WO2012124440A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
WO2012124440A1
WO2012124440A1 PCT/JP2012/054139 JP2012054139W WO2012124440A1 WO 2012124440 A1 WO2012124440 A1 WO 2012124440A1 JP 2012054139 W JP2012054139 W JP 2012054139W WO 2012124440 A1 WO2012124440 A1 WO 2012124440A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
irradiation region
light source
lighting device
Prior art date
Application number
PCT/JP2012/054139
Other languages
French (fr)
Japanese (ja)
Inventor
横田 昌広
修 小野
高橋 健
信雄 川村
修介 森田
大川 猛
西村 孝司
松田 秀三
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2012124440A1 publication Critical patent/WO2012124440A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V15/00Protecting lighting devices from damage
    • F21V15/01Housings, e.g. material or assembling of housing parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the embodiment described herein relates to a linear illumination device such as a fluorescent lamp using a light source having a spot-like and narrow light distribution such as a light emitting diode (LED).
  • a linear illumination device such as a fluorescent lamp using a light source having a spot-like and narrow light distribution such as a light emitting diode (LED).
  • LED light emitting diode
  • LEDs and EL electroluminescence
  • a general surface-mount type LED light source has a configuration in which an LED chip that emits blue or ultraviolet light is sealed with a sealing resin containing a phosphor that converts visible light having a long wavelength such as red or green.
  • the light source image has a light distribution with a strong directivity that emits light strongly in the normal direction of the surface of the sealing resin.
  • Japanese Patent No. 4106676 Japanese Patent No. 4067387 JP 2004-319238 A JP 2010-27282 A JP 2010-234843 A
  • the subject of this invention is illumination which can control irradiation light distribution easily from omnidirectional irradiation to narrow light distribution, without showing a point light source image, even if it uses a point-like strong light source like LED Providing equipment.
  • the light guide includes a light incident portion that allows light to enter from the light source, and light incident from the light source.
  • the illumination device is configured so that there is an irradiation region that irradiates the outside of the illumination device, and at least a part of the irradiation region is directed to the side opposite to the direction of the light incident on the light incident portion.
  • FIG. 1 is a cross-sectional view illustrating a lighting device according to a first embodiment.
  • FIG. 2A is a perspective view schematically showing the appearance of the lighting device.
  • FIG. 2B is a perspective view schematically showing the appearance of the lighting device.
  • FIG. 3 is a cross-sectional view showing a first modification of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a second modification of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a third modification of the first embodiment.
  • FIG. 6 is a cross-sectional view showing a fourth modification of the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a lighting device according to a second embodiment.
  • FIG. 8 is a cross-sectional view illustrating a lighting device according to a third embodiment.
  • FIG. 9 is a cross-sectional view illustrating a lighting device according to a fourth embodiment.
  • FIG. 10 is a cross-sectional view showing a first modification of the fourth embodiment.
  • FIG. 11 is a cross-sectional view showing a second modification of the fourth embodiment.
  • FIG. 1 shows a cross section of the fluorescent lamp type illumination device according to the first embodiment
  • FIGS. 2A and 2B schematically show the appearance of the illumination device.
  • the illuminating device 10 is an elongated illuminating device in which LED light sources are linearly arranged.
  • FIG. 2A for example, as shown in FIG. 2B, a rod-shaped three-dimensional shape stretched linearly by about 1.2 m.
  • the ring has a curved shape.
  • the lighting device 10 is mounted on an elongated rectangular plate-like base material 12 extending over almost the entire length of the lighting device, an elongated rectangular substrate 14 supported on one surface of the base material 12, and the substrate. And a substantially cylindrical elongated light guide 18 provided so as to surround them.
  • the base material 12 is formed of, for example, an aluminum extrusion material, and a substrate 14 is supported on the upper surface thereof. Moreover, the base material 12 has a plurality of heat radiation fins 20 projecting from the lower surface thereof, and these heat radiation fins 20 extend in the axial direction to the lighting device. Support portions 22 are formed on both side edges of the substrate 12. The base material 12 supports the substrate 14 as described above, and ensures heat dissipation from the light source and the strength of the lighting device 10.
  • the light source is, for example, a plurality of white LEDs 16 mounted on the substrate 14, and these LEDs 16 are arranged in a line along the longitudinal direction of the lighting device 10 at a predetermined pitch P, for example, 6 mm, for example. ing.
  • the light guide 18 and the light source are arranged in a line in one direction, and the light guide 18 has a straight tube shape.
  • the substrate 14 supplies necessary power to the LED 16 to light the LED.
  • Covers 23 are attached between both ends of the linear light guide 18 or between both ends of the annular light guide 18.
  • a lighting circuit (not shown) for driving the LED 16 is provided in the cover.
  • the light guide 18 is formed in a substantially cylindrical shape by, for example, a transparent resin extruded material having a refractive index larger than that of air, and has a cross-sectional diameter 2R of, for example, 26 mm.
  • the interval between the adjacent LEDs 16, that is, the arrangement pitch P of the LEDs 16 is set to be smaller than the radius R of the light guide 18.
  • the light guide 18 includes a convex light incident portion 24 whose upper portion facing the LED 16 is recessed toward the substrate 14, that is, the center side of the light guide 18. It extends over the entire length along the axial direction. Thereby, the cross section of the light guide 18 is formed in a substantially heart shape.
  • the light guide 18 is formed in a symmetrical shape with respect to a center line C passing through the center thereof.
  • the light incident portion 24 is in contact with the upper surface of the substrate 14. Further, the light incident portion 24 is formed with a recess 26 that extends over the entire length in the axial direction of the light guide 18.
  • the LED 16 mounted on the substrate 14 is located in the recess 26. Thereby, the light emitted from the LED 16 enters the light incident part 24.
  • the light guide 18 branches left and right from the light incident part 24 and extends above the base material 12, and then passes outside of both side edges of the base material 12 and covers the lower side of the base material 12. After guiding incident light, the light guide 18 has a shape that branches right and left directly above the LED 16, and its side surface is inclined so as to reflect and enter light obliquely emitted from the LED 16. 97% of the light emitted from the LED 16 enters the light guide 18.
  • a substantially lower half of the cross section that is, a portion extending from the side edge of the substrate 12 to the lowest end constitutes an irradiation region 30 that emits light to the outside.
  • the irradiation region 30 is formed in a substantially wedge shape in which the thickness gradually decreases from the side edge of the substrate 12 to the lowest end, and the lowest end portion has the smallest thickness.
  • the light guide 18 integrally has convex fixing portions 32 protruding from the inner surfaces of both side portions, and these fixing portions 32 are fitted to the support portions 22 of the base material 12. Thereby, the light guide 18 is fixed and supported by the base material 12, and it is ensured that the positional relationship with the LED 16 is constant.
  • the main light emission direction from the LED 16 is vertically upward with respect to the surface of the substrate 14, and the light emitted from the LED 16 enters the light guide 18 from the light incident portion 9.
