WO2012123500A2 - Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application - Google Patents

Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application Download PDF

Info

Publication number
WO2012123500A2
WO2012123500A2 PCT/EP2012/054471 EP2012054471W WO2012123500A2 WO 2012123500 A2 WO2012123500 A2 WO 2012123500A2 EP 2012054471 W EP2012054471 W EP 2012054471W WO 2012123500 A2 WO2012123500 A2 WO 2012123500A2
Authority
WO
WIPO (PCT)
Prior art keywords
turbines
fluid
cycle
thermodynamic
vapor
Prior art date
Application number
PCT/EP2012/054471
Other languages
English (en)
Other versions
WO2012123500A3 (fr
Inventor
Pierre CONVERT
Original Assignee
Helios Energy Partners
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helios Energy Partners filed Critical Helios Energy Partners
Publication of WO2012123500A2 publication Critical patent/WO2012123500A2/fr
Publication of WO2012123500A3 publication Critical patent/WO2012123500A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/003Combinations of two or more machines or engines with at least two independent shafts, i.e. cross-compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type

Definitions

  • the present invention relates to a method of transformation into mechanical energy, which can be exploited to produce electricity, a low temperature thermal energy (typically between 200 ° C and 300 ° C) provided by a hot source, for example by a solar collector, as well as a device making applicatio.
  • a low temperature thermal energy typically between 200 ° C and 300 ° C
  • a hot source for example by a solar collector
  • thermodynamic cycle organic Rankine cycle
  • FIG. 1 is a temperature-entropy diagram of an organic Rankine cycle known per se applied to a working fluid.
  • Such a cycle comprises the following steps: a / vaporizing the liquid fluid under a predetermined pressure, so as to obtain a supersaturated vapor, by taking heat from the hot source;
  • the subject of the invention is a method of converting thermal energy from a hot source at low temperature (typically 200 to 300 degrees) of improved efficiency.
  • thermodynamic cycle applied to a dry working fluid and comprising the steps of:
  • b / multiply this steam several times in successive turbines according to substantially isentropic thermodynamic transformations so that at the exit of the turbines the steam is still supersaturated; b '/ between two detents, warm the fluid in substantially isobaric thermodynamic transformations by taking heat from the hot source; c / at the outlet of the last turbine, cooling the vapor in a substantially isobaric process to a temperature slightly above the saturation vapor temperature;
  • dry fluid is meant a fluid such that its entropy increases with temperature along a portion of the steam saturation curve exploited during the implementation of the method of the invention.
  • the dry character of the fluid implies that no condensation is possible during the relaxation in the turbines. At the exit of the turbines, except perhaps the last, the fluid is still largely oversaturated, which makes it usable for a new relaxation.
  • a hydrocarbon such as pentane or toluene may be used. It will also be possible to use a refrigerant, such as R245fa.
  • FIG. 2 is a temperature-entropy diagram of the thermodynamic cycle of the method of the invention according to a particular mode of implementation comprising three detents;
  • Figure 3 is a schematic representation of a device suitable for implementing the method of the invention.
  • FIG. 4 is a sectional view of a tor turbogénéra- integrating the turbines of the device of Figure 1 ⁇ fi in a single shaft arrangement;
  • FIG. 5 is a diagram of a device for implementing the method of the invention, using the turbogenerator of FIG. 4.
  • Figure 6 is a sectional view of a variant of the turbogenerator grouping the turbines in an epicyclic type arrangement
  • FIG. 7 is a diagram of a device for implementing the method of the invention, using the turbo generator of FIG.
  • the modified Rankine cycle according to the invention is illustrated in FIG. 2.
  • This figure recognizes the steps a /, c /, d /, e /, f / already described with respect to the cycle of FIG. step b / of expansion in the turbine is now replaced by a series of detents, here three substantially isentropic detents b1 /, b2 /, b3 / in three successive turbines which are such that at the exit of the turbines the steam is still oversaturated.
  • These relaxes are separated by b'1 /, b'2 / substantially isobaric reheating.
  • each of the heating b'l /, b'2 / raises the temperature of the steam to the temperature T'e which was hers at the inlet of the first turbine.
  • the heat for vaporizing the working fluid in step a / and heating the steam in steps b'l /, b'2 / is provided by a hot source, for example a heat transfer fluid heated by a solar collector.
  • the temperature T'e of the steam at the inlet of the first turbine is lower than the temperature Te of the steam at the inlet of the turbine in the cycle of FIG. 1.
  • the temperature Working fluid remains in a narrow range throughout the repeated relaxation and reheating steps, so that this phase of the quasi-isothermal cycle can be described.
  • the cycle of the invention provides for several heat absorption phases (i.e. and the heating steps b'1 /, b'2 /) during which the temperature of the working fluid varies little, so that only a moderate amount of heat is drawn from the hot source and absorbed by the working fluid at each of these steps.
  • the thermodynamic cycle of the invention is therefore well suited to solar-type low temperature hot springs for which the thermal energy transmission is fundamentally different from most thermodynamic power generation devices using hot springs.
  • thermodynamic cycle of the invention makes it possible to overcome the classic antagonism between the increasing efficiency of thermodynamic cycles with the maximum operating temperature (the efficiency of thermodynamic cycles -Rankine, Brayton, Striling, etc.- tends to increase with the amplitude of the temperatures reached by the working fluid, which generally leads to search for hot springs always warmer) and the decreasing efficiency of the collectors with their operating temperature.
  • This antagonism is surpassed by the use of greater pressure and a repetition of isentropic relaxation and isobaric reheating which allow a quasi-isothermal relaxation.
  • the steam temperatures at the inlet of the turbines are relatively low in comparison with its of the maximum temperature reached by the working fluid in a cycle according to Figure 1 and having an efficiency of the transformation of thermal energy into similar mechanical energy.
  • the average temperature of the endothermic phases of the cycle of the invention is thus lower, which makes it possible to be content with a temperature in the heat transfer fluid from the lower solar collector, without loss of efficiency of the cycle.
  • the efficiency of a collector decreases with its operating temperature, the lowering of the temperature of the fluid from the solar collector increases the efficiency of the conversion of solar energy into mechanical energy.
