WO2012123913A2 - Process for producing metallic or ceramic moulded bodies - Google Patents

Process for producing metallic or ceramic moulded bodies Download PDF

Info

Publication number
WO2012123913A2
WO2012123913A2 PCT/IB2012/051237 IB2012051237W WO2012123913A2 WO 2012123913 A2 WO2012123913 A2 WO 2012123913A2 IB 2012051237 W IB2012051237 W IB 2012051237W WO 2012123913 A2 WO2012123913 A2 WO 2012123913A2
Authority
WO
WIPO (PCT)
Prior art keywords
binder
molding
solvent
weight
binder component
Prior art date
Application number
PCT/IB2012/051237
Other languages
German (de)
French (fr)
Other versions
WO2012123913A3 (en
Inventor
Johan Ter Maat
Martin Blömacher
Hans Wohlfromm
Original Assignee
Basf Se
Basf (China) Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf (China) Company Limited filed Critical Basf Se
Priority to KR1020137027124A priority Critical patent/KR101902038B1/en
Priority to EP12757185.9A priority patent/EP2686286B1/en
Priority to JP2013558558A priority patent/JP5965928B2/en
Priority to CN201280022866.1A priority patent/CN103517886B/en
Publication of WO2012123913A2 publication Critical patent/WO2012123913A2/en
Publication of WO2012123913A3 publication Critical patent/WO2012123913A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/227Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by organic binder assisted extrusion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63456Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/016NH3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a process for the production of metallic or ceramic moldings from thermoplastic molding compositions comprising powdered metals, powdered metal alloys or powdered ceramics and organic binders.
  • the first binders for the powder injection molding process were generally based on blends of polyethylene or polypropylene and wax.
  • the green body is first liberated from the wax by melting and the residual binder burned out by a slow pyrolysis.
  • the green parts For melting, the green parts must be stored in a powder bed, because the green strength is practically not given by the melting.
  • Later binder systems for thermal debinding dispensed with the melting, because the elaborate embedding of the green parts in powder and subsequent excavation are far too time-consuming.
  • an improved binder system for complete thermal debindering consists of several components, e.g. in DE 1992 5197. These components are released successively during heating at different temperatures from the molding, so that the usually lower binder component is still present at least 400 ° C and can be seen as a residual binder.
  • a purely thermal debinding takes 1 to 3 days and is thus extremely slow.
  • a still further improved process is solvent debindering which employs binder systems containing binder components of varying solubility.
  • a binder component is first removed by solvent extraction, after which the remaining, not or very poorly soluble in the solvent residual binder component is again removed by a slow thermal decomposition of the molded part (eg US 4,197.1 18 or EP 501 602).
  • the melt area of the residual binder is Steps and a plastic deformation of the powder molded part is therefore inevitable.
  • WO 201 1/016718 A1 describes a powder injection molding process in which a binder mixture of a polymer, e.g. POM and a non-polymeric solvent (molecular weight ⁇ 300 g / mol, melting point> RT) is used for the polymer. Initially, the aforementioned solvent is dissolved out or evaporated. The remaining polymer is removed by thermal debinding. A disadvantage of this method is that such binders already evaporate the non-polymeric solvent when mixed with powder and during processing on the injection molding machine. The low molecular weight component is sweated out on the green part surface and pollutes the injection mold. In addition, the green part strength is significantly reduced.
  • a binder mixture of a polymer e.g. POM and a non-polymeric solvent (molecular weight ⁇ 300 g / mol, melting point> RT)
  • a non-polymeric solvent molecular weight ⁇ 300 g / mol, melting point> RT
  • Binder Breaths therefore contain 70 to 30% by volume of a major component.
  • EP-A 0 413 231 discloses, for example, a process for producing an inorganic sintered molding in which a mixture of a sinterable inorganic powder and polyoxymethylene as a binder is formed into a green body and the binder is then treated by treating the green body in a gaseous, acidic, eg boron trifluoride or HN0 3 , containing atmosphere is removed. Subsequently, the thus treated green body is sintered.
  • Examples of sintered powders are both oxide ceramic powders such as Al 2 O 3 , Zr0 2 , Y 2 O 3 and non-oxide ceramic powders such as SiC, S13N4, and metal powder.
  • EP-A 0 444 475 describes binder compositions which are suitable for ceramic molded articles and which, in addition to polyoxymethylene, comprise poly-1,3-dioxolane, poly-1,3-dioxane or poly-1,3-dioxepane as additional soluble polymer or as polymer dispersible in POM aliphatic polyurethanes, aliphatic polyepoxides, poly (C 2 -C 6 alkylene oxides), aliphatic polyamides or polyacrylates or mixtures thereof.
  • EP 0 465 940 A1 and DE 100 19 447 A1 describe thermoplastic molding compositions for the production of metallic moldings which, in addition to a sinterable pulverulent metal or a pulverulent metal alloy, contain a mixture of polyoxymethylene homopolymers or copolymers and a polymer which is immiscible therewith as binder.
  • Suitable additional polymers include polyolefins, in particular polyethylene and polypropylene, as well as polymers of methacrylic esters such as PMMA (EP 0 465 940 A1).
  • DE 100 19 447 A1 describes a binder for inorganic material powder for producing metallic and ceramic shaped bodies, said binder copolymers, a mixture of polyoxymethylene homo- or and a polymer system of polytetrahydrofuran and at least one polymer is selected from C 2- 8-olefins, vinylaromatic rule monomers Vinylestern aliphatic Ci -8- carboxylic acids, vinyl-Ci -8 -alkyl ethers or Ci-12-alkyl (meth) acrylates.
  • WO 2008/006776 A1 describes a binder for inorganic material powder for producing metallic shaped bodies, said binder copolymers or a blend of polyoxymethylene and a polymer system selected from C 2- 8-olefins and poly-1, 3-dioxepane or poly-1, 3- Dioxolane are.
  • the debindering of the green parts is carried out catalytically using the aforementioned POM binder systems by treating the green part in a gaseous, acidic atmosphere of e.g. Hydrogen halides, formic acid or nitric acid at elevated temperature.
  • the Polyoxymethylenhomo- or copolymers are depolymerized residue-free, followed by a slow thermal Restentbind réelle the remaining polymer.
  • the melt area of the residual binder is passed through and plastic deformation of the powder molded part is thereby inevitable.
  • the residual binder content in the catalytic removal is generally about 10%. Because of the lower residual binder content, the plastic deformation is usually less pronounced than in the solvent debinder, where the residual binder content is usually 30 to 70%.
  • powders in which reactions with HNO 3 are not directly apparent are W, V, Mg, Mn and ceramic powders such as AIN and Si 3 N 4 .
  • ceramic powders such as AIN and Si 3 N 4 .
  • alloys containing reactive metals for example Al- and / or Ti-containing superalloys such as IN713C, MAR 246, GMR 235 and IN 100
  • such superficial reactions are not disturbing to the progress of debindering, but the resulting Al - and Ti-containing oxide layers are no longer reducible in the further course of the sintering step and then these alloying elements are not or only partially available for alloying; the material properties of the sintered product are worse or even unusable.
  • a catalytic debinding with oxalic acid also for oxidation-sensitive sintered materials such as WC / Co and Cu, described in WO 94/25205.
  • the catalytic debinding with oxalic acid is significantly slower in direct comparison with HN0 3 and oxalic acid is problematic as a solid in the dosage, so that it has not yet come to industrial use.
  • this residual binder this so-called “backbone”
  • the "backbone” must provide for a basic strength in the brown part, in order to transport the brown parts (for example to control measurements, or from the debinding oven into the sintering furnace).
  • the residual binder should guarantee the integrity of the molded parts during the early stage of the sintering process, because usually the diffusion processes, which initially lead to contact formation between the powder particles and later to compaction, only at about 600 - 1000 ° C. Below this temperature, a debindered molding without residual binder would correspond to a pure packing of powder particles, quasi a sand castle, ie without any strength.
  • the content of the residual binder varies from about 10 to at most 70% by weight of the binder phase, the content being dependent on the primary binder removal method chosen and the type of polymer.
  • the residual binder is removed according to the prior art without exception by thermal decomposition.
  • the temperature at which the residual binder leaves the brown part is dependent on the polymer chosen and on the choice of furnace protection gas, but is usually in the temperature range 300 to 600 ° C, in particular 400 to 500 ° C.
  • thermal Restentbindtation is an additional source of undesirable reactive substances.
  • thermal debinding polymer chains are usually cracked and split into shorter chains.
  • carbon is produced as a by-product and this carbon is very finely dispersed and reactive. This reactive carbon can in turn be bound by the reactive metals or alloying elements and form further undesirable secondary phases (carbides).
  • the residual binder is still of considerable disadvantage for the operation of the sintering furnace, in the heating rate always the thermal decomposition of the residual binder must be taken into account and often there are problems with the control of the carbon content by charring the residual binder.
  • the sintering furnace must therefore fulfill a special task in a temperature range (300 to 600 ° C), where the furnace is not easy to control;
  • the sintering furnaces are built from the power output for the high temperature range above 1200 ° C. Since sintering furnaces, in particular batch sintering furnaces for MIM, because of the used very expensive, it would be an important cost advantage not to have to take into account the thermal decomposition. The higher heating rate possible without residual binder could reduce the cycle time by 20 to 40%.
  • a further disadvantage is that the sintering furnace is burdened by decomposition products of the residual binder, which are led out by elaborate constructions of the furnace and usually must be condensed out, causing considerable maintenance is required.
  • the object is achieved in that the debindering takes place in two steps, wherein in a first binder removal step, a first binder fraction is dissolved out of the green parts with a solvent and in a second debinding step the remaining binder fraction is removed by acid catalysis.
  • the invention relates to a method for producing a metallic or ceramic molding of a thermoplastic composition containing
  • B-i from 50 to 95% by weight of one or more polyoxymethylene homopolymers or copolymers
  • B 2 from 5 to 50% by weight of a polymer homogeneously dissolved in Bi) or having a mean particle size of less than 1 ⁇ m in Bi), as binder, and
  • the polyoxymethylene homopolymers or copolymers are known as such and are commercially available.
  • the homopolymers are usually prepared by polymerization of formaldehyde or trioxane, preferably in the presence of suitable catalysts.
  • Polyoxymethylene copolymers which are preferred in the context of the invention also contain trioxane and other cyclic or linear formals or other formaldehyde sources as main monomers.
  • the term main monomers is intended to express that the proportion of these monomers in the total amount of monomers, ie the sum of main and comonomers, is greater than the proportion of comonomers in the total amount of monomers.
  • POM polymers have at least 50 mole percent of recurring units -CH 2 O- in the polymer backbone.
  • Suitable polyoxymethylene copolymers are described in EP-A 0 446 708 (page 3, lines 39 to page 4, line 31).
  • the proportion of component B-i) is preferably 50 to 95 wt .-%, particularly preferably 70 to 90 wt .-%, based on the total amount of the binder B).
  • the proportion of component B 2 ) is preferably from 5 to 50% by weight, particularly preferably from 10 to 30% by weight, based on the total amount of binder B).
  • component B 2 are in principle polymers which are homogeneously soluble in Polyoxymethylenhomo- or copolymers Bi) or dispersible therein in the required particle size.
  • Preferred polymers B 2 ) of this type are polyolefins, aliphatic polyurethanes, aliphatic uncrosslinked polyepoxides, polyethers, aliphatic polyamides and polyacrylates, and mixtures thereof.
  • the abovementioned preferred polymers B 2 ) are likewise described in EP-A 0 446 708 (page 4, line 34 to page 7, line 12).
  • polyethers in particular poly (C 2 -C 6 ) -alkylene oxides, such as polyethylene oxide (PEO), polypropylene oxide, poly-1,3-dioxepane (PDP), poly-1, 3 Dioxolane and polytetrahydrofuran or mixtures thereof, preferably with mean molecular weights (weight average) in the Range of 600 to 50 000 g / mol, more preferably 2000 to 30 000, most preferably 5000 to 20 000 g / mol.
  • PEO polyethylene oxide
  • PDP polypropylene oxide
  • PDP poly-1,3-dioxepane
  • Dioxolane polytetrahydrofuran or mixtures thereof
  • mean molecular weights weight average
  • Corresponding products are commercially available or the corresponding production processes are known to the person skilled in the art, so that further details are unnecessary here. It is also possible to use mixtures of different polyethers and / or polyethers of different molecular weights.
  • the inorganic sinterable powder A can be selected from all known suitable inorganic sinterable powders, in particular also reactive and / or oxidation-sensitive powders. Preferably, it is selected from metal powders, metal alloy powders, metal carbonyl powders, ceramic powders, and mixtures thereof, with metallic powders being particularly preferred.
  • metals which may be present in powder form are aluminum, iron, in particular carbonyl iron powder, chromium, cobalt, copper, nickel, silicon, titanium, tungsten and rare earths such as Nd, Sm and Y.
  • powdery metal alloys are high or low alloy steels and metal alloys based on aluminum, iron, titanium, copper, nickel, tungsten or cobalt. Both powder of finished alloys and powder mixtures of the individual alloy components can be used.
  • the metal powders, metal alloy powders and metal carbonyl powders may also be used in admixture.
  • Suitable inorganic powders are also oxide ceramic powders such as Al 2 O 3 , Zr0 2 , Y 2 O 3 but also non-oxide ceramic powders such as SiC, S13N4, and more complex oxide powders such as NiZnFe 2 0 4 , and inorganic color pigments such as C0AI2O4.
  • the reactive and oxidation-sensitive powders are in particular those of copper, cobalt, Ti, W, V, Mg, Mn, Nd, Sm, Y and their alloys, ceramic powders such as AIN and Si 3 N 4 and alloys of aluminum and / or titanium, so-called superalloys such as IN713C, MAR 246, GMR 235 and IN 100 and to name the alloys known from the magnet technology with the main components Nd-Fe-B and Sm-Co.
  • the particle sizes of the powders are preferably from 0.1 to 50 ⁇ m, more preferably from 0.3 to 30 ⁇ m.