  • the incident light propagates while being repeatedly reflected in the light guide 18, and while being guided inside the light guide 18, the tube is inverted and is emitted outward from the wedge-shaped irradiation region 30. (Indicated by an arrow in FIG. 1).
  • the light incident portion 24 of the light guide 18 is disposed on the back surface side of the irradiation region 30, that is, on the opposite side with respect to the substrate 14, and the main light emission direction of the LED 16 that is a light source is It is above the substrate 14.
  • the main light emission direction of the irradiation region 30 is downward with respect to the substrate 14 and is directed in the direction opposite to the main light emission direction of the LED 16.
  • the illuminating device 10 configured as described above, when the illuminating device is viewed from the direction of the irradiation region 30, an unnecessary non-light emitting region is disposed on the back side of the base material 12, and the entire illuminating device 10 appears to shine. Can be. Since the light from the plurality of LEDs 16 dispersed in a dotted manner spreads in the longitudinal direction of the lighting device 10 while being guided through the light guide 18 having a radius larger than the arrangement pitch P of the LEDs 16, High luminance unevenness can be alleviated and uniform luminance can be achieved over the entire length.
  • the illumination device can easily control the irradiation light distribution from wide light distribution to narrow light distribution without showing the point light source Can be obtained.
  • the base 12 may be a molded steel plate, and the light guide is not limited to a circle but may have a more distorted flat elliptical cross-sectional shape.
  • the light is extracted by the wedge shape of the light guide 18, the light extraction may be performed by using a texture, a groove, a microlens, and a diffusion printing pattern formed on the surface of the light guide, or diffusion mixed in the light guide material. You may do with a filler material. If the light guide body irradiation area is transparent and wedge-shaped as in this embodiment, the direction of the light emitted from the illumination device is aligned with the tangential direction of the irradiation area, so the edge of the cylindrical irradiation area However, it is not preferable because only the shining feeling is obtained. In addition, the installation of the wrinkles and the diffusing member requires a design burden and an extra manufacturing cost.
  • the diffusion filler material with the light guide material is simple in terms of manufacturing, and the whole light guide feels shining.
  • the diffusion filler material concentration is too high, the distance at which light can be guided is shortened. Therefore, it is desirable to set the plate transmittance of 2 mm to 80 to 95%.
  • FIG. 3 shows a cross section of the illumination device according to the first modification.
  • the light guide 18 is formed in a cylinder having a perfect cross section, imitating an existing fluorescent lamp. Since the shape of the light incident part 24 of the light guide 18 is restricted, a dummy circular part 34 having a circular cross section covering the upper side of the light incident part 24 is added to form a cylindrical sectional shape.
  • the dummy portion 34 is integrally formed with the extruded light guide 18, but another member may be bonded.
  • FIG. 4 shows a cross section of the illumination device according to the second modification.
  • a light guide blocking unit 35 that blocks the light guide is provided at the thinnest portion of the irradiation region 30 of the light guide 18.
  • the light guide blocking part 35 is formed by, for example, a recess that is recessed toward the center of the light guide 18.
  • the thinnest part of the light guide has a thickness of about 0.5 mm, and there is a possibility that light may go around the light guide 18 and return to the light source 16. Sex is conceivable.
  • the light guide blocking part 35 at the thinnest part of the light guide 18, it is possible to extract all the light guided through the light guide 18 to the outside, and the illumination device Efficiency can be improved.
  • FIG. 5 shows a cross section of a lighting device according to a third modification.
  • the outer surface of the irradiation region 30 of the light guide 18 is formed in a step shape having a plurality of step portions 36.
  • the stepped portion 36 is designed so that the light in the lateral direction generated near the thinnest portion of the irradiation region 30 is directed in the front direction.
  • a light distribution distribution that irradiates a wide range simulating an existing fluorescent lamp as described in JEL801 is used.
  • an irradiation range is set. The angle is set to 85 degrees so that almost no light is emitted in the lateral direction. Thereby, the light emitted from the side surface direction of the illumination device 10, for example, the light in the side surface direction reflected on the window or the TV screen is reduced.
  • FIG. 6 shows a cross section of a lighting device according to a fourth modification.
  • the light guide 18 is configured to have an opening 40 in a lower part of the cylindrical shape, that is, a part located on the opposite side of the LED 16 with respect to the substrate 14.
  • the opening 40 extends over the entire length and length of the lighting device 10.
  • FIG. 7 shows a cross section of the illumination device according to the second embodiment.
  • the basic configuration is the same as in the first embodiment, but a plurality of LEDs 16 are arranged in two rows on the substrate 14 as a light source.
  • the light guide 18 has two light incident portions 24 corresponding to two LEDs. These light incident portions 24 are located on both sides of the center line C of the light guide 18, are in contact with the substrate 14, and have recesses 26 that accommodate the LEDs 16.
  • the above-described configuration can provide the same effects as those of the first embodiment described above.
  • FIG. 8 shows a cross section of the illumination apparatus according to the third embodiment.
  • the basic configuration is the same as that of the first embodiment, but the LEDs 16 that are light sources are arranged sideways. That is, the LEDs 16 are arranged in two rows, and the LEDs 16 in one row are arranged in a direction to emit main light toward the side of the light guide 18, and the LEDs in the other row are guided. It arrange
  • the direction in which the main light of these two LEDs 16 is emitted differs from the direction in which light is emitted from the irradiation region 30 of the light guide 18 by approximately 90 degrees.
  • the light guide 18 is formed symmetrically with respect to the center line C.
  • the lighting device 10 can be designed more compactly.
  • FIG. 9 shows a cross section of the illumination device according to the fourth embodiment.
  • the basic configuration is the same as that of the first embodiment, but the irradiation region 30 is formed in a cylindrical shape, and the light is emitted in all directions so that the light is emitted in the same manner as a conventional fluorescent lamp. Realized. If the curvature of the inner circle side is not made the same at the connecting portion that is connected to the cylindrical irradiation region 30 by light guide, light leaks and unevenness occurs.
  • connection part 31 from the light incident part 24 of the irradiation region 30 is formed to have a thick width obtained by adding the width of the light guide extending from the light incident part 24 and the width of the irradiation region 30 on the upper side of the cylinder.
  • the thickness of the irradiation region guided from the light incident part 24 to the cylindrical irradiation region 30 is formed thicker than the other irradiation regions.
  • FIG. 10 shows a cross section of a lighting device according to a first modification of the fourth embodiment.
  • the curvature of the light guide portion and the cylindrical irradiation region 30 is reduced by using one portion for guiding light from the light incident portion 24 to the cylindrical irradiation region 30 and arranging the LED 16 eccentrically. It is approaching. Thereby, the cylindrical shape of the irradiation area
  • region 30 can be formed more compactly.