  • a dry fluid has, as can be seen in FIGS. 1 and 2, a characteristic Temperature / Entropy diagram in which the steam line (that is to say the part of the curve after the maximum) "goes back" , also presenting a positive slope.
  • This essential characteristic allows an optimized recovery of the energy of the fluid, since the isobarite followed for the cooling can go down very low without crossing the line of vapor, which would not be possible with a conventional fluid with negative slope vapor line. . It is thus possible to recover a significant amount of heat thanks to the cycle of the invention.
  • thermodynamic cycle of the invention The principle of the thermodynamic cycle of the invention and its advantages being now described, a device specially adapted to implement said cycle is now described with reference to FIG.
  • the device comprises a closed circuit 1 in which circulates a dry working fluid undergoing the heat cycle. modynamic of the invention.
  • the device also comprises an open circuit 2 in which circulates a heat transfer fluid forming the hot source of the device ⁇ tif, for example a fluid heated by the sun, or a geothermal fluid.
  • a vaporizer 11 makes it possible to carry out stage a / vaporization of the working fluid.
  • the working fluid enters the liquid state in the vaporizer 11 and captures the heat provided by the fluid of the hot source flowing in the vicinity of a heat exchanger.
  • the working fluid is then vaporized thanks to the heat provided by the coolant.
  • This steam is fed to the inlet of a first turbine 12.1 in which the steam is expanded according to step b1 / of the cycle of the invention.
  • This steam is fed to the inlet of a second turbine 12.2 in which the steam is expanded according to step b2 / of the cycle of the invention.
  • this vapor thus relaxed (but still supersaturated) is brought to the inlet of a first branch of a heat exchanger 14 in which it cools to a temperature slightly higher than the saturating pressure temperature according to step c / of the cycle of the invention.
  • the enthalpy yielded by the steam during this cooling will be exploited as detailed below.
  • this cooled vapor is fed to the inlet of a condenser 15 causing liquefaction of the working fluid according to step d / of the cycle of the invention.
  • the working fluid is fed to the inlet of a compressor 16 which compresses the fluid to increase its pressure according to step e / cycle of the invention.
  • the working fluid is fed into a second branch of the heat exchanger 14 in which the working fluid is heated according to step f / of the cycle of the invention thanks to the enthalpy released by the Steam circulating in the first branch of the exchanger 14.
  • the two branches of the exchanger 14 are of course isolated from one another but allow heat transfer from one to the other.
  • the heat exchanger is of the brazed plate type.
  • the efficiency of such a cycle is 20.4%, taking into account the pressure drops in the heat exchangers as well as a theoretical efficiency of the turbines of 80%.
  • temperatures, pressures, enthalpies and entropies have the following values at the end of each of the steps:
  • the efficiency of such a cycle is 21.4%, taking into account the pressure drop in the heat exchangers as well as a theoretical efficiency of the turbines of 80%.
  • FIG. 4 illustrates an exemplary turbogenerator 20 that can be used in the context of the invention.
  • the turbine generator 20 comprises a casing 21 receiving a rotating assembly 22 carrying the three turbines 12.1, 12.2, 12.3 which are here of radial type and which are all integral with the same rotating shaft 23 whose end (cut in FIG. ) can be used for example to drive an electric alternator.
  • the housing 21 has aerodynamic internal shapes and has inlet and outlet ports (not shown here) for the admission of steam into the turbogenerator for circulation of the working fluid in the heaters 13.1 and 13.2 between the turbines, and for the steam outlet to the exchanger 14.
  • FIG. 5 illustrates a device for implementing the cycle according to the invention using the turbine generator 20 of FIG. 4.
  • the turbine generator 20 associated with an alternator 24 is recognized.
  • Heaters 13.1 and 13 are also recognized. 13.2 in which the steam is heated after respectively expansion in the turbine 12.1 and 12.2.
  • the exchanger 14 and the vaporizer 11 are still recognized.
  • FIG. 6 is illustrated another turbine generator 30 usable in the context of the invention. It comprises a housing 31 carrying a central shaft 32 having whose cut end drives an alternator not shown here.
  • the central shaft 32 comprises a sun gear 33 meshing with pinions 34 secured respectively to respective planet shafts 35 each carrying two turbines, respectively 12.1 and 12.2 for the first satellite shaft 35, and 12.3 and 12.4 for the second satellite shaft 35.
  • four turbines are therefore all integral in rotation with the central shaft 32, according to a general arrangement of epicyclic type. It would not be difficult to add an additional satellite tree carrying two turbines again.
  • FIG. 7 illustrates a device for implementing the cycle of the invention using the turbo-generator 30 of FIG. 6.
  • the cycle implemented by means of this turbogenerator comprises four alternating detents with three reheating operations.
  • the heaters 13.1, 13.2, 13.3 in which the steam circulates respectively between the turbines 12.1 and 12.2, between the turbines 12.2 and 12.3 and finally between the turbines 12.3 and 12.4.
  • the number of detents and associated turbines is 3 or 4
  • the number of detents and therefore the number of turbines used will of course depend on the intended application, ranging from 2 to a larger number if necessary.
  • turbines are of the radial type, the invention is not limited to the use of this type of turbine, and axial turbines may also be used.
  • the turbines may comprise stator blades with adjustable incidence.
  • thermodynamic cycle it is possible at any time to skip a turbine-heat step to transform the thermodynamic cycle into an n-1 turbine cycle, depending on external conditions, for example short-circuit circuiting a heater and its turbine.
  • the invention covers the use of the cycle of the invention in contrast to what has been described here. It is of course possible to convert a mechanical energy, used to drive the turbines, into thermal energy by following in reverse the cycle of the invention.
  • the turbines are used in compressors.
  • the relaxation steps become compression steps
  • the reheating steps become cooling stages (during which heat of the working fluid is transferred to the benefit of the outside)
  • the vaporization steps become liquefaction stages and vice versa .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Procédé de conversion en énergie mécanique d'une énergie thermique provenant d'une source chaude (2) selon un cycle thermodynamique appliqué à un fluide de travail sec et comprenant les étapes de détendre plusieurs fois le fluide dans des turbines successives selon des transformations thermodynamiques (b1, b2, b3) sensiblement isentropiques de sorte qu'à la sortie des turbines la vapeur est encore sursaturée; et entre deux détentes, réchauffer le fluide selon des transformations thermodynamiques (b'1, b'2) sensiblement isobares en prélevant de la chaleur à la source chaude.