  • the metal powders, metal alloy powders, metal carbonyl powders, ceramic powders can also be used in a mixture.
  • the optionally present as component C) dispersing agent may be selected from known dispersing aids.
  • dispersing aids are oligomeric polyethylene oxide having an average molecular weight of 200 to 600, stearic acid, stearic acid amide, hydroxystearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene oxide and propylene oxide, and also polyisobutylene.
  • the dispersing aid in an amount of 1 to 5% by volume, based on the components A), B) and C) is used.
  • thermoplastic compositions may also contain conventional additives and processing aids which favorably influence the rheological properties of the mixtures during shaping.
  • the preparation of the thermoplastic composition used in the process according to the invention can be carried out in a conventional manner in a kneader or extruder at temperatures of 150 to 200 ° C (see, EP-A-0413231). After cooling the mass, it can be granulated.
  • the preparation of the thermoplastic mass to be formed by melting the components B) and mixing the components A) and optionally C) take place.
  • component B) can be melted in a twin-screw extruder at temperatures of preferably 150 to 220 ° C., in particular 170 to 200 ° C.
  • Component A) is then metered at temperatures in the same range in the required amount to the melt stream of component B).
  • component A) contains on the surface the dispersant (s) C).
  • the preparation of the thermoplastic compositions can also be carried out by melting the components B) and C) in the presence of component A) at temperatures of 150 to 220 ° C.
  • thermoplastic molding composition by injection molding
  • the usual screw and piston injection molding machines can be used.
  • the molding is generally carried out at temperatures of 175 to 200 ° C and pressures of 3,000 to 20,000 kPa in molds having a temperature of 60 to 140 ° C.
  • the demolded green compacts are then treated by the process according to the invention according to step a) with a solvent.
  • a solvent The choice of solvent depends on the chemical nature of the binder component B 2 ). Solvents for some binder components B 2 ) are given below by way of example only; the solvents for other binder components B 2 ) should be known to the person skilled in the art. Mixtures of suitable solvents can also be used.
  • Polyolefins are preferably dissolved in apolar solvents such as pentane, hexane, cyclohexane, octane or benzene, and also in aromatic solvents such as benzene.
  • apolar solvents such as pentane, hexane, cyclohexane, octane or benzene
  • aromatic solvents such as benzene.
  • Polyacrylates (eg PMMA) and polyamides are generally soluble in the following solvents: ethers such as diethyl ether or tetrahydrofuran, ketones such as Methyl ethyl ketone or acetone, esters such as butyrolactone and CrC 4 alcohols such as ethanol.
  • Polyethers such as polytetrahydrofuran, poly-1, 3-dioxepane, poly-1,3-dioxolane, polyethylene oxide or polypropylene oxide can be dissolved, for example, in solvents such as tetrahydrofuran or acetone and in CrC 6 -alcohols such as ethanol and isopropanol; Polyethylene oxide could also be dissolved in water.
  • water can be used as the solvent for the binder component B 2 ), it is particularly preferred because water provides much easier and more environmentally friendly handling because of its incombustibility.
  • this is preferably a conventional corrosion inhibitor, for example modified phosphonates such as amino-tris (methylenephosphonic acid), hydroxyethylamino-di (methylenephosphonic acid) or phosphonobutane-1,2,4-tricarboxylic acid , available eg from Zschimmer & Schwarz.
  • modified phosphonates such as amino-tris (methylenephosphonic acid), hydroxyethylamino-di (methylenephosphonic acid) or phosphonobutane-1,2,4-tricarboxylic acid , available eg from Zschimmer & Schwarz.
  • Extremely reactive sintering powders A are preferably mixed with aprotic organic solvents such as ethers, esters, amides or ketones, e.g. Tetrahydrofuran, diethyl ether, butyrolactone, dimethylformamide, methyl ethyl ketone or preferably acetone.
  • aprotic organic solvents such as ethers, esters, amides or ketones, e.g. Tetrahydrofuran, diethyl ether, butyrolactone, dimethylformamide, methyl ethyl ketone or preferably acetone.
  • step a) of the process according to the invention can be carried out in commercially available systems with closed solvent circuit for the purification of machined, contaminated with lubricants workpieces, described by way of example in DE-A 4337129.
  • step a) at elevated temperature, d, h. a temperature above room temperature to the boiling point of the solvent, in particular at a temperature of 40 to 120 ° C.
  • step a) takes place at the boiling point of the solvent under reflux.
  • polyoxymethylene homopolymers and copolymers (POM) used as binder component B -I) or secondary binder for step a) of the process according to the invention are resistant to virtually all common solvents up to 120 ° C. and still guarantee a very high temperature of up to 120 ° C. high strength.
  • component B2) in the molding and the solvent can be achieved by replacing the loaded solvent often with fresh solvent and / or the dissolved extract is quickly carried away, for example by a circulation of the surface of the extraction material.
  • the treatment with a solvent according to step a) of the process according to the invention is preferably carried out until the binder component B 2 ) is at least 75%, preferably 85%, particularly preferably 90%, removed from the molded part. This condition is generally reached after 4 to 30 hours.
  • the required duration of treatment depends on the treatment temperature, on the quality of the solvent for the binder component B 2, the molecular weight of the component B 2, as well as the size of the molding.
  • the green parts which are now porous and saturated with solvent, have to be dried according to step b) of the process according to the invention.
  • the drying takes place in a conventional manner, for example with the aid of a vacuum drying oven or a heating cabinet.
  • the drying temperature is based on the boiling point of the solvent, but should be chosen slightly lower, in order to avoid the risk of a sudden or too fast drying process with possible negative consequences for the quality of the green part.
  • the drying is completed in 0.5 to 8 h.
  • the acid treatment in step c) of the process according to the invention is preferably carried out at temperatures in the range from 80 to 180 ° C. over a period of preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the required treatment time depends on the treatment temperature, the concentration and the type of acid in the treatment atmosphere as well as on the size of the molding. Under the usual conditions, generally results in an acid concentration of about 4 to 5% by volume in the atmosphere (i.a., Nitrogen).
  • Nitrogen i.a., Nitrogen
  • Suitable acids for the treatment in step c) of the process according to the invention are, for example, inorganic gases which are already gaseous at room temperature but at least evaporable at the treatment temperature. Examples are hydrohalic acids and nitric acid. Suitable organic acids are formic acid, acetic acid, or trifluoroacetic acid. Also suitable as acid are BF 3 or its adducts of organic ethers. If a customary carrier gas (inert gas, for example nitrogen) is used for the abovementioned acids, this is generally conducted beforehand through the acid and charged with it. The thus loaded carrier gas is then brought to the treatment temperature, which is suitably higher than the loading temperature in order to avoid condensation of the acid. Preferably, the acid is admixed to the carrier gas via a metering device and the mixture is heated to such an extent that the acid can no longer condense.
  • inorganic gases which are already gaseous at room temperature but at least evaporable at the treatment temperature. Examples are hydrohalic acids and n
  • suitable and preferred acids for the treatment in step c) of the process according to the invention are those acids which are solid at room temperature and sublimate or melt and evaporate at higher temperatures, including preferably those with a sublimation or melting point between 80 and 200 ° C.
  • Particularly preferred are oxalic acid, preferably anhydrous oxalic acid, or oxalic acid dihydrate. It is preferably used a solution of anhydrous oxalic acid in formic acid, acetic acid or mixtures thereof.
  • glyoxylic acid is suitable.
  • the acids used generally reach the debinding temperature initially in the gas phase, act from here on the remaining binder and desublimate or solidify after cooling on the walls of the binder removal device. In a subsequent debinding process, they return to the gas phase, i. the acid practically does not leave the device.
  • the abovementioned acids which are solid at room temperature and sublimate or melt and evaporate at higher temperatures, as a solution in polar solvents, preferably having boiling points below 200 ° C to use.
  • polar solvents preferably having boiling points below 200 ° C to use.
  • especially acetone, dioxane, ethanol and acetonitrile are suitable, but especially organic acids such as formic acid and / or acetic acid.
  • the acid treatment in step c) of the process according to the invention is carried out in the variant with acids which are solid at room temperature and sublimate at higher temperatures or melt and evaporate, preferably at temperatures in the range of 100 to 160 ° C.
  • the acid treatment in step c) of the process according to the invention is preferably carried out until the residual binder content in the molding is less than 0.5% by weight, preferably less than 0.3% by weight, very particularly preferably less than 0.2% by weight .-% is.
  • step c) of the process according to the invention is often also referred to as catalytic debinding and can likewise be carried out in commercially available plants which function according to the principles described in EP-A 0 413 231.
  • the product thus freed from the binder by the process according to the invention can be converted in a customary manner by sintering into the desired shaped body, in particular metallic or ceramic shaped body.
  • the sintering may optionally be carried out at an accelerated heating rate of 5 to 10 ° C / min in the temperature range of 200 to 600 ° C. respectively.
  • test compounds were homogenized in a cone mixer and homogenized and granulated in a laboratory extruder heated to 190 ° C.
  • the molding compound 1 had the following composition:
  • the molding compound 2 had the following composition:
  • the molding compound 3 had the following composition:
  • the molding composition had the following composition:
  • the molding compound 5 had the following composition:
  • the molding compound 6 had the following composition:
  • Figure 1 above shows a view of the component
  • Figure 1 below shows a plan view of the component, wherein the position 1 marks the sprue and the position 2 the breaking point by its own weight.
  • the length of the component was 100 mm, the weight of the obtained sintered part was about 34 g in the metal powder examples 1 to 5; in Example 6 about 26 g.
  • the molding compositions 1 to 5 were melted in the cylinder of the injection molding machine at 190 ° C, the injection mold was heated to 135 ° C.
  • the ceramic molding compound 6 was processed at 175 ° C cylinder temperature.
  • the required injection pressure was about 1900 bar, only molding compound 3 with a high PEO content and the lower molecular weight 2000 could be processed with 1 100 bar.
  • the molding compositions 1 to 6 differed in the cooling time required before demolding.
  • the molding compositions with a higher proportion of secondary binders (20% and higher) were somewhat softer and required a longer cooling time in order to be able to demold the green part intact.
  • the green parts produced from the molding compositions 1 to 6 were pretreated in a solvent, then subjected to catalytic debinding and sintering. For solvent debinding, the green parts were refluxed in a three-necked flask with a boiling solvent and stirred. Green parts of Examples 1 to 4 were removed after 7 h, 14 h, 21 h and 28 h storage in the solvent, dried and weighed. The green parts of Examples 5a and 6 were reweighed only at the end of storage (28 hours).
  • Table 1 shows the results in terms of weight loss as a percent of theory for the solvent primary debinding with acetone:
  • Example 3 with the highest PEO content in the molding composition is no longer significantly faster with respect to the solution process. Even at 10% by weight of component B 2 ) in the molding composition (Example 1), the removal is still surprisingly rapid.
  • the percent weight loss was based on the total amount of poly-1,3-dioxepane plus dispersant.
  • Table 2 shows that the removal of the PEO binder fraction contained in the molded part is also successful in boiling water, albeit at a slower rate than in acetone.
  • Catalytic acid debinding carried out after solvent debinding was carried out with the components of Examples 1 to 6 in a 50 L laboratory oven at 110 ° C. It was purged for inerting with 500 L / h of nitrogen, after 1 h 30 ml / h HN0 3 were dosed into it and further purged with 500 l / h of nitrogen oven and evaporated. After 6 h debindering time of all components of the polyacetal portion was at least 98% removed.
  • the sintering curve was as follows:
  • Example 6 The powder molded articles of Example 6 obtained after the two-stage debindering were sintered in air in a commercial ceramic sintering furnace.
  • the sintering curve was as follows and also without holding steps:
  • the obtained sintered parts were completely intact, free of defects and had a good sintering density of 6.05 g / cm 3.
  • Examples 1 to 6 show that it is possible to produce intact sintered parts without the presence of a residual binder. Due to the now possible abandonment of the usual, slow Ausbrennprogramme a much shorter sintering cycle can be achieved.
  • the molding compound 7 had the following composition:
  • the tensile bars were conventionally catalytically debinded in a 50-liter oven with 4% by volume HN0 3 in 500 l / h of nitrogen (technically pure) at 140 ° C for 10 h. After binder removal, small, bead-like outgrowths appeared on the surface of the debonded tensile specimens, presumably due to the reaction of magnesium with HN0 3 .
  • Example 7 Oxygen content 0.30% 0.24%
  • the sintered parts of Comparative Example 1 had as a result of the outgrowths a significantly rougher surface than the sintered parts according to Example 7.
  • the sintered parts obtained in Example 7 in comparison to the sintered parts of Comparative Example 1 have a reduced carbon and oxygen content and a higher sintering density. As a result, less brittle materials can be produced from the sintered parts produced according to Example 7, which can be processed more easily.
  • the molding compound 8 had the following composition:
  • the tensile bars were conventionally catalytically debinded in a 50-liter oven with 4% by volume HN0 3 in 500 l / h of nitrogen (technically pure) at 140 ° C for 6 h.
  • the sintered parts according to the invention obtained in Example 8 have in comparison to the sintered parts of Comparative Example 2 a reduced carbon and oxygen content and a higher sintering density.
  • the sintered part obtained according to Comparative Example 2 corresponds in the elements C and O only the standard DIN 3.7065, while the sintered part obtained according to the invention according to Example 8 still meets the much stricter standard DIN 3.7035.

