WO2012124607A1 - Illumination device, headlamp, and vehicle - Google Patents

Illumination device, headlamp, and vehicle Download PDF

Info

Publication number
WO2012124607A1
WO2012124607A1 PCT/JP2012/056003 JP2012056003W WO2012124607A1 WO 2012124607 A1 WO2012124607 A1 WO 2012124607A1 JP 2012056003 W JP2012056003 W JP 2012056003W WO 2012124607 A1 WO2012124607 A1 WO 2012124607A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
laser
light source
laser light
vehicle
Prior art date
Application number
PCT/JP2012/056003
Other languages
French (fr)
Japanese (ja)
Inventor
野村 勝
竹史 塩見
片岡 耕太郎
足立 浩一郎
太田 佳似
岩田 浩
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012124607A1 publication Critical patent/WO2012124607A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/114Vehicle acceleration or deceleration

Definitions

  • the present invention relates to an illuminating device and a headlamp that use a semiconductor laser element (LD) as a light source, and a vehicle equipped with the headlamp.
  • LD semiconductor laser element
  • the LD is used as a light source for a headlight of a vehicle such as an automobile.
  • vehicles such as automobiles equipped with the above headlights are provided with measures for improving safety during running or accidents.
  • Patent Document 1 the lateral acceleration of a vehicle traveling on a road that curves in the left-right direction is detected, and the right and left auxiliary illumination lights are turned on in addition to the headlights, thereby making the visibility when turning the vehicle.
  • Patent Document 2 the magnitude of impact at the time of a vehicle collision at the time of an accident is detected by an acceleration sensor, a headlight failure determination is performed based on the detected value, and a secondary caused by headlight breakage is detected.
  • the laser beam generated from the LD has high directivity, there is a possibility of damaging the retina when entering the human eye. For this reason, it is necessary to devise so that the laser beam generated from the LD is not leaked outside the apparatus as much as possible.
  • Patent Document 3 discloses a light emitting device that stops energization of a semiconductor laser when the outside air enters the inside of a sealing means that blocks the semiconductor laser element from the outside air.
  • Patent Documents 1 to 3 disclose technologies for determining whether or not there is a possibility of an accident such as a vehicle collision, and performing control for improving the safety of the headlight when there is such a possibility. Not disclosed.
  • the purpose of the present invention is to foresee as much as possible the occurrence of an accident such as a vehicle collision, and to shift the semiconductor laser to pulse drive emission based on that, and to turn off the light completely in the event of an accident, thereby ensuring safety. It is an object to provide an improved lighting device and headlamp.
  • an illumination device includes a light emitting unit that uses a semiconductor laser element as a light source, a drive circuit that drives the light source, and an acceleration that detects acceleration of the light emitting unit. And a driving circuit that drives the light source for a certain period of time when a value detected by the acceleration sensor exceeds a first threshold value while the light source is being driven.
  • a semiconductor laser can be used as long as the pulse drive is in the off period even when the light-emitting portion is further subjected to a strong impact and causes damage. Laser light is not irradiated from the element.
  • the laser diode element is switched to pulse drive, so that if the accident becomes a reality and the lighting device is damaged, the laser beam is already turned off. Therefore, the probability that the leakage of the laser beam can be prevented, that is, the safety is increased.
  • a headlamp includes a lighting device that includes a light emitting unit using a semiconductor laser element as a light source and a drive circuit that drives the light source, and a braking signal for the vehicle.
  • a brake signal detection sensor for detecting, and the drive circuit drives the light source for a certain period of time when the detection value by the brake signal detection sensor exceeds a fifth threshold value while driving the light source. It is characterized by that.
  • the pulse drive is in the off period. If present, the laser beam is not irradiated from the semiconductor laser element.
  • the time lag as described above does not occur if the pulse drive is in the off period and the irradiation of the laser beam from the semiconductor laser element is already stopped when the semiconductor laser element drive stop instruction is given.
  • An illuminating device includes an illuminating device that is provided in a vehicle and includes a light emitting unit that uses a semiconductor laser element as a light source and a drive circuit that drives the light source, and detects an acceleration of the illuminating device.
  • An acceleration calculation unit that calculates an acceleration in a direction orthogonal to the traveling direction of the vehicle from a speed signal indicating the speed of the vehicle and a steering angle signal indicating the steering angle of the vehicle,
  • the drive circuit causes the light source to pulse-drive for a certain period of time when an absolute value of a difference between the acceleration calculated by the acceleration calculation unit and the acceleration detected by the acceleration sensor exceeds a seventh threshold value. It is said.
  • acceleration in a direction orthogonal to the traveling direction of the vehicle is calculated from a speed signal indicating the speed of the vehicle and a steering angle signal indicating the steering angle of the vehicle, and the calculated acceleration is detected by an acceleration sensor.
  • the absolute value of the difference from the acceleration exceeds the seventh threshold, the steering wheel is suddenly turned off while the vehicle slips, and it is in an unexpected rotation (spin), or while going straight ahead also shows the state of spinning the vehicle.
  • the semiconductor device can be used if the pulse drive is in the off period. Laser light is not irradiated from the laser element.
  • the laser beam may be turned off even if the light emitting unit is actually damaged. It can be made highly safe with minimal light leakage.
  • the present invention includes a light emitting unit that uses a semiconductor laser element as a light source, a drive circuit that drives the light source, and an acceleration sensor that detects acceleration of the light emitting unit, and the drive circuit drives the light source.
  • a light emitting unit that uses a semiconductor laser element as a light source
  • a drive circuit that drives the light source
  • an acceleration sensor that detects acceleration of the light emitting unit
  • the drive circuit drives the light source.
  • (A) is a circuit diagram which shows a simple example for lighting the semiconductor laser (LD) in the said headlamp
  • (b) is a perspective view which shows the external appearance of the said semiconductor laser.
  • FIG. 9 is a diagram showing a reference voltage equalization circuit in the block shown in FIG. 8. It is a block diagram which shows another example of the acceleration judgment part in the said laser drive part. It is a timing chart of the operation
  • FIG. It is a timing chart of operation
  • Japanese Patent Application No. 2009-237076 filed by the applicant of the present application
  • Japanese Patent Laid-Open Publication No. 2011-0864432 Japanese Patent Laid-Open Publication No. 2011-0864432 (published on April 28, 2011)
  • Japanese Patent Laid-Open Publication No. 2011-0864432 Japanese Patent Laid-Open Publication No. 2011-0864432 (published on April 28, 2011)
  • a collision detection unit detects a collision and turns off the laser headlight. This prevents the laser light from leaking out of the vehicle due to damage to the headlight due to an accident or the like.
  • the technology that detects the collision at the collision detection unit and turns off the laser headlights enters the extinguishing operation only after the collision is detected. Even for a short time until the detection unit (sensor) responds, it takes time until the power supply to the semiconductor laser is cut off, and there is a possibility that laser light leaks first. That is, a time lag occurs between the occurrence of a vehicle collision and the energization of the semiconductor laser is cut off, and thus there arises a problem that the laser beam leaks for a short time lag.
  • the purpose of the headlamp according to one embodiment of the present invention is to predict the occurrence of an accident such as a vehicle collision as much as possible, and to shift the semiconductor laser to pulse drive light emission based on that, and in the event of an accident It is to improve safety by turning it off completely.
  • the laser is generated even in a short time by minimizing the time lag that occurs between the occurrence of a vehicle collision and the time when the semiconductor laser is de-energized. The possibility that light leaks can be reduced.
  • Illumination device 100 (Lighting device 100) An embodiment of the present invention will be described as follows. Illumination device 100 according to the present embodiment is used as a headlamp mounted on a vehicle such as an automobile.
  • FIG. 1 is a schematic block diagram of a lighting device 100 according to the present embodiment.
  • the illumination device 100 includes a headlamp unit (light emitting unit) 101 having a semiconductor laser element (LD) as a light source, and a laser drive for driving the LD of the headlamp unit 101.
  • Circuit (driving circuit) 102 driving circuit 102.
  • the headlamp unit 101 includes a laser light source 1 composed of an LD, a light conversion unit 2 that converts laser light emitted from the laser light source 1 into visible light, and an acceleration sensor 3 that detects acceleration of the headlamp unit 101. Including.
  • the signal detected by the acceleration sensor 3 is transmitted to the laser drive circuit 102 as an acceleration signal S5.
  • the laser drive circuit 102 generates a laser drive current C0 corresponding to a laser control signal S0 from an illumination control unit (described later) and supplies the laser drive current C0 to the laser light source 1 of the headlamp unit 101.
  • the laser drive circuit 102 performs supply control of the laser drive current C0 to the laser light source 1 according to the value of the acceleration signal from the acceleration sensor 3.
  • the laser drive circuit 102 when the laser drive circuit 102 is driving the laser light source 1 (the headlamp is turned on), the value of the acceleration signal (detected value) by the acceleration sensor 3 exceeds the first threshold value. In this case, the laser light source 1 is pulse-driven for a certain time.
  • the laser driving circuit 102 causes the laser light source 1 to perform pulse driving for preparation for turning off.
  • the laser drive circuit 102 sets a second threshold value in which the value (detection value) of the acceleration signal from the acceleration sensor 3 is larger than the first threshold value in a state where the laser light source 1 is pulse-driven. When it exceeds, the driving of the laser light source 1 is stopped (turned off).
  • the first threshold value is a value corresponding to the acceleration when the vehicle is suddenly braked or a value corresponding to the acceleration when the vehicle is suddenly turned off.
  • the second threshold is a value corresponding to the acceleration generated when the vehicle collides with another vehicle or the like.
  • FIG. 2 is a schematic block diagram of the laser drive circuit 102.
  • the laser drive circuit 102 includes a laser control unit 121, a laser drive unit 122, and an output switch element 123, as shown in FIG.
  • the laser control unit 121 receives the signal S0 from the illumination control unit 103 installed outside, and returns a signal S4 to the illumination control unit 103.
  • the signal S0 is a command signal for instructing turning on (ON) and turning off (OFF) of the laser light source 1, and a command signal for instructing the magnitudes of the driving voltage and driving current of the laser light source 1.
  • the signal S4 is a status report signal including a lighting status of the laser light source 1 and an abnormality such as a failure.
  • the laser control unit 121 transmits a signal S1 to the subsequent laser drive unit 122.
  • the laser driver 122 receives the signal S1 from the laser controller 121 and returns a signal S3 to the laser controller 121.
  • the signal S1 is a control signal that controls turning on (ON) and turning off (OFF) of the laser light source 1, and a control signal that indicates the magnitudes of the drive voltage and drive current.
  • the signal S3 is a status report signal for reporting the status of the laser driving unit 122, reporting the driving current of the laser light source 1, and the driving voltage of the laser light source 1.
  • the laser driving unit 122 receives the signal S1 from the laser control unit 121, and supplies power from the power source E (battery) to the laser light source 1 as a driving voltage and a driving current C0.
  • the laser light source 1 is lit by the drive voltage and the drive current C0 supplied from the laser drive unit 122.
  • the acceleration signal S5 from the acceleration sensor 3 is supplied to the laser control unit 121 and the laser driving unit 122.
  • the acceleration signal S5 from the acceleration sensor 3 is given to at least one of the laser controller 121 and the laser driver 122, and is a signal for transmitting information on acceleration (impact etc.). Based on this information (acceleration magnitude), the laser control unit 121 or the laser driving unit 122 controls the laser light source 1 to be turned off.
  • laser pulse driving (ON / OFF) is performed as preparation for extinction.
  • the laser light source 1 can be irradiated with the laser light as quickly as possible. In order to stop (turn off the light), it is preferable to directly determine the magnitude of the acceleration signal S5 by the laser driving unit 122.
  • a certain threshold for example, a magnitude corresponding to an impact corresponding to a vehicle collision
  • the output switch element 123 is provided is arbitrary, but since the laser driving unit 122 includes a capacitor in many cases as will be described later, the acceleration sensor 3 detects a collision acceleration or a laser. It is desirable to provide for shortening the turn-off time of the laser light source 1 when an abnormality of the drive unit 122 is detected.
  • the output switch element 123 is controlled by at least one of the laser controller 121 and the laser driver 122.
  • the signal S2 is a control signal for controlling ON and OFF of the output switch element 123.
  • the output switch element 123 is composed of, for example, a field effector (FET).
  • FET field effector
  • the laser light source 1 includes a plurality of LD chips 11, and laser light is irradiated from each of the LD chips 11.
  • FIG. 3A is an example of a simple circuit diagram for lighting the LD chip 11
  • FIG. 3B is a perspective view showing the appearance of the LD chip 11.
  • the LD chip 11 has a structure in which a cathode electrode 19, a substrate 18, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 17 are laminated in this order.
  • the substrate 18 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet excitation light for exciting the phosphor as in the present application.
  • a group IV semiconductor such as Si, Ge, and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN are represented by III.
  • ZnTe ZnTe
  • ZeSe II-VI group compound
  • II-VI group compound such as ZnS and ZnO semiconductor
  • ZnO Al 2 O 3, SiO 2, TiO 2, CrO 2 and CeO 2 or the like oxide insulator
  • SiN Any material of a nitride insulator such as is used.
  • the anode electrode 17 is for injecting current into the active layer 111 through the clad layer 112.
  • the cathode electrode 19 is for injecting current into the active layer 111 from the lower part of the substrate 18 through the clad layer 113.
  • the current is injected by applying a forward bias to the anode electrode 17 and the cathode electrode 19.
  • the active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
  • a mixed crystal semiconductor made of AlInGaN is used as a material for the active layer 111 and the cladding layer to obtain blue to ultraviolet excitation light.
  • a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used.
  • it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
  • the active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
  • the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission.
  • the front side cleaved surface 114 and the back side cleaved surface 115 are formed. Plays the role of a mirror.
  • the active layer 111 may form a multilayer quantum well structure.
  • a reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different.
  • most of the laser beam L0 can be irradiated from the light emitting point 116 from the front-side cleavage surface 114 which is a low reflectance end face.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the film can be formed using a general film forming method such as a laser ablation method or a sputtering method.
  • the film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
  • the plurality of LD chips 11 can be connected in various patterns in series and parallel.
  • the laser driver 122 is configured according to the connection form of the plurality of LD chips 11 in the laser light source 1.
  • Laser driver 122 Next, details of the laser driving unit 122 will be described below with reference to FIGS. 4 and 5. 4 and 5 can be applied to the laser drive circuit 102 shown in FIG.
  • FIG. 4 is a block diagram illustrating a circuit configuration of the step-down laser driving unit 122.
  • FIG. 4 shows an example of a step-down circuit used when the voltage Vf necessary for driving the laser light source 1 is lower than the voltage Vb of the power source E (when the number of series of LD chips 11 is small). Yes.
  • the step-down laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above.
  • One end of the coil 1221 is connected to the power source E through the main switch element 1220. Note that another switch element may be provided between the power source E and the coil 1221.
  • the laser driving unit 122 is connected to the laser light source 1 including the single LD chip 11.
  • the switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121.
  • the signal S1 and the signal S3 are as described above.
  • the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows.
  • Main switch control signal S8 is transmitted.
  • the main switch element 1220 is ON (ON period)
  • the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223, and the current is also supplied to the laser light source 1.
  • the current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
  • the signal S6 is an output current signal
  • the signal S7 is an output voltage signal
  • the signal S8 is a control signal that controls switching of the main switch element 1220 between ON and OFF.
  • the magnetic flux energy of the coil 1221 is supplied to the laser light source 1 together with the capacitor 1223 through the diode 1222.
  • the capacitor 1223 performs a smoothing operation that relaxes fluctuations in voltage (current) to the laser light source 1 by switching the main switch element 1220 between ON and OFF.
  • the signal S7 (output voltage signal) is used for monitoring whether or not a voltage according to an instruction from the laser control unit 121 is output. Further, when an abnormally high voltage is observed, the signal S7 assumes that the laser light source 1 is open or that the laser drive unit 122 has failed, and the main switch element 1220 is turned OFF to lower the output voltage (OFF Used).
  • the switching control unit 130 receives the signal S9 from the acceleration determination unit 140.
  • the signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
  • the acceleration determination unit 140 receives the acceleration signal S5 from the acceleration sensor 3, generates a signal S9 (also a signal S11 described later) based on the acceleration signal S5, and transmits the signal S9 to the switching control unit 130. ing. Details of the acceleration determination unit 140 will be described later.
  • the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected.
  • This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122.
  • the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off.
  • the laser control unit 121 may be provided with the acceleration determination unit 140.
  • the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . Therefore, it is more desirable to provide a means for forcibly (at a high speed) interrupting current like the output switch element 123.
  • FIG. 5 is a block diagram illustrating a circuit configuration of the boost type laser driving unit 122.
  • FIG. 5 shows a case where the voltage Vf necessary for driving the laser light source 1 is higher than the voltage Vb of the power source E (a plurality of LD chips 11 are slightly in series (the number of series is 3 to 4 or more). ) Shows an example of a step-up circuit used for connection).
  • the boost type laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above.
  • One end of the coil 1221 is connected to the power source E. Note that another switch element may be provided between the power source E and the coil 1221.
  • the laser driving unit 122 is connected to the laser light source 1 including a total of four LD chips 11.
  • the switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121.
  • the signal S1 and the signal S3 are as described above.
  • the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. .
  • the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223. During this period, current is supplied to the laser light source 1 from the capacitor 1223.
  • the main switch element 1220 when the main switch element 1220 is OFF, the magnetic flux energy of the coil 1221 becomes a current, and the capacitor 1223 is charged via the diode 1222 in series with the voltage of the power source E, and the current is also supplied to the laser light source 1.
  • the current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
  • the signal S6 shown in FIG. 5 is an output current signal
  • the signal S7 is an output voltage signal
  • the signal S8 is a control signal for controlling switching of the main switch element 1220 between ON and OFF.
  • the output switch element 123 may be configured to forcibly cut off the current (at high speed).
  • the switching control unit 130 receives the signal S9 from the acceleration determination unit 140.
  • the signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
  • the acceleration determination unit 140 receives the acceleration signal S5 from the acceleration sensor 3, generates a signal S9 (also a signal S11 described later) based on the acceleration signal S5, and transmits the signal S9 to the switching control unit 130. ing. Details of the acceleration determination unit 140 will be described later.
  • the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected.
  • This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122.
  • the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off.
  • the laser control unit 121 may be provided with the acceleration determination unit 140.
  • the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . Therefore, it is desirable to provide a means for forcibly (at high speed) cutting off the current like the output switch element 123.
  • acceleration determination unit 140 (Acceleration judgment unit 140) Next, the acceleration determination unit 140 will be described below with reference to FIGS.
  • FIGS. 6 and 7 are diagrams showing an example of the acceleration judgment unit 140 that judges and detects only single polarity and collision acceleration as digital signals.
  • FIG. 6 is a diagram illustrating a basic configuration example of the acceleration determination unit 140.
  • the acceleration determination unit 140 has a configuration including a reference voltage Vref to be compared with the acceleration signal S5 and a comparator (comparator) 1403 that compares the magnitudes.
  • the output of the comparator 1403 becomes a high level. That is, in this case, the signal S9 output from the comparator 1403 is a signal indicating that the acceleration when the vehicle collides is detected.
  • the acceleration signal S5 of the acceleration sensor 3 is also used for detection of the extinction preparation acceleration, but the extinction preparation acceleration is smaller than the collision acceleration, and thus is not detected by the comparator 1403.
  • the above-described switching control unit 130 has a microcomputer, and an analog / digital converter (A / D converter) is used to determine the acceleration of the sudden brake / quick handle as a digital value. This is done by the microcomputer software.
  • the acceleration signal S5 of the acceleration sensor 3 is input to the switching control unit 130.
  • the output signal S9 of the comparator 1403 may also be supplied to the switching control unit 130 and used as a start signal for pulse driving, which is a light-off preparation operation.
  • the above-described extinction preparation acceleration is an acceleration for determining whether or not to perform pulse driving such that the laser light source 1 is not extinguished completely but is repeatedly extinguished and lit.
  • the collision acceleration is an acceleration for determining whether or not a vehicle equipped with the lighting device 100 has collided.
  • the reference value for determining the extinction preparation acceleration is set to a value lower than the reference value for determining the collision acceleration.
  • the amplifier 1401 when the amplitude of the acceleration signal S5 from the acceleration sensor 3 is weak, the amplifier 1401 as shown by the broken line in FIG. 6 is placed before the comparator 1403 or the amplifier 1402 is placed in the comparator 1403. It may be provided on either or both of the A / D conversion target signal lines branched from the input.
  • the processing speed of the microcomputer mounted on the switching control unit 130 is sufficiently high and the A / D conversion function (signal line, conversion speed) is sufficient, the comparator 1403 and the reference voltage Vref are eliminated, and the collision acceleration This determination may also be made by software.
  • the reference voltage Vref is not necessarily an individual / fixed voltage source.
  • FIG. 7 shows an acceleration determination unit 140 provided with a resistor 1404 and a capacitor 1405 instead of the reference voltage Vref of the acceleration determination unit 140 shown in FIG.
  • the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used,
  • the output value can be set to either a fixed value or a variable value by operating the microcomputer.
  • PWM output it is output as a pulse of High and Low, so that it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405 to perform the same function as the reference voltage Vref.
  • resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
  • the acceleration determination unit 140 having the above-described configuration is configured to detect only the collision acceleration, it may be configured to detect only the extinguishing preparation acceleration with the same configuration. That is, the value of the reference Vref may be lowered so that the laser light source 1 is driven to be pulsed so that it is not extinguished but is extinguished.
  • FIGS. 8 and 9 are diagrams of acceleration judgment unit 140 that judges / detects single polarity, collision acceleration and extinction preparation acceleration as digital signals. It is a figure which shows an example.
  • the acceleration determination unit 140 detects the extinction preparation acceleration that has not been detected by the acceleration determination unit 140 shown in FIGS. 6 and 7 will be described.
  • the acceleration determination unit 140 shown in FIG. 8 is configured by arranging two acceleration determination units 140 shown in FIG.
  • the acceleration determination unit 140 uses (I) Vref1 corresponding to the extinction preparation acceleration as a reference voltage to be compared with the acceleration signal S5, and (II) Vref2 corresponding to the collision acceleration. And comparators 1403 and 1406 for comparing each of them with the acceleration signal S5 of the acceleration sensor 3.
  • the acceleration determination unit 140 determines whether the received acceleration signal S5 exceeds Vref1 or a signal S11 indicating that the extinction preparation acceleration is detected is output from the comparator 1403, and the received acceleration signal S5 exceeds Vref2. If so, the comparator 1406 outputs a signal S9 indicating that the collision acceleration has been detected.
  • the amplifier 1401 when the amplitude of the acceleration signal S5 from the acceleration sensor 3 is weak, the amplifier 1401 as shown by the broken line in FIG. 8 is placed in front of the comparator 1403, or the amplifier 1402 is placed in the comparator 1406. It may be provided before or both.
  • the relationship between the reference voltages Vref1 and Vref2 to be compared is such that Vref1 ⁇ Vref2 when the amplification degree from the acceleration signal S5 to the comparator 1403 and the comparator 1406 is the same, or when the amplifier 1401.1402 is not provided. There is a relationship.
  • the comparator 1403 indicates a detection output when the extinction preparation acceleration is detected.
  • the reference voltages Vref1 and Vref2 may be set so that the comparator 1406 also outputs the signal S9 indicating the detection output.
  • reference voltages Vref1, 2 need not necessarily be individual / fixed voltage sources.
  • FIG. 9 is a diagram showing an alternative configuration of the reference voltages Vref1 and Vref2 of the acceleration determination unit 140 shown in FIG.
  • the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used,
  • the output value can be set to either a fixed value or a variable value by operating the microcomputer.
  • PWM output it is output as High and Low pulses, so as shown in FIG. 9, it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405, and performs the same function as the reference voltages Vref1 and Vref2. Make it.
  • resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
  • FIGS. 10 to 12 show accelerations for judging and detecting only positive and negative polarities and collision acceleration as digital signals with reference to a certain voltage. It is a figure which shows the example of the judgment part.
  • the acceleration determination unit 140 illustrated in FIG. 10 has a configuration similar to that of the acceleration determination unit 140 illustrated in FIG. 8, but corresponds to (I) plus-side collision acceleration as a reference voltage to be compared with the acceleration signal S5. + Vref, (II) ⁇ Vref corresponding to the negative side collision acceleration, and comparators 1403 and 1406 for comparing each with the acceleration signal S5 of the acceleration sensor 3.
  • the comparators 1403 and 1406 are called open collectors or open drains. When the output is (I) high level, the output is equivalently OFF, and when the output is (II) low level, the current is sucked. Yes.
  • the level of the acceleration signal S5 from the acceleration sensor 3 is given to the comparators 1403 and 1406, with + Vref being the level for which the + side determination is desired and ⁇ Vref being the level for the ⁇ side determination.
  • the outputs of the comparators 1403 and 1406 are connected to a voltage “+ Vcc” to be equivalent to a high level output through a resistor 1407.
  • the relationship between the comparators 1403 and 1406 in the acceleration determination unit 140 having the above-described configuration is called a “window comparator”.
  • the acceleration signal from the acceleration sensor 3 is “+ Vref and ⁇ Vref”.
  • a detection output in this case, Low level
  • the timing chart shown in FIG. 11 shows a case where the amplifier AMP is not provided in the acceleration determination unit 140 shown in FIG.
  • Acceleration signal Vnorm for zero acceleration need not be zero volts. It is sufficient that + Vref is larger than Vnorm on the + side and ⁇ Vref is larger than Vnorm on the ⁇ side. Further, the absolute value of the difference between Vnorm and + Vref and the absolute value of the difference between Vnorm and -Vref do not have to be the same.
  • amplifiers 1401 and 1402 may be provided as appropriate.
  • the acceleration at the light extinction preparation stage is A / D converted by the switching control unit 130 and observed by the microcomputer in the same manner as the acceleration determination unit 140 shown in FIG.
  • reference voltages Vref1, 2 need not necessarily be individual / fixed voltage sources.
  • FIG. 12 is a diagram showing a configuration instead of the reference voltages + Vref and ⁇ Vref of the acceleration determination unit 140 shown in FIG.
  • the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used,
  • the output value can be set to either a fixed value or a variable value by operating the microcomputer. Since the PWM output is a High and Low pulse, it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405 as shown in FIG. 12, and functions equivalent to the reference voltages + Vref1 and -Vref. Let it be done.
  • resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
  • FIGS. 13 and 14 are digital signals with positive / negative polarity, collision acceleration, and extinction preparation acceleration as a reference with a certain voltage. It is a figure which shows the example of the acceleration judgment part 140 judged and detected as.
  • the acceleration determination unit 140 illustrated in FIG. 13 has a configuration similar to that of the acceleration determination unit 140 illustrated in FIG. 10, but corresponds to (I) a plus-side extinction preparation acceleration as a reference voltage to be compared with the acceleration signal. + Vref1, (II) corresponding to the minus-side extinction preparation acceleration, ⁇ Vref1, (III) corresponding to the plus-side collision acceleration, + Vref2, (IV) corresponding to the minus-side collision acceleration, ⁇ Vref2, and Each of the comparators 1403, 1406, 1408, and 1409 is compared with the acceleration signal S 5 of the acceleration sensor 3.
  • the comparators 1403, 1406, 1408, and 1409 are called open collectors or open drains. (I) When the output is high level, the output is equivalently OFF, and when the output is (II) low level, current is sucked. It is like that.
  • comparators 1408 and 1409 are directly connected, even if one of them outputs a high level and the other outputs a low level, there is no possibility that a large current flows and damages due to the output collision between the two.
  • the level of the acceleration signal S5 from the acceleration sensor 3 is set to + Vref1 and 2, and the level of the acceleration signal S5 to be determined to ⁇ Vref1 and 2, and is set to ⁇ Vref1 and 2, respectively.
  • the outputs of the comparators 1403 and 1406 are connected and connected to a voltage “+ Vcc” to be equivalent to a high level output through the resistor 1410.
  • the outputs of the comparators 1408 and 1409 are connected and connected to a voltage “+ Vcc” to be equivalent to a High level output through a resistor 1411.
  • the relationship between the comparators 1403 and 1406 and the relationship between the comparators 1408 and 1409 in the acceleration determination unit 140 having the above configuration is called a “window comparator”.
  • the acceleration signal from the acceleration sensor 3 is + Vref1
  • a detection output (in this case, a Low level) is generated when the signal falls outside the “window” between 2 and ⁇ Vref 1 and 2.
  • the timing chart shown in FIG. 14 shows a case where the amplifier AMP is not provided in the acceleration determination unit 140 shown in FIG.
  • Acceleration signal Vnorm for zero acceleration need not be zero volts. It is only necessary that + Vref1 and 2 are larger on the + side than Vnorm and ⁇ Vref1 and 2 are larger on the ⁇ side than Vnorm. Further, the absolute value of the difference between Vnorm and + Vref1, 2 and the absolute value of the difference between Vnorm and -Vref1, 2 do not have to be the same. However, each level needs to be set to a relationship as shown in the lower level of the upper and lower levels indicating the relationship between High and Low in the timing chart shown in FIG.
  • FIG. 15 to FIG. 19 show graphs in which the absolute value of the acceleration generated in the vehicle is recorded over time.
  • two threshold values are set here. That is, an acceleration (first threshold value) corresponding to a sudden brake / quick steering wheel and an acceleration (second threshold value) equivalent to a collision / accident are set.
  • FIGS. 15 to 19 show graphs in which the laser drive current supplied to the laser light source 1 is recorded with time.
  • This graph shows binary values indicating whether the laser light source 1 is turned on (High level) or the laser light source 1 is turned off (Low level). That is, it indicates that the laser light source 1 is either on or off.
  • FIG. 15 shows a timing chart when collision detection / laser drive is stopped at the timing of pulse drive OFF.
  • the laser light source 1 In the state where the laser light source 1 is turned on, when the acceleration corresponding to the sudden brake / quick handle (extinguishing preparation acceleration) is detected again, the laser light source 1 is again pulse-driven. However, when a larger acceleration, that is, an acceleration equivalent to a collision / accident (collision acceleration) is detected in this pulse-driven state, the driving of the laser light source 1 is stopped. After that, even if the acceleration returns to the original state, the driving of the laser light source 1 is stopped, that is, the light is turned off.
  • a larger acceleration that is, an acceleration equivalent to a collision / accident (collision acceleration)
  • collision acceleration collision acceleration
  • FIG. 16 shows a timing chart when collision detection / laser drive is stopped at the pulse drive OFF timing in consideration of the operation delay of acceleration detection / laser light ON / OFF.
  • the delay td due to the response of the acceleration sensor 3 or the laser drive circuit 102 is preferably shorter than the pulse drive period T and as short as possible.
  • FIG. 17 shows a timing chart when collision detection / laser drive is stopped at the timing of pulse drive ON in consideration of the operation delay of acceleration detection / laser light ON / OFF.
  • pulse driving is performed, as shown in FIG. 17B, when a collision accident actually occurs, it corresponds to the timing of turning off, or the width of pulse driving is the same as the final driving pulse.
  • the laser emission is only one pulse at a maximum until the light falls into a state where the light may be physically destroyed, and the head is in a state where there is a risk of physical destruction or laser leakage.
  • the energy of the leaked laser light remains at a minimum even if the light main body is turned off until it reaches reality or is turned on at the time of destruction. That is, since the possibility of turning off the laser light source 1 at the pulse drive timing is generated by pulse driving before the collision is actually detected, the probability of preventing laser light leakage is improved.
  • FIG. 18 shows another example timing chart in consideration of acceleration detection / operation delay of laser light ON / OFF.
  • the laser drive circuit 102 drives the laser light source 1 with a laser power larger than the laser power before the pulse drive when the laser light source 1 is pulse-driven for a certain time.
  • the current supplied to the laser light source 1 is a current that does not destroy the laser light source 1.
  • the current is set as long as the laser light source 1 is not destroyed in a short time. Is no problem.
  • the pulse width of the ON time is shortened and the pulse driving cycle is lengthened so that the instantaneous light current resistance to the laser light source 1 is reduced, the brightness is reduced, and flickering is not perceived by human perception. It is advantageous to set. This is because the temporal probability that the laser is already extinguished when a collision is detected can be increased.
  • FIG. 19 shows a timing chart of another example in which pulse driving is performed even during normal lighting, and an operation delay of acceleration detection / laser light ON / OFF is taken into consideration.
  • the normal driving of the laser light source 1 was assumed to be driven with a continuous current.
  • pulse driving may be considered during normal driving.
  • the driving is switched to a pulse driving with a shorter cycle than the normal driving pulse driving.
  • the average light quantity of the pulse drive period after accident avoidance reduces. Accordingly, as shown in FIG. 19B, it is conceivable to increase the pulse peak value from the normal lighting state in order to compensate for the pulse drive period and light amount reduction of the laser light source 1.
  • the current supplied to the laser light source 1 is a current that does not destroy the laser light source 1.
  • the current is set as long as the laser light source 1 is not destroyed in a short time. Is no problem.
  • the ON time pulse width is set short and the pulse drive cycle is set long so that the instantaneous light current to the laser light source 1 is reduced, brightness is reduced, and flicker is not perceived by human perception. It is advantageous to do so. This is because the temporal probability that the laser is already extinguished when a collision is detected can be increased.
  • Example 8 describes drive control of the laser light source 1 when the vehicle collides from behind as a phenomenon occurring in an automobile.
  • Example 10 describes drive control of the laser light source 1 when the host vehicle falls as a phenomenon occurring in an automobile.
  • Example 11 describes drive control of the laser light source 1 when the acceleration sensor detection axis is set in a direction inclined from the rear direction of the host vehicle.
  • FIG. 20 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the first embodiment.
  • the illumination device 100 includes a headlamp unit 101 and a laser drive circuit 102 as shown in FIG.
  • the headlamp unit 101 includes at least the laser light source 1, the condenser lens 4, the housing 300, the phosphor 301, the laser light cut filter 302, and the acceleration sensor 3.
  • the laser driving circuit 102 is as described above, and detailed description thereof is omitted.
  • the automobile 200 includes the lighting device 100 including the headlamp unit 101 at the head portion.
  • the headlamp unit 101 may be applied to a traveling headlamp (high beam) for an automobile, or may be applied to a passing headlamp (low beam).
  • the laser light source 1 is a light source composed of a single LD chip (semiconductor laser) 11 as shown in FIG. 3 or a plurality of LD chips 11 connected to each other.
  • the plurality of LD chips 11 may be connected to each other in series, may be connected to each other in parallel, or may be used in combination with series and parallel.
  • the case where the laser light source 1 is composed of a single LD chip 11 and the case where it is composed of four LD chips 11 connected in series (semiconductor laser group) will be described.
  • the single LD chip 11 may be, for example, one having a high power of about 5 to 10 W as an optical output of one chip that oscillates a 405 nm (blue-violet) laser beam.
  • the LD chip 11 one having one light emitting point per chip (one chip and one stripe) may be used, or one having a plurality of light emitting points (one chip plural stripes or plural chips: 1 for example) Stripe, aggregate of one chip with an optical output of 1.0 W, operating voltage of about 5 V, and current around 0.7 A), or each chip with the same rating as above (stem) A plurality of may be used.
  • the LD chip 11 having a high output (about 5 to 10 W as an optical output) with one stripe per chip is used.
  • the wavelength of the laser light oscillated by the LD chip 11 is not limited to 405 nm, and the wavelength from the near ultraviolet region to the blue region (350 nm to 460 nm or less), more preferably from the near ultraviolet region to the blue-violet region (350 nm to 420 nm). Any material having a peak wavelength (emission peak wavelength) in the range may be used.
  • the safety of the laser beam can be ensured by reducing the coherency of the laser beam by devising the phosphor material used for the phosphor 301 described later and the optical components.
  • the range of wavelength selection is widened.
  • the light output of the LD chip 11 is 1 W or more and 20 W or less, and the laser irradiated to the phosphor 301
  • the light density of the light is preferably 0.1 W / mm 2 or more and 50 W / mm 2 or less. If the light output is in this range, it is possible to achieve the luminous flux and brightness required for the vehicle headlamp 10, and it is possible to prevent the phosphor 301 from being extremely deteriorated by the high output laser light. That is, it is possible to realize a light source having a long lifetime while having a high luminous flux and a high luminance.
  • the phosphor 301 has excellent heat resistance, for example, a nanoparticle phosphor described later is used as the phosphor 301
  • the light density of the laser light applied to the phosphor 301 is as follows. , Greater than 50 W / mm 2 .
  • the phosphor 301 is not limited to the one using a nanoparticle phosphor described later, and if the one having excellent heat resistance is used, the light output of the LD chip 11 or the light of the laser beam irradiated on the phosphor 301 is used.
  • the density may be larger than the above value, and when the phosphor 301 has high conversion efficiency from laser light to visible light, or when the required optical output of visible light is at least good, the LD chip 11
  • the light output and the light density of the laser light to the phosphor 301 may be smaller than the above values.
  • the condenser lens 4 adjusts the area (irradiation area) of the spot of the laser light L0 irradiated to the phosphor 301 in the housing 300. According to the condensing lens 4, since the area of the spot of the laser beam L0 irradiated to the phosphor 301 can be adjusted, the light emission efficiency of the phosphor 301 can be adjusted.
  • the condensing lens 4 makes the area of the spot of the laser beam L0 smaller than the area of the surface (light irradiation surface) on the side where the excitation light of the phosphor 301 is irradiated. Thereby, the fluorescence (side emission fluorescence) emitted from the side surface sharing the side with the light irradiation surface of the phosphor 301 is reduced. Therefore, the ratio of the fluorescence emitted from the light irradiation surface of the phosphor 301 to the fluorescence emitted from the entire surface of the phosphor 301 can be increased.
  • the material of the condensing lens 4 can illustrate quartz, for example, it is not limited to this.
  • the phosphor 301 generates fluorescence by irradiating the laser beam L0 generated from the laser light source 1, and includes a phosphor that emits light upon receiving the laser beam L0.
  • the phosphor 301 is one in which the phosphor is dispersed inside the sealing material, or one in which the phosphor is solidified, and further fixed on a substrate such as a metal. . It can be said that the phosphor 301 is a so-called wavelength conversion element for converting the laser light L0 into fluorescence.
  • the phosphor 301 is arranged in a direction (right side in the drawing) in which fluorescence is desired by the housing 300. It is arranged at a position where it emits with a desired light intensity distribution (for example, the focal point if the inner surface of the housing has a parabolic shape).
  • the shape of the phosphor 301 is a cylindrical shape (disk shape) with a diameter of the bottom circle of 2 mm.
  • the size and shape are not limited to this, and any size and various shapes can be used. You can choose. Examples of shapes other than the disc shape include a prismatic shape and an elliptical column shape.
  • the thickness along the irradiation direction of the laser beam L0 in the portion that substantially emits fluorescence excluding the substrate or the like of the phosphor 301 is 1 mm in this embodiment, but is 0.015 mm or more and 1.5 mm. The following is preferable. If the thickness of the above portion of the phosphor 301 exceeds 1.5 mm, the path length of the transmitted light that passes through the phosphor 301 becomes too long, and the generation efficiency of the fluorescence in the phosphor 301 decreases. On the other hand, if the thickness of the fluorescent portion of the phosphor 301 is less than 0.015 mm, the intensity of the fluorescence generated from the phosphor 4 becomes too weak. However, the thickness may be outside the above numerical range as long as a desired light emission (fluorescence) amount can be obtained.
  • the phosphor included in the phosphor 301 for example, an oxynitride phosphor (eg, sialon phosphor) or a III-V compound semiconductor nanoparticle phosphor (eg, indium phosphorus: InP) is used. Can be used. These phosphors have high heat resistance to the high-power (and / or light density) laser light L0 emitted from the LD chip 11, and can suppress the deterioration of the phosphor 301.
  • the phosphor 301 is not limited to those described above, and may be another phosphor such as a nitride-based phosphor.
  • the phosphor 4 includes a phosphor selected so that the illumination light L1, that is, visible light is white.
  • the selection of the light emitter 4 is specified as one in which the illumination light L1 is white as described above. It is not something.
  • the sealing material of the phosphor 301 is, for example, a glass material (inorganic glass, organic / inorganic hybrid glass), or a resin material such as silicone resin. Alternatively, glass may be used.
  • the sealing material is preferably highly transparent, and when the laser beam has a high output or the density of the irradiation intensity of the laser beam on the phosphor 301 is high, a material having high heat resistance is preferable.
  • the laser light cut filter 302 is a transparent resin plate that covers the light emitting surface of the housing 300.
  • the laser light cut filter 302 blocks the coherent component included in the laser light L0 from the laser light source 1 and converts the incoherent component included in the laser light and the laser light L0 in the phosphor 301. It is preferable to form with the material which permeate
  • the laser light cut filter 302 absorbs or reflects light having a wavelength shorter than 410 nm and prevents the laser light from leaking outside the apparatus.
  • the wavelength of light blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the wavelength and light amount of the laser light L0.
  • the inner surface 300a of the casing 300 is formed so as to reflect the fluorescence converted from laser light into visible light by the phosphor 301 and guide it to the laser light cut filter 302 provided in the opening of the casing 300.
  • the laser light cut filter 302 visible light is transmitted and laser light is reflected. For this reason, only visible light is emitted to the outside of the headlamp unit 101, and laser light is not emitted.
  • the acceleration sensor 3 is installed in the casing 300.
  • the acceleration sensor 3 detects the acceleration of the housing 300, that is, a sudden movement, and transmits the acceleration signal S5 to the laser driving circuit 102.
  • the laser light is condensed from the laser light source 1 by the condenser lens 4 and irradiated onto the phosphor 301.
  • visible light (fluorescence) resulting from the laser light is generated from the phosphor 301.
  • This laser beam is blue-violet with a wavelength of 405 nm here, and the phosphor 301 emits light having a longer wavelength.
  • the wavelength spectrum of the light from the phosphor 301 may be set arbitrarily.
  • the visible light from the phosphor 301 is changed in the right side of the figure in the housing 300 in the direction of the emission surface, emitted to the outside, and becomes irradiation light.
  • the means for changing the direction of visible light in the housing 300 is the curved shape of the inner surface of the housing.
  • the inner surface 300a of the housing 300 has a high reflectivity of mirror surface or white paint or light (electromagnetic wave) equivalent thereto.
  • An optical member that transmits the visible light in the direction of the visible light emission surface of the housing 300 and reduces the laser light amount to a safe level when visually observed, for example, a wavelength shorter than 410 nm.
  • a laser beam cut filter 302 that blocks light is provided. Note that the wavelength to be cut is determined in consideration of the hue of visible light, the amount of laser light, and the wavelength.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 includes a laser control signal S0 including at least one of an instruction for turning on / off the laser and a light amount (or voltage, current) instruction value at the time of turning on / off from an external control unit such as an ECU (electronic control unit). Is given.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the pulse drive peak value may be the same as or different from the normal state.
  • the acceleration sensor 3 may be provided not at the casing 300 of the headlamp unit 101 but at the topmost part (bumper or the like) of the vehicle. In this case, the collision can be detected earlier and the light can be turned off.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the laser light source 1 is pulse-driven when a sudden brake / steep handle that is an avoidance operation before the accident is detected, even if an accident occurs despite the avoidance operation, the headlamp unit 101 is already damaged. There is a timing when the light is extinguished, the probability of preventing laser leakage is improved, and safety is improved.
  • FIG. 21 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the second embodiment.
  • members having the same functions as those in the drawings described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a housing 310 is employed instead of the housing 300 of the headlamp unit 101 of the first embodiment.
  • the casing 310 of the headlamp unit 101 has a shape obtained by cutting a parabolic (parabolic) rotating body in half in the longitudinal axis direction from the bullet shape of the first embodiment.
  • An irradiation position of the laser beam on the phosphor 311 is determined near the focal point of the housing 310.
  • the inner surface 310a of the housing 310 is a mirror surface or white paint, and has a high light reflectance.
  • the phosphor 311 receives laser light and emits infrared rays (having different wavelengths). For example, infrared rays having a wavelength near 1000 nm are emitted.
  • a wavelength conversion (eg, SHG ⁇ Second Harmonic Generation) element and a laser light cut filter 312 are provided in the direction of the visible light emission surface of the housing 310, and the infrared light is used as visible light. Visible light near the wavelength of 500 nm, which is half the light, is emitted to the outside.
  • SHG ⁇ Second Harmonic Generation SHG ⁇ Second Harmonic Generation
  • the laser light from the laser light source 1 is, for example, bluish purple (405 nm), and the laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 nm, for example, to prevent emission to the outside. Also in this case, the indicated wavelength is determined in consideration of the hue of visible light and the laser wavelength / light quantity.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the parabolic housing 310 is adopted as compared with the illumination device 100 according to the first embodiment. Therefore, the light emitted from the housing 310 is parallel to the emission surface. It is easy to install, it is almost parallel when viewed from the exit surface, and it can not only diffuse and illuminate the target position efficiently, but it also has a half-cut shape of the curved rotating body as the housing 310, so it is easy to install, Heat generation of the phosphor 311 that receives the light of the high-power semiconductor laser is easily performed quickly through the housing 310.
  • the phosphor 311 is an infrared phosphor
  • the efficiency of the infrared phosphor + wavelength conversion element (+ laser light cut filter) is higher than that of the visible light phosphor of the first embodiment. In this case, there is an advantage that the degree of freedom of selection increases.
  • FIG. 22 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the third embodiment.
  • members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the first embodiment is employed.
  • fluorescent light visible light
  • the phosphor 301 is installed in the housing 300 via the phosphor holding member 303 so that the laser light transmission surface is parallel to the visible light emitting surface of the housing 300.
  • the laser light source 1 is blue-violet light having a wavelength of 405 nm as in the first and second embodiments.
  • the output light of the laser light source 1 is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam.
  • the phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
  • a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301.
  • the condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
  • a shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301.
  • This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted.
  • a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
  • the inner surface 300a of the casing 300 is a mirror surface, and has a curved surface so as to collect light in a target direction (right direction in the figure).
  • a protective glass plate is provided on the visible light emitting surface of the casing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
  • the protective glass plate be the laser light cut filter 302 when safety is taken into consideration. If the light emission wavelength of the laser light source 1 is 405 nm, it is preferable that the laser light cut filter 302 cut off short wavelengths of about 410 nm or 420 nm or less. That is, when the phosphor 301 emits blue light, the emitted light is close to white and is recognized as high-quality light. Therefore, it is desirable to block only the laser light component without blocking the light having a very long wavelength.
  • the wavelength of the laser light to be blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the headlamp unit 101 according to the third embodiment is a transmissive type as shown in FIG. 22, the laser light that is not shielded by the light-shielding portion 304 passes through the phosphor 301 and is mostly fluorescent (visible). Light). As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
  • the laser light cut filter 302 when the laser light cut filter 302 is provided, it can be used even if the laser light blocking ability is slightly low.
  • FIG. 23 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fourth embodiment.
  • members having the same functions as those in the drawings explained in the first to third embodiments are given the same reference numerals and explanation thereof is omitted.
  • the headlamp unit 101 of the lighting device 100 according to the fourth embodiment employs a casing 310 having the same shape as the casing 310 of the headlamp unit 101 according to the second embodiment.
  • the housing 310 of the present embodiment has a shape obtained by cutting a parabola (a parabolic rotating body) in half in the longitudinal axis direction.
  • the laser light source 1 is disposed at the focal position of the parabola of the housing 310 as shown in FIG.
  • a phosphor is applied to a portion of the inner surface 310a of the housing 310 opposite to the visible light emitting surface (right side in the figure), and the light from the laser light source 1 is irradiated with the phosphor as a target.
  • the phosphor is formulated so as to obtain light of an arbitrary color.
  • the other inner surface 310a of the housing 310 is made of a mirror surface or white paint, and is made of a material that maintains high light reflectance or absorbs laser light.
  • the visible light emission surface of the housing 310 is used. Is provided with a laser beam cut filter 312.
  • the laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 nm, for example, to prevent emission to the outside. If there is no problem in safety, a protective glass plate or other member may be provided on the visible light emitting surface of the housing 310 instead of the laser light cut filter 312.
  • the wavelength of the laser beam to be blocked by the laser beam cut filter 312 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the phosphor is not disposed in the housing 310, but a fluorescent component is applied to the inner surface of the housing 310 so as to have the same function as the phosphor. Yes. Therefore, the laser light emitted from the laser light source 1 is reflected by the inner surface 310a of the housing 310 and becomes visible light. For this reason, it becomes possible to provide the laser light source 1 inside the housing 310, and even if the position of the laser light source 1 fluctuates due to some factor, the possibility that the laser light stays in the housing 310, that is, the safety increases.
  • the phosphor Since the phosphor is applied to the housing 310 and irradiated with laser light, the phosphor is excellent in heat dissipation.
  • the phosphor does not have to be prepared as a separate substrate, the number of parts is reduced.
  • the housing 310 with a laser light absorbing member other than the phosphor coating portion, the leakage of the laser light can be further reduced, and the safety is further improved.
  • FIG. 24 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fifth embodiment.
  • members having the same functions as those in the drawings described in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the headlamp unit 101 of the lighting device 100 according to the fifth embodiment employs a casing 310 having the same shape as the casing 310 of the headlamp unit 101 according to the second embodiment.
  • the housing 310 of the present embodiment has a shape obtained by cutting a parabola (a parabolic rotating body) in half in the longitudinal axis direction.
  • the phosphor 311 is arranged so that the irradiation position of the laser beam comes near the focal point of the parabola of the housing 310.
  • the phosphor 311 receives laser light and emits visible light.
  • the phosphor 311 is generated by preparing a phosphor material so that the emitted light becomes a desired one.
  • the inner surface 310a of the casing 310 is a mirror surface or white paint, and has a high light reflectance.
  • a protective glass plate or a laser light cut filter 312 for protecting the inside from humidity and dust from the outside is provided on the visible light emitting surface (right direction in the figure) of the housing 310.
  • the protective glass plate has at least one pattern of unevenness, granularity, lattice, or glassy pattern formed on at least one of the back surface and the front surface to reduce the density on the laser light emission surface, Alternatively, the coherency is lowered to increase the safety when visually observed.
  • the protective glass plate is preferably a laser light cut filter 312.
  • the laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 to 420 nm, for example, and prevents emission to the outside. Designed to.
  • the wavelength of the laser beam to be blocked by the laser beam cut filter 312 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the housing 310 of the headlamp unit 101 is provided with the acceleration sensor 3 as described above, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • FIG. 25 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the sixth embodiment.
  • members having the same functions as those in the drawings explained in the first to fifth embodiments are given the same reference numerals and explanation thereof is omitted.
  • a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the third embodiment is employed.
  • the housing 300 is provided with an optical fiber 305 from the visible light emitting surface of the phosphor 301 to the visible light emitting surface of the housing 300.
  • the configuration of the headlamp unit 101 is different from that of the headlamp unit 101 of the third embodiment.
  • the laser light source 1 is blue-violet light having a wavelength of 405 nm as in the third embodiment.
  • the output light is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam.
  • the phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
  • a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301.
  • the condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
  • the condensing lens 4 may be arranged on the visible light emitting surface side (right side) of the housing 300 from the phosphor 301 of FIG.
  • a shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301.
  • This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted.
  • a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
  • Visible light from the phosphor 301 is transmitted to the visible light emission surface of the housing 300 through the optical fiber 305. Since the optical fiber 305 can be bent, the degree of freedom of arrangement of the laser light source 1 and the phosphor 301 is increased.
  • a protective glass plate is provided on the visible light emitting surface of the housing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
  • the protective glass plate be the laser light cut filter 302 when safety is taken into consideration. If the light emission wavelength of the laser light source 1 is 405 nm, it is preferable that the laser light cut filter 302 cut off short wavelengths of about 410 nm or 420 nm or less. That is, when the phosphor 301 emits blue light, the emitted light is close to white and is recognized as high-quality light. Therefore, it is desirable to block only the laser light component without blocking the light having a very long wavelength.
  • the wavelength of the laser light to be blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the headlamp unit 101 according to the sixth embodiment is a transmissive type as shown in FIG. 25, the laser light that has not been shielded by the light shielding processing portion 304 passes through the phosphor 301. As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
  • the laser light cut filter 302 can be used even if the laser light blocking ability is slightly low.
  • the optical fiber 305 is used for the optical path for guiding visible light inside the housing 300, the optical path can be easily changed. Thereby, the effect that the freedom degree of the positional relationship with the emission surface of the visible light of the laser light source 1, the fluorescent substance 301, and the housing
  • FIG. 26 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the seventh embodiment.
  • members having the same functions as those in the drawings explained in the first to sixth embodiments are given the same reference numerals and explanation thereof is omitted.
  • a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the third embodiment is employed.
  • the laser light source 1 is blue-violet light having a wavelength of 405 nm as in the third embodiment.
  • the output light is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam.
  • the phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
  • a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301.
  • the condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
  • the condensing lens 4 may be arranged on the visible light emitting surface side (right side) of the housing 300 from the phosphor 301 of FIG.
  • a shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301.
  • This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted.
  • a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
  • a protective glass plate is provided on the visible light emitting surface of the housing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
  • the amount of laser light that appears in the direction of the emission surface compared to the “phosphor reflection type” in the first and second embodiments. can be expected to be small, but in order to remove the laser beam having a high coherency component that has passed through without being reflected by the internal particles of the phosphor 301, it is necessary to insert a polarization (polarization) filter 306 on the exit surface. preferable.
  • the polarization filter 306 may be a filter that blocks the polarization (polarization) in the same direction as the polarization plane of the light emitted from the laser light source 1 in advance.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
  • the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
  • the headlamp unit 101 according to the seventh embodiment is a transmissive type as shown in FIG. 26, the laser light that has not been shielded by the light shielding processing portion 304 passes through the phosphor 301. As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
  • the laser light cut filter 302 can be used even if the laser light blocking ability is slightly low.
  • FIG. 27 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the eighth embodiment.
  • members having the same functions as those in the drawings explained in the first to seventh embodiments are given the same reference numerals and explanation thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the eighth embodiment has the same structure as the headlamp unit 101 of the second embodiment as shown in FIG.
  • the vehicle is not only collided with a car that the driver is driving (hereinafter referred to as the own vehicle), but is also collided with another vehicle (hereinafter referred to as another vehicle).
  • the same two-stage thresholds (first threshold value, second threshold value) as in the previous Examples 1 to 7 are provided in the + j direction. Pulse driving and extinguishing operation are performed. That is, in the case of the + j direction output of the acceleration sensor 3, the same laser light extinction control as in the first to seventh embodiments is performed.
  • the acceleration sensor 3 that detects the rear-end collision may use an acceleration sensor for collision detection, or may be separately provided as an acceleration sensor for rear-end collision detection.
  • the acceleration sensor for collision detection may be provided in the rear part of the automobile 200 or in the vicinity of the casing of the headlamp unit 101.
  • the acceleration threshold value “1-1” when starting pulse driving based on the output of the acceleration sensor for collision detection is greater than the acceleration corresponding to sudden braking.
  • the acceleration threshold value “1-1” when starting pulse driving based on the output of the acceleration sensor for collision detection is greater than the acceleration corresponding to sudden braking.
  • pulse driving is not performed and the lamp is normally lit unless it is a large acceleration having an absolute value exceeding the absolute value of the threshold value “2-1” described below. Although there is an option to do this, for the sake of safety, it is assumed here that the operation is temporarily switched to pulse driving.
  • the threshold value “2-1” for turning off the light is set to have an absolute value equal to or higher than the second threshold value corresponding to the collision, and the rear part of the automobile 200 is greatly damaged, so that the impact is transmitted to the headlamp part 101. It is also preferable to turn off the light only when it is done.
  • the acceleration sensor provided in the main body (housing) of the headlamp unit 101 also detects the acceleration in the minus (rear impact) direction
  • the light is turned off when detecting the acceleration whose absolute value in the minus direction exceeds the second threshold value, or
  • the pulse driving operation may be performed when the absolute value in the minus direction of the acceleration due to the rear-end collision exceeds the first threshold value.
  • the drive control of the laser light source 1 by the acceleration detection in this case is as shown in the timing chart of FIG.
  • the acceleration detection polarity corresponding to the sudden braking / steering handle and the acceleration detection polarity corresponding to the rear-end collision from the rear are in the positive and negative directions.
  • the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
  • the laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU.
  • the laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
  • the housing 310 of the headlamp unit 101 is provided with the acceleration sensor 3 as described above.
  • the laser driving circuit 102 performs a certain period of time.
  • the laser light source 1 is pulse-driven.
  • the laser driving circuit 102 detects the laser light source 1. Stop driving and turn it off.
  • the laser driving circuit 102 is detected.
  • the laser driving circuit 102 stops driving the laser light source 1 and turns it off.
  • the laser light source 1 has been pulse-driven or stopped.
  • Example 9 the side collision of the other vehicle against the own vehicle, the side collision to the object due to the slip of the own vehicle, and the accident avoidance An example will be described in which the laser light source 1 is pulse-driven or stopped according to the acceleration in the lateral direction of the vehicle detected by the sudden handle.
  • FIG. 29 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the ninth embodiment.
  • members having the same functions as those in the drawings explained in the first to eighth embodiments are given the same reference numerals and explanation thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the ninth embodiment has the same structure as the headlamp unit 101 of the eighth embodiment, as shown in FIG.
  • the acceleration sensor 3 detects the acceleration in the lateral direction 313 of the vehicle.
  • the headlamp unit 101 is switched to pulse driving. Similarly, if the acceleration in the lateral direction is equal to or greater than the first threshold value for the spin during traveling, the process shifts to pulse driving. Note that pulse driving may be performed even in a normal lighting state. The same applies to other embodiments.
  • the laser driving circuit 102 cuts off the laser driving current C0 to the laser light source 1 and turns it off.
  • the detection of the longitudinal direction of the vehicle is performed at the same time, and if it is determined that it is in any critical state according to the longitudinal or lateral acceleration, Perform actions according to the critical condition.
  • the longitudinal acceleration is low even if the lateral acceleration is small. It is conceivable to perform control so that the light is extinguished when the second threshold value is exceeded.
  • the illumination device 100 According to the illumination device 100 according to the ninth embodiment, it is possible to prevent laser light leakage due to breakage of the headlamp unit 101 even in the case of a rear-end collision from another vehicle or a side collision with an object.
  • Example 1 the acceleration in the longitudinal direction of the vehicle detected by the sudden braking at the time of collision of the own vehicle due to an accident or the rearward collision of the own vehicle or when the accident is avoided, the own vehicle
  • the laser light source 1 is pulse-driven or stopped according to the side collision of the other vehicle against the vehicle, the side collision to the object due to the slip of the own vehicle, the acceleration in the side direction of the vehicle detected by the sudden handle for avoiding the accident.
  • Example 10 an example in which the laser light source 1 is pulse-driven or stopped according to acceleration in the vertical direction of the vehicle detected by the vehicle falling or riding on the vehicle is described. Will be described.
  • FIG. 30 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the tenth embodiment.
  • members having the same functions as those in the drawings explained in the first to ninth embodiments are given the same reference numerals and explanation thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the tenth embodiment has the same structure as the headlamp unit 101 of the eighth embodiment as shown in FIG.
  • the acceleration sensor 3 detects the acceleration in the vertical direction 314 of the vehicle.
  • the acceleration in the vertical direction of the vehicle is a large value (a value larger than a certain threshold value)
  • the vehicle falls or collides from above the falling object (both are destructive).
  • the acceleration is a small value (a value smaller than a certain threshold value)
  • the acceleration is caused by a step or road surface unevenness.
  • the laser light source 1 is turned off, and in the latter case, the laser light source 1 is turned off. Control to pulse drive.
  • the laser light source 1 is pulse-driven.
  • the laser light source 1 is turned off when the acceleration that damages the main body of the headlamp unit 101 is detected. In this case, there is no need or time for pulse driving.
  • an acceleration that exceeds the first threshold in the vertical direction (but does not exceed the second threshold that is the impact (light-off) acceleration in the vertical direction) is determined in advance within a certain time. If it occurs within a predetermined number of times, pulse driving is performed for a certain period of time as a preparatory stage "assuming extinction" for a certain period of time each time it is detected that the first threshold value has been exceeded.
  • acceleration exceeding the first threshold in the vertical direction occurs more than a predetermined number of times within a certain period of time. Since the end of the last pulse driving of the predetermined number of times, the normal lighting state is maintained even after the first threshold value is exceeded. However, when acceleration exceeding the second threshold is detected, the light is naturally turned off.
  • pulse driving for preparing for extinction is performed when it is detected. Stop and shift to normal lighting.
  • the acceleration sensor detects a large acceleration, it can be assumed that it is a really big accident such as a fall or a collision with a falling object, so it turns off .
  • the threshold value in the vertical direction may be a large value that is less sensitive than the front-back and side directions.
  • control for detecting the acceleration in the vertical direction can be set as necessary.
  • an acceleration in the vertical direction that is larger than a preset threshold value may be detected, but in that case, there is a high possibility that it is not an accident. Therefore, when traveling on rough land, it is possible to make it difficult to forcibly turn off the laser light source 1 by not performing control for detecting the acceleration in the vertical direction or by increasing the threshold value of the detected acceleration. Become.
  • FIG. 31 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the eleventh embodiment.
  • members having the same functions as those in the drawings described in the first to tenth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the eleventh embodiment has the same structure as the headlamp unit 101 of the eighth embodiment as shown in FIG.
  • the detection axis direction of the acceleration sensor 3 is set in a direction inclined from the front-rear direction of the automobile 200.
  • the detection axis direction in the acceleration sensor 3 is set so that the detection axis is horizontal when the vehicle is arranged on a horizontal plane and is set to be inclined by 45 degrees from the vehicle front-rear direction
  • the detection sensitivity becomes the detection axis. Is reduced to “1 / ⁇ 2” as compared with the case where the value is adjusted in the front-rear direction or the side direction.
  • the sensitivity of the acceleration sensor 3 is sufficiently high, it is possible to obtain the same detection sensitivity as when the acceleration sensor is provided for each detection axis direction. Therefore, there are advantages that the number of sensors can be reduced and the cost can be reduced and the failure probability of the sensor can be reduced while maintaining the same detection sensitivity as when the acceleration sensor is provided for each detection axis direction.
  • the 1st threshold is a threshold for light extinction preparation, that is, a threshold related to sudden braking and sudden steering. Examples of preferable numerical values are 0.2G or more, and the upper limit is 2G.
  • the numerical value of 0.2 G as the lower limit value is an acceleration from the traveling of 60 km / h to the stop in about 8.5 seconds, which is a value close to the lower limit considered to be a sudden brake.
  • 0.2 G is considered to be a deceleration acceleration based on a slightly stronger brake.
  • 0.2 G is the centripetal acceleration when performing a circular motion with a radius of about 35 m at a speed of 30 km per hour. If a light extinguishing preparation operation (pulse drive) is performed at an acceleration slower than 0.2 G, a sensitive reaction can be caused. Therefore, it is preferable to set 0.2 G as the lower limit value.
  • the upper limit 2G corresponds to acceleration when a brake is applied to stop at 0.85 seconds from 60 km / h, or centripetal acceleration when rotating in a circle with a radius of 16.7 m at 60 km / h. This is because the acceleration in this case is also considered to be the upper limit of the acceleration of sudden operation for avoiding accidents that is normally considered or a value slightly exceeding it. If the safety side is considered, it is desirable that the first threshold value is low.
  • Threshold value “1-1” The threshold “1-1” relating to the rear-end collision mentioned in the eighth embodiment is preferably equal to or higher than the acceleration corresponding to the sudden braking.
  • the concept of the first threshold and a numerical value can be used for this, and it is preferable to set the lower limit to 0.2 G and the upper limit to 2 G as the first threshold as absolute values.
  • the actual set value is not necessarily the same as the first threshold value.
  • the first threshold value may be 0.2 G
  • the threshold value “1-1” may be a negative direction threshold value corresponding to 0.3 G.
  • the second threshold is a threshold for collision detection acceleration, and may be any acceleration equal to or higher than the first threshold, and is preferably at least 1G.
  • the upper limit value of the second threshold value is not particularly limited. However, if the sensor sensitivity of the acceleration sensor 3 is too sensitive and a malfunction in mounting becomes a problem, the second threshold value may be increased to about 10 G to several tens of G. Considering that the acceleration at the time of a collision accident and the operation acceleration of the airbag shown in non-patent literature are 10 G units, it is also appropriate to set the second threshold value to the value of 10 G units.
  • Non-Patent Document 1 (“2008 Video Recording Drive Recorder Utilization Model Project Research Report”, pp. 23, March 2009, Ministry of Land, Infrastructure, Transport and Tourism, Japan)
  • the driver When acceleration of 0.2G or more in the front-rear direction and 0.3G or more in the lateral direction is detected, the driver generally recognizes that there was a possibility of a near-miss, that is, an accident.
  • it is preferable to set it to 0.2 G or more.
  • page 381 of Non-Patent Document 2 (“Drive Recorder”, Fujitsu Technical Report, July 2008 issue) shows an example of acceleration at the time of collision.
  • the sudden braking acceleration from 20km / h is close to 1G.
  • the upper limit value of the second threshold value is preferably about several tens of grams as described above.
  • the lower limit value of the collision detection acceleration and the second threshold value must be equal to or higher than the upper limit of the first threshold value for preparation for extinguishing the light (otherwise, if the one-inch brake is strong, it will be completely extinguished immediately).
  • the acceleration at the time of collision may be several tens of G, so the upper limit may be several tens of G.
  • the upper limit 2G of the first threshold value and the lower limit 1G of the second threshold value have overlapping numerical ranges, but at the time of designing, the pulse drive is first performed with a small acceleration and the large acceleration is extinguished. That is, it is not normally considered that the specific set value of the first threshold exceeds the set value of the second threshold. It should be noted that the above numerical range is a preferable value as a setting range.
  • Threshold value “2-1” The absolute value of the threshold value “2-1” regarding the rear-end collision mentioned in the eighth embodiment is desirably an acceleration corresponding to the rear-end collision or more.
  • the concept of the second threshold and a numerical value can be used for this, and the lower limit of the absolute value is set to 1G and the upper limit of the absolute value is set to a value of 10G as in the second threshold.
  • the actual setting value does not necessarily have the same absolute value as the second threshold value.
  • the second threshold value is set as the positive direction threshold value of the absolute value 2G
  • the threshold value “2-1” is set as the negative direction threshold value corresponding to the absolute value 4G. It doesn't matter.
  • Pulse drive frequency peak value, duty
  • the upper limit frequency of the pulse drive frequency is not increased unnecessarily.
  • the upper limit of the switching speed in a normal power MOSFET is about 100 ns, and is the reciprocal of twice this time. It is preferable to set the upper limit to about 5 MHz. This upper limit value may be further increased when an element / circuit that consumes the least amount of power and can be used.
  • Pulse driving peak value Even if the pulse driving peak value is equivalent to that of normal lighting, high power may be used as long as the laser is not damaged in order to maintain the average brightness as much as possible. A peak value corresponding to a large electric power is preferable as long as it is not damaged.
  • Duty value for pulse drive ON time ratio in one cycle
  • the duty value may be 0% as a result.
  • the acceleration exceeding the first threshold is detected and the laser is shifted to pulse driving
  • the acceleration exceeding the second threshold corresponding to the collision is detected at the first extinction timing, and the extinction is continued as it is. is there. Since such operations are within the scope of the present invention, they exist as exceptions and should be recognized.
  • the duty value is high, the decrease in the average light amount by pulse driving is reduced (if the same peak value), but the probability that the laser is turned off when an accident occurs subsequently decreases. Considering both, it may be selected or changed within the range of 50% ⁇ 40%. Since the human pupil is also expanded when the surrounding environment is dark, it is one desirable setting / selection to reduce the duty and increase the probability of turning off the laser when an accident occurs.
  • the time for which the laser is pulse-driven means a time during which sudden braking and sudden steering are continued and collision can be avoided. This corresponds to the maximum braking time when the “accelerated” brake with the lowest acceleration is depressed. If the acceleration falls below the first threshold within this time, it is assumed that an accident has been avoided and normal lighting is restored at that time. If it does not fall below the first threshold, pulse driving is continued.
  • the above figures are only the maximum time for pulse driving Of course, it does not matter if the pulse driving is finished in a shorter time than this, and the normal lighting (or extinguishing in the event of an accident) is shifted to.
  • the minimum time for pulse driving is considered to be, for example, 0.85 seconds to 8.5 seconds. This is a value calculated with respect to the first threshold value of the aforementioned sudden braking, and is a numerical value considered as one of the appropriate ranges.
  • the numerical value range may be out of the range, and for example, one cycle of pulse driving may be set as the minimum level.
  • the turn-off when the second threshold is exceeded has priority over the above case and the turn-off is determined before the first turn-on of pulse driving.
  • the avoidance action by the sudden handle is usually until the vehicle body changes posture from several tens of degrees to 90 degrees at most, but it repeats the U-turn and makes one turn (360 degrees) to other vehicles that happen to pass by chance. Think about collisions. If the collision acceleration is not detected in this way, it may be considered that the vehicle is either successfully evading, running around the same place, or spinning and stopping.
  • the lateral acceleration that is judged as a sudden handle is 0.2G or more.
  • the numerical value at the time of avoidance operation with a sudden handle is equivalent to 0.2G at a turning radius of 3.94m at 10km / h.
  • Illumination apparatus 500 is used as a headlamp mounted on a vehicle such as an automobile. Moreover, since it has substantially the same configuration as the lighting device 100 described in the first embodiment, members having the same function are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 32 is a schematic block diagram of lighting apparatus 500 according to the present embodiment.
  • the illuminating device 500 includes a headlamp unit (light emitting unit) 501 that uses a semiconductor laser element (LD) as a light source, and laser driving for driving the LD of the headlamp unit 501.
  • the headlamp unit 501 has the same configuration as the headlamp unit 101 of the first embodiment. That is, the headlamp unit 501 includes a laser light source 1 composed of an LD, a light conversion unit 2 that converts laser light emitted from the laser light source 1 into visible light, and an acceleration sensor that detects acceleration of the headlamp unit 101. 3 is included.
  • a laser light source 1 composed of an LD
  • a light conversion unit 2 that converts laser light emitted from the laser light source 1 into visible light
  • an acceleration sensor that detects acceleration of the headlamp unit 101. 3 is included.
  • the illumination device 500 according to the present embodiment is greatly different from the illumination device 100 of the first embodiment in that a housing 5 that covers the headlamp unit 501 is provided and the acceleration of the housing 5 is detected. Therefore, an acceleration sensor 6 is newly provided.
  • the acceleration sensor 6 transmits the detected acceleration signal to the laser drive circuit 502, like the acceleration sensor 3 provided in the headlamp unit 501.
  • the laser drive circuit 502 generates a laser drive current C0 corresponding to a laser control signal S0 from an illumination control unit (described later), and supplies the laser drive current C0 to the laser light source 1 of the headlamp unit 501.
  • the laser drive circuit 502 controls the supply of the laser drive current C0 to the laser light source 1 to the value of the acceleration signal from the acceleration sensor 3 (first acceleration sensor) and the acceleration sensor 6 (second acceleration sensor). It is designed to respond accordingly.
  • the laser drive circuit 502 drives the laser light source 1 in accordance with the detection value by the acceleration sensor 6 in addition to the detection value by the acceleration sensor 3.
  • the laser driving circuit 502 is configured such that the relative speed between the apparatus main body and the collision object is V, and the distance from the headlamp unit 501 (main part) to the casing 5 is X.
  • the acceleration sensor 6 as the second acceleration sensor provided in 5 detects acceleration exceeding the third threshold
  • the laser light source 1 is turned off for a time Y longer than (X ⁇ V)
  • the laser When the acceleration sensor 3 detects an acceleration exceeding the fourth threshold while the light source 1 is turned off, the laser light source 1 is turned off for a time exceeding Y.
  • FIG. 33 is a schematic block diagram of the laser drive circuit 502. As shown in FIG.
  • the laser drive circuit 502 includes a laser control unit 121, a laser drive unit 122, and an output switch element 123, as shown in FIG.
  • the laser control unit 121 receives the signal S0 from the illumination control unit 103 installed outside, and returns a signal S4 to the illumination control unit 103.
  • the signal S0 is a command signal for instructing turning on (ON) and turning off (OFF) of the laser light source 1, and a command signal for instructing the magnitudes of the driving voltage and driving current of the laser light source 1.
  • the signal S4 is a status report signal including a lighting status of the laser light source 1 and an abnormality such as a failure.
  • the laser control unit 121 transmits a signal S1 to the subsequent laser drive unit 122.
  • the laser driver 122 receives the signal S1 from the laser controller 121 and returns a signal S3 to the laser controller 121.
  • the signal S1 is a control signal that controls turning on (ON) and turning off (OFF) of the laser light source 1, and a control signal that indicates the magnitudes of the drive voltage and drive current.
  • the signal S3 is a status report signal for reporting the status of the laser driving unit 122, reporting the driving current of the laser light source 1, and the driving voltage of the laser light source 1.
  • the laser driving unit 122 receives the signal S1 from the laser control unit 121, and supplies power from the power source E (battery) to the laser light source 1 as a driving voltage and a driving current C0.
  • the laser light source 1 is lit by the drive voltage and the drive current C0 supplied from the laser drive unit 122.
  • the laser control unit 121 and the laser driving unit 122 are supplied with acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6.
  • the acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6 are given to at least one of the laser control unit 121 and the laser driving unit 122, and are signals for transmitting information on acceleration (impact etc.). Based on this information (acceleration magnitude), the laser control unit 121 or the laser driving unit 122 controls the laser light source 1 to be turned off.
  • laser pulse driving (ON / OFF) is performed as preparation for extinction.
  • the laser light source 1 can be irradiated with the laser light as fast as possible. In order to stop (turn off the light), it is preferable to directly determine the magnitude of the acceleration signal S51 by the laser driving unit 122.
  • a certain threshold for example, a magnitude corresponding to an impact corresponding to a vehicle collision
  • the output switch element 123 is provided is arbitrary, but since the laser driving unit 122 includes a capacitor in many cases as will be described later, the acceleration sensor 3 detects a collision acceleration or a laser. It is desirable to provide for shortening the turn-off time of the laser light source 1 when an abnormality of the drive unit 122 is detected.
  • the output switch element 123 is controlled by at least one of the laser controller 121 and the laser driver 122.
  • the signal S2 is a control signal for controlling ON and OFF of the output switch element 123.
  • the output switch element 123 is composed of, for example, a field effector (FET).
  • FET field effector
  • the laser light source 1 includes a plurality of LD chips 11, and laser light is irradiated from each of the LD chips 11. Since the detailed description of the LD chip 11 has already been described in the first embodiment, the detailed description thereof is omitted here.
  • FIG. 34 and 35 can be applied to the laser drive circuit 502 shown in FIG.
  • FIG. 34 is a block diagram illustrating a circuit configuration of the step-down laser driving unit 122.
  • FIG. 34 shows an example of a step-down circuit used when the voltage Vf necessary for driving the laser light source 1 is lower than the voltage Vb of the power source E (when the number of series of LD chips 11 is small). Yes.
  • the step-down laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above.
  • One end of the coil 1221 is connected to the power source E through the main switch element 1220. Note that another switch element may be provided between the power source E and the coil 1221.
  • the laser driving unit 122 is connected to the laser light source 1 including the single LD chip 11.
  • the switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121.
  • the signal S1 and the signal S3 are as described above.
  • the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows.
  • Main switch control signal S8 is transmitted.
  • the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as electric charge in the capacitor 1223, and the current is also supplied to the laser light source 1.
  • the current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
  • the signal S6 is an output current signal
  • the signal S7 is an output voltage signal
  • the signal S8 is a control signal for controlling switching of the main switch element 1220 between ON and OFF.
  • the magnetic flux energy of the coil 1221 is supplied to the laser light source 1 together with the capacitor 1223 through the diode 1222.
  • the capacitor 1223 performs a smoothing operation that relaxes fluctuations in voltage (current) to the laser light source 1 by switching the main switch element 1220 between ON and OFF.
  • the signal S7 (output voltage signal) is used for monitoring whether or not a voltage according to an instruction from the laser control unit 121 is output. Further, when an abnormally high voltage is observed, the signal S7 assumes that the laser light source 1 is open or that the laser drive unit 122 has failed, and the main switch element 1220 is turned OFF to lower the output voltage (OFF Used).
  • the switching control unit 130 receives the signal S9 from the acceleration determination unit 140.
  • the signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
  • the acceleration determination unit 140 receives the acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6, and generates signals S9, S91, and S11 as necessary based on the acceleration signals S5 and S51. The data is transmitted to the switching control unit 130. Details of the acceleration determination unit 140 will be described later.
  • the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected.
  • This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122.
  • the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off.
  • the laser control unit 121 may be provided with the acceleration determination unit 140.
  • the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . For this reason, the output switch element 123 forcibly cuts off the current (at high speed).
  • FIG. 35 is a block diagram showing a circuit configuration of the boost type laser driver 122.
  • the boost type laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above.
  • One end of the coil 1221 is connected to the power source E. Note that another switch element may be provided between the power source E and the coil 1221.
  • the laser driving unit 122 is connected to the laser light source 1 including a total of four LD chips 11.
  • the switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121.
  • the signal S1 and the signal S3 are as described above.
  • the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. .
  • the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223. During this period, current is supplied to the laser light source 1 from the capacitor 1223.
  • the main switch element 1220 when the main switch element 1220 is OFF, the magnetic flux energy of the coil 1221 becomes a current, and the capacitor 1223 is charged via the diode 1222 in series with the voltage of the power source E, and the current is also supplied to the laser light source 1.
  • the current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
  • the signal S6 shown in FIG. 35 is an output current signal
  • the signal S7 is an output voltage signal
  • the signal S8 is a control signal that controls switching of the main switch element 1220 between ON and OFF.
  • the output switch element 123 may be configured to forcibly cut off the current (at high speed).
  • the switching control unit 130 receives the signal S9 from the acceleration determination unit 140.
  • the signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
  • the acceleration determination unit 140 receives the acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6, and generates signals S9, S91, and S11 as necessary based on the acceleration signals S5 and S51. The data is transmitted to the switching control unit 130. Details of the acceleration determination unit 140 will be described later.
  • the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected.
  • This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122.
  • the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off.
  • the laser control unit 121 may be provided with the acceleration determination unit 140.
  • the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . For this reason, the output switch element 123 forcibly cuts off the current (at high speed).
  • the same circuit is provided so as to correspond to the acceleration sensor 3 and the acceleration sensor 6, respectively.
  • the signals generated from the signal S5 of the acceleration sensor 3 are S9 and S11, and the signal generated from the signal S51 of the acceleration sensor 6 provided on the housing is S9 replaced with S91. To do.
  • FIG. 36 is a diagram schematically illustrating configurations of the lighting apparatus 100 and the automobile 200 according to the twelfth embodiment.
  • members having the same functions as those in the drawings described in Examples 1 to 11 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 has substantially the same structure as the headlamp unit 101 of the eighth embodiment.
  • the optical sensor 7 is provided in the housing 310.
  • a conductive detection member 315 is provided on the housing 310 side of the laser light cut filter 312.
  • the illumination device 100 is provided with a cover (housing 5) that covers the headlamp unit 101 when considered as a headlight of an automobile.
  • This cover is made of plastic, and the surface is coated with a conductive detection film.
  • the cover is provided with an acceleration sensor 6 for detecting the collision of a collision object such as a stone with the cover.
  • the output destination of the acceleration sensor 6 is a laser drive circuit 502.
  • the laser light source 1 is temporarily turned off by the laser driving circuit 502.
  • the determination of the acceleration by the stepping stone or the like is performed based on the signal S91 generated by the acceleration determining unit 140 in accordance with the output S51 of the acceleration sensor 6 provided on the cover, that is, the housing 5.
  • the laser drive circuit 502 performs drive control of the laser light source 1 according to the acceleration signal detected by the acceleration sensor 3.
  • the laser light source 1 is driven in pulses.
  • the host vehicle when a car collides with the lighting device 100 of the host vehicle 200 by another vehicle 201 traveling in front while the vehicle 200 (hereinafter referred to as the host vehicle) that the driver drives is traveling.
  • the stepping stone corresponding to the collision can be largely protected by a plastic cover.
  • the acceleration detected by the acceleration sensor 6 installed on the cover causes the stepping stone to collide with the cover. Therefore, it is preferable to turn off the laser light source 1 when it corresponds to the acceleration generated.
  • the detection axis direction of acceleration detection at the cover is not limited to the front-rear direction, and may be the side surface direction or both.
  • the illuminating device 100 According to the illuminating device 100 according to the twelfth embodiment, it is possible to detect a risk factor (a stepping stone, a flying object, or a collision with another object of the own vehicle) of the main body with the cover, which is always provided for a normal headlight. So, if there is a danger that the main body will be destroyed and the laser beam will leak, The laser is extinguished during the time until the risk factor reaches from the cover to the main body, so that the safety can be ensured or the safety can be further improved.
  • a risk factor a stepping stone, a flying object, or a collision with another object of the own vehicle
  • the vehicle speed (vs. stepping stone) is 360 km / h ⁇ 100 m / s, and the distance between the cover and the main body is 5 mm, the time required to penetrate the cover and reach the main body is 50 ⁇ s. Therefore, there is sufficient time for the electrical extinguishing operation.
  • a flying object at a speed of 360 km / h as an example of a collision of a stepping stone with a headlight, but it is not limited to a stepping stone but is a collision with a fixed object or is traveling at a speed of 180 km / h. It is obvious that the laser can be turned off in the same way in the case of a collision between vehicles.
  • FIG. 37 is a diagram schematically illustrating the configuration of the illumination device 100 and the automobile 200 according to the thirteenth embodiment.
  • members having the same functions as those in the drawings explained in the first to twelfth embodiments are given the same reference numerals and explanation thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the thirteenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment, as shown in FIG.
  • a cover is provided and the acceleration sensor 6 is provided on the cover in the same manner as in the twelfth embodiment.
  • the acceleration detected by the acceleration sensor 6 exceeds the third threshold value, any object is formed on the cover. It is different in that it is judged that there is a danger of reaching the main body by colliding and damaging the cover.
  • the relative speed between the cover of the illumination device 100 and the stepping stone that is the collision object is V, the cover and the illumination device main body (the tip of the member or device that prevents laser light leakage or reduces it to a safe level, or the leading edge of the main body.
  • V the relative speed between the cover of the illumination device 100 and the stepping stone that is the collision object
  • the cover and the illumination device main body the tip of the member or device that prevents laser light leakage or reduces it to a safe level, or the leading edge of the main body.
  • the normal headlight can always detect the risk factor for damage to the main body (stepping stones, flying objects, or collision with other objects of the vehicle) in advance, so that the main body is really destroyed and the laser light leaks. If there is a risk, the laser is turned off during the time until the risk factor reaches from the cover to the main body, and there is an effect that safety can be ensured or safety can be further improved.
  • the vehicle speed vs. stepping stone
  • the distance between the cover and the main body is 5 mm
  • the time required to penetrate the cover and reach the main body is 50 ⁇ s. Therefore, there is sufficient time for the electrical extinguishing operation.
  • Example 13 in addition to the above effects, the following effects are achieved.
  • the light body (main part) will continue to turn off once the collision acceleration with the object is detected after the light is turned off by the previous detection. In this case, the laser beam leakage prevention probability and safety are improved.
  • FIG. 38 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fourteenth embodiment.
  • members having the same functions as those in the drawings described in the first to thirteenth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the headlamp unit 101 of the illumination device 100 according to the thirteenth embodiment has substantially the same structure as the headlamp unit 101 of the thirteenth embodiment, as shown in FIG.
  • the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object is V, and the cover and the illuminating device main body (the tip of the member / device that prevents laser light leakage or reduces it to a safe level)
  • V the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object
  • the cover and the illuminating device main body the tip of the member / device that prevents laser light leakage or reduces it to a safe level
  • the distance X of the inequality is preferably the shortest distance X1 between the main body (main part) housing and the cover, as shown in FIG. If the structure is flexible so that the impact is absorbed by the collision of that part and there is no risk of laser light leakage, even if it is destroyed, it will be "a part that may cause laser light leakage"
  • the distance X2 may be the distance X2 to the member (laser light cut filter 312) on the light emitting surface of the main body (main part).
  • FIG. 39 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fifteenth embodiment.
  • members having the same functions as those in the drawings explained in Examples 1 to 14 are given the same reference numerals and explanations thereof are omitted.
  • the headlamp unit 101 of the illumination device 100 according to the fourteenth embodiment has substantially the same structure as the headlamp unit 101 of the thirteenth embodiment, as shown in FIG.
  • the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object is V, and the cover and the illuminating device main body (the tip of the member / device that prevents laser light leakage or reduces it to a safe level)
  • V the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object
  • the cover and the illuminating device main body the tip of the member / device that prevents laser light leakage or reduces it to a safe level
  • the temporary turn-off time Y needs to be set long. However, if the time is left large, the time for traveling in the off state during high speed traveling becomes longer, which may reduce the safety.
  • a 72 ms idle running time that is, a 7.2 m non-lighting running distance is newly generated until the driver of the automobile (vehicle) senses the danger and shifts to the braking operation.
  • this time and distance are not necessarily negligible values.
  • the vehicle speed signal is acquired from the outside, and the temporary turn-off time is adjusted according to the vehicle speed. For example, adjustment is made to shorten the temporary turn-off time as the speed increases.
  • vehicle speed information is acquired from vehicle speed information detecting means 600 such as a tachometer and a speedometer as in the laser drive circuit 602 shown in FIG. 40, and the signal is sent to the laser drive circuit 602 as a vehicle speed signal in S12.
  • vehicle speed information detecting means 600 such as a tachometer and a speedometer as in the laser drive circuit 602 shown in FIG. 40
  • the signal is sent to the laser drive circuit 602 as a vehicle speed signal in S12.
  • the time Y may be shortened so as to be approximately inversely proportional to the traveling speed.
  • the illumination device 100 since the time for temporarily turning off can be adjusted according to the vehicle speed, the time from the headlight cover damage to the main body damage is surely turned off and in the event of an accident. As well as ensuring the prevention of laser light leakage, the vehicle travel distance and time during extinguishing can be minimized, so that safety based on visibility can be secured.
  • the headlamp state-of-the-art that is, the relative speed between the cover and flying or colliding objects (including oncoming vehicles)
  • the distance between the part of the headlamp body (main part) that may leak laser light when impacted and the shortest part between the covers X Y is the temporary turn-off time required when the acceleration sensor of the cover detects acceleration exceeding the third threshold.
  • k and ⁇ T may be determined.
  • k is a coefficient for arbitrarily setting the gradient of the relationship between the vehicle speed and the temporary turn-off time when the vehicle speed signal cannot be obtained at the speed itself, but only a few times or a fraction thereof. is there.
  • Third threshold is a threshold corresponding to the acceleration of the temporary extinction determination detected by the cover.
  • the fourth threshold is a threshold corresponding to the extinction sustained acceleration detected by the main part (main body).
  • This may basically be the same as the second threshold value. That is, it may be 1G or more.
  • the fourth threshold can be set smaller than the second threshold.
  • the acceleration received by the main body is expected to be smaller than the acceleration received by the cover.
  • the effect of this is more sensitive to the collision of an object that has enough momentum to destroy the body, although the momentum was scraped off by the cover, such as a stepping stone pierced the cover Can be detected.
  • the vehicle speed signal S12 from the vehicle speed information detecting means 600 is applied to the laser drive circuit 102, more specifically, the laser control unit 121 to calculate and correct the time Y.
  • the vehicle speed signal S12 from the vehicle speed information detecting means 600 is given to the illumination control unit 103 as shown by the broken line in FIG. Then, it may be added from the illumination control unit 103 to the laser control unit 121 as the temporary turn-off time command signal Sy.
  • the vehicle state is more reliably detected by using the braking signal and steering angle of the vehicle.
  • FIG. 41 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the sixteenth embodiment.
  • members having the same functions as those in the drawings explained in the first to fifteenth embodiments are given the same reference numerals and explanations thereof are omitted.
  • the headlamp unit 101 of the illumination device 100 according to the sixteenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment, as shown in FIG.
  • the light extinction preparation is performed with reference to the braking signal.
  • the vehicle 200 on the frozen road surface 410 such as an ice burn is traveling, even if the driver rushes and steps on the brake suddenly, the vehicle slides on the road surface. Detection is difficult. Therefore, if the brake signal S13 indicating the degree of operation or control (or presence / absence) of the braking of the vehicle, such as the amount of depression of the brake pedal, is used to shift to the preparation for extinction (pulse drive), the acceleration sensors 3 and 6 are turned on.
  • the drive control of the laser light source 1 similar to the case where it is used can be performed.
  • the braking signal S13 is detected, and if it exceeds the fifth threshold, it is determined that the driver is in an uncontrollable or difficult state for vehicle sliding, and it is predicted that there is a risk of causing an accident. Move to preparation for turning off the laser.
  • the judgment is made by comparing the fifth threshold value with the brake pedal depression amount of the saddle that generates the fifth threshold brake acceleration on the normal road surface as a braking signal.
  • the acceleration sensors 3 and 6 are used together with the conventional detection.
  • the braking signal may be used in a complementary manner. That is, priority is given to detection from the acceleration sensor, and if the acceleration signal corresponding to the braking operation cannot be detected from the acceleration sensor even though the braking signal is generated, the braking signal may be used as in this embodiment.
  • the fifth threshold value may be the first threshold value (equivalent to sudden braking) in the above embodiments. If the amount of depression is detected by the switch as a pedal displacement corresponding to the corresponding acceleration, the determination level of simple ON or OFF may be set as the fifth threshold value. Alternatively, the presence / absence of the ABS drive signal of the ABS-equipped vehicle may be used as the fifth threshold value of the braking signal. Normally, this may be diversion of the ON / OFF signal of the ABS control relay.
  • the driving of the light source is stopped.
  • the sixth threshold value may be the second threshold value (equivalent to turning off) in the above embodiments.
  • FIG. 42 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the seventeenth embodiment.
  • members having the same functions as those in the drawings described in the first to sixteenth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the headlamp unit 101 of the lighting device 100 according to the seventeenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment.
  • the light-off preparation is performed with reference to the steering angle signal S14. That is, the vehicle speed and steering angle are observed, and if the lateral acceleration corresponding to the vehicle speed and steering angle is not detected, the vehicle is in an unexpected rotational state with the steering wheel turned off, or the steering wheel is Although the vehicle is turned off, the vehicle does not exhibit the steering characteristics desired by the driver, and it is determined that the vehicle is sliding in a substantially straight direction, and a light-off preparation operation is performed.
  • an acceleration calculation unit determines the acceleration in the direction orthogonal to the traveling direction of the vehicle from the steering angle of the steering wheel and the vehicle speed signal, i.e., the vehicle itself is traveling on a normal road surface.
  • the lateral (rotational) speed acceleration is calculated (which is expected to occur in some cases), and the corresponding acceleration is compared with the detection result of the lateral (side surface) acceleration sensor.
  • Laser light source 1 similar to the case where acceleration sensors 3 and 6 are used by shifting to preparation for extinction of light (pulse driving) if it deviates from acceleration (which is expected to occur when traveling on the road surface). Can be controlled.
  • the turning radius can be calculated from the steering angle and the distance between the front and rear wheels of the vehicle. From the turning radius and the vehicle speed, the “heel” acceleration (centric acceleration) generated in the lateral direction can be calculated. If this deviates from the lateral acceleration sensor output by the seventh threshold or more, the process proceeds to the extinction preparation. On the other hand, the same processing may be performed for the case where acceleration equal to or greater than the seventh threshold value in the lateral direction is detected in a state where the steering angle is close to zero.
  • the seventh threshold value may be a first threshold value corresponding to a sudden handle.
  • the eighth threshold value may be the second threshold value (corresponding to turning off) in the above embodiments.
  • the vehicle speed signal becomes zero by the braking operation, which means that the tire is locked. Can be switched to a light-off preparation operation.
  • the procedure described in the seventeenth embodiment may be used to shift to a turn-off preparation operation. .
  • the fifth threshold value expressed by acceleration, which is expected to occur when braking normally by the braking signal, is the same range as the first threshold value related to claim 1, that is, the lower limit. Is preferably 0.2G and the upper limit is 2G. This is because there is no great difference between the brake depression amount when it is desired to quickly stop the vehicle on the normal road surface and the brake amount which is depressed similarly on the frozen road surface.
  • the fifth threshold value is not the acceleration, but the ABS operation signal (ie, the detection signal that the tire is slipping on the road surface while braking). Only ON / OFF may be used.
  • the seventh threshold is preferably 0.2G for the lower limit and 2G for the upper limit, as with the first threshold. This is because the above-mentioned centripetal acceleration can normally occur if the vehicle is being steered normally. If even that does not occur, the posture control such as spin is insufficient or impossible. This is because it can be assumed.
  • the braking signal S13 detected by the braking signal detection means (braking signal detection sensor) 700 and the steering angle signal S14 detected by the steering angle signal detection means 800 are used.
  • a laser driving circuit 702 that inputs to the laser control unit 121 and performs laser driving control is used.
  • the braking signal detection unit 700 detects these signals and sends them to the laser control unit 121 as a braking signal S13.
  • the steering angle signal S14 a signal from a steering angle sensor (variable resistance, torsion sensor, rotary encoder, etc.) that detects an angle when the steering wheel (steering) is turned, that is, a steering angle is used. That is, the steering angle signal detection means 800 detects this signal and sends it to the laser controller 121 as the steering angle signal S14.
  • a steering angle sensor variable resistance, torsion sensor, rotary encoder, etc.
  • the drive circuit may stop driving the light source when the value detected by the acceleration sensor exceeds a second threshold value greater than the first threshold value while the light source is pulse-driven. preferable.
  • the driving circuit stops driving the light source when the detection value by the acceleration sensor exceeds the second threshold value that is larger than the first threshold value while the light source is pulse-driven. As a result, it is possible to reliably eliminate leakage of laser light due to damage to the light emitting portion.
  • the first threshold value is a value corresponding to an acceleration when the vehicle suddenly brakes or an acceleration corresponding to when the vehicle suddenly turns off. It is preferable to set the value of.
  • the second threshold value is an acceleration value that occurs when the vehicle collides with another vehicle or the like, more precisely, a value corresponding to an acceleration value that may cause the headlight to break down and leak laser light. Good to do.
  • the drive circuit drives the light source with a pulse whose off period is longer than the on period when the light source is pulse-driven for a certain period of time.
  • the laser beam irradiation is already stopped when the laser beam irradiation is stopped from the semiconductor laser element. The probability of encountering a case can be increased.
  • the driving circuit preferably drives the light source with a laser power larger than the laser power before the pulse driving when the light source is pulse-driven for a certain time.
  • the brightness of the laser beam during pulse driving can be maintained.
  • the acceleration sensor is a first acceleration sensor provided in a main part including the light emitting unit
  • a second acceleration sensor that detects acceleration of the case is provided in a case that covers the main part
  • the drive circuit drives the light source according to a detection value by the second acceleration sensor in addition to a detection value by the first acceleration sensor.
  • the acceleration is detected not only by the first acceleration sensor provided in the main part including the light emitting part, but also by the second acceleration sensor that detects the acceleration of the casing on the casing covering the main part.
  • the range of acceleration detection by the acceleration sensor can be expanded.
  • the range of acceleration detection can be expanded.
  • the second acceleration sensor provided in the case exceeds the third threshold.
  • the light source is turned off for a time Y longer than (X ⁇ V), and while the light source is turned off, the first acceleration sensor detects an acceleration exceeding a fourth threshold. When detected, it is preferable to turn off the light source for a time exceeding Y.
  • a preferable value of the third threshold value is an acceleration with which there is a possibility that a collision object that has collided with the casing penetrates, or that the casing is damaged even if the collision object does not penetrate.
  • the upper limit of the third threshold is determined as described above, it is possible to ensure safety when it is assumed that the collision object that collides with the housing reaches the main part and the main part is damaged. This is because when the second acceleration sensor provided in the housing detects an acceleration exceeding the third threshold, the light source is turned off for a time Y longer than (X ⁇ V), thereby colliding with the housing. This is because the semiconductor laser element is in the extinguished state until the colliding object penetrating through reaches the main part including the light source. Even if the case did not break, or even if the case was damaged, the main part was not damaged, the light source was turned off for the time corresponding to the arrival of the collision object from the case to the main part. As a result, safety against laser light leakage is ensured.
  • the first acceleration sensor detects acceleration exceeding the fourth threshold while the light source is turned off, the light source is turned off for a time exceeding the Y. Even if the impact object penetrating the housing reaches the light emitting part and the main part is damaged, the light source is already turned off in the light emitting part. Therefore, laser light leakage due to breakage of the main part can be reliably eliminated.
  • the above lighting devices may be used as headlamps mounted on the vehicle.
  • the illumination device further includes an acceleration sensor that detects an acceleration of the illumination device, and the drive circuit is in a state where the light source is pulse-driven and a detection value by the acceleration sensor exceeds a sixth threshold value, It is preferable to stop driving the light source.
  • the light source is turned off when an impact is detected by the acceleration sensor while the braking signal is detected and the light source is pulse-driven, so that leakage of the laser beam due to damage to the illumination device is minimized. Can do.
  • the driving circuit stops driving the light source when a value detected by the acceleration sensor exceeds an eighth threshold value while the light source is pulse-driven.
  • the light source is turned off when an impact is detected by the acceleration sensor while the braking signal is detected and the light source is pulse-driven, so that the leakage of the laser beam due to the damage of the light emitting part can be stopped accurately. Can do.
  • the acceleration sensor detects acceleration in the longitudinal direction and lateral direction of the vehicle. In this way, the collision between the vehicle and the collision object can be detected regardless of the posture of the vehicle (spin or simple sliding), and the light source can be turned off immediately.
  • a vehicle including the headlight is also included in the technical scope of the present invention.
  • the present invention can be applied to lighting devices, headlamps, and vehicles equipped with the headlamps. Further, the lighting device (or headlamp) can be applied not only to the vehicle headlamp but also to other lighting devices (or headlamps).
  • An example of the other illumination device (or headlamp) is a downlight.
  • a downlight is a lighting device installed on the ceiling of a structure such as a house or a vehicle.
  • the lighting device (or headlamp) of the present invention may be realized as a headlamp of a moving object other than a vehicle (for example, a human, a ship, an aircraft, a submersible, a rocket, etc.) You may implement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

 An illumination device is provided with: a headlamp unit (101) that has a laser light source (1); a laser drive circuit (102) that drives the laser light source (1); and an acceleration sensor (3) that detects the acceleration of the headlamp unit (101). When the laser drive circuit (102) is driving the laser light source (1) and the detection value from the acceleration sensor (3) exceeds a first threshold value, the laser drive circuit (102) pulse drives the laser light source (1) for a fixed period of time.

