WO2012124131A1 - Power control device and power control method - Google Patents

Power control device and power control method Download PDF

Info

Publication number
WO2012124131A1
WO2012124131A1 PCT/JP2011/056750 JP2011056750W WO2012124131A1 WO 2012124131 A1 WO2012124131 A1 WO 2012124131A1 JP 2011056750 W JP2011056750 W JP 2011056750W WO 2012124131 A1 WO2012124131 A1 WO 2012124131A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
opening
relay
output
Prior art date
Application number
PCT/JP2011/056750
Other languages
French (fr)
Japanese (ja)
Inventor
潤一郎 山田
西川 武男
亘 岡田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012124131A1 publication Critical patent/WO2012124131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power control apparatus and a power control method, and more particularly to a power control apparatus and a power control method that can more reliably prevent power of different voltages from flowing into the same path.
  • the power conditioner is configured to convert the output of the DC voltage generated by the solar power generation panel into the power of the AC voltage 100V or 200V and switch the output.
  • Patent Document 1 discloses a power conversion device that can detect a system voltage of a power system and switch output power at an AC voltage of 100V or 200V.
  • the solar power generation system when a power failure occurs and the supply of power from the commercial power system is stopped, the solar power generation system is in a self-sustaining operation mode in which independent operation is performed independently from the commercial power system.
  • the self-sustained operation mode the electric power generated by the photovoltaic power generation panel or the electric power charged in the storage battery is converted into electric power having an AC voltage of 100 V by the power conditioner and supplied to the load.
  • Patent Document 2 discloses an inverter device having a grid-connected operation mode that is linked to a commercial power system and a self-sustained operation mode that performs independent operation independently from the commercial power system.
  • the present invention has been made in view of such a situation, and can more reliably prevent power of different voltages from flowing into the same path.
  • a power control apparatus includes a first conversion unit that converts a DC voltage power output from a power generation unit that generates power using natural energy into an AC voltage power, and a first conversion unit.
  • a second conversion means for converting the power of the alternating voltage output from the power into the power of the direct current voltage; a first opening / closing means for opening and closing a wiring for supplying power from the system to the second conversion means; And an opening / closing control means for opening the first opening / closing means when it is detected that the supply of electric power has stopped.
  • a power control method includes a first conversion unit that converts DC voltage power output from a power generation unit that generates power using natural energy into AC voltage power, and first conversion unit.
  • Power control comprising: second conversion means for converting the power of the alternating voltage output from the power into the power of the direct current voltage; and first opening / closing means for opening and closing a wiring for supplying power from the system to the second conversion means
  • An apparatus power control method comprising the step of opening a first opening / closing means when detecting that the supply of power from the system has stopped.
  • the first opening / closing means for opening and closing the wiring for supplying power from the system to the second conversion means is opened.
  • FIG. 1 is a block diagram showing a configuration example of a first embodiment of an energy controller to which the present invention is applied.
  • the energy controller 11 is connected to a solar panel (not shown) and connected to a commercial power system that supplies power with an AC voltage of 200 V via a distribution board 12.
  • the energy controller 11 charges the battery 13 with the electric power generated by the solar panel and the electric power supplied from the commercial power system, or the electric power generated by the solar panel and the electric power charged in the battery 13 as a load. Control power to be supplied.
  • the energy controller 11 includes a normal operation mode that is an operation mode at a normal time when power is supplied from the commercial power system, and a self-sustained operation mode that is an operation mode at the time of a power failure when the supply of power from the commercial power system is stopped. I have.
  • the energy controller 11 supplies power to the load via the distribution board 12 in the normal operation mode, and supplies power to the load connected to the independent output outlet 14 in the independent operation mode.
  • the energy controller 11 includes a solar panel PCS (Power Conditioning System) 21, a battery PCS 22, a charging AC / DC (Alternating Current / Direct Current) converter 23, power monitors 25 and 26, and an input / output unit. 27 and a control unit 28.
  • relays 31 and 32 are connected in series to the wiring connecting the charging AC / DC converter 23 and the wiring breaker 44 of the distribution board 12. Furthermore, a relay 33 is connected to a wiring connecting the relay 32 and the charging AC / DC conversion unit 23 and a wiring connecting the self-sustained operation output terminal of the solar panel PCS 21. The relay 34 is connected to the wiring connecting the wiring breaker 44 and the relay 31 of the distribution board 12 and the battery PCS 22.
  • the terminal 41 is connected to the power line of the commercial power system.
  • the wiring connected to the terminal 41 is connected to the battery PCS 22 and the charging AC / DC conversion unit 23 via the leakage breaker 42, the breaker unit 43, and the wiring breaker 44.
  • the solar panel PCS 21 is connected to the wiring connecting the terminal 41 and the earth leakage breaker 42 via the earth leakage breaker 45.
  • the breaker unit 43 has a plurality of breakers, and a load such as an electric device in the house is connected through the breakers.
  • the solar panel PCS 21 adjusts the power generated by the solar panel (not shown), converts the DC voltage power generated by the solar panel into AC voltage power, and outputs it. For example, when the energy controller 11 is in the normal operation mode, the solar panel PCS 21 converts power supplied from the solar panel into power of an AC voltage of 200 V and supplies the power to the distribution board 12. This electric power is supplied to a load connected to each breaker of the breaker unit 43 via the earth leakage breaker 45 and the earth leakage breaker 42, or returned to the commercial power system via the earth leakage breaker 45 and the terminal 41 for sale. To do.
  • the PCS 21 for solar panel is provided with a self-sustained operation output terminal.
  • a signal instructing the transition to the self-sustained operation mode (hereinafter referred to as a self-sustained operation signal as appropriate) is supplied from the control unit 28, the solar panel PCS 21 outputs power with an AC voltage of 100 V from the self-sustained operation output terminal. To do.
  • the power output from the self-sustained operation output terminal of the solar panel PCS 21 is supplied to the charging AC / DC converter 23 via the relay 33.
  • the battery PCS 22 converts the electric power stored in the battery 13 into AC voltage electric power and outputs it. For example, when the energy controller 11 is in the normal operation mode, the battery PCS 22 converts the power supplied from the battery 13 into power having an AC voltage of 200 V and supplies the power to the distribution board 12 via the relay 34. This electric power is adjusted according to the power consumption at the load, supplied only to the load connected to the breaker unit 43 via the wiring breaker 44, and is prevented from flowing out to the commercial power system.
  • the battery PCS 22 includes a self-sustained operation output terminal, and when a self-sustained operation signal is supplied from the control unit 28, outputs power with an AC voltage of 100 V from the self-sustained operation output terminal.
  • the electric power output from the self-sustained operation output terminal of the battery PCS 22 is supplied to a load connected to the self-sustained output outlet 14 via the terminal 37.
  • the charging AC / DC conversion unit 23 converts AC voltage (100 V or 200 V) power into DC voltage power suitable for charging the battery 13, supplies the battery 13 with the power, and charges the battery 13. For example, the charging AC / DC conversion unit 23 checks the charge amount of the battery 13 and charges the battery 13 with a voltage controlled according to the charge amount. Depending on the amount of charge of the battery 13 or the like, the power output from the charging AC / DC conversion unit 23 is supplied to the battery PCS 22.
  • the power monitor 25 monitors the power input to the charging AC / DC conversion unit 23 and notifies the control unit 28 of the amount of power (current value A1 and voltage value V1).
  • the power monitor 26 monitors the power supplied from the commercial power system to the distribution board 12 and notifies the control unit 28 of the amount of power (current value A2 and voltage value V2).
  • the amount of power (current value A3 and voltage value V3) output from the charging AC / DC conversion unit 23 is notified to the control unit 28 by the charging AC / DC conversion unit 23.
  • the input / output unit 27 is an interface (for example, System I / O board) for communication between each unit in the energy controller 11 and the control unit 28.
  • the control unit 28 communicates with each unit in the energy controller 11 via the input / output unit 27 to perform various controls.
  • control unit 28 detects that the supply of power from the commercial power system is stopped based on the amount of power notified from the power monitor 26, that is, when a power failure is detected, A self-sustained operation signal is supplied to the battery PCS 22. At this time, the control unit 28 controls to turn off the connection of the relays 31 and 32 (open state) and turn on the connection of the relay 33 (connected state).
  • control unit 28 when the control unit 28 detects that the power failure has been recovered and the supply of power from the commercial power system has been started, the control unit 28 releases the self-sustained operation for the solar panel PCS 21 and the battery PCS 22. Supply the signal. At this time, the control unit 28 performs control to turn on the connection of the relays 31 and 32 and turn off the connection of the relay 33.
  • the connections of the relays 31 and 32 are turned off and the connection of the relay 33 is turned on.
  • the connections of the relays 31 and 32 are turned on.
  • the connection 33 is turned off. In this way, the relays 31 to 33 constitute an exclusive circuit so that the relays 31 and 32 and the relay 33 function exclusively on and off.
  • FIG. 2 is a diagram illustrating a configuration example of an exclusive circuit configured by the relays 31 to 33.
  • the relay 31 includes a coil 31a, main switches 31b and 31c, and an auxiliary switch 31d.
  • the main switches 31b and 31c are normally open, and the auxiliary switch 31d is normally closed. That is, in the relay 31, the main switches 31b and 31c are closed while the current is flowing through the coil 31a, while the auxiliary switch 31d is opened and the current is not flowing through the coil 31a. 31c is opened, while auxiliary switch 31d is closed.
  • the relay 32 includes a coil 32a, main switches 32b and 32c, and an auxiliary switch 32d, and performs the same operation as the relay 31.
  • the relay 33 includes a coil 33a, main switches 33b and 33c, and auxiliary switches 33d and 33e.
  • the main switches 33b and 33c are normally open, and the auxiliary switches 33d and 33e are normally closed. That is, in the relay 33, the main switches 33b and 33c are closed while the current is flowing through the coil 33a, while the auxiliary switches 33d and 33e are opened, and the main switch 33b and 33c are not flowing through the coil 33a. 33b and 33c are opened, while auxiliary switches 33d and 33e are closed.
  • One terminal of the main switches 31b and 31c of the relay 31 is connected to a power line of a commercial power system that supplies power of an AC voltage of 200 V via the distribution board 12 of FIG.
  • the other terminals of the main switches 31b and 31c of the relay 31 are connected to one terminal of the main switches 32b and 32c of the relay 32, and the other terminals of the main switches 32b and 32c of the relay 32 are connected to the charging AC / The DC converter 23 is connected.
  • one terminal of the main switches 33b and 33c of the relay 33 is connected to the self-sustained operation output terminal of the PCS 21 for solar panel, and the other terminal of the main switches 33b and 33c of the relay 33 is connected to the relay 32 and the charge. It is connected to the wiring which connects the AC / DC conversion unit 23 for use.
  • the input / output unit 27 has a terminal A, a terminal B, and a terminal C that apply a voltage of +24 V, and a voltage is applied to the terminal A, the terminal B, and the terminal C according to the control of the control unit 28.
  • opening / closing of the relays 31 to 33 is controlled.
  • an auxiliary switch 31d of the relay 31, an auxiliary switch 32d of the relay 32, and a coil 33a of the relay 33 are connected in series.
  • coil 31a of relay 31 and auxiliary switch 33e of relay 33 are connected in series.
  • a coil 32a of the relay 32 and an auxiliary switch 33d of the relay 33 are connected in series.
  • connection to the charging AC / DC conversion unit 23 is exclusive between the commercial power system and the solar panel PCS 21. That is, when the charging AC / DC conversion unit 23 and the commercial power system are connected, the connection between the charging AC / DC conversion unit 23 and the solar panel PCS 21 is released. On the other hand, when the charging AC / DC conversion unit 23 and the solar panel PCS 21 are connected, the connection between the charging AC / DC conversion unit 23 and the commercial power system is released.
  • control unit 28 applies a voltage of + 24V to the terminal B and the terminal C of the input / output unit 27 and stops applying the voltage to the terminal A of the input / output unit 27 (0V Control).
  • the relay 32 a current flows through the coil 32a, the main switches 32b and 32c are closed and energized, and the auxiliary switch 32d is opened.
  • the relay 33 the main switches 33b and 33c are opened and cut off, and the auxiliary switches 33d and 33e are closed. Therefore, in the normal operation mode, the charging AC / DC conversion unit 23 and the commercial power system are connected, while the connection between the charging AC / DC conversion unit 23 and the solar panel PCS 21 is released. .
  • control unit 28 applies a voltage of +24 V to the terminal A of the input / output unit 27 and stops applying the voltage to the terminals B and C of the input / output unit 27 (set to 0 V). Take control.
  • the main switches 31b and 31c are opened and cut off, and the auxiliary switch 31d is closed.
  • the main switches 32b and 32c are opened and cut off, and the auxiliary switch 32d is closed.
  • the relay 33 a current flows through the coil 33a, the main switches 33b and 33c are closed and energized, and the auxiliary switches 33d and 33e are opened. Therefore, in the self-sustaining operation mode, the charging AC / DC conversion unit 23 and the solar panel PCS 21 are connected, while the connection between the charging AC / DC conversion unit 23 and the commercial power system is released. .
  • each power path is represented by a thick line.
  • Fig. 3 shows the power path during a power failure.