  • a part of the light guided through the irradiation region 30 flows backward from the connection light guide part on the opposite side and re-enters the LED 16. If it is a structure, the light which guides the irradiation area
  • region 30 is always counterclockwise, the backflow to LED16 does not occur and an extra efficiency loss does not occur.
  • FIG. 11 shows a cross section of a lighting apparatus according to a second modification of the fourth embodiment.
  • the modification there is one light guide part that guides light from the light incident part 24 to the cylindrical irradiation area 30, and the light guide part and the irradiation area are formed in a spiral shape as shown in FIGS. Avoiding confluence.
  • the irradiation region 30 is formed of a material containing a diffusing material, and its transmittance is 80 to 95% at a plate thickness of 2 mm. With this configuration, the light guide 18 can be made thin, and the configuration is less likely to cause unevenness without fine design.

Abstract

An illumination device according to the embodiments comprises a light source (16), a light entry section (24) into which the light from the light source enters, and a light emission region (30) that emits the light from the light source to the outside, said device being equipped with a light guide (18) that guides the light emitted from the light source. At least one part of the emission region faces in the opposite direction from the direction in which the light enters the light entry part.

Description

照明装置Lighting equipment
 ここで述べる実施形態は、発光ダイオード(LED)のような点状で狭い配光分布を持つ光源を用いた蛍光灯のような線状の照明装置に関する。 The embodiment described herein relates to a linear illumination device such as a fluorescent lamp using a light source having a spot-like and narrow light distribution such as a light emitting diode (LED).
 照明装置としては、蛍光灯が一般的に使われているが、水銀を使用する問題があった。 
 近年、水銀を使用しない光源としてLEDやEL(エレクトロルミネッセンス)が開発されており、特にLED光源は照明装置への利用が加速度的に広がっている。
As a lighting device, a fluorescent lamp is generally used, but there is a problem of using mercury.
In recent years, LEDs and EL (electroluminescence) have been developed as light sources that do not use mercury, and the use of LED light sources in illumination devices is accelerating.
 しかしながら、一般的な表面実装タイプのLED光源は、青色あるいは紫外光を発するLEDチップを、赤、緑といった長波長の可視光に変換する蛍光体を含んだ封止樹脂で封止した構成であり、光源像は点で、封止樹脂表面の法線方向に強く光を放出する指向性の強い配光分布を有している。 However, a general surface-mount type LED light source has a configuration in which an LED chip that emits blue or ultraviolet light is sealed with a sealing resin containing a phosphor that converts visible light having a long wavelength such as red or green. The light source image has a light distribution with a strong directivity that emits light strongly in the normal direction of the surface of the sealing resin.
 このため、照明装置としてLED光源を用いた場合、LEDに相当する強い粒状の高輝度部で眩しさや違和感を感じたり、偏った配光分布により所望の照度空間を得られない、といった問題を生じていた。 For this reason, when an LED light source is used as an illumination device, there is a problem that a strong granular high-luminance portion corresponding to an LED feels dazzling or uncomfortable, or a desired illuminance space cannot be obtained due to an uneven light distribution. It was.
 LEDのような点状で指向性の強い光源を均一面状の照明装置として使う技術としては、液晶表示装置のバックライトに用いられるサイド入光型照明装置がある。しかしながら、このようなサイド入光型照明装置では、照射する領域の外側に光源部や反射部といった照明に直接関与しない部品を配置する必要があり、照明装置として望ましくない額縁部分を設けなければならなかった。 As a technique for using a point-like and highly directional light source such as an LED as a uniform planar illumination device, there is a side incident illumination device used for a backlight of a liquid crystal display device. However, in such a side-light-entering illumination device, it is necessary to dispose parts that are not directly involved in illumination, such as a light source unit and a reflection unit, outside the irradiated region, and it is necessary to provide an undesired frame portion as the illumination device. There wasn't.
 また、照明装置に額縁を作らない従来技術として、導光体やレンズを用いて光源を照射領域の裏面側に配置する構成が提案されている。しかしながら、この構成では光源の光を放出する方向が照明装置の光を放出する方向と同じであり、導光体やレンズを用いても光源に起因する輝度ムラが現れ易い構成となる。 Also, as a conventional technique in which no frame is formed in the lighting device, a configuration in which a light source is arranged on the back side of the irradiation region using a light guide or a lens has been proposed. However, in this configuration, the direction in which the light from the light source is emitted is the same as the direction in which the light from the illuminating device is emitted, and luminance unevenness due to the light source is likely to appear even if a light guide or a lens is used.
 また、LEDを立体的に実装して全方位に照射可能な蛍光灯型の照明装置の従来技術も提案されているが、製造面では大きな負担を強いるものであった。 In addition, a conventional technique of a fluorescent lamp type illumination device that can irradiate LEDs in all directions by mounting LEDs three-dimensionally has been proposed, but it imposes a heavy burden on the manufacturing side.
特許第4106876号公報Japanese Patent No. 4106676 特許第4067387号公報Japanese Patent No. 4067387 特開2004-319238号公報JP 2004-319238 A 特開2010-27282号公報JP 2010-27282 A 特開2010-238483号公報JP 2010-234843 A
 この発明の課題は、LEDのような点状で指向性の強い光源を用いても、点光源像を見せずに全方位照射から狭配光まで照射光分布を容易に制御することができる照明装置を提供する。 The subject of this invention is illumination which can control irradiation light distribution easily from omnidirectional irradiation to narrow light distribution, without showing a point light source image, even if it uses a point-like strong light source like LED Providing equipment.
 実施形態によれば、光源と、光源から放出される光を導光する導光体を有する照明装置において、導光体には、光源から光を入射させる入光部と、光源から入射した光を照明装置の外部に照射する照射領域があり、照射領域の少なくとも一部は入光部に入射する光の方向と反対側を向いているように照明装置を構成する。 According to the embodiment, in a lighting device including a light source and a light guide that guides light emitted from the light source, the light guide includes a light incident portion that allows light to enter from the light source, and light incident from the light source. The illumination device is configured so that there is an irradiation region that irradiates the outside of the illumination device, and at least a part of the irradiation region is directed to the side opposite to the direction of the light incident on the light incident portion.