Description

照明装置、前照灯および車両Lighting device, headlamp and vehicle
 本発明は、半導体レーザ素子(LD;Laser Diode)を光源とする照明装置および前照灯、ならびに、該前照灯を備えた車両に関する。 The present invention relates to an illuminating device and a headlamp that use a semiconductor laser element (LD) as a light source, and a vehicle equipped with the headlamp.
 近年、LDを光源とする照明装置などの研究が盛んになってきている。このLDから発生するレーザ光は、その指向性が高いので、LDを自動車等の車両のヘッドライトの光源として用いられている。 In recent years, research on illumination devices using an LD as a light source has become active. Since the laser light generated from the LD has high directivity, the LD is used as a light source for a headlight of a vehicle such as an automobile.
 また、上記ヘッドライトを備えた自動車等の車両には、走行時や事故時における安全性の向上のための措置が施されている。 In addition, vehicles such as automobiles equipped with the above headlights are provided with measures for improving safety during running or accidents.
 例えば特許文献1には、左右方向にカーブする道を走行中の車両の横方向加速度を検知し、ヘッドライト以外に、右側・左側の補助照明灯を点灯することで、車両旋回時の視認性向上を図り、車両走行時の安全を確保する技術が開示されている。 For example, in Patent Document 1, the lateral acceleration of a vehicle traveling on a road that curves in the left-right direction is detected, and the right and left auxiliary illumination lights are turned on in addition to the headlights, thereby making the visibility when turning the vehicle Techniques for improving and ensuring safety during vehicle traveling are disclosed.
 また、特許文献2には、事故時における車両衝突時の衝撃の大きさを加速度センサで検出し、検出した値によって、ヘッドライトの故障判断を行い、ヘッドライトの破損に起因する2次的な事故を回避して、事故時の安全を確保する技術が開示されている。 Further, in Patent Document 2, the magnitude of impact at the time of a vehicle collision at the time of an accident is detected by an acceleration sensor, a headlight failure determination is performed based on the detected value, and a secondary caused by headlight breakage is detected. Techniques for avoiding accidents and ensuring safety in the event of an accident are disclosed.
 ところで、LDから発生するレーザ光は、その指向性が高いので、人間の目に入射した場合、網膜を損傷してしまう可能性がある。このため、LDから発生するレーザ光をできるだけ装置の外部に漏らさないように工夫する必要がある。 By the way, since the laser beam generated from the LD has high directivity, there is a possibility of damaging the retina when entering the human eye. For this reason, it is necessary to devise so that the laser beam generated from the LD is not leaked outside the apparatus as much as possible.
 特に、車両のヘッドライトの光源にLDを用いた場合、大出力のレーザ光が必要となるので、事故等によるヘッドライトの破損によって、レーザ光が車両外部に漏れると非常に危険である。 In particular, when an LD is used as the light source of a vehicle headlight, a high-power laser beam is required. Therefore, it is extremely dangerous if the laser beam leaks outside the vehicle due to damage to the headlight due to an accident or the like.
 また、特許文献3には、半導体レーザ素子を外気から遮断する密閉手段の内部に外気が入り込んだ場合に、半導体レーザへの通電を停止する発光装置が開示されている。 Further, Patent Document 3 discloses a light emitting device that stops energization of a semiconductor laser when the outside air enters the inside of a sealing means that blocks the semiconductor laser element from the outside air.
日本国公開特許公報「特開2003-341423号公報(2003年12月03日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-341423 (published on December 03, 2003)” 日本国公開特許公報「特開2002-274295号公報(2002年09月25日公開)」Japanese Patent Publication “JP 2002-274295 A (published on Sep. 25, 2002)” 日本国公開特許公報「特開2009-146938号公報(2009年07月02日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2009-146938 (published on July 02, 2009)”
 しかしながら、車両衝突などの事故に至る可能性があるかどうかを判定し、その可能性がある場合に、ヘッドライトの安全性を高めるための制御を行う技術については、特許文献1~3には、開示されていない。 However, Patent Documents 1 to 3 disclose technologies for determining whether or not there is a possibility of an accident such as a vehicle collision, and performing control for improving the safety of the headlight when there is such a possibility. Not disclosed.
 本発明の目的は、車両衝突などの事故の発生を可能な限り予見し、それに基づいて半導体レーザをパルス駆動発光へと移行させると共に、万一の事故発生時には完全消灯させる事で、安全性を向上させた照明装置および前照灯を提供することにある。 The purpose of the present invention is to foresee as much as possible the occurrence of an accident such as a vehicle collision, and to shift the semiconductor laser to pulse drive emission based on that, and to turn off the light completely in the event of an accident, thereby ensuring safety. It is an object to provide an improved lighting device and headlamp.
 本発明の一実施形態に係る照明装置は、上記の課題を解決するために、半導体レーザ素子を光源とする発光部と、上記光源を駆動する駆動回路と、上記発光部の加速度を検出する加速度センサとを備え、上記駆動回路は、上記光源を駆動している状態で、上記加速度センサによる検出値が第1閾値を超えたとき、上記光源を一定時間パルス駆動させることを特徴とする。 In order to solve the above-described problem, an illumination device according to an embodiment of the present invention includes a light emitting unit that uses a semiconductor laser element as a light source, a drive circuit that drives the light source, and an acceleration that detects acceleration of the light emitting unit. And a driving circuit that drives the light source for a certain period of time when a value detected by the acceleration sensor exceeds a first threshold value while the light source is being driven.
 上記の構成において、光源を駆動している状態で、加速度センサによる発光部の加速度を示す検出値が第1閾値を超えたときとは、当該発光部に何らかの異常な衝撃が加えられている状態を示している。 In the above configuration, when the detection value indicating the acceleration of the light emitting unit by the acceleration sensor exceeds the first threshold while driving the light source, a state in which some abnormal impact is applied to the light emitting unit. Is shown.
 この状態で、上記光源を一定時間パルス駆動させれば、発光部にさらに強大な衝撃が加わり、破損するような事態を招いたときであっても、パルス駆動がオフ期間であれば、半導体レーザ素子からレーザ光が照射されることはない。 In this state, if the light source is pulse-driven for a certain period of time, a semiconductor laser can be used as long as the pulse drive is in the off period even when the light-emitting portion is further subjected to a strong impact and causes damage. Laser light is not irradiated from the element.
 通常、半導体レーザ素子の駆動状態において駆動停止指示から、当該半導体レーザ素子からレーザ光の照射を停止させるまでには、わずかにタイムラグが生じる。 Usually, there is a slight time lag from the instruction to stop driving in the driving state of the semiconductor laser element until the irradiation of the laser beam from the semiconductor laser element is stopped.
 しかしながら、上記のように、半導体レーザ素子をパルス駆動させているならば、その駆動停止指示時に、パルス駆動がオフ期間であり既に半導体レーザ素子からレーザ光の照射が停止されていれば、上記のようなタイムラグは生じない。 However, as described above, if the semiconductor laser element is pulse-driven, when the driving stop instruction is given, if the pulse driving is in the off period and the irradiation of the laser beam from the semiconductor laser element has already been stopped, the above-mentioned Such a time lag does not occur.
 即ち事故の可能性を加速度で予見された場合に半導体レーザ素子をパルス駆動に移行する事で、万一事故が現実のものとなって照明装置に破損を生じた場合、既にレーザ光がオフしている時間が生じるので、レーザ光の漏れを防げる確率、即ち安全性が高まる。 In other words, if the possibility of an accident is predicted by acceleration, the laser diode element is switched to pulse drive, so that if the accident becomes a reality and the lighting device is damaged, the laser beam is already turned off. Therefore, the probability that the leakage of the laser beam can be prevented, that is, the safety is increased.
 本発明の一実施形態に係る前照灯は、車両に備えられた、半導体レーザ素子を光源とする発光部と、上記光源を駆動する駆動回路とを有する照明装置と、上記車両の制動信号を検出する制動信号検出センサとを備え、上記駆動回路は、上記光源を駆動している状態で、上記制動信号検出センサによる検出値が第5閾値を超えたとき、上記光源を一定時間パルス駆動させることを特徴とする。 A headlamp according to an embodiment of the present invention includes a lighting device that includes a light emitting unit using a semiconductor laser element as a light source and a drive circuit that drives the light source, and a braking signal for the vehicle. A brake signal detection sensor for detecting, and the drive circuit drives the light source for a certain period of time when the detection value by the brake signal detection sensor exceeds a fifth threshold value while driving the light source. It is characterized by that.
 ここで、車両は、前後方向にスリップした場合、通常走行とスリップとの違いを加速度センサで検出するのは難しい。そこで、車両が前後方向にスリップした場合の検出を制動信号により行う。 Here, when the vehicle slips in the front-rear direction, it is difficult to detect the difference between normal running and slip with an acceleration sensor. Therefore, detection when the vehicle slips in the front-rear direction is performed using a braking signal.
 上記の構成において、光源を駆動している状態で、制動信号検出センサによる検出値が第5閾値を超えたときとは、車両が急停止しようとしている状態を示している。 In the above configuration, when the value detected by the braking signal detection sensor exceeds the fifth threshold value while the light source is being driven, the vehicle is about to stop suddenly.
 この状態で、上記光源を一定時間パルス駆動させれば、車両がスリップの結果、何らかの物体に衝突し、発光部が破損するような事態を招いたときであっても、パルス駆動がオフ期間であれば、半導体レーザ素子からレーザ光が照射されることはない。 In this state, if the light source is pulse-driven for a certain period of time, even if the vehicle collides with some object as a result of slipping and the light emitting part is damaged, the pulse drive is in the off period. If present, the laser beam is not irradiated from the semiconductor laser element.
 即ち、車両のスリップの様に、車両の動作を変化させようとする加速度が検出出来なかった場合においても、車両の制動動作自体を検知して半導体レーザ素子をパルス駆動動作に移行させるので、スリップ後に車両と物体との衝突が生じたとしても、レーザ光漏れの確率を低減する事が可能である。 In other words, even if the acceleration to change the operation of the vehicle cannot be detected like the slip of the vehicle, the braking operation itself of the vehicle is detected and the semiconductor laser element is shifted to the pulse driving operation. Even if a collision between the vehicle and an object occurs later, the probability of laser light leakage can be reduced.
 通常、半導体レーザ素子の駆動状態において、駆動停止指示から、当該半導体レーザ素子からレーザ光の照射を停止させるまでには、わずかにタイムラグが生じる。 Usually, in the driving state of the semiconductor laser element, there is a slight time lag from the stop driving instruction until the irradiation of the laser beam from the semiconductor laser element is stopped.
 しかしながら、上記のように、半導体レーザ素子の駆動停止指示時に、パルス駆動がオフ期間であり既に半導体レーザ素子からレーザ光の照射が停止されていれば、上記のようなタイムラグは生じない。 However, as described above, the time lag as described above does not occur if the pulse drive is in the off period and the irradiation of the laser beam from the semiconductor laser element is already stopped when the semiconductor laser element drive stop instruction is given.
 本発明の一実施形態に係る照明装置は、車両に備えられた、半導体レーザ素子を光源とする発光部と、上記光源を駆動する駆動回路とを有する照明装置と、上記照明装置の加速度を検出する加速度センサと、上記車両の速度を示す速度信号と、上記車両の操舵角を示す操舵角信号とから、上記車両の進行方向に直交する方向の加速度を算出する加速度算出部とを備え、上記駆動回路は、上記加速度算出部により算出された加速度と、上記加速度センサにより検出された加速度との差の絶対値が、第7閾値を超えたとき、上記光源を一定時間パルス駆動させることを特徴としている。 An illuminating device according to an embodiment of the present invention includes an illuminating device that is provided in a vehicle and includes a light emitting unit that uses a semiconductor laser element as a light source and a drive circuit that drives the light source, and detects an acceleration of the illuminating device. An acceleration calculation unit that calculates an acceleration in a direction orthogonal to the traveling direction of the vehicle from a speed signal indicating the speed of the vehicle and a steering angle signal indicating the steering angle of the vehicle, The drive circuit causes the light source to pulse-drive for a certain period of time when an absolute value of a difference between the acceleration calculated by the acceleration calculation unit and the acceleration detected by the acceleration sensor exceeds a seventh threshold value. It is said.
 ここで例えば凍結路面を想定すると、車両が前後方向にスリップした場合に急ハンドルを切っても、姿勢を余り変えずにほぼそのままの状態でスリップするか、逆に予期した以上の姿勢変更(スピン)した状態となってしまい、車両前後方向の加速度の変化は少ない場合が考えられる。この場合通常走行とスリップとの違いを加速度センサで検出することは難しい。そこで、車両が前後方向にスリップした場合に、車両の操舵角度を示す信号(操舵角度信号)を使用して、車両の姿勢が運転者の意図するものとなっているかどうかを判断する事で、事故回避が試みられている状態であるか否かを認識する。 Here, for example, assuming a frozen road surface, even if the vehicle slips back and forth, even if the steering wheel is turned suddenly, the vehicle will slip almost unchanged without changing its attitude, or conversely, the attitude change (Spin ), And there is little change in acceleration in the vehicle longitudinal direction. In this case, it is difficult to detect the difference between normal running and slip with an acceleration sensor. Therefore, when the vehicle slips in the front-rear direction, a signal indicating the steering angle of the vehicle (steering angle signal) is used to determine whether the vehicle posture is intended by the driver, Recognize whether accident avoidance is being attempted.
 即ち上記車両の速度を示す速度信号と、上記車両の操舵角を示す操舵角信号とから、上記車両の進行方向に直交する方向の加速度を算出し、この算出した加速度と、加速度センサにより検出された加速度との差の絶対値が、第7閾値を越えたときとは、車両がスリップした状態で急ハンドルが切られ、予期せぬ回転(スピン)に陥った状態、若しくは直進を意図しながらも車両がスピンした状態を示す。 That is, acceleration in a direction orthogonal to the traveling direction of the vehicle is calculated from a speed signal indicating the speed of the vehicle and a steering angle signal indicating the steering angle of the vehicle, and the calculated acceleration is detected by an acceleration sensor. When the absolute value of the difference from the acceleration exceeds the seventh threshold, the steering wheel is suddenly turned off while the vehicle slips, and it is in an unexpected rotation (spin), or while going straight ahead Also shows the state of spinning the vehicle.
 この状態のときに、光源を一定時間パルス駆動させれば、車両にさらに衝撃が加わり、発光部が破損するような事態を招いたときであっても、パルス駆動がオフ期間であれば、半導体レーザ素子からレーザ光が照射されることはない。 In this state, if the light source is pulse-driven for a certain period of time, even if the vehicle is further shocked and the light emitting part is damaged, the semiconductor device can be used if the pulse drive is in the off period. Laser light is not irradiated from the laser element.
 これにより、制動信号を検出して光源をパルス駆動していれば、実際に発光部の破損を生じる様な事態に至った場合でもレーザ光が消灯している可能性があり、結果的にレーザ光の漏れを最小限にした安全性の高いものとすることができる。 As a result, if the braking signal is detected and the light source is pulse-driven, the laser beam may be turned off even if the light emitting unit is actually damaged. It can be made highly safe with minimal light leakage.
 本発明は、半導体レーザ素子を光源とする発光部と、上記光源を駆動する駆動回路と、上記発光部の加速度を検出する加速度センサとを備え、上記駆動回路は、上記光源を駆動している状態で、上記加速度センサによる検出値が第1閾値を超えたとき、上記光源を一定時間パルス駆動させることで、発光部が現実に破損した際のレーザ光の漏洩確率を減少させ、安全性を向上出来るという効果を奏する。 The present invention includes a light emitting unit that uses a semiconductor laser element as a light source, a drive circuit that drives the light source, and an acceleration sensor that detects acceleration of the light emitting unit, and the drive circuit drives the light source. In this state, when the detection value by the acceleration sensor exceeds the first threshold, the light source is pulse-driven for a certain period of time, thereby reducing the probability of leakage of laser light when the light emitting unit is actually damaged, There is an effect that it can be improved.
本発明の一実施の形態に係るヘッドランプの概略構成ブロック図である。It is a schematic block diagram of a headlamp according to an embodiment of the present invention. 前記ヘッドランプにおけるレーザ駆動回路の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive circuit in the said headlamp. (a)は、上記ヘッドランプにおける半導体レーザ(LD)を点灯させるための簡単な一例を示す回路図であり、(b)は、上記半導体レーザの外観を示す斜視図である。(A) is a circuit diagram which shows a simple example for lighting the semiconductor laser (LD) in the said headlamp, (b) is a perspective view which shows the external appearance of the said semiconductor laser. 前記レーザ駆動回路におけるレーザ駆動部(降圧型)の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive part (step-down type) in the said laser drive circuit. 前記レーザ駆動回路におけるレーザ駆動部(昇圧型)の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive part (boost type | mold) in the said laser drive circuit. 前記レーザ駆動部における加速度判断部の一例を示すブロック図である。It is a block diagram which shows an example of the acceleration judgment part in the said laser drive part. 前記レーザ駆動部における加速度判断部の他の一例を示すブロック図である。It is a block diagram which shows another example of the acceleration judgment part in the said laser drive part. 前記レーザ駆動部における加速度判断部のさらに他の一例を示すブロック図である。It is a block diagram which shows another example of the acceleration judgment part in the said laser drive part. 図8に示すブロックにおける基準電圧の等化回路を示す図である。FIG. 9 is a diagram showing a reference voltage equalization circuit in the block shown in FIG. 8. 前記レーザ駆動部における加速度判断部のさらに他の一例を示すブロック図である。It is a block diagram which shows another example of the acceleration judgment part in the said laser drive part. 図10に示すレーザ駆動部における動作のタイミングチャートである。It is a timing chart of the operation | movement in the laser drive part shown in FIG. 図10に示すブロックにおける基準電圧の等価回路を示す図である。It is a figure which shows the equivalent circuit of the reference voltage in the block shown in FIG. 前記レーザ駆動部における加速度判断部のさらに他の一例を示すブロック図である。It is a block diagram which shows another example of the acceleration judgment part in the said laser drive part. 図13に示すレーザ駆動部における動作のタイミングチャートである。It is a timing chart of the operation | movement in the laser drive part shown in FIG. 本実施の形態にかかるヘッドランプの基本動作のタイミングチャートである。It is a timing chart of the basic operation of the headlamp according to the present embodiment. 本実施の形態にかかるヘッドランプの他の動作のタイミングチャートである。It is a timing chart of other operation | movement of the headlamp concerning this Embodiment. 本実施の形態にかかるヘッドランプのさらに他の動作のタイミングチャートである。It is a timing chart of other operation | movement of the headlamp concerning this Embodiment. 本実施の形態にかかるヘッドランプのさらに他の動作のタイミングチャートである。It is a timing chart of other operation | movement of the headlamp concerning this Embodiment. 本実施の形態にかかるヘッドランプのさらに他の動作のタイミングチャートである。It is a timing chart of other operation | movement of the headlamp concerning this Embodiment. 本実施の形態の実施例1に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 1 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例2に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the motor vehicle provided with the headlamp which concerns on Example 2 of this Embodiment and this headlamp. 本実施の形態の実施例3に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the motor vehicle provided with the headlamp which concerns on Example 3 of this Embodiment and this headlamp. 本実施の形態の実施例4に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 4 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例5に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 5 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例6に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 6 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例7に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 7 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例8に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 8 of this Embodiment, and the motor vehicle provided with this headlamp. 図27に示すヘッドランプの動作のタイミングチャートである。It is a timing chart of operation | movement of the headlamp shown in FIG. 本実施の形態の実施例9に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 9 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例10に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 10 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例11に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 11 of this Embodiment, and the motor vehicle provided with this headlamp. 本発明の他の実施の形態に係るヘッドランプの概略構成ブロック図である。It is a schematic block diagram of a headlamp according to another embodiment of the present invention. 前記ヘッドランプにおけるレーザ駆動回路の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive circuit in the said headlamp. 前記駆動回路におけるレーザ駆動部(降圧型)の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive part (step-down type) in the said drive circuit. 前記駆動回路におけるレーザ駆動部(昇圧型)の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive part (boost type | mold) in the said drive circuit. 本実施の形態の実施例12に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 12 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例13に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 13 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例14に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 14 of this Embodiment, and the motor vehicle provided with this headlamp. 本実施の形態の実施例15に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 15 of this Embodiment, and the motor vehicle provided with this headlamp. 前記ヘッドランプにおけるレーザ駆動回路の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive circuit in the said headlamp. 本発明のさらに他の実施の形態の実施例16に係るヘッドランプおよび該ヘッドランプを備えた自動車の、車両速度情報の検出に関する概要構成を示す図である。It is a figure which shows schematic structure regarding the detection of vehicle speed information of the headlamp which concerns on Example 16 of further another embodiment of this invention, and the motor vehicle provided with this headlamp. 本実施の形態の実施例17に係るヘッドランプおよび該ヘッドランプを備えた自動車の概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on Example 17 of this Embodiment, and the motor vehicle provided with this headlamp. 前記ヘッドランプにおけるレーザ駆動回路の一例を示すブロック図である。It is a block diagram which shows an example of the laser drive circuit in the said headlamp. 操舵各信号、制動信号の発生装置の具体例を説明するための図である。It is a figure for demonstrating the specific example of the generator of each steering signal and a braking signal.
 本願出願人により出願された先願(特願2009-237076号)(日本国公開特許公報「特開2011-086432号公報(2011年4月28日公開)」)では、車両が衝突した際に、衝突検出部で衝突を検出してレーザヘッドライトを消灯する技術が開示されている。これにより、事故等によるヘッドライトの破損によって、レーザ光が車両外部に漏れることを防いでいる。 In a prior application (Japanese Patent Application No. 2009-237076) filed by the applicant of the present application (Japanese Patent Laid-Open Publication No. 2011-0864432 (published on April 28, 2011)), when a vehicle collides A technique is disclosed in which a collision detection unit detects a collision and turns off the laser headlight. This prevents the laser light from leaking out of the vehicle due to damage to the headlight due to an accident or the like.
 しかしながら、車両が衝突した際に、衝突検出部で衝突を検出してレーザヘッドライトを消灯する技術では、衝突を検出して初めて消灯動作に入るので、衝突するまでは光量に変化が無く、衝突検出部(センサ)が応答するまでの短時間でも、半導体レーザへの通電が遮断されるまでに時間がかかり、先にレーザ光漏れが生じる恐れがある。つまり、車両衝突の発生から半導体レーザへの通電が遮断されるまでの間に生じるタイムラグが生じるため、タイムラグのわずかな時間レーザ光が漏れるという問題が生じる。 However, when the vehicle collides, the technology that detects the collision at the collision detection unit and turns off the laser headlights enters the extinguishing operation only after the collision is detected. Even for a short time until the detection unit (sensor) responds, it takes time until the power supply to the semiconductor laser is cut off, and there is a possibility that laser light leaks first. That is, a time lag occurs between the occurrence of a vehicle collision and the energization of the semiconductor laser is cut off, and thus there arises a problem that the laser beam leaks for a short time lag.
 本発明の一実施形態に係る前照灯の目的は、車両衝突などの事故の発生を可能な限り予見し、それに基づいて半導体レーザをパルス駆動発光へと移行させると共に、万一の事故発生時には完全消灯させる事で、安全性を向上させることである。 The purpose of the headlamp according to one embodiment of the present invention is to predict the occurrence of an accident such as a vehicle collision as much as possible, and to shift the semiconductor laser to pulse drive light emission based on that, and in the event of an accident It is to improve safety by turning it off completely.
 本発明の一実施形態に係る前照灯では、車両衝突の発生から半導体レーザへの通電が遮断されるまでの間に生じるタイムラグを可能な限り小さくすることで、わずかな時間であってもレーザ光が漏れる可能性を低減できる。 In the headlamp according to the embodiment of the present invention, the laser is generated even in a short time by minimizing the time lag that occurs between the occurrence of a vehicle collision and the time when the semiconductor laser is de-energized. The possibility that light leaks can be reduced.
 〔実施の形態1〕
 (照明装置100)
 本発明の一実施の形態について説明すれば、以下の通りである。本実施の形態に係る照明装置100は、自動車等の車両に搭載される前照灯(ヘッドランプ)として用いられる。
[Embodiment 1]
(Lighting device 100)
An embodiment of the present invention will be described as follows. Illumination device 100 according to the present embodiment is used as a headlamp mounted on a vehicle such as an automobile.
 図1は、本実施の形態に係る照明装置100の概略ブロック図である。 FIG. 1 is a schematic block diagram of a lighting device 100 according to the present embodiment.
 上記照明装置100は、図1に示すように、半導体レーザ素子(LD;Laser Diode)を光源とするヘッドランプ部(発光部)101と、当該ヘッドランプ部101のLDを駆動するためのレーザ駆動回路(駆動回路)102とを含んでいる。 As shown in FIG. 1, the illumination device 100 includes a headlamp unit (light emitting unit) 101 having a semiconductor laser element (LD) as a light source, and a laser drive for driving the LD of the headlamp unit 101. Circuit (driving circuit) 102.
 上記ヘッドランプ部101は、LDからなるレーザ光源1と、当該レーザ光源1から出射されるレーザ光を可視光に変換する光変換部2と、当該ヘッドランプ部101の加速度を検出する加速度センサ3とを含んでいる。 The headlamp unit 101 includes a laser light source 1 composed of an LD, a light conversion unit 2 that converts laser light emitted from the laser light source 1 into visible light, and an acceleration sensor 3 that detects acceleration of the headlamp unit 101. Including.
 上記加速度センサ3により検出された信号は、加速度信号S5として上記レーザ駆動回路102に送信される。 The signal detected by the acceleration sensor 3 is transmitted to the laser drive circuit 102 as an acceleration signal S5.
 上記レーザ駆動回路102は、照明制御部(後述する)からのレーザ制御信号S0に応じたレーザ駆動電流C0を生成して、上記ヘッドランプ部101のレーザ光源1に供給するようになっている。 The laser drive circuit 102 generates a laser drive current C0 corresponding to a laser control signal S0 from an illumination control unit (described later) and supplies the laser drive current C0 to the laser light source 1 of the headlamp unit 101.
 また、上記レーザ駆動回路102は、上記レーザ光源1へのレーザ駆動電流C0の供給制御を上記加速度センサ3からの加速度信号の値に応じて行うようになっている。 The laser drive circuit 102 performs supply control of the laser drive current C0 to the laser light source 1 according to the value of the acceleration signal from the acceleration sensor 3.
 すなわち、上記レーザ駆動回路102は、上記レーザ光源1を駆動している状態(ヘッドランプを点灯している状態)で、上記加速度センサ3による加速度信号の値(検出値)が第1閾値を超えたとき、上記レーザ光源1を一定時間パルス駆動させるようになっている。 That is, when the laser drive circuit 102 is driving the laser light source 1 (the headlamp is turned on), the value of the acceleration signal (detected value) by the acceleration sensor 3 exceeds the first threshold value. In this case, the laser light source 1 is pulse-driven for a certain time.
 つまり、上記レーザ駆動回路102は、加速度センサ3からの加速度信号の値が第1閾値を越えたとき、レーザ光源1に対して、消灯準備のためのパルス駆動を行わせるようになっている。 That is, when the value of the acceleration signal from the acceleration sensor 3 exceeds the first threshold, the laser driving circuit 102 causes the laser light source 1 to perform pulse driving for preparation for turning off.
 また、上記レーザ駆動回路102は、上記レーザ光源1がパルス駆動している状態で、上記加速度センサ3による加速度信号の値(検出値)が上記の第1閾値よりも大きい値の第2閾値を越えたとき、上記レーザ光源1の駆動を停止(消灯)させるようになっている。 Further, the laser drive circuit 102 sets a second threshold value in which the value (detection value) of the acceleration signal from the acceleration sensor 3 is larger than the first threshold value in a state where the laser light source 1 is pulse-driven. When it exceeds, the driving of the laser light source 1 is stopped (turned off).
 上記第1閾値は、車両における急ブレーキを掛けたときの加速度相当の値あるいは車両における急ハンドルを切ったときの加速度相当の値とする。 The first threshold value is a value corresponding to the acceleration when the vehicle is suddenly braked or a value corresponding to the acceleration when the vehicle is suddenly turned off.
 上記第2閾値は、車両が他の車両等に衝突したときに生じる加速度相当の値とする。 The second threshold is a value corresponding to the acceleration generated when the vehicle collides with another vehicle or the like.
 上記レーザ駆動回路102におけるレーザ光源1の消灯制御の詳細については後述する。 Details of the turn-off control of the laser light source 1 in the laser drive circuit 102 will be described later.
  (レーザ駆動回路102)
 図2は、上記レーザ駆動回路102の概略構成ブロック図である。
(Laser drive circuit 102)
FIG. 2 is a schematic block diagram of the laser drive circuit 102.
 上記レーザ駆動回路102は、図2に示すように、レーザ制御部121、レーザ駆動部122、出力スイッチ素子123を含んでいる。 The laser drive circuit 102 includes a laser control unit 121, a laser drive unit 122, and an output switch element 123, as shown in FIG.
 上記レーザ制御部121は、外部に設置された照明制御部103から信号S0を受け、照明制御部103に対して信号S4を返す。信号S0は、レーザ光源1の点灯(ON)および消灯(OFF)を指示する指令信号や、レーザ光源1の駆動電圧および駆動電流のそれぞれの大きさを指示する指令信号である。信号S4は、レーザ光源1の点灯状況や、故障等の異常を含む状況報告信号である。 The laser control unit 121 receives the signal S0 from the illumination control unit 103 installed outside, and returns a signal S4 to the illumination control unit 103. The signal S0 is a command signal for instructing turning on (ON) and turning off (OFF) of the laser light source 1, and a command signal for instructing the magnitudes of the driving voltage and driving current of the laser light source 1. The signal S4 is a status report signal including a lighting status of the laser light source 1 and an abnormality such as a failure.
 そして、レーザ制御部121は、後段のレーザ駆動部122に信号S1を送信する。 Then, the laser control unit 121 transmits a signal S1 to the subsequent laser drive unit 122.
 上記レーザ駆動部122は、レーザ制御部121から信号S1を受け、レーザ制御部121に対して信号S3を返す。 The laser driver 122 receives the signal S1 from the laser controller 121 and returns a signal S3 to the laser controller 121.
 信号S1は、レーザ光源1の点灯(ON)および消灯(OFF)を制御する制御信号、駆動電圧および駆動電流のそれぞれの大きさを指示する制御信号である。また、信号S3は、レーザ駆動部122の状況を報告したり、レーザ光源1の駆動電流、および、レーザ光源1の駆動電圧を報告したりする状況報告信号である。 The signal S1 is a control signal that controls turning on (ON) and turning off (OFF) of the laser light source 1, and a control signal that indicates the magnitudes of the drive voltage and drive current. The signal S3 is a status report signal for reporting the status of the laser driving unit 122, reporting the driving current of the laser light source 1, and the driving voltage of the laser light source 1.
 上記レーザ駆動部122は、レーザ制御部121より信号S1を受けて、電源E(バッテリ)からの電力を駆動電圧および駆動電流C0としてレーザ光源1に供給する。 The laser driving unit 122 receives the signal S1 from the laser control unit 121, and supplies power from the power source E (battery) to the laser light source 1 as a driving voltage and a driving current C0.
 レーザ光源1は、レーザ駆動部122から供給される駆動電圧および駆動電流C0にて点灯する。 The laser light source 1 is lit by the drive voltage and the drive current C0 supplied from the laser drive unit 122.
 また、上記レーザ制御部121、レーザ駆動部122には、加速度センサ3からの加速度信号S5が供給されるようになっている。この加速度センサ3からの加速度信号S5は、レーザ制御部121、レーザ駆動部122の少なくとも一方に与えられ、加速度(衝撃など)の情報を伝達するための信号である。この情報、(加速度の大きさ)に基づいて、レーザ制御部121若しくはレーザ駆動部122は、レーザ光源1の消灯制御を行う。 The acceleration signal S5 from the acceleration sensor 3 is supplied to the laser control unit 121 and the laser driving unit 122. The acceleration signal S5 from the acceleration sensor 3 is given to at least one of the laser controller 121 and the laser driver 122, and is a signal for transmitting information on acceleration (impact etc.). Based on this information (acceleration magnitude), the laser control unit 121 or the laser driving unit 122 controls the laser light source 1 to be turned off.
 ここでは、加速度信号S5の大きさ(加速度信号S5が示す加速度の大きさ)に基づいて、レーザ光源1の消灯制御を行うために、消灯準備としてレーザのパルス駆動(ON/OFF)を行う。 Here, in order to perform the extinction control of the laser light source 1 based on the magnitude of the acceleration signal S5 (the magnitude of the acceleration indicated by the acceleration signal S5), laser pulse driving (ON / OFF) is performed as preparation for extinction.
 なお、上記加速度信号S5の大きさが、ある閾値以上の大きさ(例えば、車両の衝突に相当する衝撃に相当する大きさ)の場合には、レーザ光源1におけるレーザ光の照射を出来るだけ速く停止させるため(消灯するため)に、当該加速度信号S5の大きさをレーザ駆動部122で直接判断するのが好ましい。 When the acceleration signal S5 is greater than a certain threshold (for example, a magnitude corresponding to an impact corresponding to a vehicle collision), the laser light source 1 can be irradiated with the laser light as quickly as possible. In order to stop (turn off the light), it is preferable to directly determine the magnitude of the acceleration signal S5 by the laser driving unit 122.
 後述するレーザ駆動部122では、加速度信号S5の大きさを直接判断して消灯制御する例を示している。 In the laser drive unit 122 described later, an example is shown in which the magnitude of the acceleration signal S5 is directly determined to control the extinction.
 なお、上記出力スイッチ素子123を設けるか否かは任意であるが、レーザ駆動部122は、後述するように、コンデンサを備えるケースが多いので、加速度センサ3で衝突加速度を検出した場合や、レーザ駆動部122の異常を検知した場合などに、レーザ光源1の消灯時間を早くするために設けることが望ましい。なお、出力スイッチ素子123の制御は、レーザ制御部121およびレーザ駆動部122の少なくとも一方が行う。また、信号S2は、出力スイッチ素子123のONおよびOFFを制御する制御信号である。 Whether or not the output switch element 123 is provided is arbitrary, but since the laser driving unit 122 includes a capacitor in many cases as will be described later, the acceleration sensor 3 detects a collision acceleration or a laser. It is desirable to provide for shortening the turn-off time of the laser light source 1 when an abnormality of the drive unit 122 is detected. Note that the output switch element 123 is controlled by at least one of the laser controller 121 and the laser driver 122. The signal S2 is a control signal for controlling ON and OFF of the output switch element 123.
 また、上記出力スイッチ素子123は、例えばFET(field effect transistor)等により構成される。 The output switch element 123 is composed of, for example, a field effector (FET).
 なお、上記レーザ光源1は、複数のLDチップ11を含み、それぞれのLDチップ11からレーザ光が照射される。 The laser light source 1 includes a plurality of LD chips 11, and laser light is irradiated from each of the LD chips 11.
  (LDチップ11について)
 上記LDチップ11の具体的な構造について説明する。
(About LD chip 11)
A specific structure of the LD chip 11 will be described.
 図3(a)は、LDチップ11を点灯させるための簡単な回路図の例であり、図3(b)は、LDチップ11の外観を示す斜視図である。 FIG. 3A is an example of a simple circuit diagram for lighting the LD chip 11, and FIG. 3B is a perspective view showing the appearance of the LD chip 11.
 同図に示すように、LDチップ11は、カソード電極19、基板18、クラッド層113、活性層111、クラッド層112、アノード電極17がこの順に積層された構成である。 As shown in the figure, the LD chip 11 has a structure in which a cathode electrode 19, a substrate 18, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 17 are laminated in this order.
 基板18は、半導体基板であり、本願のように蛍光体を励起する為の青色~紫外の励起光を得る為にはGaN、サファイア、SiCを用いることが好ましい。一般的には、半導体レーザ用の基板としては、その他には、Si、GeおよびSiC等のIV属半導体、GaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSbおよびAlNに代表されるIII-V属化合物半導体、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体、ZnO、Al、SiO、TiO、CrOおよびCeO等の酸化物絶縁体、並びに、SiNなどの窒化物絶縁体のいずれかの材料が用いられる。 The substrate 18 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet excitation light for exciting the phosphor as in the present application. In general, as a substrate for a semiconductor laser, in addition, a group IV semiconductor such as Si, Ge, and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN are represented by III. -V group compound semiconductor, ZnTe, ZeSe, II-VI group compound such as ZnS and ZnO semiconductor, ZnO, Al 2 O 3, SiO 2, TiO 2, CrO 2 and CeO 2 or the like oxide insulator, and, SiN Any material of a nitride insulator such as is used.
 アノード電極17は、クラッド層112を介して活性層111に電流を注入するためのものである。 The anode electrode 17 is for injecting current into the active layer 111 through the clad layer 112.
 カソード電極19は、基板18の下部から、クラッド層113を介して活性層111に電流を注入するためのものである。なお、電流の注入は、アノード電極17・カソード電極19に順方向バイアスをかけて行う。 The cathode electrode 19 is for injecting current into the active layer 111 from the lower part of the substrate 18 through the clad layer 113. The current is injected by applying a forward bias to the anode electrode 17 and the cathode electrode 19.
 活性層111は、クラッド層113およびクラッド層112で挟まれた構造になっている。 The active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
 また、活性層111およびクラッド層の材料としては、青色~紫外の励起光を得る為にはAlInGaNから成る混晶半導体が用いられる。一般に半導体レーザの活性層・クラッド層としては、Al、Ga、In、As、P、N、Sbを主たる組成とする混晶半導体が用いられ、そのような構成としても良い。また、Zn、Mg、S、Se、TeおよびZnO等のII-VI属化合物半導体によって構成されていてもよい。 In addition, as a material for the active layer 111 and the cladding layer, a mixed crystal semiconductor made of AlInGaN is used to obtain blue to ultraviolet excitation light. Generally, a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used. Further, it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
 また、活性層111は、注入された電流により発光が生じる領域であり、クラッド層112およびクラッド層113との屈折率差により、発光した光が活性層111内に閉じ込められる。 The active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
 さらに、活性層111には、誘導放出によって増幅される光を閉じ込めるために互いに対向して設けられる表側へき開面114・裏側へき開面115が形成されており、この表側へき開面114・裏側へき開面115が鏡の役割を果たす。 Further, the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission. The front side cleaved surface 114 and the back side cleaved surface 115 are formed. Plays the role of a mirror.
 ただし、完全に光を反射する鏡とは異なり、誘導放出によって増幅される光の一部は、活性層111の表側へき開面114・裏側へき開面115(本実施の形態では、便宜上表側へき開面114とする)から出射され、レーザ光L0となる。なお、活性層111は、多層量子井戸構造を形成していてもよい。 However, unlike a mirror that completely reflects light, a part of the light amplified by stimulated emission is obtained by cleaving the front side cleaved surface 114 and the back side cleaved surface 115 of the active layer 111 (in this embodiment, the front side cleaved surface 114 for convenience. And the laser beam L0. Note that the active layer 111 may form a multilayer quantum well structure.
 なお、表側へき開面114と対向する裏側へき開面115には、レーザ発振のための反射膜(図示せず)が形成されており、表側へき開面114と裏側へき開面115との反射率に差を設けることで、低反射率端面である、例えば、表側へき開面114よりレーザ光L0の大部分を発光点116から照射されるようにすることが出来る。 A reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different. By providing, for example, most of the laser beam L0 can be irradiated from the light emitting point 116 from the front-side cleavage surface 114 which is a low reflectance end face.
 クラッド層113・クラッド層112および活性層111などの各半導体層との膜形成については、MOCVD(有機金属化学気相成長)法やMBE(分子線エピタキシー)法、CVD(化学気相成長)法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。各金属層の膜形成については、真空蒸着法やメッキ法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。 As for film formation with each semiconductor layer such as the clad layer 113, the clad layer 112, and the active layer 111, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, CVD (chemical vapor deposition) method. The film can be formed using a general film forming method such as a laser ablation method or a sputtering method. The film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
 なお、上記レーザ光源1において、複数のLDチップ11は、それぞれ直並列の種々のパターンで接続することが可能である。そして、上記レーザ駆動部122は、レーザ光源1における複数のLDチップ11の接続形態に合わせて構成される。 In the laser light source 1, the plurality of LD chips 11 can be connected in various patterns in series and parallel. The laser driver 122 is configured according to the connection form of the plurality of LD chips 11 in the laser light source 1.
  (レーザ駆動部122)
 次に、上記レーザ駆動部122の詳細について、図4および図5を参照しながら以下に説明する。なお、図4および図5に示すレーザ駆動部122は、いずれも図2に示すレーザ駆動回路102に適用可能なものである。
(Laser driver 122)
Next, details of the laser driving unit 122 will be described below with reference to FIGS. 4 and 5. 4 and 5 can be applied to the laser drive circuit 102 shown in FIG.
   (レーザ駆動部122:降圧型)
 図4は、降圧型のレーザ駆動部122の回路構成を示すブロック図である。
(Laser driver 122: step-down type)
FIG. 4 is a block diagram illustrating a circuit configuration of the step-down laser driving unit 122.
 つまり、図4は、レーザ光源1の駆動に必要な電圧Vfが、電源Eの電圧Vbよりも低い場合(LDチップ11の直列数が少ない場合)に用いられる降圧型の回路の一例を示している。 That is, FIG. 4 shows an example of a step-down circuit used when the voltage Vf necessary for driving the laser light source 1 is lower than the voltage Vb of the power source E (when the number of series of LD chips 11 is small). Yes.
 上記降圧型のレーザ駆動部122は、図4に示すように、主スイッチ素子1220、コイル1221、ダイオード1222、コンデンサ1223、電流検出用抵抗1224、差動増幅器1225、スイッチング制御部130、加速度判断部140および上述した出力スイッチ素子123を備える。なお、コイル1221の一端は、主スイッチ素子1220を介して電源Eに接続されている。なお、電源Eとコイル1221との間に別のスイッチ素子を設けても良い。 As shown in FIG. 4, the step-down laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above. One end of the coil 1221 is connected to the power source E through the main switch element 1220. Note that another switch element may be provided between the power source E and the coil 1221.
 また、上記レーザ駆動部122は、単一のLDチップ11を含むレーザ光源1に接続されている。 The laser driving unit 122 is connected to the laser light source 1 including the single LD chip 11.
 スイッチング制御部130は、レーザ制御部121からの信号S1を受け、レーザ制御部121に信号S3を返す。信号S1および信号S3については上述したとおりである。また、スイッチング制御部130は、信号S1を受けて、レーザ光源1に指示された(所望の)電流が流れるように、主スイッチ素子1220の導通(ON)および非導通(OFF)とを切替るための主スイッチ制御信号S8を送信する。 The switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121. The signal S1 and the signal S3 are as described above. In addition, the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. Main switch control signal S8 is transmitted.
 主スイッチ素子1220がONの期間(オン期間)、電源Eからの電流は、コイル1221を通じて磁束エネルギーとして、また、コンデンサ1223に電荷として蓄積され、レーザ光源1にも併せて電流が供給される。レーザ光源1に供給される電流は、電流検出用抵抗1224および差動増幅器1225により検出され、レーザ制御部121から指示された駆動電流値を維持する様に主スイッチ素子1220をON/OFFする。 During the period when the main switch element 1220 is ON (ON period), the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223, and the current is also supplied to the laser light source 1. The current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
 なお、図4に示す、信号S6は、出力電流信号であり、信号S7は、出力電圧信号であり、信号S8は、主スイッチ素子1220のONとOFFとの切替えを制御する制御信号である。 4, the signal S6 is an output current signal, the signal S7 is an output voltage signal, and the signal S8 is a control signal that controls switching of the main switch element 1220 between ON and OFF.
 上記主スイッチ素子1220のOFFの期間(オフ期間)は、コイル1221の磁束エネルギーが、ダイオード1222を通じてコンデンサ1223、併せて、レーザ光源1に供給される。コンデンサ1223は、主スイッチ素子1220のONとOFFとの切替えで、レーザ光源1への電圧(電流)の変動を緩和する平滑動作を行う。 In the OFF period (OFF period) of the main switch element 1220, the magnetic flux energy of the coil 1221 is supplied to the laser light source 1 together with the capacitor 1223 through the diode 1222. The capacitor 1223 performs a smoothing operation that relaxes fluctuations in voltage (current) to the laser light source 1 by switching the main switch element 1220 between ON and OFF.
 上記信号S7(出力電圧信号)は、レーザ制御部121からの指示に従った電圧が出力されているか否かの監視に用いられる。また、信号S7は、異常に高い電圧を観測した場合、レーザ光源1の開放故障、もしくは、レーザ駆動部122に故障が生じたものとして、主スイッチ素子1220をOFFして出力電圧を下げる(OFFする)のに用いる。 The signal S7 (output voltage signal) is used for monitoring whether or not a voltage according to an instruction from the laser control unit 121 is output. Further, when an abnormally high voltage is observed, the signal S7 assumes that the laser light source 1 is open or that the laser drive unit 122 has failed, and the main switch element 1220 is turned OFF to lower the output voltage (OFF Used).
 上記スイッチング制御部130には、加速度判断部140からの信号S9が入力されるようになっている。信号S9は、スイッチング制御部130から出力される信号S8の出力タイミングを制御するための信号である。 The switching control unit 130 receives the signal S9 from the acceleration determination unit 140. The signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
 上記加速度判断部140は、加速度センサ3からの加速度信号S5が入力され、この加速度信号S5に基づいて、信号S9(後述する信号S11も)を生成してスイッチング制御部130に送信するようになっている。加速度判断部140の詳細については後述する。 The acceleration determination unit 140 receives the acceleration signal S5 from the acceleration sensor 3, generates a signal S9 (also a signal S11 described later) based on the acceleration signal S5, and transmits the signal S9 to the switching control unit 130. ing. Details of the acceleration determination unit 140 will be described later.
 また、出力スイッチ素子123は、半導体レーザの点灯時はONしているが、消灯準備のパルス駆動を高速に行う場合、及び衝突に相当する加速度が検出された場合にはOFFされる。このON/OFF制御はレーザ制御部121もしくはレーザ駆動部122の少なくともどちらか一方が行うようになっている。衝突相当の加速度を検出した場合には出来るだけ速やかに消灯する様に、加速度判断部140をレーザ制御部121に代えて、レーザ駆動部122を観測し、レーザ駆動部122が直接出力スイッチ素子123をOFFする事が望ましい。なお、レーザ制御部121に加速度判断部140を設けても当然ながら構わない。 Further, the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected. This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122. In order to extinguish as quickly as possible when an acceleration corresponding to a collision is detected, the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off. Needless to say, the laser control unit 121 may be provided with the acceleration determination unit 140.
 レーザ駆動部122には、上記の様にエネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への電流は直ぐにはOFFしない。そのため出力スイッチ素子123の様に強制的に(高速に)電流を遮断する手段を設けている事がより望ましい。 Since the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . Therefore, it is more desirable to provide a means for forcibly (at a high speed) interrupting current like the output switch element 123.
   (レーザ駆動部122:昇圧型)
 図5は、昇圧型のレーザ駆動部122の回路構成を示すブロック図である。
(Laser driver 122: boost type)
FIG. 5 is a block diagram illustrating a circuit configuration of the boost type laser driving unit 122.
 つまり、図5は、レーザ光源1の駆動に必要な電圧Vfが、電源Eの電圧Vbよりも高い場合(LDチップ11が複数個、やや多目に直列(直列数が3から4若しくはそれ以上)接続する場合)に用いられる昇圧型の回路の一例を示している。 That is, FIG. 5 shows a case where the voltage Vf necessary for driving the laser light source 1 is higher than the voltage Vb of the power source E (a plurality of LD chips 11 are slightly in series (the number of series is 3 to 4 or more). ) Shows an example of a step-up circuit used for connection).
 上記昇圧型のレーザ駆動部122は、図5に示すように、主スイッチ素子1220、コイル1221、ダイオード1222、コンデンサ1223、電流検出用抵抗1224、差動増幅器1225、スイッチング制御部130、加速度判断部140および上述した出力スイッチ素子123を備える。なお、コイル1221の一端は、電源Eに接続されている。なお、電源Eとコイル1221との間に別のスイッチ素子を設けても良い。 As shown in FIG. 5, the boost type laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above. One end of the coil 1221 is connected to the power source E. Note that another switch element may be provided between the power source E and the coil 1221.
 上記レーザ駆動部122は、合計4つのLDチップ11を含むレーザ光源1に接続されている。 The laser driving unit 122 is connected to the laser light source 1 including a total of four LD chips 11.
 スイッチング制御部130は、レーザ制御部121からの信号S1を受け、レーザ制御部121に信号S3を返す。信号S1および信号S3については上述したとおりである。また、スイッチング制御部130は、信号S1を受けて、レーザ光源1に指示された(所望の)電流が流れるように、主スイッチ素子1220の導通(ON)および非導通(OFF)とを切替る。 The switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121. The signal S1 and the signal S3 are as described above. In addition, the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. .
 主スイッチ素子1220がONの期間、電源Eからの電流は、コイル1221を通じて磁束エネルギーとして、また、コンデンサ1223に電荷として蓄積される。レーザ光源1には、この間、コンデンサ1223から電流が供給される。 During the period when the main switch element 1220 is ON, the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223. During this period, current is supplied to the laser light source 1 from the capacitor 1223.
 一方、主スイッチ素子1220がOFFの期間、コイル1221の磁束エネルギーが電流となり、電源Eの電圧と直列となってダイオード1222経由でコンデンサ1223を充電し、レーザ光源1にも併せて電流が供給される。 On the other hand, when the main switch element 1220 is OFF, the magnetic flux energy of the coil 1221 becomes a current, and the capacitor 1223 is charged via the diode 1222 in series with the voltage of the power source E, and the current is also supplied to the laser light source 1. The
 レーザ光源1に供給される電流は、電流検出用抵抗1224および差動増幅器1225により検出され、レーザ制御部121から指示された駆動電流値を維持する様に主スイッチ素子1220をON/OFFする。 The current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
 なお、図5に示す、信号S6は、出力電流信号であり、信号S7は、出力電圧信号であり、信号S8は、主スイッチ素子1220のONとOFFとの切替えを制御する制御信号である。 Note that the signal S6 shown in FIG. 5 is an output current signal, the signal S7 is an output voltage signal, and the signal S8 is a control signal for controlling switching of the main switch element 1220 between ON and OFF.
 上記の構成では、エネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への通電は直ぐにはOFFしない。そのため、出力スイッチ素子123で強制的に(高速に)電流を遮断するように構成しても良い。 In the above configuration, since the coil 1221 and the capacitor 1223 for storing energy exist, even if the switching control unit 130 turns off the main switch element 1220, the energization to the laser light source 1 is not turned off immediately. Therefore, the output switch element 123 may be configured to forcibly cut off the current (at high speed).
 上記スイッチング制御部130には、加速度判断部140からの信号S9が入力されるようになっている。信号S9は、スイッチング制御部130から出力される信号S8の出力タイミングを制御するための信号である。 The switching control unit 130 receives the signal S9 from the acceleration determination unit 140. The signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
 上記加速度判断部140は、加速度センサ3からの加速度信号S5が入力され、この加速度信号S5に基づいて、信号S9(後述する信号S11も)を生成してスイッチング制御部130に送信するようになっている。加速度判断部140の詳細については後述する。 The acceleration determination unit 140 receives the acceleration signal S5 from the acceleration sensor 3, generates a signal S9 (also a signal S11 described later) based on the acceleration signal S5, and transmits the signal S9 to the switching control unit 130. ing. Details of the acceleration determination unit 140 will be described later.
 また、出力スイッチ素子123は、半導体レーザの点灯時はONしているが、消灯準備のパルス駆動を高速に行う場合、及び衝突に相当する加速度が検出された場合にはOFFされる。このON/OFF制御はレーザ制御部121もしくはレーザ駆動部122の少なくともどちらか一方が行うようになっている。衝突相当の加速度を検出した場合には出来るだけ速やかに消灯する様に、加速度判断部140をレーザ制御部121に代えて、レーザ駆動部122を観測し、レーザ駆動部122が直接出力スイッチ素子123をOFFする事が望ましい。なお、レーザ制御部121に加速度判断部140を設けても当然ながら構わない。 Further, the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected. This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122. In order to extinguish as quickly as possible when an acceleration corresponding to a collision is detected, the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off. Needless to say, the laser control unit 121 may be provided with the acceleration determination unit 140.
 レーザ駆動部122には、上記の様にエネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への電流は直ぐにはOFFしない。そのため出力スイッチ素子123の様に強制的に(高速に)電流を遮断する手段を設ける事が望ましい。 Since the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . Therefore, it is desirable to provide a means for forcibly (at high speed) cutting off the current like the output switch element 123.
   (加速度判断部140)
 続いて、上記加速度判断部140について、図6~図14を参照しながら以下に説明する。
(Acceleration judgment unit 140)
Next, the acceleration determination unit 140 will be described below with reference to FIGS.
 (1)単一極性、衝突加速度のみデジタル信号として判断・検出
 図6、図7は、単一極性、衝突加速度のみデジタル信号として判断・検出する加速度判断部140の例を示す図である。
(1) Only single polarity and collision acceleration are judged and detected as digital signals FIGS. 6 and 7 are diagrams showing an example of the acceleration judgment unit 140 that judges and detects only single polarity and collision acceleration as digital signals.
 図6は、加速度判断部140における基本的な構成例を示す図である。 FIG. 6 is a diagram illustrating a basic configuration example of the acceleration determination unit 140.
 すなわち、加速度判断部140は、図6に示すように、加速度信号S5に対して比較対象となる、基準電圧Vref、及び大小比較を行うコンパレータ(比較器)1403を備えた構成となっている。 That is, as shown in FIG. 6, the acceleration determination unit 140 has a configuration including a reference voltage Vref to be compared with the acceleration signal S5 and a comparator (comparator) 1403 that compares the magnitudes.
 上記加速度判断部140では、加速度信号S5が基準電圧Vrefを上回ればコンパレータ1403の出力はHighレベルになる。つまり、この場合に、コンパレータ1403から出力される信号S9は、車両が衝突したときの加速度を検出したことを示す信号となる。 In the acceleration determination unit 140, when the acceleration signal S5 exceeds the reference voltage Vref, the output of the comparator 1403 becomes a high level. That is, in this case, the signal S9 output from the comparator 1403 is a signal indicating that the acceleration when the vehicle collides is detected.
 なお、上記加速度センサ3の加速度信号S5は、消灯準備加速度の検出にも用いられるが、この消灯準備加速度は衝突加速度より小さいので、上記コンパレータ1403では検出させていない。このため、消灯準備加速度を検出するには、上述したスイッチング制御部130にマイコンを保有させ、アナログ・デジタル変換(A/D変換)器を使ってデジタル数値として急ブレーキ・急ハンドルの加速度判断を当該マイコンのソフトウェアで行わせるようにしている。この場合には、スイッチング制御部130に対して、加速度センサ3の加速度信号S5が入力されるようになっている。無論コンパレータ1403の出力信号S9もスイッチング制御部130に与え、消灯準備動作であるパルス駆動の開始信号として用いても良い。 Note that the acceleration signal S5 of the acceleration sensor 3 is also used for detection of the extinction preparation acceleration, but the extinction preparation acceleration is smaller than the collision acceleration, and thus is not detected by the comparator 1403. For this reason, in order to detect the extinction preparation acceleration, the above-described switching control unit 130 has a microcomputer, and an analog / digital converter (A / D converter) is used to determine the acceleration of the sudden brake / quick handle as a digital value. This is done by the microcomputer software. In this case, the acceleration signal S5 of the acceleration sensor 3 is input to the switching control unit 130. Of course, the output signal S9 of the comparator 1403 may also be supplied to the switching control unit 130 and used as a start signal for pulse driving, which is a light-off preparation operation.