Description

Procédé de transformation en énergie mécanique d' une énergie thermique basse température , et dispositif faisant application
DOMAINE DE 1/ INVENTION
La présente invention concerne un procédé de transformation en énergie mécanique, pouvant être exploitée pour produire de l'électricité, d'une énergie thermique basse température (typiquement entre 200 °C et 300 °C) fournie par une source chaude, par exemple par un collecteur solaire, ainsi qu'un dispositif faisant applicatio .
ETAT DE LA TECHNIQUE
La conversion de l'énergie thermique d'une source chaude en énergie mécanique, puis potentiellement en électricité, se fait par exemple au moyen de dispositifs mettant en œuvre un cycle thermodynamique appelé cycle organique de Rankine ou COR.
Un tel cycle est représenté à la figure 1 qui est un diagramme température-entropie d'un cycle organique de Rankine connu en soi appliqué à un fluide de travail. Un tel cycle comporte les étapes suivantes : a/ vaporiser le fluide liquide sous une pression déterminée, de sorte à obtenir une vapeur sursaturée, en prélevant de la chaleur à la source chaude ;
b/ détendre cette vapeur dans une turbine selon une transformation thermodynamique sensiblement isentropi- que de sorte qu' à la sortie de la turbine la vapeur soit encore sursaturée ;
c/ en sortie de la turbine, refroidir la vapeur selon une transformation sensiblement isobare jusqu'à une température légèrement supérieure à la température de vapeur saturante ; d/ provoquer la condensation de la vapeur pour liquéfier le fluide ;
e/ augmenter la pression du fluide jusqu'à la pression déterminée selon une transformation thermodynamique sensiblement isentropique ;
f/ réchauffer le fluide selon une transformation thermodynamique sensiblement isobare en utilisant au moins une partie de l'enthalpie cédée par la vapeur lors de son refroidissement à l'étape cl ;
Les points sur la courbe du cycle montrent les frontières entre les étapes précitées, qui sont recommencées à chaque cycle. Il suffit dès lors de récupérer l'énergie mécanique de la turbine mise en mouvement par la vapeur.
Ces cycles sont d'une grande importance dans un grand nombre de technologies. Au premier rang de celles- ci, on peut citer la génération d'électricité à partir de sources d'énergie renouvelable, telles que l'énergie solaire, la géothermie, la biomasse, etc. De telles énergies sont généralement coûteuses à récupérer (collecteurs pour l'énergie solaire, forage pour la géothermie, collecte de matière végétale pour la biomasse, etc.) et ce coût va généralement croissant avec la température de la source chaude employée. A titre d'exemple, les collecteurs solaires sont par exemple plus coûteux et leur rendement diminue à mesure que l'on augmente la température de fonctionnement (ce qui nécessite d'augmenter leur surface et donc leur coût total) . La chaleur géothermique profonde, l'une des seules capable de fournir une source chaude de haute température, nécessite des forages d'autant plus profonds - et donc plus chers - que l'on veut monter en température. Enfin la plupart des calopor- teurs voient leur prix, leur dangerosité et la complexité de leur maniement augmenter avec leurs températures de fonctionnement .
Plutôt que d'exploiter des sources d'énergie à haute température, Il paraît donc intéressant d'augmenter le rendement des cycles adaptés à fonctionner avec une source chaude de température moins élevée et ce, même au prix d'une complexification des dispositifs utilisés.
OBJET DE L' INVENTION
L'invention a pour objet un procédé de conversion d'énergie thermique issue d'une source chaude à basse température (typiquement 200 à 300 degrés) de rendement amélioré .
EXPOSE DE L' INVENTION
En vue de la réalisation de ce but, on propose un procédé de conversion en énergie mécanique d'une énergie thermique provenant d' une source chaude selon un cycle thermodynamique appliqué à un fluide de travail sec et comprenant les étapes de :
a/ vaporiser le fluide liquide sous une pression déterminée de sorte à obtenir une vapeur sursaturée en prélevant de la chaleur à la source chaude;
b/ détendre plusieurs fois cette vapeur dans des turbines successives selon des transformations thermodynamiques sensiblement isentropiques de sorte qu'à la sortie des turbines la vapeur est encore sursaturée ; b' / entre deux détentes, réchauffer le fluide selon des transformations thermodynamiques sensiblement isobares en prélevant de la chaleur à la source chaude ; c/ en sortie de la dernière turbine, refroidir la vapeur selon une transformation sensiblement isobare jusqu'à une température légèrement supérieure à la température de vapeur saturante ;
d/ provoquer la condensation de la vapeur pour liquéfier le fluide ;
e/ augmenter la pression du fluide jusqu'à la pression déterminée selon une transformation thermodynamique sensiblement isentropique ;
f/ réchauffer le fluide selon une transformation thermodynamique sensiblement isobare en utilisant au moins une partie de l'enthalpie cédée de la vapeur refroidie à l'étape c/ ;
les étapes étant recommencées à chaque cycle.
Il suffit dès lors de récupérer l'énergie mécanique des turbines mises en mouvement par la vapeur, qui peuvent être liées entre elles ou non.
Par « fluide sec », on entend un fluide tel que son entropie augmente avec la température le long d'une partie de la courbe de saturation de vapeur exploitée lors de la mise en œuvre du procédé de l'invention. Le caractère sec du fluide implique qu'aucune condensation n'est possible lors des détentes dans les turbines. A la sortie des turbines, sauf peut-être de la dernière, le fluide est encore largement sursaturé, ce qui le rend exploitable pour une nouvelle détente. Par exemple, on pourra utiliser un hydrocarbure, comme du pentane ou du toluène. On pourra également utiliser un fluide frigorigène, comme du R245fa.