Abstract

What is described is a process for producing a metallic or ceramic moulded body from a thermoplastic composition, comprising A) 40 to 65% by volume of at least one inorganic sinterable powder A, B) 35 to 60% by volume of a mixture of B1) 50 to 95% by weight of one or more polyoxymethylene homo- or copolymers; B2) 5 to 50% by weight of a polymer which is homogeneously dissolved in B1) or is dispersed in B1) with a mean particle size of less than 1 μm, as a binder, and C) 0 to 5% by volume of a dispersing aid, where the sum of components A), B) and C) adds up to 100% by volume, by injection moulding or extrusion to give a green part, removing the binder and sintering, characterized in that the binder is removed by a) treating the moulded part with a solvent which extracts the binder component B2) from the moulded part and in which the binder component B1) is insoluble, b) then removing the solvent from the moulded part by drying, and c) then treating the moulded part in an acid-containing atmosphere which removes the binder component B1) from the moulded body.

Description

Verfahren zur Herstellung von metallischen oder keramischen Formkörpern Beschreibung  Process for the production of metallic or ceramic moldings Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von metallischen oder keramischen Formkörpern aus thermoplastischen Formmassen enthaltend pulverför- mige Metalle, pulverförmige Metalllegierungen oder pulverförmige Keramiken und organische Bindemittel. The present invention relates to a process for the production of metallic or ceramic moldings from thermoplastic molding compositions comprising powdered metals, powdered metal alloys or powdered ceramics and organic binders.
Metallische bzw. keramische Formkörper können durch Spritzgießen, Extrudieren oder Verpressen von thermoplastischen Massen hergestellt werden, die neben Metallpulvern und/oder Keramikpulvern ein organisches Bindemittel aufweisen. Es handelt sich um hochgefüllte organische Polymerformmassen. Nach dem Formen der thermoplastischen Masse zu einem Grünteil wird das organische Bindemittel entfernt und das erhaltene entbinderte Grünteil (= Braunteil) wird gesintert. Metallic or ceramic moldings can be produced by injection molding, extrusion or compression of thermoplastic materials which, in addition to metal powders and / or ceramic powders, have an organic binder. These are highly filled organic polymer molding compounds. After forming the thermoplastic mass into a green part, the organic binder is removed and the resulting debindered green part (= brown part) is sintered.
Die ersten Bindemittel für das Pulverspritzgussverfahren basierten im Allgemeinen auf Mischungen von Polyethylen oder Polypropylen und Wachs. Dabei wird der Grünkörper durch Ausschmelzen zunächst vom Wachs befreit und der Restbinder durch eine langsame Pyrolyse ausgebrannt. Für das Ausschmelzen müssen die Grünteile in einem Pulverbett eingelagert werden, weil die Grünfestigkeit durch das Schmelzen praktisch nicht gegeben ist. Spätere Bindersysteme für die thermische Entbinderung verzichten auf das Ausschmelzen, weil das aufwändige Einbetten der Grünteile in Pulver und nachfolgende Ausgraben viel zu zeitaufwendig sind. The first binders for the powder injection molding process were generally based on blends of polyethylene or polypropylene and wax. The green body is first liberated from the wax by melting and the residual binder burned out by a slow pyrolysis. For melting, the green parts must be stored in a powder bed, because the green strength is practically not given by the melting. Later binder systems for thermal debinding dispensed with the melting, because the elaborate embedding of the green parts in powder and subsequent excavation are far too time-consuming.
Üblicherweise besteht ein verbessertes Bindersystem für die vollständige thermische Entbinderung aus mehreren Komponenten, wie z.B. in DE 1992 5197 beschrieben. Diese Komponenten werden sukzessive beim Aufheizen bei unterschiedlichen Temperaturen aus dem Formkörper freigesetzt, so dass der üblicherweise geringere Binderbestandteil noch bis mindestens 400°C vorhanden ist und als Restbinder gesehen werden kann. Eine rein thermische Entbinderung dauert 1 bis 3 Tage und ist somit extrem langsam. Usually, an improved binder system for complete thermal debindering consists of several components, e.g. in DE 1992 5197. These components are released successively during heating at different temperatures from the molding, so that the usually lower binder component is still present at least 400 ° C and can be seen as a residual binder. A purely thermal debinding takes 1 to 3 days and is thus extremely slow.
Ein noch weiter verbessertes Verfahren stellt die Lösemittelentbinderung dar, bei welcher Bindemittelsysteme, welche Binderkomponenten unterschiedlicher Löslichkeit enthalten, eingesetzt werden. Zur Entbinderung des Grünteils wird zunächst eine Binderkomponente durch Lösungsmittelextraktion entfernt, wonach die verbleibende, nicht oder sehr schlecht in dem Lösungsmittel lösliche Restbinderkomponente wiederum durch eine langsame thermische Zersetzung aus dem Formteil entfernt wird (z.B. US 4,197,1 18 oder EP 501 602). Dabei wird der Schmelzebereich des Restbinders durch- schritten und eine plastische Verformung des Pulverformteils ist dadurch unumgänglich. A still further improved process is solvent debindering which employs binder systems containing binder components of varying solubility. To debind the green part, a binder component is first removed by solvent extraction, after which the remaining, not or very poorly soluble in the solvent residual binder component is again removed by a slow thermal decomposition of the molded part (eg US 4,197.1 18 or EP 501 602). The melt area of the residual binder is Steps and a plastic deformation of the powder molded part is therefore inevitable.
WO 201 1/016718 A1 beschreibt ein Pulverspritzgussverfahren, bei welchem eine Bindermischung aus einem Polymer wie z.B. POM und einem nicht polymeren Lösungsmittel (Molmasse < 300 g/mol, Schmelzpunkt > RT) für das Polymer eingesetzt wird. Dabei wird zunächst das vorgenannte Lösungsmittel herausgelöst oder aber verdampft. Das verbleibende Polymer wird durch eine thermische Entbinderung entfernt. Von Nachteil bei diesem Verfahren ist, dass solche Binder beim Mischen mit Pulver und bei der Verarbeitung auf der Spritzgießmaschine bereits das nicht polymere Lösungsmittel verdampfen. Die niedermolekulare Komponente wird an der Grünteiloberfläche ausgeschwitzt und verschmutzt die Spritzgießform. Darüber hinaus ist die Grünteilfestigkeit deutlich verringert. WO 201 1/016718 A1 describes a powder injection molding process in which a binder mixture of a polymer, e.g. POM and a non-polymeric solvent (molecular weight <300 g / mol, melting point> RT) is used for the polymer. Initially, the aforementioned solvent is dissolved out or evaporated. The remaining polymer is removed by thermal debinding. A disadvantage of this method is that such binders already evaporate the non-polymeric solvent when mixed with powder and during processing on the injection molding machine. The low molecular weight component is sweated out on the green part surface and pollutes the injection mold. In addition, the green part strength is significantly reduced.
R.M. German schreibt in seinem Handbuch "Powder Injection Molding", MPIF 1990, Kapitel 4, Seite 1 15, über die Lösemittelentbinderung: R.M. German in his handbook "Powder Injection Molding", MPIF 1990, Chapter 4, page 1 15, writes about the solvent removal:
"The two constituents in the binder are often present in roughly equal proportions. This allows each to remain interconnected throughout the pore structure between the parti- cles. The binder interConnectivity can be easily maintained with as little as 30 volume percent of either constituent. Successful binder formulations therefore contain 70 to 30 % by volume of a major component."  The two components in the binder are often in the same proportions Binder Breaths therefore contain 70 to 30% by volume of a major component. "
Ein weiteres Verfahren zur Entbinderung des Grünteils gemäß dem Stand der Technik beruht auf einer katalytischen Entbinderung durch Behandlung des Grünteils in einer gasförmigen, säurehaltigen Atmosphäre bei erhöhter Temperatur. EP-A 0 413 231 offenbart beispielsweise ein Verfahren zur Herstellung eines anorganischen Sinterformteils, bei welchem ein Gemisch aus einem sinterbaren anorganischen Pulver und Polyoxymethylen als Bindemittel zu einem Grünkörper verformt wird und das Bindemittel dann durch Behandeln des Grünkörpers in einer gasförmigen, säurehaltigen z.B. Bortrifluorid oder HN03, enthaltenden Atmosphäre entfernt wird. Anschließend wird der so behandelte Grünkörper versintert. Beispiele für sinterförmige Pulver sind sowohl oxidische Keramikpulver wie Al203, Zr02, Y2O3 als auch nicht-oxidische Keramikpulver wie SiC, S13N4, und Metallpulver. Another method for debinding the green part according to the prior art is based on a catalytic debindering by treatment of the green part in a gaseous, acidic atmosphere at elevated temperature. EP-A 0 413 231 discloses, for example, a process for producing an inorganic sintered molding in which a mixture of a sinterable inorganic powder and polyoxymethylene as a binder is formed into a green body and the binder is then treated by treating the green body in a gaseous, acidic, eg boron trifluoride or HN0 3 , containing atmosphere is removed. Subsequently, the thus treated green body is sintered. Examples of sintered powders are both oxide ceramic powders such as Al 2 O 3 , Zr0 2 , Y 2 O 3 and non-oxide ceramic powders such as SiC, S13N4, and metal powder.
Mit einer ausschließlich aus POM bestehenden Binderphase werden jedoch in der Praxis keine zufriedenstellenden Ergebnisse erhalten, da die Sinterdichten zu niedrig sind. EP-A 0 444 475 beschreibt für keramische Formkörper geeignete Binderzusammensetzungen, die neben Polyoxymethylen als zusätzliches lösliches Polymerisat Poly-1 ,3- Dioxolan, Poly-1 ,3-Dioxan oder Poly-1 ,3-Dioxepan enthalten oder als in POM dispergierbares Polymerisat aliphatische Polyurethane, aliphatische Polyepoxide, Poly(C2-C6-alkylenoxide), aliphatische Polyamide oder Polyacrylate oder deren Mischungen enthalten. With a binder phase consisting exclusively of POM, however, satisfactory results are not obtained in practice because the sintering densities are too low. EP-A 0 444 475 describes binder compositions which are suitable for ceramic molded articles and which, in addition to polyoxymethylene, comprise poly-1,3-dioxolane, poly-1,3-dioxane or poly-1,3-dioxepane as additional soluble polymer or as polymer dispersible in POM aliphatic polyurethanes, aliphatic polyepoxides, poly (C 2 -C 6 alkylene oxides), aliphatic polyamides or polyacrylates or mixtures thereof.
In der EP 0 465 940 A1 und DE 100 19 447 A1 werden thermoplastische Formmassen für die Herstellung metallischer Formkörper beschrieben, die neben einem sinterbaren pulverförmigen Metall oder einer pulverförmigen Metalllegierung eine Mischung aus Polyoxymethylenhomo- oder copolymerisaten und einem damit nicht mischbaren Polymerisat als Bindemittel enthalten. Als zusätzliches Polymerisat kommen Polyolefi- ne, insbesondere Polyethylen und Polypropylen, wie auch Polymerisate von Methacrylsäureestern wie PMMA, in Betracht (EP 0 465 940 A1 ). DE 100 19 447 A1 beschreibt Bindemittel für anorganische Materialpulver zur Herstellung metallischer und keramischer Formkörper, wobei diese Bindemittel eine Mischung aus Polyoxymethylenhomo- oder copolymerisaten und einem Polymersystem aus Polytetrahydrofuran und mindestens einem Polymer aus C2-8-Olefinen, vinylaromati- schen Monomeren, Vinylestern aliphatischer Ci-8-Carbonsäuren, Vinyl-Ci-8-Alkylethern oder Ci-12-Alkyl(meth)acrylaten enthalten. EP 0 465 940 A1 and DE 100 19 447 A1 describe thermoplastic molding compositions for the production of metallic moldings which, in addition to a sinterable pulverulent metal or a pulverulent metal alloy, contain a mixture of polyoxymethylene homopolymers or copolymers and a polymer which is immiscible therewith as binder. Suitable additional polymers include polyolefins, in particular polyethylene and polypropylene, as well as polymers of methacrylic esters such as PMMA (EP 0 465 940 A1). DE 100 19 447 A1 describes a binder for inorganic material powder for producing metallic and ceramic shaped bodies, said binder copolymers, a mixture of polyoxymethylene homo- or and a polymer system of polytetrahydrofuran and at least one polymer is selected from C 2- 8-olefins, vinylaromatic rule monomers Vinylestern aliphatic Ci -8- carboxylic acids, vinyl-Ci -8 -alkyl ethers or Ci-12-alkyl (meth) acrylates.
WO 2008/006776 A1 beschreibt Bindemittel für anorganische Materialpulver zur Herstellung metallischer Formkörper, wobei diese Bindemittel eine Mischung aus Polyoxymethylenhomo- oder copolymerisaten und einem Polymersystem aus C2-8- Olefinen und Poly-1 ,3-Dioxepan oder Poly-1 ,3-Dioxolan sind. WO 2008/006776 A1 describes a binder for inorganic material powder for producing metallic shaped bodies, said binder copolymers or a blend of polyoxymethylene and a polymer system selected from C 2- 8-olefins and poly-1, 3-dioxepane or poly-1, 3- Dioxolane are.
Die Entbinderung der Grünteile erfolgt bei Verwendung der vorgenannten POM- Bindemittelsysteme katalytisch durch Behandlung des Grünteils in einer gasförmigen, säurehaltigen Atmosphäre von z.B. Halogenwasserstoffen, Ameisensäure oder Salpetersäure bei erhöhter Temperatur. Dabei werden die Polyoxymethylenhomo- oder Copolymerisate rückstandsfrei depolymerisiert, gefolgt von einer langsamen thermischen Restentbinderung des zurückbleibenden Polymerisats. Auch hier wird der Schmelzebereich des Restbinders durchschritten und eine plastische Verformung des Pulverformteils ist dadurch unumgänglich. Der Restbindergehalt beträgt bei der kataly- tischen Entfernung im Allgemeinen etwa 10 %. Wegen des geringeren Restbindergehaltes ist die plastische Verformung üblicherweise weniger ausgeprägt als bei der Lösemittelentbinderung, wo der Restbinderanteil üblicherweise 30 bis 70 % beträgt. The debindering of the green parts is carried out catalytically using the aforementioned POM binder systems by treating the green part in a gaseous, acidic atmosphere of e.g. Hydrogen halides, formic acid or nitric acid at elevated temperature. The Polyoxymethylenhomo- or copolymers are depolymerized residue-free, followed by a slow thermal Restentbinderung the remaining polymer. Here, too, the melt area of the residual binder is passed through and plastic deformation of the powder molded part is thereby inevitable. The residual binder content in the catalytic removal is generally about 10%. Because of the lower residual binder content, the plastic deformation is usually less pronounced than in the solvent debinder, where the residual binder content is usually 30 to 70%.
Bei reaktiven Pulveroberflächen können bei der katalytischen Entbinderung mit den vorgenannten Säuren, insbesondere mit Salpetersäure, Probleme durch eine Reaktion der Säure mit der Oberfläche auftreten. Diese Reaktion kann so stark ausgeprägt sein, dass die Entbinderung durch Porenverstopfung nach wenigen zehntel Millimetern Eindringtiefe zum Erliegen kommt. Beispielsweise ist die HN03-Entbinderung bei Kupfer und kupferhaltigen Legierungen nicht, oder, bei geringem Cu-Gehalt, nur eingeschränkt möglich, weil die voluminösen Nitrate den Zugang zum Formteilinneren blockieren. Ein ähnliches Verhalten ist von Kobalt bekannt. In reactive powder surfaces can in the catalytic debindering with the aforementioned acids, in particular with nitric acid, problems by a reaction the acid with the surface occur. This reaction can be so pronounced that debinding by pore clogging comes to a standstill after a few tenths of a millimeter of penetration. For example, the HN0 3 Entbinderung with copper and copper-containing alloys not, or, with low Cu content, only limited possible because the bulky nitrates block access to the molding interior. A similar behavior is known by Kobalt.
Aber auch bei anderen Metallen, wo eine Reaktion mit HN03 nicht offensichtlich ist und die Entbinderung völlig normal verläuft, können erfahrungsgemäß doch Probleme auftreten. In diesen Fällen findet möglicherweise nur eine oberflächliche Reaktion statt und die Entbinderungsgeschwindigkeit wird kaum merklich oder gar nicht negativ be- einflusst. Dennoch ist im Sinterprodukt eine Zunahme im Sauerstoffgehalt wie z.B. bei Titan, oder bei kohlenstoffhaltigen Legierungen, z.B. von Eisen, ein Verlust von Kohlenstoff durch die Reaktion zu gasförmigen Kohlenoxiden festzustellen. But in other metals, where a reaction with HN0 3 is not obvious and the debinding is completely normal, experience can still experience problems. In these cases, only a superficial reaction may take place, and the rate of debinding is hardly or not negatively affected. Nevertheless, in the sintered product an increase in the oxygen content such as in titanium, or in carbonaceous alloys, such as iron, a loss of carbon by the reaction to form gaseous carbon oxides.