 上記消灯準備加速度は、レーザ光源1を完全に消灯するのではなく、消灯、点灯を繰り返すようなパルス駆動をさせるか否かを判断するための加速度とする。 The above-described extinction preparation acceleration is an acceleration for determining whether or not to perform pulse driving such that the laser light source 1 is not extinguished completely but is repeatedly extinguished and lit.
 上記衝突加速度は、照明装置100を搭載した車両が衝突したか否かを判断するための加速度とする。 The collision acceleration is an acceleration for determining whether or not a vehicle equipped with the lighting device 100 has collided.
 したがって、消灯準備加速度の判断の基準値は、衝突加速度の判断の基準値よりも低い値に設定される。 Therefore, the reference value for determining the extinction preparation acceleration is set to a value lower than the reference value for determining the collision acceleration.
 なお、加速度判断部140において、加速度センサ3からの加速度信号S5の振幅が微弱である場合、図6に示す破線で示したような増幅器1401をコンパレータ1403の前に、若しくは増幅器1402をコンパレータ1403の入力から分岐した、A/D変換対象信号線のどちらかまたは双方に設けても良い。 In the acceleration determination unit 140, when the amplitude of the acceleration signal S5 from the acceleration sensor 3 is weak, the amplifier 1401 as shown by the broken line in FIG. 6 is placed before the comparator 1403 or the amplifier 1402 is placed in the comparator 1403. It may be provided on either or both of the A / D conversion target signal lines branched from the input.
 また、スイッチング制御部130に搭載されているマイコンの処理速度が十分速く、またA/D変換機能(信号線、変換速度)に余裕があれば、コンパレータ1403、基準電圧Vrefも廃して、衝突加速度の判断もソフトウェアで行っても良い。 Further, if the processing speed of the microcomputer mounted on the switching control unit 130 is sufficiently high and the A / D conversion function (signal line, conversion speed) is sufficient, the comparator 1403 and the reference voltage Vref are eliminated, and the collision acceleration This determination may also be made by software.
 また、基準電圧Vrefは必ずしも個別・固定の電圧源である必要は無い。 Also, the reference voltage Vref is not necessarily an individual / fixed voltage source.
 図7は、図6に示す加速度判断部140の基準電圧Vrefの代わりに、抵抗1404、コンデンサ1405を設けた加速度判断部140を示している。 FIG. 7 shows an acceleration determination unit 140 provided with a resistor 1404 and a capacitor 1405 instead of the reference voltage Vref of the acceleration determination unit 140 shown in FIG.
 レーザ制御部121、レーザ駆動部122にマイコンを含む場合、若しくは照明制御部103などのマイコンの、PWM(パルス幅変調)出力、若しくはデジタル/アナログ変換(D/A変換)出力が利用出来る場合、その出力値をマイコンで操作する事で固定値にも可変値にも設定する事が出来る。PWM出力の時はHighとLowのパルスとして出力されるので、抵抗1404とコンデンサ1405とで平滑化した直流に変換して、基準電圧Vrefと同等の働きを行わせる。 When the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used, The output value can be set to either a fixed value or a variable value by operating the microcomputer. At the time of PWM output, it is output as a pulse of High and Low, so that it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405 to perform the same function as the reference voltage Vref.
 なお、D/A変換出力の際は、抵抗1404、コンデンサ1405は必ずしも必要ではない。 Note that the resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
 また、上記構成の加速度判断部140では、衝突加速度のみを検出する構成としたが、同じ構成で、消灯準備加速度のみを検出する構成としてもよい。つまり、基準Vrefの値を低くして、消灯するまでもないが、消灯に近いようなレーザ光源1のパルス駆動を行わせるようにしてもよい。 Further, although the acceleration determination unit 140 having the above-described configuration is configured to detect only the collision acceleration, it may be configured to detect only the extinguishing preparation acceleration with the same configuration. That is, the value of the reference Vref may be lowered so that the laser light source 1 is driven to be pulsed so that it is not extinguished but is extinguished.
 (2)単一極性、衝突加速度と消灯準備加速度をデジタル信号として判断・検出
 図8、図9は、単一極性、衝突加速度と消灯準備加速度をデジタル信号として判断・検出する加速度判断部140の例を示す図である。
(2) Judgment / detection of single polarity, collision acceleration and extinction preparation acceleration as digital signals FIGS. 8 and 9 are diagrams of acceleration judgment unit 140 that judges / detects single polarity, collision acceleration and extinction preparation acceleration as digital signals. It is a figure which shows an example.
 ここでは、図6、図7に示す加速度判断部140では検出させていなかった消灯準備加速度を、加速度判断部140において検出させようにした例について説明する。 Here, an example in which the acceleration determination unit 140 detects the extinction preparation acceleration that has not been detected by the acceleration determination unit 140 shown in FIGS. 6 and 7 will be described.
 図8に示す加速度判断部140は、図6に示す加速度判断部140を2つ並べて構成したものである。 The acceleration determination unit 140 shown in FIG. 8 is configured by arranging two acceleration determination units 140 shown in FIG.
 すなわち、上記加速度判断部140は、図8に示すように、加速度信号S5に対して比較する基準電圧として、(I)消灯準備加速度に相当する、Vref1、(II)衝突加速度に相当する、Vref2、及びそれぞれを加速度センサ3の加速度信号S5と比較するコンパレータ1403、1406を有した構成となっている。 That is, as shown in FIG. 8, the acceleration determination unit 140 uses (I) Vref1 corresponding to the extinction preparation acceleration as a reference voltage to be compared with the acceleration signal S5, and (II) Vref2 corresponding to the collision acceleration. And comparators 1403 and 1406 for comparing each of them with the acceleration signal S5 of the acceleration sensor 3.
 つまり、加速度判断部140において、受信した加速度信号S5が、Vref1を超えていれば、消灯準備加速度を検出したことを示す信号S11をコンパレータ1403から出力し、受信した加速度信号S5が、Vref2を超えていれば、衝突加速度を検出したことを示す信号S9をコンパレータ1406から出力する。 That is, in the acceleration determination unit 140, if the received acceleration signal S5 exceeds Vref1, a signal S11 indicating that the extinction preparation acceleration is detected is output from the comparator 1403, and the received acceleration signal S5 exceeds Vref2. If so, the comparator 1406 outputs a signal S9 indicating that the collision acceleration has been detected.
 ここで、加速度判断部140において、加速度センサ3からの加速度信号S5の振幅が微弱である場合、図8に示す破線で示したような増幅器1401をコンパレータ1403の前に、若しくは増幅器1402をコンパレータ1406の前に、若しくは双方に設けても良い。 Here, in the acceleration determination unit 140, when the amplitude of the acceleration signal S5 from the acceleration sensor 3 is weak, the amplifier 1401 as shown by the broken line in FIG. 8 is placed in front of the comparator 1403, or the amplifier 1402 is placed in the comparator 1406. It may be provided before or both.
 また、比較対象となる、基準電圧Vref1、Vref2の関係は、加速度信号S5からコンパレータ1403、及びコンパレータ1406に至る増幅度が同一である、若しくは増幅器1401.1402を設けない場合には、Vref1<Vref2の関係がある。 Further, the relationship between the reference voltages Vref1 and Vref2 to be compared is such that Vref1 <Vref2 when the amplification degree from the acceleration signal S5 to the comparator 1403 and the comparator 1406 is the same, or when the amplifier 1401.1402 is not provided. There is a relationship.
 一方、加速度信号S5からコンパレータ1403、及びコンパレータ1406に至る増幅度が同一でなく、若しくは増幅器1401、1402を設ける場合には、(I)消灯準備加速度を検出した場合にコンパレータ1403が検出出力を示す信号S11を出力し、(II)衝突加速度を検出した場合にはコンパレータ1406も検出出力を示す信号S9を出力するような関係に、基準電圧Vref1,Vref2を設定すれば良い。 On the other hand, when the amplification levels from the acceleration signal S5 to the comparator 1403 and the comparator 1406 are not the same, or when the amplifiers 1401 and 1402 are provided, (I) the comparator 1403 indicates a detection output when the extinction preparation acceleration is detected. When the signal S11 is output and (II) the collision acceleration is detected, the reference voltages Vref1 and Vref2 may be set so that the comparator 1406 also outputs the signal S9 indicating the detection output.
 また、基準電圧Vref1,2は必ずしも個別・固定の電圧源である必要は無い。 Further, the reference voltages Vref1, 2 need not necessarily be individual / fixed voltage sources.
 図9は、図8に示す加速度判断部140の基準電圧Vref1,2の代わりの構成を示す図である。 FIG. 9 is a diagram showing an alternative configuration of the reference voltages Vref1 and Vref2 of the acceleration determination unit 140 shown in FIG.
 レーザ制御部121、レーザ駆動部122にマイコンを含む場合、若しくは照明制御部103などのマイコンの、PWM(パルス幅変調)出力、若しくはデジタル/アナログ変換(D/A変換)出力が利用出来る場合、その出力値をマイコンで操作する事で固定値にも可変値にも設定する事が出来る。PWM出力の時はHighとLowのパルスとして出力されるので、図9に示すように、抵抗1404とコンデンサ1405とで平滑化した直流に変換して、基準電圧Vref1,2と同等の働きを行わせる。 When the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used, The output value can be set to either a fixed value or a variable value by operating the microcomputer. During PWM output, it is output as High and Low pulses, so as shown in FIG. 9, it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405, and performs the same function as the reference voltages Vref1 and Vref2. Make it.
 なお、D/A変換出力の際は、抵抗1404、コンデンサ1405は必ずしも必要ではない。 Note that the resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
 (3)ある電圧を基準として正負の極性、衝突加速度だけをデジタル信号として判断・検出
 図10~図12は、ある電圧を基準として正負の極性、衝突加速度だけをデジタル信号として判断・検出する加速度判断部140の例を示す図である。
(3) Judgment and detection of only positive and negative polarities and collision acceleration as digital signals with reference to a certain voltage FIGS. 10 to 12 show accelerations for judging and detecting only positive and negative polarities and collision acceleration as digital signals with reference to a certain voltage. It is a figure which shows the example of the judgment part.
 図10に示す加速度判断部140は、図8に示す加速度判断部140と類似した構成となっているが、加速度信号S5に対して比較する基準電圧として、(I)プラス側の衝突加速度に相当する、+Vref、(II)マイナス側の衝突加速度に相当する、-Vref、及びそれぞれを加速度センサ3の加速度信号S5と比較するコンパレータ1403、1406を有した構成となっている。 The acceleration determination unit 140 illustrated in FIG. 10 has a configuration similar to that of the acceleration determination unit 140 illustrated in FIG. 8, but corresponds to (I) plus-side collision acceleration as a reference voltage to be compared with the acceleration signal S5. + Vref, (II) −Vref corresponding to the negative side collision acceleration, and comparators 1403 and 1406 for comparing each with the acceleration signal S5 of the acceleration sensor 3.
 上記コンパレータ1403,1406は、オープンコレクタ、若しくはオープンドレインと呼ばれ、(I)Highレベル出力の際は、出力が等価的にOFF状態、(II)Lowレベルの時は電流を吸い込むようになっている。 The comparators 1403 and 1406 are called open collectors or open drains. When the output is (I) high level, the output is equivalently OFF, and when the output is (II) low level, the current is sucked. Yes.
 このため、コンパレータ1403、1406を直結しても、片方がHighレベル、他方がLowレベルを出力した場合であっても、両者の出力衝突で大電流が流れ損傷する恐れは無い。 For this reason, even if the comparators 1403 and 1406 are directly connected, even if one of them outputs a high level and the other outputs a low level, there is no possibility that a large current flows and is damaged due to the output collision between the two.
 上記加速度判断部140において、加速度センサ3からの加速度信号S5の、+側判定をしたいレベルを+Vref、-側判定をしたいレベルを-Vrefとして、コンパレータ1403、1406にそれぞれ与える。そして、コンパレータ1403、1406の出力を接続し、抵抗1407を通じてHighレベル出力に相当させたい電圧「+Vcc」へ接続する。 In the acceleration determination unit 140, the level of the acceleration signal S5 from the acceleration sensor 3 is given to the comparators 1403 and 1406, with + Vref being the level for which the + side determination is desired and −Vref being the level for the −side determination. The outputs of the comparators 1403 and 1406 are connected to a voltage “+ Vcc” to be equivalent to a high level output through a resistor 1407.
 上記構成の加速度判断部140におけるコンパレータ1403,1406の関係は、「ウインドウ・コンパレータ」と呼ばれ、図11に示すように、加速度センサ3からの加速度信号が、+Vrefと-Vrefとの間の「窓」から外れると検出出力(この場合はLowレベル)を発する。この図11に示すタイミングチャートは、図10に示す加速度判断部140において増幅器AMPを設けていない場合を示している。 The relationship between the comparators 1403 and 1406 in the acceleration determination unit 140 having the above-described configuration is called a “window comparator”. As shown in FIG. 11, the acceleration signal from the acceleration sensor 3 is “+ Vref and −Vref”. When it deviates from the “window”, a detection output (in this case, Low level) is emitted. The timing chart shown in FIG. 11 shows a case where the amplifier AMP is not provided in the acceleration determination unit 140 shown in FIG.
 加速度ゼロの場合の加速度信号Vnormは、ゼロボルトである必要は無い。+VrefがVnormより+側に大きく、-VrefがVnormより-側に大きければ良い。また、Vnormと+Vrefとの差の絶対値、及びVnormと-Vrefとの差の絶対値は同一で無くても良い。 Acceleration signal Vnorm for zero acceleration need not be zero volts. It is sufficient that + Vref is larger than Vnorm on the + side and −Vref is larger than Vnorm on the − side. Further, the absolute value of the difference between Vnorm and + Vref and the absolute value of the difference between Vnorm and -Vref do not have to be the same.
 なお、図10に示す加速度判断部140において、加速度信号の振幅(センサ感度)が小さい場合、増幅器1401,1402を適宜設けても良い。 In the acceleration determination unit 140 shown in FIG. 10, when the amplitude (sensor sensitivity) of the acceleration signal is small, amplifiers 1401 and 1402 may be provided as appropriate.
 また、上記加速度判断部140では、消灯準備段階の加速度は、図6に示す加速度判断部140と同様に、スイッチング制御部130においてA/D変換してマイコンで観測するようにしている。 Further, in the acceleration determination unit 140, the acceleration at the light extinction preparation stage is A / D converted by the switching control unit 130 and observed by the microcomputer in the same manner as the acceleration determination unit 140 shown in FIG.
 また、基準電圧Vref1,2は必ずしも個別・固定の電圧源である必要は無い。 Further, the reference voltages Vref1, 2 need not necessarily be individual / fixed voltage sources.
 図12は、図10に示す加速度判断部140の基準電圧+Vref、-Vrefの代わりの構成を示す図である。 FIG. 12 is a diagram showing a configuration instead of the reference voltages + Vref and −Vref of the acceleration determination unit 140 shown in FIG.
 レーザ制御部121、レーザ駆動部122にマイコンを含む場合、若しくは照明制御部103などのマイコンの、PWM(パルス幅変調)出力、若しくはデジタル/アナログ変換(D/A変換)出力が利用出来る場合、その出力値をマイコンで操作する事で固定値にも可変値にも設定する事が出来る。PWM出力の時はHighとLowのパルスとして出力されるので、図12に示すように、抵抗1404とコンデンサ1405とで平滑化した直流に変換して、基準電圧+Vref1、-Vrefと同等の働きを行わせる。 When the laser controller 121 and the laser driver 122 include a microcomputer, or when a PWM (pulse width modulation) output or digital / analog conversion (D / A conversion) output of a microcomputer such as the illumination controller 103 can be used, The output value can be set to either a fixed value or a variable value by operating the microcomputer. Since the PWM output is a High and Low pulse, it is converted to a direct current smoothed by a resistor 1404 and a capacitor 1405 as shown in FIG. 12, and functions equivalent to the reference voltages + Vref1 and -Vref. Let it be done.
 なお、D/A変換出力の際は、抵抗1404、コンデンサ1405は必ずしも必要ではない。 Note that the resistor 1404 and the capacitor 1405 are not necessarily required for D / A conversion output.
 (4)ある電圧を基準として正負の極性、衝突加速度及び消灯準備加速度をデジタル信号として判断・検出
 図13、図14は、ある電圧を基準として正負の極性、衝突加速度及び消灯準備加速度をデジタル信号として判断・検出する加速度判断部140の例を示す図である。
(4) Positive / negative polarity, collision acceleration, and extinction preparation acceleration are determined and detected as digital signals with reference to a certain voltage. FIGS. 13 and 14 are digital signals with positive / negative polarity, collision acceleration, and extinction preparation acceleration as a reference with a certain voltage. It is a figure which shows the example of the acceleration judgment part 140 judged and detected as.
 図13に示す加速度判断部140は、図10に示す加速度判断部140と類似した構成となっているが、加速度信号に対して比較する基準電圧として、(I)プラス側の消灯準備加速度に相当する、+Vref1,(II)マイナス側の消灯準備加速度に相当する、-Vref1、(III)プラス側の衝突加速度に相当する、+Vref2、(IV)マイナス側の衝突加速度に相当する、-Vref2、及びそれぞれを加速度センサ3の加速度信号S5と比較するコンパレータ1403,1406,1408,1409を有した構成となっている。 The acceleration determination unit 140 illustrated in FIG. 13 has a configuration similar to that of the acceleration determination unit 140 illustrated in FIG. 10, but corresponds to (I) a plus-side extinction preparation acceleration as a reference voltage to be compared with the acceleration signal. + Vref1, (II) corresponding to the minus-side extinction preparation acceleration, −Vref1, (III) corresponding to the plus-side collision acceleration, + Vref2, (IV) corresponding to the minus-side collision acceleration, −Vref2, and Each of the comparators 1403, 1406, 1408, and 1409 is compared with the acceleration signal S 5 of the acceleration sensor 3.
 上記コンパレータ1403,1406,1408,1409は、オープンコレクタ、若しくはオープンドレインと呼ばれ、(I)Highレベル出力の際は、出力が等価的にOFF状態、(II)Lowレベルの時は電流を吸い込むようになっている。 The comparators 1403, 1406, 1408, and 1409 are called open collectors or open drains. (I) When the output is high level, the output is equivalently OFF, and when the output is (II) low level, current is sucked. It is like that.
 このため、コンパレータ1403、1406を直結しても、片方がHighレベル、他方がLowレベルを出力した場合であっても、両者の出力衝突で大電流が流れ損傷する恐れは無い。 For this reason, even if the comparators 1403 and 1406 are directly connected, even if one of them outputs a high level and the other outputs a low level, there is no possibility that a large current flows and is damaged due to the output collision between the two.
 同様に、コンパレータ1408、1409を直結しても、片方がHighレベル、他方がLowレベルを出力した場合であっても、両者の出力衝突で大電流が流れ損傷する恐れは無い。 Similarly, even if the comparators 1408 and 1409 are directly connected, even if one of them outputs a high level and the other outputs a low level, there is no possibility that a large current flows and damages due to the output collision between the two.
 上記加速度判断部140において、加速度センサ3からの加速度信号S5の、+側判定をしたいレベルを+Vref1,2、-側判定をしたいレベルを-Vref1,2として、コンパレータ1403、1406、1408、1409にそれぞれ与える。そして、コンパレータ1403、1406の出力を接続し、抵抗1410を通じてHighレベル出力に相当させたい電圧「+Vcc」へ接続する。また、コンパレータ1408、1409の出力を接続し、抵抗1411を通じてHighレベル出力に相当させたい電圧「+Vcc」へ接続する。 In the acceleration determination unit 140, the level of the acceleration signal S5 from the acceleration sensor 3 is set to + Vref1 and 2, and the level of the acceleration signal S5 to be determined to −Vref1 and 2, and is set to −Vref1 and 2, respectively. Give each. Then, the outputs of the comparators 1403 and 1406 are connected and connected to a voltage “+ Vcc” to be equivalent to a high level output through the resistor 1410. Further, the outputs of the comparators 1408 and 1409 are connected and connected to a voltage “+ Vcc” to be equivalent to a High level output through a resistor 1411.
 上記構成の加速度判断部140におけるコンパレータ1403,1406の関係、コンパレータ1408,1409の関係は、「ウインドウ・コンパレータ」と呼ばれ、図14に示すように、加速度センサ3からの加速度信号が、+Vref1,2と-Vref1,2との間の「窓」から外れると検出出力(この場合はLowレベル)を発する。この図14に示すタイミングチャートは、図13に示す加速度判断部140において増幅器AMPを設けていない場合を示している。 The relationship between the comparators 1403 and 1406 and the relationship between the comparators 1408 and 1409 in the acceleration determination unit 140 having the above configuration is called a “window comparator”. As shown in FIG. 14, the acceleration signal from the acceleration sensor 3 is + Vref1, A detection output (in this case, a Low level) is generated when the signal falls outside the “window” between 2 and −Vref 1 and 2. The timing chart shown in FIG. 14 shows a case where the amplifier AMP is not provided in the acceleration determination unit 140 shown in FIG.
 加速度ゼロの場合の加速度信号Vnormは、ゼロボルトである必要は無い。+Vref1,2がVnormより+側に大きく、-Vref1,2がVnormより-側に大きければ良い。また、Vnormと+Vref1,2との差の絶対値、及びVnormと-Vref1,2との差の絶対値は同一で無くても良い。但しそれぞれのレベルは、図14に示すタイミングチャートのHighとLowの関係を示す上下2段のうちの下の段に示すような関係に設定されている必要がある。 Acceleration signal Vnorm for zero acceleration need not be zero volts. It is only necessary that + Vref1 and 2 are larger on the + side than Vnorm and −Vref1 and 2 are larger on the −side than Vnorm. Further, the absolute value of the difference between Vnorm and + Vref1, 2 and the absolute value of the difference between Vnorm and -Vref1, 2 do not have to be the same. However, each level needs to be set to a relationship as shown in the lower level of the upper and lower levels indicating the relationship between High and Low in the timing chart shown in FIG.
 (照明装置100の動作)
 次に、上記構成の照明装置100における動作について、図15~図19に示すタイミングチャートを参照しながら以下に説明する。
(Operation of lighting apparatus 100)
Next, the operation of the illumination device 100 having the above configuration will be described below with reference to timing charts shown in FIGS.
 図15~図19における(a)は、車両において生じる加速度の絶対値を時間経過と共に記録したグラフを示している。このグラフでは、2つの閾値がここで設定されている。すなわち、急ブレーキ・急ハンドルに相当する加速度(第1閾値)と、衝突・事故に相当する加速度(第2閾値)とが設定されている。 (A) in FIG. 15 to FIG. 19 show graphs in which the absolute value of the acceleration generated in the vehicle is recorded over time. In this graph, two threshold values are set here. That is, an acceleration (first threshold value) corresponding to a sudden brake / quick steering wheel and an acceleration (second threshold value) equivalent to a collision / accident are set.
 また、図15~図19における(b)は、レーザ光源1に供給されるレーザ駆動電流を時間経過と共に記録したグラフを示している。このグラフでは、レーザ光源1が点灯している(Highレベル)か、レーザ光源1が消灯している(Lowレベル)かの2値の値を示している。つまり、レーザ光源1が点灯・消灯の何れかであることを示している。 Further, (b) in FIGS. 15 to 19 show graphs in which the laser drive current supplied to the laser light source 1 is recorded with time. This graph shows binary values indicating whether the laser light source 1 is turned on (High level) or the laser light source 1 is turned off (Low level). That is, it indicates that the laser light source 1 is either on or off.
 (動作タイミングチャート(1))
 図15は、パルス駆動OFFのタイミングで衝突検出・レーザ駆動停止した場合のタイミングチャートを示している。
(Operation timing chart (1))
FIG. 15 shows a timing chart when collision detection / laser drive is stopped at the timing of pulse drive OFF.
 図15に示すように、レーザ光源1が点灯している状態で、急ブレーキ・急ハンドルに相当する加速度(消灯準備加速度)を検出した場合、消灯準備加速度を検出している間、所定の周期でレーザ光源1の点灯・消灯を繰り返すパルス駆動を行う。すなわち、急ブレーキ・急ハンドル状態が解除されるまで、レーザ光源1のパルス駆動が継続して行われる。 As shown in FIG. 15, when an acceleration corresponding to a sudden brake / quick handle (extinguishing preparation acceleration) is detected in a state where the laser light source 1 is turned on, a predetermined cycle is detected while the extinguishing preparation acceleration is detected. Then, pulse driving is performed in which the laser light source 1 is repeatedly turned on and off. That is, the pulse driving of the laser light source 1 is continuously performed until the sudden brake / quick handle state is released.
 急ブレーキ・急ハンドル状態が解除されると、レーザ光源1は、通常の点灯駆動が行われる。 When the sudden brake / quick handle state is released, the laser light source 1 is driven normally.
 また、レーザ光源1が点灯している状態で、再度、急ブレーキ・急ハンドルに相当する加速度(消灯準備加速度)を検出した場合、再び、レーザ光源1はパルス駆動される。しかしながら、このパルス駆動された状態で、さらに大きな加速度、すなわち衝突・事故相当の加速度(衝突加速度)を検出した場合、レーザ光源1の駆動が停止される。その後、加速度が元に戻っても、レーザ光源1の駆動は停止した状態、すなわち消灯した状態を維持するようになっている。 In the state where the laser light source 1 is turned on, when the acceleration corresponding to the sudden brake / quick handle (extinguishing preparation acceleration) is detected again, the laser light source 1 is again pulse-driven. However, when a larger acceleration, that is, an acceleration equivalent to a collision / accident (collision acceleration) is detected in this pulse-driven state, the driving of the laser light source 1 is stopped. After that, even if the acceleration returns to the original state, the driving of the laser light source 1 is stopped, that is, the light is turned off.
 図15に示すように、急ブレーキ・急ハンドル検出時点でパルス駆動に遷移し、衝突検出時にパルスの非駆動状態であった場合、衝突時には既に消灯しており、また衝突を検出して消灯状態を継続しているので、レーザ光のライト外への漏洩を防止することができる。 As shown in FIG. 15, when a sudden brake / steep handle is detected, a transition is made to pulse drive, and if a pulse is not driven at the time of collision detection, the light is already turned off at the time of collision, and the collision is detected and the light is turned off. Therefore, it is possible to prevent leakage of the laser light to the outside of the light.
 (動作タイミングチャート(2))
 図16は、加速度検出・レーザ光ON/OFFの動作遅延を考慮し、パルス駆動OFFのタイミングで衝突検出・レーザ駆動停止した場合のタイミングチャートを示している。
(Operation timing chart (2))
FIG. 16 shows a timing chart when collision detection / laser drive is stopped at the pulse drive OFF timing in consideration of the operation delay of acceleration detection / laser light ON / OFF.
 加速度センサ3の応答、レーザ駆動回路102がその応答を受けてレーザをパルス駆動・消灯に移行する時間遅れtdを考慮すると、実際に衝突加速度が発生していてもパルス駆動によるレーザ発光が幾つか含まれる可能性はある。 Considering the response of the acceleration sensor 3 and the time delay td during which the laser drive circuit 102 receives the response and shifts the laser to pulse drive / light extinction, even if the collision acceleration actually occurs, some laser emission by pulse drive occurs. May be included.
 但し、パルス駆動をしているので、図16の(b)に示すように、ライトが物理的に破壊されている可能性があるタイミング(チャートでは「衝突発生時点」以降の時間)では、既にレーザが発光停止状態であって、レーザ光漏洩を防げる確率が向上する。 However, since the pulses are driven, as shown in FIG. 16B, at the timing when the light may be physically destroyed (time after the “collision occurrence time” in the chart), it is already The probability that the laser is in the emission stop state and the laser light leakage can be prevented is improved.
 望ましくは、パルス駆動周期Tは人間の知覚出来る時間(例えば従来の蛍光灯を意識すると、50Hz×2=100Hz相当の10ms)よりも短く、点滅やチラつきを感じさせない方が好ましい。加速度センサ3やレーザ駆動回路102の応答による遅延tdは、パルス駆動周期Tより短い、出来るだけ短時間にするのが好ましい。 Desirably, the pulse driving period T is preferably shorter than the time that humans can perceive (for example, 10 ms corresponding to 50 Hz × 2 = 100 Hz when considering a conventional fluorescent lamp), and it is preferable not to feel flickering or flickering. The delay td due to the response of the acceleration sensor 3 or the laser drive circuit 102 is preferably shorter than the pulse drive period T and as short as possible.
 (動作タイミングチャート(3))
 図17は、加速度検出・レーザ光ON/OFFの動作遅延を考慮し、パルス駆動ONのタイミングで衝突検出・レーザ駆動停止した場合のタイミングチャートを示している。
(Operation timing chart (3))
FIG. 17 shows a timing chart when collision detection / laser drive is stopped at the timing of pulse drive ON in consideration of the operation delay of acceleration detection / laser light ON / OFF.
 加速度センサ3の応答、レーザ駆動回路102がその応答を受けてレーザをパルス駆動・消灯に移行する時間遅れtdを考慮すると、実際に衝突加速度が発生していてもパルス駆動によるレーザ発光が生じる可能性はある。 Considering the response of the acceleration sensor 3 and the time delay td when the laser drive circuit 102 receives the response and shifts the laser to pulse driving / extinguishing, laser light emission by pulse driving may occur even if collision acceleration actually occurs. There is sex.
 但し、パルス駆動をしているので、図17の(b)に示すように、衝突事故が実際に生じた場合に消灯のタイミングに相当する、若しくはパルス駆動の幅が最終駆動パルスの様に、衝突発生後、ライトが本当に物理的に破壊されている可能性がある状態に陥るまでのレーザ発光は最長でもパルス1発分で済み、物理的な破壊・レーザ漏れの危険性がある状態にヘッドライト本体が現実に至るまでに消灯する、若しくは仮に破壊時に点灯していたとしても漏洩するレーザ光のエネルギーが最小に留まる可能性が高まる。つまり、実際に衝突を検出するまでに、パルス駆動のタイミングでレーザ光源1をOFFする可能性がパルス駆動する事で生じるため、レーザ光漏洩を防げる確率が向上する。 However, since pulse driving is performed, as shown in FIG. 17B, when a collision accident actually occurs, it corresponds to the timing of turning off, or the width of pulse driving is the same as the final driving pulse. After the collision occurs, the laser emission is only one pulse at a maximum until the light falls into a state where the light may be physically destroyed, and the head is in a state where there is a risk of physical destruction or laser leakage. There is a high possibility that the energy of the leaked laser light remains at a minimum even if the light main body is turned off until it reaches reality or is turned on at the time of destruction. That is, since the possibility of turning off the laser light source 1 at the pulse drive timing is generated by pulse driving before the collision is actually detected, the probability of preventing laser light leakage is improved.
 (動作タイミングチャート(4))
 図18は、加速度検出・レーザ光ON/OFFの動作遅延を考慮した場合の別の例のタイミングチャートを示している。
(Operation timing chart (4))
FIG. 18 shows another example timing chart in consideration of acceleration detection / operation delay of laser light ON / OFF.
 一般的に、レーザ光源1においてパルス駆動を行った場合、連続駆動を行った場合に比べて平均的な光量が低減する。したがって、図18の(b)に示すように、レーザ光源1のパルス駆動期間、平均的な光量が低減するので、光量低減を補うためにパルス波高値を通常の点灯状態より高めることが考えられる。つまり、上記レーザ駆動回路102は、レーザ光源1を一定時間パルス駆動しているとき、パルス駆動前のレーザパワーよりも大きいレーザパワーで、当該レーザ光源1を駆動する。 Generally, when pulse driving is performed in the laser light source 1, the average amount of light is reduced compared to when continuous driving is performed. Therefore, as shown in FIG. 18B, since the average light amount is reduced during the pulse driving period of the laser light source 1, it is conceivable to increase the pulse peak value from the normal lighting state in order to compensate for the light amount reduction. . That is, the laser drive circuit 102 drives the laser light source 1 with a laser power larger than the laser power before the pulse drive when the laser light source 1 is pulse-driven for a certain time.
 レーザ光源1に供給する電流は、当然レーザ光源1を破壊しない程度の電流とするのが好ましい。但し、長時間レーザ光源1に供給すると当該レーザ光源1が破壊されるような大きさの電流であっても、短時間で、レーザ光源1が破壊されない程度の電流であれば、設定の電流としては問題無い。 Of course, it is preferable that the current supplied to the laser light source 1 is a current that does not destroy the laser light source 1. However, even if the current is large enough to destroy the laser light source 1 when supplied to the laser light source 1 for a long time, the current is set as long as the laser light source 1 is not destroyed in a short time. Is no problem.
 また、パルス駆動期間は、レーザ光源1への瞬時電流への耐性、及び明るさの減少、並びに人間の知覚でチラ付きを感じない程度に、ON時間のパルス幅を短く、パルス駆動周期を長く設定するのが有利である。これは、衝突を検出した時点で既にレーザが消灯している時間的な確率を高められるためである。 In the pulse driving period, the pulse width of the ON time is shortened and the pulse driving cycle is lengthened so that the instantaneous light current resistance to the laser light source 1 is reduced, the brightness is reduced, and flickering is not perceived by human perception. It is advantageous to set. This is because the temporal probability that the laser is already extinguished when a collision is detected can be increased.
 (動作タイミングチャート(5))
 図19は、通常点灯時もパルス駆動するものであって、加速度検出・レーザ光ON/OFFの動作遅延を考慮した場合の別の例のタイミングチャートを示している。
(Operation timing chart (5))
FIG. 19 shows a timing chart of another example in which pulse driving is performed even during normal lighting, and an operation delay of acceleration detection / laser light ON / OFF is taken into consideration.
 これまでの図において、レーザ光源1の通常駆動は連続した電流での駆動を想定していた。これに対して、通常駆動時もパルス駆動とする事も考えられる。この様なパルス駆動を行っている状態で、事故回避時、すなわち急ブレーキ・急ハンドルに相当する加速度を検出したとき、通常駆動のパルス駆動よりも周期の短いパルス駆動に切替る。このため、事故回避後のパルス駆動期間の平均的な光量が低減する。したがって、図19の(b)に示すように、レーザ光源1のパルス駆動期間、光量低減を補うためにパルス波高値を通常の点灯状態より高めることが考えられる。 In the previous figures, the normal driving of the laser light source 1 was assumed to be driven with a continuous current. On the other hand, pulse driving may be considered during normal driving. In such a state of pulse driving, when an accident is avoided, that is, when acceleration corresponding to a sudden brake / steep handle is detected, the driving is switched to a pulse driving with a shorter cycle than the normal driving pulse driving. For this reason, the average light quantity of the pulse drive period after accident avoidance reduces. Accordingly, as shown in FIG. 19B, it is conceivable to increase the pulse peak value from the normal lighting state in order to compensate for the pulse drive period and light amount reduction of the laser light source 1.
 レーザ光源1に供給する電流は、当然レーザ光源1を破壊しない程度の電流とするのが好ましい。但し、長時間レーザ光源1に供給すると当該レーザ光源1が破壊されるような大きさの電流であっても、短時間で、レーザ光源1が破壊されない程度の電流であれば、設定の電流としては問題無い。 Of course, it is preferable that the current supplied to the laser light source 1 is a current that does not destroy the laser light source 1. However, even if the current is large enough to destroy the laser light source 1 when supplied to the laser light source 1 for a long time, the current is set as long as the laser light source 1 is not destroyed in a short time. Is no problem.
 またパルス駆動期間は、レーザ光源1への瞬時電流への耐性、及び明るさの減少、並びに人間の知覚でチラ付きを感じない程度に、ON時間のパルス幅を短く、パルス駆動周期を長く設定するのが有利である。これは、衝突を検出した時点で既にレーザが消灯している時間的な確率を高められるためである。 In the pulse drive period, the ON time pulse width is set short and the pulse drive cycle is set long so that the instantaneous light current to the laser light source 1 is reduced, brightness is reduced, and flicker is not perceived by human perception. It is advantageous to do so. This is because the temporal probability that the laser is already extinguished when a collision is detected can be increased.
 以下に、上記構成の照明装置100をヘッドランプとして自動車に搭載した場合の具体的な動作について、実施例1~11において説明する。 Hereinafter, specific operations when the lighting device 100 having the above-described configuration is mounted on a vehicle as a headlamp will be described in Examples 1 to 11.
 なお、実施例1~7は、自動車で生じている現象として、急ハンドル、急ブレーキの場合のレーザ光源1の駆動制御について説明する。 In the first to seventh embodiments, drive control of the laser light source 1 in the case of a sudden handle or a sudden brake as a phenomenon occurring in an automobile will be described.
 実施例8は、自動車で生じている現象として、自車に後ろから追突された場合のレーザ光源1の駆動制御について説明する。 Example 8 describes drive control of the laser light source 1 when the vehicle collides from behind as a phenomenon occurring in an automobile.
 実施例9は、自動車で生じている現象として、自車に側面から追突された場合のレーザ光源1の駆動制御について説明する。 Ninth Embodiment A drive control of the laser light source 1 in the case where the vehicle collides from the side as a phenomenon occurring in the automobile will be described as a ninth embodiment.
 実施例10は、自動車で生じている現象として、自車が落下した場合のレーザ光源1の駆動制御について説明する。 Example 10 describes drive control of the laser light source 1 when the host vehicle falls as a phenomenon occurring in an automobile.
 実施例11は、自車の後方向より傾けた方向に加速度センサ検出軸を設定した場合のレーザ光源1の駆動制御について説明する。 Example 11 describes drive control of the laser light source 1 when the acceleration sensor detection axis is set in a direction inclined from the rear direction of the host vehicle.
 (実施例1)
 図20は、実施例1に係る照明装置100および自動車200の構成を概略的に示す図である。
Example 1
FIG. 20 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the first embodiment.
 照明装置100は、図20に示すように、ヘッドランプ部101とレーザ駆動回路102とで構成されている。ヘッドランプ部101は、レーザ光源1、集光レンズ4、筐体300、蛍光体301、レーザ光カットフィルタ302、加速度センサ3を少なくとも含んでいる。レーザ駆動回路102は、既に説明したとおりであり、詳細な説明は省略する。 The illumination device 100 includes a headlamp unit 101 and a laser drive circuit 102 as shown in FIG. The headlamp unit 101 includes at least the laser light source 1, the condenser lens 4, the housing 300, the phosphor 301, the laser light cut filter 302, and the acceleration sensor 3. The laser driving circuit 102 is as described above, and detailed description thereof is omitted.
 次に、自動車200は、ヘッド部分に、ヘッドランプ部101を含んだ照明装置100を備えている。 Next, the automobile 200 includes the lighting device 100 including the headlamp unit 101 at the head portion.
 なお、ヘッドランプ部101を自動車用の走行用前照灯(ハイビーム)に適用しても良いし、すれ違い用前照灯(ロービーム)に適用しても良い。 In addition, the headlamp unit 101 may be applied to a traveling headlamp (high beam) for an automobile, or may be applied to a passing headlamp (low beam).
 上記ヘッドランプ部101の各構成要素について説明する。 Each component of the headlamp unit 101 will be described.
  (レーザ光源1)
 レーザ光源1は、先に図3で示した様な単一のLDチップ(半導体レーザ)11からなる、または、互いに接続された複数のLDチップ11からなる光源である。
(Laser light source 1)
The laser light source 1 is a light source composed of a single LD chip (semiconductor laser) 11 as shown in FIG. 3 or a plurality of LD chips 11 connected to each other.
 また、複数のLDチップ11は、互いに直列に接続されていても良いし、互いに並列に接続されていても良いし、さらに、直列と並列とが併用されていても良い。なお、本実施形態では、レーザ光源1は、単一のLDチップ11からなる場合と、互いに直列に接続された4つのLDチップ11からなる場合(半導体レーザ群)とについて説明する。 Further, the plurality of LD chips 11 may be connected to each other in series, may be connected to each other in parallel, or may be used in combination with series and parallel. In this embodiment, the case where the laser light source 1 is composed of a single LD chip 11 and the case where it is composed of four LD chips 11 connected in series (semiconductor laser group) will be described.
 単一のLDチップ11は、例えば、405nm(青紫色)のレーザ光を発振する、1チップの光出力として5~10W程度の大電力のものが考えられる。 The single LD chip 11 may be, for example, one having a high power of about 5 to 10 W as an optical output of one chip that oscillates a 405 nm (blue-violet) laser beam.
 また、LDチップ11として、1つのチップに1つの発光点を有するもの(1チップ1ストライプ)を用いてもよいし、複数の発光点を有するもの(1チップ複数ストライプ、または複数チップ:例えば1ストライプ、1チップの光出力が1.0W、動作電圧が5V程度、電流が0.7A近傍のものの集合体)、若しくは個々のチップがパッケージ(ステム)に封入されている、上記同等定格のものを複数個用いてもよい。本実施形態では、1チップ1ストライプで大出力(光出力として5~10W程度)のLDチップ11を用いる事を想定している。 In addition, as the LD chip 11, one having one light emitting point per chip (one chip and one stripe) may be used, or one having a plurality of light emitting points (one chip plural stripes or plural chips: 1 for example) Stripe, aggregate of one chip with an optical output of 1.0 W, operating voltage of about 5 V, and current around 0.7 A), or each chip with the same rating as above (stem) A plurality of may be used. In this embodiment, it is assumed that the LD chip 11 having a high output (about 5 to 10 W as an optical output) with one stripe per chip is used.
 LDチップ11が発振するレーザ光の波長は、405nmに限定されず、近紫外領域から青色領域(350nm以上460nm以下)、より好ましくは、近紫外領域から青紫色領域(350nm以上420nm以下)の波長範囲にピーク波長(発光ピークの波長)を有するものであれば良い。これは短波長の光は長波長の光に比べ、蛍光体を励起しやすい(光としてのエネルギーが高い)ため、後述する蛍光体301の蛍光体の(レーザ光から蛍光への変換効率を含めた)選択の幅が広がるためである事、そして照明として用いる可視光とレーザ光の波長とが離れていると、光学的なフィルタ部材で両者を区分しやすく、レーザ光が照明光に交じる量を減らして安全性をより高められるためである。 The wavelength of the laser light oscillated by the LD chip 11 is not limited to 405 nm, and the wavelength from the near ultraviolet region to the blue region (350 nm to 460 nm or less), more preferably from the near ultraviolet region to the blue-violet region (350 nm to 420 nm). Any material having a peak wavelength (emission peak wavelength) in the range may be used. This is because short-wavelength light excites the phosphor more easily than long-wavelength light (the energy as light is high), so the phosphor of phosphor 301 described later (including conversion efficiency from laser light to fluorescence) This is because the range of selection is widened, and if the visible light and the wavelength of the laser light used as illumination are separated from each other, the optical filter member can easily distinguish the two, and the amount of the laser light mixed with the illumination light. This is because the safety can be further increased by reducing the amount of slag.
 もっともレーザ光の波長成分であっても、後述する蛍光体301に使用する蛍光体の材質、光学部品の工夫でレーザ光のコヒーレント性(コヒーレンシ)を下げて安全性が確保出来るなら、レーザ光の波長の選択幅は広がる。 However, even if the wavelength component of the laser beam is used, the safety of the laser beam can be ensured by reducing the coherency of the laser beam by devising the phosphor material used for the phosphor 301 described later and the optical components. The range of wavelength selection is widened.
 また、後述する酸窒化物系または窒化物系の蛍光体を蛍光体301の蛍光体として用いた場合、LDチップ11の光出力は、1W以上20W以下であり、蛍光体301に照射されるレーザ光の光密度は、0.1W/mm以上50W/mm以下であることが好ましい。この範囲の光出力であれば、車両用のヘッドランプ10に要求される光束および輝度を実現できるとともに、高出力のレーザ光によって蛍光体301が極度に劣化することを防止できる。すなわち、高光束かつ高輝度でありながら、長寿命の光源を実現できる。 Further, when an oxynitride-based or nitride-based phosphor described later is used as the phosphor of the phosphor 301, the light output of the LD chip 11 is 1 W or more and 20 W or less, and the laser irradiated to the phosphor 301 The light density of the light is preferably 0.1 W / mm 2 or more and 50 W / mm 2 or less. If the light output is in this range, it is possible to achieve the luminous flux and brightness required for the vehicle headlamp 10, and it is possible to prevent the phosphor 301 from being extremely deteriorated by the high output laser light. That is, it is possible to realize a light source having a long lifetime while having a high luminous flux and a high luminance.
 ただし、蛍光体301の蛍光体に耐熱性の優れたもの、例えば後述のナノ粒子蛍光体を蛍光体301の蛍光体として用いた場合には、蛍光体301に照射されるレーザ光の光密度は、50W/mmよりも大きくても良い。なお、蛍光体301に後述のナノ粒子蛍光体を用いたものに限らず、耐熱性に優れたものを用いるのであれば、LDチップ11の光出力や蛍光体301に照射されるレーザ光の光密度は上記の値より大きくても良く、また蛍光体301の、レーザ光から可視光への変換効率が高い、若しくは必要とされる可視光の光出力が少なくとも良い場合には、LDチップ11の光出力や蛍光体301へのレーザ光の光密度は上記の値より小さくても構わない。 However, when the phosphor 301 has excellent heat resistance, for example, a nanoparticle phosphor described later is used as the phosphor 301, the light density of the laser light applied to the phosphor 301 is as follows. , Greater than 50 W / mm 2 . The phosphor 301 is not limited to the one using a nanoparticle phosphor described later, and if the one having excellent heat resistance is used, the light output of the LD chip 11 or the light of the laser beam irradiated on the phosphor 301 is used. The density may be larger than the above value, and when the phosphor 301 has high conversion efficiency from laser light to visible light, or when the required optical output of visible light is at least good, the LD chip 11 The light output and the light density of the laser light to the phosphor 301 may be smaller than the above values.
  (集光レンズ4)
 集光レンズ4は、筐体300内の蛍光体301に照射されるレーザ光L0のスポットの面積(照射面積)を調整するものである。集光レンズ4によれば、蛍光体301に照射されるレーザ光L0のスポットの面積を調整できるので、蛍光体301の発光効率を調整することができる。
(Condenser lens 4)
The condenser lens 4 adjusts the area (irradiation area) of the spot of the laser light L0 irradiated to the phosphor 301 in the housing 300. According to the condensing lens 4, since the area of the spot of the laser beam L0 irradiated to the phosphor 301 can be adjusted, the light emission efficiency of the phosphor 301 can be adjusted.
 なお、集光レンズ4は、レーザ光L0のスポットの面積を、蛍光体301の励起光が照射される側の表面(光照射面)の面積よりも小さくすすることが好ましい。これにより、蛍光体301の光照射面と辺を共有する側面から出射する蛍光(側方出射蛍光)が少なくなる。それゆえ、蛍光体301の光照射面から出射される蛍光の、蛍光体301の表面全体から出射される蛍光に対する割合を高めることができる。また、集光レンズ4の材料は、例えば、石英を例示できるが、これに限定されない。 In addition, it is preferable that the condensing lens 4 makes the area of the spot of the laser beam L0 smaller than the area of the surface (light irradiation surface) on the side where the excitation light of the phosphor 301 is irradiated. Thereby, the fluorescence (side emission fluorescence) emitted from the side surface sharing the side with the light irradiation surface of the phosphor 301 is reduced. Therefore, the ratio of the fluorescence emitted from the light irradiation surface of the phosphor 301 to the fluorescence emitted from the entire surface of the phosphor 301 can be increased. Moreover, although the material of the condensing lens 4 can illustrate quartz, for example, it is not limited to this.
  (蛍光体301)
 蛍光体301は、レーザ光源1から発生したレーザ光L0を照射することにより蛍光を発生するものであり、レーザ光L0を受けて発光する蛍光体を含んでいる。具体的には、蛍光体301は、封止材の内部に蛍光体が分散されているもの、または、蛍光体を固めたもの、更にはこれらを金属などの基板上に固定させたものである。蛍光体301は、レーザ光L0を蛍光に変換するための、言わば波長変換素子であるとも言え、本実施形態では、蛍光体301は、筺体300によって蛍光が所望する方向(図の右側)に、所望の光強度分布で出射する様な位置(例えば筺体内面がパラボラ(放物面)形状で有れば、その焦点)に配置されている。
(Phosphor 301)
The phosphor 301 generates fluorescence by irradiating the laser beam L0 generated from the laser light source 1, and includes a phosphor that emits light upon receiving the laser beam L0. Specifically, the phosphor 301 is one in which the phosphor is dispersed inside the sealing material, or one in which the phosphor is solidified, and further fixed on a substrate such as a metal. . It can be said that the phosphor 301 is a so-called wavelength conversion element for converting the laser light L0 into fluorescence. In this embodiment, the phosphor 301 is arranged in a direction (right side in the drawing) in which fluorescence is desired by the housing 300. It is arranged at a position where it emits with a desired light intensity distribution (for example, the focal point if the inner surface of the housing has a parabolic shape).
 蛍光体301の形状は、本実施形態では、底面の円の直径が2mmの円柱形状(円盤状)であるが、そのサイズおよび形状は、これに限定されず、任意のサイズおよび様々な形状を選択できる。円盤状以外の形状としては、角柱状、楕円柱状などを例示できる。 In the present embodiment, the shape of the phosphor 301 is a cylindrical shape (disk shape) with a diameter of the bottom circle of 2 mm. However, the size and shape are not limited to this, and any size and various shapes can be used. You can choose. Examples of shapes other than the disc shape include a prismatic shape and an elliptical column shape.
 また、蛍光体301の、基板等を除いた実質的に蛍光を発する部分における、レーザ光L0の照射方向に沿う厚さは、本実施形態では、1mmであるが、0.015mm以上1.5mm以下であることが好ましい。蛍光体301の上記部分の厚さが、1.5mmを超えると、蛍光体301を透過する透過光の行路長が長くなりすぎ、蛍光体301内での蛍光の発生効率が低下する。一方、蛍光体301の蛍光を発する部分の厚さが、0.015mm未満であると、蛍光体4から発生する蛍光の強度が弱くなりすぎる。但し所望の発光(蛍光)光量が得られるものであれば、上記数値範囲外の厚さであっても構わない。 In addition, the thickness along the irradiation direction of the laser beam L0 in the portion that substantially emits fluorescence excluding the substrate or the like of the phosphor 301 is 1 mm in this embodiment, but is 0.015 mm or more and 1.5 mm. The following is preferable. If the thickness of the above portion of the phosphor 301 exceeds 1.5 mm, the path length of the transmitted light that passes through the phosphor 301 becomes too long, and the generation efficiency of the fluorescence in the phosphor 301 decreases. On the other hand, if the thickness of the fluorescent portion of the phosphor 301 is less than 0.015 mm, the intensity of the fluorescence generated from the phosphor 4 becomes too weak. However, the thickness may be outside the above numerical range as long as a desired light emission (fluorescence) amount can be obtained.
 次に、蛍光体301に含める蛍光体としては、例えば、酸窒化物系の蛍光体(例えば、サイアロン蛍光体)またはIII-V族化合物半導体ナノ粒子蛍光体(例えば、インジュウムリン:InP)を用いることができる。これらの蛍光体は、LDチップ11から発せられた高い出力(および/または光密度)のレーザ光L0に対しての熱耐性が高く、蛍光体301の劣化を抑制できる。ただし、蛍光体301は、上述のものに限定されず、窒化物系の蛍光体など、その他の蛍光体であってもよい。 Next, as the phosphor included in the phosphor 301, for example, an oxynitride phosphor (eg, sialon phosphor) or a III-V compound semiconductor nanoparticle phosphor (eg, indium phosphorus: InP) is used. Can be used. These phosphors have high heat resistance to the high-power (and / or light density) laser light L0 emitted from the LD chip 11, and can suppress the deterioration of the phosphor 301. However, the phosphor 301 is not limited to those described above, and may be another phosphor such as a nitride-based phosphor.
 また、ヘッドランプ100の照明光L1は、所定の範囲の色度を有する白色にしなければならないことが、国や地域によっては法令等により規定されている。そのため、蛍光体4には、照明光L1、即ち可視光が白色となるように選択された蛍光体が含まれている。 In addition, it is stipulated by laws and regulations in some countries and regions that the illumination light L1 of the headlamp 100 must be white having a predetermined range of chromaticity. Therefore, the phosphor 4 includes a phosphor selected so that the illumination light L1, that is, visible light is white.
 例えば、青色、緑色および赤色の蛍光体を蛍光体301に含め、405nmのレーザ光L0を照射すると白色光が発生する。なお、照明光L1の色について法令等に規定が無い場合、若しくは別の色度の規定がある場合には、発光体4の選択は上記の様に照明光L1が白色となるものに特定されるものでは無い。 For example, when blue, green and red phosphors are included in the phosphor 301 and irradiated with a laser beam L0 of 405 nm, white light is generated. In the case where there is no provision in the law or the like regarding the color of the illumination light L1, or when there is a provision for another chromaticity, the selection of the light emitter 4 is specified as one in which the illumination light L1 is white as described above. It is not something.
 蛍光体301の封止材は、例えば、ガラス材(無機ガラス、有機・無機ハイブリッドガラス)や、シリコーン樹脂等の樹脂材料である。あるいはガラスを用いてもよい。封止材は、透明性の高いものが好ましく、レーザ光が高出力あるいは蛍光体301上のレーザ光の照射強度の密度が高い場合には、耐熱性の高いものが好ましい。 The sealing material of the phosphor 301 is, for example, a glass material (inorganic glass, organic / inorganic hybrid glass), or a resin material such as silicone resin. Alternatively, glass may be used. The sealing material is preferably highly transparent, and when the laser beam has a high output or the density of the irradiation intensity of the laser beam on the phosphor 301 is high, a material having high heat resistance is preferable.
  (レーザ光カットフィルタ302)
 レーザ光カットフィルタ302は、筐体300の光出射面を覆う透明な樹脂板である。レーザ光カットフィルタ302は、レーザ光源1からのレーザ光L0に含まれるコヒーレントな成分を遮断するとともに、当該レーザ光に含まれるインコヒーレントな成分と、蛍光体301においてレーザ光L0を変換することにより生成された白色光とを透過する材質で形成されることが好ましい。
(Laser light cut filter 302)
The laser light cut filter 302 is a transparent resin plate that covers the light emitting surface of the housing 300. The laser light cut filter 302 blocks the coherent component included in the laser light L0 from the laser light source 1 and converts the incoherent component included in the laser light and the laser light L0 in the phosphor 301. It is preferable to form with the material which permeate | transmits the produced | generated white light.
 レーザ光カットフィルタ302は、例えば、レーザ光源1の発する光の波長が410nmだとすれば、410nmより短波長の光を吸収もしくは反射して、レーザ光が装置の外部へ漏れることを防止する。なお、レーザ光カットフィルタ302が遮断する光の波長は可視光の色合いとレーザ光L0の波長及び光量を勘案して決定すれば良い。 For example, if the wavelength of light emitted from the laser light source 1 is 410 nm, the laser light cut filter 302 absorbs or reflects light having a wavelength shorter than 410 nm and prevents the laser light from leaking outside the apparatus. Note that the wavelength of light blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the wavelength and light amount of the laser light L0.
 なお、レーザ光カットフィルタ302で、筐体300を密封することで、外部環境の湿気や埃などの侵入を防ぐことができる。 In addition, by sealing the housing 300 with the laser light cut filter 302, intrusion of moisture, dust, or the like in the external environment can be prevented.
 上記筐体300の内面300aは、蛍光体301にてレーザ光から可視光に変換された蛍光を反射して、当該筐体300の開口部に設けられたレーザ光カットフィルタ302に導くように形成されている。このレーザ光カットフィルタ302では、可視光は透過され、レーザ光は反射するようになっている。このため、ヘッドランプ部101の外部へは、可視光のみ出射され、レーザ光は出射されないようになっている。 The inner surface 300a of the casing 300 is formed so as to reflect the fluorescence converted from laser light into visible light by the phosphor 301 and guide it to the laser light cut filter 302 provided in the opening of the casing 300. Has been. In this laser light cut filter 302, visible light is transmitted and laser light is reflected. For this reason, only visible light is emitted to the outside of the headlamp unit 101, and laser light is not emitted.
 また、上記筐体300には、上記加速度センサ3が設置されている。この加速度センサ3は、筐体300の加速度、すなわち急な動きを検出し、加速度信号S5として、レーザ駆動回路102に送信している。 The acceleration sensor 3 is installed in the casing 300. The acceleration sensor 3 detects the acceleration of the housing 300, that is, a sudden movement, and transmits the acceleration signal S5 to the laser driving circuit 102.
 すなわち、上記構成のヘッドランプ部101では、まず、レーザ光源1からレーザ光を集光レンズ4で集光し、蛍光体301に照射する。 That is, in the headlamp unit 101 configured as described above, first, the laser light is condensed from the laser light source 1 by the condenser lens 4 and irradiated onto the phosphor 301.
 次に、蛍光体301からはレーザ光に起因する可視光(蛍光)が生じる。このレーザ光はここでは波長405nmの青紫色であり、蛍光体301はそれより長波長の光を放射する。蛍光体301からの光の波長スペクトルは任意に設定して良い。 Next, visible light (fluorescence) resulting from the laser light is generated from the phosphor 301. This laser beam is blue-violet with a wavelength of 405 nm here, and the phosphor 301 emits light having a longer wavelength. The wavelength spectrum of the light from the phosphor 301 may be set arbitrarily.
 続いて、蛍光体301からの可視光は、筐体300内で図の右側、出射面方向に向きを変えられ、外部へ放出され、照射光となる。 Subsequently, the visible light from the phosphor 301 is changed in the right side of the figure in the housing 300 in the direction of the emission surface, emitted to the outside, and becomes irradiation light.
 なお、上記筐体300内で可視光の向きを変える手段は、筐体内面の曲面形状である。 Note that the means for changing the direction of visible light in the housing 300 is the curved shape of the inner surface of the housing.
 また、筐体300の内面300aは鏡面若しくは白色塗装やこれに準じる光(電磁波)の反射率が高いものである。 Also, the inner surface 300a of the housing 300 has a high reflectivity of mirror surface or white paint or light (electromagnetic wave) equivalent thereto.