図1は、第1の実施形態に係る照明装置を示す断面図。FIG. 1 is a cross-sectional view illustrating a lighting device according to a first embodiment. 図2Aは、照明装置の外観を概略的に示す斜視図。FIG. 2A is a perspective view schematically showing the appearance of the lighting device. 図2Bは、照明装置の外観を概略的に示す斜視図。FIG. 2B is a perspective view schematically showing the appearance of the lighting device. 図3は、第1の実施形態の第1変形例を示す断面図。FIG. 3 is a cross-sectional view showing a first modification of the first embodiment. 図4は、第1の実施形態の第2変形例を示す断面図。FIG. 4 is a cross-sectional view showing a second modification of the first embodiment. 図5は、第1の実施形態の第3変形例を示す断面図。FIG. 5 is a cross-sectional view showing a third modification of the first embodiment. 図6は、第1の実施形態の第4変形例を示す断面図。FIG. 6 is a cross-sectional view showing a fourth modification of the first embodiment. 図7は、第2の実施形態に係る照明装置を示す断面図。FIG. 7 is a cross-sectional view illustrating a lighting device according to a second embodiment. 図8は、第3の実施形態に係る照明装置を示す断面図。FIG. 8 is a cross-sectional view illustrating a lighting device according to a third embodiment. 図9は、第4の実施形態に係る照明装置を示す断面図。FIG. 9 is a cross-sectional view illustrating a lighting device according to a fourth embodiment. 図10は、第4の実施形態の第1変形例を示す断面図。FIG. 10 is a cross-sectional view showing a first modification of the fourth embodiment. 図11は、第4の実施形態の第2変形例を示す断面図。FIG. 11 is a cross-sectional view showing a second modification of the fourth embodiment.
 以下、図面を参照しながら、種々の実施形態に係る照明装置について詳細に説明する。 
(第1の実施形態) 
 図1は、第1の実施形態に係る蛍光灯型の照明装置の断面を示し、図2A、図2Bは、照明装置の外観を概略的に示している。照明装置10は、LED光源を線状に配置した細長い照明装置であり、図2Aに示すように、例えば、1.2mほど直線状に引き伸ばした棒状の立体形状、あるいは、図2Bに示すように、曲線状に引き伸ばした環状を有している。
Hereinafter, illumination devices according to various embodiments will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 shows a cross section of the fluorescent lamp type illumination device according to the first embodiment, and FIGS. 2A and 2B schematically show the appearance of the illumination device. The illuminating device 10 is an elongated illuminating device in which LED light sources are linearly arranged. As shown in FIG. 2A, for example, as shown in FIG. 2B, a rod-shaped three-dimensional shape stretched linearly by about 1.2 m. The ring has a curved shape.
 照明装置10は、照明装置のほぼ全長に亘って延びる細長い矩形板状の基材12と、基材12の一方の表面上に支持された細長い矩形状の基板14と、この基板上に実装された光源と、これらを囲んで設けられたほぼ円筒状の細長い導光体18と、を備えている。 The lighting device 10 is mounted on an elongated rectangular plate-like base material 12 extending over almost the entire length of the lighting device, an elongated rectangular substrate 14 supported on one surface of the base material 12, and the substrate. And a substantially cylindrical elongated light guide 18 provided so as to surround them.
 基材12は、例えば、アルミニウムの押出し材により形成され、その上面に基板14が支持されている。また、基材12は、その下面に突設された複数の放熱フィン20を一体に有し、これらの放熱フィン20は、照明装置に軸方向に沿って延びている。基材12の両側縁には支持部22が形成されている。基材12は、上記のように基板14を支持しているとともに、光源の放熱と照明装置10の強度を確保する。 The base material 12 is formed of, for example, an aluminum extrusion material, and a substrate 14 is supported on the upper surface thereof. Moreover, the base material 12 has a plurality of heat radiation fins 20 projecting from the lower surface thereof, and these heat radiation fins 20 extend in the axial direction to the lighting device. Support portions 22 are formed on both side edges of the substrate 12. The base material 12 supports the substrate 14 as described above, and ensures heat dissipation from the light source and the strength of the lighting device 10.
 光源は、基板14上に実装された例えば、複数の白色LED16であり、これらのLED16は、例えば、所定のピッチP、例えば、6mmで照明装置10の長手方向に沿って線状に並べて配置されている。このように導光体18および光源は、一方向に連なって線状に配され、導光体18は直管形状を有している。基板14は、必要な電力をLED16に供給し、LEDを点灯する。直線状の導光体18の両端あるいは環状の導光体18の両端間には、カバー23が装着され、例えば、このカバー内にLED16を駆動する図示しない点灯回路等が設けられている。 The light source is, for example, a plurality of white LEDs 16 mounted on the substrate 14, and these LEDs 16 are arranged in a line along the longitudinal direction of the lighting device 10 at a predetermined pitch P, for example, 6 mm, for example. ing. As described above, the light guide 18 and the light source are arranged in a line in one direction, and the light guide 18 has a straight tube shape. The substrate 14 supplies necessary power to the LED 16 to light the LED. Covers 23 are attached between both ends of the linear light guide 18 or between both ends of the annular light guide 18. For example, a lighting circuit (not shown) for driving the LED 16 is provided in the cover.
 導光体18は、例えば、屈折率が空気よりも大きい透明な樹脂の押出し材によりほぼ円筒状に形成され、その断面の径2Rは例えば26mmに形成されている。隣合うLED16間の間隔、すなわち、LED16の配列ピッチPは、導光体18の半径Rよりも小さくなるように設定されている。 The light guide 18 is formed in a substantially cylindrical shape by, for example, a transparent resin extruded material having a refractive index larger than that of air, and has a cross-sectional diameter 2R of, for example, 26 mm. The interval between the adjacent LEDs 16, that is, the arrangement pitch P of the LEDs 16 is set to be smaller than the radius R of the light guide 18.
 導光体18は、LED16と対向する上部が基板14側、つまり、導光体18の中心側に凹んだ凸状の入光部24を有し、この入光部24は、導光体18の軸方向に沿い全長に亘って延びている。これにより、導光体18の断面は、ほぼハート形状に形成されている。導光体18は、その中心を通る中心線Cに対して、左右対称な形状に形成されている。 The light guide 18 includes a convex light incident portion 24 whose upper portion facing the LED 16 is recessed toward the substrate 14, that is, the center side of the light guide 18. It extends over the entire length along the axial direction. Thereby, the cross section of the light guide 18 is formed in a substantially heart shape. The light guide 18 is formed in a symmetrical shape with respect to a center line C passing through the center thereof.
 入光部24は、基板14の上面に当接している。また、入光部24には、導光体18の軸方向に全長に亘って延びる凹所26が形成されている。基板14上に実装されたLED16は、凹所26内に位置している。これにより、LED16から出射された光は入光部24に入射する。 The light incident portion 24 is in contact with the upper surface of the substrate 14. Further, the light incident portion 24 is formed with a recess 26 that extends over the entire length in the axial direction of the light guide 18. The LED 16 mounted on the substrate 14 is located in the recess 26. Thereby, the light emitted from the LED 16 enters the light incident part 24.