Weitere Beispiele von Pulvern, bei welchen nicht direkt offensichtlich Reaktionen mit HNO3 auftreten, sind W, V, Mg, Mn und Keramikpulver wie AIN und Si3N4. Insbesondere bei Legierungen, welche reaktive Metalle enthalten, z.B. AI- und/oder Ti-haltige Su- perlegierungen wie IN713C, MAR 246, GMR 235 und IN 100, sind solche oberflächliche Reaktionen für den Fortschritt der Entbinderung nicht störend, aber die daraus resultierenden AI- und Ti-haltigen Oxidschichten sind im weiteren Verlauf des Sinterschrittes nicht mehr reduzierbar und diese Legierungselemente stehen dann für die Legierungsbildung nicht oder nur teilweise zur Verfügung; die Werkstoffeigenschaften des Sinterproduktes sind schlechter oder sogar unbrauchbar. Further examples of powders in which reactions with HNO 3 are not directly apparent are W, V, Mg, Mn and ceramic powders such as AIN and Si 3 N 4 . In particular, in alloys containing reactive metals, for example Al- and / or Ti-containing superalloys such as IN713C, MAR 246, GMR 235 and IN 100, such superficial reactions are not disturbing to the progress of debindering, but the resulting Al - and Ti-containing oxide layers are no longer reducible in the further course of the sintering step and then these alloying elements are not or only partially available for alloying; the material properties of the sintered product are worse or even unusable.
Eine katalytische Entbinderung mit Oxalsäure wird, auch für oxidationsempfindliche Sintermaterialien wie WC/Co und Cu, in der WO 94/25205 beschrieben. Die katalytische Entbinderung mit Oxalsäure ist im direkten Vergleich mit HN03 jedoch deutlich langsamer und Oxalsäure ist als Feststoff problematisch in der Dosierung, so dass sie bisher nicht zum industriellen Einsatz gekommen ist. A catalytic debinding with oxalic acid, also for oxidation-sensitive sintered materials such as WC / Co and Cu, described in WO 94/25205. The catalytic debinding with oxalic acid, however, is significantly slower in direct comparison with HN0 3 and oxalic acid is problematic as a solid in the dosage, so that it has not yet come to industrial use.
Sämtliche vorhandene Literatur der letzten 30 Jahre über Pulverspritzguss legt also dar, dass das organische Bindemittel aus mehreren Komponenten bestehen muss; in der Regel sind das mindestens zwei Komponenten, von dem eine Komponente in einem ersten Entbinderungsschritt entfernt wird und eine zweite Komponente als Restbinder im Formteil verbleibt. All available literature of the past 30 years about powder injection thus shows that the organic binder must consist of several components; As a rule, these are at least two components from which one component is removed in a first debinding step and a second component remains as a residual binder in the molded part.
Die Funktion und Wichtigkeit dieses Restbinders, dieses sogenannte "Backbone", wird damit erklärt, dass das "Backbone" für eine Grundfestigkeit im Braunteil Sorge tragen muss, um den Transport der Braunteile (beispielsweise zu Kontrollmessungen, oder vom Entbinderofen in den Sinterofen) zu ermöglichen. Zudem soll der Restbinder während des frühen Stadiums des Sinterprozesses die Unversehrtheit der Formteile garantieren, denn üblicherweise setzen die Diffusionsprozesse, welche zunächst zu Kontaktbildung zwischen den Pulverpartikeln und später zu Verdichtung führen, erst bei ca. 600 - 1000°C ein. Unterhalb dieser Temperatur entspräche ein entbindertes Formteil ohne Restbinder einer reinen Packung von Pulverpartikeln, quasi einer Sandburg, also ohne jegliche Festigkeit. The function and importance of this residual binder, this so-called "backbone", is explained by the fact that the "backbone" must provide for a basic strength in the brown part, in order to transport the brown parts (for example to control measurements, or from the debinding oven into the sintering furnace). In addition, the residual binder should guarantee the integrity of the molded parts during the early stage of the sintering process, because usually the diffusion processes, which initially lead to contact formation between the powder particles and later to compaction, only at about 600 - 1000 ° C. Below this temperature, a debindered molding without residual binder would correspond to a pure packing of powder particles, quasi a sand castle, ie without any strength.
R.M. German schreibt in seinem Handbuch "Powder Injection Molding", MPIF 1990, Kapitel 4, Seite 99: "The binder is a temporary vehicle for homogeneously packing the powder into the desired shape and then holding the particles in that shape until the beginning of sintering." R.M. German in his handbook "Powder Injection Molding", MPIF 1990, Chapter 4, page 99: "The binder is a temporary vehicle for homogeneously packing the powder into the desired shape and then holding the particles in that shape until the beginning of sintering. "
Der Gehalt des Restbinders variiert von ca. 10 bis maximal 70 Gew -% der Binderphase, wobei der Gehalt abhängig von der gewählten primären Entbinderungsmethode und dem Polymertyp ist. The content of the residual binder varies from about 10 to at most 70% by weight of the binder phase, the content being dependent on the primary binder removal method chosen and the type of polymer.
Der Restbinder wird gemäß dem Stand der Technik ausnahmslos durch thermische Zersetzung entfernt. Die Temperatur bei welcher der Restbinder das Braunteil verlässt, ist abhängig vom gewählten Polymer und von der Wahl des Ofenschutzgases, liegt aber üblicherweise im Temperaturbereich 300 bis 600°C, insbesondere 400 bis 500°C. The residual binder is removed according to the prior art without exception by thermal decomposition. The temperature at which the residual binder leaves the brown part is dependent on the polymer chosen and on the choice of furnace protection gas, but is usually in the temperature range 300 to 600 ° C, in particular 400 to 500 ° C.
Nachteilig an der üblichen thermischen Restentbinderung ist, dass diese eine zusätzliche Quelle für unerwünschte reaktive Substanzen ist. Während der thermischen Restentbinderung werden Polymerketten üblicherweise gecrackt und in kürzere Ketten aufgespalten. Dabei entsteht bei vielen Polymeren Kohlenstoff als Nebenprodukt und dieser Kohlenstoff ist sehr fein verteilt und reaktiv. Dieser reaktive Kohlenstoff kann wiederum von den reaktiven Metallen oder Legierungselementen gebunden werden und weitere unerwünschte Zweitphasen (Carbide) bilden. A disadvantage of the usual thermal Restentbinderung is that this is an additional source of undesirable reactive substances. During thermal debinding polymer chains are usually cracked and split into shorter chains. In many polymers carbon is produced as a by-product and this carbon is very finely dispersed and reactive. This reactive carbon can in turn be bound by the reactive metals or alloying elements and form further undesirable secondary phases (carbides).
Der Restbinder ist weiterhin von erheblichem Nachteil für den Betrieb des Sinterofens, bei dessen Aufheizrate immer die thermische Zersetzung des Restbinders berücksichtigt werden muss und oftmals Probleme mit der Beherrschung des Kohlenstoffgehaltes durch ein Verkohlen des Restbinders bestehen. The residual binder is still of considerable disadvantage for the operation of the sintering furnace, in the heating rate always the thermal decomposition of the residual binder must be taken into account and often there are problems with the control of the carbon content by charring the residual binder.
Der Sinterofen muss demnach eine besondere Aufgabe erfüllen in einem Temperaturbereich (300 bis 600°C), wo der Ofen nicht gut zu regeln ist; die Sinteröfen sind von der Leistungsabgabe her für den Hochtemperaturbereich oberhalb von 1200°C gebaut. Da Sinteröfen, insbesondere Batch-Sinteröfen für MIM, wegen des verwendeten Mo- lybdän sehr teuer sind, wäre es ein wichtiger Kostenvorteil, keine Rücksicht auf die thermische Zersetzung nehmen zu müssen. Durch die ohne Restbinder mögliche, höhere Aufheizrate könnte sich die Zykluszeit um 20 bis 40 % reduzieren. The sintering furnace must therefore fulfill a special task in a temperature range (300 to 600 ° C), where the furnace is not easy to control; The sintering furnaces are built from the power output for the high temperature range above 1200 ° C. Since sintering furnaces, in particular batch sintering furnaces for MIM, because of the used very expensive, it would be an important cost advantage not to have to take into account the thermal decomposition. The higher heating rate possible without residual binder could reduce the cycle time by 20 to 40%.
Von Nachteil ist weiterhin, dass der Sinterofen durch Zersetzungsprodukte des Restbinders belastet wird, die durch aufwändige Konstruktionen aus dem Ofen herausgeführt werden und zumeist auskondensiert werden müssen, wodurch erhebliche Wartungsarbeiten bedingt sind. A further disadvantage is that the sintering furnace is burdened by decomposition products of the residual binder, which are led out by elaborate constructions of the furnace and usually must be condensed out, causing considerable maintenance is required.
Es besteht somit die Aufgabe ein verbessertes Verfahren zur Herstellung von metallischen oder keramischen Formkörpern zu entwickeln, welches es ermöglicht ein im Wesentlichen restbinderfreies Formteil bereitzustellen, das ohne die vorgenannten Einschränkungen gesintert werden kann und auch für reaktive Pulver geeignet ist. It is therefore the object to develop an improved process for the production of metallic or ceramic moldings, which makes it possible to provide a substantially restbinder-free molded part which can be sintered without the aforementioned limitations and is also suitable for reactive powders.
Die Aufgabe wird dadurch gelöst, dass die Entbinderung in zwei Schritten erfolgt, wobei in einem ersten Entbinderungsschritt ein erster Binderanteil mit einem Lösungsmittel aus den Grünteilen herausgelöst wird und in einem zweiten Entbinderungsschritt der verbleibende Binderanteil säurekatalytisch entfernt wird. The object is achieved in that the debindering takes place in two steps, wherein in a first binder removal step, a first binder fraction is dissolved out of the green parts with a solvent and in a second debinding step the remaining binder fraction is removed by acid catalysis.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines metallischen oder keramischen Formkörpers aus einer thermoplastischen Masse, enthaltend The invention relates to a method for producing a metallic or ceramic molding of a thermoplastic composition containing
A) 40 bis 65 Vol.-%, mindestens eines anorganischen sinterbaren Pulvers A  A) 40 to 65% by volume, of at least one inorganic sinterable powder A
B) 35 bis 60 Vol.-% einer Mischung aus  B) 35 to 60 vol .-% of a mixture of
B-i) 50 bis 95 Gew.-% eines oder mehrerer Polyoxymethylenhomo- oder -copolymerisate;  B-i) from 50 to 95% by weight of one or more polyoxymethylene homopolymers or copolymers;
B2) 5 bis 50 Gew-% eines in B-i) homogen gelösten oder mit einer mittleren Teilchengröße von weniger als 1 μηη in B-i) dispergierten Polymerisats, als Bindemittel, und B 2 ) from 5 to 50% by weight of a polymer homogeneously dissolved in Bi) or having a mean particle size of less than 1 μm in Bi), as binder, and
C) 0 bis 5 Vol.-% eines Dispergierhilfsmittels, wobei die Summe der Komponenten A), B) und C) 100 Vol.-% ergibt, durch Spritzgießen oder Extrusion zu einem Formteil, Entfernen des Bindemittels und Sintern, dadurch gekennzeichnet, dass zum Entfernen des Bindemittels a) das Formteil mit einem Lösungsmittel behandelt wird, welches die Bindemittelkomponente B2) aus dem Formteil extrahiert und in welchem die Bindemittelkomponente B-i) unlöslich ist, C) 0 to 5 vol .-% of a dispersing aid, wherein the sum of the components A), B) and C) 100 vol .-% results, by injection molding or extrusion into a molding, removing the binder and sintering, characterized in that for removing the binder a) the molding is treated with a solvent which extracts the binder component B 2 ) from the molding and in which the binder component Bi) is insoluble,
b) dann das Lösungsmittel durch Trocknen aus dem Formteil entfernt wird, und c) anschließend das Formteil in einer säurehaltigen Atmosphäre behandelt wird, welches die Bindemittelkomponente B1 aus dem Formkörper entfernt.  b) then the solvent is removed by drying from the molding, and c) then the molding is treated in an acidic atmosphere which removes the binder component B1 from the molding.
Die Polyoxymethylenhomo- oder copolymerisate (POM) sind als solche bekannt und handelsüblich. Die Homopolymeren werden üblicherweise durch Polymerisation von Formaldehyd oder Trioxan hergestellt, vorzugsweise in der Gegenwart von geeigneten Katalysatoren. Im Rahmen der Erfindung bevorzugte Polyoxymethylencopolymere enthalten ebenfalls Trioxan und andere cyclische oder lineare Formalen bzw. sonstigen Formaldehyd-Quellen als Hauptmonomere. Die Bezeichnung Hauptmonomere soll ausdrücken, dass der Anteil dieser Monomere an der Gesamtmonomermenge, also der Summe von Haupt- und Comonomeren, größer ist als der Anteil der Comonomere an der Gesamtmonomermenge. Ganz allgemein weisen derartige POM-Polymere mindestens 50 mol-% an wiederkehrenden Einheiten -CH20- in der Polymerhauptkette auf. Geeignete Polyoxymethylencopolymere werden in der EP-A 0 446 708 (Seite 3, Zeilen 39 bis Seite 4, Zeile 31 ) beschrieben. The polyoxymethylene homopolymers or copolymers (POM) are known as such and are commercially available. The homopolymers are usually prepared by polymerization of formaldehyde or trioxane, preferably in the presence of suitable catalysts. Polyoxymethylene copolymers which are preferred in the context of the invention also contain trioxane and other cyclic or linear formals or other formaldehyde sources as main monomers. The term main monomers is intended to express that the proportion of these monomers in the total amount of monomers, ie the sum of main and comonomers, is greater than the proportion of comonomers in the total amount of monomers. In general, such POM polymers have at least 50 mole percent of recurring units -CH 2 O- in the polymer backbone. Suitable polyoxymethylene copolymers are described in EP-A 0 446 708 (page 3, lines 39 to page 4, line 31).
Der Anteil der Komponente B-i) beträgt bevorzugt 50 bis 95 Gew.-%, besonders bevorzugt 70 bis 90 Gew.-%, bezogen auf die Gesamtmenge des Bindemittels B). The proportion of component B-i) is preferably 50 to 95 wt .-%, particularly preferably 70 to 90 wt .-%, based on the total amount of the binder B).
Der Anteil der Komponente B2) beträgt bevorzugt 5 bis 50 Gew-%, besonders bevorzugt 10 bis 30 Gew-%, bezogen auf die Gesamtmenge des Bindemittels B). The proportion of component B 2 ) is preferably from 5 to 50% by weight, particularly preferably from 10 to 30% by weight, based on the total amount of binder B).
Als Komponente B2) eignen sich grundsätzlich Polymerisate, die in Polyoxymethylenhomo- oder copolymerisaten B-i) homogen löslich oder darin in der geforderten Teilchengröße dispergierbar sind. As component B 2 ) are in principle polymers which are homogeneously soluble in Polyoxymethylenhomo- or copolymers Bi) or dispersible therein in the required particle size.
Bevorzugte Polymerisate B2) dieser Art sind Polyolefine, aliphatische Polyurethane, aliphatische unvernetzte Polyepoxide, Polyether, aliphatische Polyamide und Polyacrylate sowie deren Mischungen. Die vorgenannten bevorzugten Polymerisate B2) werden ebenfalls in der EP-A 0 446 708 (Seite 4, Zeile 34 bis Seite 7, Zeile 12) beschrieben. Preferred polymers B 2 ) of this type are polyolefins, aliphatic polyurethanes, aliphatic uncrosslinked polyepoxides, polyethers, aliphatic polyamides and polyacrylates, and mixtures thereof. The abovementioned preferred polymers B 2 ) are likewise described in EP-A 0 446 708 (page 4, line 34 to page 7, line 12).
Besonders bevorzugt unter den vorgenannten Polymerisaten B2) sind Polyether, insbesondere Poly-(C2-C6)-alkylenoxide, wie Polyethylenoxid (PEO), Polypropylenoxid, Poly-1 ,3-Dioxepan (PDP), Poly-1 ,3-Dioxolan und Polytetrahydrofuran oder deren Mischungen, vorzugsweise mit mittleren Molekulargewichten (Gewichtsmittelwert) im Bereich von 600 bis 50 000 g/mol, besonders bevorzugt 2000 bis 30 000, ganz besonders bevorzugt 5000 bis 20 000 g/mol. Entsprechende Produkte sind im Handel erhältlich oder die entsprechenden Herstellungsverfahren sind dem Fachmann bekannt, so dass sich hier nähere Angaben erübrigen. Es können auch Mischungen von verschiedenen Polyethern und/oder Polyethern verschiedener Molekulargewichte eingesetzt werden. Particularly preferred among the abovementioned polymers B 2 ) are polyethers, in particular poly (C 2 -C 6 ) -alkylene oxides, such as polyethylene oxide (PEO), polypropylene oxide, poly-1,3-dioxepane (PDP), poly-1, 3 Dioxolane and polytetrahydrofuran or mixtures thereof, preferably with mean molecular weights (weight average) in the Range of 600 to 50 000 g / mol, more preferably 2000 to 30 000, most preferably 5000 to 20 000 g / mol. Corresponding products are commercially available or the corresponding production processes are known to the person skilled in the art, so that further details are unnecessary here. It is also possible to use mixtures of different polyethers and / or polyethers of different molecular weights.