 筐体300における可視光の出射面の方向には、上記可視光を透過させると共に、レーザ光量が目視した場合に安全なレベルにまで低減する様な、光学的部材、例えば波長410nmより短波長の光を遮断するレーザ光カットフィルタ302を設ける。なお、カットする波長は可視光の色合いとレーザ光量及び波長を勘案して決める。 An optical member that transmits the visible light in the direction of the visible light emission surface of the housing 300 and reduces the laser light amount to a safe level when visually observed, for example, a wavelength shorter than 410 nm. A laser beam cut filter 302 that blocks light is provided. Note that the wavelength to be cut is determined in consideration of the hue of visible light, the amount of laser light, and the wavelength.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU(電子制御ユニット)等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 includes a laser control signal S0 including at least one of an instruction for turning on / off the laser and a light amount (or voltage, current) instruction value at the time of turning on / off from an external control unit such as an ECU (electronic control unit). Is given. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。パルス駆動の波高値は通常状態と同一であっても、相違しても構わない。加速度センサ3は、ヘッドランプ部101の筐体300で無くても車両の最先頭部(バンパー等)に設けても良い。この場合には、より早く衝突を検出して消灯出来る。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven. The pulse drive peak value may be the same as or different from the normal state. The acceleration sensor 3 may be provided not at the casing 300 of the headlamp unit 101 but at the topmost part (bumper or the like) of the vehicle. In this case, the collision can be detected earlier and the light can be turned off.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例1の構成の照明装置100では、加速度センサ3を用いるので、ヘッドランプ部101本体の変位(=損傷)の時間的な2階微分を検出するので、事故の際に照明装置100が現実に破壊されるよりいち早くレーザを消灯させることができ、この結果、安全性の向上を図ることが可能となる。
(Action / Effect)
In the lighting device 100 having the configuration of the first embodiment, since the acceleration sensor 3 is used, the temporal second-order differentiation of the displacement (= damage) of the headlamp unit 101 main body is detected. The laser can be turned off as soon as it is actually destroyed, and as a result, safety can be improved.
 また、事故前の回避操作である急ブレーキ・急ハンドルを検出するとレーザ光源1をパルス駆動するので、回避操作にも関わらず事故が生じた場合においてもヘッドランプ部101の物理的な破損時には既に消灯しているタイミングが存在し、レーザ漏れを防げる確率が向上し、安全性が向上する。 Further, since the laser light source 1 is pulse-driven when a sudden brake / steep handle that is an avoidance operation before the accident is detected, even if an accident occurs despite the avoidance operation, the headlamp unit 101 is already damaged. There is a timing when the light is extinguished, the probability of preventing laser leakage is improved, and safety is improved.
 (実施例2)
 図21は、実施例2に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 2)
FIG. 21 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the second embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例2に係る照明装置100のヘッドランプ部101では、図21に示すように、前記実施例1のヘッドランプ部101の筐体300に代えて、筐体310を採用している。 In the headlamp unit 101 of the illumination device 100 according to the second embodiment, as shown in FIG. 21, a housing 310 is employed instead of the housing 300 of the headlamp unit 101 of the first embodiment.
 すなわち、ヘッドランプ部101の筐体310が、実施例1の砲弾型形状から、パラボラ(放物面)の回転体を、長手軸方向に半分に切断した形状になっている。筐体310の焦点付近にレーザ光の蛍光体311上の照射位置を定める。 That is, the casing 310 of the headlamp unit 101 has a shape obtained by cutting a parabolic (parabolic) rotating body in half in the longitudinal axis direction from the bullet shape of the first embodiment. An irradiation position of the laser beam on the phosphor 311 is determined near the focal point of the housing 310.
 また、筐体310の内面310aは、鏡面若しくは白色塗装として、光反射率の高いものになっている。 Also, the inner surface 310a of the housing 310 is a mirror surface or white paint, and has a high light reflectance.
 蛍光体311は、レーザ光を受けて(波長の相違する)赤外線を放出する。例えば、波長1000nm近傍の赤外線を放出する。 The phosphor 311 receives laser light and emits infrared rays (having different wavelengths). For example, infrared rays having a wavelength near 1000 nm are emitted.
 上記筐体310における可視光の出射面の方向には、波長変換(例:SHG・Second Harmonic Generation:2次高調波発生)素子及びレーザ光カットフィルタ312を設けており、可視光として上記赤外光の半分の波長500nm近傍の可視光を外部へ放出する。 A wavelength conversion (eg, SHG · Second Harmonic Generation) element and a laser light cut filter 312 are provided in the direction of the visible light emission surface of the housing 310, and the infrared light is used as visible light. Visible light near the wavelength of 500 nm, which is half the light, is emitted to the outside.
 レーザ光源1からのレーザ光は、例えば青紫(405nm)であり、レーザ光カットフィルタ312は例えば波長410nmより短波長の光を吸収若しくは反射して、外部への放出を防ぐようになっている。この場合も、表記波長は可視光の色合いとレーザ波長・光量を勘案して決める。 The laser light from the laser light source 1 is, for example, bluish purple (405 nm), and the laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 nm, for example, to prevent emission to the outside. Also in this case, the indicated wavelength is determined in consideration of the hue of visible light and the laser wavelength / light quantity.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例2の構成の照明装置100では、前記実施例1の照明装置100に比べて、パラボラ状の筐体310を採用しているので、筐体310で出射した光が出射面で並行になり易く、出射面で見るとほぼ平行で、拡散せず目的とする位置を効率良く照明出来るのみならず、筐体310として曲面回転体の半断形状をしているので、設置しやすく、また高出力の半導体レーザの光を受ける蛍光体311の発熱も、筐体310を通じて速やかに行いやすい。
(Action / Effect)
In the illumination device 100 having the configuration according to the second embodiment, the parabolic housing 310 is adopted as compared with the illumination device 100 according to the first embodiment. Therefore, the light emitted from the housing 310 is parallel to the emission surface. It is easy to install, it is almost parallel when viewed from the exit surface, and it can not only diffuse and illuminate the target position efficiently, but it also has a half-cut shape of the curved rotating body as the housing 310, so it is easy to install, Heat generation of the phosphor 311 that receives the light of the high-power semiconductor laser is easily performed quickly through the housing 310.
 さらに、上記蛍光体311は、赤外蛍光体であるので、前記実施例1の可視光蛍光体に比べて、赤外蛍光体+波長変換素子(+レーザ光カットフィルタ)の効率の方が高い場合、選択の自由度が増すというメリットを有する。 Furthermore, since the phosphor 311 is an infrared phosphor, the efficiency of the infrared phosphor + wavelength conversion element (+ laser light cut filter) is higher than that of the visible light phosphor of the first embodiment. In this case, there is an advantage that the degree of freedom of selection increases.
 (実施例3)
 図22は、実施例3に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1、2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 3)
FIG. 22 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the third embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施例3に係る照明装置100のヘッドランプ部101では、図22に示すように、前記実施例1のヘッドランプ部101の筐体300と同形状の筐体300を採用している。 In the headlamp unit 101 of the illumination device 100 according to the third embodiment, as shown in FIG. 22, a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the first embodiment is employed.
 本実施例3では、蛍光体にレーザ光を照射、透過して来る蛍光(可視光)を使用する。このため、蛍光体301は、レーザ光の透過面が筐体300の可視光の出射面と平行となるように、当該筐体300に、蛍光体保持部材303を介して設置されている。 In the third embodiment, fluorescent light (visible light) that is transmitted through the fluorescent material with laser light is used. For this reason, the phosphor 301 is installed in the housing 300 via the phosphor holding member 303 so that the laser light transmission surface is parallel to the visible light emitting surface of the housing 300.
 レーザ光源1は、前記実施例1,2と同じく、青紫色の波長405nmの光とする。レーザ光源1の出力光は,蛍光体301を透過させ、蛍光体301はレーザ光透過の際に、その光エネルギーを元に可視光を発光する。発光波長が任意の色合いとなる様に、蛍光体301を調合する。 The laser light source 1 is blue-violet light having a wavelength of 405 nm as in the first and second embodiments. The output light of the laser light source 1 is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam. The phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
 上記レーザ光源1の集光状況を調整するため、レーザ光源1と蛍光体301の間に集光度合いを調整する集光レンズ4を挿入しても良い。集光レンズ4は集光だけでなく、発散気味に調整するならば凹レンズでも良い。 In order to adjust the condensing state of the laser light source 1, a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301. The condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
 上記蛍光体301の周辺には、蛍光体301からレーザ光が多少ずれた場合でもレーザ光漏れを防ぐ様に、遮光処理をオプションとして設けても良い。これは金属膜・金属片など光を通さない部材を設けても、塗装を施しても良い。例えば、蛍光体保持部材303の蛍光体301以外の領域に、遮光処理を施した遮光処理部分304を形成してもよい。 A shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301. This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted. For example, a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
 上記筐体300の内面300aは,鏡面であって、光を目的とする方向(図では右方向)に集光する様に、曲面状になっている。 The inner surface 300a of the casing 300 is a mirror surface, and has a curved surface so as to collect light in a target direction (right direction in the figure).
 上記筐体300の可視光の出射面には、内部を外部の環境(湿気、塵芥など)から保護するため、防護用のガラス板を設けている。 A protective glass plate is provided on the visible light emitting surface of the casing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
 本実施例3のように、ヘッドランプ部101の構成が「蛍光体透過型」の場合は、前記実施例1、2の「蛍光体反射型」に比べるとレーザ光が出射面方向に現れる量は小さい事が期待出来るが、安全に念を入れる場合には、上記防護用のガラス板はレーザ光カットフィルタ302とするのが好ましい。レーザ光源1の発光波長が405nmとすれば、レーザ光カットフィルタ302は、410nmや420nm程度以下の短波長を遮断するものが好ましい。つまり、蛍光体301で青色発光を行わせると出射光は白色に近く、高品位な光と認識されるため、余り長波長の光まで遮断せず、レーザ光成分のみ遮断する事が望ましい。なお、レーザ光カットフィルタ302における遮断するレーザ光の波長は可視光の色合いとレーザ光量・波長を勘案して決めればよい。 When the configuration of the headlamp unit 101 is “phosphor transmission type” as in the third embodiment, the amount of laser light that appears in the exit surface direction compared to the “phosphor reflection type” in the first and second embodiments. However, it is preferable that the protective glass plate be the laser light cut filter 302 when safety is taken into consideration. If the light emission wavelength of the laser light source 1 is 405 nm, it is preferable that the laser light cut filter 302 cut off short wavelengths of about 410 nm or 420 nm or less. That is, when the phosphor 301 emits blue light, the emitted light is close to white and is recognized as high-quality light. Therefore, it is desirable to block only the laser light component without blocking the light having a very long wavelength. The wavelength of the laser light to be blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例3に係るヘッドランプ部101は、図22に示すように、透過型であるため、遮光処理部分304で遮光されなかったレーザ光は蛍光体301を通過して、大半が蛍光(可視光)となる。結果的に、ヘッドランプ部101の出射面に漏洩するレーザ光が少なく、目視安全性が高くなる。
(Action / Effect)
Since the headlamp unit 101 according to the third embodiment is a transmissive type as shown in FIG. 22, the laser light that is not shielded by the light-shielding portion 304 passes through the phosphor 301 and is mostly fluorescent (visible). Light). As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
 また、レーザ光カットフィルタ302を設ける場合、レーザ光遮断能力がやや低いものであっても使用可能となる。 Further, when the laser light cut filter 302 is provided, it can be used even if the laser light blocking ability is slightly low.
 (実施例4)
 図23は、実施例4に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~3にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
Example 4
FIG. 23 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fourth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to third embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例4に係る照明装置100のヘッドランプ部101は、図23に示すように、前記実施例2のヘッドランプ部101の筐体310と同形状の筐体310を採用している。 23. As shown in FIG. 23, the headlamp unit 101 of the lighting device 100 according to the fourth embodiment employs a casing 310 having the same shape as the casing 310 of the headlamp unit 101 according to the second embodiment.
 すなわち、本実施例の筐体310は、パラボラ(放物面の回転体)を、長手軸方向に半分に切断した形状になっている。 That is, the housing 310 of the present embodiment has a shape obtained by cutting a parabola (a parabolic rotating body) in half in the longitudinal axis direction.
 レーザ光源1は、図23に示すように、筐体310のパラボラの焦点位置に配置されている。 The laser light source 1 is disposed at the focal position of the parabola of the housing 310 as shown in FIG.
 また、筐体310の内面310aのうち、可視光の出射面(図の右側)とは反対の部分に蛍光体を塗布し、この蛍光体を目標としてレーザ光源1からの光を照射する。蛍光体は任意の色合いの光を得る様に調合する。その他の筐体310の内面310aは鏡面若しくは白色塗装として、光反射率を高く保つ、若しくはレーザ光を吸収する材質とする。 Further, a phosphor is applied to a portion of the inner surface 310a of the housing 310 opposite to the visible light emitting surface (right side in the figure), and the light from the laser light source 1 is irradiated with the phosphor as a target. The phosphor is formulated so as to obtain light of an arbitrary color. The other inner surface 310a of the housing 310 is made of a mirror surface or white paint, and is made of a material that maintains high light reflectance or absorbs laser light.
 レーザ光源1により出射されるレーザが例えば青紫(405nm)であり、蛍光体表面での反射光量が出射面から見て目視の安全性に懸念のある場合は、筐体310の可視光の出射面にはレーザ光カットフィルタ312を設ける。 When the laser emitted from the laser light source 1 is, for example, bluish purple (405 nm), and the amount of light reflected on the phosphor surface is concerned with safety when viewed from the emission surface, the visible light emission surface of the housing 310 is used. Is provided with a laser beam cut filter 312.
 上記レーザ光カットフィルタ312は、例えば波長410nmより短波長の光を吸収若しくは反射して、外部への放出を防ぐようにしている。なお、安全性に問題が無ければ、筐体310の可視光出射面には、レーザ光カットフィルタ312の代わりに防護用ガラス板若しくはその他の部材を設けてもよい。 The laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 nm, for example, to prevent emission to the outside. If there is no problem in safety, a protective glass plate or other member may be provided on the visible light emitting surface of the housing 310 instead of the laser light cut filter 312.
 なお、レーザ光カットフィルタ312における遮断するレーザ光の波長は可視光の色合いとレーザ光量・波長を勘案して決めればよい。 The wavelength of the laser beam to be blocked by the laser beam cut filter 312 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例4のヘッドランプ部101では、筐体310内に蛍光体を配置するのではなく、筐体310の内面に蛍光成分を塗布することにより、蛍光体と同等の機能を有するようにしている。したがって、レーザ光源1から出射されるレーザ光は、筐体310の内面310aにて反射され、可視光となる。このため、レーザ光源1を筐体310内部に設けることが可能となり、レーザ光源1の位置が何らかの要因で変動したとしても、レーザ光が筐体310に留まる可能性、即ち安全性が高まる。
(Action / Effect)
In the headlamp unit 101 according to the fourth embodiment, the phosphor is not disposed in the housing 310, but a fluorescent component is applied to the inner surface of the housing 310 so as to have the same function as the phosphor. Yes. Therefore, the laser light emitted from the laser light source 1 is reflected by the inner surface 310a of the housing 310 and becomes visible light. For this reason, it becomes possible to provide the laser light source 1 inside the housing 310, and even if the position of the laser light source 1 fluctuates due to some factor, the possibility that the laser light stays in the housing 310, that is, the safety increases.
 そして、蛍光体を筐体310に塗布し、レーザ光を照射するようになっているので、蛍光体の放熱に優れている。 Since the phosphor is applied to the housing 310 and irradiated with laser light, the phosphor is excellent in heat dissipation.
 また、蛍光体を別基板として準備しなくて良いので、部品点数が減る。 Also, since the phosphor does not have to be prepared as a separate substrate, the number of parts is reduced.
 また、筐体310において、蛍光体塗布部分以外にレーザ光吸収部材を設ける構造にすることにより、尚一層レーザ光の漏れを少なくすることができ、安全性が更に向上する。 In addition, by providing the housing 310 with a laser light absorbing member other than the phosphor coating portion, the leakage of the laser light can be further reduced, and the safety is further improved.
 (実施例5)
 図24は、実施例5に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~4にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 5)
FIG. 24 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fifth embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施例5に係る照明装置100のヘッドランプ部101は、図24に示すように、前記実施例2のヘッドランプ部101の筐体310と同形状の筐体310を採用している。 As shown in FIG. 24, the headlamp unit 101 of the lighting device 100 according to the fifth embodiment employs a casing 310 having the same shape as the casing 310 of the headlamp unit 101 according to the second embodiment.
 すなわち、本実施例の筐体310は、パラボラ(放物面の回転体)を、長手軸方向に半分に切断した形状になっている。 That is, the housing 310 of the present embodiment has a shape obtained by cutting a parabola (a parabolic rotating body) in half in the longitudinal axis direction.
 筐体310のパラボラの焦点付近に、レーザ光の照射位置がくるように蛍光体311を配置する。 The phosphor 311 is arranged so that the irradiation position of the laser beam comes near the focal point of the parabola of the housing 310.
 上記蛍光体311は、レーザ光を受けて可視光を放射するようになっている。放射光が希望の物となる様に蛍光物質を調合して蛍光体311を生成する。 The phosphor 311 receives laser light and emits visible light. The phosphor 311 is generated by preparing a phosphor material so that the emitted light becomes a desired one.
 また、上記筐体310の内面310aは、鏡面若しくは白色塗装として、光反射率の高いものになっている。 Further, the inner surface 310a of the casing 310 is a mirror surface or white paint, and has a high light reflectance.
 さらに、上記筐体310の可視光の出射面(図の右方向)には、内部を外部からの湿度や埃などから保護する防護用ガラス板またはレーザ光カットフィルタ312を設けている。 Furthermore, a protective glass plate or a laser light cut filter 312 for protecting the inside from humidity and dust from the outside is provided on the visible light emitting surface (right direction in the figure) of the housing 310.
 上記防護用ガラス板は、裏面または表面の少なくとも一方の面に、凹凸、粒状、格子、あるいはガラス状の模様の少なくとも1つのパターンが形成されており、レーザ光の出射面での密度を減らす、若しくはコヒーレンシを下げ、目視した場合の安全性を高める構造となっている。 The protective glass plate has at least one pattern of unevenness, granularity, lattice, or glassy pattern formed on at least one of the back surface and the front surface to reduce the density on the laser light emission surface, Alternatively, the coherency is lowered to increase the safety when visually observed.
 更に安全を期すには、上記防護用ガラス板をレーザ光カットフィルタ312とするのが好ましい。 For further safety, the protective glass plate is preferably a laser light cut filter 312.
 上記レーザ光カットフィルタ312は、レーザ光源1から照射されるレーザが例えば青紫(405nm)である場合、例えば波長410~420nmより短波長の光を吸収若しくは反射して、外部への放出を防ぐように設計されている。 When the laser irradiated from the laser light source 1 is, for example, bluish purple (405 nm), the laser light cut filter 312 absorbs or reflects light having a wavelength shorter than 410 to 420 nm, for example, and prevents emission to the outside. Designed to.
 なお、レーザ光カットフィルタ312における遮断するレーザ光の波長は可視光の色合いとレーザ光量・波長とを勘案して決めればよい。 It should be noted that the wavelength of the laser beam to be blocked by the laser beam cut filter 312 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体310には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 The housing 310 of the headlamp unit 101 is provided with the acceleration sensor 3 as described above, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例5に係るヘッドランプ部101によれば、漏れて来るレーザ光を出射面で拡散させるので、レーザ光の密度あるいはコヒーレンシが下がり、目視した場合の安全性の向上を図ることができる。
(Action / Effect)
According to the headlamp unit 101 according to the fifth embodiment, since the leaking laser light is diffused on the emission surface, the density or coherency of the laser light is lowered, and the safety when visually observed can be improved.
 (実施例6)
 図25は、実施例6に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~5にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 6)
FIG. 25 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the sixth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to fifth embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例6に係る照明装置100のヘッドランプ部101では、図25に示すように、前記実施例3のヘッドランプ部101の筐体300と同形状の筐体300を採用している。 In the headlamp unit 101 of the lighting device 100 according to the sixth embodiment, as shown in FIG. 25, a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the third embodiment is employed.
 但し、上記筐体300には、図25に示すように、蛍光体301の可視光出射面から筐体300の可視光出射面まで光ファイバ305が設けられている点で、本実施例6のヘッドランプ部101と前記実施例3のヘッドランプ部101とでは構成が異なる。 However, as shown in FIG. 25, the housing 300 is provided with an optical fiber 305 from the visible light emitting surface of the phosphor 301 to the visible light emitting surface of the housing 300. The configuration of the headlamp unit 101 is different from that of the headlamp unit 101 of the third embodiment.
 レーザ光源1は、前記実施例3と同じく、青紫色の波長405nmの光とする。出力光は,蛍光体301を透過させ、蛍光体301はレーザ光透過の際に、その光エネルギーを元に可視光を発光する。発光波長が任意の色合いとなる様に、蛍光体301を調合する。 The laser light source 1 is blue-violet light having a wavelength of 405 nm as in the third embodiment. The output light is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam. The phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
 上記レーザ光源1の集光状況を調整するため、レーザ光源1と蛍光体301との間に集光度合いを調整する集光レンズ4を挿入しても良い。集光レンズ4は集光だけでなく、発散気味に調整するならば凹レンズでも良い。 In order to adjust the condensing state of the laser light source 1, a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301. The condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
 逆に、可視光の集光度合いを調整するなら、集光レンズ4を図25の蛍光体301より筐体300の可視光の出射面側(右側)に配置すれば良い。 Conversely, in order to adjust the degree of condensing visible light, the condensing lens 4 may be arranged on the visible light emitting surface side (right side) of the housing 300 from the phosphor 301 of FIG.
 上記蛍光体301の周辺には、蛍光体301からレーザ光が多少ずれた場合でもレーザ光漏れを防ぐ様に、遮光処理をオプションとして設けても良い。これは金属膜・金属片など光を通さない部材を設けても、塗装を施しても良い。例えば、蛍光体保持部材303の蛍光体301以外の領域に、遮光処理を施した遮光処理部分304を形成してもよい。 A shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301. This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted. For example, a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
 蛍光体301からの可視光は、光ファイバ305で筐体300の可視光の出射面に伝えられる。光ファイバ305は、曲げる事が出来るので、レーザ光源1、蛍光体301の配置の自由度が増す。 Visible light from the phosphor 301 is transmitted to the visible light emission surface of the housing 300 through the optical fiber 305. Since the optical fiber 305 can be bent, the degree of freedom of arrangement of the laser light source 1 and the phosphor 301 is increased.
 なお、上記筐体300の可視光の出射面には、内部を外部の環境(湿気、塵芥など)から保護するため、防護用のガラス板を設けている。 It should be noted that a protective glass plate is provided on the visible light emitting surface of the housing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
 本実施例6のように、ヘッドランプ部101の構成が「蛍光体透過型」の場合は、前記実施例1、2の「蛍光体反射型」に比べるとレーザ光が出射面方向に現れる量は小さい事が期待出来るが、安全に念を入れる場合には、上記防護用のガラス板はレーザ光カットフィルタ302とするのが好ましい。レーザ光源1の発光波長が405nmとすれば、レーザ光カットフィルタ302は、410nmや420nm程度以下の短波長を遮断するものが好ましい。つまり、蛍光体301で青色発光を行わせると出射光は白色に近く、高品位な光と認識されるため、余り長波長の光まで遮断せず、レーザ光成分のみ遮断する事が望ましい。なお、レーザ光カットフィルタ302における遮断するレーザ光の波長は可視光の色合いとレーザ光量・波長を勘案して決めればよい。 As in the sixth embodiment, when the configuration of the headlamp unit 101 is “phosphor transmission type”, the amount of laser light appearing in the direction of the emission surface compared to the “phosphor reflection type” in the first and second embodiments. However, it is preferable that the protective glass plate be the laser light cut filter 302 when safety is taken into consideration. If the light emission wavelength of the laser light source 1 is 405 nm, it is preferable that the laser light cut filter 302 cut off short wavelengths of about 410 nm or 420 nm or less. That is, when the phosphor 301 emits blue light, the emitted light is close to white and is recognized as high-quality light. Therefore, it is desirable to block only the laser light component without blocking the light having a very long wavelength. The wavelength of the laser light to be blocked by the laser light cut filter 302 may be determined in consideration of the hue of visible light and the laser light quantity / wavelength.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例6に係るヘッドランプ部101は、図25に示すように、透過型であるため、遮光処理部分304で遮光されなかったレーザ光は蛍光体301を通過する。結果的に、ヘッドランプ部101の出射面に漏洩するレーザ光が少なく、目視安全性が高くなる。
(Action / Effect)
Since the headlamp unit 101 according to the sixth embodiment is a transmissive type as shown in FIG. 25, the laser light that has not been shielded by the light shielding processing portion 304 passes through the phosphor 301. As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
 また、レーザ光カットフィルタ302を設ける場合でも、レーザ光遮断能力がやや低いものであっても使用可能となる。 Further, even when the laser light cut filter 302 is provided, it can be used even if the laser light blocking ability is slightly low.
 さらに、筐体300内部における可視光を導く光路に、光ファイバ305が用いられているので、光路の変更が容易になる。これにより、レーザ光源1、蛍光体301、筐体300の可視光の出射面との位置関係の自由度が増すという効果が得られる。 Furthermore, since the optical fiber 305 is used for the optical path for guiding visible light inside the housing 300, the optical path can be easily changed. Thereby, the effect that the freedom degree of the positional relationship with the emission surface of the visible light of the laser light source 1, the fluorescent substance 301, and the housing | casing 300 increases is acquired.
 (実施例7)
 図26は、実施例7に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~6にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 7)
FIG. 26 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the seventh embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to sixth embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例7に係る照明装置100のヘッドランプ部101では、図26に示すように、前記実施例3のヘッドランプ部101の筐体300と同形状の筐体300を採用している。 In the headlamp unit 101 of the illumination device 100 according to the seventh embodiment, as shown in FIG. 26, a casing 300 having the same shape as the casing 300 of the headlamp unit 101 of the third embodiment is employed.
 レーザ光源1は、前記実施例3と同じく、青紫色の波長405nmの光とする。出力光は,蛍光体301を透過させ、蛍光体301はレーザ光透過の際に、その光エネルギーを元に可視光を発光する。発光波長は任意の色合いとなる様に、蛍光体301を調合する。 The laser light source 1 is blue-violet light having a wavelength of 405 nm as in the third embodiment. The output light is transmitted through the phosphor 301, and the phosphor 301 emits visible light based on the light energy when transmitting the laser beam. The phosphor 301 is prepared so that the emission wavelength has an arbitrary color.
 上記レーザ光源1の集光状況を調整するため、レーザ光源1と蛍光体301の間に集光度合いを調整する集光レンズ4を挿入しても良い。集光レンズ4は集光だけでなく、発散気味に調整するならば凹レンズでも良い。 In order to adjust the condensing state of the laser light source 1, a condensing lens 4 for adjusting the degree of condensing may be inserted between the laser light source 1 and the phosphor 301. The condensing lens 4 is not limited to condensing, but may be a concave lens as long as it is adjusted to diverge.
 逆に、可視光の集光度合いを調整するなら、集光レンズ4を図26の蛍光体301より筐体300の可視光の出射面側(右側)に配置すれば良い。 Conversely, in order to adjust the degree of condensing visible light, the condensing lens 4 may be arranged on the visible light emitting surface side (right side) of the housing 300 from the phosphor 301 of FIG.
 上記蛍光体301の周辺には、蛍光体301からレーザ光が多少ずれた場合でもレーザ光漏れを防ぐ様に、遮光処理をオプションとして設けても良い。これは金属膜・金属片など光を通さない部材を設けても、塗装を施しても良い。例えば、蛍光体保持部材303の蛍光体301以外の領域に、遮光処理を施した遮光処理部分304を形成してもよい。 A shading process may be optionally provided around the phosphor 301 so as to prevent leakage of the laser beam even when the laser beam slightly deviates from the phosphor 301. This may be provided with a member that does not transmit light, such as a metal film or a metal piece, or may be painted. For example, a light shielding process portion 304 subjected to a light shielding process may be formed in a region other than the phosphor 301 of the phosphor holding member 303.
 なお、上記筐体300の可視光の出射面には、内部を外部の環境(湿気、塵芥など)から保護するため、防護用のガラス板を設けている。 It should be noted that a protective glass plate is provided on the visible light emitting surface of the housing 300 in order to protect the inside from the external environment (humidity, dust, etc.).
 本実施例7のように、ヘッドランプ部101の構成が「蛍光体透過型」の場合は、前記実施例1、2の「蛍光体反射型」に比べるとレーザ光が出射面方向に現れる量は小さい事が期待出来るが、蛍光体301の内部粒子に反射せずすり抜けて来た、コヒーレンシの高い成分のレーザ光を除去するには、出射面に偏光(偏波)フィルタ306を入れるのが好ましい。 As in the seventh embodiment, when the configuration of the headlamp unit 101 is “phosphor transmission type”, the amount of laser light that appears in the direction of the emission surface compared to the “phosphor reflection type” in the first and second embodiments. Can be expected to be small, but in order to remove the laser beam having a high coherency component that has passed through without being reflected by the internal particles of the phosphor 301, it is necessary to insert a polarization (polarization) filter 306 on the exit surface. preferable.
 上記偏光フィルタ306は、レーザ光源1からの出射光の偏光面は予め判るので、それと同一方向の偏光(偏波)を遮断するフィルタとすれば良い。 The polarization filter 306 may be a filter that blocks the polarization (polarization) in the same direction as the polarization plane of the light emitted from the laser light source 1 in advance.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体300には、上述のように、加速度センサ3が設けられており、加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 As described above, the casing 300 of the headlamp unit 101 is provided with the acceleration sensor 3, and when detecting that the acceleration exceeds the first threshold, the laser driving circuit 102 performs a laser light source for a certain period of time. 1 is pulse driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration has exceeded another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 stops driving the laser light source 1. And turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 (作用・効果)
 本実施例7に係るヘッドランプ部101は、図26に示すように、透過型であるため、遮光処理部分304で遮光されなかったレーザ光は蛍光体301を通過する。結果的に、ヘッドランプ部101の出射面に漏洩するレーザ光が少なく、目視安全性が高くなる。
(Action / Effect)
Since the headlamp unit 101 according to the seventh embodiment is a transmissive type as shown in FIG. 26, the laser light that has not been shielded by the light shielding processing portion 304 passes through the phosphor 301. As a result, there is little laser light leaking to the emission surface of the headlamp unit 101, and visual safety is improved.
 また、レーザ光カットフィルタ302を設ける場合でも、レーザ光遮断能力がやや低いものであっても使用可能となる。 Further, even when the laser light cut filter 302 is provided, it can be used even if the laser light blocking ability is slightly low.
 ここまでの、実施例1~7では、自動車の運転中に事故回避のための急ブレーキを掛けたり急ハンドルをきったりした場合を想定して、ヘッドランプ部101におけるレーザ光の外部漏れを低減させる例について説明したが、下記の実施例8では、自分の自動車に、マイナス方向から他人の自動車が追突した場合のヘッドランプ部101におけるレーザ光の外部漏れを低減させる例について説明する。 In Examples 1 to 7 so far, the external leakage of laser light in the headlamp unit 101 is reduced on the assumption that a sudden brake for avoiding an accident or a sudden handle is turned off while driving a car. In the eighth embodiment described below, an example in which external leakage of laser light in the headlamp unit 101 when another person's automobile collides with the own automobile from the minus direction will be described.
 (実施例8)
 図27は、実施例8に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~7にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 8)
FIG. 27 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the eighth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to seventh embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例8に係る照明装置100のヘッドランプ部101は、図27に示すように、前記実施例2のヘッドランプ部101と同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the eighth embodiment has the same structure as the headlamp unit 101 of the second embodiment as shown in FIG.
 本実施例では、自分が運転している自動車(以下、自車と称する)の衝突だけでなく、他者の自動車(以下、他車と称する)に追突された場合を想定している。 In the present embodiment, it is assumed that the vehicle is not only collided with a car that the driver is driving (hereinafter referred to as the own vehicle), but is also collided with another vehicle (hereinafter referred to as another vehicle).
 そこで、自車の衝突自体を加速度センサ3の+j方向出力と設定すると、その+j方向にはこれまでの実施例1~7と同じ2段階の閾値(第1閾値、第2閾値)を設け、パルス駆動と消灯の動作とを行わせる。つまり、加速度センサ3の+j方向出力の場合は、これまでの実施例1~7と同じレーザ光の消灯制御を行う。 Therefore, when the collision of the vehicle itself is set as the + j direction output of the acceleration sensor 3, the same two-stage thresholds (first threshold value, second threshold value) as in the previous Examples 1 to 7 are provided in the + j direction. Pulse driving and extinguishing operation are performed. That is, in the case of the + j direction output of the acceleration sensor 3, the same laser light extinction control as in the first to seventh embodiments is performed.
 逆に、他車からの追突による加速度を-j方向出力とすれば、-j方向にも別途閾値を設け、これを-j方向に超過した場合、消灯する。この追突を検出する加速度センサ3は、衝突検知用の加速度センサを利用しても、別途専用に追突検出用加速度センサとして設けても構わない。 Conversely, if the acceleration due to a rear-end collision from another vehicle is output in the -j direction, a separate threshold is also set in the -j direction, and when this exceeds the -j direction, the light is turned off. The acceleration sensor 3 that detects the rear-end collision may use an acceleration sensor for collision detection, or may be separately provided as an acceleration sensor for rear-end collision detection.
 ここで、追突検出用加速度センサを設ける場合、当該追突検出用の加速度センサは自動車200の後部に設けても、ヘッドランプ部101の筐体近傍に設けても構わない。 Here, when the acceleration sensor for collision detection is provided, the acceleration sensor for collision detection may be provided in the rear part of the automobile 200 or in the vicinity of the casing of the headlamp unit 101.
 上記追突検出用加速度センサを自動車200の後部に設ける場合、軽微な追突で消灯すると、以後自走可能であるのにも関わらず消灯し続けるのは夜間などを考えると却って危険である事、及び車両後部の損傷が自車の前方に位置するヘッドライトまで損傷を与える可能性は低い事、急発進(即ち-j方向に相当する、前方に向けての急加速度を生じる発進)等で消灯するのは不都合であることを鑑みて、追突検出用加速度センサの出力に基づいてパルス駆動を開始する際の、加速度の閾値「1-1」は、その絶対値が急ブレーキに相当する加速度以上のものとするのが好ましい。あるいは、後方からの加速度を検出した場合に関しては、それが次に述べる閾値「2-1」の絶対値を超える絶対値を有する大きな加速度で無い限り、パルス駆動を行わず、通常点灯のままとする選択肢も有りえるが、安全のため、ここでは一旦パルス駆動に移行するものとする。 When the rear-end collision detection acceleration sensor is provided in the rear part of the automobile 200, if it is turned off by a minor rear-end collision, it is dangerous to continue to turn off in spite of being able to run on its own, considering nighttime, etc. It is unlikely that damage to the headlight located in front of the vehicle due to damage at the rear of the vehicle will be extinguished due to a sudden start (ie, a start that produces a sudden acceleration in the forward direction corresponding to the -j direction). In view of the inconvenience, the acceleration threshold value “1-1” when starting pulse driving based on the output of the acceleration sensor for collision detection is greater than the acceleration corresponding to sudden braking. Preferably. Alternatively, when acceleration from the rear is detected, pulse driving is not performed and the lamp is normally lit unless it is a large acceleration having an absolute value exceeding the absolute value of the threshold value “2-1” described below. Although there is an option to do this, for the sake of safety, it is assumed here that the operation is temporarily switched to pulse driving.
 また、消灯する閾値「2-1」は、その絶対値を衝突に相当する第2閾値以上のものとしておき、自動車200の後部のダメージが大きく、ヘッドランプ部101まで衝撃が伝わった事が予想される場合のみ消灯とする事も好ましい。 Further, the threshold value “2-1” for turning off the light is set to have an absolute value equal to or higher than the second threshold value corresponding to the collision, and the rear part of the automobile 200 is greatly damaged, so that the impact is transmitted to the headlamp part 101. It is also preferable to turn off the light only when it is done.
 あるいは、ヘッドランプ部101本体(筐体)に設ける加速度センサにマイナス(追突)方向の加速度の検出も行わせる事として、マイナス方向の絶対値が第2閾値を超える加速度を検出したら消灯する、あるいは追突による加速度のマイナス方向の絶対値が第1閾値を超える場合にパルス駆動動作を行っても良い。この場合の加速度検出によるレーザ光源1の駆動制御は、図28に示すタイミングチャートのようになる。 Alternatively, if the acceleration sensor provided in the main body (housing) of the headlamp unit 101 also detects the acceleration in the minus (rear impact) direction, the light is turned off when detecting the acceleration whose absolute value in the minus direction exceeds the second threshold value, or The pulse driving operation may be performed when the absolute value in the minus direction of the acceleration due to the rear-end collision exceeds the first threshold value. The drive control of the laser light source 1 by the acceleration detection in this case is as shown in the timing chart of FIG.
 図28(a)に示すように、急ブレーキ・急ハンドルに相当する加速度の検出極性と、後方からの追突に相当する加速度の検出極性とが、正負逆方向となっている。 As shown in FIG. 28 (a), the acceleration detection polarity corresponding to the sudden braking / steering handle and the acceleration detection polarity corresponding to the rear-end collision from the rear are in the positive and negative directions.
 ここで、レーザ光源1はレーザ駆動回路102によりレーザ駆動電流C0を供給されて点灯する。 Here, the laser light source 1 is supplied with the laser drive current C0 from the laser drive circuit 102 and is turned on.
 レーザ駆動回路102には、外部、例えばECU等の制御手段からレーザの点灯・消灯の指示、点灯時光量(若しくは電圧、電流)指示値の少なくとも1つを含むレーザ制御信号S0が与えられる。レーザ駆動回路102は、このレーザ制御信号S0に基づきレーザ光源1を駆動する。 The laser drive circuit 102 is supplied with a laser control signal S0 including at least one of an instruction for turning on / off the laser and an instruction value for lighting light quantity (or voltage or current) from an external control unit such as an ECU. The laser drive circuit 102 drives the laser light source 1 based on the laser control signal S0.
 上記ヘッドランプ部101の筐体310には、上述のように、加速度センサ3が設けられており、+方向の加速度が第1閾値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 The housing 310 of the headlamp unit 101 is provided with the acceleration sensor 3 as described above. When detecting that the acceleration in the + direction exceeds the first threshold value, the laser driving circuit 102 performs a certain period of time. The laser light source 1 is pulse-driven.
 次に、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、+方向の加速度が別の第2閾値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, when it is detected that the acceleration in the + direction exceeds another second threshold value during the pulse driving period resulting from exceeding the first threshold value, the laser driving circuit 102 detects the laser light source 1. Stop driving and turn it off.
 なお、上記の第1閾値を超えた事に起因するパルス駆動の期間中に、当該第1閾値を超える加速度を検出しなくなったら、通常点灯に復帰させる。 When acceleration exceeding the first threshold is not detected during the pulse driving period due to exceeding the first threshold, the normal lighting is restored.
 また、加速度センサ3によってマイナス方向の加速度が検出され、その検出値の絶対値が第1閾値の絶対値、または閾値「1-1」の絶対値を超えた事を検出すると、レーザ駆動回路102は、一定時間、レーザ光源1をパルス駆動する。 When the acceleration sensor 3 detects the acceleration in the negative direction and the absolute value of the detected value exceeds the absolute value of the first threshold value or the absolute value of the threshold value “1-1”, the laser driving circuit 102 is detected. The pulsed drive of the laser light source 1 for a certain time.
 次に、検出した加速度の絶対値が上記の第1閾値の絶対値または閾値「1-1」の絶対値を超えた事に起因するパルス駆動の期間中に、マイナス方向の加速度の絶対値が別の第2閾値の絶対値若しくは閾値「2-1」の絶対値を超えた事を検出すると、レーザ駆動回路102は、レーザ光源1の駆動を停止し、消灯させる。 Next, during the pulse drive period resulting from the absolute value of the detected acceleration exceeding the absolute value of the first threshold or the threshold “1-1”, the absolute value of the acceleration in the negative direction is When it is detected that the absolute value of another second threshold value or the absolute value of the threshold value “2-1” has been exceeded, the laser driving circuit 102 stops driving the laser light source 1 and turns it off.
 なお、上記の第1閾値の絶対値または閾値「1-1」の絶対値を超えた事に起因するパルス駆動の期間中に、当該第1閾値の絶対値または閾値「1-1」の絶対値を超える絶対値を有する加速度を検出しなくなったら、通常点灯に復帰させる。 The absolute value of the first threshold value or the absolute value of the threshold value “1-1” during the pulse driving period due to exceeding the absolute value of the first threshold value or the threshold value “1-1”. When acceleration having an absolute value exceeding the value is no longer detected, normal lighting is restored.
 (作用・効果)
 本実施例8に係る照明装置100では、他車による後方からの追突に際しても、ヘッドランプ破損によるレーザ光漏れを防止する事を可能にしている。
(Action / Effect)
In the illumination device 100 according to the eighth embodiment, it is possible to prevent laser light leakage due to headlamp breakage even when a rear-end collision is caused by another vehicle.
 ここまでの実施例1~8では、事故に伴う自車の前方への衝突若しくは自車の後方への追突時、または事故回避時の急ブレーキによって検出される車両の前後方向の加速度に応じて、レーザ光源1をパルス駆動にしたり、停止させたりしていたが、以下の実施例9では、自車に対する他車の側面衝突、自車のスリップによる物体への側面衝突、事故回避のための急ハンドルによって検出される車両の側面方向の加速度に応じて、レーザ光源1をパルス駆動にしたり、停止させたりする例について説明する。 In the first to eighth embodiments so far, depending on the acceleration in the longitudinal direction of the vehicle detected by the sudden braking at the time of collision of the own vehicle due to the accident or the rear-end collision of the own vehicle or avoiding the accident. The laser light source 1 has been pulse-driven or stopped. However, in Example 9 below, the side collision of the other vehicle against the own vehicle, the side collision to the object due to the slip of the own vehicle, and the accident avoidance An example will be described in which the laser light source 1 is pulse-driven or stopped according to the acceleration in the lateral direction of the vehicle detected by the sudden handle.
 (実施例9)
 図29は、実施例9に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~8にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
Example 9
FIG. 29 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the ninth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to eighth embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例9に係る照明装置100のヘッドランプ部101は、図29に示すように、前記実施例8のヘッドランプ部101と同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the ninth embodiment has the same structure as the headlamp unit 101 of the eighth embodiment, as shown in FIG.
 したがって、基本的には実施例8と同様の制御を行うが、本実施例では、加速度センサ3に車両の側面方向313の加速度の検出を行うようにもしている。 Therefore, basically, the same control as in the eighth embodiment is performed, but in this embodiment, the acceleration sensor 3 detects the acceleration in the lateral direction 313 of the vehicle.
 つまり、事故を回避しようとしている急ハンドル相当の加速度(横方向の第1閾値)を検出すれば、ヘッドランプ部101をパルス駆動に切り替える。走行時のスピンについても同様に横方向の第1閾値以上の加速度を検出すれば、パルス駆動に移行する。なお、通常の点灯状態でもパルス駆動を行っていても構わない。これは他の実施例に置いても同様である。 That is, if the acceleration equivalent to the steep steering wheel (first threshold value in the lateral direction) that is going to avoid an accident is detected, the headlamp unit 101 is switched to pulse driving. Similarly, if the acceleration in the lateral direction is equal to or greater than the first threshold value for the spin during traveling, the process shifts to pulse driving. Note that pulse driving may be performed even in a normal lighting state. The same applies to other embodiments.
 さらに、側面衝突相当の加速度に相当する、横方向の第2閾値を超える加速度を検出すれば、レーザ駆動回路102はレーザ光源1へのレーザ駆動電流C0を遮断して消灯させる。 Further, when an acceleration exceeding the second threshold value in the lateral direction corresponding to the acceleration equivalent to the side collision is detected, the laser driving circuit 102 cuts off the laser driving current C0 to the laser light source 1 and turns it off.
 また、本実施例では、ここまでの実施例の様に、車両の前後方向(衝突、追突)の検出を同時に行い、前後若しくは横方向の加速度に応じて、何れか重大な状態と判断したら、重大な方の状態に従った動作を行う。 Further, in this embodiment, as in the embodiments so far, the detection of the longitudinal direction of the vehicle (collision, rear-end collision) is performed at the same time, and if it is determined that it is in any critical state according to the longitudinal or lateral acceleration, Perform actions according to the critical condition.
 例えば、車両前後方向の加速度は小さく第1閾値未満だが、横方向加速度が急ハンドル相当の横方向第1閾値を超えるなら消灯準備段階としてのパルス駆動、横方向加速度が小さくても前後方向加速度が第2閾値を超えると消灯するように制御することが考えられる。 For example, if the acceleration in the vehicle longitudinal direction is small and less than the first threshold, but the lateral acceleration exceeds the lateral first threshold equivalent to a steep handle, pulse driving as a light-off preparation stage, the longitudinal acceleration is low even if the lateral acceleration is small. It is conceivable to perform control so that the light is extinguished when the second threshold value is exceeded.
 (作用・効果)
 本実施例9に係る照明装置100によれば、他車による側面からの追突、物体への側面衝突に際しても、ヘッドランプ部101破損によるレーザ光漏れを防止する事が出来る。
(Action / Effect)
According to the illumination device 100 according to the ninth embodiment, it is possible to prevent laser light leakage due to breakage of the headlamp unit 101 even in the case of a rear-end collision from another vehicle or a side collision with an object.
 ここまでの実施例1~9では、事故に伴う自車の前方への衝突若しくは自車の後方への追突時、または事故回避時の急ブレーキによって検出される車両の前後方向の加速度、自車に対する他車の側面衝突、自車のスリップによる物体への側面衝突、事故回避のための急ハンドルによって検出される車両の側面方向の加速度に応じて、レーザ光源1をパルス駆動にしたり、停止させたりする例について説明したが、以下の実施例10では、自車の転落や乗り上げなどによって検出される車両の上下方向の加速度に応じて、レーザ光源1をパルス駆動にしたり、停止させたりする例について説明する。 In Examples 1 to 9 so far, the acceleration in the longitudinal direction of the vehicle detected by the sudden braking at the time of collision of the own vehicle due to an accident or the rearward collision of the own vehicle or when the accident is avoided, the own vehicle The laser light source 1 is pulse-driven or stopped according to the side collision of the other vehicle against the vehicle, the side collision to the object due to the slip of the own vehicle, the acceleration in the side direction of the vehicle detected by the sudden handle for avoiding the accident. In Example 10 below, an example in which the laser light source 1 is pulse-driven or stopped according to acceleration in the vertical direction of the vehicle detected by the vehicle falling or riding on the vehicle is described. Will be described.
 (実施例10)
 図30は、実施例10に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~9にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 10)
FIG. 30 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the tenth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to ninth embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例10に係る照明装置100のヘッドランプ部101は、図30に示すように、前記実施例8のヘッドランプ部101と同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the tenth embodiment has the same structure as the headlamp unit 101 of the eighth embodiment as shown in FIG.
 したがって、基本的には実施例8と同様の制御を行うが、本実施例では、加速度センサ3に車両の上下方向314の加速度の検出を行うようにもしている。 Therefore, basically, the same control as that in the eighth embodiment is performed, but in this embodiment, the acceleration sensor 3 detects the acceleration in the vertical direction 314 of the vehicle.
 本実施例では、車両の上下方向(図でも上下方向)の加速度が大きな値(ある閾値よりも大きい値)の時は転落若しくは落下物体の上方からの衝突(どちらも破壊的)と想定でき、また、上記加速度が小さな値(ある閾値よりも小さい値)の時は段差や路面凹凸に起因するものが想定でき、前者を検出した際はレーザ光源1の消灯、後者の場合はレーザ光源1をパルス駆動するように制御する。 In this embodiment, when the acceleration in the vertical direction of the vehicle (the vertical direction in the figure) is a large value (a value larger than a certain threshold value), it can be assumed that the vehicle falls or collides from above the falling object (both are destructive). When the acceleration is a small value (a value smaller than a certain threshold value), it can be assumed that the acceleration is caused by a step or road surface unevenness. When the former is detected, the laser light source 1 is turned off, and in the latter case, the laser light source 1 is turned off. Control to pulse drive.
 例えば、図30に示すように、自動車200が道路400の段差400aから落下した事故を想定すると、1G前後の下方向の加速度を検出すれば自由落下の可能性が想定されるので、パルス駆動で衝撃に備え消灯の準備段階に入る。つまり、レーザ光源1をパルス駆動する。 For example, as shown in FIG. 30, assuming an accident in which the automobile 200 falls from the step 400a of the road 400, if a downward acceleration around 1G is detected, the possibility of free fall is assumed. In preparation for impact, enter the light-off preparation stage. That is, the laser light source 1 is pulse-driven.
 また、転落時の衝撃に関しては、上記の落下時よりも高い加速度が加わると想定されヘッドランプ部101本体の損傷が疑われるので、レーザ光源1を即時消灯する。 Also, regarding the impact at the time of falling, it is assumed that higher acceleration is applied than at the time of dropping, and the head lamp unit 101 main body is suspected to be damaged, so the laser light source 1 is immediately turned off.
 また、自車に対する落下物体の上方衝突も同様に、ヘッドランプ部101本体に損傷が及ぶ加速度を検知したらレーザ光源1を消灯する。この場合には、パルス駆動の必要も時間も無い。 Similarly, in the upward collision of the falling object against the own vehicle, the laser light source 1 is turned off when the acceleration that damages the main body of the headlamp unit 101 is detected. In this case, there is no need or time for pulse driving.
 さらに、荒れた路面の走行や段差については、上下方向の第1閾値を超える(但し上下方向の衝撃(消灯)加速度である第2閾値を超えない)加速度が、一定の時間内に予め定められた回数以内発生した場合は、その第1閾値を超えた事を検出した時点から毎回、一定の時間だけ「消灯を前提とした」準備段階として、一定の時間パルス駆動を行う。 Furthermore, for a rough road surface or level difference, an acceleration that exceeds the first threshold in the vertical direction (but does not exceed the second threshold that is the impact (light-off) acceleration in the vertical direction) is determined in advance within a certain time. If it occurs within a predetermined number of times, pulse driving is performed for a certain period of time as a preparatory stage "assuming extinction" for a certain period of time each time it is detected that the first threshold value has been exceeded.
 また、荒れた路面の走行や段差について、上下方向の第1閾値を超える(上下方向の第2閾値相当の加速度を超えない)加速度が、一定の時間内に予め定められた回数以上発生した場合は、その定められた回数の最後のパルス駆動終了時から、以降は、その第1閾値を超えても通常点灯状態を維持する。但し、第2閾値を超える加速度を検出した場合は当然ながら消灯する。 In addition, when driving on rough roads or steps, acceleration exceeding the first threshold in the vertical direction (not exceeding the acceleration equivalent to the second threshold in the vertical direction) occurs more than a predetermined number of times within a certain period of time. Since the end of the last pulse driving of the predetermined number of times, the normal lighting state is maintained even after the first threshold value is exceeded. However, when acceleration exceeding the second threshold is detected, the light is naturally turned off.
 若しくは、上下方向の第1閾値を超える加速度がほぼ一定周期で検出される場合、ほぼ一定周期の発生であると検出出来た場合には、それを検出した段階で消灯準備のためのパルス駆動を止め通常点灯に移行する。 Alternatively, when acceleration exceeding the first threshold value in the vertical direction is detected at a substantially constant cycle, if it can be detected that the occurrence of a substantially constant cycle is detected, pulse driving for preparing for extinction is performed when it is detected. Stop and shift to normal lighting.
 上下方向は、車のサスペンション等で衝撃は結構緩和される筈なので、加速度センサが大きな加速度を検出した場合には、転落・落下物との衝突など、本当に大きな事故の場合と想定出来るので消灯する。換言すれば、上下方向の閾値は前後・側面方向より鈍感な大きな値であっても良い。 In the up and down direction, the impact should be relieved considerably by the suspension of the car etc., so if the acceleration sensor detects a large acceleration, it can be assumed that it is a really big accident such as a fall or a collision with a falling object, so it turns off . In other words, the threshold value in the vertical direction may be a large value that is less sensitive than the front-back and side directions.
 (作用・効果)
 本実施例10に係る照明装置100によれば、落下によるヘッドライト破損によるレーザ光漏れを防止する事が出来る。
(Action / Effect)
According to the illumination device 100 according to the tenth embodiment, it is possible to prevent laser light leakage due to headlight breakage due to falling.
