Also Published As

Publication number Publication date
CN103383419A (zh) 2013-11-06
CN103383419B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2014169618A1 (zh) 一种磁控型可控并联电抗器联合调节试验装置
WO2021073323A1 (zh) 一种自产供电相电源的接地故障电流补偿系统、方法及装置
CN104181490B (zh) 一种电子式电流互感器的大电流暂态特性检测装置
CN104953605A (zh) 三相电网相间不平衡治理电路、治理系统及治理方法
CN107294100B (zh) 一种配电网柔性交流互联装置
CN104701833A (zh) 特高压输电工频过电压抑制方法
WO2022213525A1 (zh) 一种交交变换器
CN113036765B (zh) 一种直流偏磁抑制装置、方法及控制系统
CN103094912B (zh) 一种750kV磁控式可控并联电抗器励磁系统的实现方法
Mehmood et al. A comprehensive review on magnetically controllable reactor: Modelling, applications and future prospects
CN101364736B (zh) 一种串联混合型有源电力滤波装置
CN110176787A (zh) 一种兼具谐波补偿的负荷虚拟同步机控制装置及方法
CN210404755U (zh) 一种自产供电相电源的接地故障电流补偿系统
CN202405792U (zh) 一种矿用高压动态滤波节电装置
CN209388858U (zh) 一种无级调容分裂移相变压器
CN205141694U (zh) 三相电网相间不平衡治理电路
CN203232790U (zh) 一种多晶硅用变流变压器
CN203325665U (zh) 一种变频移相整流变压器
CN105262139B (zh) 一种提高风力发电机低压穿越特性的系统及方法
CN103094906A (zh) 基于补偿绕组取能励磁的750kV磁控式可控高抗电路
CN102545223A (zh) 一种矿用高压动态滤波节电装置
Peng et al. Design requirement and DC bias analysis on HVDC converter transformer
Babaei et al. A control structure for line-frequency-switched STATCOMs under system faults
CN204131130U (zh) 一种基于智能交流电网的节电装置
CN109545527A (zh) 一种无级调容分裂移相变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882579

Country of ref document: EP

Kind code of ref document: A1