Das anorganische sinterbare Pulver A kann aus allen bekannten geeigneten anorganischen sinterbaren Pulvern, insbesondere auch reaktiven und/oder oxidationsempfindli- chen Pulvern, ausgewählt werden. Vorzugsweise ist es ausgewählt aus Metallpulvern, Metalllegierungspulvern, Metallcarbonylpulvern, keramischen Pulvern und Gemischen davon, wobei metallische Pulver besonders bevorzugt sind. The inorganic sinterable powder A can be selected from all known suitable inorganic sinterable powders, in particular also reactive and / or oxidation-sensitive powders. Preferably, it is selected from metal powders, metal alloy powders, metal carbonyl powders, ceramic powders, and mixtures thereof, with metallic powders being particularly preferred.
Als Metalle, die in Pulverform vorliegen können, seien beispielsweise Aluminium, Eisen, insbesondere Carbonyleisenpulver, Chrom, Cobalt, Kupfer, Nickel, Silizium, Titan, Wolfram und Vertreter der Seltenen Erden wie Nd, Sm und Y genannt. Als pulverförmi- ge Metalllegierungen sind beispielsweise hoch oder niedrig legierte Stähle sowie Metalllegierungen auf der Basis von Aluminium, Eisen, Titan, Kupfer, Nickel, Wolfram oder Kobalt zu nennen. Dabei können sowohl Pulver von bereits fertigen Legierungen als auch Pulvermischungen der einzelnen Legierungsbestandteile eingesetzt werden. Die Metallpulver, Metalllegierungspulver und Metallcarbonylpulver können auch im Gemisch eingesetzt werden. Geeignete anorganische Pulver sind ferner oxidische Keramikpulver wie Al203, Zr02, Y2O3 aber auch nicht-oxidische Keramikpulver wie SiC, S13N4, und komplexere Oxidpulver, wie NiZnFe204, sowie anorganische Farbpigmente, wie C0AI2O4. Unter den reaktiven und oxidationsempfindlichen Pulvern sind insbesondere solche von Kupfer, Kobalt, Ti, W, V, Mg, Mn, Nd, Sm, Y und deren Legierungen, Keramikpulver wie AIN und Si3N4 und Legierungen von Aluminium und/oder Titan, sogenannte Superlegierungen wie IN713C, MAR 246, GMR 235 und I N 100 und die aus der Magnettechnik bekannten Legierungen mit den Hauptbestandteilen Nd-Fe-B und Sm-Co zu nennen. Examples of metals which may be present in powder form are aluminum, iron, in particular carbonyl iron powder, chromium, cobalt, copper, nickel, silicon, titanium, tungsten and rare earths such as Nd, Sm and Y. Examples of powdery metal alloys are high or low alloy steels and metal alloys based on aluminum, iron, titanium, copper, nickel, tungsten or cobalt. Both powder of finished alloys and powder mixtures of the individual alloy components can be used. The metal powders, metal alloy powders and metal carbonyl powders may also be used in admixture. Suitable inorganic powders are also oxide ceramic powders such as Al 2 O 3 , Zr0 2 , Y 2 O 3 but also non-oxide ceramic powders such as SiC, S13N4, and more complex oxide powders such as NiZnFe 2 0 4 , and inorganic color pigments such as C0AI2O4. Among the reactive and oxidation-sensitive powders are in particular those of copper, cobalt, Ti, W, V, Mg, Mn, Nd, Sm, Y and their alloys, ceramic powders such as AIN and Si 3 N 4 and alloys of aluminum and / or titanium, so-called superalloys such as IN713C, MAR 246, GMR 235 and IN 100 and to name the alloys known from the magnet technology with the main components Nd-Fe-B and Sm-Co.
Die Korngrößen der Pulver betragen vorzugsweise 0,1 bis 50 μηη, besonders bevorzugt 0,3 bis 30 μηη. Die Metallpulver, Metalllegierungspulver, Metallcarbonylpulver, keramische Pulver können auch im Gemisch eingesetzt werden. The particle sizes of the powders are preferably from 0.1 to 50 μm, more preferably from 0.3 to 30 μm. The metal powders, metal alloy powders, metal carbonyl powders, ceramic powders can also be used in a mixture.
Das als Komponente C) gegebenenfalls vorliegende Dispergierhilfsmittel kann aus bekannten Dispergierhilfsmitteln ausgewählt sein. Beispiele sind oligomeres Polyethy- lenoxid mit einem mittleren Molekulargewicht von 200 bis 600, Stearinsäure, Stearin- säureamid, Hydroxystearin säure, Fettalkohole, Fettalkoholsulfonate und Blockcopoly- mere von Ethylen- und Propylenoxid, sowie Polyisobutylen. Besonders bevorzugt wird das Dispergierhilfsmittel in einer Menge von 1 bis 5 Vol-%, bezogen auf die Komponenten A), B) und C), eingesetzt. The optionally present as component C) dispersing agent may be selected from known dispersing aids. Examples are oligomeric polyethylene oxide having an average molecular weight of 200 to 600, stearic acid, stearic acid amide, hydroxystearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene oxide and propylene oxide, and also polyisobutylene. Particularly preferred the dispersing aid in an amount of 1 to 5% by volume, based on the components A), B) and C) is used.
Zusätzlich können die thermoplastischen Massen auch übliche Zusatzstoffe und Verarbeitungshilfsmittel, die die rheologischen Eigenschaften der Mischungen bei der Formgebung günstig beeinflussen, enthalten. In addition, the thermoplastic compositions may also contain conventional additives and processing aids which favorably influence the rheological properties of the mixtures during shaping.
Die Herstellung der bei dem erfindungsgemäßen Verfahren eingesetzten thermoplastischen Masse kann auf übliche Weise in einem Kneter oder Extruder bei Temperaturen von 150 bis 200°C erfolgen (vgl. EP-A-0413231 ). Nach Abkühlen der Masse kann diese granuliert werden. Gemäß einer bevorzugten Ausführungsform kann die Herstellung der zu verformenden thermoplastischen Masse durch Aufschmelzen der Komponenten B) und Einmischen der Komponenten A) und gegebenenfalls C) erfolgen. Beispielsweise kann die Komponente B) in einem Zweischneckenextruder bei Temperaturen von vorzugsweise 150 bis 220°C, insbesondere 170 bis 200°C aufgeschmolzen werden. Die Komponente A) wird anschließend bei Temperaturen im gleichen Bereich in der erforderlichen Menge zu dem Schmelzestrom der Komponente B) dosiert. Vorteilhafterweise enthält die Komponente A) auf der Oberfläche das oder die Dispergierhilfsmittel C). Die Herstellung der thermoplastischen Massen kann aber auch durch Aufschmelzen der Komponenten B) und C) in Gegenwart der Komponente A) bei Temperaturen von 150 bis 220°C erfolgen. The preparation of the thermoplastic composition used in the process according to the invention can be carried out in a conventional manner in a kneader or extruder at temperatures of 150 to 200 ° C (see, EP-A-0413231). After cooling the mass, it can be granulated. According to a preferred embodiment, the preparation of the thermoplastic mass to be formed by melting the components B) and mixing the components A) and optionally C) take place. For example, component B) can be melted in a twin-screw extruder at temperatures of preferably 150 to 220 ° C., in particular 170 to 200 ° C. Component A) is then metered at temperatures in the same range in the required amount to the melt stream of component B). Advantageously, component A) contains on the surface the dispersant (s) C). However, the preparation of the thermoplastic compositions can also be carried out by melting the components B) and C) in the presence of component A) at temperatures of 150 to 220 ° C.
Für die Formgebung der thermoplastischen Formmasse durch Spritzguss können die üblichen Schnecken- und Kolbenspritzgussmaschinen eingesetzt werden. Die Formgebung erfolgt im Allgemeinen bei Temperaturen von 175 bis 200°C und Drücken von 3.000 bis 20.000 kPa in Formen, die eine Temperatur von 60 bis 140°C aufweisen. For the molding of the thermoplastic molding composition by injection molding, the usual screw and piston injection molding machines can be used. The molding is generally carried out at temperatures of 175 to 200 ° C and pressures of 3,000 to 20,000 kPa in molds having a temperature of 60 to 140 ° C.
Die entformten Grünlinge werden dann nach dem erfindungsgemäßen Verfahren gemäß Schritt a) mit einem Lösungsmittel behandelt. Dabei richtet sich die Wahl des Lösungsmittels nach der chemischen Natur der Bindemittelkomponente B2). Es werden im Folgenden nur beispielhaft Lösemittel für einige Bindemittelkomponenten B2) angegeben; die Lösemittel für andere Bindemittelkomponenten B2) sollten dem Fachmann bekannt sein. Auch Mischungen geeigneter Lösemittel können verwendet werden. The demolded green compacts are then treated by the process according to the invention according to step a) with a solvent. The choice of solvent depends on the chemical nature of the binder component B 2 ). Solvents for some binder components B 2 ) are given below by way of example only; the solvents for other binder components B 2 ) should be known to the person skilled in the art. Mixtures of suitable solvents can also be used.
Polyolefine werden vorzugsweise in apolaren Lösemitteln wie beispielsweise Pentan, Hexan, Cyclohexan, Octan oder Waschbenzin gelöst, ferner auch in aromatischen Lösemitteln wie Benzol. Polyolefins are preferably dissolved in apolar solvents such as pentane, hexane, cyclohexane, octane or benzene, and also in aromatic solvents such as benzene.
Polyacrylate (z.B PMMA) und Polyamide sind im Allgemeinen in den folgenden Lösemitteln löslich: Ethern wie Diethylether oder Tetra hydrofu ran, Ketonen wie Methylethylketon oder Aceton, Estern wie Butyrolacton und CrC4-Alkoholen wie Ethanol. Polyacrylates (eg PMMA) and polyamides are generally soluble in the following solvents: ethers such as diethyl ether or tetrahydrofuran, ketones such as Methyl ethyl ketone or acetone, esters such as butyrolactone and CrC 4 alcohols such as ethanol.
Polyether wie Polytetrahydrofuran, Poly-1 ,3-Dioxepan, Poly-1 ,3-Dioxolan, Polyethylen- oxid oder Polypropylenoxid können beispielsweise gelöst werden in Lösemitteln wie Tetrahydrofuran oder Aceton und in CrC6- Alkoholen wie Ethanol und Isopropanol; Polyethylenoxid könnte darüber hinaus in Wasser gelöst werden. Polyethers such as polytetrahydrofuran, poly-1, 3-dioxepane, poly-1,3-dioxolane, polyethylene oxide or polypropylene oxide can be dissolved, for example, in solvents such as tetrahydrofuran or acetone and in CrC 6 -alcohols such as ethanol and isopropanol; Polyethylene oxide could also be dissolved in water.
Falls Wasser als Lösemittel für die Bindemittelkomponente B2) verwendet werden kann, wird es besonders bevorzugt, da Wasser wegen der Nichtbrennbarkeit eine noch viel einfachere und umweltverträglichere Handhabung ermöglicht. If water can be used as the solvent for the binder component B 2 ), it is particularly preferred because water provides much easier and more environmentally friendly handling because of its incombustibility.
Für reaktive und/oder oxidationsempfindliche Sinterpulver A wird bei Verwendung von Wasser als Lösemittel diesem vorzugsweise ein üblicher Korrosionsinhibitor, beispielsweise modifizierte Phosphonate wie Amino-tris(methylenphosphonsäure), Hydroxyethylamino-di(methylenphosphonsäure) oder Phosphonobutan-1 ,2,4-tricarbon- säure, erhältlich z.B. von der Fa. Zschimmer & Schwarz, hinzugefügt. For reactive and / or oxidation-sensitive sintered powder A, when using water as the solvent, this is preferably a conventional corrosion inhibitor, for example modified phosphonates such as amino-tris (methylenephosphonic acid), hydroxyethylamino-di (methylenephosphonic acid) or phosphonobutane-1,2,4-tricarboxylic acid , available eg from Zschimmer & Schwarz.
Äußerst reaktive Sinterpulver A werden vorzugsweise mit aprotischen organischen Lösemitteln, wie Ether, Ester, Amide oder Ketone, z.B. Tetrahydrofuran, Diethylether, Butyrolacton, Dimethylformamid, Methylethylketon oder vorzugsweise Aceton, behandelt. Extremely reactive sintering powders A are preferably mixed with aprotic organic solvents such as ethers, esters, amides or ketones, e.g. Tetrahydrofuran, diethyl ether, butyrolactone, dimethylformamide, methyl ethyl ketone or preferably acetone.
Die Behandlung des Formteils mit einem Lösungsmittel gemäß Schritt a) des erfindungsgemäßen Verfahrens kann in handelsüblichen Anlagen mit geschlossenem Lösemittelkreislauf für die Reinigung von bearbeiteten, mit Schmiermittel verunreinigten Werkstücken durchgeführt werden, beispielhaft beschrieben in DE-A 4337129. Vorzugsweise um den Lösungsprozess zu beschleunigen erfolgt Schritt a) bei erhöhter Temperatur, d,h. einer Temperatur oberhalb Raumtemperatur bis zur Siedetemperatur des Lösemittels, insbesondere bei einer Temperatur von 40 bis 120°C. Besonders bevorzugt erfolgt Schritt a) bei Siedetemperatur des Lösungsmittels unter Rückfluss. The treatment of the molding with a solvent according to step a) of the process according to the invention can be carried out in commercially available systems with closed solvent circuit for the purification of machined, contaminated with lubricants workpieces, described by way of example in DE-A 4337129. Preferably in order to accelerate the dissolution process is carried out step a) at elevated temperature, d, h. a temperature above room temperature to the boiling point of the solvent, in particular at a temperature of 40 to 120 ° C. Particularly preferably, step a) takes place at the boiling point of the solvent under reflux.
Die als Bindemittelkomponente B-ι) bzw. Zweitbinder für Schritt a) des erfindungsgemäßen Verfahrens eingesetzten Polyoxymethylenhomo-und copolymere (POM) sind bis 120°C gegen praktisch alle gängigen Lösemittel resistent und garantieren auch bei höheren Temperaturen bis 120°C immer noch eine sehr hohe Festigkeit. The polyoxymethylene homopolymers and copolymers (POM) used as binder component B -I) or secondary binder for step a) of the process according to the invention are resistant to virtually all common solvents up to 120 ° C. and still guarantee a very high temperature of up to 120 ° C. high strength.
Es ist von Vorteil, wenn in Schritt a) des erfindungsgemäßen Verfahrens bei der Extraktion ein großer Konzentrationsunterschied zwischen der löslichen Binderkompo- nente B2) im Formteil und dem Lösungsmittel besteht. Letzteres kann man dadurch erreichen, dass man das beladene Lösungsmittel häufig durch frisches Lösungsmittel austauscht und/oder das gelöste Extrakt schnell beispielsweise durch eine Umwälzung von der Oberfläche des Extraktionsgutes weggeführt wird. It is advantageous if, during extraction, a large difference in concentration between the soluble binder component in step a) of the process according to the invention is obtained. component B2) in the molding and the solvent. The latter can be achieved by replacing the loaded solvent often with fresh solvent and / or the dissolved extract is quickly carried away, for example by a circulation of the surface of the extraction material.
Die Behandlung mit einem Lösungsmittel gemäß Schritt a) des erfindungsgemäßen Verfahrens wird vorzugsweise so lange durchgeführt, bis die Bindemittelkomponente B2) mindestens zu 75 %, vorzugsweise zu 85 %, besonders bevorzugt zu 90 %, aus dem Formteil entfernt ist. Dieser Zustand wird im Allgemeinen nach 4 bis 30 Stunden erreicht. Die erforderliche Behandlungsdauer hängt von der Behandlungstemperatur, von der Güte des Lösungsmittels für die Bindemittelkomponente B2, vom Molekulargewicht der Komponente B2, wie auch von der Größe des Formkörpers ab. The treatment with a solvent according to step a) of the process according to the invention is preferably carried out until the binder component B 2 ) is at least 75%, preferably 85%, particularly preferably 90%, removed from the molded part. This condition is generally reached after 4 to 30 hours. The required duration of treatment depends on the treatment temperature, on the quality of the solvent for the binder component B 2, the molecular weight of the component B 2, as well as the size of the molding.
Nach der Extraktion müssen die Grünteile, welche nun porös und mit Lösungsmittel gesättigt sind, noch gemäß Schritt b) des erfindungsgemäßen Verfahrens getrocknet werden. Die Trocknung geschieht auf herkömmliche Weise, beispielsweise mit Hilfe eines Vakuumtrockenofens oder eines Wärmeschranks. Die Trocknungstemperatur orientiert sich nach der Siedetemperatur des Lösungsmittels, ist aber etwas niedriger zu wählen, um das Risiko eines schlagartigen oder zu schnellen Trocknungsvorgangs mit möglichen negativen Folgen für die Qualität des Grünteils zu vermeiden. Üblicherweise ist die Trocknung in 0,5 bis 8 h abgeschlossen. After extraction, the green parts, which are now porous and saturated with solvent, have to be dried according to step b) of the process according to the invention. The drying takes place in a conventional manner, for example with the aid of a vacuum drying oven or a heating cabinet. The drying temperature is based on the boiling point of the solvent, but should be chosen slightly lower, in order to avoid the risk of a sudden or too fast drying process with possible negative consequences for the quality of the green part. Usually, the drying is completed in 0.5 to 8 h.
Die Säurebehandlung in Schritt c) des erfindungsgemäßen Verfahrens erfolgt vorzugsweise bei Temperaturen im Bereich von 80 bis 180°C über einen Zeitraum von bevorzugt 0,1 bis 24 Stunden, besonders bevorzugt 0,5 bis 12 Stunden. Die erforderliche Behandlungsdauer hängt von der Behandlungstemperatur, der Konzentration und des Typs der Säure in der Behandlungsatmosphäre wie auch von der Größe des Formkörpers ab. Unter den üblichen Bedingungen resultiert im Allgemeinen eine Säurekonzentration von ca. 4 bis 5 Vol-% in der Atmosphäre (i.a. Stickstoff). Um die kataly- tische Entbinderung besonders schonend durchzuführen, kann es vorteilhaft sein, die Säuremenge zu reduzieren, resultierend in einem Gehalt von ca. 0,1 bis 1 Vol-%. The acid treatment in step c) of the process according to the invention is preferably carried out at temperatures in the range from 80 to 180 ° C. over a period of preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. The required treatment time depends on the treatment temperature, the concentration and the type of acid in the treatment atmosphere as well as on the size of the molding. Under the usual conditions, generally results in an acid concentration of about 4 to 5% by volume in the atmosphere (i.a., Nitrogen). In order to carry out the catalyzed debindering particularly gently, it may be advantageous to reduce the amount of acid, resulting in a content of about 0.1 to 1% by volume.
Geeignete Säuren für die Behandlung in Stufe c) des erfindungsgemäßen Verfahrens sind beispielsweise anorganische, bei Raumtemperatur bereits gasförmige, zumindest aber bei der Behandlungstemperatur verdampfbare Säuren. Beispiele sind Halogenwasserstoffsäuren und Salpetersäure. Geeignete organische Säuren sind Ameisensäure, Essigsäure, oder Trifluoressigsäure. Weiterhin als Säure geeignet sind BF3 oder dessen Addukte an organische Ether. Wird für die vorgenannten Säuren ein übliches Trägergas (Inertgas z.B. Stickstoff) verwendet, so wird dies im Allgemeinen vorher durch die Säure geleitet und mit dieser beladen. Das so beladene Trägergas wird dann auf die Behandlungstemperatur gebracht, die zweckmäßigerweise höher als die Beladungstemperatur ist, um eine Kondensation der Säure zu vermeiden. Bevorzugt wird die Säure über eine Dosiereinrichtung dem Trägergas zugemischt und die Mischung soweit erwärmt, dass die Säure nicht mehr kondensieren kann. Suitable acids for the treatment in step c) of the process according to the invention are, for example, inorganic gases which are already gaseous at room temperature but at least evaporable at the treatment temperature. Examples are hydrohalic acids and nitric acid. Suitable organic acids are formic acid, acetic acid, or trifluoroacetic acid. Also suitable as acid are BF 3 or its adducts of organic ethers. If a customary carrier gas (inert gas, for example nitrogen) is used for the abovementioned acids, this is generally conducted beforehand through the acid and charged with it. The thus loaded carrier gas is then brought to the treatment temperature, which is suitably higher than the loading temperature in order to avoid condensation of the acid. Preferably, the acid is admixed to the carrier gas via a metering device and the mixture is heated to such an extent that the acid can no longer condense.
Weiterhin geeignete und bevorzugte Säuren für die Behandlung in Stufe c) des erfindungsgemäßen Verfahrens, insbesondere für reaktive und/oder oxidationsempfindliche sinterbare Pulver A, sind solche Säuren, die bei Raumtemperatur fest sind und bei höheren Temperaturen sublimieren oder schmelzen und verdampfen, darunter vorzugsweise solche mit einem Sublimations- oder Schmelzpunkt zwischen 80 und 200°C. Besonders bevorzugt sind Oxalsäure, vorzugsweise wasserfreie Oxalsäure, oder Oxalsäuredihydrat. Es wird vorzugsweise eine Lösung von wasserfreier Oxalsäure in Ameisensäure, Essigsäure oder deren Gemischen verwendet. Further suitable and preferred acids for the treatment in step c) of the process according to the invention, in particular for reactive and / or oxidation-sensitive sinterable powders A, are those acids which are solid at room temperature and sublimate or melt and evaporate at higher temperatures, including preferably those with a sublimation or melting point between 80 and 200 ° C. Particularly preferred are oxalic acid, preferably anhydrous oxalic acid, or oxalic acid dihydrate. It is preferably used a solution of anhydrous oxalic acid in formic acid, acetic acid or mixtures thereof.
Weiterhin eignet sich Glyoxalsäure. Außerdem kommen Benzolsulfonsäure, Naphthalinsulfonsäuren und Maleinsäure oder deren Mischungen in Betracht. Diese können sowohl für sich allein oder auch zusammen mit einem Trägergas wie Luft, Stickstoff oder einem Edelgas bei der Entbinderung eingesetzt werden. Furthermore, glyoxylic acid is suitable. Also suitable are benzenesulfonic acid, naphthalenesulfonic acids and maleic acid or mixtures thereof. These can be used alone or together with a carrier gas such as air, nitrogen or a noble gas in the debindering.
Bei der zuletzt genannten Ausführungsform gelangen die verwendeten Säuren im allgemeinen bei der Entbinderungstemperatur zunächst in die Gasphase, wirken von hier aus auf das verbliebene Bindemittel ein und desublimieren oder erstarren nach Abkühlung an den Wandungen der Entbinderungsvorrichtung. In einem anschließenden Entbinderungsvorgang gelangen sie wieder in die Gasphase, d.h. die Säure verlässt die Vorrichtung praktisch nicht. In the latter embodiment, the acids used generally reach the debinding temperature initially in the gas phase, act from here on the remaining binder and desublimate or solidify after cooling on the walls of the binder removal device. In a subsequent debinding process, they return to the gas phase, i. the acid practically does not leave the device.
Zur Erleichterung der Dosierung kann es zweckmäßig sein, die oben genannten Säuren, die bei Raumtemperatur fest sind und bei höheren Temperaturen sublimieren oder schmelzen und verdampfen, als Lösung in polaren Lösungsmitteln, vorzugsweise mit Siedepunkten unter 200°C, einzusetzen. Als solche kommen vor allem Aceton, Dioxan, Ethanol und Acetonitril in Betracht, insbesondere aber organische Säuren wie Ameisensäure und/oder Essigsäure. To facilitate the dosage, it may be appropriate to use the abovementioned acids, which are solid at room temperature and sublimate or melt and evaporate at higher temperatures, as a solution in polar solvents, preferably having boiling points below 200 ° C to use. As such, especially acetone, dioxane, ethanol and acetonitrile are suitable, but especially organic acids such as formic acid and / or acetic acid.
Die Säurebehandlung in Schritt c) des erfindungsgemäßen Verfahrens erfolgt bei der Variante mit Säuren, die bei Raumtemperatur fest sind und bei höheren Temperaturen sublimieren oder schmelzen und verdampfen, vorzugsweise bei Temperaturen im Bereich von 100 bis 160°C. Die Säurebehandlung in Schritt c) des erfindungsgemäßen Verfahrens wird vorzugsweise solange durchgeführt, bis der Restbinderanteil in dem Formteil weniger als 0,5 Gew.-%, bevorzugt weniger als 0,3 Gew.-%, ganz besonders bevorzugt weniger als 0,2 Gew.-% beträgt. The acid treatment in step c) of the process according to the invention is carried out in the variant with acids which are solid at room temperature and sublimate at higher temperatures or melt and evaporate, preferably at temperatures in the range of 100 to 160 ° C. The acid treatment in step c) of the process according to the invention is preferably carried out until the residual binder content in the molding is less than 0.5% by weight, preferably less than 0.3% by weight, very particularly preferably less than 0.2% by weight .-% is.
Die Säurebehandlung in Schritt c) des erfindungsgemäßen Verfahrens wird oftmals auch als katalytische Entbinderung bezeichnet und kann ebenfalls in handelsüblichen Anlagen ausgeführt werden, die nach den Grundlagen wie in EP-A 0 413 231 beschrieben funktionieren. The acid treatment in step c) of the process according to the invention is often also referred to as catalytic debinding and can likewise be carried out in commercially available plants which function according to the principles described in EP-A 0 413 231.
Das so nach dem erfindungsgemäßen Verfahren vom Bindemittel befreite Produkt kann in üblicher Weise durch Sintern in den gewünschten Formkörper, insbesondere metallischen oder keramischen Formkörper, überführt werden. Das Sintern kann gegebenenfalls mit einer beschleunigten Aufheizrate von 5 bis 10°C / min im Temperaturbereich von 200 bis 600°C. erfolgen. The product thus freed from the binder by the process according to the invention can be converted in a customary manner by sintering into the desired shaped body, in particular metallic or ceramic shaped body. The sintering may optionally be carried out at an accelerated heating rate of 5 to 10 ° C / min in the temperature range of 200 to 600 ° C. respectively.
Durch das erfindungsgemäße Verfahren können auch Grünteile von reaktiven metallischen oder keramischen Pulvern nahezu rückstandsfrei entbindert werden, wodurch die durch das erfindungsgemäße Verfahren erhaltenen Formkörper bessere Werkstoffeigenschaften aufweisen. Das erfindungsgemäße Verfahren ermöglicht darüber hinaus verkürzte Zykluszeiten des Sinterofens und reduziert dessen Wartungsbedarf. By the method according to the invention also green parts of reactive metallic or ceramic powders can be debound almost residue-free, whereby the molded body obtained by the method according to the invention have better material properties. The inventive method also allows shorter cycle times of the sintering furnace and reduces its maintenance requirements.
Die Erfindung wird nachstehend anhand von Beispielen näher erläutert: The invention is explained in more detail below with reference to examples:
In den nachfolgenden Beispielen wurden Versuchsmassen in einem Konusmischer homogenisiert und in einem auf 190°C beheizten Laborextruder homogenisiert und granuliert. In the following examples, test compounds were homogenized in a cone mixer and homogenized and granulated in a laboratory extruder heated to 190 ° C.
Beispiel 1 example 1
Die Formmasse 1 wies die folgende Zusammensetzung auf:  The molding compound 1 had the following composition:
56,75 Vol-% einer Mischung aus 98 Gew-% Carbonyleisenpulver und 2 Gew-% 56.75% by volume of a mixture of 98% by weight of carbonyl iron powder and 2% by weight
Carbonylnickelpulver carbonyl nickel
43,25 Vol-% Binder, enthaltend  43.25% by volume of binder containing
+ 90 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 90 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 10 Gew-% Polyethylenoxid mit einer Molmasse 2000, endgrup- penverschlossen durch Methylierung Beispiel 2 + 10% by weight polyethylene oxide with a molecular weight of 2000, end-capped by methylation Example 2
Die Formmasse 2 wies die folgende Zusammensetzung auf:  The molding compound 2 had the following composition:
56,75 Vol-% einer Mischung aus 98 Gew-% Carbonyleisenpulver und 2 Gew-% 56.75% by volume of a mixture of 98% by weight of carbonyl iron powder and 2% by weight
Carbonylnickelpulver carbonyl nickel
43,25 Vol-% Binder, enthaltend  43.25% by volume of binder containing
+ 80 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 80 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ ..20 Gew-% Polyethylenoxid mit einer Molmasse 2000, endgrup- penverschlossen durch Methylierung  + ..20% by weight of polyethylene oxide with a molecular weight of 2000, end-capped by methylation
Beispiel 3 Example 3
Die Formmasse 3 wies die folgende Zusammensetzung auf:  The molding compound 3 had the following composition:
56,75 Vol-% einer Mischung aus 98 Gew-% Carbonyleisenpulver und 2 Gew-% 56.75% by volume of a mixture of 98% by weight of carbonyl iron powder and 2% by weight
Carbonylnickelpulver carbonyl nickel
43,25 Vol-% Binder, enthaltend  43.25% by volume of binder containing
+ 50 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 50 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 50 Gew-% Polyethylenoxid mit einer Molmasse 2000, endgrup- penverschlossen durch Methylierung  + 50% by weight polyethylene oxide with a molecular weight of 2000, end-capped by methylation
Beispiel 4 Example 4
Die Formmasse wies die folgende Zusammensetzung auf:  The molding composition had the following composition:
56,75 Vol-% einer Mischung aus 98 Gew-% Carbonyleisenpulver und 2 Gew-% 56.75% by volume of a mixture of 98% by weight of carbonyl iron powder and 2% by weight
Carbonylnickelpulver carbonyl nickel
43,25 Vol-% Binder, enthaltend  43.25% by volume of binder containing
+ 90 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 90 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 10 Gew-% Polytetrahydrofuran mit einer Molmasse 2000  + 10% by weight of polytetrahydrofuran having a molecular weight of 2000
Beispiel 5 Example 5
Die Formmasse 5 wies die folgende Zusammensetzung auf:  The molding compound 5 had the following composition:
64 Vol-% eines Metallpulvers der Zusammensetzung 17-4PH (DIN 1 .4542) mit einer mittleren Korngröße von 7 μηη  64% by volume of a metal powder of the composition 17-4PH (DIN 1 .4542) with an average particle size of 7 μm
36 Vol-% Binder, enthaltend  36 vol% binder containing
+ 80 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 80 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 20 Gew-% Polyethylenoxid mit einer Molmasse 2000, endgrup- penverschlossen durch Methylierung  + 20% by weight polyethylene oxide with a molecular weight of 2000, end-capped by methylation
Beispiel 6 Example 6
Die Formmasse 6 wies die folgende Zusammensetzung auf:  The molding compound 6 had the following composition:
47 Vol-% eines Keramikpulvers der Zusammensetzung Zr02 - 5 Gew-% Y203 mit einer mittleren Korngröße von 0,3 μηη 51 Vol-% Binder, enthaltend 47% by volume of a ceramic powder of the composition Zr0 2 - 5 wt% Y 2 0 3 with an average particle size of 0.3 μm 51 vol% binder containing
+ 80 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 80 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 20 Gew-% Poly-1 ,3-Dioxepan mit einer Molmasse 34.000 + 20% by weight of poly-1,3-dioxepane with a molecular weight of 34,000
2 Vol-% Dispergator, ein ethoxylierter Fettalkohol mit der Molmasse 500 2% by volume dispersant, an ethoxylated fatty alcohol with molecular weight 500
Spritzgießversuche an realen Bauteilen Injection molding tests on real components
Die Untersuchung der generellen Eignung der Formmassen für die Praxis wurde mit einem komplexen und schweren Bauteil (Figur 1 ) ausgeführt, ein mit zwei Bandangüssen an den Positionen 1 angespritztes Scharnier komplexer Geometrie.  The investigation of the general suitability of the molding compositions for the practice was carried out with a complex and heavy component (FIG. 1), a hinge of complex geometry injection molded with two band hinges at the positions 1.
Figur 1 oben zeigt eine Ansicht des Bauteils, Figur 1 unten zeigt eine Aufsicht des Bauteils, wobei die Position 1 den Anguss und die Position 2 die Bruchstelle durch Eigengewicht kennzeichnet. Figure 1 above shows a view of the component, Figure 1 below shows a plan view of the component, wherein the position 1 marks the sprue and the position 2 the breaking point by its own weight.
Die Länge des Bauteils betrug 100 mm, das Gewicht des erhaltenen Sinterteils betrug bei den Metallpulverbeispielen 1 bis 5 ca. 34 g; bei Beispiel 6 ca. 26 g. The length of the component was 100 mm, the weight of the obtained sintered part was about 34 g in the metal powder examples 1 to 5; in Example 6 about 26 g.
Damit ist sichergestellt, dass die Ergebnisse der Versuche auch praxisrelevant sind, denn das Eigengewicht dieses Bauteils stellt überdurchschnittlich hohe Forderungen an die Festigkeit nach der Entbinderung. This ensures that the results of the tests are also relevant to practice because the weight of this component makes above-average demands on the strength after debindering.
Untersuchung der Verarbeitung auf der Spritzqießmaschine Examination of the processing on the injection molding machine
Die Formmassen 1 bis 5 wurden im Zylinder der Spritzgießmaschine bei 190°C aufgeschmolzen, die Spritzgießform war auf 135°C temperiert. Die Keramikformmasse 6 wurde bei 175°C Zylindertemperatur verarbeitet. Generell war der benötigte Einspritzdruck ca. 1900 bar, lediglich Formmasse 3 mit einem hohen PEO-Gehalt und der niedrigeren Molmasse 2000 konnte mit 1 100 bar verarbeitet werden.  The molding compositions 1 to 5 were melted in the cylinder of the injection molding machine at 190 ° C, the injection mold was heated to 135 ° C. The ceramic molding compound 6 was processed at 175 ° C cylinder temperature. In general, the required injection pressure was about 1900 bar, only molding compound 3 with a high PEO content and the lower molecular weight 2000 could be processed with 1 100 bar.
Die Formmassen 1 bis 6 unterschieden sich in der benötigten Kühlzeit vor der Entformung. Die Formmassen mit einem höheren Anteil an Zweitbinder (20 % und höher) waren etwas weicher und benötigten eine längere Kühlzeit, um das Grünteil intakt entformen zu können. The molding compositions 1 to 6 differed in the cooling time required before demolding. The molding compositions with a higher proportion of secondary binders (20% and higher) were somewhat softer and required a longer cooling time in order to be able to demold the green part intact.
Die Verarbeitung aller Formmassen 1 bis 6 war ohne besondere Probleme möglich. Untersuchung des Entbinderns und des Sinterns The processing of all molding materials 1 to 6 was possible without any special problems. Examination of debinding and sintering