 なお、上下方向の加速度を検出する制御は必要に応じて設定できるようにするのが好ましい。例えば、荒地では、予め設定した閾値よりも大きい上下方向の加速度を検出するかもしれないが、その場合、事故でない可能性が高い。したがって、荒地を走行する場合には、上下方向の加速度を検出する制御を行わない、若しくは検出加速度の閾値を高める様にして、レーザ光源1を強制的に消灯しにくいようにすることも可能になる。 Note that it is preferable that the control for detecting the acceleration in the vertical direction can be set as necessary. For example, in wasteland, an acceleration in the vertical direction that is larger than a preset threshold value may be detected, but in that case, there is a high possibility that it is not an accident. Therefore, when traveling on rough land, it is possible to make it difficult to forcibly turn off the laser light source 1 by not performing control for detecting the acceleration in the vertical direction or by increasing the threshold value of the detected acceleration. Become.
 ここまでの実施例1~10では、加速度センサの加速度検出方向として、車両の前後・側方・上下(言わばx、y、z)方向について記したが、以下の実施例11では、車両の前後方向より傾けた方向に加速度センサ検出軸を設定した例について説明する。 In Examples 1 to 10 so far, the acceleration detection direction of the acceleration sensor has been described with respect to the front / rear / side / up / down (in other words, x, y, z) directions of the vehicle. An example in which the acceleration sensor detection axis is set in a direction inclined from the direction will be described.
 (実施例11)
 図31は、実施例11に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~10にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 11)
FIG. 31 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the eleventh embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first to tenth embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施例11に係る照明装置100のヘッドランプ部101は、図31に示すように、前記実施例8のヘッドランプ部101と同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the eleventh embodiment has the same structure as the headlamp unit 101 of the eighth embodiment as shown in FIG.
 本実施例では、図31に示すように、自動車200の前後方向より傾けた方向に加速度センサ3の検出軸方向を設定している。 In this embodiment, as shown in FIG. 31, the detection axis direction of the acceleration sensor 3 is set in a direction inclined from the front-rear direction of the automobile 200.
 上記加速度センサ3における検出軸方向を、例えば、車両を水平面に配置した場合に検出軸が水平になるように設定し、かつ、車両前後方向から45度傾けて設定すると、検出感度は、検出軸を前後若しくは側面方向に合わせた場合に比べて「1/√2」に低下するが、一つの加速度センサ3で前後・側面方向の両方の加速度検出が可能である。 For example, when the detection axis direction in the acceleration sensor 3 is set so that the detection axis is horizontal when the vehicle is arranged on a horizontal plane and is set to be inclined by 45 degrees from the vehicle front-rear direction, the detection sensitivity becomes the detection axis. Is reduced to “1 / √2” as compared with the case where the value is adjusted in the front-rear direction or the side direction.
 加速度センサにより検出される加速度に応じたレーザ光源1の点灯制御については、これまでの実施例と同様であるので、説明は省略する。 Since the lighting control of the laser light source 1 according to the acceleration detected by the acceleration sensor is the same as in the previous embodiments, the description thereof is omitted.
 (作用・効果)
 本実施例11に係る照明装置100によれば、センサ数を削減出来、センサ系の低コスト、故障率低下に繋がるという効果を奏する。
(Action / Effect)
According to the illuminating device 100 which concerns on the present Example 11, the number of sensors can be reduced, and there exists an effect of leading to the low cost of a sensor system and a failure rate fall.
 ここで、加速度センサ3の感度が十分高いものであれば、加速度センサを検出軸方向毎に設けた場合と同程度の検出感度を得ることが可能となる。したがって、加速度センサを検出軸方向毎に設けた場合と同程度の検出感度を維持したまま、センサ数を減らして低コスト化が図れ、センサの故障確率も減るというメリットを有する。 Here, if the sensitivity of the acceleration sensor 3 is sufficiently high, it is possible to obtain the same detection sensitivity as when the acceleration sensor is provided for each detection axis direction. Therefore, there are advantages that the number of sensors can be reduced and the cost can be reduced and the failure probability of the sensor can be reduced while maintaining the same detection sensitivity as when the acceleration sensor is provided for each detection axis direction.
  (第1閾値、第2閾値)
 (1)第1閾値
 第1閾値は、消灯準備のための閾値、すなわち急ブレーキ、急ハンドル関連に関連する閾値であり、好ましい数値の例としては0.2G以上、上限は2Gである。下限値としての0.2Gと言う数値は、時速60kmの走行から8.5秒余りで停止するまでの加速度であり、急ブレーキと考えられる下限近い値である。または、0.2Gは、やや強めのブレーキに基づく減速の加速度であると考えられる。若しくは、0.2Gは、時速30kmで半径約35mの円運動を行う際の向心加速度である。0.2Gより緩やかな加速度で消灯準備動作(パルス駆動)を行うと過敏な反応となり得るため、0.2Gを下限値として設定することが好ましい。
(First threshold, second threshold)
(1) 1st threshold The 1st threshold is a threshold for light extinction preparation, that is, a threshold related to sudden braking and sudden steering. Examples of preferable numerical values are 0.2G or more, and the upper limit is 2G. The numerical value of 0.2 G as the lower limit value is an acceleration from the traveling of 60 km / h to the stop in about 8.5 seconds, which is a value close to the lower limit considered to be a sudden brake. Alternatively, 0.2 G is considered to be a deceleration acceleration based on a slightly stronger brake. Alternatively, 0.2 G is the centripetal acceleration when performing a circular motion with a radius of about 35 m at a speed of 30 km per hour. If a light extinguishing preparation operation (pulse drive) is performed at an acceleration slower than 0.2 G, a sensitive reaction can be caused. Therefore, it is preferable to set 0.2 G as the lower limit value.
 そして上限2Gは、時速60kmから0.85秒で停止する様なブレーキをかけた場合の加速度、若しくは時速60kmで半径16.7mの円を描いて回転する場合の向心加速度に相当し、何れの場合の加速度も通常考えられる事故回避の急な操作の加速度の上限若しくはそれを幾分超える値と考えられるためである。安全側を考えるなら、この第1閾値は低い方が望ましい。 The upper limit 2G corresponds to acceleration when a brake is applied to stop at 0.85 seconds from 60 km / h, or centripetal acceleration when rotating in a circle with a radius of 16.7 m at 60 km / h. This is because the acceleration in this case is also considered to be the upper limit of the acceleration of sudden operation for avoiding accidents that is normally considered or a value slightly exceeding it. If the safety side is considered, it is desirable that the first threshold value is low.
 (1-1)閾値「1-1」
 実施例8で言及した、後方からの追突に関する閾値「1-1」は、急ブレーキに相当する加速度以上である事が好ましい。これは第1閾値の考え方、及び数値を援用することが出来、その絶対値として第1閾値と同じく下限を0.2G,上限を2Gと設定するのが好ましい。但し実際の設定値は第1閾値と同一である必要は必ずしも無く、例えば第1閾値を0.2G、閾値「1-1」を0.3G相当のマイナス方向閾値としても構わない。
(1-1) Threshold value “1-1”
The threshold “1-1” relating to the rear-end collision mentioned in the eighth embodiment is preferably equal to or higher than the acceleration corresponding to the sudden braking. The concept of the first threshold and a numerical value can be used for this, and it is preferable to set the lower limit to 0.2 G and the upper limit to 2 G as the first threshold as absolute values. However, the actual set value is not necessarily the same as the first threshold value. For example, the first threshold value may be 0.2 G, and the threshold value “1-1” may be a negative direction threshold value corresponding to 0.3 G.
 (2)第2閾値
 第2閾値は、衝突検出加速度のための閾値であり、第1閾値以上の任意の加速度であればよく、最低でも1Gが好ましい。
(2) Second Threshold The second threshold is a threshold for collision detection acceleration, and may be any acceleration equal to or higher than the first threshold, and is preferably at least 1G.
 これは所謂本来の自動車事故の他、例えば緩やかな斜面で車両が低速で動き出して電柱などの物体に衝突する場合なども想定したものである。即ち運動量の公式「f×t=m×v」(f:衝突の力、t:衝突の時間、m:車両の質量、v:車両の速度)において、
 m=1000kg、v=5km/h=1.39m/s
と想定すれば、これが1Gの加速度で減速して停止するまでの時間は、
 t=1.39m/s÷9.8m/s=0.142秒である。
In addition to the so-called original automobile accident, this is also assumed, for example, when the vehicle starts moving at a low speed on a gentle slope and collides with an object such as a utility pole. That is, in the formula of momentum “f × t = m × v” (f: force of collision, t: time of collision, m: vehicle mass, v: vehicle speed)
m = 1000 kg, v = 5 km / h = 1.39 m / s
Assuming that, the time until this stops after decelerating at 1G acceleration is
t = 1.39 m / s ÷ 9.8 m / s 2 = 0.142 seconds.
 車両が停止するまでに受ける力は単純計算で
 f=m×v÷t=1000kg×1.39m/s÷0.142秒≒9789Nである。
The force received until the vehicle stops is f = m × v ÷ t = 1000 kg × 1.39 m / s ÷ 0.142 seconds≈9789 N.
 これはほぼ1000kgf相当の力であるから、ヘッドライトの破壊は恐らく免れず、下限値として、また消灯準備のための閾値の設定基準となる、急ブレーキをかけた場合の加速度を上回る加速度としての位置付けを鑑みても、適切な値である。 Since this is a force equivalent to about 1000 kgf, the destruction of the headlight is probably inevitable, and as an acceleration exceeding the acceleration when sudden braking is applied as the lower limit value and the threshold setting standard for turning off the light. Even in consideration of positioning, it is an appropriate value.
 第2閾値の上限値は特に数値を定めないが、加速度センサ3のセンサ感度が敏感過ぎ、実装上誤動作が問題になる場合には、第2閾値を10G~数10G程度に高めても良い。非特許文献等で示されている衝突事故時の加速度、エアバッグの動作加速度が10G単位である事を鑑みると、第2閾値を上記10G単位の値とする事も適切である。 The upper limit value of the second threshold value is not particularly limited. However, if the sensor sensitivity of the acceleration sensor 3 is too sensitive and a malfunction in mounting becomes a problem, the second threshold value may be increased to about 10 G to several tens of G. Considering that the acceleration at the time of a collision accident and the operation acceleration of the airbag shown in non-patent literature are 10 G units, it is also appropriate to set the second threshold value to the value of 10 G units.
 ここで、上記第1閾値、第2閾値の上限値や下限値の好ましい値について説明する。 Here, preferable values of the upper limit value and the lower limit value of the first threshold value and the second threshold value will be described.
 非特許文献1(「平成20年度 映像記録型ドライブレコーダ活用モデル事業 調査報告書」、pp.23、平成21年3月、国土交通省自動車交通局)の17頁に記載の事項から、自動車の前後方向0.2G以上、横方向0.3G以上の加速度が検出されると、一般に、運転者がヒヤリハット、即ち事故に繋がる可能性があった事を認識することから、第1閾値の下限値は上述したように、0.2G以上にするのが好ましい。 From the matters described on page 17 of Non-Patent Document 1 (“2008 Video Recording Drive Recorder Utilization Model Project Research Report”, pp. 23, March 2009, Ministry of Land, Infrastructure, Transport and Tourism, Japan) When acceleration of 0.2G or more in the front-rear direction and 0.3G or more in the lateral direction is detected, the driver generally recognizes that there was a possibility of a near-miss, that is, an accident. As mentioned above, it is preferable to set it to 0.2 G or more.
 また、非特許文献2(「ドライブレコーダー」、富士通技報告、2008年7月号)の381頁には、衝突時の加速度例として数十G単位、20km/hからの急ブレーキ加速度が1G近い事が記載されているので、上記第2閾値の上限値は上述したように、数10G程度にするのが好ましい。 Also, page 381 of Non-Patent Document 2 ("Drive Recorder", Fujitsu Technical Report, July 2008 issue) shows an example of acceleration at the time of collision. The sudden braking acceleration from 20km / h is close to 1G. As described above, the upper limit value of the second threshold value is preferably about several tens of grams as described above.
 さらに、非特許文献3(「映像収録型ドライブレコーダーにより運転者を科学的に分析する: 2.フィールドテストによるデータ収集」、JAMA MAGAZINE 2005年4月号、日本自動車工業会)の2/4頁には、追突時の急ブレーキとして約4~6〔m/s〕(0.4~0.6G)、衝突時に50〔m/s〕(5G)程度に達しているグラフがあるので、この値を参考に、少なくとも0.4Gをカバーする低い値として、第1閾値の下限知を0.2Gとするのが好ましい。また、衝突の際の加速度は低くて5G程度なので、消灯準備を行う第1閾値の上限はこれより低いものである事が好ましいので、上述のように、2Gとするのが好ましい。 Furthermore, page 2/4 of Non-Patent Document 3 ("Scientific analysis of drivers using video recording drive recorder: 2. Data collection by field test", JAMA MAGAZINE April 2005 issue, Japan Automobile Manufacturers Association) There is a graph that shows about 4-6 [m / s 2 ] (0.4-0.6G) as a sudden brake at the time of rear-end collision and about 50 [m / s 2 ] (5G) at the time of collision. As a reference, it is preferable to set the lower limit knowledge of the first threshold to 0.2G as a low value that covers at least 0.4G. Further, since the acceleration at the time of the collision is low and about 5G, it is preferable that the upper limit of the first threshold value for preparing for extinguishing is lower than this, so 2G is preferable as described above.
 逆に、衝突検知加速度、第2閾値の下限値は、上記消灯準備の第1閾値の上限以上たる必要がある(そうでないと一寸ブレーキが強いと直ぐ完全消灯してしまう)。 Conversely, the lower limit value of the collision detection acceleration and the second threshold value must be equal to or higher than the upper limit of the first threshold value for preparation for extinguishing the light (otherwise, if the one-inch brake is strong, it will be completely extinguished immediately).
 一方で衝突時の加速度は上記非特許文献2に記載の通り、数十Gのものもあるので、上限は数十Gでも良い。 On the other hand, as described in Non-Patent Document 2, the acceleration at the time of collision may be several tens of G, so the upper limit may be several tens of G.
 なお、上記の第1閾値の上限2Gと、第2閾値の下限1Gとでは数値範囲が重複するが、設計時にはまず小さな加速度でパルス駆動、大きな加速度で消灯、とするので、両者の数値が逆転、即ち第1閾値の具体的設定値が第2閾値の設定値を上回る事は通常考えられない。上記数値範囲はあくまでも設定の範囲として好ましい値を挙げていることに注意が必要である。 The upper limit 2G of the first threshold value and the lower limit 1G of the second threshold value have overlapping numerical ranges, but at the time of designing, the pulse drive is first performed with a small acceleration and the large acceleration is extinguished. That is, it is not normally considered that the specific set value of the first threshold exceeds the set value of the second threshold. It should be noted that the above numerical range is a preferable value as a setting range.
 (2-1)閾値「2-1」
 実施例8で言及した、後方からの追突に関する閾値「2-1」の絶対値は、追突に相当する加速度またはそれ以上である事が望ましい。これは第2閾値の考え方、及び数値を援用することが出来、第2閾値と同じくその絶対値の下限を1G、絶対値の上限は10G単位の値とする。但し実際の設定値は第2閾値と絶対値が同一である必要は必ずしも無く、例えば第2閾値を絶対値2Gのプラス方向閾値、閾値「2-1」を絶対値4G相当のマイナス方向閾値としても構わない。
(2-1) Threshold value “2-1”
The absolute value of the threshold value “2-1” regarding the rear-end collision mentioned in the eighth embodiment is desirably an acceleration corresponding to the rear-end collision or more. The concept of the second threshold and a numerical value can be used for this, and the lower limit of the absolute value is set to 1G and the upper limit of the absolute value is set to a value of 10G as in the second threshold. However, the actual setting value does not necessarily have the same absolute value as the second threshold value. For example, the second threshold value is set as the positive direction threshold value of the absolute value 2G, and the threshold value “2-1” is set as the negative direction threshold value corresponding to the absolute value 4G. It doesn't matter.
  (パルス駆動の周波数、波高値、デューティ)
 (3)パルス駆動の周波数
 パルス駆動の周波数の下限周波数は、好ましくは、東日本地域の非インバータタイプの蛍光灯の点滅(ちらつきが知覚出来ない程度の)周波数である、50Hz×2=100Hz程度が好ましい。これは後述の実施例15中の説明において、一時的消灯時間の最短値の数値限定として掲げている、高速走行時の不点灯時間の計算とも合致しており、高速走行(例えば時速100km)で上記100Hzの逆数である、10msで点滅(パルス駆動)したとしても、その時間内の走行距離は最短で27cmにとどまり、高速運転時からの急ブレーキに際しても視認性をそれ程落とさなくて済む。無論これより低く、例えば50Hz程度のものとしても、ちらつきは殆ど知覚されないので、この程度にしても構わない。
(Pulse drive frequency, peak value, duty)
(3) Pulse drive frequency The lower limit frequency of the pulse drive frequency is preferably about 50Hz × 2 = 100Hz, which is the frequency of flickering of non-inverter type fluorescent lamps in East Japan (so that flicker is not perceivable). preferable. This is consistent with the calculation of the non-lighting time at high speed running, which is listed as a numerical limitation of the minimum value of the temporary turn-off time in the description in Example 15 to be described later, and at high speed running (for example, 100 km / h). Even if it flashes (pulse drive) at 10 ms, which is the reciprocal of 100 Hz, the travel distance within that time is only 27 cm at the shortest, and visibility is not reduced so much even during sudden braking from high-speed driving. Of course, even if it is lower than this, for example, about 50 Hz, flicker is hardly perceived.
 パルス駆動の周波数の上限周波数については、不必要に高める事は無く、具体的には、普通のパワーMOSFETにおけるスイッチング速度の上限がおよそ100ns程度であるので、この時間の2倍の逆数である、5MHz程度に上限値を設定するのが好ましい。もっとも高速で消費電力の少ない素子・回路を用いる事が出来る場合には、この上限値は更に高めても良い。 The upper limit frequency of the pulse drive frequency is not increased unnecessarily. Specifically, the upper limit of the switching speed in a normal power MOSFET is about 100 ns, and is the reciprocal of twice this time. It is preferable to set the upper limit to about 5 MHz. This upper limit value may be further increased when an element / circuit that consumes the least amount of power and can be used.
 (4)パルス駆動の波高値
 パルス駆動の波高値は、通常点灯と同等であっても、平均的な明るさを出来るだけ維持するためにレーザを損傷しない範囲で大電力としても良いので、レーザを損傷しない範囲で大電力に相当する波高値が好ましい。
(4) Pulse driving peak value Even if the pulse driving peak value is equivalent to that of normal lighting, high power may be used as long as the laser is not damaged in order to maintain the average brightness as much as possible. A peak value corresponding to a large electric power is preferable as long as it is not damaged.
 (5)パルス駆動の際のデューティ値(1周期中のON時間比率)
 デューティ値は、0%(完全消灯)あるいは100%(完全点灯)で無ければ数値は幾らでも良い。但し結果的にデューティ値が0%となる事はあり得る。具体的には第1閾値を超える加速度を検出してレーザをパルス駆動に移行する、その最初の消灯タイミングで衝突に相当する第2閾値を超える加速度を検出し、そのまま消灯に至る様な場合である。この様な動作は本発明の範疇であるので、例外として存在し、また認められるべきものである。デューティ値が高いとパルス駆動での平均光量の低下が(同じ波高値なら)少なくなるが、引き続いて事故が発生した場合にレーザを消灯している確率が低くなる。両者を勘案して50%±40%の範疇で選択、若しくは変化させても良い。周囲環境が暗い時には人間の瞳孔も拡張しているので、デューティを低くして事故発生時のレーザ消灯確率を高める事は1つの望ましい設定・選択である。
(5) Duty value for pulse drive (ON time ratio in one cycle)
As long as the duty value is not 0% (completely turned off) or 100% (completely turned on), any number can be used. However, the duty value may be 0% as a result. Specifically, when the acceleration exceeding the first threshold is detected and the laser is shifted to pulse driving, the acceleration exceeding the second threshold corresponding to the collision is detected at the first extinction timing, and the extinction is continued as it is. is there. Since such operations are within the scope of the present invention, they exist as exceptions and should be recognized. When the duty value is high, the decrease in the average light amount by pulse driving is reduced (if the same peak value), but the probability that the laser is turned off when an accident occurs subsequently decreases. Considering both, it may be selected or changed within the range of 50% ± 40%. Since the human pupil is also expanded when the surrounding environment is dark, it is one desirable setting / selection to reduce the duty and increase the probability of turning off the laser when an accident occurs.
 (第1閾値検出後、第2閾値を検出しない際の、レーザをパルス駆動する最大時間とパルス駆動する最小時間)
 レーザをパルス駆動する時間とは、急ブレーキ・急ハンドルを継続して行い、しかも衝突を回避出来る時間をいう。これは、最低の加速度の「急」ブレーキを踏んだ時の最大制動時間に相当する。この時間内に加速度が第1閾値を下回れば、事故が回避されたとしてその時点で通常点灯に復帰する。第1閾値を下回らない場合はパルス駆動を継続する。
(Maximum time to drive the laser and minimum time to drive the pulse when the second threshold is not detected after the first threshold is detected)
The time for which the laser is pulse-driven means a time during which sudden braking and sudden steering are continued and collision can be avoided. This corresponds to the maximum braking time when the “accelerated” brake with the lowest acceleration is depressed. If the acceleration falls below the first threshold within this time, it is assumed that an accident has been avoided and normal lighting is restored at that time. If it does not fall below the first threshold, pulse driving is continued.
 前後方向の加速度
 車両の最高速度をVmax、急ブレーキと見なす加速度の最低値をGminとすれば、車両の前後方向の加速度に関しては
 Tmax=Vmax÷Gmin という式が成り立ち、この値(Tmax)をパルス駆動の最大時間とする。
Acceleration in the longitudinal direction If the maximum speed of the vehicle is Vmax and the minimum acceleration value that is regarded as a sudden brake is Gmin, the following equation is established for the acceleration in the longitudinal direction of the vehicle: Tmax = Vmax ÷ Gmin. The maximum drive time.
 例えばVmax=360km/h、急ブレーキ加速度の最低値を0.2Gとすれば、Tmax=(360×10 [m/h]÷3600[s/h])÷(0.2[G]×9.8[m/s2/G])=51.2[s]である。 For example, if Vmax = 360km / h and the minimum value of sudden braking acceleration is 0.2G, Tmax = (360 × 10 3 [m / h] ÷ 3600 [s / h]) ÷ (0.2 [G] × 9.8 [m / s 2 /G])=51.2 [s].
 時速360kmと言う、ある意味極端な高速走行状態から、上述した第1閾値の下限である加速度で停止に至った場合の時間が上記の値(51.2[s])である。但しこの様な長時間、事故回避のために急ブレーキの下限とも言える様な軽度なブレーキ操作を行い続ける事は極めて稀であると考えられるので、上記数値はあくまでもパルス駆動を行う場合の最大時間であり、これより短時間でパルス駆動を終えて、通常の点灯(若しくは事故時には消灯)に移行しても当然ながら構わない。 The time when the vehicle is stopped at an acceleration that is the lower limit of the first threshold value described above from an extremely high-speed traveling state, which is 360 km / h, is the above value (51.2 [s]). However, since it is considered extremely rare to continue to perform a light brake operation that can be said to be the lower limit of sudden braking to avoid accidents for such a long time, the above figures are only the maximum time for pulse driving Of course, it does not matter if the pulse driving is finished in a shorter time than this, and the normal lighting (or extinguishing in the event of an accident) is shifted to.
 なおパルス駆動を行う最小時間は例えば0.85秒から8.5秒と考える。これは前述の急ブレーキの第1閾値に関して計算した値であり、妥当な範囲の一つとして考えられる数値である。但し実施例10において説明した様に、荒地の走行等で上下方向の第1閾値を超過する振動が継続する場合には、パルス駆動から連続駆動に切り替える事も考えられるので、必ずしもこれに限られない。また上記数値範囲を外れても構わず、例えばパルス駆動の1周期分を最低限度としても良い。但し、第2閾値を超過した場合の消灯は、上記の場合よりも優先し、パルス駆動の最初の点灯前に消灯を確定させる事が好ましい。 Note that the minimum time for pulse driving is considered to be, for example, 0.85 seconds to 8.5 seconds. This is a value calculated with respect to the first threshold value of the aforementioned sudden braking, and is a numerical value considered as one of the appropriate ranges. However, as described in the tenth embodiment, when the vibration exceeding the first threshold value in the vertical direction is continued due to traveling on rough land, it is possible to switch from pulse driving to continuous driving. Absent. Further, the numerical value range may be out of the range, and for example, one cycle of pulse driving may be set as the minimum level. However, it is preferable that the turn-off when the second threshold is exceeded has priority over the above case and the turn-off is determined before the first turn-on of pulse driving.
 側面方向の加速度
 急ハンドルによる回避動作は、通常は車体がせいぜい数十度から90度程度姿勢変更するまでだが、Uターンを繰り返して1回転(360度回転)した所で偶然通りかかった他車に衝突する、なども考えておく。これで衝突加速度を検出しなければ、回避に成功して走っているか、同じ所を周回しているか、スピンして停止しているかのいずれかと考えても良い。
Lateral acceleration The avoidance action by the sudden handle is usually until the vehicle body changes posture from several tens of degrees to 90 degrees at most, but it repeats the U-turn and makes one turn (360 degrees) to other vehicles that happen to pass by chance. Think about collisions. If the collision acceleration is not detected in this way, it may be considered that the vehicle is either successfully evading, running around the same place, or spinning and stopping.
 急ハンドルと判定する横方向加速度は先に0.2G以上としている。急ハンドルによる回避動作時の数値は、10km/hなら回転半径3.94mで0.2G相当である。 The lateral acceleration that is judged as a sudden handle is 0.2G or more. The numerical value at the time of avoidance operation with a sudden handle is equivalent to 0.2G at a turning radius of 3.94m at 10km / h.
 これから車体が360度姿勢を変えるまでの時間をTr_max、回転半径をR、速度をVr とすると、
 Tr_max=(2πR)÷Vr×(360°÷360°)=2π×3.94[m]÷(10×103[m/h]÷3600[s/h])×1=8.91[秒]
となる。
From now on, if Tr_max is the time it takes for the body to change its attitude 360 degrees, the radius of rotation is R, and the speed is Vr,
Tr_max = (2πR) ÷ Vr × (360 ° ÷ 360 °) = 2π × 3.94 [m] ÷ (10 × 10 3 [m / h] ÷ 3600 [s / h]) × 1 = 8.91 [seconds]
It becomes.
 〔実施の形態2〕
 本発明の他の実施の形態について説明すれば、以下の通りである。本実施の形態に係る照明装置500は、自動車等の車両に搭載される前照灯(ヘッドランプ)として用いられる。また、前記実施の形態1に記載の照明装置100とほぼ同じ構成を有しているので、同一機能を有する部材に関しては同じ符号を付記し、その詳細な説明は省略する。
[Embodiment 2]
Another embodiment of the present invention will be described as follows. Illumination apparatus 500 according to the present embodiment is used as a headlamp mounted on a vehicle such as an automobile. Moreover, since it has substantially the same configuration as the lighting device 100 described in the first embodiment, members having the same function are denoted by the same reference numerals, and detailed description thereof is omitted.
 (照明装置500)
 図32は、本実施の形態に係る照明装置500の概略ブロック図である。
(Lighting device 500)
FIG. 32 is a schematic block diagram of lighting apparatus 500 according to the present embodiment.
 上記照明装置500は、図32に示すように、半導体レーザ素子(LD;Laser Diode)を光源とするヘッドランプ部(発光部)501と、当該ヘッドランプ部501のLDを駆動するためのレーザ駆動回路(駆動回路)502とを含んでいる。 As shown in FIG. 32, the illuminating device 500 includes a headlamp unit (light emitting unit) 501 that uses a semiconductor laser element (LD) as a light source, and laser driving for driving the LD of the headlamp unit 501. Circuit (driving circuit) 502.
 上記ヘッドランプ部501は、前記実施の形態1のヘッドランプ部101と同じ構成である。すなわち、ヘッドランプ部501は、LDからなるレーザ光源1と、当該レーザ光源1から出射されるレーザ光を可視光に変換する光変換部2と、当該ヘッドランプ部101の加速度を検出する加速度センサ3とを含んでいる。 The headlamp unit 501 has the same configuration as the headlamp unit 101 of the first embodiment. That is, the headlamp unit 501 includes a laser light source 1 composed of an LD, a light conversion unit 2 that converts laser light emitted from the laser light source 1 into visible light, and an acceleration sensor that detects acceleration of the headlamp unit 101. 3 is included.
 なお、本実施の形態に係る照明装置500において、前記実施の形態1の照明装置100と大きく異なるのは、ヘッドランプ部501を覆う筐体5が設けられ、この筐体5の加速度を検出するための加速度センサ6が新たに設けられている点である。 The illumination device 500 according to the present embodiment is greatly different from the illumination device 100 of the first embodiment in that a housing 5 that covers the headlamp unit 501 is provided and the acceleration of the housing 5 is detected. Therefore, an acceleration sensor 6 is newly provided.
 上記加速度センサ6は、ヘッドランプ部501に設けられた加速度センサ3と同様に、検出した加速度信号をレーザ駆動回路502に送信するようになっている。 The acceleration sensor 6 transmits the detected acceleration signal to the laser drive circuit 502, like the acceleration sensor 3 provided in the headlamp unit 501.
 上記レーザ駆動回路502は、照明制御部(後述する)からのレーザ制御信号S0に応じたレーザ駆動電流C0を生成して、上記ヘッドランプ部501のレーザ光源1に供給するようになっている。 The laser drive circuit 502 generates a laser drive current C0 corresponding to a laser control signal S0 from an illumination control unit (described later), and supplies the laser drive current C0 to the laser light source 1 of the headlamp unit 501.
 また、上記レーザ駆動回路502は、上記レーザ光源1へのレーザ駆動電流C0の供給制御を上記加速度センサ3(第1加速度センサ)および加速度センサ6(第2加速度センサ)からの加速度信号の値に応じて行うようになっている。 The laser drive circuit 502 controls the supply of the laser drive current C0 to the laser light source 1 to the value of the acceleration signal from the acceleration sensor 3 (first acceleration sensor) and the acceleration sensor 6 (second acceleration sensor). It is designed to respond accordingly.
 すなわち、上記レーザ駆動回路502は、上記加速度センサ3による検出値に加えて、上記加速度センサ6による検出値に応じて、上記レーザ光源1を駆動するようになっている。 That is, the laser drive circuit 502 drives the laser light source 1 in accordance with the detection value by the acceleration sensor 6 in addition to the detection value by the acceleration sensor 3.
 具体的には、上記レーザ駆動回路502は、装置本体と衝突物との相対速度をV、上記ヘッドランプ部501(主部)から上記筐体5までの距離をXとしたとき、上記筐体5に設けた第2加速度センサとしての加速度センサ6が第3閾値を超えた加速度を検出した場合、上記レーザ光源1を(X÷V)よりも長い時間Yの間、消灯させると共に、上記レーザ光源1が消灯している間に、上記加速度センサ3が第4閾値を超えた加速度を検出した場合、上記Yを超える時間、上記レーザ光源1を消灯させるようになっている。 Specifically, the laser driving circuit 502 is configured such that the relative speed between the apparatus main body and the collision object is V, and the distance from the headlamp unit 501 (main part) to the casing 5 is X. When the acceleration sensor 6 as the second acceleration sensor provided in 5 detects acceleration exceeding the third threshold, the laser light source 1 is turned off for a time Y longer than (X ÷ V), and the laser When the acceleration sensor 3 detects an acceleration exceeding the fourth threshold while the light source 1 is turned off, the laser light source 1 is turned off for a time exceeding Y.
 上記第3閾値、上記第4閾値についての詳細は後述する。 Details of the third threshold and the fourth threshold will be described later.
  (レーザ駆動回路502)
 図33は、上記レーザ駆動回路502の概略構成ブロック図である。
(Laser drive circuit 502)
FIG. 33 is a schematic block diagram of the laser drive circuit 502. As shown in FIG.
 上記レーザ駆動回路502は、図33に示すように、レーザ制御部121、レーザ駆動部122、出力スイッチ素子123を含んでいる。 The laser drive circuit 502 includes a laser control unit 121, a laser drive unit 122, and an output switch element 123, as shown in FIG.
 上記レーザ制御部121は、外部に設置された照明制御部103から信号S0を受け、照明制御部103に対して信号S4を返す。信号S0は、レーザ光源1の点灯(ON)および消灯(OFF)を指示する指令信号や、レーザ光源1の駆動電圧および駆動電流のそれぞれの大きさを指示する指令信号である。信号S4は、レーザ光源1の点灯状況や、故障等の異常を含む状況報告信号である。 The laser control unit 121 receives the signal S0 from the illumination control unit 103 installed outside, and returns a signal S4 to the illumination control unit 103. The signal S0 is a command signal for instructing turning on (ON) and turning off (OFF) of the laser light source 1, and a command signal for instructing the magnitudes of the driving voltage and driving current of the laser light source 1. The signal S4 is a status report signal including a lighting status of the laser light source 1 and an abnormality such as a failure.
 そして、レーザ制御部121は、後段のレーザ駆動部122に信号S1を送信する。 Then, the laser control unit 121 transmits a signal S1 to the subsequent laser drive unit 122.
 上記レーザ駆動部122は、レーザ制御部121から信号S1を受け、レーザ制御部121に対して信号S3を返す。 The laser driver 122 receives the signal S1 from the laser controller 121 and returns a signal S3 to the laser controller 121.
 信号S1は、レーザ光源1の点灯(ON)および消灯(OFF)を制御する制御信号、駆動電圧および駆動電流のそれぞれの大きさを指示する制御信号である。また、信号S3は、レーザ駆動部122の状況を報告したり、レーザ光源1の駆動電流、および、レーザ光源1の駆動電圧を報告したりする状況報告信号である。 The signal S1 is a control signal that controls turning on (ON) and turning off (OFF) of the laser light source 1, and a control signal that indicates the magnitudes of the drive voltage and drive current. The signal S3 is a status report signal for reporting the status of the laser driving unit 122, reporting the driving current of the laser light source 1, and the driving voltage of the laser light source 1.
 上記レーザ駆動部122は、レーザ制御部121より信号S1を受けて、電源E(バッテリ)からの電力を駆動電圧および駆動電流C0としてレーザ光源1に供給する。 The laser driving unit 122 receives the signal S1 from the laser control unit 121, and supplies power from the power source E (battery) to the laser light source 1 as a driving voltage and a driving current C0.
 レーザ光源1は、レーザ駆動部122から供給される駆動電圧および駆動電流C0にて点灯する。 The laser light source 1 is lit by the drive voltage and the drive current C0 supplied from the laser drive unit 122.
 また、上記レーザ制御部121、レーザ駆動部122には、加速度センサ3および加速度センサ6からの加速度信号S5、及びS51が供給されるようになっている。この加速度センサ3および加速度センサ6からの加速度信号S5及びS51は、レーザ制御部121、レーザ駆動部122の少なくとも一方に与えられ、加速度(衝撃など)の情報を伝達するための信号である。この情報、(加速度の大きさ)に基づいて、レーザ制御部121若しくはレーザ駆動部122は、レーザ光源1の消灯制御を行う。 The laser control unit 121 and the laser driving unit 122 are supplied with acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6. The acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6 are given to at least one of the laser control unit 121 and the laser driving unit 122, and are signals for transmitting information on acceleration (impact etc.). Based on this information (acceleration magnitude), the laser control unit 121 or the laser driving unit 122 controls the laser light source 1 to be turned off.
 ここでは、筺体5に設けた加速度センサ6からの加速度信号S51の大きさに基づいて、レーザ光源1の消灯制御を行うために、消灯準備としてレーザのパルス駆動(ON/OFF)を行う。 Here, in order to perform the extinction control of the laser light source 1 based on the magnitude of the acceleration signal S51 from the acceleration sensor 6 provided in the casing 5, laser pulse driving (ON / OFF) is performed as preparation for extinction.
 なお、上記加速度信号S51の大きさが、ある閾値以上の大きさ(例えば、車両の衝突に相当する衝撃に相当する大きさ)の場合には、レーザ光源1におけるレーザ光の照射を出来るだけ速く停止させるため(消灯するため)に、当該加速度信号S51の大きさをレーザ駆動部122で直接判断するのが好ましい。 When the acceleration signal S51 is larger than a certain threshold (for example, a magnitude corresponding to an impact corresponding to a vehicle collision), the laser light source 1 can be irradiated with the laser light as fast as possible. In order to stop (turn off the light), it is preferable to directly determine the magnitude of the acceleration signal S51 by the laser driving unit 122.
 後述するレーザ駆動部122では、加速度信号S51の大きさを直接判断して消灯制御する例を示している。 In the laser drive unit 122 to be described later, an example is shown in which the magnitude of the acceleration signal S51 is directly determined to control the extinction.
 なお、上記出力スイッチ素子123を設けるか否かは任意であるが、レーザ駆動部122は、後述するように、コンデンサを備えるケースが多いので、加速度センサ3で衝突加速度を検出した場合や、レーザ駆動部122の異常を検知した場合などに、レーザ光源1の消灯時間を早くするために設けることが望ましい。なお、出力スイッチ素子123の制御は、レーザ制御部121およびレーザ駆動部122の少なくとも一方が行う。また、信号S2は、出力スイッチ素子123のONおよびOFFを制御する制御信号である。 Whether or not the output switch element 123 is provided is arbitrary, but since the laser driving unit 122 includes a capacitor in many cases as will be described later, the acceleration sensor 3 detects a collision acceleration or a laser. It is desirable to provide for shortening the turn-off time of the laser light source 1 when an abnormality of the drive unit 122 is detected. Note that the output switch element 123 is controlled by at least one of the laser controller 121 and the laser driver 122. The signal S2 is a control signal for controlling ON and OFF of the output switch element 123.
 また、上記出力スイッチ素子123は、例えばFET(field effect transistor)等により構成される。 The output switch element 123 is composed of, for example, a field effector (FET).
 なお、上記レーザ光源1は、複数のLDチップ11を含み、それぞれのLDチップ11からレーザ光が照射される。LDチップ11の詳細説明については、前記実施の形態1において既に説明したので、ここでは詳細説明を省略する。 The laser light source 1 includes a plurality of LD chips 11, and laser light is irradiated from each of the LD chips 11. Since the detailed description of the LD chip 11 has already been described in the first embodiment, the detailed description thereof is omitted here.
  (レーザ駆動部122)
 次に、上記レーザ駆動部122の詳細について、図34および図35を参照しながら以下に説明する。なお、図34および図35に示すレーザ駆動部122は、いずれも図33に示すレーザ駆動回路502に適用可能なものである。
(Laser driver 122)
Next, details of the laser driving unit 122 will be described below with reference to FIGS. 34 and 35. FIG. 34 and 35 can be applied to the laser drive circuit 502 shown in FIG.
   (レーザ駆動部122:降圧型)
 図34は、降圧型のレーザ駆動部122の回路構成を示すブロック図である。
(Laser driver 122: step-down type)
FIG. 34 is a block diagram illustrating a circuit configuration of the step-down laser driving unit 122.
 つまり、図34は、レーザ光源1の駆動に必要な電圧Vfが、電源Eの電圧Vbよりも低い場合(LDチップ11の直列数が少ない場合)に用いられる降圧型の回路の一例を示している。 That is, FIG. 34 shows an example of a step-down circuit used when the voltage Vf necessary for driving the laser light source 1 is lower than the voltage Vb of the power source E (when the number of series of LD chips 11 is small). Yes.
 上記降圧型のレーザ駆動部122は、図34に示すように、主スイッチ素子1220、コイル1221、ダイオード1222、コンデンサ1223、電流検出用抵抗1224、差動増幅器1225、スイッチング制御部130、加速度判断部140および上述した出力スイッチ素子123を備える。なお、コイル1221の一端は、主スイッチ素子1220を介して電源Eに接続されている。なお、電源Eとコイル1221との間に別のスイッチ素子を設けても良い。 As shown in FIG. 34, the step-down laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above. One end of the coil 1221 is connected to the power source E through the main switch element 1220. Note that another switch element may be provided between the power source E and the coil 1221.
 また、上記レーザ駆動部122は、単一のLDチップ11を含むレーザ光源1に接続されている。 The laser driving unit 122 is connected to the laser light source 1 including the single LD chip 11.
 スイッチング制御部130は、レーザ制御部121からの信号S1を受け、レーザ制御部121に信号S3を返す。信号S1および信号S3については上述したとおりである。また、スイッチング制御部130は、信号S1を受けて、レーザ光源1に指示された(所望の)電流が流れるように、主スイッチ素子1220の導通(ON)および非導通(OFF)とを切替るための主スイッチ制御信号S8を送信する。 The switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121. The signal S1 and the signal S3 are as described above. In addition, the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. Main switch control signal S8 is transmitted.
 主スイッチ素子1220がONの期間、電源Eからの電流は、コイル1221を通じて磁束エネルギーとして、また、コンデンサ1223に電荷として蓄積され、レーザ光源1にも併せて電流が供給される。レーザ光源1に供給される電流は、電流検出用抵抗1224および差動増幅器1225により検出され、レーザ制御部121から指示された駆動電流値を維持する様に主スイッチ素子1220をON/OFFする。 During the period when the main switch element 1220 is ON, the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as electric charge in the capacitor 1223, and the current is also supplied to the laser light source 1. The current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
 なお、図34に示す、信号S6は、出力電流信号であり、信号S7は、出力電圧信号であり、信号S8は、主スイッチ素子1220のONとOFFとの切替えを制御する制御信号である。 34, the signal S6 is an output current signal, the signal S7 is an output voltage signal, and the signal S8 is a control signal for controlling switching of the main switch element 1220 between ON and OFF.
 上記主スイッチ素子1220のOFFの期間は、コイル1221の磁束エネルギーが、ダイオード1222を通じてコンデンサ1223、併せて、レーザ光源1に供給される。コンデンサ1223は、主スイッチ素子1220のONとOFFとの切替えで、レーザ光源1への電圧(電流)の変動を緩和する平滑動作を行う。 During the OFF period of the main switch element 1220, the magnetic flux energy of the coil 1221 is supplied to the laser light source 1 together with the capacitor 1223 through the diode 1222. The capacitor 1223 performs a smoothing operation that relaxes fluctuations in voltage (current) to the laser light source 1 by switching the main switch element 1220 between ON and OFF.
 上記信号S7(出力電圧信号)は、レーザ制御部121からの指示に従った電圧が出力されているか否かの監視に用いられる。また、信号S7は、異常に高い電圧を観測した場合、レーザ光源1の開放故障、もしくは、レーザ駆動部122に故障が生じたものとして、主スイッチ素子1220をOFFして出力電圧を下げる(OFFする)のに用いる。 The signal S7 (output voltage signal) is used for monitoring whether or not a voltage according to an instruction from the laser control unit 121 is output. Further, when an abnormally high voltage is observed, the signal S7 assumes that the laser light source 1 is open or that the laser drive unit 122 has failed, and the main switch element 1220 is turned OFF to lower the output voltage (OFF Used).
 上記スイッチング制御部130には、加速度判断部140からの信号S9が入力されるようになっている。信号S9は、スイッチング制御部130から出力される信号S8の出力タイミングを制御するための信号である。 The switching control unit 130 receives the signal S9 from the acceleration determination unit 140. The signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
 上記加速度判断部140は、加速度センサ3および加速度センサ6からの加速度信号S5及びS51が入力され、この加速度信号S5及びS51に基づいて、信号S9、S91、S11をそれぞれ必要に応じて生成してスイッチング制御部130に送信するようになっている。加速度判断部140の詳細については後述する。 The acceleration determination unit 140 receives the acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6, and generates signals S9, S91, and S11 as necessary based on the acceleration signals S5 and S51. The data is transmitted to the switching control unit 130. Details of the acceleration determination unit 140 will be described later.
 また、出力スイッチ素子123は、半導体レーザの点灯時はONしているが、消灯準備のパルス駆動を高速に行う場合、及び衝突に相当する加速度が検出された場合にはOFFされる。このON/OFF制御はレーザ制御部121もしくはレーザ駆動部122の少なくともどちらか一方が行うようになっている。衝突相当の加速度を検出した場合には出来るだけ速やかに消灯する様に、加速度判断部140をレーザ制御部121に代えて、レーザ駆動部122を観測し、レーザ駆動部122が直接出力スイッチ素子123をOFFする事が望ましい。なお、レーザ制御部121に加速度判断部140を設けても当然ながら構わない。 Further, the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected. This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122. In order to extinguish as quickly as possible when an acceleration corresponding to a collision is detected, the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off. Needless to say, the laser control unit 121 may be provided with the acceleration determination unit 140.
 レーザ駆動部122には、上記の様にエネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への電流は直ぐにはOFFしない。そのため出力スイッチ素子123で強制的に(高速に)電流を遮断する。 Since the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . For this reason, the output switch element 123 forcibly cuts off the current (at high speed).
   (レーザ駆動部122:昇圧型)
 図35は、昇圧型のレーザ駆動部122の回路構成を示すブロック図である。
(Laser driver 122: boost type)
FIG. 35 is a block diagram showing a circuit configuration of the boost type laser driver 122.
 つまり、図35は、レーザ光源1の駆動に必要な電圧Vfが、電源Eの電圧Vbよりも高い場合(LDチップ11が複数個、やや多目に直列(直列数が3から4若しくはそれ以上)接続する場合)に用いられる昇圧型の回路の一例を示している。 That is, in FIG. 35, when the voltage Vf necessary for driving the laser light source 1 is higher than the voltage Vb of the power source E (a plurality of LD chips 11 are somewhat in series (the number of series is 3 to 4 or more). ) Shows an example of a step-up circuit used for connection).
 上記昇圧型のレーザ駆動部122は、図35に示すように、主スイッチ素子1220、コイル1221、ダイオード1222、コンデンサ1223、電流検出用抵抗1224、差動増幅器1225、スイッチング制御部130、加速度判断部140および上述した出力スイッチ素子123を備える。なお、コイル1221の一端は、電源Eに接続されている。なお、電源Eとコイル1221との間に別のスイッチ素子を設けても良い。 As shown in FIG. 35, the boost type laser driver 122 includes a main switch element 1220, a coil 1221, a diode 1222, a capacitor 1223, a current detection resistor 1224, a differential amplifier 1225, a switching control unit 130, and an acceleration determination unit. 140 and the output switch element 123 described above. One end of the coil 1221 is connected to the power source E. Note that another switch element may be provided between the power source E and the coil 1221.
 上記レーザ駆動部122は、合計4つのLDチップ11を含むレーザ光源1に接続されている。 The laser driving unit 122 is connected to the laser light source 1 including a total of four LD chips 11.
 スイッチング制御部130は、レーザ制御部121からの信号S1を受け、レーザ制御部121に信号S3を返す。信号S1および信号S3については上述したとおりである。また、スイッチング制御部130は、信号S1を受けて、レーザ光源1に指示された(所望の)電流が流れるように、主スイッチ素子1220の導通(ON)および非導通(OFF)とを切替る。 The switching control unit 130 receives the signal S1 from the laser control unit 121 and returns a signal S3 to the laser control unit 121. The signal S1 and the signal S3 are as described above. In addition, the switching control unit 130 receives the signal S1 and switches the main switch element 1220 between conduction (ON) and non-conduction (OFF) so that a (desired) current instructed to the laser light source 1 flows. .
 主スイッチ素子1220がONの期間、電源Eからの電流は、コイル1221を通じて磁束エネルギーとして、また、コンデンサ1223に電荷として蓄積される。レーザ光源1には、この間、コンデンサ1223から電流が供給される。 During the period when the main switch element 1220 is ON, the current from the power source E is accumulated as magnetic flux energy through the coil 1221 and as a charge in the capacitor 1223. During this period, current is supplied to the laser light source 1 from the capacitor 1223.
 一方、主スイッチ素子1220がOFFの期間、コイル1221の磁束エネルギーが電流となり、電源Eの電圧と直列となってダイオード1222経由でコンデンサ1223を充電し、レーザ光源1にも併せて電流が供給される。 On the other hand, when the main switch element 1220 is OFF, the magnetic flux energy of the coil 1221 becomes a current, and the capacitor 1223 is charged via the diode 1222 in series with the voltage of the power source E, and the current is also supplied to the laser light source 1. The
 レーザ光源1に供給される電流は、電流検出用抵抗1224および差動増幅器1225により検出され、レーザ制御部121から指示された駆動電流値を維持する様に主スイッチ素子1220をON/OFFする。 The current supplied to the laser light source 1 is detected by the current detection resistor 1224 and the differential amplifier 1225, and the main switch element 1220 is turned on / off so as to maintain the drive current value instructed from the laser controller 121.
 なお、図35に示す、信号S6は、出力電流信号であり、信号S7は、出力電圧信号であり、信号S8は、主スイッチ素子1220のONとOFFとの切替えを制御する制御信号である。 Note that the signal S6 shown in FIG. 35 is an output current signal, the signal S7 is an output voltage signal, and the signal S8 is a control signal that controls switching of the main switch element 1220 between ON and OFF.
 上記の構成では、エネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への通電は直ぐにはOFFしない。そのため、出力スイッチ素子123で強制的に(高速に)電流を遮断するように構成しても良い。 In the above configuration, since the coil 1221 and the capacitor 1223 for storing energy exist, even if the switching control unit 130 turns off the main switch element 1220, the energization to the laser light source 1 is not turned off immediately. Therefore, the output switch element 123 may be configured to forcibly cut off the current (at high speed).
 上記スイッチング制御部130には、加速度判断部140からの信号S9が入力されるようになっている。信号S9は、スイッチング制御部130から出力される信号S8の出力タイミングを制御するための信号である。 The switching control unit 130 receives the signal S9 from the acceleration determination unit 140. The signal S9 is a signal for controlling the output timing of the signal S8 output from the switching control unit 130.
 上記加速度判断部140は、加速度センサ3および加速度センサ6からの加速度信号S5及びS51が入力され、この加速度信号S5及びS51に基づいて、信号S9、S91、S11をそれぞれ必要に応じて生成してスイッチング制御部130に送信するようになっている。加速度判断部140の詳細については後述する。 The acceleration determination unit 140 receives the acceleration signals S5 and S51 from the acceleration sensor 3 and the acceleration sensor 6, and generates signals S9, S91, and S11 as necessary based on the acceleration signals S5 and S51. The data is transmitted to the switching control unit 130. Details of the acceleration determination unit 140 will be described later.
 また、出力スイッチ素子123は、半導体レーザの点灯時はONしているが、消灯準備のパルス駆動を高速に行う場合、及び衝突に相当する加速度が検出された場合にはOFFされる。このON/OFF制御はレーザ制御部121もしくはレーザ駆動部122の少なくともどちらか一方が行うようになっている。衝突相当の加速度を検出した場合には出来るだけ速やかに消灯する様に、加速度判断部140をレーザ制御部121に代えて、レーザ駆動部122を観測し、レーザ駆動部122が直接出力スイッチ素子123をOFFする事が望ましい。なお、レーザ制御部121に加速度判断部140を設けても当然ながら構わない。 Further, the output switch element 123 is turned on when the semiconductor laser is turned on, but is turned off when pulse driving for preparation for turning off is performed at a high speed and when an acceleration corresponding to a collision is detected. This ON / OFF control is performed by at least one of the laser controller 121 and the laser driver 122. In order to extinguish as quickly as possible when an acceleration corresponding to a collision is detected, the acceleration determination unit 140 is replaced with the laser control unit 121 and the laser drive unit 122 is observed, and the laser drive unit 122 directly outputs the output switch element 123. It is desirable to turn off. Needless to say, the laser control unit 121 may be provided with the acceleration determination unit 140.
 レーザ駆動部122には、上記の様にエネルギーを蓄積するコイル1221、コンデンサ1223が存在するので、スイッチング制御部130が主スイッチ素子1220をOFFしてもレーザ光源1への電流は直ぐにはOFFしない。そのため出力スイッチ素子123で強制的に(高速に)電流を遮断する。 Since the laser drive unit 122 includes the coil 1221 and the capacitor 1223 for storing energy as described above, even if the switching control unit 130 turns off the main switch element 1220, the current to the laser light source 1 is not turned off immediately. . For this reason, the output switch element 123 forcibly cuts off the current (at high speed).
 図34および図35に示したレーザ駆動部122に設けられた加速度判断部140は、前記実施の形態1で説明した、図6~図14までの加速度判断部140と同じ構成である。 34 and 35 has the same configuration as the acceleration determination unit 140 shown in FIGS. 6 to 14 described in the first embodiment.
 但し、加速度判断部140では、加速度センサ3と加速度センサ6とでそれぞれに対応するように、同じ回路が設けられている。なお先の図6~図14において、加速度センサ3の信号S5から生成する信号をS9、S11とし、筺体に設けた加速度センサ6の信号S51から生成する信号についてはS9をS91と読み替えたものとする。 However, in the acceleration determination unit 140, the same circuit is provided so as to correspond to the acceleration sensor 3 and the acceleration sensor 6, respectively. In FIGS. 6 to 14, the signals generated from the signal S5 of the acceleration sensor 3 are S9 and S11, and the signal generated from the signal S51 of the acceleration sensor 6 provided on the housing is S9 replaced with S91. To do.
 前記実施の形態1で説明した自動車の衝突等によってヘッドランプ部101が破損する場合を想定していたが、本実施の形態では、ヘッドランプ部101に飛び石等が当たることにより破損する場合を想定して説明する。 Although the case where the headlamp unit 101 is damaged due to the collision of the automobile described in the first embodiment is assumed, in this embodiment, the case where the headlamp unit 101 is damaged due to a stepping stone or the like is assumed. To explain.
 本実施の形態においても、ヘッドランプ部101に飛び石等が当たったことを加速度センサにより検出された加速度によって判断する。 Also in the present embodiment, it is determined based on the acceleration detected by the acceleration sensor that a stepping stone or the like has hit the headlamp unit 101.
 以下の実施例12~15において、具体的に説明する。 Specific description will be given in Examples 12 to 15 below.
 (実施例12)
 図36は、実施例12に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施の形態1の実施例1~11にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 12)
FIG. 36 is a diagram schematically illustrating configurations of the lighting apparatus 100 and the automobile 200 according to the twelfth embodiment. For convenience of explanation, members having the same functions as those in the drawings described in Examples 1 to 11 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施例12に係る照明装置100のヘッドランプ部101は、図36に示すように、前記実施例8のヘッドランプ部101とほぼ同じ構造であるが、筐体310内に光センサ7を設けている点、そして、レーザ光カットフィルタ312の筐体310側に導電性検知部材315を設けている点で異なる。 As shown in FIG. 36, the headlamp unit 101 of the illumination device 100 according to the twelfth embodiment has substantially the same structure as the headlamp unit 101 of the eighth embodiment. However, the optical sensor 7 is provided in the housing 310. The difference is that a conductive detection member 315 is provided on the housing 310 side of the laser light cut filter 312.
 また、照明装置100は、自動車の前照灯と考えたとき、ヘッドランプ部101を覆うカバー(筐体5)が設けられている。このカバーは、プラスチックからなり、表面に、導電性検知膜がコーティングされている。また、このカバーには、カバーへの石等の衝突物の衝突を検出するための加速度センサ6が設置されている。この加速度センサ6の出力先は、レーザ駆動回路502である。 Further, the illumination device 100 is provided with a cover (housing 5) that covers the headlamp unit 101 when considered as a headlight of an automobile. This cover is made of plastic, and the surface is coated with a conductive detection film. The cover is provided with an acceleration sensor 6 for detecting the collision of a collision object such as a stone with the cover. The output destination of the acceleration sensor 6 is a laser drive circuit 502.
 つまり、上記加速度センサ6によって、飛び石などでカバーで大きな加速度を検知した場合には、レーザ駆動回路502によって、レーザ光源1が一旦消灯するようになっている。この飛び石などによる加速度の判断は、カバー、即ち筺体5に設けられた加速度センサ6の出力S51に従い加速度判断部140で生成される信号S91に基づき行われる。 That is, when the acceleration sensor 6 detects a large acceleration with a cover such as a stepping stone, the laser light source 1 is temporarily turned off by the laser driving circuit 502. The determination of the acceleration by the stepping stone or the like is performed based on the signal S91 generated by the acceleration determining unit 140 in accordance with the output S51 of the acceleration sensor 6 provided on the cover, that is, the housing 5.
 レーザ光源1の再点灯については、例えば加速度センサ6からの出力が正常値に戻った事(加速度センサ系が破損していない事)、可視光の出射面やカバーの導電膜に異常(遮断=破損)の無い事、レーザの点灯試験を行い、電圧対電流特性が正常な事(レーザを破損していない事の確認)、レーザ駆動電流に対して、光センサ7から得られる光量信号が想定される範疇である事(レーザを駆動していないのに光量が高く検出されている、などは破損による外光の侵入(=レーザ光漏れ可能な状態)と見なす)など少なくとも1つの「自己診断」を行い、それらの結果再点灯に問題無いと判断された場合に行う。 Regarding the relighting of the laser light source 1, for example, the output from the acceleration sensor 6 has returned to a normal value (the acceleration sensor system is not damaged), the visible light emitting surface or the conductive film of the cover is abnormal (blocking = No damage), laser lighting test, normal voltage-to-current characteristics (confirmation that the laser is not damaged), and the light intensity signal obtained from the optical sensor 7 for the laser drive current At least one “self-diagnosis” such as being in a category that is detected (when the amount of light is detected even though the laser is not driven, etc., it is regarded as the entry of external light due to damage (= a state in which laser light can leak)) , And when it is determined that there is no problem with relighting.
 また、レーザ駆動回路502は、加速度センサ3によって検出された加速度信号に応じて、レーザ光源1の駆動制御を行う。 Further, the laser drive circuit 502 performs drive control of the laser light source 1 according to the acceleration signal detected by the acceleration sensor 3.
 例えば、加速度センサ3によって検出した加速度が、急ブレーキ・急ハンドルなどに相当する第1の閾値を超えた場合(「消灯準備加速度」を検出した場合)は、レーザ光源1をパルス駆動させる。 For example, when the acceleration detected by the acceleration sensor 3 exceeds a first threshold value corresponding to sudden braking, sudden steering, etc. (when “lighting ready acceleration” is detected), the laser light source 1 is driven in pulses.