Le réchauffage intermédiaire du fluide entre deux détentes augmente 1 ' exploitabilité du fluide après chaque détente. On ajoute ainsi autant de fois que voulu des étages composés d'une séquence de détente quasi isentro- pique puis de réchauffage quasi isobare. Le rendement global du cycle augmente avec le nombre d'étages. Le coefficient d'expansion global du cycle, c'est-à-dire le rapport de la pression d'entrée de la première turbine à la pression de sortie de la dernière turbine, augmente également avec le nombre d'étage. La pression de sortie de la dernière turbine étant généralement dictée par la température de la source froide (via la pression de vapeur saturante), un surcroît d'expansion peut être obtenu en augmentant la pression en entrée de la première turbine, quitte à travailler en régime supercritique.
PRESENTATION DES FIGURES
L' invention sera mieux comprise à la lumière de la description qui suit d'un mode particulier de mise en œuvre de l'invention en référence, outre à la figure 1 illustrant l'état de la technique, aux figures des dessins annexés parmi lesquelles :
la figure 2 est un diagramme température-entropie du cycle thermodynamique du procédé de l'invention selon un mode particulier de mise en œuvre comportant trois détentes ;
la figure 3 est une représentation schématique d'un dispositif convenant pour la mise en œuvre du procédé de l'invention ;
la figure 4 est une vue en coupe d'un turbogénéra- teur intégrant les turbines du dispositif de la fi¬ gure 1 en un agencement à arbre unique ; La figure 5 est un schéma d'un dispositif pour la mise en œuvre du procédé de l' invention, utilisant le turbogénérateur de la figure 4.
la figure 6 est une vue en coupe d' une variante du turbogénérateur regroupant les turbines selon un arrangement de type épicyclique ;
La figure 7 est un schéma d'un dispositif pour la mise en œuvre du procédé de l' invention, utilisant le turbogénérateur de la figure 6.
DESCRIPTION DETAILLEE
Le cycle de Rankine modifié selon l'invention est illustré à la figure 2. Sur cette figure, on reconnaît les étapes a/, c/, d/, e/, f/ déjà décrites à propos du cycle de la figure 1. Cependant, l'étape b/ de détente dans la turbine est maintenant remplacée par une série de détentes, ici trois détentes sensiblement isentropiques bl/,b2/, b3/ dans trois turbines successives qui sont telles qu'à la sortie des turbines la vapeur est encore sursaturée. Ces détentes sont séparées par des réchauffements b'1/, b'2/ sensiblement isobares.
De préférence, chacun des réchauffements b'l/,b'2/ fait remonter la température de la vapeur à la température T'e qui était la sienne en entrée de la première turbine .
La chaleur permettant de vaporiser le fluide de travail à l'étape a/ et de réchauffer la vapeur aux étapes b'l/,b'2/ est fournie par une source chaude, par exemple un fluide caloporteur chauffé par un collecteur solaire .
La répétition des étapes de détente et de réchauffage permet de récupérer une énergie mécanique équivalente à celle récupée à l'aide du cycle de la figure 1, bien que chacune des détentes bl/,b2/,b3/ soit moins importante que la détente b/ du cycle de la figure 1, et tout en conduisant à une température Ί" s de la vapeur en sortie de la dernière turbine bien plus importante que la température Ts de la vapeur en sortie de la turbine sur le cycle de la figure 1. L'enthalpie de la vapeur qui est cédée à l'étape c/ (indiquée par la double flèche verticale) et qui est utilisée pour chauffer le fluide de tra- vail à l'étape f/ est ainsi bien plus importante dans le cycle de l'invention que dans le cycle de la figure 1, et l'efficacité du cycle thermodynamique s'en trouve améliorée .
On remarquera par ailleurs que la température T'e de la vapeur à l'entrée de la première turbine est moins élevée que la température Te de la vapeur à l'entrée de la turbine dans le cycle de la figure 1. Ainsi, la température du fluide de travail reste dans une fourchette étroite tout le long des étapes répétées de détente et de réchauffage, de sorte que l'on peut qualifier cette phase du cycle de quasi isotherme.
Ainsi, plutôt que d'absorber en une seule fois une quantité importante de chaleur lors de la vaporisation du fluide de travail, le cycle de l'invention propose plu- sieurs phases d'absorption de chaleur (à savoir l'étape de vaporisation a/ et les étapes de réchauffement b'1/, b'2/) lors desquelles la température du fluide de travail varie peu, de sorte que seule une quantité modérée de chaleur est tirée de la source chaude et absorbée par le fluide de travail à chacune de ces étapes. Le cycle thermodynamique de l'invention est dès lors bien adapté à des sources chaudes à basse température de type solaire pour lesquelles la transmission d'énergie thermique est fondamentalement différente de la plupart des dispositifs thermodynamiques de génération de puissance utilisant des sources chaudes. En effet cette transmission d'énergie est de nature radiative entre le soleil et le collecteur sur terre, alors que dans la plupart des autres cas elle est plutôt de nature conducto- convective au sein d'un échangeur de chaleur au contact de la source chaude, directement ou par l'intermédiaire d'un fluide caloporteur (combustion de combustibles fossiles ou renouvelables, géothermie, nucléaire) . Ainsi, la température maximale d'un fluide caloporteur chauffé par un collecteur solaire est forcément limitée.
Le cycle thermodynamique de l'invention permet de surmonter le classique antagonisme entre l'efficacité croissante des cycles thermodynamiques avec la température maximale du fonctionnement (l'efficacité des cycles thermodynamiques -Rankine, Brayton, Striling, etc.- a tendance à augmenter avec l'amplitude des températures atteintes par le fluide de travail, ce qui pousse généralement à chercher des sources chaudes toujours plus chaudes) et l'efficacité décroissante des collecteurs avec leur température de fonctionnement. Cet antagonisme est dépassé par l'utilisation de pression plus importante et d'une répétition de détentes isentropiques et de réchauffages isobares qui permettent une détente quasi- isotherme .
Par ailleurs, les températures de la vapeur en entrée des turbines sont relativement faibles en comparai- son de la température maximale atteinte par le fluide de travail dans un cycle selon la figure 1 et ayant une efficacité de la transformation de l'énergie thermique en énergie mécanique similaire. La température moyenne des phases endothermiques du cycle de l'invention est ainsi plus basse, ce qui permet de se contenter d'une température dans le fluide caloporteur issu du collecteur solaire plus basse, sans perte de rendement du cycle. En outre, puisque l'efficacité d'un collecteur décroît avec sa température de fonctionnement, l'abaissement de la température du fluide issu du collecteur solaire augmente l'efficacité de la conversion de l'énergie solaire en énergie mécanique.
Un fluide sec présente, comme cela est visible sur les figures 1 et 2, un diagramme Température/Entropie caractéristique dans lequel la ligne de vapeur (c'est-à- dire la partie de la courbe après le maximum) « revient en arrière », présentant aussi une pente positive. Cette caractéristique essentielle permet une récupération optimisée de l'énergie du fluide, puisque l'isobare suivie pour le refroidissement peut descendre très bas sans croiser la ligne de vapeur, ce qui ne serait pas possible avec un fluide classique à ligne de vapeur à pente négative. On peut donc récupérer ainsi une chaleur importante grâce au cycle de l'invention.
Le principe du cycle thermodynamique de l'invention et ses avantages étant maintenant décrits, un dispositif spécialement adapté à mettre en œuvre ledit cycle est maintenant décrit en référence à la figure 3.
Le dispositif comporte un circuit fermé 1 dans lequel circule un fluide de travail sec subissant le cycle ther- modynamique de l'invention. Le dispositif comporte par ailleurs un circuit ouvert 2 dans lequel circule un fluide caloporteur formant la source chaude du disposi¬ tif, par exemple un fluide chauffé par le soleil, ou un fluide géothermique.
Un vaporisateur 11 permet de réaliser l'étape a/ de vaporisation du fluide de travail. Le fluide de travail pénètre à l'état liquide dans le vaporisateur 11 et capte de la chaleur apportée par le fluide de la source chaude circulant à proximité d'un échangeur de chaleur. Le fluide de travail est alors vaporisé grâce à la chaleur apportée par le fluide caloporteur.
Cette vapeur est amenée en entrée d'une première turbine 12.1 dans laquelle la vapeur est détendue selon l'étape bl/ du cycle de l'invention.
Puis la vapeur ainsi détendue (mais encore sursaturée) est amenée en entrée d'un premier réchauffeur 13.1 dans laquelle la vapeur est réchauffée jusqu'à la température Te d'entrée dans la première turbine 12.1, selon l'étape b' 1/ du cycle de l'invention, grâce à la chaleur apportée par le fluide caloporteur du circuit 2.
Cette vapeur est amenée en entrée d'une deuxième turbine 12.2 dans laquelle la vapeur est détendue selon l'étape b2/ du cycle de l'invention.
Puis la vapeur ainsi détendue (mais encore sursaturée) est amenée en entrée d'un deuxième réchauffeur 13.2 dans laquelle la vapeur est réchauffée jusqu'à la température Te d'entrée dans la première turbine 12.1 selon l'étape b'2/ du cycle de l'invention, grâce à la chaleur apportée par le fluide caloporteur du circuit 2 Cette vapeur est amenée en entrée d'une troisième turbine 12.3 dans laquelle la vapeur est détendue selon l'étape b3/ du cycle de l'invention.
Puis cette vapeur ainsi détendue (mais encore sursaturée) est amenée en entrée d'une première branche d'un échangeur de chaleur 14 dans lequel elle se refroidit jusqu'à une température légèrement supérieure à la température de pression saturante selon l'étape c/ du cycle de l' invention . L'enthalpie cédée par la vapeur lors de ce refroidissement sera exploitée comme détaillé plus loin. Puis cette vapeur refroidie est amenée en entrée d'un condenseur 15 provoquant la liquéfaction du fluide de travail selon l'étape d/ du cycle de l'invention.
Puis le fluide de travail est amené en entrée d'un compresseur 16 qui comprime le fluide pour en augmenter sa pression selon l'étape e/ du cycle de l'invention.
Enfin, le fluide de travail est amenée en entrée d'une deuxième branche de l'échangeur de chaleur 14 dans lequel le fluide de travail est réchauffé selon l'étape f/ du cycle de l'invention grâce à l'enthalpie dégagée par la vapeur circulant dans la première branche de l'échangeur 14. Les deux branches de l'échangeur 14 sont bien sûr isolées l'une de l'autre mais permettent un transfert de chaleur de l'une à l'autre. De préférence, l'échangeur de chaleur est du type à plaques brasées.
Tous les éléments précités sont reliés par des canalisations thermiquement isolées pour constituer le circuit fermé 2.