Die aus den Formmassen 1 bis 6 hergestellten Grünteile wurden in einem Lösemittel vorbehandelt, danach katalytisch entbindert und gesintert. Für die Lösemittelentbinderung wurden die Grünteile in einem Dreihalskolben mit einem siedenden Lösemittel unter Rückfluss und Rühren behandelt. Grünteile der Beispiele 1 bis 4 wurden nach 7 h, 14 h, 21 h und 28 h Lagerung im Lösemittel entnommen, getrocknet und gewogen. Die Grünteile aus Beispiel 5a und 6 wurden nur am Ende der Lagerung (28 h) zurückgewogen. The green parts produced from the molding compositions 1 to 6 were pretreated in a solvent, then subjected to catalytic debinding and sintering. For solvent debinding, the green parts were refluxed in a three-necked flask with a boiling solvent and stirred. Green parts of Examples 1 to 4 were removed after 7 h, 14 h, 21 h and 28 h storage in the solvent, dried and weighed. The green parts of Examples 5a and 6 were reweighed only at the end of storage (28 hours).
Tabelle 1 zeigt die Ergebnisse bezüglich Gewichtsverlust als Prozent der Theorie für die Lösemittel-Primärentbinderung mit Aceton: Table 1 shows the results in terms of weight loss as a percent of theory for the solvent primary debinding with acetone:
Tabelle 1 Table 1
Figure imgf000017_0001
Figure imgf000017_0001
Man erkennt, dass bereits bei einem Bindemittelgehalt von 20 Gew.-% der Komponente B2) in der Formmasse die maximale Entbinderungsgeschwindigkeit im siedenden Lösemittel erreicht wird; Beispiel 3 mit dem höchsten PEO-Gehalt in der Formmasse ist nicht mehr wesentlich schneller hinsichtlich des Lösungsvorgangs. Selbst bei 10 Gew.- % der Komponente B2) in der Formmasse (Beispiel 1 ) ist die Entfernung noch erstaunlich zügig. It can be seen that even with a binder content of 20% by weight of component B 2 ) in the molding composition, the maximum debinding rate in the boiling solvent is achieved; Example 3 with the highest PEO content in the molding composition is no longer significantly faster with respect to the solution process. Even at 10% by weight of component B 2 ) in the molding composition (Example 1), the removal is still surprisingly rapid.
Bei der Formmasse von Beispiel 6 wurde der prozentuale Gewichtsverlust auf die Gesamtmenge Poly-1 ,3-Dioxepan plus Dispergator bezogen. For the molding composition of Example 6, the percent weight loss was based on the total amount of poly-1,3-dioxepane plus dispersant.
Weitere Grünteile aus der Formmasse 5 wurden gemäß Beispiel 5b in Wasser als Lösemittel entbindert (siehe Tabelle 2): Further green parts of the molding compound 5 were debind in water as solvent according to Example 5b (see Table 2):
Tabelle 2 zeigt, dass die Entfernung des im Formteil enthaltenenen PEO-Binderanteils auch in siedendem Wasser gelingt, wenn auch langsamer als in Aceton. Tabelle 2 Table 2 shows that the removal of the PEO binder fraction contained in the molded part is also successful in boiling water, albeit at a slower rate than in acetone. Table 2
Figure imgf000018_0001
Figure imgf000018_0001
Die nach der Primärentbinderung mit einem Lösemittel erfolgende katalytische Säureentbinderung wurde mit den Bauteilen der Beispiele 1 bis 6 in einem 50-L- Laborofen bei 1 10 °C ausgeführt. Es wurde zum Inertisieren mit 500 L/h Stickstoff gespült, nach 1 h wurden in den weiterhin mit 500 L/h Stickstoff gespülten Ofen 30 ml/h HN03 hineindosiert und verdampft. Nach 6 h Entbinderzeit war von allen Bauteilen der Polyacetal-Anteil zu mindestens 98 % entfernt. Catalytic acid debinding carried out after solvent debinding was carried out with the components of Examples 1 to 6 in a 50 L laboratory oven at 110 ° C. It was purged for inerting with 500 L / h of nitrogen, after 1 h 30 ml / h HN0 3 were dosed into it and further purged with 500 l / h of nitrogen oven and evaporated. After 6 h debindering time of all components of the polyacetal portion was at least 98% removed.
Die Pulverformteile der Beispiele 5a und 5b waren nicht ganz perfekt, der Hebel rechts (Position 2 in Figur 1 ) auf der Ansicht der Figur war abgebrochen. Durch Reduzierung der Säuredosierung auf 15 ml/h bei 8 h Säurebehandlungszeit zur langsameren, noch schonenderen Entbinderung wurden intakte, vollständig entbinderte Formteile erhalten. The powder moldings of Examples 5a and 5b were not quite perfect, the lever on the right (position 2 in Figure 1) on the view of the figure was broken off. By reducing the acid dosage to 15 ml / h at 8 h acid treatment time for slower, more gentle debindering intact, completely unbound moldings were obtained.
Die nach der zweistufigen Entbinderung erhaltenen Pulverformteile der Beispiele 1 bis 4 wurden in 30-L-Sinterofen mit Molybdänverkleidung und Molybdänsinterelementen unter Stickstoff gesintert. The powder molded articles of Examples 1 to 4 obtained after the two-stage debindering were sintered in 30-L sintered molybdenum-clad molybdenum sintered sintered element under nitrogen.
Die Sinterkurve war wie folgt: The sintering curve was as follows:
Raumtemperatur bis 600°C mit 3°C / Min  Room temperature up to 600 ° C at 3 ° C / min
Haltezeit bei 600°C: 1 h  Holding time at 600 ° C: 1 h
600°C bis 1280°C mit 5°C / Min.  600 ° C to 1280 ° C at 5 ° C / min.
Haltezeit bei 1280°C: 1 h  Holding time at 1280 ° C: 1 h
Abkühlen mit 5°C / Min bis 1000°C  Cool at 5 ° C / min to 1000 ° C
Ofen aus, natürliche Abkühlung.  Oven off, natural refrigeration.
Mit diesem Standard-Sinterprogramm für Braunteile mit Restbinder war es für alle Formmassen gemäß den Beispielen 1 bis 4 möglich, eine gute Sinterdichte von zumindest 7,59 g/cm3 zu erreichen. With this standard sintering program for brown parts with residual binder, it was possible for all molding compositions according to Examples 1 to 4 to achieve a good sintering density of at least 7.59 g / cm 3 .
Danach wurden Sinterversuche mit den höheren Aufheizgeschwindigkeiten 5 und 10°C / min und ohne Haltestufe bei 600°C ausgeführt. Auch unter diesen extremen Bedingungen war es möglich aus den Braunteilen der Beispiele 1 bis 4 einwandfreie Sinter- teile mit Sinterdichten von zumindest 7,59 g/cm3 aus dem restbinderfreien Pulverformteil zu erhalten. Thereafter, sintering tests were carried out with the higher heating rates 5 and 10 ° C / min and without holding step at 600 ° C. Even under these extreme conditions, it was possible to obtain flawless sintered parts from the brown parts of Examples 1 to 4. To obtain parts with sintering densities of at least 7.59 g / cm 3 from the residual binder-free powder molding.
Die nach der zweistufigen, verlangsamten Entbinderung erhaltenen Pulverformteile aus der Formmasse 5 gemäß den Beispielen 5a und 5b (Beispiel 5a Aceton, Beispiel 5b Wasser) wurden in einem 30-L-Sinterofen mit Molybdänverkleidung und Molybdänsinterelementen unter Wasserstoff gesintert. Die Sinterkurve war wie folgt: The powdered articles of the molding compound 5 according to Examples 5a and 5b (Example 5a acetone, Example 5b water) obtained after the two-stage, slowed debindering were sintered under hydrogen in a 30 L sintered molybdenum cladding molybdenum sintered sintered element. The sintering curve was as follows:
Raumtemperatur bis 1280°C mit 5°C / Min  Room temperature up to 1280 ° C at 5 ° C / min
Haltezeit bei 1380°C: 1 h  Holding time at 1380 ° C: 1 h
Abkühlen mit 5°C / Min bis 1000°C  Cool at 5 ° C / min to 1000 ° C
Ofen aus, natürliche Abkühlung  Oven off, natural refrigeration
Auch bei den Formteilen gemäß Beispiel 5 konnte problemlos mit dem schnelleren Sinterprogramm gearbeitet werden. Die erhaltenen Sinterteile erreichten eine gute Sinterdichte von 7,68 g/cm3. Even with the moldings according to Example 5 could be easily worked with the faster sintering program. The resulting sintered parts achieved a good sintering density of 7.68 g / cm 3 .
Die nach der zweistufigen Entbinderung erhaltenen Pulverformteile des Beispiels 6 wurden in einem handelsüblichen Keramiksinterofen in Luft gesintert. Die Sinterkurve war wie folgt und ebenfalls ohne Haltestufen: The powder molded articles of Example 6 obtained after the two-stage debindering were sintered in air in a commercial ceramic sintering furnace. The sintering curve was as follows and also without holding steps:
Raumtemperatur bis 1500°C mit 5°C / Min  Room temperature up to 1500 ° C at 5 ° C / min
Haltezeit bei 1500°C: 1 h  Holding time at 1500 ° C: 1 h
Abkühlen mit 5°C / Min bis 1000°C  Cool at 5 ° C / min to 1000 ° C
Ofen aus, natürliche Abkühlung  Oven off, natural refrigeration
Die erhaltenen Sinterteile waren völlig intakt, fehlerfrei und wiesen eine gute Sinterdichte von 6,05 g/cm3 auf. The obtained sintered parts were completely intact, free of defects and had a good sintering density of 6.05 g / cm 3.
Die Beispiele 1 bis 6 zeigen, dass es möglich ist, intakte Sinterteile ohne das Vorhandensein eines Restbinders herzustellen. Durch den nun möglichen Verzicht auf die sonst üblichen, langsamen Ausbrennprogramme ist ein wesentlich kürzerer Sinterzyklus zu erreichen. Examples 1 to 6 show that it is possible to produce intact sintered parts without the presence of a residual binder. Due to the now possible abandonment of the usual, slow Ausbrennprogramme a much shorter sintering cycle can be achieved.
In den folgenden Beispielen 7 und 8 wird eine insbesondere für reaktive Pulver geeignete Verfahrensvariante beschrieben. In the following Examples 7 and 8, a process variant suitable in particular for reactive powders is described.
Vergleichsbeispiel 1 Comparative Example 1
Die Formmasse 7 wies die folgende Zusammensetzung auf:  The molding compound 7 had the following composition:
54 Vol-% einer Mischung aus 97 Gew-% Aluminiumpulver und 3 Gew-% Magnesiumpulver, beide mit einer mittleren Korngröße von 18 μηη  54% by volume of a mixture of 97% by weight of aluminum powder and 3% by weight of magnesium powder, both with an average particle size of 18 μm
46 Vol-% Binder, enthaltend + 87 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan 46% by volume of binder containing + 87% by weight of polyoxymethylene with 2 mole% 1,3-dioxepane
+ 13 Gew-% eines ethoxylierten Ci3-Ci5-Oxoalkohol mit + 13% by weight of an ethoxylated Ci 3 -Ci 5 -Oxoalkohol with
7 Ethylenoxid-Einheiten  7 ethylene oxide units
Aus dieser Formmasse wurden auf einer Spritzgießmaschine Zugstäbe gemäß ISO 2740 hergestellt. From this molding compound, tensile bars according to ISO 2740 were produced on an injection molding machine.
Die Zugstäbe wurden konventionell katalytisch in einem 50-l-Ofen mit 4 Vol-% HN03 in 500 l/h Stickstoff (technisch rein) bei 140 °C während 10 h entbindert. Nach der Entbinderung zeigten sich kleine, perlenähnliche Auswüchse auf der Oberfläche der entbinderten Zugstäbe, die sich vermutlich durch Reaktion des Magnesiums mit HN03 gebildet hatten. The tensile bars were conventionally catalytically debinded in a 50-liter oven with 4% by volume HN0 3 in 500 l / h of nitrogen (technically pure) at 140 ° C for 10 h. After binder removal, small, bead-like outgrowths appeared on the surface of the debonded tensile specimens, presumably due to the reaction of magnesium with HN0 3 .
Beispiel 7 Example 7
Die gleichen Zugstäbe aus der Formmasse 7 wurden 24 h in siedendem Aceton unter Rückfluss vorentbindert zum Herauslösen des ethoxylierten Fettalkohols. Nach 24 h waren 92 % des ethoxylierten Fettalkohols entfernt.  The same tension rods from the molding compound 7 were pre-binder for 24 h in boiling acetone under reflux to dissolve the ethoxylated fatty alcohol. After 24 hours, 92% of the ethoxylated fatty alcohol was removed.
Danach erfolgte eine katalytische Entbinderung unter Einsatz von 80 g wasserfreier Oxalsäure auf einer Sublimierschale bei 140 °C während 24 h. Nach dieser zweistufigen Entbinderung zeigten sich keine Auswüchse auf der Oberfläche der entbinderten Zugstäbe. This was followed by catalytic debinding using 80 g of anhydrous oxalic acid on a Sublimierschale at 140 ° C for 24 h. After this two-stage debindering, no outgrowths appeared on the surface of the debonded tensile bars.
Anschließend erfolgte das Sintern der Braunteile aus der Formmasse 7 mit folgendem Programm: Then the brown parts were sintered from the molding compound 7 with the following program:
Raumtemperatur bis 420°C mit 3°C / Min in Sauerstoff  Room temperature to 420 ° C at 3 ° C / min in oxygen
Haltezeit bei 420°C: 1 h, danach Wechsel auf Stickstoff (Taupunkt -50°C) Holding time at 420 ° C: 1 h, then change to nitrogen (dew point -50 ° C)
420 °C bis 665°C mit 3°C / Min. 420 ° C to 665 ° C at 3 ° C / min.
Haltezeit bei 665°C: 1 h  Holding time at 665 ° C: 1 h
Abkühlen mit 5°C / Min bis 400°C  Cool at 5 ° C / min to 400 ° C
Ofen aus, natürliche Abkühlung.  Oven off, natural refrigeration.
Man erhielt die folgenden Analysenergebnisse für das Sinterteil (Tabelle 3): The following analytical results were obtained for the sintered part (Table 3):
Tabelle 3 Table 3
Sinterteil Vergleichsbeispiel 1 Beispiel 7 Sintered part Comparative Example 1 Example 7
Sinterdichte 2,36 g/cm3 2,42 g/cmJ Sintered density 2.36 g / cm 3 2.42 g / cm J
Kohlenstoffgehalt 0,045 % 0,039 %  Carbon content 0.045% 0.039%
Sauerstoffgehalt 0,30 % 0,24 % Die Sinterteile des Vergleichsbeispiels 1 hatten als Folge der Auswüchse eine deutlich rauere Oberfläche als die Sinterteile gemäß Beispiel 7. Darüber hinaus weisen die gemäß Beispiel 7 erhaltenen Sinterteile im Vergleich zu den Sinterteilen aus Vergleichsbeispiel 1 einen reduzierten Kohlenstoff- und Sauerstoffgehalt sowie eine höhere Sinterdichte auf. Dadurch lassen sich aus den gemäß Beispiel 7 hergestellten Sinterteilen weniger spröde Werkstoffe herstellen, die sich leichter bearbeiten lassen. Oxygen content 0.30% 0.24% The sintered parts of Comparative Example 1 had as a result of the outgrowths a significantly rougher surface than the sintered parts according to Example 7. In addition, the sintered parts obtained in Example 7 in comparison to the sintered parts of Comparative Example 1 have a reduced carbon and oxygen content and a higher sintering density. As a result, less brittle materials can be produced from the sintered parts produced according to Example 7, which can be processed more easily.
Vergleichsbeispiel 2 Comparative Example 2
Die Formmasse 8 wies die folgende Zusammensetzung auf:  The molding compound 8 had the following composition:
64 Vol-% eines Titanpulvers Grade 2 (DIN 17862 - 3.7035) mit einer mittleren 64% by volume of a titanium powder Grade 2 (DIN 17862 - 3.7035) with a medium
Korngröße von 25 μηη Grain size of 25 μηη
36 Vol-% Binder, enthaltend  36 vol% binder containing
+ 90 Gew-% Polyoxymethylen mit 2 mol-% 1 ,3-Dioxepan  + 90 wt% polyoxymethylene with 2 mol% 1,3-dioxepane
+ 10 Gew-% Poly-1 ,3-Dioxolan mit einer Molmasse 35.000  + 10% by weight of poly-1,3-dioxolane having a molecular weight of 35,000
Aus dieser Formmasse wurden auf einer Spritzgiessmaschine Zugstäbe gemäß ISO 2740 hergestellt. From this molding compound, tensile bars according to ISO 2740 were produced on an injection molding machine.
Die Zugstäbe wurden konventionell katalytisch in einem 50-l-Ofen mit 4 Vol-% HN03 in 500 l/h Stickstoff (technisch rein) bei 140°C während 6 h entbindert. The tensile bars were conventionally catalytically debinded in a 50-liter oven with 4% by volume HN0 3 in 500 l / h of nitrogen (technically pure) at 140 ° C for 6 h.
Beispiel 8 Example 8
Die gleichen Zugstäbe aus der Formmasse 8 wurden 24 h in siedendem Aceton unter Rückfluss vorentbindert. Nach 24 h waren 84 % des Poly-1 ,3-Dioxolans entfernt. Danach wurden die Zugstäbe, wie in Beispiel 7 beschrieben, mit Oxalsäure katalytisch entbindert und mit folgendem Programm gesintert unter Argon der Qualität 5.0:  The same tension rods of the molding compound 8 were pre-bindered for 24 h in boiling acetone under reflux. After 24 hours, 84% of the poly-1,3-dioxolane was removed. Thereafter, the tensile bars, as described in Example 7, catalytically debindered with oxalic acid and sintered under the following program under argon of quality 5.0:
Raumtemperatur bis 600°C mit 3°C / Min  Room temperature up to 600 ° C at 3 ° C / min
Haltezeit bei 600°C: 1 h  Holding time at 600 ° C: 1 h
600°C bis 1200°C mit 5°C / Min  600 ° C to 1200 ° C at 5 ° C / min
Haltezeit bei 1200°C: 1 h  Holding time at 1200 ° C: 1 h
Abkühlen mit 5°C / Min bis 1000°C  Cool at 5 ° C / min to 1000 ° C
Ofen aus, natürliche Abkühlung  Oven off, natural refrigeration
Man erhielt die folgenden Analysenergebnisse für das Sinterteil (Tabelle 4): Tabelle 4: The following analytical results were obtained for the sintered part (Table 4): Table 4:
Figure imgf000022_0001
Figure imgf000022_0001
Fazit:  Conclusion:
Die erfindungsgemäß nach Beispiel 8 erhaltenen Sinterteile weisen im Vergleich zu den Sinterteilen aus Vergleichsbeispiel 2 einen reduzierten Kohlenstoff- und Sauerstoffgehalt sowie eine höhere Sinterdichte auf. Das gemäß Vergleichsbeispiel 2 erhaltene Sinterteil entspricht in den Elementen C und O nur der Norm DIN 3.7065, während das erfindungsgemäß nach Beispiel 8 erhaltene Sinterteil immer noch der viel strengeren Norm DIN 3.7035 genügt.  The sintered parts according to the invention obtained in Example 8 have in comparison to the sintered parts of Comparative Example 2 a reduced carbon and oxygen content and a higher sintering density. The sintered part obtained according to Comparative Example 2 corresponds in the elements C and O only the standard DIN 3.7065, while the sintered part obtained according to the invention according to Example 8 still meets the much stricter standard DIN 3.7035.
Dadurch lassen sich aus den gemäß Beispiel 8 hergestellten Sinterteilen weniger spröde Werkstoffe herstellen, die sich leichter bearbeiten lassen. As a result, less brittle materials can be produced from the sintered parts produced according to Example 8, which can be processed more easily.