 また、図36に示すように、自分が運転する自動車(以下、自車と称する)200の走行中に、前方を走行する他車201によって石が当該自車200の照明装置100に衝突した場合、衝突に相当する飛び石はプラスチックのカバーで大概は防御出来る。しかしながら、レーザ光源1の特殊性を鑑み、飛び石がプラスチックのカバーを突き破って本体を損傷する可能性を想定すれば、上記カバーに設置された加速度センサ6が検出した加速度が、飛び石がカバーに衝突して生じる加速度に相当したとき、レーザ光源1を消灯させるのが好ましい。 In addition, as shown in FIG. 36, when a car collides with the lighting device 100 of the host vehicle 200 by another vehicle 201 traveling in front while the vehicle 200 (hereinafter referred to as the host vehicle) that the driver drives is traveling. The stepping stone corresponding to the collision can be largely protected by a plastic cover. However, in consideration of the peculiarity of the laser light source 1, assuming that the stepping stone may break through the plastic cover and damage the main body, the acceleration detected by the acceleration sensor 6 installed on the cover causes the stepping stone to collide with the cover. Therefore, it is preferable to turn off the laser light source 1 when it corresponds to the acceleration generated.
 なお、カバーでの加速度検出の検出軸方向は、前後方向に限らず、側面方向若しくは両方であっても良い。 It should be noted that the detection axis direction of acceleration detection at the cover is not limited to the front-rear direction, and may be the side surface direction or both.
 (作用・効果)
 本実施例12に係る照明装置100によれば、通常ヘッドライトなら必ず設けられる、カバーで先んじて本体破損の危険因子(飛び石、飛来物、若しくは自車の他の物体への衝突)を検出出来るので、本当に本体が破壊されレーザ光が漏洩する危険性があれば、
カバーから本体までその危険因子が到達するまでの時間にレーザの消灯を行い安全性を確保若しくは安全性を更に向上出来るという効果を奏する。
(Action / Effect)
According to the illuminating device 100 according to the twelfth embodiment, it is possible to detect a risk factor (a stepping stone, a flying object, or a collision with another object of the own vehicle) of the main body with the cover, which is always provided for a normal headlight. So, if there is a danger that the main body will be destroyed and the laser beam will leak,
The laser is extinguished during the time until the risk factor reaches from the cover to the main body, so that the safety can be ensured or the safety can be further improved.
 例えば、車速(対・飛び石)を360km/h→100m/s、カバーと本体の距離を5mmとすると、カバーを突き破り本体へ到達するまでの時間は50μsとなる。したがって、電気的消灯動作には十分な時間がある。なおこれまでも、これ以降も飛び石のヘッドライトへの衝突を例として、時速360kmでの飛来物として説明しているが、飛び石に限らず固定物との衝突、若しくは時速180kmで走行している車両同士の衝突の場合も同じ様な考えでレーザを消灯する事が可能である事は自明である。 For example, if the vehicle speed (vs. stepping stone) is 360 km / h → 100 m / s, and the distance between the cover and the main body is 5 mm, the time required to penetrate the cover and reach the main body is 50 μs. Therefore, there is sufficient time for the electrical extinguishing operation. Until now, it has been described as a flying object at a speed of 360 km / h as an example of a collision of a stepping stone with a headlight, but it is not limited to a stepping stone but is a collision with a fixed object or is traveling at a speed of 180 km / h. It is obvious that the laser can be turned off in the same way in the case of a collision between vehicles.
 (実施例13)
 図37は、実施例13に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~12にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 13)
FIG. 37 is a diagram schematically illustrating the configuration of the illumination device 100 and the automobile 200 according to the thirteenth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to twelfth embodiments are given the same reference numerals and explanation thereof is omitted.
 本実施例13に係る照明装置100のヘッドランプ部101は、図37に示すように、前記実施例12のヘッドランプ部101とほぼ同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the thirteenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment, as shown in FIG.
 本実施例13は、カバーを設け、カバーに加速度センサ6を設けるのは前記実施例12と同様であるが、加速度センサ6による検出された加速度が第3閾値を超えた場合、カバーに何らかの物体が衝突し、カバーを破損して本体に到達危険性があると判断している点で異なる。 In the thirteenth embodiment, a cover is provided and the acceleration sensor 6 is provided on the cover in the same manner as in the twelfth embodiment. However, when the acceleration detected by the acceleration sensor 6 exceeds the third threshold value, any object is formed on the cover. It is different in that it is judged that there is a danger of reaching the main body by colliding and damaging the cover.
 照明装置100のカバーと衝突物体である飛び石との相対速度をV、カバーと照明装置本体(レーザ光漏れを防ぐ若しくは安全なレベルまで低減させている部材・装置の先端部、若しくは本体の最先端部等の照明装置100本体のどこかに大きな衝撃が加わると光学部材の損傷や位置ずれを生じる可能性が否定出来ない部分)との距離をXとすると、Y≧(X÷V)の時間Yだけ消灯すると共に、その消灯期間に本体が物体との衝突を意味する第4閾値を超える加速度を検出した場合、上記Yを超える時間消灯を持続する。 The relative speed between the cover of the illumination device 100 and the stepping stone that is the collision object is V, the cover and the illumination device main body (the tip of the member or device that prevents laser light leakage or reduces it to a safe level, or the leading edge of the main body. Y ≧ (X ÷ V), where X is the distance from the portion of the lighting device 100 such as a part where the impact of optical member damage or misalignment cannot be denied if a large impact is applied somewhere. When only Y is turned off and acceleration exceeding the fourth threshold value, which means that the main body collides with an object, is detected during the turn-off period, the light is turned off for a time exceeding Y.
 なお、照明装置100の本体で衝突と検出する第4閾値と、カバーで検出する第3閾値と等しい必要は無い。 In addition, it is not necessary to be equal to the 4th threshold value detected with a collision with the main body of the illuminating device 100, and the 3rd threshold value detected with a cover.
 (作用・効果)
 本実施例13に係る照明装置100の作用・効果は、前記の実施例12とほぼ同じである。
(Action / Effect)
The operations and effects of the lighting apparatus 100 according to the thirteenth embodiment are substantially the same as those of the twelfth embodiment.
 すなわち、通常ヘッドライトなら必ず設けられるカバーで先んじて本体破損の危険因子(飛び石、飛来物、若しくは自車の他の物体への衝突)を検出出来るので、本当に本体が破壊されレーザ光が漏洩する危険性があれば、カバーから本体までその危険因子が到達するまでの時間にレーザの消灯を行い、安全性を確保若しくは安全性を更に向上出来るという効果を奏する。 In other words, the normal headlight can always detect the risk factor for damage to the main body (stepping stones, flying objects, or collision with other objects of the vehicle) in advance, so that the main body is really destroyed and the laser light leaks. If there is a risk, the laser is turned off during the time until the risk factor reaches from the cover to the main body, and there is an effect that safety can be ensured or safety can be further improved.
 例えば、車速(対・飛び石)を360km/h→100m/s、カバーと本体の距離を5mmとすると、カバーを突き破り本体へ到達するまでの時間は50μsとなる。したがって、電気的消灯動作には十分な時間がある。 For example, if the vehicle speed (vs. stepping stone) is 360 km / h → 100 m / s, and the distance between the cover and the main body is 5 mm, the time required to penetrate the cover and reach the main body is 50 μs. Therefore, there is sufficient time for the electrical extinguishing operation.
 本実施例13では、上記の効果に加えて以下の効果を奏する。 In Example 13, in addition to the above effects, the following effects are achieved.
 すなわち、カバーで衝突を先んじて検知するようにすれば、その先んじた検知による一旦消灯後にライト本体(主部)でも物体との衝突加速度を検出すれば消灯を継続するので、本体損傷の可能性がある場合のレーザ光漏れ防止確率、安全性が向上するという効果を奏する。 In other words, if the collision is detected in advance by the cover, the light body (main part) will continue to turn off once the collision acceleration with the object is detected after the light is turned off by the previous detection. In this case, the laser beam leakage prevention probability and safety are improved.
 (実施例14)
 図38は、実施例14に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~13にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 14)
FIG. 38 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fourteenth embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first to thirteenth embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施例13に係る照明装置100のヘッドランプ部101は、図38に示すように、前記実施例13のヘッドランプ部101とほぼ同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the thirteenth embodiment has substantially the same structure as the headlamp unit 101 of the thirteenth embodiment, as shown in FIG.
 前記実施例13では、照明装置100のカバーと衝突物体である飛び石との相対速度をV、カバーと照明装置本体(レーザ光漏れを防ぐ若しくは安全なレベルまで低減させている部材・装置の先端部、若しくは本体の最先端部等の照明装置100本体のどこかに大きな衝撃が加わると光学部材の損傷や位置ずれを生じる可能性が否定出来ない部分)との距離をXとすると、Y≧(X÷V)の時間Yだけ消灯すると共に、その消灯期間に本体が物体との衝突を意味する第4閾値を超える加速度を検出した場合、上記Yを超える時間消灯を持続するようにしている。 In the thirteenth embodiment, the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object is V, and the cover and the illuminating device main body (the tip of the member / device that prevents laser light leakage or reduces it to a safe level) Or, if a distance from the illumination device 100 main body such as the most advanced part of the main body is a part of the main body of the lighting apparatus 100 where the possibility of causing damage or displacement of the optical member cannot be denied, X is Y ≧ ( The light is extinguished for a time Y of (X ÷ V), and when acceleration exceeding the fourth threshold, which means a collision with an object, is detected during the extinguishing period, the extinguishing is continued for a time exceeding Y.
 本実施例では、上記不等式における好ましいXについて説明する。 In this example, preferable X in the inequality will be described.
 すなわち、上記不等式の距離Xは、図38に示すように、本体(主部)筐体とカバーとの最短距離X1が望ましい。筐体最先端部が柔軟であり、その部分の衝突では衝撃が吸収されてしまってレーザ光漏れの危険性が無い構造であれば、「破壊されるとレーザ光漏れの懸念がある部分」までの距離、例えば、図38では、本体(主部)の光出射面の部材(レーザ光カットフィルタ312)までの距離X2としても良い。 That is, the distance X of the inequality is preferably the shortest distance X1 between the main body (main part) housing and the cover, as shown in FIG. If the structure is flexible so that the impact is absorbed by the collision of that part and there is no risk of laser light leakage, even if it is destroyed, it will be "a part that may cause laser light leakage" For example, in FIG. 38, the distance X2 may be the distance X2 to the member (laser light cut filter 312) on the light emitting surface of the main body (main part).
 (作用・効果)
 本実施例14に係る照明装置100の作用・効果は、前記の実施例13と同じである。
(Action / Effect)
The operation / effect of the lighting apparatus 100 according to the fourteenth embodiment is the same as that of the thirteenth embodiment.
 (実施例15)
 図39は、実施例15に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~14にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 15)
FIG. 39 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the fifteenth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in Examples 1 to 14 are given the same reference numerals and explanations thereof are omitted.
 本実施例14に係る照明装置100のヘッドランプ部101は、図39に示すように、前記実施例13のヘッドランプ部101とほぼ同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the fourteenth embodiment has substantially the same structure as the headlamp unit 101 of the thirteenth embodiment, as shown in FIG.
 前記実施例13では、照明装置100のカバーと衝突物体である飛び石との相対速度をV、カバーと照明装置本体(レーザ光漏れを防ぐ若しくは安全なレベルまで低減させている部材・装置の先端部、若しくは本体の最先端部等の照明装置100本体のどこかに大きな衝撃が加わると光学部材の損傷や位置ずれを生じる可能性が否定出来ない部分)との距離をXとすると、Y≧(X÷V)の時間Yだけ消灯すると共に、その消灯期間に本体が物体との衝突を意味する第4閾値を超える加速度を検出した場合、上記Yを超える時間消灯を持続するようにしている。 In the thirteenth embodiment, the relative speed between the cover of the illuminating device 100 and the stepping stone as the collision object is V, and the cover and the illuminating device main body (the tip of the member / device that prevents laser light leakage or reduces it to a safe level) Or, if a distance from the illumination device 100 main body such as the most advanced part of the main body is a part of the main body of the lighting apparatus 100 where the possibility of causing damage or displacement of the optical member cannot be denied, X is Y ≧ ( The light is extinguished for a time Y of (X ÷ V), and when acceleration exceeding the fourth threshold, which means a collision with an object, is detected during the extinguishing period, the extinguishing is continued for a time exceeding Y.
 本実施例では、上記レーザ光源1の一時消灯時間と車両速度との関係について説明する。 In the present embodiment, the relationship between the temporary turn-off time of the laser light source 1 and the vehicle speed will be described.
 すなわち、上記不等式の距離Xが大きく、また速度Vが低いと一時消灯時間Yは長く設定する必要がある。しかしその時間が大きいままだと、高速走行時に消灯状態のままで走行する時間が長くなり、安全性が低下する虞がある。 That is, when the distance X of the above inequality is large and the speed V is low, the temporary turn-off time Y needs to be set long. However, if the time is left large, the time for traveling in the off state during high speed traveling becomes longer, which may reduce the safety.
 例えばX=100mm、V=5km/hと、かなり低速な飛び石(飛来物)との衝突に対しても安全のため一時的に消灯すると、Y≧72msとなるが、この時間Yが固定のままでV=360km/h=100m/sにて走行すると、7.2mは無灯火走行になる。 For example, X = 100 mm, V = 5 km / h, and if it is temporarily turned off for safety against collision with a very slow stepping stone (flying object), Y ≧ 72 ms, but this time Y remains fixed When traveling at V = 360 km / h = 100 m / s, 7.2 m is unlit.
 即ち自動車(車両)の運転者が危険を察知して制動動作に移るまでに72msの空走時間、換言すれば7.2mの無灯火走行距離が新たに生じる。上記の様に、この時間は及び距離は必ずしも無視出来る値では無い。 That is, a 72 ms idle running time, that is, a 7.2 m non-lighting running distance is newly generated until the driver of the automobile (vehicle) senses the danger and shifts to the braking operation. As described above, this time and distance are not necessarily negligible values.
 そのため、車両速度信号を外部より取得し、一時消灯の時間を車両速度に応じて調整する。例えば、高速になる程、一時消灯時間を短縮するように調整する。 Therefore, the vehicle speed signal is acquired from the outside, and the temporary turn-off time is adjusted according to the vehicle speed. For example, adjustment is made to shorten the temporary turn-off time as the speed increases.
 これには例えば図40に示すレーザ駆動回路602の様にタコメータ、速度計などの車両速度情報検出手段600から車両速度の情報を取得し、その信号をS12の車両速度信号としてレーザ駆動回路602に供給し、例えば走行速度にほぼ反比例する様に上記の時間Yを短縮させれば良い。 For example, vehicle speed information is acquired from vehicle speed information detecting means 600 such as a tachometer and a speedometer as in the laser drive circuit 602 shown in FIG. 40, and the signal is sent to the laser drive circuit 602 as a vehicle speed signal in S12. For example, the time Y may be shortened so as to be approximately inversely proportional to the traveling speed.
 (作用・効果)
 本実施例15に係る照明装置100によれば、車両速度に応じて一時消灯の時間を調整出来るので、ヘッドライトカバー損傷から本体損傷に至るまでの時間、確実に消灯させて万一の事故時のレーザ光漏れ防止を確保すると共に、消灯中の車両走行距離・時間を必要最小限のものと出来るので、視認性に基づく安全性も確保出来る。
(Action / Effect)
According to the illumination device 100 according to the fifteenth embodiment, since the time for temporarily turning off can be adjusted according to the vehicle speed, the time from the headlight cover damage to the main body damage is surely turned off and in the event of an accident. As well as ensuring the prevention of laser light leakage, the vehicle travel distance and time during extinguishing can be minimized, so that safety based on visibility can be secured.
 (相対速度、カバーと本体間の距離、一時的な消灯時間)
 相対速度、カバーと本体間の距離、一時的な消灯時間の関係を以下に示す数式で示す。
(Relative speed, distance between cover and main body, temporary turn-off time)
The relationship between the relative speed, the distance between the cover and the main body, and the temporary turn-off time is shown by the following mathematical formula.
 ヘッドランプ最先端、つまりカバーと飛来物若しくは衝突物(対向車も含む)との相対速度をV
 ヘッドランプ本体(主部)の内、衝撃を受けるとレーザ光漏洩の可能性がある部分と、カバー間の最短部の距離をX
 カバーの加速度センサが第3閾値を超える加速度を検出した際に必要な、一時的消灯時間をY
としたとき、
 Y≧(X÷V)の関係を満たせば、
 飛来物、衝突対象物体がカバーを突き破って減速する事無くそのままの速度で本体に襲来するまでの時間以上、消灯を続けることができる。これはカバーで危険感知した以上、本体が破損する事を想定して、それまでの時間中の点灯を防ぎ安全性を確保するためである。
(2)一時的消灯時間の最短値及び最長値の数値限定
 まず前記実施の形態1において、1Gの衝突≒5km/hと想定しているので、上記X=100mm、V=5km/hとすると、Y=72msとなる。この時間は、ちらつきを感じる時間と想定されるが、衝撃感知の際に一瞬だけなのでちらつき自体は問題にならない。これより消灯時間が短くなると、カバーを飛来物や衝突対象物が突き破り、本体を破損するまでに再点灯する事になるので、少なくともこの時間は一時的に消灯する必要がある。逆に高速走行の場合、この消灯時間は長すぎるので、先述の様に車両速度に応じて一時的消灯時間を変更する必要がある。
The headlamp state-of-the-art, that is, the relative speed between the cover and flying or colliding objects (including oncoming vehicles)
The distance between the part of the headlamp body (main part) that may leak laser light when impacted and the shortest part between the covers X
Y is the temporary turn-off time required when the acceleration sensor of the cover detects acceleration exceeding the third threshold.
When
If the relationship of Y ≧ (X ÷ V) is satisfied,
It can be turned off for more than the time it takes for the flying object and the object to be collided to hit the main body at the same speed without decelerating through the cover. This is to prevent the lighting during the previous time and to ensure safety, assuming that the main body is damaged as long as danger is detected by the cover.
(2) Limiting the numerical value of the shortest time and the longest value of the temporary extinguishing time First, since it is assumed that 1G collision≈5 km / h in the first embodiment, assuming that X = 100 mm and V = 5 km / h, Y = 72 ms. This time is assumed to be a time to feel flickering, but flickering itself is not a problem because it is only a moment when the impact is detected. If the turn-off time becomes shorter than this, since the flying object or the collision target breaks through the cover and the main body is damaged again, it is necessary to turn off the light temporarily at least for this time. On the other hand, in the case of high-speed traveling, this turn-off time is too long, so it is necessary to change the temporary turn-off time according to the vehicle speed as described above.
 上記Y=72msのままで高速走行する場合、例えばV=100km/hだと2m走行する。 When traveling at a high speed with Y = 72 ms, for example, if V = 100 km / h, the vehicle travels 2 m.
 更に高速の場合、例えば実施例15で記載した様に、V=360km/hとすれば、Y=72msだと一時的消灯状態で7.2m走行してしまい、事故回避に対する障害になる。そのため、走行速度(車速)信号を取得して、「Y = k×(X ÷ V) +ΔT」となる様に、Yを調整する事が望ましい。 In the case of higher speeds, for example, as described in Example 15, if V = 360 km / h, Y = 72 ms causes the vehicle to travel 7.2 m in a temporarily off state, which is an obstacle to accident avoidance. Therefore, it is desirable to obtain a traveling speed (vehicle speed) signal and adjust Y so that “Y = k × (X ÷ V) + ΔT”.
 なおYの最短値は、例えば上記と同じX=100mmとした場合、飛来物、衝突対象物体がカバー突き破って本体に衝突するまでの時間は消灯するべきものであるので、車両速度に応じて計算すると、
 V=360[km/h]の場合:100mm÷100m/s=1ms
 V=100[km/h]の場合:100mm÷27.8m/s=3.6ms
 である。
Note that the minimum value of Y is calculated according to the vehicle speed, for example, when X = 100 mm, which is the same as described above, the time until the flying object and the object to be collided break through the cover and collide with the main body should be extinguished. Then
When V = 360 [km / h]: 100 mm / 100 m / s = 1 ms
When V = 100 [km / h]: 100 mm ÷ 27.8 m / s = 3.6 ms
It is.
 一方Yの最長値であるが、これは一時的な消灯中に車両が走行する距離から制約を受ける。 On the other hand, it is the longest value of Y, but this is constrained by the distance the vehicle travels while it is temporarily turned off.
 Yの値は任意であるが、(a)10ms以下が望ましく、更には(b)1ms以下である事が望ましい。これだと時間Y中の無灯火走行距離は、
 V=360[km/h]の場合:(a)では1m、(b)では10cm
 V=100[km/h]の場合:(a)では27cm、(b)では2.7cm
 となり、何れも事実上許容し得る範疇に留まる。
The value of Y is arbitrary, but (a) 10 ms or less is desirable, and (b) 1 ms or less is desirable. With this, the no-light mileage during time Y is
When V = 360 [km / h]: 1m for (a), 10cm for (b)
When V = 100 [km / h]: 27cm for (a), 2.7cm for (b)
And all remain in an acceptable category.
 以上の最短値、最長値を元に、kやΔTを決定すれば良い。kは車両速度信号が時速そのもので得られず、その数倍あるいは数分の1でしか得られない場合、若しくは車両速度と一時的消灯時間との関係の勾配を任意に設定するための係数である。
(3)第3閾値
 第3閾値は、カバーで検出する、一時消灯判断の加速度に対応する閾値である。
Based on the above shortest and longest values, k and ΔT may be determined. k is a coefficient for arbitrarily setting the gradient of the relationship between the vehicle speed and the temporary turn-off time when the vehicle speed signal cannot be obtained at the speed itself, but only a few times or a fraction thereof. is there.
(3) Third threshold The third threshold is a threshold corresponding to the acceleration of the temporary extinction determination detected by the cover.
 基本的には第2閾値と同等で構わない。すなわち、1G以上であればよい。
(4)第4閾値
 第4閾値は、主部(本体)で検出する、消灯持続加速度に相当する閾値である。
Basically, it may be equal to the second threshold value. That is, it may be 1G or more.
(4) Fourth Threshold The fourth threshold is a threshold corresponding to the extinction sustained acceleration detected by the main part (main body).
 これも基本的には第2閾値と同等で構わない。すなわち、1G以上であればよい。 This may basically be the same as the second threshold value. That is, it may be 1G or more.
 なお、第4閾値は第2閾値より小さく設定する事も可能である。 Note that the fourth threshold can be set smaller than the second threshold.
 これは、本体の受ける加速度はカバーが受ける加速度より小さい事が予想されるためである。これによる作用効果は飛び石などがカバーを突き破った様に、飛来物体との衝突の際に、カバーで勢いが削がれたものの本体を破壊するに十分な勢いを有する物体の衝突をより高感度に検出出来る事にある。 This is because the acceleration received by the main body is expected to be smaller than the acceleration received by the cover. The effect of this is more sensitive to the collision of an object that has enough momentum to destroy the body, although the momentum was scraped off by the cover, such as a stepping stone pierced the cover Can be detected.
 なお、本実施の形態では、車両速度情報検出手段600からの車両速度信号S12はレーザ駆動回路102、より詳しくはレーザ制御部121に加えられて時間Yを算出・補正する事しているが、これに限定されるものではなく、例えば図40に示すように、車両速度情報検出手段600からの車両速度信号S12を、図40に示す破線の様に照明制御部103に与え、その結果に基づいて一時的消灯時間指令信号Syとして照明制御部103からレーザ制御部121に加えるようにしてもよい。 In the present embodiment, the vehicle speed signal S12 from the vehicle speed information detecting means 600 is applied to the laser drive circuit 102, more specifically, the laser control unit 121 to calculate and correct the time Y. For example, as shown in FIG. 40, the vehicle speed signal S12 from the vehicle speed information detecting means 600 is given to the illumination control unit 103 as shown by the broken line in FIG. Then, it may be added from the illumination control unit 103 to the laser control unit 121 as the temporary turn-off time command signal Sy.
 〔実施の形態3〕
 本発明のさらに他の実施の形態について説明すれば以下の通りである。
[Embodiment 3]
The following will describe still another embodiment of the present invention.
 なお、本実施の形態に係る照明装置100の構成は、基本的に、前記実施の形態2の照明装置100と同じなので、詳細な説明は省略する。 In addition, since the structure of the illuminating device 100 which concerns on this Embodiment is the same as that of the illuminating device 100 of the said Embodiment 2, detailed description is abbreviate | omitted.
 本実施の形態では、加速度センサによる加速度信号による制御に加えて、自動車の制動信号、操舵角度を用いることにより、より確実に自動車の状態を検出するようにしている。 In the present embodiment, in addition to the control by the acceleration signal by the acceleration sensor, the vehicle state is more reliably detected by using the braking signal and steering angle of the vehicle.
 (実施例16)
 図41は、実施例16に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~15にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 16)
FIG. 41 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the sixteenth embodiment. For convenience of explanation, members having the same functions as those in the drawings explained in the first to fifteenth embodiments are given the same reference numerals and explanations thereof are omitted.
 本実施例16に係る照明装置100のヘッドランプ部101は、図41に示すように、前記実施例12のヘッドランプ部101とほぼ同じ構造である。 The headlamp unit 101 of the illumination device 100 according to the sixteenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment, as shown in FIG.
 本実施例では、これまでの実施例における、加速度センサでの消灯準備に加え、制動信号を参照して消灯準備を行うようにしている。 In the present embodiment, in addition to the light extinction preparation by the acceleration sensor in the previous embodiments, the light extinction preparation is performed with reference to the braking signal.
 例えば、図41に示すように、アイスバーンの様な凍結路面410上の自車200が走行している場合、運転者が慌てて急ブレーキを踏んだとしても、路面を滑走するので加速度としての検出は難しい。そこでブレーキペダル踏み込み量の様な、自動車の制動に関する操作または制御の程度(または有無)を示す制動信号S13を用いて消灯準備(パルス駆動)に移行するようにすれば、加速度センサ3,6を用いた場合と同様なレーザ光源1の駆動制御を行うことができる。 For example, as shown in FIG. 41, when the vehicle 200 on the frozen road surface 410 such as an ice burn is traveling, even if the driver rushes and steps on the brake suddenly, the vehicle slides on the road surface. Detection is difficult. Therefore, if the brake signal S13 indicating the degree of operation or control (or presence / absence) of the braking of the vehicle, such as the amount of depression of the brake pedal, is used to shift to the preparation for extinction (pulse drive), the acceleration sensors 3 and 6 are turned on. The drive control of the laser light source 1 similar to the case where it is used can be performed.
 車両のスピン等が発生すれば横方向(側面方向)加速度を検出して消灯準備が可能だが、まっすぐに滑走した場合の検出は問題無く直進走行している場合と区別がつかない。 ∙ If the vehicle spins, etc., it is possible to detect the acceleration in the lateral direction (side direction) and prepare to turn off the lights, but the detection when sliding straight is indistinguishable from the straight running without any problem.
 そこで制動信号S13を検出し、それが第5閾値を超えたら車両滑走に対して運転者が車両制御不能若しくは困難な状態に陥っていると判断し、事故に繋がる危険性があると予見してレーザの消灯準備に移る。 Therefore, the braking signal S13 is detected, and if it exceeds the fifth threshold, it is determined that the driver is in an uncontrollable or difficult state for vehicle sliding, and it is predicted that there is a risk of causing an accident. Move to preparation for turning off the laser.
 第5閾値のブレーキの加速度を正常路面で発生させる筈のブレーキペダル踏み込み量を制動信号として、当該第5閾値と比較し判断する。なお、加速度センサ3,6による、これまでの検出と併用しても当然何ら問題は無い。 The judgment is made by comparing the fifth threshold value with the brake pedal depression amount of the saddle that generates the fifth threshold brake acceleration on the normal road surface as a braking signal. Of course, there is no problem even if the acceleration sensors 3 and 6 are used together with the conventional detection.
 なお正常路面なら制動が効き、それに応じた加速度が検出出来るので、その場合には、制動信号は補完的に用いても良い。即ち加速度センサからの検出を優先し、制動信号が生じているのに加速度センサから制動操作に応じた加速度信号が検出出来なければ本実施例の様に制動信号を用いれば良い。 Note that braking is effective on a normal road surface, and acceleration corresponding to the braking can be detected. In this case, the braking signal may be used in a complementary manner. That is, priority is given to detection from the acceleration sensor, and if the acceleration signal corresponding to the braking operation cannot be detected from the acceleration sensor even though the braking signal is generated, the braking signal may be used as in this embodiment.
 第5閾値としては、これまでの実施例における、第1閾値(急ブレーキ相当)とすれば良い。踏み込み量を相応する加速度相応のペダル変位としてスイッチで検出するなら、単純なONかOFFか、その判定レベルを第5閾値としても良い。あるいはABS搭載車のABS駆動信号の有無を制動信号の第5閾値として利用しても良い。これも通常は、ABS制御リレーのON/OFF信号の流用でも構わない。 The fifth threshold value may be the first threshold value (equivalent to sudden braking) in the above embodiments. If the amount of depression is detected by the switch as a pedal displacement corresponding to the corresponding acceleration, the determination level of simple ON or OFF may be set as the fifth threshold value. Alternatively, the presence / absence of the ABS drive signal of the ABS-equipped vehicle may be used as the fifth threshold value of the braking signal. Normally, this may be diversion of the ON / OFF signal of the ABS control relay.
 また、レーザ光源1がパルス駆動している状態で、上記加速度センサ3,6による検出値が第6閾値を超えたとき、上記光源の駆動を停止する。 Further, when the laser light source 1 is pulse-driven and the detection value by the acceleration sensors 3 and 6 exceeds the sixth threshold, the driving of the light source is stopped.
 この第6閾値は、これまでの実施例における、第2閾値(消灯相当)とすればよい。 The sixth threshold value may be the second threshold value (equivalent to turning off) in the above embodiments.
 (作用・効果)
 本実施例16に係る照明装置100によれば、凍結路面の様に、急ブレーキ操作を行ったとしても、滑走のために検出加速度が小さい様な場合においても、レーザの消灯準備に移行出来るので、より安全性が向上する。
(Action / Effect)
According to the illuminating device 100 according to the sixteenth embodiment, even when a sudden braking operation is performed like a frozen road surface, even when the detected acceleration is small due to sliding, it is possible to shift to preparation for turning off the laser. , Improve safety.
 (実施例17)
 図42は、実施例17に係る照明装置100および自動車200の構成を概略的に示す図である。なお、説明の便宜上、前記実施例1~16にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(Example 17)
FIG. 42 is a diagram schematically illustrating configurations of the illumination device 100 and the automobile 200 according to the seventeenth embodiment. For convenience of explanation, members having the same functions as those in the drawings described in the first to sixteenth embodiments are denoted by the same reference numerals and description thereof is omitted.
 本実施例17に係る照明装置100のヘッドランプ部101は、図42に示すように、前記実施例12のヘッドランプ部101とほぼ同じ構造である。 42. As shown in FIG. 42, the headlamp unit 101 of the lighting device 100 according to the seventeenth embodiment has substantially the same structure as the headlamp unit 101 of the twelfth embodiment.
 本実施例では、これまでの実施例における、加速度センサでの消灯準備に加え、操舵角度信号S14を参照して消灯準備を行うようにしている。すなわち、車両の速度及び操舵角度を観測し、車両の速度及び操舵角度相応の横方向加速度が検出され無ければ、ハンドルを切ったまま車両が予期せぬ回転状態に陥っているか、逆にハンドルを切っているのに車両が運転者の希望する操舵特性を示さず、ほぼ直進方向に滑走していると判断して消灯準備動作を行うようにしている。 In this embodiment, in addition to the light-off preparation by the acceleration sensor in the previous embodiments, the light-off preparation is performed with reference to the steering angle signal S14. That is, the vehicle speed and steering angle are observed, and if the lateral acceleration corresponding to the vehicle speed and steering angle is not detected, the vehicle is in an unexpected rotational state with the steering wheel turned off, or the steering wheel is Although the vehicle is turned off, the vehicle does not exhibit the steering characteristics desired by the driver, and it is determined that the vehicle is sliding in a substantially straight direction, and a light-off preparation operation is performed.
 例えば、図42に示すように、アイスバーンの様な凍結路面410上の自車200が走行している場合、運転者が慌てて急ブレーキを踏んだとしても、路面を滑走するので加速度としての検出は難しい。そこで、加速度算出部(図示せず)によって、ハンドルの操舵角と車速信号とから、車両の進行方向に直交する方向の加速度、すなわち本来生じる筈の(自車が通常の路面を走行している場合に生じると予想される)横方向(回転)速度加速度を算出し、これに相当する加速度を横方向(側面方向)加速度センサの検出結果と比較して、本来生じるべき(自車が通常の路面を走行している場合に生じると予想される)加速度と乖離していれば消灯準備(パルス駆動)に移行するようにすれば、加速度センサ3,6を用いた場合と同様なレーザ光源1の駆動制御を行うことができる。 For example, as shown in FIG. 42, when the vehicle 200 on the frozen road surface 410 such as an ice burn is running, even if the driver rushes and steps on the brake suddenly, the vehicle slides on the road surface. Detection is difficult. Therefore, an acceleration calculation unit (not shown) determines the acceleration in the direction orthogonal to the traveling direction of the vehicle from the steering angle of the steering wheel and the vehicle speed signal, i.e., the vehicle itself is traveling on a normal road surface. The lateral (rotational) speed acceleration is calculated (which is expected to occur in some cases), and the corresponding acceleration is compared with the detection result of the lateral (side surface) acceleration sensor. Laser light source 1 similar to the case where acceleration sensors 3 and 6 are used by shifting to preparation for extinction of light (pulse driving) if it deviates from acceleration (which is expected to occur when traveling on the road surface). Can be controlled.
 具体的には、操舵角と車両の前後車輪間隔とから回転半径が算出できる。この回転半径と車両速度とから横方向に生じる「筈の」加速度(向心加速度)が算出できる。これが横方向加速度センサ出力と第7閾値以上乖離していれば消灯準備に移る。逆に操舵角がゼロに近い状態で横方向第7閾値以上の加速度を検出した場合についても同様に処理すれば良い。 Specifically, the turning radius can be calculated from the steering angle and the distance between the front and rear wheels of the vehicle. From the turning radius and the vehicle speed, the “heel” acceleration (centric acceleration) generated in the lateral direction can be calculated. If this deviates from the lateral acceleration sensor output by the seventh threshold or more, the process proceeds to the extinction preparation. On the other hand, the same processing may be performed for the case where acceleration equal to or greater than the seventh threshold value in the lateral direction is detected in a state where the steering angle is close to zero.
 第7閾値は、急ハンドル相当の第1閾値としても良い。 The seventh threshold value may be a first threshold value corresponding to a sudden handle.
 また、上記レーザ光源1がパルス駆動している状態で、上記加速度センサ3,6による検出値が第8閾値を超えたとき、上記光源の駆動を停止する。 In the state where the laser light source 1 is pulse-driven, when the detection value by the acceleration sensors 3 and 6 exceeds the eighth threshold, the driving of the light source is stopped.
 この第8閾値は、これまでの実施例における、第2閾値(消灯相当)とすればよい。 The eighth threshold value may be the second threshold value (corresponding to turning off) in the above embodiments.
 路面との摩擦がゼロのワーストケースを想定すると、制動操作により車速信号がゼロとなるが、これはタイヤがロックした事を意味するから前記実施例16で示した、制動信号を検出する手法にて消灯準備動作に移行する事が出来る。一方、車速・操舵角より算出される数値と乖離した加速度を検出した場合、即ち車両がスピン状態に陥った場合には本実施例17で説明した手法を用いて消灯準備動作に移行すれば良い。 Assuming the worst case in which the friction with the road surface is zero, the vehicle speed signal becomes zero by the braking operation, which means that the tire is locked. Can be switched to a light-off preparation operation. On the other hand, when an acceleration deviating from the value calculated from the vehicle speed / steering angle is detected, that is, when the vehicle falls into a spin state, the procedure described in the seventeenth embodiment may be used to shift to a turn-off preparation operation. .
 (作用・効果)
 本実施例17に係る照明装置100によれば、凍結路面の様に、ブレーキやハンドル操作で車両の制御が困難な状況に陥ったとしても、それを検知してレーザの消灯準備に移行出来るので、より安全性が向上する。
(Action / Effect)
According to the illuminating device 100 according to the seventeenth embodiment, even when the vehicle is difficult to be controlled by operating the brake or the steering wheel as on a frozen road surface, it can be detected and the process can proceed to preparation for turning off the laser. , Improve safety.
 (1)制動信号の第5閾値
 制動信号によって正常に制動した場合に生じると予想される、加速度によって表現する場合の第5閾値は、請求項1関連の第1閾値と同じ範囲、すなわち、下限は0.2G、上限は2Gであることが好ましい。これは通常の路面で車両を急ぎ停止させたい場合のブレーキ踏み込み量と、凍結路面で同様に踏み込んでしまうブレーキ量には大差が無いためである。
(1) Fifth threshold value of braking signal The fifth threshold value expressed by acceleration, which is expected to occur when braking normally by the braking signal, is the same range as the first threshold value related to claim 1, that is, the lower limit. Is preferably 0.2G and the upper limit is 2G. This is because there is no great difference between the brake depression amount when it is desired to quickly stop the vehicle on the normal road surface and the brake amount which is depressed similarly on the frozen road surface.
 なお、ブレーキON/OFF、若しくはABSの動作信号などを利用するなら、上記第5閾値は、加速度では無く、ABSの動作信号(即ち制動しようとしているがタイヤが路面をスリップした事の検知信号)のON/OFFだけでも良い。 If the brake ON / OFF or ABS operation signal is used, the fifth threshold value is not the acceleration, but the ABS operation signal (ie, the detection signal that the tire is slipping on the road surface while braking). Only ON / OFF may be used.
 (2)急ハンドル時の第7閾値
 第7閾値は、第1閾値と同様に、例えば下限は0.2G、上限は2Gであることが好ましい。これは車両の操舵が正常に行われている状態ならば、上記数値の向心加速度は通常生じ得るものであるため、それすら生じない場合には、スピンなど姿勢制御が不十分若しくは不能な状態であると想定出来るためである。
(2) Seventh Threshold at Steep Handle The seventh threshold is preferably 0.2G for the lower limit and 2G for the upper limit, as with the first threshold. This is because the above-mentioned centripetal acceleration can normally occur if the vehicle is being steered normally. If even that does not occur, the posture control such as spin is insufficient or impossible. This is because it can be assumed.
 数値については、実施例11に引き続いて第1閾値、第2閾値の計算を行っているので、同様に求めて上記各閾値を変更しても無論構わない。 As for the numerical values, since the first threshold value and the second threshold value are calculated following Example 11, it is of course possible to obtain the same value and change each of the above threshold values.
 上記実施の形態3では、図43に示すように、制動信号検出手段(制動信号検出センサ)700によって検出された制動信号S13と、操舵角信号検出手段800によって検出された操舵角信号S14とをレーザ制御部121に入力してレーザ駆動制御を行うレーザ駆動回路702を用いる。 In the third embodiment, as shown in FIG. 43, the braking signal S13 detected by the braking signal detection means (braking signal detection sensor) 700 and the steering angle signal S14 detected by the steering angle signal detection means 800 are used. A laser driving circuit 702 that inputs to the laser control unit 121 and performs laser driving control is used.
 また、制動信号13としては、図44に示すように、ブレーキペダルの踏み込み量に応じた可変抵抗値の変化もしくは、ある一定量踏み込んだらONまたはOFFするスイッチからの信号、または、ABS動作信号を用いる。つまり、制動信号検出手段700は、これらの信号を検出して、制動信号S13としてレーザ制御部121に送る。 As the braking signal 13, as shown in FIG. 44, a change in the variable resistance value according to the depression amount of the brake pedal, a signal from a switch that is turned on or off when the brake pedal is depressed by a certain amount, or an ABS operation signal is used. Use. That is, the braking signal detection unit 700 detects these signals and sends them to the laser control unit 121 as a braking signal S13.
 また、操舵角信号S14としては、ハンドル(ステアリング)を切ったときの角度、すなわち操舵角を検出する操舵角センサ(可変抵抗、ねじれセンサ、ロータリーエンコーダなど)からの信号を用いる。つまり、操舵角信号検出手段800は、この信号を検出して、操舵角信号S14としてレーザ制御部121に送る。 Further, as the steering angle signal S14, a signal from a steering angle sensor (variable resistance, torsion sensor, rotary encoder, etc.) that detects an angle when the steering wheel (steering) is turned, that is, a steering angle is used. That is, the steering angle signal detection means 800 detects this signal and sends it to the laser controller 121 as the steering angle signal S14.
 以上のように、本発明の一実施形態は、次のようにも表現できる。 As described above, an embodiment of the present invention can be expressed as follows.
 すなわち、上記駆動回路は、上記光源をパルス駆動している状態で、上記加速度センサによる検出値が第1閾値よりも大きい値の第2閾値を超えたとき、上記光源の駆動を停止することが好ましい。 In other words, the drive circuit may stop driving the light source when the value detected by the acceleration sensor exceeds a second threshold value greater than the first threshold value while the light source is pulse-driven. preferable.
 上記の構成によれば、駆動回路は、光源をパルス駆動している状態で、加速度センサによる検出値が第1閾値よりも大きい値の第2閾値を越えたとき、上記光源の駆動を停止することで、発光部破損によるレーザ光の漏れを確実に無くすことが可能となる。 According to the above configuration, the driving circuit stops driving the light source when the detection value by the acceleration sensor exceeds the second threshold value that is larger than the first threshold value while the light source is pulse-driven. As a result, it is possible to reliably eliminate leakage of laser light due to damage to the light emitting portion.
 ここで、上記構成の照明装置を前照灯として車両に搭載したとき、上記第1閾値は、車両における急ブレーキを掛けたときの加速度相当の値あるいは車両における急ハンドルを切ったときの加速度相当の値とする事が好ましい。また、好ましくは上記第2閾値は、車両が他の車両等に衝突したときに生じる加速度、より正確には前照灯に破壊が生じ、レーザ光が漏洩する可能性がある加速度相当の値とするのが良い。 Here, when the lighting device having the above configuration is mounted on a vehicle as a headlamp, the first threshold value is a value corresponding to an acceleration when the vehicle suddenly brakes or an acceleration corresponding to when the vehicle suddenly turns off. It is preferable to set the value of. Preferably, the second threshold value is an acceleration value that occurs when the vehicle collides with another vehicle or the like, more precisely, a value corresponding to an acceleration value that may cause the headlight to break down and leak laser light. Good to do.
 上記駆動回路は、上記光源を一定時間パルス駆動しているとき、オフ期間の長さがオン期間の長さよりも長いパルスで上記光源を駆動することが好ましい。 It is preferable that the drive circuit drives the light source with a pulse whose off period is longer than the on period when the light source is pulse-driven for a certain period of time.
 この場合、オフ期間の長さがオン期間の長さよりも長いパルスで光源が駆動されているので、半導体レーザ素子からレーザ光の照射を停止させるときに、既に、レーザ光の照射が停止される場合に遭遇する確率を高めることができる。 In this case, since the light source is driven with a pulse whose off period is longer than the on period, the laser beam irradiation is already stopped when the laser beam irradiation is stopped from the semiconductor laser element. The probability of encountering a case can be increased.
 したがって、レーザ光の漏洩による2次災害の回避の確率を高めることができる。 Therefore, the probability of avoiding secondary disasters due to leakage of laser light can be increased.
 上記駆動回路は、上記光源を一定時間パルス駆動しているとき、パルス駆動前のレーザパワーよりも大きいレーザパワーで上記光源を駆動することも好ましい。 The driving circuit preferably drives the light source with a laser power larger than the laser power before the pulse driving when the light source is pulse-driven for a certain time.
 この場合、パルス駆動中のレーザ光の明るさを維持することができる。 In this case, the brightness of the laser beam during pulse driving can be maintained.
 上記加速度センサを、上記発光部を含む主部に設けられた第1加速度センサとしたとき、上記主部を覆う筐体に、当該筐体の加速度を検出する第2加速度センサが設けられ、上記駆動回路は、上記第1加速度センサによる検出値に加えて、上記第2加速度センサによる検出値に応じて上記光源を駆動することが好ましい。 When the acceleration sensor is a first acceleration sensor provided in a main part including the light emitting unit, a second acceleration sensor that detects acceleration of the case is provided in a case that covers the main part, It is preferable that the drive circuit drives the light source according to a detection value by the second acceleration sensor in addition to a detection value by the first acceleration sensor.
 上記構成によれば、発光部を含む主部に設けられた第1加速度センサだけでなく、主部を覆う筐体に、当該筐体の加速度を検出する第2加速度センサによっても加速度を検出するようになるので、加速度センサによる加速度検出の範囲を広げることが可能となる。 According to the above configuration, the acceleration is detected not only by the first acceleration sensor provided in the main part including the light emitting part, but also by the second acceleration sensor that detects the acceleration of the casing on the casing covering the main part. As a result, the range of acceleration detection by the acceleration sensor can be expanded.
 つまり、一方の加速度センサで検出できなかった加速度を、他方の加速度センサで検出することが可能となるので、加速度検出の範囲を広げることが可能となる。 That is, since the acceleration that could not be detected by one of the acceleration sensors can be detected by the other acceleration sensor, the range of acceleration detection can be expanded.
 これにより、発光部に対する様々な破損の要因を想定した対策を講じることが可能となるので、発光部の破損によるレーザ光漏れを確実に低減することができる。 As a result, it is possible to take measures assuming various causes of damage to the light emitting part, and thus it is possible to reliably reduce the leakage of laser light due to damage to the light emitting part.
 上記駆動回路は、装置本体と衝突物との相対速度をV、上記主部から上記筐体までの距離をXとしたとき、上記筐体に設けた第2加速度センサが第3閾値を超えた加速度を検出した場合、上記光源を(X÷V)よりも長い時間Yの間、消灯させると共に、上記光源が消灯している間に、上記第1加速度センサが第4閾値を超えた加速度を検出した場合、上記Yを超える時間、上記光源を消灯させることが好ましい。 When the relative speed between the apparatus main body and the collision object is V and the distance from the main part to the case is X, the second acceleration sensor provided in the case exceeds the third threshold. When acceleration is detected, the light source is turned off for a time Y longer than (X ÷ V), and while the light source is turned off, the first acceleration sensor detects an acceleration exceeding a fourth threshold. When detected, it is preferable to turn off the light source for a time exceeding Y.
 ここで、第3閾値の好ましい値としては、筐体に衝突した衝突物が貫通する、若しくは衝突物が貫通しなくとも筺体が破損する、何れかの可能性がある加速度である。 Here, a preferable value of the third threshold value is an acceleration with which there is a possibility that a collision object that has collided with the casing penetrates, or that the casing is damaged even if the collision object does not penetrate.
 第3閾値の上限を上記の様に定めると、筺体に衝突した衝突物が主部に到達して主部が破損する可能性を想定した場合の安全性を確保する事が出来る。これは、筐体に設けた第2加速度センサが第3閾値を超えた加速度を検出した場合、光源を(X÷V)よりも長い時間Yの間、消灯させることで、筐体に衝突して貫通した衝突物が光源を含んだ主部に到達するまでは半導体レーザ素子は消灯状態にあるためである。仮に筺体が破損しなかった、若しくは筺体は破損しても主部の破損を免れたとしても、筺体から主部への衝突物の到達に相当する時間は光源を消灯させているので、上記の通りレーザ光漏れに対する安全性が確保される。 If the upper limit of the third threshold is determined as described above, it is possible to ensure safety when it is assumed that the collision object that collides with the housing reaches the main part and the main part is damaged. This is because when the second acceleration sensor provided in the housing detects an acceleration exceeding the third threshold, the light source is turned off for a time Y longer than (X ÷ V), thereby colliding with the housing. This is because the semiconductor laser element is in the extinguished state until the colliding object penetrating through reaches the main part including the light source. Even if the case did not break, or even if the case was damaged, the main part was not damaged, the light source was turned off for the time corresponding to the arrival of the collision object from the case to the main part. As a result, safety against laser light leakage is ensured.
 しかも、光源が消灯している間に、上記第1加速度センサが第4閾値を超えた加速度を検出した場合、上記Yを超える時間、上記光源を消灯させるようになっているので、仮に万が一、筐体を貫通した衝撃物が発光部に現実に到達して主部が破損したとしても、発光部では既に光源が消灯していることになる。したがって、主部の破損によるレーザ光漏れを確実に無くすことができる。 In addition, when the first acceleration sensor detects acceleration exceeding the fourth threshold while the light source is turned off, the light source is turned off for a time exceeding the Y. Even if the impact object penetrating the housing reaches the light emitting part and the main part is damaged, the light source is already turned off in the light emitting part. Therefore, laser light leakage due to breakage of the main part can be reliably eliminated.
 上記の各照明装置を車両に搭載される前照灯として用いてもよい。 The above lighting devices may be used as headlamps mounted on the vehicle.
 具体的な前照灯を以下に示す。 Specific headlamps are shown below.
 上記照明装置は、上記照明装置の加速度を検出する加速度センサをさらに備え、上記駆動回路は、上記光源をパルス駆動している状態で、上記加速度センサによる検出値が第6閾値を超えたとき、上記光源の駆動を停止することが好ましい。 The illumination device further includes an acceleration sensor that detects an acceleration of the illumination device, and the drive circuit is in a state where the light source is pulse-driven and a detection value by the acceleration sensor exceeds a sixth threshold value, It is preferable to stop driving the light source.
 これにより、制動信号を検出して光源をパルス駆動している状態で、加速度センサにより衝撃を検知した際には光源を消灯させるので、照明装置の破損によるレーザ光の漏れを最小限にすることができる。 As a result, the light source is turned off when an impact is detected by the acceleration sensor while the braking signal is detected and the light source is pulse-driven, so that leakage of the laser beam due to damage to the illumination device is minimized. Can do.
 上記駆動回路は、上記光源がパルス駆動している状態で、上記加速度センサによる検出値が第8閾値を超えたとき、上記光源の駆動を停止することが好ましい。 It is preferable that the driving circuit stops driving the light source when a value detected by the acceleration sensor exceeds an eighth threshold value while the light source is pulse-driven.
 これにより、制動信号を検出して光源をパルス駆動している状態で、加速度センサにより衝撃を検知した際には光源を消灯させるので、発光部の破損によるレーザ光の漏れを的確に停止することができる。 As a result, the light source is turned off when an impact is detected by the acceleration sensor while the braking signal is detected and the light source is pulse-driven, so that the leakage of the laser beam due to the damage of the light emitting part can be stopped accurately. Can do.
 この場合、加速度センサは車両の前後方向、横方向の加速度を検出するものである事がより望ましい。こうすれば、車両の姿勢(スピン、若しくは単純な滑走)に因らず車両と衝突物との衝突を検知し、直ちに光源を消灯出来る。 In this case, it is more preferable that the acceleration sensor detects acceleration in the longitudinal direction and lateral direction of the vehicle. In this way, the collision between the vehicle and the collision object can be detected regardless of the posture of the vehicle (spin or simple sliding), and the light source can be turned off immediately.
 また、上記前照灯を備える車両も本発明の技術的範囲に含まれる。 In addition, a vehicle including the headlight is also included in the technical scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、照明装置および前照灯、ならびに、該前照灯を備えた車両などに適用することができる。また、照明装置(または前照灯)としては、車両用前照灯のみならず、その他の照明装置(または前照灯)に適用することができる。その他の照明装置(または前照灯)の一例としては、ダウンライトを挙げることができる。ダウンライトは、家屋、乗物などの構造物の天井に設置される照明装置である。さらに、その他にも、本発明の照明装置(または前照灯)は、車両以外の移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、サーチライト、プロジェクタ、ダウンライト以外の室内照明器具(スタンドランプなど)として実現されてもよい。 The present invention can be applied to lighting devices, headlamps, and vehicles equipped with the headlamps. Further, the lighting device (or headlamp) can be applied not only to the vehicle headlamp but also to other lighting devices (or headlamps). An example of the other illumination device (or headlamp) is a downlight. A downlight is a lighting device installed on the ceiling of a structure such as a house or a vehicle. In addition, the lighting device (or headlamp) of the present invention may be realized as a headlamp of a moving object other than a vehicle (for example, a human, a ship, an aircraft, a submersible, a rocket, etc.) You may implement | achieve as interior lighting fixtures (a stand lamp etc.) other than a searchlight, a projector, and a downlight.
1 レーザ光源
2 光変換部
3 加速度センサ
4 集光レンズ
5 筐体
6 加速度センサ
7 光センサ
10 ヘッドランプ
11 LDチップ
17 アノード電極
18 基板
19 カソード電極
100 照明装置
101 ヘッドランプ部
102 レーザ駆動回路
103 照明制御部
111 活性層
112 クラッド層
113 クラッド層
114 開面
115 開面
116 発光点
121 レーザ制御部
122 レーザ駆動部
1220 主スイッチ素子
1221 コイル
1222 ダイオード
1223 コンデンサ
1224 電流検出用抵抗
1225 差動増幅器
123 出力スイッチ素子
130 スイッチング制御部
140 加速度判断部
1401 増幅器
1402 増幅器
1403 コンパレータ
1404 抵抗
1405 コンデンサ
1406 コンパレータ
1407 抵抗
1408 コンパレータ
1410 抵抗
1411 抵抗
200 自動車
201 他車
300 筐体
300a 内面
301 蛍光体
302 レーザ光カットフィルタ
303 蛍光体保持部材
304 遮光処理部分
305 光ファイバ
306 偏光フィルタ
310 筐体
310a 内面
311 蛍光体
312 レーザ光カットフィルタ
313 側面方向
314 上下方向
315 導電性検知部材
400 道路
400a 段差
410 凍結路面
500 照明装置
501 ヘッドランプ部
502 レーザ駆動回路
600 車両速度情報検出手段
602 レーザ駆動回路
700 制動信号検出手段(制動信号検出センサ)
702 レーザ駆動回路
800 操舵角信号検出手段
AMP 増幅器
C0 レーザ駆動電流
E 電源
L0 レーザ光
L1 照明光
S0 レーザ制御信号
S5 加速度信号
V 速度
X 距離
X1 最短距離
X2 距離
Y 一時消灯時間
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Light conversion part 3 Acceleration sensor 4 Condensing lens 5 Case 6 Acceleration sensor 7 Optical sensor 10 Head lamp 11 LD chip 17 Anode electrode 18 Substrate 19 Cathode electrode 100 Illuminating device 101 Head lamp part 102 Laser drive circuit 103 Illumination Control unit 111 Active layer 112 Clad layer 113 Clad layer 114 Open surface 115 Open surface 116 Light emitting point 121 Laser control unit 122 Laser drive unit 1220 Main switch element 1221 Coil 1222 Diode 1223 Capacitor 1224 Current detection resistor 1225 Differential amplifier 123 Output switch Element 130 Switching control unit 140 Acceleration determination unit 1401 Amplifier 1402 Amplifier 1403 Comparator 1404 Resistor 1405 Capacitor 1406 Comparator 1407 Resistor 1408 Comparator 1 DESCRIPTION OF SYMBOLS 10 Resistance 1411 Resistance 200 Automobile 201 Other vehicle 300 Case 300a Inner surface 301 Phosphor 302 Laser light cut filter 303 Phosphor holding member 304 Shading process part 305 Optical fiber 306 Polarization filter 310 Case 310a Inner surface 311 Phosphor 312 Laser light cut filter 313 Side surface direction 314 Vertical direction 315 Conductivity detection member 400 Road 400a Step 410 Frozen road surface 500 Illumination device 501 Headlamp unit 502 Laser drive circuit 600 Vehicle speed information detection means 602 Laser drive circuit 700 Braking signal detection means (braking signal detection sensor)
702 Laser drive circuit 800 Steering angle signal detection means AMP Amplifier C0 Laser drive current E Power supply L0 Laser light L1 Illumination light S0 Laser control signal S5 Acceleration signal V Speed X Distance X1 Shortest distance X2 Distance Y Temporary turn-off time