 導光体18は、入光部24から左右に分岐して基材12上方に延びた後、基材12の両側縁の外側を通り、基材12の下方側を覆っている。導光体18は、入射した光を導光した後、LED16の真上で左右に分岐する形状を成し、その側面はLED16から斜め方向に出る光を反射入光するように傾斜しており、LED16から放出された光は97%が導光体18内部に入光する構成としている。導光体18において、断面のほぼ下半分、つまり、基材12の側縁から最下端まで延びる部分は、外部へ光を放出する照射領域30を構成している。この照射領域30は、基材12の側縁から最下端まで、厚さが徐々に薄くなるほぼ楔状に形成され、最下端部の厚さが最も薄くなっている。 The light guide 18 branches left and right from the light incident part 24 and extends above the base material 12, and then passes outside of both side edges of the base material 12 and covers the lower side of the base material 12. After guiding incident light, the light guide 18 has a shape that branches right and left directly above the LED 16, and its side surface is inclined so as to reflect and enter light obliquely emitted from the LED 16. 97% of the light emitted from the LED 16 enters the light guide 18. In the light guide 18, a substantially lower half of the cross section, that is, a portion extending from the side edge of the substrate 12 to the lowest end constitutes an irradiation region 30 that emits light to the outside. The irradiation region 30 is formed in a substantially wedge shape in which the thickness gradually decreases from the side edge of the substrate 12 to the lowest end, and the lowest end portion has the smallest thickness.
 更に、導光体18は、両側部内面からそれぞれ突出した凸状の固定部32を一体に有し、これらの固定部32は、基材12の支持部22に嵌合している。これにより、導光体18は、基材12に固定および支持され、LED16との位置関係が一定となるように保証されている。 Furthermore, the light guide 18 integrally has convex fixing portions 32 protruding from the inner surfaces of both side portions, and these fixing portions 32 are fitted to the support portions 22 of the base material 12. Thereby, the light guide 18 is fixed and supported by the base material 12, and it is ensured that the positional relationship with the LED 16 is constant.
 図1において、LED16からの主たる光放出方向は、基板14の表面に対して垂直上方であり、このLED16から出射された光は、入光部9から導光体18に入射する。入射した光は、導光体18内で反射を繰り返しながら伝播し、導光体18の内部を導光するうちに筒をグルリと反転してクサビ状の照射領域30から下向きに外部に放出される(図1中に矢印で示す)。 1, the main light emission direction from the LED 16 is vertically upward with respect to the surface of the substrate 14, and the light emitted from the LED 16 enters the light guide 18 from the light incident portion 9. The incident light propagates while being repeatedly reflected in the light guide 18, and while being guided inside the light guide 18, the tube is inverted and is emitted outward from the wedge-shaped irradiation region 30. (Indicated by an arrow in FIG. 1).
 このように、照明装置10において、導光体18の入光部24は、基板14に対し、照射領域30の裏面側、つまり、反対側に配置され、光源であるLED16の主たる光放出方向は基板14に対して上方となっている。これに対して、照射領域30の主たる光放出方向は基板14に対して下向きであり、LED16の主たる光放出方向と反対の方向を向いている。 Thus, in the illuminating device 10, the light incident portion 24 of the light guide 18 is disposed on the back surface side of the irradiation region 30, that is, on the opposite side with respect to the substrate 14, and the main light emission direction of the LED 16 that is a light source is It is above the substrate 14. On the other hand, the main light emission direction of the irradiation region 30 is downward with respect to the substrate 14 and is directed in the direction opposite to the main light emission direction of the LED 16.
 以上のように構成された照明装置10によれば、照明装置を照射領域30方向から見たとき、不要な非発光領域が基材12の裏面側に配置され、照明装置10全体が光って見えるようにすることができる。点状に離散した複数のLED16からの光は、LED16の配列ピッチPより大きい半径の導光体18内を導光されるうちに照明装置10の長手方向に広がるため、LED特有の粒々状の高輝度ムラを緩和し、全長に亘って均一な輝度とすることができる。また、照射領域30のクサビ形状を適正に設計することで、約95%の高効率を維持しつつ導光体18の側面方向を含めた広い範囲に配光分布を拡げることができる。 
 これにより、LEDのような点状で指向性の強い光源を用いた場合でも、点光光源を見せずに広配光から狭配光まで照射光分布を容易に制御することが可能な照明装置を得ることができる。
According to the illuminating device 10 configured as described above, when the illuminating device is viewed from the direction of the irradiation region 30, an unnecessary non-light emitting region is disposed on the back side of the base material 12, and the entire illuminating device 10 appears to shine. Can be. Since the light from the plurality of LEDs 16 dispersed in a dotted manner spreads in the longitudinal direction of the lighting device 10 while being guided through the light guide 18 having a radius larger than the arrangement pitch P of the LEDs 16, High luminance unevenness can be alleviated and uniform luminance can be achieved over the entire length. In addition, by appropriately designing the wedge shape of the irradiation region 30, it is possible to spread the light distribution over a wide range including the lateral direction of the light guide 18 while maintaining high efficiency of about 95%.
Thereby, even when a point-like and highly directional light source such as an LED is used, the illumination device can easily control the irradiation light distribution from wide light distribution to narrow light distribution without showing the point light source Can be obtained.
 なお、第1の実施形態で説明した部品材料、構成は適宜変更することができる。例えば、基材12は成型した鋼板を用いてもよく、また、導光体は、円形に限らず、より歪んだ扁平な楕円状の断面形状としてもよい。 Note that the component materials and configurations described in the first embodiment can be changed as appropriate. For example, the base 12 may be a molded steel plate, and the light guide is not limited to a circle but may have a more distorted flat elliptical cross-sectional shape.
 導光体18のクサビ形状により光を取り出しているが、光取り出しは導光体表面に形成したシボ、溝、マイクロレンズ、拡散印刷パターンで行ってもよく、導光体材料に混錬した拡散フィラ材で行ってもよい。本実施形態のように透明でクサビ形状とした導光体照射領域とすると、照明装置から外部の出射される光の向きが照射領域の接線方向に揃ってしまうため、円筒状の照射領域の縁ばかりが光る感じとなり好ましくない。また、シボや拡散部材の設置は設計負担や余分な製造コストが掛かってしまう。このため、拡散フィラ材を導光体材料に混錬するのが製造面で簡易であり、かつ、導光体全体が光る感じになる。この場合、拡散フィラ材濃度が濃すぎると導光できる距離が短くなるため、厚さ2mmの板透過率で80~95%となるように設定することが望ましい。 Although the light is extracted by the wedge shape of the light guide 18, the light extraction may be performed by using a texture, a groove, a microlens, and a diffusion printing pattern formed on the surface of the light guide, or diffusion mixed in the light guide material. You may do with a filler material. If the light guide body irradiation area is transparent and wedge-shaped as in this embodiment, the direction of the light emitted from the illumination device is aligned with the tangential direction of the irradiation area, so the edge of the cylindrical irradiation area However, it is not preferable because only the shining feeling is obtained. In addition, the installation of the wrinkles and the diffusing member requires a design burden and an extra manufacturing cost. For this reason, kneading the diffusion filler material with the light guide material is simple in terms of manufacturing, and the whole light guide feels shining. In this case, if the diffusion filler material concentration is too high, the distance at which light can be guided is shortened. Therefore, it is desirable to set the plate transmittance of 2 mm to 80 to 95%.
 次に、第1の実施形態の変形例について説明する。なお、以下に説明する種々の変形例において、上述した第1の実施形態と同一構成部分は、同一の参照符号を付してその詳細な説明を省略し、異なる部分を中心に説明する。 Next, a modification of the first embodiment will be described. In the various modifications described below, the same components as those in the first embodiment described above are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be mainly described.
 (第1変形例) 
 図3は、第1変形例に係る照明装置の断面を示している。第1変形例によれば、導光体18は、既存の蛍光灯を模して断面が完全な円筒に形成されている。導光体18の入光部24は形状が制約されるため、入光部24の上側を覆う断面円弧状のダミー部34を加えて、円筒断面形状を形成している。ダミー部34は、押出成型した導光体18に一体的に成形したが、別の部材を接着するなどしてもよい。
(First modification)
FIG. 3 shows a cross section of the illumination device according to the first modification. According to the first modification, the light guide 18 is formed in a cylinder having a perfect cross section, imitating an existing fluorescent lamp. Since the shape of the light incident part 24 of the light guide 18 is restricted, a dummy circular part 34 having a circular cross section covering the upper side of the light incident part 24 is added to form a cylindrical sectional shape. The dummy portion 34 is integrally formed with the extruded light guide 18, but another member may be bonded.
 (第2変形例)
 図4は、第2変形例に係る照明装置の断面を示している。第2変形例では、導光体18の照射領域30の最薄部に、導光を遮断する導光遮断部35を設けている。この導光遮断部35は、例えば、導光体18の中心側に凹んだ凹部により形成されている。
(Second modification)
FIG. 4 shows a cross section of the illumination device according to the second modification. In the second modification, a light guide blocking unit 35 that blocks the light guide is provided at the thinnest portion of the irradiation region 30 of the light guide 18. The light guide blocking part 35 is formed by, for example, a recess that is recessed toward the center of the light guide 18.
 導光体18の強度面を考慮して、導光体の最薄部でも0.5mm程度の厚さがあり、光が導光体18内を1周して光源16に戻る損失が生じる可能性が考えられる。しかし、第2変形例のように、導光体18の最薄部に導光遮断部35を設けることにより、導光体18を導光する光を全て外部に取り出すことが可能となり、照明装置の効率を改善することができる。 Considering the strength of the light guide 18, even the thinnest part of the light guide has a thickness of about 0.5 mm, and there is a possibility that light may go around the light guide 18 and return to the light source 16. Sex is conceivable. However, as in the second modification, by providing the light guide blocking part 35 at the thinnest part of the light guide 18, it is possible to extract all the light guided through the light guide 18 to the outside, and the illumination device Efficiency can be improved.
 (第3変形例)
 図5は、第3変形例に係る照明装置の断面を示している。第3変形例では、導光体18の照射領域30の外表面は、複数の段部36を有する階段状に形成されている。特に、照射領域30の最薄部近傍で発生する側面方向の光を正面方向に向くように、段部36を設計したものである。
(Third Modification)
FIG. 5 shows a cross section of a lighting device according to a third modification. In the third modification, the outer surface of the irradiation region 30 of the light guide 18 is formed in a step shape having a plurality of step portions 36. In particular, the stepped portion 36 is designed so that the light in the lateral direction generated near the thinnest portion of the irradiation region 30 is directed in the front direction.
 前述した第1の実施形態および第1、第2変形例では、JEL801に記載されたような既存蛍光灯を模した広範囲を照射する配光分布としているが、第3変形例では、照射範囲を85度とし、それよりも側面方向では殆ど光が出ないようにしている。これにより、照明装置10の側面方向から放出される光、例えば、窓やTV画面に映りこむ側面方向の光を減らしている。 In the first embodiment and the first and second modified examples described above, a light distribution distribution that irradiates a wide range simulating an existing fluorescent lamp as described in JEL801 is used. However, in the third modified example, an irradiation range is set. The angle is set to 85 degrees so that almost no light is emitted in the lateral direction. Thereby, the light emitted from the side surface direction of the illumination device 10, for example, the light in the side surface direction reflected on the window or the TV screen is reduced.
 (第4変形例)
 図6は、第4変形例に係る照明装置の断面を示している。第4変形例では、導光体18は、筒状の下側となる部分、つまり、基板14に対してLED16の反対側に位置する部分に開口40を有する構成としている。開口40は、照明装置10の長手方向、全長に亘って延びている。
(Fourth modification)
FIG. 6 shows a cross section of a lighting device according to a fourth modification. In the fourth modified example, the light guide 18 is configured to have an opening 40 in a lower part of the cylindrical shape, that is, a part located on the opposite side of the LED 16 with respect to the substrate 14. The opening 40 extends over the entire length and length of the lighting device 10.
 このような構成とすることで、LED16から出射され筒状の導光体18を1周してLED16に戻る光を無くすとともに、外気対流によるLED16の放熱効果を改善することができる。 With such a configuration, it is possible to eliminate the light that is emitted from the LED 16 and goes around the cylindrical light guide 18 and returns to the LED 16, and to improve the heat dissipation effect of the LED 16 due to external air convection.
 次に、他の実施形態に係る照明装置について説明する。以下に説明する種々の実施形態において、上述した第1の実施形態と同一構成部分は、同一の参照符号を付してその詳細な説明を省略し、異なる部分を中心に説明する。 Next, lighting devices according to other embodiments will be described. In the various embodiments described below, the same components as those in the first embodiment described above will be denoted by the same reference numerals, and detailed description thereof will be omitted, and different portions will be mainly described.
(第2の実施形態) 
 図7は、第2の実施形態に係る照明装置の断面を示している。第2の実施形態では、基本構成は第1の実施形態と同様であるが、光源として、複数のLED16が基板14上に2列に並んで配置されている。導光体18は、2つのLEDに対応する2つの入光部24を有している。これらの入光部24は、導光体18の中心線Cの両側に位置し、それぞれ基板14に当接しているとともに、LED16を収容した凹所26を有している。光源が1列では収まりきらない場合は、上記構成とすることにより、前述した第1の実施形態と同様の効果を得ることができる。
(Second Embodiment)
FIG. 7 shows a cross section of the illumination device according to the second embodiment. In the second embodiment, the basic configuration is the same as in the first embodiment, but a plurality of LEDs 16 are arranged in two rows on the substrate 14 as a light source. The light guide 18 has two light incident portions 24 corresponding to two LEDs. These light incident portions 24 are located on both sides of the center line C of the light guide 18, are in contact with the substrate 14, and have recesses 26 that accommodate the LEDs 16. When the light sources cannot be accommodated in one row, the above-described configuration can provide the same effects as those of the first embodiment described above.
(第3の実施形態) 
 図8は、第3の実施形態に係る照明装置の断面を示している。第3の実施形態では、基本構成は第1の実施形態と同様であるが、光源であるLED16を横向きに配置している。すなわち、LED16は2列に並んで設けられているとともに、一方の列のLED16は、導光体18の側方に向かって主たる光を出射する向きに配置され、他方の列のLEDは、導光体18の他方の側方に向かって主たる光を出射する向きに配置され、一方の列のLEDと180度逆向きに設けられている。また、これらの2つのLED16の主たる光を出射する方向は、導光体18の照射領域30から光を出射する方向とほぼ90度、異なっている。また、導光体18は、中心線Cに対して左右対称に形成されている。
(Third embodiment)
FIG. 8 shows a cross section of the illumination apparatus according to the third embodiment. In the third embodiment, the basic configuration is the same as that of the first embodiment, but the LEDs 16 that are light sources are arranged sideways. That is, the LEDs 16 are arranged in two rows, and the LEDs 16 in one row are arranged in a direction to emit main light toward the side of the light guide 18, and the LEDs in the other row are guided. It arrange | positions in the direction which radiate | emits main light toward the other side of the light body 18, and is provided in 180 degree reverse direction with LED of one row | line | column. Further, the direction in which the main light of these two LEDs 16 is emitted differs from the direction in which light is emitted from the irradiation region 30 of the light guide 18 by approximately 90 degrees. The light guide 18 is formed symmetrically with respect to the center line C.
 第3の実施形態によれば、光源配置が横向きとなることで、導光体18の湾曲部での漏れに関する負担が減り、照明装置10をよりコンパクトに設計することができる。 According to the third embodiment, since the light source arrangement is in the horizontal direction, the burden on leakage at the curved portion of the light guide 18 is reduced, and the lighting device 10 can be designed more compactly.
 上述した第1ないし第3の実施形態および第1ないし第3変形例によれば、LEDのような点状で指向性の強い光源を用いても、点光源像を見せずに広配光から狭配光まで照射光分布を容易に制御することができる照明装置を提供することができる。 According to the first to third embodiments and the first to third modifications described above, even if a point-like and highly directional light source such as an LED is used, a wide light distribution is achieved without showing a point light source image. It is possible to provide an illuminating device that can easily control irradiation light distribution up to narrow light distribution.
(第4の実施形態) 
 図9は、第4の実施形態に係る照明装置の断面を示している。第4の実施形態では、基本構成は第1の実施形態と同様であるが、照射領域30を円筒状に形成し、全方位に光を照射することで従来の蛍光灯と同様の光り方を実現している。円筒状の照射領域30に導光接続する接続部分は、内円側の曲率を同一にしないと光が漏れてムラを生じてしまう。このため、照射領域30の入光部24からの接続部分31は、入光部24から延びる導光体の幅と円筒上側の照射領域30の幅を足した太い幅に形成している。入光部24から筒状の照射領域30に導光する照射領域の厚さは、他の照射領域より厚く形成されている。こうすることで、接続部分のムラを生じることなく全周囲を照射することができる。
(Fourth embodiment)
FIG. 9 shows a cross section of the illumination device according to the fourth embodiment. In the fourth embodiment, the basic configuration is the same as that of the first embodiment, but the irradiation region 30 is formed in a cylindrical shape, and the light is emitted in all directions so that the light is emitted in the same manner as a conventional fluorescent lamp. Realized. If the curvature of the inner circle side is not made the same at the connecting portion that is connected to the cylindrical irradiation region 30 by light guide, light leaks and unevenness occurs. For this reason, the connection part 31 from the light incident part 24 of the irradiation region 30 is formed to have a thick width obtained by adding the width of the light guide extending from the light incident part 24 and the width of the irradiation region 30 on the upper side of the cylinder. The thickness of the irradiation region guided from the light incident part 24 to the cylindrical irradiation region 30 is formed thicker than the other irradiation regions. By doing so, it is possible to irradiate the entire periphery without causing unevenness of the connection portion.
 (第1変形例)
 図10は、第4の実施形態の第1変形例に係る照明装置の断面を示している。同変形例では、入光部24から円筒状の照射領域30に導光する部分を1つとし、かつ、LED16を偏芯配置させることで、導光部分と円筒状の照射領域30の曲率を近づけている。これにより、照射領域30の円筒形状をよりコンパクトに形成することができる。
(First modification)
FIG. 10 shows a cross section of a lighting device according to a first modification of the fourth embodiment. In this modification, the curvature of the light guide portion and the cylindrical irradiation region 30 is reduced by using one portion for guiding light from the light incident portion 24 to the cylindrical irradiation region 30 and arranging the LED 16 eccentrically. It is approaching. Thereby, the cylindrical shape of the irradiation area | region 30 can be formed more compactly.
 また、図9に示した第4の実施形態では、照射領域30を導光する光の一部は、反対側の接続導光部分から逆流してLED16に再入射するが、第1変形例の構成であれば、照射領域30を導光する光は常に反時計回りであり、LED16への逆流は起こらず、余分な効率損失が起こらない。 In the fourth embodiment shown in FIG. 9, a part of the light guided through the irradiation region 30 flows backward from the connection light guide part on the opposite side and re-enters the LED 16. If it is a structure, the light which guides the irradiation area | region 30 is always counterclockwise, the backflow to LED16 does not occur and an extra efficiency loss does not occur.
 (第2変形例)
 図11は、第4の実施形態の第2変形例に係る照明装置の断面を示している。同変形例では、入光部24から筒状の照射領域30に導光する導光部は1つであり、導光部と照射領域が渦巻き状に形成され、図9,10にあったような合流部分を回避している。照射領域30は拡散材が入った材料で形成され、その透過率は板厚2mmで80~95%である。この構成により、薄い肉厚の導光体18とすることができ、細かい設計を行わなくてもムラの出にくい構成としている。
(Second modification)
FIG. 11 shows a cross section of a lighting apparatus according to a second modification of the fourth embodiment. In the modification, there is one light guide part that guides light from the light incident part 24 to the cylindrical irradiation area 30, and the light guide part and the irradiation area are formed in a spiral shape as shown in FIGS. Avoiding confluence. The irradiation region 30 is formed of a material containing a diffusing material, and its transmittance is 80 to 95% at a plate thickness of 2 mm. With this configuration, the light guide 18 can be made thin, and the configuration is less likely to cause unevenness without fine design.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  光源と、
     前記光源から光を入射させる入光部と、前記光源から入射した光を照明装置の外部に照射する照射領域とを有し、前記光源から放出される光を導光する導光体と、を備え、
     前記照射領域の少なくとも一部は、前記入光部に入射する光の方向と反対側を向いている照明装置。
    A light source;
    A light incident part that makes light incident from the light source, and an irradiation region that irradiates the light incident from the light source to the outside of a lighting device, and a light guide that guides light emitted from the light source. Prepared,
    The illuminating device in which at least a part of the irradiation region faces the side opposite to the direction of light incident on the light incident portion.
  2.  前記導光体の照射領域の断面は筒状に湾曲し、前記筒状の内部空間に前記入光部が設置されている請求項1記載の照明装置。 The illumination device according to claim 1, wherein a cross section of an irradiation region of the light guide body is curved in a cylindrical shape, and the light incident portion is installed in the cylindrical internal space.
  3.  前記導光体は、前記照射領域の外周面に形成され前記照射領域から放出される光の方向を特定方向に制御する複数の段部を有している請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the light guide has a plurality of step portions that are formed on an outer peripheral surface of the irradiation region and control a direction of light emitted from the irradiation region in a specific direction.
  4.  前記導光体は、前記照射領域の外周面に形成された凹所を有している請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the light guide has a recess formed in an outer peripheral surface of the irradiation region.
  5.  前記導光体は、前記照射領域の外周面に形成され前記光源の背面側に位置する開口を有している請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the light guide has an opening formed on an outer peripheral surface of the irradiation region and positioned on a back side of the light source.
  6.  前記光源は、前記筒状の導光体の軸方向に所定の間隔で線状に並んで配置された複数の光源を有し、前記光源間の間隔は、前記導光体の半径よりも小さい請求項2に記載の照明装置。 The light source has a plurality of light sources arranged in a line at predetermined intervals in the axial direction of the cylindrical light guide, and the interval between the light sources is smaller than the radius of the light guide. The lighting device according to claim 2.
  7.  前記照射領域は筒状であり、前記入光部から前記筒状の照射領域に導光する前記照射領域の厚さは他の前記照射領域より厚く形成されている請求項1に記載の照明装置。 2. The illumination device according to claim 1, wherein the irradiation region has a cylindrical shape, and the thickness of the irradiation region guided from the light incident portion to the cylindrical irradiation region is thicker than the other irradiation regions. .
  8.  前記入光部から前記筒状の照射領域に導光する導光部は1つであり、導光部と照射領域が渦巻き状に形成されている請求項7に記載の照明装置。 The illuminating device according to claim 7, wherein there is one light guide portion that guides light from the light incident portion to the cylindrical irradiation region, and the light guide portion and the irradiation region are formed in a spiral shape.
  9.  前記照射領域は拡散材が入った材料で形成され、その透過率は板厚2mmで80~95%である請求項7に記載の照明装置。 The illumination device according to claim 7, wherein the irradiation region is formed of a material containing a diffusing material, and the transmittance is 80 to 95% at a plate thickness of 2 mm.
  10.  前記導光体および前記光源は、一方向に連なって直線状あるいは環状に配されていることを特徴とする請求項1に記載の照明装置。 The illuminating device according to claim 1, wherein the light guide and the light source are arranged in a straight line or a ring in a row in one direction.
PCT/JP2012/054139 2011-03-16 2012-02-21 Illumination device WO2012124440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-058062 2011-03-16
JP2011058062A JP2012195151A (en) 2011-03-16 2011-03-16 Illumination device

Publications (1)

Publication Number Publication Date
WO2012124440A1 true WO2012124440A1 (en) 2012-09-20

Family

ID=46830516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054139 WO2012124440A1 (en) 2011-03-16 2012-02-21 Illumination device

Country Status (2)

Country Link
JP (1) JP2012195151A (en)
WO (1) WO2012124440A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403775B1 (en) * 2013-03-27 2014-01-29 株式会社光波 Lighting device and display device
EP2909526A1 (en) * 2012-10-01 2015-08-26 Rambus Delaware LLC Led lamp and led lighting assembly
GB2568309A (en) * 2017-11-14 2019-05-15 James Sheldon Anthony Lighting units
WO2023022598A1 (en) * 2021-08-20 2023-02-23 Air Supplies Holland B.V. Led armature and lighting system comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059285A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Lighting fixture
JP2008288183A (en) * 2007-04-18 2008-11-27 Ksk:Kk Lighting fixture
WO2010089837A1 (en) * 2009-02-05 2010-08-12 株式会社ノミック Lighting device
JP4540014B1 (en) * 2010-02-18 2010-09-08 幸春 濱口 Surface emitting method of LED surface emitting illumination tube and illumination tube thereof
JP2011123109A (en) * 2009-12-08 2011-06-23 Calsonic Kansei Corp Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059285A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Lighting fixture
JP2008288183A (en) * 2007-04-18 2008-11-27 Ksk:Kk Lighting fixture
WO2010089837A1 (en) * 2009-02-05 2010-08-12 株式会社ノミック Lighting device
JP2011123109A (en) * 2009-12-08 2011-06-23 Calsonic Kansei Corp Display device
JP4540014B1 (en) * 2010-02-18 2010-09-08 幸春 濱口 Surface emitting method of LED surface emitting illumination tube and illumination tube thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909526A1 (en) * 2012-10-01 2015-08-26 Rambus Delaware LLC Led lamp and led lighting assembly
JP5403775B1 (en) * 2013-03-27 2014-01-29 株式会社光波 Lighting device and display device
GB2568309A (en) * 2017-11-14 2019-05-15 James Sheldon Anthony Lighting units
GB2568309B (en) * 2017-11-14 2020-02-12 James Sheldon Anthony Lighting units
US11162654B2 (en) 2017-11-14 2021-11-02 Terry Patrick Walsh Lighting units
WO2023022598A1 (en) * 2021-08-20 2023-02-23 Air Supplies Holland B.V. Led armature and lighting system comprising the same
NL2029015B1 (en) * 2021-08-20 2023-02-27 Air Supplies Holland B V Led armature and lighting system comprising the same

Also Published As

Publication number Publication date
JP2012195151A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5849193B2 (en) Light emitting device, surface light source, liquid crystal display device, and lens
US20130335966A1 (en) Lighting device
US8517587B2 (en) Light source device and display unit equipped with light source device
JP2007059285A (en) Lighting fixture
JP5296236B2 (en) LED fluorescent lighting device
JP6339092B2 (en) Luminous arrangement using light guide
JP2014026940A (en) Lighting apparatus
TW201104134A (en) Light irradiation device
WO2012124440A1 (en) Illumination device
JP2013183078A (en) Led apparatus with lens and multidirectional illumination apparatus
JP5069529B2 (en) Surface emitting device
JP6296396B2 (en) lighting equipment
JP5849192B2 (en) Surface light source and liquid crystal display device
JP2008034321A (en) Illumination device, and imaging apparatus
JP5954663B2 (en) lighting equipment
JP5238902B2 (en) Lighting device
JP2015046357A (en) Lighting device
WO2013141020A1 (en) Light guide plate, illumination device, and illumination stand
TW201441548A (en) Lighting apparatus
JP2013243095A (en) Cover member, and lighting device
JP2013118199A (en) Lighting device
JP6138705B2 (en) Lighting device and display device
JP2016225311A (en) Luminaire
JP5565775B2 (en) LED lighting device
JP6048842B2 (en) lighting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758314

Country of ref document: EP

Kind code of ref document: A1