Claims

Patentansprüche claims
Verfahren zur Herstellung eines metallischen oder keramischen Formkörpers aus einer thermoplastischen Masse, enthaltend Process for the preparation of a metallic or ceramic shaped article from a thermoplastic composition containing
A) 40 bis 65 Vol.-%, mindestens eines anorganischen sinterbaren Pulvers A A) 40 to 65% by volume, of at least one inorganic sinterable powder A
B) 35 bis 60 Vol.-% einer Mischung aus B) 35 to 60 vol .-% of a mixture of
B-i) 50 bis 95 Gew.-% eines oder mehrerer Polyoxymethylenhomo- oder -copolymerisate;  B-i) from 50 to 95% by weight of one or more polyoxymethylene homopolymers or copolymers;
B2) 5 bis 50 Gew-% eines in B-i) homogen gelösten oder mit einer mittleren Teilchengröße von weniger als 1 μηη in B-i) dispergierten Polymerisats, B 2 ) from 5 to 50% by weight of a polymer homogeneously dissolved in Bi) or dispersed in Bi) with an average particle size of less than 1 μm,
als Bindemittel, und  as a binder, and
C) 0 bis 5 Vol.-% eines Dispergierhilfsmittels, wobei die Summe der Komponenten A), B) und C) 100 Vol.-% ergibt, durch Spritzgießen oder Extrusion zu einem Grünteil, Entfernen des Bindemittels und Sintern, dadurch gekennzeichnet, dass zum Entfernen des Bindemittels a) das Formteil mit einem Lösungsmittel behandelt wird, welches die Bindemittelkomponente B2) aus dem Formteil extrahiert und in welchem die Bindemittelkomponente B-i) unlöslich ist, C) 0 to 5 vol .-% of a dispersing aid, wherein the sum of the components A), B) and C) 100 vol .-% results, by injection molding or extrusion to a green part, removal of the binder and sintering, characterized in that for removing the binder a) the molding is treated with a solvent which extracts the binder component B 2 ) from the molding and in which the binder component Bi) is insoluble,
b) dann das Lösungsmittel durch Trocknen aus dem Formteil entfernt wird, und c) anschließend das Formteil in einer säurehaltigen Atmosphäre behandelt wird, welches die Bindemittelkomponente B1 aus dem Formkörper entfernt.  b) then the solvent is removed by drying from the molding, and c) then the molding is treated in an acidic atmosphere which removes the binder component B1 from the molding.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass in Schritt c) Säuren, die bei Raumtemperatur fest sind und bei höheren Temperaturen sublimieren oder schmelzen und verdampfen, verwendet werden. Process according to claim 1, characterized in that in step c) acids which are solid at room temperature and which sublimate or melt and evaporate at higher temperatures are used.
Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt c) wasserfreie Oxalsäure verwendet wird. A method according to claim 1 or 2, characterized in that anhydrous oxalic acid is used in step c).
Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Schritt a) bei einer Temperatur oberhalb RT bis zur Siedetemperatur des Lösemittels ausgeführt wird. Method according to one of claims 1 to 3, characterized in that step a) is carried out at a temperature above RT up to the boiling temperature of the solvent.
Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als anorganisches sinterbares Pulver A) ein reaktives und/oder oxidationsempfindli- ches Pulver eingesetzt wird. Process according to one of Claims 1 to 4, characterized in that the inorganic sinterable powder A) used is a reactive and / or oxidation-sensitive powder.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Anteil der Bindemittelkomponente B2) 10 bis 30 Gew-% beträgt. 6. The method according to any one of claims 1 to 5, characterized in that the proportion of the binder component B 2 ) is 10 to 30% by weight.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Bindemittelkomponente B2) ausgewählt ist aus der Gruppe enthaltend: Polyolefine, aliphatische Polyurethane, aliphatische unvernetzte Polyepoxide, Polyether, aliphatische Polyamide und Polyacrylate sowie deren Mischungen. 7. The method according to any one of claims 1 to 6, characterized in that the binder component B 2 ) is selected from the group comprising: polyolefins, aliphatic polyurethanes, aliphatic uncrosslinked polyepoxides, polyethers, aliphatic polyamides and polyacrylates and mixtures thereof.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Bindemittelkomponente B2) ein Polyether ausgewählt aus der Gruppe enthaltend Polyethylenoxid, Polypropylenoxid, Poly-1 ,3-Dioxepan, Poly-1 ,3-Dioxan, Poly-1 ,3- Dioxolan, Polytetrahydrofuran (Poly(tetramethylen)oxid) und deren Mischungen ist. 8. The method according to any one of claims 1 to 7, characterized in that the binder component B 2 ) is a polyether selected from the group consisting of polyethylene oxide, polypropylene oxide, poly-1, 3-dioxepane, poly-1, 3-dioxane, poly-1 , 3-dioxolane, polytetrahydrofuran (poly (tetramethylene) oxide) and mixtures thereof.
PCT/IB2012/051237 2011-03-16 2012-03-15 Process for producing metallic or ceramic moulded bodies WO2012123913A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137027124A KR101902038B1 (en) 2011-03-16 2012-03-15 Process for producing metallic or ceramic moulded bodies
EP12757185.9A EP2686286B1 (en) 2011-03-16 2012-03-15 Process for producing metallic or ceramic moulded bodies
JP2013558558A JP5965928B2 (en) 2011-03-16 2012-03-15 Method for producing metal or ceramic molded body
CN201280022866.1A CN103517886B (en) 2011-03-16 2012-03-15 Prepare the method for metal or ceramic moulded bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11158473.6 2011-03-16
EP11158473 2011-03-16

Publications (2)

Publication Number Publication Date
WO2012123913A2 true WO2012123913A2 (en) 2012-09-20
WO2012123913A3 WO2012123913A3 (en) 2012-12-27

Family

ID=46831133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/051237 WO2012123913A2 (en) 2011-03-16 2012-03-15 Process for producing metallic or ceramic moulded bodies

Country Status (5)

Country Link
EP (1) EP2686286B1 (en)
JP (1) JP5965928B2 (en)
KR (1) KR101902038B1 (en)
CN (1) CN103517886B (en)
WO (1) WO2012123913A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156905A1 (en) 2011-05-18 2012-11-22 Basf Se Process for producing components by powder injection molding
US9162927B2 (en) 2011-03-16 2015-10-20 Basf Se Process for producing metallic or ceramic shaped bodies

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009190A1 (en) * 2015-07-14 2017-01-19 Basf Se Filaments based on a coated core material
TWI628238B (en) * 2016-08-15 2018-07-01 晟銘電子科技股份有限公司 Improved powder injection molding feedstock, product manufactured from the same, and manufacturing method of the product
EP3321002A1 (en) * 2016-11-15 2018-05-16 Höganäs AB Feedstock for an additive manufacturing method, additive manufacturing method using the same, and article obtained therefrom
CN112135702A (en) * 2018-05-15 2020-12-25 霍加纳斯股份有限公司 A binder composition for a metal injection molding raw material; a metal injection molding raw material containing the binder composition; metal injection molding method using the same, and product obtained by the method
WO2021132854A1 (en) * 2019-12-24 2021-07-01 코오롱플라스틱 주식회사 Binder composition for metal powder injection molding
CN112757658B (en) * 2020-12-25 2023-03-17 乐庸一 Porous packaging assembly and preparation method thereof
DE102021131219A1 (en) 2021-11-29 2023-06-01 Xerion Berlin Laboratories GmbH Device for debinding a green body
DE102022101545A1 (en) 2022-01-24 2023-07-27 Xerion Berlin Laboratories GmbH Device for debinding and sintering a workpiece

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059388A (en) * 1988-10-06 1991-10-22 Sumitomo Cement Co., Ltd. Process for manufacturing sintered bodies
JPH0653884B2 (en) * 1988-10-06 1994-07-20 住友セメント株式会社 Method for removing binder from powder injection molded body
EP0444475B1 (en) * 1990-02-21 1994-04-27 BASF Aktiengesellschaft Thermoplastic composition for the preparation of ceramic moulding masses
US5043121A (en) * 1990-05-03 1991-08-27 Hoechst Celanese Corp. Process for removing polyacetal binder from molded ceramic greenbodies with acid gases
JPH0533006A (en) * 1991-07-31 1993-02-09 Komatsu Ltd Production of injected and sintered body of powder
DE4408304A1 (en) * 1994-03-11 1995-09-14 Basf Ag Sintered parts made of oxygen-sensitive, irreducible powders and their production by injection molding
JPH08133845A (en) * 1994-11-02 1996-05-28 Hitachi Metal Ee F T:Kk Degreasing solvent for powder molding and method for degreasing powder molding
PL2043802T3 (en) * 2006-07-13 2012-11-30 Basf Se Thermoplastic masses containing binding agents for the production of metallic molds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2686286A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162927B2 (en) 2011-03-16 2015-10-20 Basf Se Process for producing metallic or ceramic shaped bodies
WO2012156905A1 (en) 2011-05-18 2012-11-22 Basf Se Process for producing components by powder injection molding

Also Published As

Publication number Publication date
CN103517886A (en) 2014-01-15
WO2012123913A3 (en) 2012-12-27
EP2686286A4 (en) 2015-01-14
EP2686286B1 (en) 2015-10-28
CN103517886B (en) 2015-09-09
JP2014514183A (en) 2014-06-19
KR101902038B1 (en) 2018-09-28
EP2686286A2 (en) 2014-01-22
KR20140017607A (en) 2014-02-11
JP5965928B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
EP2686286B1 (en) Process for producing metallic or ceramic moulded bodies
EP2043802B1 (en) Thermoplastic masses containing binding agents for the production of metallic molds
EP1276811B1 (en) Binding agent for inorganic material powders for producing metallic and ceramic moulded bodies
AT509613B1 (en) METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS
EP1625101B1 (en) Method for the production of near net-shaped metallic and/or ceramic parts
EP2066821B9 (en) Metal powder
WO2004039522A1 (en) Metal powder injection molding material and metal powder injection molding method
US9162927B2 (en) Process for producing metallic or ceramic shaped bodies
EP2709967B1 (en) Process for producing components by powder injection molding
WO1994025205A1 (en) Method of producing sintered articles
EP2321076A2 (en) Binder for the production of sintered molded articles
WO2018134202A1 (en) Method for producing hard metal bodies by means of 3d printing
EP2739417B1 (en) Binder mixture for producing moulded parts using injection methods
EP2753443B1 (en) Binders and processes for producing metallic or ceramic moldings in powder injection molding
DE102005045046A1 (en) Tungsten shot
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
DE3808123A1 (en) Process for producing sintered parts of finely particulate metal or ceramic powders
DE102008042047A1 (en) Producing articles made of powder-metallurgy materials, comprises mixing powdered metal oxide with binder, granulating mixture obtained in the mixing step, removing binder from metal oxide granules and then reducing metal oxide granules
WO2024089236A1 (en) Granular mixture for additive manufacturing
DE10235413A1 (en) Production of powder containing press aids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757185

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013558558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012757185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137027124

Country of ref document: KR

Kind code of ref document: A