Claims (12)

  1.  レーザを光源とする発光部と、
     上記光源を駆動する駆動回路と、
     上記発光部の加速度を検出する加速度センサとを備え、
     上記駆動回路は、
     上記光源を駆動している状態で、
     上記加速度センサによる検出値が第1閾値を超えたとき、上記光源を一定時間パルス駆動させることを特徴とする照明装置。
    A light emitting unit using a laser as a light source;
    A drive circuit for driving the light source;
    An acceleration sensor for detecting the acceleration of the light emitting unit,
    The drive circuit is
    While driving the light source,
    An illumination device, wherein when the value detected by the acceleration sensor exceeds a first threshold, the light source is pulse-driven for a predetermined time.
  2.  上記駆動回路は、
     上記光源がパルス駆動している状態で、
     上記加速度センサによる検出値が第1閾値よりも大きい値の第2閾値を超えたとき、上記光源の駆動を停止することを特徴とする請求項1に記載の照明装置。
    The drive circuit is
    With the light source being pulse driven,
    2. The lighting device according to claim 1, wherein the driving of the light source is stopped when a value detected by the acceleration sensor exceeds a second threshold value that is larger than the first threshold value.
  3.  上記駆動回路は、
     上記光源を一定時間パルス駆動しているとき、
     オフ期間の長さがオン期間の長さよりも長いパルスで上記光源を駆動することを特徴とする請求項1に記載の照明装置。
    The drive circuit is
    When the above light source is pulse driven for a certain time,
    The lighting device according to claim 1, wherein the light source is driven by a pulse whose off period is longer than the on period.
  4.  上記駆動回路は、
     上記光源を一定時間パルス駆動しているとき、
     パルス駆動前のレーザパワーよりも大きいレーザパワーで上記光源を駆動することを特徴とする請求項1に記載の照明装置。
    The drive circuit is
    When the above light source is pulsed for a certain time,
    The illumination device according to claim 1, wherein the light source is driven with a laser power larger than a laser power before pulse driving.
  5.  上記加速度センサを、上記発光部を含む主部に設けられた第1加速度センサとしたとき、
     上記主部を覆う筐体に、当該筐体の加速度を検出する第2加速度センサが設けられ、
     上記駆動回路は、
     上記第1加速度センサによる検出値に加えて、上記第2加速度センサによる検出値に応じて上記光源を駆動することを特徴とする請求項1に記載の照明装置。
    When the acceleration sensor is a first acceleration sensor provided in a main part including the light emitting unit,
    A housing that covers the main part is provided with a second acceleration sensor that detects acceleration of the housing,
    The drive circuit is
    The lighting device according to claim 1, wherein the light source is driven in accordance with a detection value obtained by the second acceleration sensor in addition to a detection value obtained by the first acceleration sensor.
  6.  上記駆動回路は、
     装置本体と衝突物との相対速度をV
     上記主部から上記筐体までの距離をXとしたとき、
     上記筐体に設けた第2加速度センサが第3閾値を超えた加速度を検出した場合、
     上記光源を(X÷V)よりも長い時間Yの間、消灯させると共に、
     上記光源が消灯している間に、上記第1加速度センサが第4閾値を超えた加速度を検出した場合、上記Yを超える時間、上記光源を消灯させることを特徴とする請求項5に記載の照明装置。
    The drive circuit is
    The relative speed between the main body and the collision object is V
    When the distance from the main part to the housing is X,
    When the second acceleration sensor provided in the housing detects an acceleration exceeding the third threshold,
    The light source is turned off for a time Y longer than (X ÷ V),
    The light source is turned off for a time exceeding the Y when the first acceleration sensor detects an acceleration exceeding a fourth threshold while the light source is turned off. Lighting device.
  7.  請求項1~6の何れか1項に記載の照明装置を備えたことを特徴とする前照灯。 A headlamp comprising the lighting device according to any one of claims 1 to 6.
  8.  車両に備えられた、レーザを光源とする発光部と、上記光源を駆動する駆動回路とを有する照明装置と、
     上記車両の制動信号を検出する制動信号検出センサとを備え、
     上記駆動回路は、
     上記光源を駆動している状態で、
     上記制動信号検出センサによる検出値が第5閾値を超えたとき、上記光源を一定時間パルス駆動させることを特徴とする前照灯。
    A lighting device provided in a vehicle, having a light emitting unit using a laser as a light source, and a drive circuit for driving the light source;
    A braking signal detection sensor for detecting the braking signal of the vehicle,
    The drive circuit is
    While driving the light source,
    A headlamp, wherein the light source is pulse-driven for a certain period of time when a value detected by the braking signal detection sensor exceeds a fifth threshold value.
  9.  上記照明装置の加速度を検出する加速度センサをさらに備え、
     上記駆動回路は、
     上記光源がパルス駆動している状態で、
     上記加速度センサによる検出値が第6閾値を超えたとき、上記光源の駆動を停止することを特徴とする請求項8に記載の前照灯。
    An acceleration sensor for detecting the acceleration of the lighting device;
    The drive circuit is
    In the state where the light source is pulse-driven,
    The headlamp according to claim 8, wherein when the value detected by the acceleration sensor exceeds a sixth threshold value, driving of the light source is stopped.
  10.  車両に備えられた、レーザを光源とする発光部と、上記光源を駆動する駆動回路とを有する照明装置と、
     上記照明装置の加速度を検出する加速度センサと、
     上記車両の速度を示す速度信号と、上記車両の操舵角を示す操舵角信号とから、上記車両の進行方向に直交する方向の加速度を算出する加速度算出部とを備え、
     上記駆動回路は、
     上記加速度算出部により算出された加速度と、上記加速度センサにより検出された加速度との差の絶対値が、第7閾値を越えたとき、上記光源を一定時間パルス駆動させることを特徴とする前照灯。
    A lighting device provided in a vehicle, having a light emitting unit using a laser as a light source, and a drive circuit for driving the light source;
    An acceleration sensor for detecting the acceleration of the lighting device;
    An acceleration calculating unit that calculates acceleration in a direction orthogonal to the traveling direction of the vehicle from a speed signal indicating the speed of the vehicle and a steering angle signal indicating the steering angle of the vehicle;
    The drive circuit is
    A headlight characterized in that when the absolute value of the difference between the acceleration calculated by the acceleration calculation unit and the acceleration detected by the acceleration sensor exceeds a seventh threshold value, the light source is pulse-driven for a predetermined time. light.
  11.  上記駆動回路は、
     上記光源がパルス駆動している状態で、
     上記加速度センサによる検出値が第8閾値を超えたとき、上記光源の駆動を停止することを特徴とする請求項10に記載の前照灯。
    The drive circuit is
    With the light source being pulse driven,
    The headlamp according to claim 10, wherein when the value detected by the acceleration sensor exceeds an eighth threshold, the driving of the light source is stopped.
  12.  請求項7~11の何れか1項に記載の前照灯を備えたことを特徴とする車両。
     