Il suffira dès lors de récupérer l'énergie mécanique des turbines pour par exemple actionner un alternateur électrique. Dans un exemple de cycle à 3 turbines fonctionnant avec du fluide R245fa, les températures, pressions, en- thalpies et entropies ont les valeurs suivantes à l'issue de chacune des étapes :
Figure imgf000013_0001
Le rendement d'un tel cycle est de 20,4% en tenant compte des pertes de charge dans les échangeurs de chaleur ainsi que d'un rendement théorique des turbines de 80%.
Dans un exemple de cycle à 2 turbines fonctionnant avec du fluide pentane, les températures, pressions, en- thalpies et entropies ont les valeurs suivantes à l'issue de chacune des étapes :
A l'issue Température Pression Enthalpie Entropie de : (en °C) (en bar) (en (en kJ.kg- kJ. kg-1) l.K-1) a 200 33, 0 592, 3 1, 45 bl 153 11, 0 562, 3 1, 47 b' 1 200 10,8 681, 0 1,73 b2 161 1,6 607, 0 1,78 c 54 1,6 387, 0 1,20 d 48 1,6 28,7 0, 09 e 50 34, 0 35, 4 0,09 f 133 33, 5 255, 4 0,70
Le rendement d'un tel cycle est de 21,4% en tenant compte des pertes de charge dans les échangeurs de chaleur ainsi que d'un rendement théorique des turbines de 80%.
TA la figure 4 est illustré un exemple de turbogéné- rateur 20 utilisable dans le cadre de l'invention. Le turbogénérateur 20 comporte un carter 21 recevant un en- semble tournant 22 portant les trois turbines 12.1, 12.2, 12.3 qui sont ici de type radial et qui sont toutes solidaires d'un même arbre tournant 23 dont l'extrémité (coupée sur la figure) peut être utilisée pour par exemple entraîner un alternateur électrique. Le carter 21 com- porte des formes internes aérodynamiques et comporte des ports d'entrée et de sortie (non représentés ici) pour l'admission de la vapeur dans le turbogénérateur, pour la circulation du fluide de travail dans les réchauffeurs 13.1 et 13.2 entre les turbines, et pour la sortie de la vapeur vers l'échangeur 14.
A la figure 5 est illustré un dispositif pour la mise en œuvre du cycle selon l'invention utilisant le turbogénérateur 20 de la figure 4. Sur cette figure, on reconnaît le turbogénérateur 20 associé à un alternateur 24. On reconnaît également les réchauffeurs 13.1 et 13.2 dans lesquels la vapeur est réchauffée après respectivement une détente dans la turbine 12.1 et 12.2. On reconnaît encore l'échangeur 14, ainsi que le vaporisateur 11.
A la figure 6 est illustré un autre turbogénérateur 30 utilisable dans le cadre de l'invention. Celui-ci comporte un carter 31 portant un arbre central 32 ayant dont l'extrémité coupée entraîne un alternateur non représenté ici. L'arbre central 32 comporte un planétaire 33 engrenant avec des pignons 34 solidaires respectivement d'arbres satellites respectifs 35 portant chacun deux turbines, respectivement 12.1 et 12.2 pour le premier arbre satellite 35, et 12.3 et 12.4 pour le deuxième arbre satellite 35. Les quatre turbines sont donc toutes solidaires en rotation de l'arbre central 32, selon un agen- cernent général de type épicyclique. Il ne serait pas difficile de rajouter un arbre satellite supplémentaire portant à nouveau deux turbines.
A la figure 7 est illustré un dispositif pour la mise en œuvre du cycle de l'invention utilisant le turbo- générateur 30 de la figure 6. Bien évidemment, le cycle mis en œuvre grâce à ce turbogénérateur comporte quatre détentes alternées avec trois réchauffages. Sur la figure, on reconnaît les réchauffeurs 13.1, 13.2, 13.3 dans lesquelles la vapeur circule respectivement entre les turbines 12.1 et 12.2, entre les turbines 12.2 et 12.3 et enfin entre les turbines 12.3 et 12.4.
L'invention n'est pas limitée à ce qui vient d'être décrit, mais englobe au contraire toute variante entrant dans le cadre défini par les revendications.
En particulier, bien que dans les exemples illustrés, le nombre de détentes et de turbines associées soit de 3 ou 4 , le nombre de détentes et par conséquent le nombre de turbines utilisées dépendra bien sûr de l'application envisagée, allant de 2 à un nombre plus important si nécessaire.
En outre, bien que dans les exemples illustrés, les turbines soient du type radial, l'invention n'est pas limitée à l'utilisation de ce type de turbine, et des turbines axiales pourront être également utilisées. Les turbines pourront comporter des aubes statoriques à incidence réglable.
De plus, bien que dans les exemples illustrés, toutes les turbines sont solidaires en rotation d'un même arbre (soit directement, soit via des liaisons à engrenages ou autres), on pourra choisir de laisser les turbines mécaniquement indépendantes, en accouplant par exemple chaque turbine à un alternateur propre.
De surcroît, dans un cycle à n-turbines, il est possible à tout moment de sauter une étape « turbine - réchauffe » pour transformer le cycle thermodynamique en un cycle à n-1 turbines, selon les conditions extérieures, par exemple en court-circuitant un réchauffeur et sa turbine .
Bien que plus spécialement adapté à l'extraction d'énergie d'une source chaude à basse température, on pourra bien évidemment utiliser le cycle de l'invention pour extraire de l'énergie de toute source chaude.
Enfin, l'invention couvre l'utilisation du cycle de l'invention à l'inverse de ce qui a été décrit ici. Il est bien sûr possible de réaliser la conversion d'une énergie mécanique, utilisée pour entraîner les turbines, en énergie thermique en suivant à l'envers le cycle de l'invention. Dans ce cas, les turbines sont utilisées en compresseurs. Les étapes de détente deviennent des étapes de compression, les étapes de réchauffage deviennent des étapes de refroidissement (lors desquelles de la chaleur du fluide de travail est cédée au profit de l'extérieur), les étapes de vaporisation deviennent des étapes de liquéfaction et inversement.

Claims

REVENDICATIONS
1. Procédé de conversion en énergie mécanique d'une énergie thermique provenant d'une source chaude (2) selon un cycle thermodynamique appliqué à un fluide de travail sec et comprenant les étapes de :
a/ vaporiser le fluide liquide (11) sous une pression déterminée de sorte à obtenir une vapeur sursaturée en prélevant de la chaleur à la source chaude;
b/ détendre plusieurs fois cette vapeur dans des turbines (12.1,12.2,12.3) successives selon des transformations thermodynamiques (bl,b2,b3) sensiblement isen- tropiques de sorte qu'a la sortie des turbines la vapeur est encore sursaturée ;
b' / entre deux détentes, réchauffer le fluide (13.1,13.2) selon des transformations thermodynamiques (b'l,b'2) sensiblement isobares en prélevant de la chaleur à la source chaude ;
c/ en sortie de la dernière turbine, refroidir la vapeur (14) selon une transformation sensiblement isobare jusqu'à une température légèrement supérieure à la température de vapeur saturante ;
d/ provoquer la condensation de la vapeur (15) pour liquéfier le fluide ;
e/ augmenter la pression du fluide (16) jusqu'à la pression déterminée selon une transformation thermodynamique sensiblement isentropique ;
f/ réchauffer le fluide (14) selon une transformation thermodynamique sensiblement isobare en utilisant au moins une partie de l'enthalpie cédée par la vapeur refroidie à l'étape cl ;
les étapes étant recommencées à chaque cycle.
2. Procédé selon la revendication 1, dans lequel le fluide de travail utilisé est un hydrocarbure, notamment pentane, toluène.
3. Procédé selon la revendication 1, dans lequel le fluide de travail utilisé est un frigorigène, notamment
R245fa.
4. Procédé selon la revendication 1, dans lequel le fluide utilisé est un fluide frigorigène de type R245fa et dans lequel à l'issue des étapes successives, a, bl, b'1, b2, b'2, b3, c, d, e, f, ses caractéristiques sont respectivement et approximativement :
Figure imgf000019_0001
5. Procédé selon la revendication 1, dans lequel le fluide utilisé est un hydrocarbure du type pentane et dans lequel à l'issue des étapes successives, a, bl, b'1, b2, c, d, e, f, ses caractéristiques sont respectivement et approximativement : A 1 ' issue Température Pression Enthalpie Entropie de : (en °C) (en bar) (en (en kJ.kg- kJ. kg-1) l.K-1) a 200 33,0 592, 3 1, 45 bl 153 11, 0 562, 3 1,47 b' 1 200 10, 8 681, 0 1,73 b2 161 1,6 607, 0 1,78 c 54 1,6 387, 0 1,20 d 48 1,6 28,7 0,09 e 50 34, 0 35, 4 0, 09 f 133 33, 5 255, 4 0, 70
6. Dispositif pour la mise en œuvre du procédé selon l'une des revendications précédentes, comportant les éléments suivants, reliés entre eux par des canalisations de façon à former un circuit fermé dans lequel circule le fluide de travail sec:
un vaporisateur (11) pour la mise en œuvre de de l'étape a/ ;
- des turbines (12.1,12.2,12.3,12.4) pour la mise en ceu- vre de l'étape b/ ;
- entre les turbines, des réchauffeurs (13.1,13.2,13.3) pour la mise en œuvre de l'étape b' / ;
- un échangeur de chaleur (14) pour la mise en œuvre des étapes c/ et f/ ;
- un condenseur (15) pour la mise en œuvre de l'étape d/ ;
- un compresseur (16) pour la mise en œuvre de l'étape e/.
7. Dispositif selon la revendication 6, dans lequel les turbines (12.1,12.2,12.3,12.4) sont toutes solidaires en rotation.
8. Dispositif selon la revendication 7, dans lequel les turbines (12.1,12.2,12.3) sont toutes portées par un même arbre (23) formant une prise mécanique du dispositif.
9. Dispositif selon la revendication 7, dans lequel les turbines sont portées deux par deux (12.1,12.2 ; 12.3, 12. ) par des arbres satellites (35) coopérant tous à rotation avec un arbre central (32) formant une prise mécanique du dispositif.
10. Dispositif selon la revendication 6, dans lequel le dispositif à n turbines est transformé en un disposi¬ tif à n-1 turbines en supprimant deux étapes successives b/b' / en court-circuitant un réchauffeur et sa turbine.
PCT/EP2012/054471 2011-03-14 2012-03-14 Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application WO2012123500A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152070 2011-03-14
FR1152070A FR2972761A1 (fr) 2011-03-14 2011-03-14 Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application

Publications (2)

Publication Number Publication Date
WO2012123500A2 true WO2012123500A2 (fr) 2012-09-20
WO2012123500A3 WO2012123500A3 (fr) 2012-11-29

Family

ID=45815570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054471 WO2012123500A2 (fr) 2011-03-14 2012-03-14 Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application

Country Status (2)

Country Link
FR (1) FR2972761A1 (fr)
WO (1) WO2012123500A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120193A1 (it) * 2012-10-01 2014-04-02 Nuovo Pignone Srl "an organic rankine cycle for mechanical drive applications"
WO2014076637A1 (fr) 2012-11-15 2014-05-22 I.V.A.R. S.P.A. Dispositif d'expansion rotatif et centrale de cogénération d'énergie électrique et thermique comprenant le dispositif d'expansion rotatif
ITMI20130040A1 (it) * 2013-01-14 2014-07-15 Ivar Spa Espansore volumetrico rotativo a doppio flusso, in particolare impiegabile in cicli termodinamici di tipo rankine o rankine-hirn
CN109611167A (zh) * 2018-11-23 2019-04-12 华北电力大学(保定) 回收低温余热蒸汽的方法、装置、设备、系统及存储介质
IT201900015770A1 (it) 2019-09-06 2021-03-06 Ivar Spa Nuovo ciclo combinato seol
IT201900015776A1 (it) 2019-09-06 2021-03-06 Ivar Spa Macchina termica configurata per realizzare cicli termici e metodo per realizzare cicli termici
US11995782B2 (en) 2019-10-15 2024-05-28 Magic Leap, Inc. Cross reality system with localization service

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB370371A (en) * 1929-10-04 1932-04-07 Siemens Ag Multi-stage radial turbine, more particularly for high pressure steam
GB575812A (en) * 1942-12-12 1946-03-06 Bbc Brown Boveri & Cie Ultra-high temperature turbine plant
DE3110364A1 (de) * 1980-11-13 1982-12-16 Rudolf Dr. 6800 Mannheim Wieser Dampfkraftanlage
DE3042782A1 (de) * 1980-11-13 1982-06-09 Rudolf Dr. 6800 Mannheim Wieser Dampfkraftanlage
DE3228423A1 (de) * 1982-07-30 1984-02-02 Hochtemperatur-Reaktorbau GmbH, 5000 Köln Hochtemperaturreaktoranlage mit einem primaeren kuehlgaskreislauf und einem dampfkreislauf zur erzeugung von arbeitsdampf
US20030213247A1 (en) * 2002-05-15 2003-11-20 Hanna William T. Enhanced effectiveness evaporator for a micro combined heat and power system
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
DE102009043720A1 (de) * 2009-09-30 2011-04-07 Andreas Gotter Carnotisierter Rankineprozess für Solarthermische Kraftwerke

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120193A1 (it) * 2012-10-01 2014-04-02 Nuovo Pignone Srl "an organic rankine cycle for mechanical drive applications"
US9945289B2 (en) 2012-10-01 2018-04-17 Nuovo Pignone Srl Organic rankine cycle for mechanical drive applications
WO2014076637A1 (fr) 2012-11-15 2014-05-22 I.V.A.R. S.P.A. Dispositif d'expansion rotatif et centrale de cogénération d'énergie électrique et thermique comprenant le dispositif d'expansion rotatif
ITMI20130040A1 (it) * 2013-01-14 2014-07-15 Ivar Spa Espansore volumetrico rotativo a doppio flusso, in particolare impiegabile in cicli termodinamici di tipo rankine o rankine-hirn
CN109611167A (zh) * 2018-11-23 2019-04-12 华北电力大学(保定) 回收低温余热蒸汽的方法、装置、设备、系统及存储介质
IT201900015770A1 (it) 2019-09-06 2021-03-06 Ivar Spa Nuovo ciclo combinato seol
IT201900015776A1 (it) 2019-09-06 2021-03-06 Ivar Spa Macchina termica configurata per realizzare cicli termici e metodo per realizzare cicli termici
US11995782B2 (en) 2019-10-15 2024-05-28 Magic Leap, Inc. Cross reality system with localization service

Also Published As

Publication number Publication date
FR2972761A1 (fr) 2012-09-21
WO2012123500A3 (fr) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012123500A2 (fr) Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application
US10400635B2 (en) Organic rankine cycle decompression heat engine
EP2379848B1 (fr) Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
EP2381072B1 (fr) Circuit fermé fonctionnant selon un cycle de rankine et procede utilisant un tel circuit
Cheng et al. The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years
CA2867120C (fr) Systeme et procede de recuperation de chaleur perdue provenant de deux sources de chaleur
FR3016025A1 (fr) Combinaison d'une unite de stockage d'energie par air comprime et d'une centrale thermique
EP2764243B1 (fr) Procédé et système perfectionné de conversion de l'énergie thermique marine
Najjar et al. Cogeneration by combining gas turbine engine with organic Rankine cycle
WO2014020277A1 (fr) Dispositif de stockage et de restitution d'énergie électrique et procédé de stockage et de restitution d'énergie électrique par un tel dispositif
US20160222947A1 (en) Power plants with an integrally geared steam compressor
FR3070725B1 (fr) Turbopompe cinetique avec un dispositif de variation de vitesse pour un circuit ferme, en particulier de type a cycle de rankine, notamment pour un vehicule automobile
Singh et al. TECNICA ITALIANA-Italian Journal of Engineering Science
FR3004486A1 (fr) Dispositif permettant de transformer l'energie thermique en energie mecanique au moyen d'un cycle de rankine organique a detente fractionnee par des regenerations
FR3007790A1 (fr) Groupe turbopropulseur d'aeronef comprenant un circuit de recuperation et de conversion d'energie thermique
FR2915764A1 (fr) Installation de generation d'energie electrique
Behbahani-nia et al. Thermodynamic simulation and pinch analysis of KCS11
Samuel et al. SOLAR THERMAL POWER PLANT: THERMODYNAMIC ANALYSIS
Dunstan et al. Raising the effectiveness of electricity generation (per unit of fossil-fuel combusted) by less conventional means
Hajema Sterilization Assembly Development Laboratory. A study of the microbial burden accumulated on assemblies built in EASL under disrupted vertical airflow
FR3065254A1 (fr) Ensemble de turbopompe pour un circuit ferme, en particulier de type a cycle de rankine, associe a un moteur a combustion interne, notamment pour vehicule automobile
WO2011128520A1 (fr) Moteur thermique sans carburant adaptable notamment a l'automobile et au nucleaire
FR2500883A1 (fr) Moteur a gaz destine a utiliser l'energie thermique solaire emmagasinee dans un fluide atmospherique, ses applications notamment a une installation de production d'energie et a un vehicule
BE489030A (fr)
FR2938003A1 (fr) Procede et dispositif de production d'electricite en utilisant de l'energie thermique a partir d'une source chaude,d'une source froide et d'un gaz moteur.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708346

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12708346

Country of ref document: EP

Kind code of ref document: A2