  • control unit 28 when the control unit 28 detects that the supply of power from the commercial power system is stopped based on the amount of power notified from the power monitor 26, the control unit 28 controls the solar panel PCS 21 and the battery PCS 22. Supply a self-sustained operation signal. At the same time, the control unit 28 turns off the connection of the relays 31 and 32 (stops the application of voltage to the terminals B and C in FIG. 2) and turns on the connection of the relay 33 (the terminal A in FIG. 2). Voltage of + 24V is applied).
  • the solar panel PCS 21 converts the power of the DC voltage supplied from the solar panel into the power of the AC voltage 100V in accordance with the self-sustained operation signal, and outputs it from the self-sustained operation output terminal. At this time, since the connection of the relay 33 is on, the power output from the self-sustained operation output terminal of the solar panel PCS 21 is supplied to the charging AC / DC conversion unit 23 via the relay 33.
  • the connection of the relays 31 and 32 since the connection of the relays 31 and 32 is off, the power output from the solar panel PCS 21 does not flow to the distribution board 12 side. Furthermore, in the energy controller 11, since the relays 31 and 32 are connected in series, even if one of the relays 31 and 32 breaks down and the connection cannot be turned off, it depends on the person who has not failed. The connection can be turned off. As described above, by connecting the relays 31 and 32 in series, it is possible to more reliably perform control so that power is not output to the distribution board 12.
  • the charging AC / DC conversion unit 23 converts the AC voltage power supplied from the solar panel PCS 21 into DC voltage power, and supplies it to the battery 13 or the battery PCS 22. Note that whether the power output from the charging AC / DC conversion unit 23 is supplied to the battery 13 or the battery PCS 22 depends on the amount of charge of the battery 13 or the load connected to the independent output outlet 14. It depends on the power consumption (that is, the amount of power output from the battery PCS 22) and the like.
  • the battery PCS 22 converts the DC voltage power supplied from the charging AC / DC converter 23 or the DC voltage power charged in the battery 13 into AC voltage power of 100 V in accordance with the self-sustained operation signal. Output from the self-sustained operation output terminal. Thereby, the power output from the self-sustained operation output terminal of the battery PCS 22 is supplied to the load connected to the self-sustained output outlet 14.
  • the earth leakage breaker 45 is turned off by the user who has detected a power failure, and the electrical connection between the solar panel PCS 21 and the commercial power system is cut. Even if the earth leakage breaker 45 is not turned off, in the self-sustaining operation mode, the solar panel PCS 21 does not output power to the terminals connected to the commercial power system, and the solar panel PCS 21 does not output power. No power flows out to 12.
  • a relay that can be controlled to open and close by the control unit 28 is connected between the solar panel PCS 21 and the leakage breaker 45 so that when the control unit 28 detects a power failure, the relay is turned off. Also good.
  • the control unit 28 also turns off the connection of the relay 34 and disconnects the electrical connection between the battery PCS 22 and the commercial power system.
  • FIG. 4 shows a power path in a normal time.
  • control unit 28 when the control unit 28 detects that the supply of power from the commercial power system has been resumed (recovering from a power failure) based on the amount of power notified from the power monitor 26, the control unit 28 causes the PCS 21 for solar panels and the PCS 22 for batteries to In response, a signal for releasing the independent operation is supplied. At the same time, the control unit 28 turns on the connection of the relays 31 and 32 (applies a voltage of +24 V to the terminals B and C in FIG. 2) and turns off the connection of the relay 33 (the terminal A in FIG. 2). To stop the voltage application). The control unit 28 also turns on the connection of the relay 34.
  • the solar panel PCS 21 stops the output of the power from the self-sustained operation output terminal according to the signal for canceling the self-sustained operation, converts the power of the DC voltage supplied from the solar panel into the power of the AC voltage 200V, Supply to distribution board 12. Thereby, the electric power generated by the solar panel is supplied to the load connected to the breaker unit 43 of the distribution board 12. At this time, the earth leakage breaker 45 is turned on by the user who has detected the recovery from the power failure.
  • the charging AC / DC conversion unit 23 converts the power of the AC voltage 200 V supplied from the commercial power system into the power of the DC voltage, and supplies it to the battery 13.
  • the battery PCS 22 converts the DC voltage power supplied from the battery 13 into the AC voltage 200 V according to the signal for canceling the self-sustained operation, and supplies it to the distribution board 12 via the relay 34. Thereby, the electric power charged in the battery 13 is supplied to the load connected to the breaker unit 43 of the distribution board 12.
  • the power path is switched during a power failure and during a normal time.
  • the connection of the relay 33 is turned on and the connection of the relays 31 and 32 is turned off at the time of a power failure, the power output from the self-sustained operation output terminal of the solar panel PCS 21 flows out to the distribution board 12 side. This can be prevented. Thereby, even if there is a worker who is working to recover from a power failure on the commercial power system side, the work can be performed safely, and the safety can be ensured.
  • the connection of the relays 31 and 32 is turned on and the connection of the relay 33 is turned off. Therefore, the power of the AC voltage 200 V supplied from the commercial power system and the PCS 21 for solar panel are used. The situation where the power of the AC voltage 100V output from the self-sustained operation output terminal flows into the same path is avoided. Thereby, the failure assumed when such a situation generate
  • FIG. 5 is a block diagram showing a configuration example of the second embodiment of the energy controller to which the present invention is applied.
  • the energy controller 11A is connected to a solar panel (not shown) as in the energy controller 11 of FIG. It is connected.
  • the energy controller 11A has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, a battery PCS 22, power monitors 25 and 26, an input / output unit 27, and a control unit 28. The detailed explanation is omitted. In other words, the energy controller 11A is different from the energy controller 11 in that it includes a charging AC / DC converter 23A.
  • the energy controller 11A does not include the relays 31 to 33 included in the energy controller 11, and the wiring from the distribution board 12 is directly connected to the charging AC / DC converter 23A. While being connected, the self-sustained operation output terminal of the solar panel PCS 21 is directly connected. That is, in the energy controller 11A, the charging AC / DC conversion unit 23A has a built-in function of an exclusive circuit formed by the relays 31 to 33.
  • control unit 28 also supplies the independent operation signal to the charging AC / DC conversion unit 23A, and within the charging AC / DC conversion unit 23A, The connection with the self-sustained operation output terminal of the optical panel PCS 21 is switched exclusively.
  • the charging AC / DC conversion unit 23A releases the connection with the commercial power system according to the self-sustained operation signal and connects with the self-sustained operation output terminal of the solar panel PCS 21.
  • the exclusive circuit is switched inside the charging AC / DC conversion unit 23A. Further, when the power failure is restored, the charging AC / DC conversion unit 23A releases the connection with the self-sustained operation output terminal of the solar panel PCS 21 according to the signal for canceling the self-sustaining operation and connects with the commercial power system. As described above, the exclusive circuit is switched inside the charging AC / DC conversion unit 23A.
  • the charging AC / DC conversion unit 23A has a function of an exclusive circuit. By doing so, the apparatus can be simplified and downsized.
  • FIG. 6 is a block diagram showing a configuration example of a third embodiment of the energy controller to which the present invention is applied.
  • the energy controller 11B is connected to a solar panel (not shown) as in the energy controller 11 of FIG. 1, and is connected to a commercial power system that supplies power of an AC voltage of 200 V via the distribution board 12. It is connected.
  • the energy controller 11B has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, power monitors 25 and 26, an input / output unit 27, a control unit 28, and relays 31 to 33. Detailed description is omitted. That is, the energy controller 11B is different from the energy controller 11 in that it includes a bidirectional AC / DC converter 23B.
  • the bidirectional AC / DC conversion unit 23B converts the AC voltage power supplied via the distribution board 12 into DC voltage power, and supplies the battery 13 for charging.
  • the bidirectional AC / DC conversion unit 23B converts the DC voltage power supplied from the battery 13 into AC voltage power during normal operation, and supplies the AC voltage power to each breaker of the breaker unit 43 via the distribution board 12. Supply the connected load.
  • the bidirectional AC / DC conversion unit 23B is supplied from the power obtained by converting the power of the DC voltage supplied from the battery 13 into the AC voltage or the self-sustained operation output terminal of the solar panel PCS 21 during a power failure. The power of the AC voltage is supplied to the load connected to the outlet 14 for independent output.
  • the bidirectional AC / DC conversion unit 23B has a configuration including both functions of the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG.
  • the control unit 28 performs control to turn off the connection of the relays 31 and 32 and turn on the connection of the relay 33 during a power failure. Further, in a normal time, the control unit 28 performs control to turn on the connection of the relays 31 and 32 and turn off the connection of the relay 33. That is, in the energy controller 11B, as in the energy controller 11 of FIG. 1, the relays 31 to 33 constitute an exclusive circuit.
  • the energy controller 11B can ensure safety and reliability in the same manner as the energy controller 11 of FIG. 1, and in addition, the bidirectional AC / DC conversion unit 23B is connected to the battery PCS 22 of FIG. By providing both functions of the charging AC / DC conversion unit 23, the device can be simplified and downsized.
  • FIG. 7 is a block diagram showing a configuration example of a fourth embodiment of the energy controller to which the present invention is applied.
  • the energy controller 11C is connected to a solar panel (not shown) as in the energy controller 11 of FIG. 1, and is connected to a commercial power system that supplies power with an AC voltage of 200 V via the distribution board 12. It is connected.
  • the energy controller 11C has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, power monitors 25 and 26, an input / output unit 27, and a control unit 28, and detailed description thereof is omitted. To do. That is, the energy controller 11C has a configuration different from the energy controller 11 in that the bidirectional AC / DC conversion unit 23C is provided.
  • the energy controller 11C does not include the relays 31 to 33 included in the energy controller 11, and the wiring from the distribution board 12 is directly connected to the bidirectional AC / DC conversion unit 23C. While being connected, the self-sustained operation output terminal of the solar panel PCS 21 is directly connected.
  • the bidirectional AC / DC conversion unit 23C has a built-in function of the exclusive circuit formed by the relays 31 to 33. Therefore, in the energy controller 11C, the control unit 28 also supplies the self-sustained operation signal to the bidirectional AC / DC conversion unit 23C, and in the bidirectional AC / DC conversion unit 23C, connection with the commercial power system, solar The connection with the self-sustained operation output terminal of the optical panel PCS 21 is switched exclusively.
  • the bidirectional AC / DC conversion unit 23C is configured to have both functions of the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG. 1 as with the bidirectional AC / DC conversion unit 23B of FIG. Is done.
  • the bidirectional AC / DC conversion unit 23C releases the connection with the commercial power system according to the self-sustained operation signal and connects with the self-sustained operation output terminal of the solar panel PCS 21.
  • the exclusive circuit is switched inside the bidirectional AC / DC converter 23C.
  • the bidirectional AC / DC converter 23C converts the DC voltage power supplied from the battery 13 into an AC voltage, or the AC voltage power supplied from the self-sustained operation output terminal of the solar panel PCS 21. Is supplied to the load connected to the outlet 14 for self-supporting output.
  • the bidirectional AC / DC conversion unit 23C releases the connection with the self-sustained operation output terminal of the solar panel PCS 21 in accordance with a signal for canceling the self-sustained operation.
  • the exclusive circuit is switched inside the bidirectional AC / DC converter 23C so as to be connected to the power system.
  • the bidirectional AC / DC conversion unit 23C converts the DC voltage power supplied from the battery 13 into AC voltage power, and loads connected to the breakers of the breaker unit 43 via the distribution board 12. To supply.
  • the bidirectional AC / DC conversion unit 23C incorporates the functions of the exclusive circuit and the functions of both the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG. Further simplification and downsizing of the apparatus can be achieved.
  • the exclusive circuit is configured by the relays 31 to 33.
  • the exclusive circuit may not necessarily be configured by the relays 31 to 33. That is, the control unit 28 may independently control the opening and closing of the relays 31 to 33 based on the supply of power from the commercial power system. When a power failure is detected, at least the relays 31 and 32 are turned off. Thus, safety and reliability can be ensured. Then, the control unit 28 may turn on the relay 33 after turning off the relays 31 and 32.
  • the relays 31 to 33 in addition to the one driven at 24V described in FIG. 2, for example, one driven at a voltage according to the design, such as one driven at 12V, can be adopted.
  • a power generation system using a solar power generation panel as a power generation means has been described.
  • the present technology generates power using natural energy, such as wind power generation, in addition to a solar power generation panel.
  • the present invention can be applied to a power generation system that uses power generated by power generation means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 The present invention more reliably prevents power of different voltages flowing in the same path. A solar panel power conditioning system (21) converts DC voltage power generated by a solar panel, which generates electricity in response to irradiation with sunlight, into AC voltage power. A charger AC/DC converter (23) converts the AC voltage power output from the solar panel power conditioning system (21) into DC voltage power. Relays (31, 32) are connected in series to wiring that supplies power from a system to the charger AC/DC converter (23). Furthermore, a control unit (28) switches the relays (31, 32) off when an interruption in the supply of power from the system is detected. This invention can be applied, for instance, to a photovoltaic system provided with a photovoltaic panel and a storage battery.

Description

電力制御装置および電力制御方法Power control apparatus and power control method
 本発明は、電力制御装置および電力制御方法に関し、特に、異なる電圧の電力が同一経路に流れ込むことを、より確実に防止することができるようにした電力制御装置および電力制御方法に関する。 The present invention relates to a power control apparatus and a power control method, and more particularly to a power control apparatus and a power control method that can more reliably prevent power of different voltages from flowing into the same path.
 近年、太陽光発電パネルおよび蓄電池を備えた太陽光発電システムが普及している。このような太陽光発電システムでは、太陽光発電パネルで発電された直流電圧の電力が、パワーコンディショナにより交流電圧の電力に変換された後、負荷に供給されて消費されたり、商用電力系統へ戻されて売電されたりする。また、太陽光発電パネルで発電された電力を蓄電池に充電することにより、天候に左右されない安定的な電力の供給が行われる。 In recent years, solar power generation systems equipped with solar power generation panels and storage batteries have become widespread. In such a photovoltaic power generation system, the DC voltage power generated by the photovoltaic power generation panel is converted into AC voltage power by the power conditioner and then supplied to the load for consumption or to the commercial power system. It is returned and sold. In addition, by charging the storage battery with the power generated by the solar power generation panel, stable power supply that is not affected by the weather is performed.
 一般的に、商用電力系統では、交流電圧200Vの電力が送電される一方、家電製品などの負荷では、交流電圧100Vの電力が消費される。そのため、パワーコンディショナは、太陽光発電パネルで発電された直流電圧の電力を、交流電圧100Vまたは200Vの電力にそれぞれ変換して出力を切り替えることができるように構成されている。 Generally, in a commercial power system, power with an AC voltage of 200 V is transmitted, while with loads such as home appliances, power with an AC voltage of 100 V is consumed. Therefore, the power conditioner is configured to convert the output of the DC voltage generated by the solar power generation panel into the power of the AC voltage 100V or 200V and switch the output.
 例えば、特許文献1には、電力系統の系統電圧を検知して、出力する電力を交流電圧100Vまたは200Vで切り替えることができる電力変換装置が開示されている。 For example, Patent Document 1 discloses a power conversion device that can detect a system voltage of a power system and switch output power at an AC voltage of 100V or 200V.
 また、太陽光発電システムでは、停電が発生して商用電力系統からの電力の供給が停止した場合には、商用電力系統から独立して自立運転を行う自立運転モードとなる。自立運転モードでは、太陽光発電パネルで発電された電力、または蓄電池に充電されている電力が、パワーコンディショナにより交流電圧100Vの電力に変換されて負荷に供給される。 Also, in the solar power generation system, when a power failure occurs and the supply of power from the commercial power system is stopped, the solar power generation system is in a self-sustaining operation mode in which independent operation is performed independently from the commercial power system. In the self-sustained operation mode, the electric power generated by the photovoltaic power generation panel or the electric power charged in the storage battery is converted into electric power having an AC voltage of 100 V by the power conditioner and supplied to the load.
 例えば、特許文献2には、商用電力系統と連系した系統連系運転モードと、商用電力系統から独立され自立運転を行う自立運転モードとを有するインバータ装置が開示されている。 For example, Patent Document 2 discloses an inverter device having a grid-connected operation mode that is linked to a commercial power system and a self-sustained operation mode that performs independent operation independently from the commercial power system.
特開2002-112461号公報JP 2002-112461 A 特開2005-278297号公報JP 2005-278297 A
 ところで、停電が発生してパワーコンディショナが自立運転モードで交流電圧100Vの電力を出力しているときに、停電が復旧して商用電力系統から交流電圧200V電力が供給されると、電圧の異なる電力経路が電気的に接触して、異なる電圧の電力が同一経路に流れ込む事態が発生する。このような事態が発生すると、パワーコンディショナがダメージを受けて故障する恐れがあった。 By the way, when a power failure occurs and the power conditioner outputs power of AC voltage 100V in the self-sustaining operation mode, when the power failure is restored and AC voltage 200V power is supplied from the commercial power system, the voltage differs. A situation occurs in which the power paths are in electrical contact, and power of different voltages flows into the same path. When such a situation occurs, the inverter may be damaged and break down.
 なお、特許文献1に記載の電力変換装置では、熱暴走などによって制御部に異常が発生したとき、交流電圧100Vの経路と200Vの経路とが接触する可能性がある。また、特許文献2に記載のインバータ装置では、制御部に何らかの不具合が発生してリレーの開閉状態が制御できない状態となったとき、自立運転モードで出力されている電力の経路と商用電力系統の電力の経路とが接触する可能性がある。 In the power conversion device described in Patent Document 1, when an abnormality occurs in the control unit due to thermal runaway or the like, there is a possibility that the path of AC voltage 100V and the path of 200V contact. In addition, in the inverter device described in Patent Document 2, when a malfunction occurs in the control unit and the open / close state of the relay becomes uncontrollable, the power path output in the self-sustaining operation mode and the commercial power system There is a possibility of contact with the power path.
 本発明は、このような状況に鑑みてなされたものであり、異なる電圧の電力が同一経路に流れ込むことを、より確実に防止することができるようにするものである。 The present invention has been made in view of such a situation, and can more reliably prevent power of different voltages from flowing into the same path.
 本発明の一側面の電力制御装置は、自然エネルギーを利用し発電を行う発電手段から出力される直流電圧の電力を、交流電圧の電力に変換する第1の変換手段と、第1の変換手段から出力される交流電圧の電力を、直流電圧の電力に変換する第2の変換手段と、系統から第2の変換手段に電力を供給する配線を開閉する第1の開閉手段と、系統からの電力の供給が停止したことを検知すると、第1の開閉手段を開放する開閉制御手段とを備えることを特徴とする。 A power control apparatus according to one aspect of the present invention includes a first conversion unit that converts a DC voltage power output from a power generation unit that generates power using natural energy into an AC voltage power, and a first conversion unit. A second conversion means for converting the power of the alternating voltage output from the power into the power of the direct current voltage; a first opening / closing means for opening and closing a wiring for supplying power from the system to the second conversion means; And an opening / closing control means for opening the first opening / closing means when it is detected that the supply of electric power has stopped.
 本発明の一側面の電力制御方法は、自然エネルギーを利用し発電を行う発電手段から出力される直流電圧の電力を、交流電圧の電力に変換する第1の変換手段と、第1の変換手段から出力される交流電圧の電力を、直流電圧の電力に変換する第2の変換手段と、系統から第2の変換手段に電力を供給する配線を開閉する第1の開閉手段とを備える電力制御装置の電力制御方法であって、系統からの電力の供給が停止したことを検知すると、第1の開閉手段を開放するステップを含むことを特徴とする。 A power control method according to one aspect of the present invention includes a first conversion unit that converts DC voltage power output from a power generation unit that generates power using natural energy into AC voltage power, and first conversion unit. Power control comprising: second conversion means for converting the power of the alternating voltage output from the power into the power of the direct current voltage; and first opening / closing means for opening and closing a wiring for supplying power from the system to the second conversion means An apparatus power control method comprising the step of opening a first opening / closing means when detecting that the supply of power from the system has stopped.
 本発明の一側面においては、系統からの電力の供給が停止したことが検知されると、系統から第2の変換手段に電力を供給する配線を開閉する第1の開閉手段が開放される。 In one aspect of the present invention, when it is detected that the supply of power from the system is stopped, the first opening / closing means for opening and closing the wiring for supplying power from the system to the second conversion means is opened.
 本発明の一側面によれば、異なる電圧の電力が同一経路に流れ込むことを、より確実に防止することができる。 According to one aspect of the present invention, it is possible to more reliably prevent power of different voltages from flowing into the same path.
本発明を適用したエネルギーコントローラの第1の実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of 1st Embodiment of the energy controller to which this invention is applied. 排他的回路の構成例を示す図である。It is a figure which shows the structural example of an exclusive circuit. 停電時における電力経路を示す説明する。The power path at the time of a power failure will be described. 通常時における電力経路を示す説明する。A description will be given of a power path in a normal state. 本発明を適用したエネルギーコントローラの第2の実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of 2nd Embodiment of the energy controller to which this invention is applied. 本発明を適用したエネルギーコントローラの第3の実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of 3rd Embodiment of the energy controller to which this invention is applied. 本発明を適用したエネルギーコントローラの第4の実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of 4th Embodiment of the energy controller to which this invention is applied.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
 図1は、本発明を適用したエネルギーコントローラの第1の実施の形態の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of a first embodiment of an energy controller to which the present invention is applied.
 図1において、エネルギーコントローラ11は、図示しない太陽光パネルに接続されるとともに、分電盤12を介して、交流電圧200Vの電力を供給する商用電力系統に接続されている。 In FIG. 1, the energy controller 11 is connected to a solar panel (not shown) and connected to a commercial power system that supplies power with an AC voltage of 200 V via a distribution board 12.
 エネルギーコントローラ11は、太陽光パネルで発電された電力および商用電力系統から供給される電力をバッテリ13に充電したり、太陽光パネルで発電された電力およびバッテリ13に充電されている電力を負荷に供給したりする電力制御を行う。また、エネルギーコントローラ11は、商用電力系統から電力が供給される通常時における運転モードである通常運転モードと、商用電力系統から電力の供給が停止した停電時における運転モードである自立運転モードとを備えている。そして、エネルギーコントローラ11は、通常運転モードでは、分電盤12を介して負荷に電力を供給し、自立運転モードでは、自立出力用コンセント14に接続された負荷に対して電力を供給する。 The energy controller 11 charges the battery 13 with the electric power generated by the solar panel and the electric power supplied from the commercial power system, or the electric power generated by the solar panel and the electric power charged in the battery 13 as a load. Control power to be supplied. In addition, the energy controller 11 includes a normal operation mode that is an operation mode at a normal time when power is supplied from the commercial power system, and a self-sustained operation mode that is an operation mode at the time of a power failure when the supply of power from the commercial power system is stopped. I have. The energy controller 11 supplies power to the load via the distribution board 12 in the normal operation mode, and supplies power to the load connected to the independent output outlet 14 in the independent operation mode.
 エネルギーコントローラ11は、太陽光パネル用PCS(Power Conditioning System:パワーコンディショニングシステム)21、バッテリ用PCS22、充電用AC/DC(Alternating Current / Direct Current)変換部23、電力モニタ25および26、入出力部27、並びに制御部28を備えて構成されている。 The energy controller 11 includes a solar panel PCS (Power Conditioning System) 21, a battery PCS 22, a charging AC / DC (Alternating Current / Direct Current) converter 23, power monitors 25 and 26, and an input / output unit. 27 and a control unit 28.
 また、エネルギーコントローラ11では、充電用AC/DC変換部23および分電盤12の配線用ブレーカ44を接続する配線に、リレー31および32が直列に接続されている。さらに、リレー32および充電用AC/DC変換部23を接続する配線と太陽光パネル用PCS21の自立運転出力端子とを接続する配線に、リレー33が接続されている。また、分電盤12の配線用ブレーカ44およびリレー31を接続する配線とバッテリ用PCS22とを接続する配線に、リレー34が接続されている。 In the energy controller 11, relays 31 and 32 are connected in series to the wiring connecting the charging AC / DC converter 23 and the wiring breaker 44 of the distribution board 12. Furthermore, a relay 33 is connected to a wiring connecting the relay 32 and the charging AC / DC conversion unit 23 and a wiring connecting the self-sustained operation output terminal of the solar panel PCS 21. The relay 34 is connected to the wiring connecting the wiring breaker 44 and the relay 31 of the distribution board 12 and the battery PCS 22.
 分電盤12では、端子41が商用電力系統の電力線に接続されている。また、端子41に接続された配線が漏電ブレーカ42、ブレーカ部43、および配線用ブレーカ44を介して、バッテリ用PCS22および充電用AC/DC変換部23に接続されている。また、端子41および漏電ブレーカ42を接続する配線には、漏電ブレーカ45を介して太陽光パネル用PCS21が接続されている。ブレーカ部43は、複数のブレーカを有しており、それらのブレーカを介して、例えば、家屋内にある電気機器などの負荷が接続される。 In the distribution board 12, the terminal 41 is connected to the power line of the commercial power system. In addition, the wiring connected to the terminal 41 is connected to the battery PCS 22 and the charging AC / DC conversion unit 23 via the leakage breaker 42, the breaker unit 43, and the wiring breaker 44. The solar panel PCS 21 is connected to the wiring connecting the terminal 41 and the earth leakage breaker 42 via the earth leakage breaker 45. The breaker unit 43 has a plurality of breakers, and a load such as an electric device in the house is connected through the breakers.
 太陽光パネル用PCS21は、図示しない太陽光パネルにより発電される電力を調整し、太陽光パネルにより発電された直流電圧の電力を、交流電圧の電力に変換して出力する。例えば、エネルギーコントローラ11が通常運転モードであるとき、太陽光パネル用PCS21は、太陽光パネルから供給される電力を、交流電圧200Vの電力に変換して分電盤12に供給する。この電力は、漏電ブレーカ45および漏電ブレーカ42を介してブレーカ部43の各ブレーカに接続された負荷に供給されたり、漏電ブレーカ45および端子41を介して商用電力系統に戻されて売電されたりする。 The solar panel PCS 21 adjusts the power generated by the solar panel (not shown), converts the DC voltage power generated by the solar panel into AC voltage power, and outputs it. For example, when the energy controller 11 is in the normal operation mode, the solar panel PCS 21 converts power supplied from the solar panel into power of an AC voltage of 200 V and supplies the power to the distribution board 12. This electric power is supplied to a load connected to each breaker of the breaker unit 43 via the earth leakage breaker 45 and the earth leakage breaker 42, or returned to the commercial power system via the earth leakage breaker 45 and the terminal 41 for sale. To do.
 また、太陽光パネル用PCS21は、自立運転出力端子を備えている。自立運転モードへの移行を指示する信号(以下、適宜、自立運転信号と称する)が制御部28から供給されると、太陽光パネル用PCS21は、自立運転出力端子から交流電圧100Vの電力を出力する。太陽光パネル用PCS21の自立運転出力端子から出力される電力は、リレー33を介して充電用AC/DC変換部23に供給される。 Moreover, the PCS 21 for solar panel is provided with a self-sustained operation output terminal. When a signal instructing the transition to the self-sustained operation mode (hereinafter referred to as a self-sustained operation signal as appropriate) is supplied from the control unit 28, the solar panel PCS 21 outputs power with an AC voltage of 100 V from the self-sustained operation output terminal. To do. The power output from the self-sustained operation output terminal of the solar panel PCS 21 is supplied to the charging AC / DC converter 23 via the relay 33.
 バッテリ用PCS22は、バッテリ13に蓄積されている電力を、交流電圧の電力に変換して出力する。例えば、エネルギーコントローラ11が通常運転モードであるとき、バッテリ用PCS22は、バッテリ13から供給される電力を交流電圧200Vの電力に変換し、リレー34を介して分電盤12に供給する。この電力は、負荷での消費電力に応じて調整され、配線用ブレーカ44を介して、ブレーカ部43に接続された負荷にのみ供給され、商用電力系統に流れ出ることは防止されている。 The battery PCS 22 converts the electric power stored in the battery 13 into AC voltage electric power and outputs it. For example, when the energy controller 11 is in the normal operation mode, the battery PCS 22 converts the power supplied from the battery 13 into power having an AC voltage of 200 V and supplies the power to the distribution board 12 via the relay 34. This electric power is adjusted according to the power consumption at the load, supplied only to the load connected to the breaker unit 43 via the wiring breaker 44, and is prevented from flowing out to the commercial power system.
 また、バッテリ用PCS22は、自立運転出力端子を備えており、自立運転信号が制御部28から供給されると、自立運転出力端子から交流電圧100Vの電力を出力する。バッテリ用PCS22の自立運転出力端子から出力される電力は、端子37を介して、自立出力用コンセント14に接続されている負荷に供給される。 Further, the battery PCS 22 includes a self-sustained operation output terminal, and when a self-sustained operation signal is supplied from the control unit 28, outputs power with an AC voltage of 100 V from the self-sustained operation output terminal. The electric power output from the self-sustained operation output terminal of the battery PCS 22 is supplied to a load connected to the self-sustained output outlet 14 via the terminal 37.
 充電用AC/DC変換部23は、交流電圧(100Vまたは200V)の電力を、バッテリ13の充電に適した直流電圧の電力に変換してバッテリ13に供給し、バッテリ13を充電する。例えば、充電用AC/DC変換部23は、バッテリ13の充電量を確認し、その充電量に応じて制御される電圧でバッテリ13を充電する。また、バッテリ13の充電量などによっては、充電用AC/DC変換部23から出力される電力は、バッテリ用PCS22に供給される。 The charging AC / DC conversion unit 23 converts AC voltage (100 V or 200 V) power into DC voltage power suitable for charging the battery 13, supplies the battery 13 with the power, and charges the battery 13. For example, the charging AC / DC conversion unit 23 checks the charge amount of the battery 13 and charges the battery 13 with a voltage controlled according to the charge amount. Depending on the amount of charge of the battery 13 or the like, the power output from the charging AC / DC conversion unit 23 is supplied to the battery PCS 22.
 電力モニタ25は、充電用AC/DC変換部23に入力される電力を監視し、その電力量(電流値A1および電圧値V1)を制御部28に通知する。電力モニタ26は、商用電力系統から分電盤12に供給される電力を監視し、その電力量(電流値A2および電圧値V2)を制御部28に通知する。なお、充電用AC/DC変換部23から出力される電力の電力量(電流値A3および電圧値V3)が、充電用AC/DC変換部23により制御部28に通知される。 The power monitor 25 monitors the power input to the charging AC / DC conversion unit 23 and notifies the control unit 28 of the amount of power (current value A1 and voltage value V1). The power monitor 26 monitors the power supplied from the commercial power system to the distribution board 12 and notifies the control unit 28 of the amount of power (current value A2 and voltage value V2). The amount of power (current value A3 and voltage value V3) output from the charging AC / DC conversion unit 23 is notified to the control unit 28 by the charging AC / DC conversion unit 23.
 入出力部27は、エネルギーコントローラ11内の各部と制御部28とが通信を行うためのインタフェース(例えば、System I/O board)である。 The input / output unit 27 is an interface (for example, System I / O board) for communication between each unit in the energy controller 11 and the control unit 28.
 制御部28は、入出力部27を介してエネルギーコントローラ11内の各部と通信を行って、各種の制御を行う。 The control unit 28 communicates with each unit in the energy controller 11 via the input / output unit 27 to perform various controls.
 例えば、制御部28は、電力モニタ26から通知される電力量に基づいて、商用電力系統から電力の供給が停止したことを検知したとき、即ち、停電を検知したとき、太陽光パネル用PCS21およびバッテリ用PCS22に対して自立運転信号を供給する。また、このとき、制御部28は、リレー31および32の接続をオフ(開放状態)にするとともに、リレー33の接続をオン(接続状態)にする制御を行う。 For example, when the control unit 28 detects that the supply of power from the commercial power system is stopped based on the amount of power notified from the power monitor 26, that is, when a power failure is detected, A self-sustained operation signal is supplied to the battery PCS 22. At this time, the control unit 28 controls to turn off the connection of the relays 31 and 32 (open state) and turn on the connection of the relay 33 (connected state).
 また、例えば、制御部28は、停電が復旧して、商用電力系統から電力の供給が開始されたことを検知したとき、太陽光パネル用PCS21およびバッテリ用PCS22に対して、自立運転を解除する信号を供給する。また、このとき、制御部28は、リレー31および32の接続をオンにするとともに、リレー33の接続をオフにする制御を行う。 Further, for example, when the control unit 28 detects that the power failure has been recovered and the supply of power from the commercial power system has been started, the control unit 28 releases the self-sustained operation for the solar panel PCS 21 and the battery PCS 22. Supply the signal. At this time, the control unit 28 performs control to turn on the connection of the relays 31 and 32 and turn off the connection of the relay 33.
 このように、エネルギーコントローラ11では、自立運転モード時には、リレー31および32の接続がオフされ、リレー33の接続がオンされる一方、通常運転モード時には、リレー31および32の接続がオンされ、リレー33の接続がオフされる。このように、リレー31および32と、リレー33とでオンおよびオフが排他的に機能するように、リレー31乃至33は排他的回路を構成している。 Thus, in the energy controller 11, in the self-sustained operation mode, the connections of the relays 31 and 32 are turned off and the connection of the relay 33 is turned on. On the other hand, in the normal operation mode, the connections of the relays 31 and 32 are turned on. The connection 33 is turned off. In this way, the relays 31 to 33 constitute an exclusive circuit so that the relays 31 and 32 and the relay 33 function exclusively on and off.
 図2には、リレー31乃至33により構成される排他的回路の構成例を示す図である。 FIG. 2 is a diagram illustrating a configuration example of an exclusive circuit configured by the relays 31 to 33.
 リレー31は、コイル31a、主スイッチ31bおよび31c、並びに、補助スイッチ31dを備えて構成され、主スイッチ31bおよび31cは常開型とされ、補助スイッチ31dは常閉型とされる。即ち、リレー31では、コイル31aに電流が流れている状態で、主スイッチ31bおよび31cが閉鎖される一方、補助スイッチ31dが開放され、コイル31aに電流が流れていない状態で、主スイッチ31bおよび31cが開放される一方、補助スイッチ31dが閉鎖される。 The relay 31 includes a coil 31a, main switches 31b and 31c, and an auxiliary switch 31d. The main switches 31b and 31c are normally open, and the auxiliary switch 31d is normally closed. That is, in the relay 31, the main switches 31b and 31c are closed while the current is flowing through the coil 31a, while the auxiliary switch 31d is opened and the current is not flowing through the coil 31a. 31c is opened, while auxiliary switch 31d is closed.
 リレー32は、コイル32a、主スイッチ32bおよび32c、並びに、補助スイッチ32dを備えて構成され、リレー31と同様の動作を行う。 The relay 32 includes a coil 32a, main switches 32b and 32c, and an auxiliary switch 32d, and performs the same operation as the relay 31.
 リレー33は、コイル33a、主スイッチ33bおよび33c、並びに、補助スイッチ33dおよび33eを備えて構成される。主スイッチ33bおよび33cは常開型とされ、補助スイッチ33dおよび33eは常閉型とされる。即ち、リレー33では、コイル33aに電流が流れている状態で、主スイッチ33bおよび33cが閉鎖される一方、補助スイッチ33dおよび33eが開放され、コイル33aに電流が流れていない状態で、主スイッチ33bおよび33cが開放される一方、補助スイッチ33dおよび33eが閉鎖される。 The relay 33 includes a coil 33a, main switches 33b and 33c, and auxiliary switches 33d and 33e. The main switches 33b and 33c are normally open, and the auxiliary switches 33d and 33e are normally closed. That is, in the relay 33, the main switches 33b and 33c are closed while the current is flowing through the coil 33a, while the auxiliary switches 33d and 33e are opened, and the main switch 33b and 33c are not flowing through the coil 33a. 33b and 33c are opened, while auxiliary switches 33d and 33e are closed.
 リレー31の主スイッチ31bおよび31cの一方の端子は、図1の分電盤12を介して、交流電圧200Vの電力を供給する商用電力系統の電力線にそれぞれ接続されている。リレー31の主スイッチ31bおよび31cの他方の端子は、リレー32の主スイッチ32bおよび32cの一方の端子に接続されており、リレー32の主スイッチ32bおよび32cの他方の端子は、充電用AC/DC変換部23に接続されている。 One terminal of the main switches 31b and 31c of the relay 31 is connected to a power line of a commercial power system that supplies power of an AC voltage of 200 V via the distribution board 12 of FIG. The other terminals of the main switches 31b and 31c of the relay 31 are connected to one terminal of the main switches 32b and 32c of the relay 32, and the other terminals of the main switches 32b and 32c of the relay 32 are connected to the charging AC / The DC converter 23 is connected.
 また、リレー33の主スイッチ33bおよび33cの一方の端子は、太陽光パネル用PCS21の自立運転出力端子に接続されており、リレー33の主スイッチ33bおよび33cの他方の端子は、リレー32および充電用AC/DC変換部23を接続する配線に接続されている。 Further, one terminal of the main switches 33b and 33c of the relay 33 is connected to the self-sustained operation output terminal of the PCS 21 for solar panel, and the other terminal of the main switches 33b and 33c of the relay 33 is connected to the relay 32 and the charge. It is connected to the wiring which connects the AC / DC conversion unit 23 for use.
 ここで、入出力部27は、+24Vの電圧を印加する端子A、端子B、および端子Cを有しており、制御部28の制御に従い、端子A、端子B、および端子Cに電圧が印加されて、リレー31乃至33の開閉が制御される。 Here, the input / output unit 27 has a terminal A, a terminal B, and a terminal C that apply a voltage of +24 V, and a voltage is applied to the terminal A, the terminal B, and the terminal C according to the control of the control unit 28. Thus, opening / closing of the relays 31 to 33 is controlled.
 入出力部27の端子AからGNDまでの間には、リレー31の補助スイッチ31d、リレー32の補助スイッチ32d、およびリレー33のコイル33aが直列に接続されている。入出力部27の端子BからGNDまでの間には、リレー31のコイル31a、およびリレー33の補助スイッチ33eが直列に接続されている。入出力部27の端子CからGNDまでの間には、リレー32のコイル32a、およびリレー33の補助スイッチ33dが直列に接続されている。 Between the terminal A and GND of the input / output unit 27, an auxiliary switch 31d of the relay 31, an auxiliary switch 32d of the relay 32, and a coil 33a of the relay 33 are connected in series. Between terminal B of input / output unit 27 and GND, coil 31a of relay 31 and auxiliary switch 33e of relay 33 are connected in series. Between the terminal C and GND of the input / output unit 27, a coil 32a of the relay 32 and an auxiliary switch 33d of the relay 33 are connected in series.
 このような接続構成により、商用電力系統と太陽光パネル用PCS21とで、充電用AC/DC変換部23に対する接続は排他的となっている。即ち、充電用AC/DC変換部23と商用電力系統とが接続されているときには、充電用AC/DC変換部23と太陽光パネル用PCS21との接続は解除される。一方、充電用AC/DC変換部23と太陽光パネル用PCS21とが接続されているときには、充電用AC/DC変換部23と商用電力系統との接続は解除される。 With such a connection configuration, the connection to the charging AC / DC conversion unit 23 is exclusive between the commercial power system and the solar panel PCS 21. That is, when the charging AC / DC conversion unit 23 and the commercial power system are connected, the connection between the charging AC / DC conversion unit 23 and the solar panel PCS 21 is released. On the other hand, when the charging AC / DC conversion unit 23 and the solar panel PCS 21 are connected, the connection between the charging AC / DC conversion unit 23 and the commercial power system is released.
 具体的には、通常運転モードにおいて、制御部28は、入出力部27の端子Bおよび端子Cに+24Vの電圧を印加し、入出力部27の端子Aに対する電圧の印加を停止する(0Vとする)制御を行う。 Specifically, in the normal operation mode, the control unit 28 applies a voltage of + 24V to the terminal B and the terminal C of the input / output unit 27 and stops applying the voltage to the terminal A of the input / output unit 27 (0V Control).
 これにより、リレー31では、コイル31aに電流が流れて、主スイッチ31bおよび31cが閉鎖されて通電状態となり、補助スイッチ31dが開放される。また、リレー32では、コイル32aに電流が流れて、主スイッチ32bおよび32cが閉鎖されて通電状態となり、補助スイッチ32dが開放される。また、リレー33では、主スイッチ33bおよび33cが開放されて遮断状態となり、補助スイッチ33dおよび33eは閉鎖される。従って、通常運転モードでは、充電用AC/DC変換部23と商用電力系統とが接続される一方、充電用AC/DC変換部23と太陽光パネル用PCS21との接続は解除された状態となる。 Thereby, in the relay 31, a current flows through the coil 31a, the main switches 31b and 31c are closed and energized, and the auxiliary switch 31d is opened. In the relay 32, a current flows through the coil 32a, the main switches 32b and 32c are closed and energized, and the auxiliary switch 32d is opened. In the relay 33, the main switches 33b and 33c are opened and cut off, and the auxiliary switches 33d and 33e are closed. Therefore, in the normal operation mode, the charging AC / DC conversion unit 23 and the commercial power system are connected, while the connection between the charging AC / DC conversion unit 23 and the solar panel PCS 21 is released. .
 なお、この状態で、仮に不具合が発生して、入出力部27の端子Aに+24Vの電圧が印加されたとする。この場合、リレー31の補助スイッチ31dおよびリレー32の補助スイッチ32dが開放されているため、リレー33のコイル33aに電流が流れることはなく、リレー33の主スイッチ33bおよび33cが閉鎖されることはない。即ち、この場合でも、充電用AC/DC変換部23と太陽光パネル用PCS21との接続は解除された状態が維持され、リレー33の主スイッチ33bおよび33cが通電状態となることは回避される。 In this state, it is assumed that a problem occurs and a voltage of +24 V is applied to the terminal A of the input / output unit 27. In this case, since the auxiliary switch 31d of the relay 31 and the auxiliary switch 32d of the relay 32 are opened, no current flows through the coil 33a of the relay 33, and the main switches 33b and 33c of the relay 33 are closed. Absent. That is, even in this case, the state where the connection between the charging AC / DC conversion unit 23 and the solar panel PCS 21 is released is maintained, and the main switches 33b and 33c of the relay 33 are prevented from being energized. .
 また、自立運転モードにおいて、制御部28は、入出力部27の端子Aに+24Vの電圧を印加させるとともに、入出力部27の端子Bおよび端子Cに対する電圧の印加を停止する(0Vとする)制御を行う。 In the self-sustained operation mode, the control unit 28 applies a voltage of +24 V to the terminal A of the input / output unit 27 and stops applying the voltage to the terminals B and C of the input / output unit 27 (set to 0 V). Take control.
 これにより、リレー31では、主スイッチ31bおよび31cが開放されて遮断状態となり、補助スイッチ31dが閉鎖される。また、リレー32では、主スイッチ32bおよび32cが開放されて遮断状態となり、補助スイッチ32dが閉鎖される。また、リレー33では、コイル33aに電流が流れて、主スイッチ33bおよび33cが閉鎖されて通電状態となり、補助スイッチ33dおよび33eは開放される。従って、自立運転モードでは、充電用AC/DC変換部23と太陽光パネル用PCS21とが接続される一方、充電用AC/DC変換部23と商用電力系統との接続は解除された状態となる。 Thereby, in the relay 31, the main switches 31b and 31c are opened and cut off, and the auxiliary switch 31d is closed. Further, in the relay 32, the main switches 32b and 32c are opened and cut off, and the auxiliary switch 32d is closed. In the relay 33, a current flows through the coil 33a, the main switches 33b and 33c are closed and energized, and the auxiliary switches 33d and 33e are opened. Therefore, in the self-sustaining operation mode, the charging AC / DC conversion unit 23 and the solar panel PCS 21 are connected, while the connection between the charging AC / DC conversion unit 23 and the commercial power system is released. .
 なお、この状態で、仮に不具合が発生して、入出力部27の端子Bおよび端子Cに+24Vの電圧が印加されたとする。この場合、リレー33の補助スイッチ33dおよび33eが開放されているため、リレー31のコイル31aおよびリレー32のコイル32aに電流が流れることはなく、リレー31の主スイッチ31bおよび31c並びにリレー32の主スイッチ32bおよび32cが閉鎖されることはない。即ち、この場合でも、充電用AC/DC変換部23と商用電力系統との接続は解除された状態が維持され、リレー31の主スイッチ31bおよび31c並びにリレー32の主スイッチ32bおよび32cが通電状態となることは回避される。 In this state, it is assumed that a problem occurs and a voltage of +24 V is applied to the terminals B and C of the input / output unit 27. In this case, since the auxiliary switches 33d and 33e of the relay 33 are open, no current flows through the coil 31a of the relay 31 and the coil 32a of the relay 32, and the main switches 31b and 31c of the relay 31 and the main switch of the relay 32 The switches 32b and 32c are never closed. That is, even in this case, the connection between the charging AC / DC converter 23 and the commercial power system is maintained, and the main switches 31b and 31c of the relay 31 and the main switches 32b and 32c of the relay 32 are energized. This is avoided.
 次に、図3および図4を参照して、停電時および通常時におけるエネルギーコントローラ11の電力経路について説明する。図3および図4において、それぞれの電力経路が太線により表されている。 Next, with reference to FIG. 3 and FIG. 4, the power path of the energy controller 11 at the time of power failure and normal time will be described. In FIG. 3 and FIG. 4, each power path is represented by a thick line.
 図3には、停電時における電力経路が示されている。 Fig. 3 shows the power path during a power failure.
 上述したように、制御部28は、電力モニタ26から通知される電力量に基づいて、商用電力系統からの電力の供給が停止したことを検知すると、太陽光パネル用PCS21およびバッテリ用PCS22に対して自立運転信号を供給する。同時に、制御部28は、リレー31および32の接続をオフにする(図2の端子Bおよび端子Cに対する電圧の印加を停止する)とともに、リレー33の接続をオンにする(図2の端子Aに+24Vの電圧を印加する)。 As described above, when the control unit 28 detects that the supply of power from the commercial power system is stopped based on the amount of power notified from the power monitor 26, the control unit 28 controls the solar panel PCS 21 and the battery PCS 22. Supply a self-sustained operation signal. At the same time, the control unit 28 turns off the connection of the relays 31 and 32 (stops the application of voltage to the terminals B and C in FIG. 2) and turns on the connection of the relay 33 (the terminal A in FIG. 2). Voltage of + 24V is applied).
 太陽光パネル用PCS21は、自立運転信号に従って、太陽光パネルから供給される直流電圧の電力を交流電圧100Vの電力に変換して、自立運転出力端子から出力する。このとき、リレー33の接続がオンとなっているので、太陽光パネル用PCS21の自立運転出力端子から出力された電力は、リレー33を介して充電用AC/DC変換部23に供給される。 The solar panel PCS 21 converts the power of the DC voltage supplied from the solar panel into the power of the AC voltage 100V in accordance with the self-sustained operation signal, and outputs it from the self-sustained operation output terminal. At this time, since the connection of the relay 33 is on, the power output from the self-sustained operation output terminal of the solar panel PCS 21 is supplied to the charging AC / DC conversion unit 23 via the relay 33.
 このとき、リレー31および32の接続がオフとなっているので、太陽光パネル用PCS21から出力される電力は、分電盤12側へ流れ出ることはない。さらに、エネルギーコントローラ11では、リレー31および32が直列に接続されているので、リレー31および32の一方が故障して、接続をオフすることができない状態になっても、故障していない方により接続をオフすることができる。このように、リレー31および32を直列に接続することで、分電盤12に電力が出力されないようにする制御を、より確実に行うことができる。 At this time, since the connection of the relays 31 and 32 is off, the power output from the solar panel PCS 21 does not flow to the distribution board 12 side. Furthermore, in the energy controller 11, since the relays 31 and 32 are connected in series, even if one of the relays 31 and 32 breaks down and the connection cannot be turned off, it depends on the person who has not failed. The connection can be turned off. As described above, by connecting the relays 31 and 32 in series, it is possible to more reliably perform control so that power is not output to the distribution board 12.
 充電用AC/DC変換部23は、太陽光パネル用PCS21から供給される交流電圧の電力を直流電圧の電力に変換して、バッテリ13またはバッテリ用PCS22に供給する。なお、充電用AC/DC変換部23から出力される電力がバッテリ13およびバッテリ用PCS22のどちらに供給されるのかは、バッテリ13の充電量や、自立出力用コンセント14に接続された負荷での電力消費量(つまり、バッテリ用PCS22から出力される電力量)などによって決まる。 The charging AC / DC conversion unit 23 converts the AC voltage power supplied from the solar panel PCS 21 into DC voltage power, and supplies it to the battery 13 or the battery PCS 22. Note that whether the power output from the charging AC / DC conversion unit 23 is supplied to the battery 13 or the battery PCS 22 depends on the amount of charge of the battery 13 or the load connected to the independent output outlet 14. It depends on the power consumption (that is, the amount of power output from the battery PCS 22) and the like.
 バッテリ用PCS22は、自立運転信号に従って、充電用AC/DC変換部23から供給される直流電圧の電力、または、バッテリ13に充電されている直流電圧の電力を、交流電圧100Vの電力に変換して、自立運転出力端子から出力する。これにより、自立出力用コンセント14に接続されている負荷に、バッテリ用PCS22の自立運転出力端子から出力された電力が供給される。 The battery PCS 22 converts the DC voltage power supplied from the charging AC / DC converter 23 or the DC voltage power charged in the battery 13 into AC voltage power of 100 V in accordance with the self-sustained operation signal. Output from the self-sustained operation output terminal. Thereby, the power output from the self-sustained operation output terminal of the battery PCS 22 is supplied to the load connected to the self-sustained output outlet 14.
 また、このとき、停電を察知したユーザにより漏電ブレーカ45がオフにされ、太陽光パネル用PCS21と商用電力系統との電気的な接続が切断される。なお、漏電ブレーカ45がオフにされなくても、自立運転モードにおいて、太陽光パネル用PCS21は商用電力系統に接続される端子への電力の出力は行わず、太陽光パネル用PCS21から分電盤12へ電力が流れ出ることはない。 At this time, the earth leakage breaker 45 is turned off by the user who has detected a power failure, and the electrical connection between the solar panel PCS 21 and the commercial power system is cut. Even if the earth leakage breaker 45 is not turned off, in the self-sustaining operation mode, the solar panel PCS 21 does not output power to the terminals connected to the commercial power system, and the solar panel PCS 21 does not output power. No power flows out to 12.
 また、太陽光パネル用PCS21と漏電ブレーカ45との間に、制御部28により開閉制御が可能なリレーを接続し、制御部28が停電を検知したときに、そのリレーをオフにするようにしてもよい。なお、制御部28は、リレー34の接続もオフにして、バッテリ用PCS22と商用電力系統との電気的な接続も切断する。 In addition, a relay that can be controlled to open and close by the control unit 28 is connected between the solar panel PCS 21 and the leakage breaker 45 so that when the control unit 28 detects a power failure, the relay is turned off. Also good. The control unit 28 also turns off the connection of the relay 34 and disconnects the electrical connection between the battery PCS 22 and the commercial power system.
 図4は、通常時における電力経路が示されている。 FIG. 4 shows a power path in a normal time.
 例えば、制御部28は、電力モニタ26から通知される電力量に基づいて、商用電力系統から電力の供給が再開したこと(停電の復旧)を検知すると、太陽光パネル用PCS21およびバッテリ用PCS22に対して自立運転を解除する信号を供給する。同時に、制御部28は、リレー31および32の接続をオンにする(図2の端子Bおよび端子Cに+24Vの電圧を印加する)とともに、リレー33の接続をオフにする(図2の端子Aに対する電圧の印加を停止する)。また、制御部28は、リレー34の接続もオンにする。 For example, when the control unit 28 detects that the supply of power from the commercial power system has been resumed (recovering from a power failure) based on the amount of power notified from the power monitor 26, the control unit 28 causes the PCS 21 for solar panels and the PCS 22 for batteries to In response, a signal for releasing the independent operation is supplied. At the same time, the control unit 28 turns on the connection of the relays 31 and 32 (applies a voltage of +24 V to the terminals B and C in FIG. 2) and turns off the connection of the relay 33 (the terminal A in FIG. 2). To stop the voltage application). The control unit 28 also turns on the connection of the relay 34.
 太陽光パネル用PCS21は、自立運転を解除する信号に従って、自立運転出力端子からの電力の出力を停止し、太陽光パネルから供給される直流電圧の電力を交流電圧200Vの電力に変換して、分電盤12に供給する。これにより、分電盤12のブレーカ部43に接続された負荷に、太陽光パネルで発電された電力が供給される。なお、このとき、停電の復旧を察知したユーザにより漏電ブレーカ45がオンにされている。 The solar panel PCS 21 stops the output of the power from the self-sustained operation output terminal according to the signal for canceling the self-sustained operation, converts the power of the DC voltage supplied from the solar panel into the power of the AC voltage 200V, Supply to distribution board 12. Thereby, the electric power generated by the solar panel is supplied to the load connected to the breaker unit 43 of the distribution board 12. At this time, the earth leakage breaker 45 is turned on by the user who has detected the recovery from the power failure.
 なお、リレー33の接続がオフとなっているので、太陽光パネル用PCS21の自立運転出力端子から交流電圧100Vの電力が出力される状態であったとしても、その交流電圧100Vの電力と、商用電力系統から供給される交流電圧200Vの電力とが同一経路に流れ込むことは回避される。 Since the connection of the relay 33 is off, even if the AC voltage 100V is output from the self-sustained operation output terminal of the solar panel PCS 21, the AC voltage 100V and the commercial power are output. It is avoided that the power of the AC voltage 200V supplied from the power system flows into the same path.
 充電用AC/DC変換部23は、商用電力系統から供給される交流電圧200Vの電力を直流電圧の電力に変換して、バッテリ13に供給する。 The charging AC / DC conversion unit 23 converts the power of the AC voltage 200 V supplied from the commercial power system into the power of the DC voltage, and supplies it to the battery 13.
 バッテリ用PCS22は、自立運転を解除する信号に従って、バッテリ13から供給される直流電圧の電力を、交流電圧200Vの電力に変換して、リレー34を介して分電盤12に供給する。これにより、分電盤12のブレーカ部43に接続された負荷に、バッテリ13に充電されていた電力が供給される。 The battery PCS 22 converts the DC voltage power supplied from the battery 13 into the AC voltage 200 V according to the signal for canceling the self-sustained operation, and supplies it to the distribution board 12 via the relay 34. Thereby, the electric power charged in the battery 13 is supplied to the load connected to the breaker unit 43 of the distribution board 12.
 以上のように、エネルギーコントローラ11では、停電時および通常時で電力経路が切り替えられる。 As described above, in the energy controller 11, the power path is switched during a power failure and during a normal time.
 例えば、停電時において、リレー33の接続がオンされるとともにリレー31および32の接続がオフされるので、太陽光パネル用PCS21の自立運転出力端子から出力される電力が分電盤12側へ流れ出ることを防止することができる。これにより、商用電力系統側で停電を復旧するための作業をしている作業者が居ても安全に作業を行うことができ、その安全性を確保することができる。 For example, since the connection of the relay 33 is turned on and the connection of the relays 31 and 32 is turned off at the time of a power failure, the power output from the self-sustained operation output terminal of the solar panel PCS 21 flows out to the distribution board 12 side. This can be prevented. Thereby, even if there is a worker who is working to recover from a power failure on the commercial power system side, the work can be performed safely, and the safety can be ensured.
 また、停電が復旧した際には、リレー31および32の接続がオンされるとともにリレー33の接続がオフされるので、商用電力系統から供給される交流電圧200Vの電力と、太陽光パネル用PCS21の自立運転出力端子から出力されていた交流電圧100Vの電力とが同一経路に流れ込むような事態が回避される。これにより、そのような事態が発生したときに想定される故障を回避することができ、エネルギーコントローラ11の信頼性を高めることができる。 Further, when the power failure is restored, the connection of the relays 31 and 32 is turned on and the connection of the relay 33 is turned off. Therefore, the power of the AC voltage 200 V supplied from the commercial power system and the PCS 21 for solar panel are used. The situation where the power of the AC voltage 100V output from the self-sustained operation output terminal flows into the same path is avoided. Thereby, the failure assumed when such a situation generate | occur | produces can be avoided and the reliability of the energy controller 11 can be improved.
 次に、図5は、本発明を適用したエネルギーコントローラの第2の実施の形態の構成例を示すブロック図である。 Next, FIG. 5 is a block diagram showing a configuration example of the second embodiment of the energy controller to which the present invention is applied.
 図5において、エネルギーコントローラ11Aは、図1のエネルギーコントローラ11と同様に、図示しない太陽光パネルに接続されるとともに、分電盤12を介して、交流電圧200Vの電力を供給する商用電力系統に接続されている。 In FIG. 5, the energy controller 11A is connected to a solar panel (not shown) as in the energy controller 11 of FIG. It is connected.
 エネルギーコントローラ11Aは、太陽光パネル用PCS21、バッテリ用PCS22、電力モニタ25および26、入出力部27、並びに制御部28を備える点で、図1のエネルギーコントローラ11と同一の構成であり、その詳細な説明は省略する。即ち、エネルギーコントローラ11Aは、充電用AC/DC変換部23Aを備える点で、エネルギーコントローラ11と異なった構成となっている。 The energy controller 11A has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, a battery PCS 22, power monitors 25 and 26, an input / output unit 27, and a control unit 28. The detailed explanation is omitted. In other words, the energy controller 11A is different from the energy controller 11 in that it includes a charging AC / DC converter 23A.
 また、図5に示すように、エネルギーコントローラ11Aは、エネルギーコントローラ11が有するリレー31乃至33を備えておらず、充電用AC/DC変換部23Aに、分電盤12からの配線が直接的に接続されているとともに、太陽光パネル用PCS21の自立運転出力端子が直接的に接続されている。つまり、エネルギーコントローラ11Aでは、充電用AC/DC変換部23Aが、リレー31乃至33が構成する排他的回路の機能を内蔵した構成となっている。 Further, as shown in FIG. 5, the energy controller 11A does not include the relays 31 to 33 included in the energy controller 11, and the wiring from the distribution board 12 is directly connected to the charging AC / DC converter 23A. While being connected, the self-sustained operation output terminal of the solar panel PCS 21 is directly connected. That is, in the energy controller 11A, the charging AC / DC conversion unit 23A has a built-in function of an exclusive circuit formed by the relays 31 to 33.
 従って、エネルギーコントローラ11Aでは、制御部28が、自立運転信号を充電用AC/DC変換部23Aにも供給し、充電用AC/DC変換部23Aの内部において、商用電力系統との接続と、太陽光パネル用PCS21の自立運転出力端子との接続とが排他的に切り替えられる。 Therefore, in the energy controller 11A, the control unit 28 also supplies the independent operation signal to the charging AC / DC conversion unit 23A, and within the charging AC / DC conversion unit 23A, The connection with the self-sustained operation output terminal of the optical panel PCS 21 is switched exclusively.
 つまり、エネルギーコントローラ11Aでは、停電時において、充電用AC/DC変換部23Aは、自立運転信号に従って、商用電力系統との接続を解除するとともに、太陽光パネル用PCS21の自立運転出力端子と接続するように、充電用AC/DC変換部23Aの内部で排他的回路の切り替えを行う。また、停電が復旧したとき、充電用AC/DC変換部23Aは、自立運転を解除する信号に従って、太陽光パネル用PCS21の自立運転出力端子との接続を解除するとともに、商用電力系統と接続するように、充電用AC/DC変換部23Aの内部で排他的回路の切り替えを行う。 That is, in the energy controller 11A, during a power failure, the charging AC / DC conversion unit 23A releases the connection with the commercial power system according to the self-sustained operation signal and connects with the self-sustained operation output terminal of the solar panel PCS 21. As described above, the exclusive circuit is switched inside the charging AC / DC conversion unit 23A. Further, when the power failure is restored, the charging AC / DC conversion unit 23A releases the connection with the self-sustained operation output terminal of the solar panel PCS 21 according to the signal for canceling the self-sustaining operation and connects with the commercial power system. As described above, the exclusive circuit is switched inside the charging AC / DC conversion unit 23A.
 これにより、エネルギーコントローラ11Aでは、図1のエネルギーコントローラ11と同様に、安全性および信頼性を確保することができるのに加えて、充電用AC/DC変換部23Aが排他的回路の機能を内蔵することによって、装置の簡素化および小型化を図ることができる。 As a result, in the energy controller 11A, as in the energy controller 11 in FIG. 1, in addition to ensuring safety and reliability, the charging AC / DC conversion unit 23A has a function of an exclusive circuit. By doing so, the apparatus can be simplified and downsized.
 次に、図6は、本発明を適用したエネルギーコントローラの第3の実施の形態の構成例を示すブロック図である。 Next, FIG. 6 is a block diagram showing a configuration example of a third embodiment of the energy controller to which the present invention is applied.
 図6において、エネルギーコントローラ11Bは、図1のエネルギーコントローラ11と同様に、図示しない太陽光パネルに接続されるとともに、分電盤12を介して、交流電圧200Vの電力を供給する商用電力系統に接続されている。 In FIG. 6, the energy controller 11B is connected to a solar panel (not shown) as in the energy controller 11 of FIG. 1, and is connected to a commercial power system that supplies power of an AC voltage of 200 V via the distribution board 12. It is connected.
 エネルギーコントローラ11Bは、太陽光パネル用PCS21、電力モニタ25および26、入出力部27、制御部28、並びにリレー31乃至33を備える点で、図1のエネルギーコントローラ11と同一の構成であり、その詳細な説明は省略する。即ち、エネルギーコントローラ11Bは、双方向AC/DC変換部23Bを備える点で、エネルギーコントローラ11と異なった構成となっている。 The energy controller 11B has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, power monitors 25 and 26, an input / output unit 27, a control unit 28, and relays 31 to 33. Detailed description is omitted. That is, the energy controller 11B is different from the energy controller 11 in that it includes a bidirectional AC / DC converter 23B.
 双方向AC/DC変換部23Bは、分電盤12を介して供給される交流電圧の電力を直流電圧の電力に変換して、バッテリ13に供給して充電させる。また、双方向AC/DC変換部23Bは、通常時において、バッテリ13から供給される直流電圧の電力を交流電圧の電力に変換して、分電盤12を介してブレーカ部43の各ブレーカに接続された負荷に供給する。また、双方向AC/DC変換部23Bは、停電時において、バッテリ13から供給される直流電圧の電力を交流電圧に変換した電力、または、太陽光パネル用PCS21の自立運転出力端子から供給される交流電圧の電力を、自立出力用コンセント14に接続された負荷に対して供給する。 The bidirectional AC / DC conversion unit 23B converts the AC voltage power supplied via the distribution board 12 into DC voltage power, and supplies the battery 13 for charging. In addition, the bidirectional AC / DC conversion unit 23B converts the DC voltage power supplied from the battery 13 into AC voltage power during normal operation, and supplies the AC voltage power to each breaker of the breaker unit 43 via the distribution board 12. Supply the connected load. In addition, the bidirectional AC / DC conversion unit 23B is supplied from the power obtained by converting the power of the DC voltage supplied from the battery 13 into the AC voltage or the self-sustained operation output terminal of the solar panel PCS 21 during a power failure. The power of the AC voltage is supplied to the load connected to the outlet 14 for independent output.
 つまり、双方向AC/DC変換部23Bは、図1のバッテリ用PCS22および充電用AC/DC変換部23の両方の機能を備えた構成となっている。 That is, the bidirectional AC / DC conversion unit 23B has a configuration including both functions of the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG.
 エネルギーコントローラ11Bでは、停電時において、制御部28は、リレー31および32の接続をオフにするとともに、リレー33の接続をオンにする制御を行う。また、通常時において、制御部28は、リレー31および32の接続をオンにするとともに、リレー33の接続をオフにする制御を行う。つまり、エネルギーコントローラ11Bでは、図1のエネルギーコントローラ11と同様に、リレー31乃至33が排他的回路を構成している。 In the energy controller 11B, the control unit 28 performs control to turn off the connection of the relays 31 and 32 and turn on the connection of the relay 33 during a power failure. Further, in a normal time, the control unit 28 performs control to turn on the connection of the relays 31 and 32 and turn off the connection of the relay 33. That is, in the energy controller 11B, as in the energy controller 11 of FIG. 1, the relays 31 to 33 constitute an exclusive circuit.
 従って、エネルギーコントローラ11Bは、図1のエネルギーコントローラ11と同様に、安全性および信頼性を確保することができるのに加えて、双方向AC/DC変換部23Bが、図1のバッテリ用PCS22および充電用AC/DC変換部23の両方の機能を備えることによって、装置の簡素化および小型化を図ることができる。 Therefore, the energy controller 11B can ensure safety and reliability in the same manner as the energy controller 11 of FIG. 1, and in addition, the bidirectional AC / DC conversion unit 23B is connected to the battery PCS 22 of FIG. By providing both functions of the charging AC / DC conversion unit 23, the device can be simplified and downsized.
 次に、図7は、本発明を適用したエネルギーコントローラの第4の実施の形態の構成例を示すブロック図である。 Next, FIG. 7 is a block diagram showing a configuration example of a fourth embodiment of the energy controller to which the present invention is applied.
 図7において、エネルギーコントローラ11Cは、図1のエネルギーコントローラ11と同様に、図示しない太陽光パネルに接続されるとともに、分電盤12を介して、交流電圧200Vの電力を供給する商用電力系統に接続されている。 In FIG. 7, the energy controller 11C is connected to a solar panel (not shown) as in the energy controller 11 of FIG. 1, and is connected to a commercial power system that supplies power with an AC voltage of 200 V via the distribution board 12. It is connected.
 エネルギーコントローラ11Cは、太陽光パネル用PCS21、電力モニタ25および26、入出力部27、並びに制御部28を備える点で、図1のエネルギーコントローラ11と同一の構成であり、その詳細な説明は省略する。即ち、エネルギーコントローラ11Cは、双方向AC/DC変換部23Cを備える点で、エネルギーコントローラ11と異なった構成となっている。 The energy controller 11C has the same configuration as the energy controller 11 of FIG. 1 in that it includes a solar panel PCS 21, power monitors 25 and 26, an input / output unit 27, and a control unit 28, and detailed description thereof is omitted. To do. That is, the energy controller 11C has a configuration different from the energy controller 11 in that the bidirectional AC / DC conversion unit 23C is provided.
 さらに、図7に示すように、エネルギーコントローラ11Cは、エネルギーコントローラ11が有するリレー31乃至33を備えておらず、双方向AC/DC変換部23Cに、分電盤12からの配線が直接的に接続されているとともに、太陽光パネル用PCS21の自立運転出力端子が直接的に接続されている。 Further, as shown in FIG. 7, the energy controller 11C does not include the relays 31 to 33 included in the energy controller 11, and the wiring from the distribution board 12 is directly connected to the bidirectional AC / DC conversion unit 23C. While being connected, the self-sustained operation output terminal of the solar panel PCS 21 is directly connected.
 つまり、エネルギーコントローラ11Cでは、双方向AC/DC変換部23Cが、リレー31乃至33が構成する排他的回路の機能を内蔵した構成となっている。従って、エネルギーコントローラ11Cでは、制御部28が、自立運転信号を双方向AC/DC変換部23Cにも供給し、双方向AC/DC変換部23Cの内部において、商用電力系統との接続と、太陽光パネル用PCS21の自立運転出力端子との接続とが排他的に切り替えられる。 That is, in the energy controller 11C, the bidirectional AC / DC conversion unit 23C has a built-in function of the exclusive circuit formed by the relays 31 to 33. Therefore, in the energy controller 11C, the control unit 28 also supplies the self-sustained operation signal to the bidirectional AC / DC conversion unit 23C, and in the bidirectional AC / DC conversion unit 23C, connection with the commercial power system, solar The connection with the self-sustained operation output terminal of the optical panel PCS 21 is switched exclusively.
 さらに、双方向AC/DC変換部23Cは、図6の双方向AC/DC変換部23Bと同様に、図1のバッテリ用PCS22および充電用AC/DC変換部23の両方の機能を備えて構成される。 Further, the bidirectional AC / DC conversion unit 23C is configured to have both functions of the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG. 1 as with the bidirectional AC / DC conversion unit 23B of FIG. Is done.
 つまり、エネルギーコントローラ11Cでは、停電時において、双方向AC/DC変換部23Cは、自立運転信号に従って、商用電力系統との接続を解除するとともに、太陽光パネル用PCS21の自立運転出力端子と接続するように、双方向AC/DC変換部23Cの内部で排他的回路の切り替えを行う。そして、双方向AC/DC変換部23Cは、バッテリ13から供給される直流電圧の電力を交流電圧に変換した電力、または、太陽光パネル用PCS21の自立運転出力端子から供給される交流電圧の電力を、自立出力用コンセント14に接続された負荷に対して供給する。 That is, in the energy controller 11C, in the event of a power failure, the bidirectional AC / DC conversion unit 23C releases the connection with the commercial power system according to the self-sustained operation signal and connects with the self-sustained operation output terminal of the solar panel PCS 21. As described above, the exclusive circuit is switched inside the bidirectional AC / DC converter 23C. The bidirectional AC / DC converter 23C converts the DC voltage power supplied from the battery 13 into an AC voltage, or the AC voltage power supplied from the self-sustained operation output terminal of the solar panel PCS 21. Is supplied to the load connected to the outlet 14 for self-supporting output.
 また、エネルギーコントローラ11Cでは、停電が復旧したとき、双方向AC/DC変換部23Cは、自立運転を解除する信号に従って、太陽光パネル用PCS21の自立運転出力端子との接続を解除するとともに、商用電力系統と接続するように、双方向AC/DC変換部23Cの内部で排他的回路の切り替えを行う。そして、双方向AC/DC変換部23Cは、バッテリ13から供給される直流電圧の電力を交流電圧の電力に変換して、分電盤12を介してブレーカ部43の各ブレーカに接続された負荷に供給する。 In the energy controller 11C, when the power failure is restored, the bidirectional AC / DC conversion unit 23C releases the connection with the self-sustained operation output terminal of the solar panel PCS 21 in accordance with a signal for canceling the self-sustained operation. The exclusive circuit is switched inside the bidirectional AC / DC converter 23C so as to be connected to the power system. The bidirectional AC / DC conversion unit 23C converts the DC voltage power supplied from the battery 13 into AC voltage power, and loads connected to the breakers of the breaker unit 43 via the distribution board 12. To supply.
 従って、エネルギーコントローラ11Cでは、図1のエネルギーコントローラ11と同様に、安全性および信頼性を確保することができる。さらに、エネルギーコントローラ11Cでは、双方向AC/DC変換部23Cが、排他的回路の機能を内蔵するとともに、図1のバッテリ用PCS22および充電用AC/DC変換部23の両方の機能を備えることによって、装置のさらなる簡素化および小型化を図ることができる。 Therefore, in the energy controller 11C, safety and reliability can be ensured similarly to the energy controller 11 in FIG. Furthermore, in the energy controller 11C, the bidirectional AC / DC conversion unit 23C incorporates the functions of the exclusive circuit and the functions of both the battery PCS 22 and the charging AC / DC conversion unit 23 of FIG. Further simplification and downsizing of the apparatus can be achieved.
 なお、上述した実施の形態では、リレー31乃至33により排他的回路が構成されているが、必ずしもリレー31乃至33により排他的回路が構成されていなくてもよい。つまり、制御部28が、商用電力系統からの電力の供給に基づいて、リレー31乃至33それぞれの開閉を独立して制御してもよく、停電を検知したとき、少なくともリレー31および32をオフすることで、安全性および信頼性を確保することができる。そして、制御部28は、リレー31および32をオフした後に、リレー33をオンすればよい。また、リレー31乃至33は、図2で説明した24Vで駆動するものの他、例えば、12Vで駆動するものなど、適宜、設計に応じた電圧で駆動するものを採用することができる。 In the above-described embodiment, the exclusive circuit is configured by the relays 31 to 33. However, the exclusive circuit may not necessarily be configured by the relays 31 to 33. That is, the control unit 28 may independently control the opening and closing of the relays 31 to 33 based on the supply of power from the commercial power system. When a power failure is detected, at least the relays 31 and 32 are turned off. Thus, safety and reliability can be ensured. Then, the control unit 28 may turn on the relay 33 after turning off the relays 31 and 32. As the relays 31 to 33, in addition to the one driven at 24V described in FIG. 2, for example, one driven at a voltage according to the design, such as one driven at 12V, can be adopted.
 さらに、本実施の形態では、太陽光発電パネルを発電手段とした発電システムについて説明したが、本技術は、太陽光発電パネルの他、風力発電などのように、自然エネルギーを利用し発電を行う発電手段による電力を利用した発電システムに適用することができる。 Furthermore, in the present embodiment, a power generation system using a solar power generation panel as a power generation means has been described. However, the present technology generates power using natural energy, such as wind power generation, in addition to a solar power generation panel. The present invention can be applied to a power generation system that uses power generated by power generation means.
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 11 エネルギーコントローラ, 12 分電盤, 13 バッテリ, 14 自立出力用コンセント, 21 太陽光パネル用PCS, 22 バッテリ用PCS, 23 充電用AC/DC変換部, 25および26 電力モニタ, 27 入出力部, 28 制御部, 31乃至34 リレー, 37 端子, 41 端子, 42 漏電ブレーカ, 43 ブレーカ部, 44 配線用ブレーカ, 45 漏電ブレーカ 11 Energy controller, 12 Distribution board, 13 Battery, 14 Stand-alone output outlet, 21 Solar panel PCS, 22 Battery PCS, 23 Charging AC / DC conversion unit, 25 and 26 Power monitor, 27 Input / output unit, 28 control unit, 31 to 34 relay, 37 terminal, 41 terminal, 42 earth leakage breaker, 43 breaker part, 44 wiring breaker, 45 earth leakage breaker

Claims (7)

  1.  自然エネルギーを利用し発電を行う発電手段から出力される直流電圧の電力を、交流電圧の電力に変換する第1の変換手段と、
     前記第1の変換手段から出力される交流電圧の電力を、直流電圧の電力に変換する第2の変換手段と、
     系統から前記第2の変換手段に電力を供給する配線を開閉する第1の開閉手段と、
     前記系統からの電力の供給が停止したことを検知すると、前記第1の開閉手段を開放する開閉制御手段と
     を備えることを特徴とする電力制御装置。
    First conversion means for converting DC voltage power output from power generation means for generating power using natural energy into AC voltage power;
    Second conversion means for converting AC voltage power output from the first conversion means into DC voltage power;
    First opening / closing means for opening / closing a wiring for supplying power from the system to the second conversion means;
    An open / close control means for opening the first open / close means when detecting that the supply of electric power from the system is stopped.
  2.  前記第1の変換手段から前記第2の変換手段に電力を供給する配線を開閉する第2の開閉手段
     をさらに備え、
     前記開閉制御手段は、前記系統からの電力の供給が停止したことを検知すると、前記第2の開閉手段を閉鎖する
     ことを特徴とする請求項1に記載の電力制御装置。
    A second opening / closing means for opening / closing a wiring for supplying electric power from the first conversion means to the second conversion means;
    The power control apparatus according to claim 1, wherein the opening / closing control means closes the second opening / closing means when detecting that the supply of electric power from the system is stopped.
  3.  前記第1の開閉手段と前記第2の開閉手段とが排他的回路により構成されている
     ことを特徴とする請求項2に記載の電力制御装置。
    The power control apparatus according to claim 2, wherein the first opening / closing means and the second opening / closing means are configured by an exclusive circuit.
  4.  前記第1の開閉手段および前記第2の開閉手段が、前記第2の変換手段内に組み込まれている
     ことを特徴とする請求項2または3に記載の電力制御装置。
    The power control apparatus according to claim 2 or 3, wherein the first opening / closing means and the second opening / closing means are incorporated in the second conversion means.
  5.  前記第2の変換手段から出力される電力、または、前記第2の変換手段から出力された電力を蓄積する蓄積手段に蓄積されている電力を、交流電圧の電力に変換して負荷に供給する第3の変換手段を
     さらに備えることを特徴とする請求項1乃至4のいずれかに記載の電力制御装置。
    The power output from the second conversion means or the power stored in the storage means for storing the power output from the second conversion means is converted into AC voltage power and supplied to the load. The power control apparatus according to claim 1, further comprising third conversion means.
  6.  前記第2の変換手段および前記第3の変換手段が一体で構成されている
     ことを特徴とする請求項5に記載の電力制御装置。
    The power control apparatus according to claim 5, wherein the second conversion unit and the third conversion unit are integrally configured.
  7.  自然エネルギーを利用し発電を行う発電手段から出力される直流電圧の電力を、交流電圧の電力に変換する第1の変換手段と、前記第1の変換手段から出力される交流電圧の電力を、直流電圧の電力に変換する第2の変換手段と、系統から前記第2の変換手段に電力を供給する配線を開閉する第1の開閉手段とを備える電力制御装置の電力制御方法において、
     前記系統からの電力の供給が停止したことを検知すると、前記第1の開閉手段を開放する
     ステップを含むことを特徴とする電力制御方法。
    The first conversion means for converting the power of the DC voltage output from the power generation means for generating power using natural energy into the power of the AC voltage, and the power of the AC voltage output from the first conversion means, In a power control method of a power control apparatus comprising: a second conversion unit that converts power into a DC voltage; and a first opening / closing unit that opens and closes a wiring that supplies power to the second conversion unit from a system.
    A power control method comprising: opening the first opening / closing means when detecting that the supply of power from the system is stopped.
PCT/JP2011/056750 2011-03-15 2011-03-22 Power control device and power control method WO2012124131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-056955 2011-03-15
JP2011056955A JP5338831B2 (en) 2011-03-15 2011-03-15 Power control apparatus and power control method

Publications (1)

Publication Number Publication Date
WO2012124131A1 true WO2012124131A1 (en) 2012-09-20

Family

ID=46830254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056750 WO2012124131A1 (en) 2011-03-15 2011-03-22 Power control device and power control method

Country Status (2)

Country Link
JP (1) JP5338831B2 (en)
WO (1) WO2012124131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069054A1 (en) * 2012-10-31 2014-05-08 株式会社日立産機システム Grid connection device for power purchase system capable of dealing with abnormal power grid state during disasters, and method therefor
JP2014158420A (en) * 2012-10-31 2014-08-28 Hitachi Industrial Equipment Systems Co Ltd System interconnection device for power purchase system adaptable to emergency situation of power system of disaster, and emergency output method of power during emergency evacuation of disaster using system interconnection device for power purchase system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148117B2 (en) * 2013-08-27 2017-06-14 田淵電機株式会社 Power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331776A (en) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd Dc power source system
JP2008109782A (en) * 2006-10-25 2008-05-08 Baysun Co Ltd Power unit
JP2011015501A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Power distribution system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080714B2 (en) * 2001-09-07 2008-04-23 株式会社東芝 Power generation device and power supply system using this power generation device
JP4137784B2 (en) * 2003-12-24 2008-08-20 富士電機ホールディングス株式会社 Solar power generator control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331776A (en) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd Dc power source system
JP2008109782A (en) * 2006-10-25 2008-05-08 Baysun Co Ltd Power unit
JP2011015501A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Power distribution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069054A1 (en) * 2012-10-31 2014-05-08 株式会社日立産機システム Grid connection device for power purchase system capable of dealing with abnormal power grid state during disasters, and method therefor
JP2014090616A (en) * 2012-10-31 2014-05-15 Hitachi Industrial Equipment Systems Co Ltd System interconnection device for power purchase system adaptable to emergency situation of power system of disaster, and emergency output method of power during emergency evacuation of disaster using system interconnection device for power purchase system
JP2014158420A (en) * 2012-10-31 2014-08-28 Hitachi Industrial Equipment Systems Co Ltd System interconnection device for power purchase system adaptable to emergency situation of power system of disaster, and emergency output method of power during emergency evacuation of disaster using system interconnection device for power purchase system
TWI513144B (en) * 2012-10-31 2015-12-11 Hitachi Ind Equipment Sys Power supply system interconnection device, power consumption using the power interconnection system interconnection device to another system, and a disaster for the use of the power interconnection system, and the like.

Also Published As

Publication number Publication date
JP5338831B2 (en) 2013-11-13
JP2012196024A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP6019614B2 (en) Power storage control device, power storage control device control method, program, and power storage system
JP5311153B2 (en) Power control apparatus and power control method
JP5905557B2 (en) Power conditioner system and power storage power conditioner
JP5268973B2 (en) Power supply system, power supply method and control device
US9583943B2 (en) Power supply system, power distribution apparatus, and power control method
WO2014061645A1 (en) Power source control system, control device and control method
JP7009612B2 (en) Energy storage system
JP6668991B2 (en) Power supply device and power supply system
US20130002027A1 (en) Uninterruptible power supply
JP7251908B2 (en) Charging/discharging device and power supply switching system
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP5338831B2 (en) Power control apparatus and power control method
JP2014027856A (en) System interconnection apparatus
JP2011083090A (en) Electric power supply system
JP6391473B2 (en) Battery system
JP5656794B2 (en) Grid-connected power conditioner and photovoltaic power generation system using the same
WO2021044653A1 (en) Power conversion apparatus and system interconnection system
JP3208284B2 (en) Solar power generation system
JP2013078183A (en) Power generation system
JP6572057B2 (en) Power supply system
JP6620346B2 (en) Power supply system
JP2017099183A (en) Switching unit, and charge discharge controller including it, and their switching control system
JP6089836B2 (en) Grid connection system for fuel cells
JP7542181B2 (en) Power supply system using mobile devices
JP6652903B2 (en) Distributed power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861247

Country of ref document: EP

Kind code of ref document: A1