    A vehicle comprising the headlamp according to any one of claims 7 to 11.
PCT/JP2012/056003 2011-03-15 2012-03-08 Illumination device, headlamp, and vehicle WO2012124607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057256 2011-03-15
JP2011057256 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124607A1 true WO2012124607A1 (en) 2012-09-20

Family

ID=46830680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056003 WO2012124607A1 (en) 2011-03-15 2012-03-08 Illumination device, headlamp, and vehicle

Country Status (2)

Country Link
TW (1) TW201243218A (en)
WO (1) WO2012124607A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096984A1 (en) * 2011-12-29 2013-07-04 Zizala Lichtsysteme Gmbh Safety device for headlights with laser light sources and method for shutting down laser light sources in case of safety-critical conditions
EP2781408A3 (en) * 2013-03-18 2015-05-20 Stanley Electric Co., Ltd. Vehicle headlight
WO2016202527A1 (en) * 2015-06-17 2016-12-22 Osram Gmbh Lighting device having a lighting unit
JP2017043138A (en) * 2015-08-24 2017-03-02 スタンレー電気株式会社 Lighting device, lighting system, and vehicle lighting fixture
FR3059760A1 (en) * 2016-12-02 2018-06-08 Valeo Vision LIGHTING SYSTEM FOR A MOTOR VEHICLE WITH PASSIVE SAFETY
EP3466755A3 (en) * 2017-08-16 2019-08-21 LG Electronics Inc. Lamp for vehicle and vehicle comprising thereof
JP2020036466A (en) * 2018-08-30 2020-03-05 浩平 速水 Collection structure
EP2917635B1 (en) * 2012-11-09 2020-11-25 Automotive Lighting Reutlingen GmbH Motor vehicle lighting apparatus
CN114194103A (en) * 2021-12-30 2022-03-18 上海洛轲智能科技有限公司 Vehicle lamp control method and device, electronic equipment, storage medium and vehicle
WO2023284615A1 (en) * 2021-07-12 2023-01-19 华为技术有限公司 Control method and apparatus for laser headlights on vehicle, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721380B (en) 2019-02-27 2021-03-11 台灣彩光科技股份有限公司 Lighting device with safeguard means and wavelength converting device thereof
TWI719818B (en) * 2020-01-30 2021-02-21 明志科技大學 Laser driving and control apparatus and control method in the vehicle laser headlight applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0958335A (en) * 1995-08-29 1997-03-04 Stanley Electric Co Ltd Dimming device for head lamp
JPH1029462A (en) * 1996-07-15 1998-02-03 Honda Access Corp Headlight controller for vehicle
JP2008201280A (en) * 2007-02-21 2008-09-04 Koito Mfg Co Ltd Vehicular lamp system
JP2010277123A (en) * 2009-05-26 2010-12-09 Mazda Motor Corp Driving support system for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0958335A (en) * 1995-08-29 1997-03-04 Stanley Electric Co Ltd Dimming device for head lamp
JPH1029462A (en) * 1996-07-15 1998-02-03 Honda Access Corp Headlight controller for vehicle
JP2008201280A (en) * 2007-02-21 2008-09-04 Koito Mfg Co Ltd Vehicular lamp system
JP2010277123A (en) * 2009-05-26 2010-12-09 Mazda Motor Corp Driving support system for vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096984A1 (en) * 2011-12-29 2013-07-04 Zizala Lichtsysteme Gmbh Safety device for headlights with laser light sources and method for shutting down laser light sources in case of safety-critical conditions
EP2917635B1 (en) * 2012-11-09 2020-11-25 Automotive Lighting Reutlingen GmbH Motor vehicle lighting apparatus
EP2781408A3 (en) * 2013-03-18 2015-05-20 Stanley Electric Co., Ltd. Vehicle headlight
US9335016B2 (en) 2013-03-18 2016-05-10 Stanley Electric Co., Ltd. Vehicle headlight
WO2016202527A1 (en) * 2015-06-17 2016-12-22 Osram Gmbh Lighting device having a lighting unit
US10132458B2 (en) 2015-06-17 2018-11-20 Osram Gmbh Lighting device having a lighting unit
JP2017043138A (en) * 2015-08-24 2017-03-02 スタンレー電気株式会社 Lighting device, lighting system, and vehicle lighting fixture
EP3138732A1 (en) * 2015-08-24 2017-03-08 Stanley Electric Co., Ltd. Lighting system and vehicle headlight system using the same
FR3059760A1 (en) * 2016-12-02 2018-06-08 Valeo Vision LIGHTING SYSTEM FOR A MOTOR VEHICLE WITH PASSIVE SAFETY
EP3466755A3 (en) * 2017-08-16 2019-08-21 LG Electronics Inc. Lamp for vehicle and vehicle comprising thereof
JP2020036466A (en) * 2018-08-30 2020-03-05 浩平 速水 Collection structure
JP7058393B2 (en) 2018-08-30 2022-04-22 浩平 速水 Collection structure
WO2023284615A1 (en) * 2021-07-12 2023-01-19 华为技术有限公司 Control method and apparatus for laser headlights on vehicle, and vehicle
CN114194103A (en) * 2021-12-30 2022-03-18 上海洛轲智能科技有限公司 Vehicle lamp control method and device, electronic equipment, storage medium and vehicle
CN114194103B (en) * 2021-12-30 2024-04-30 上海洛轲智能科技有限公司 Car lamp control method and device, electronic equipment, storage medium and vehicle

Also Published As

Publication number Publication date
TW201243218A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2012124607A1 (en) Illumination device, headlamp, and vehicle
JP5841126B2 (en) Light emitting device, lighting device, headlamp and vehicle
JP5328861B2 (en) Vehicle headlamp and lighting device
US9328890B2 (en) Light projecting device and vehicular headlamp
KR101235315B1 (en) Automotive lamp
JP2013168585A (en) Light emitting device, semiconductor laser element, vehicle headlamp and lighting device
KR101472833B1 (en) Current controlling apparatus for automotive lamp
JP2013168586A (en) Light emitting device, semiconductor laser element, vehicle headlamp and lighting device
JP2012043698A (en) Light emitting device and lighting system
KR101405385B1 (en) Lamp apparatus for an automobile
US10343590B2 (en) Active headlight system and method
KR101360345B1 (en) Lamp apparatus for an automobile
JP2012040990A (en) Control device, system of controlling head lamp for vehicle, control program, recording medium, and control method
CN1255442A (en) Running static indication system for car (or motor-driven vehicles)
KR102526208B1 (en) Lamp for electric vehicle
EP4063719A1 (en) Headlamp device
US20210407294A1 (en) Driving assistance system
JP3113630U (en) Vehicle with auxiliary lighting
KR101740681B1 (en) Lamp for vehicles
KR20170018493A (en) Lamp for vehicle
KR101496858B1 (en) Automotive lamp
KR20150069369A (en) Daytime running light assembly of vehicle
IT202200000542U1 (en) REAR FOG LIGHTING DEVICE OF A ROAD VEHICLE
KR20210126215A (en) Lamp for vehicle
KR20230095228A (en) Lamp for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP