WO2012122926A1 - 避免海缆光路双端监测冲突的调度方法、装置与系统 - Google Patents

避免海缆光路双端监测冲突的调度方法、装置与系统 Download PDF

Info

Publication number
WO2012122926A1
WO2012122926A1 PCT/CN2012/072189 CN2012072189W WO2012122926A1 WO 2012122926 A1 WO2012122926 A1 WO 2012122926A1 CN 2012072189 W CN2012072189 W CN 2012072189W WO 2012122926 A1 WO2012122926 A1 WO 2012122926A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
monitored
monitoring
requested
occupied
Prior art date
Application number
PCT/CN2012/072189
Other languages
English (en)
French (fr)
Inventor
胡晓博
赵勇
许昌武
黎斌
Original Assignee
华为海洋网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为海洋网络有限公司 filed Critical 华为海洋网络有限公司
Publication of WO2012122926A1 publication Critical patent/WO2012122926A1/zh
Priority to US14/023,013 priority Critical patent/US20140010531A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a scheduling method, apparatus, and system for avoiding double-end monitoring conflict of a sea-line optical path.
  • COTDR Coherent Optical Time Domain
  • FIG. 1 is a schematic diagram of a cable network double-ended monitoring network of a prior art cable cable.
  • a COTDR (or OTDR) device on each end station may need to monitor multiple fibers (mutual exclusion of multiple fibers in the end station), so how to schedule COTDR (or OTDR) monitoring on each end station in the entire network
  • the monitoring timing of the equipment for each fiber to avoid conflicts becomes a problem that must be considered.
  • the prior art COTDR (or OTDR) device is implemented by LME (Line Monitor Equipment), and each pair of fibers is monitored by two LMEs, for example, fiber 1 is time-divisionally LME1 and LME2.
  • LME Line Monitor Equipment
  • the user configures the access time for the optical fiber 1 for the LME1 and the LME2 respectively, and then the LME1 and the LME2 start the monitoring of the optical fiber 1 with the timing of its own time.
  • the prior art method avoids the conflict of wavelengths depending on the premise that the peer device complies with the rules. Once the peer device does not comply with the convention, there is a possibility of conflict; in addition, if the timing of an end station is inaccurate, it is easy to occur. Conflicts cannot completely avoid wavelength conflicts from the root cause and have low reliability. Summary of the invention
  • Embodiments of the present invention provide a scheduling method, apparatus, and system for avoiding double-end monitoring conflicts of a submarine cable optical path, and implementing collision avoidance by monitoring communication and handshake between devices.
  • the embodiment of the present invention provides a scheduling method for avoiding double-end monitoring conflict of an optical cable optical path. The method includes: transmitting a wavelength occupation request message to a peer device on a selected optical cable to be monitored, and receiving the opposite end.
  • the wavelength-receiving response message returned by the device is used to determine whether the requested wavelength is occupied by the peer device from the wavelength occupancy response message; if the requested wavelength is already occupied by the peer device, and the wavelength is switchable, the switched The other wavelength monitors the selected optical cable path to be monitored; if the requested wavelength is not occupied by the peer device, the selected wavelength of the cable to be monitored is monitored using the requested wavelength.
  • the embodiment of the present invention further provides a scheduling device for avoiding double-end monitoring conflict of the optical cable optical path, the device comprising: a communication unit, configured to send a wavelength occupation to the opposite device on the selected optical cable to be monitored Requesting a message, and receiving a wavelength occupancy response message returned by the peer device; a command parsing unit, configured to parse, from the wavelength occupancy response message, whether the requested wavelength is occupied by the peer device; and the detection management unit, when used by the requesting The wavelength is already occupied by the peer device, and when the wavelength is switchable, the selected wavelength of the submarine cable to be monitored is monitored by using another wavelength after switching; when the requested wavelength is not occupied by the peer device, the requested wavelength pair is used.
  • the selected submarine cable light path to be monitored is monitored.
  • the embodiment of the present invention further provides a scheduling system for avoiding double-end monitoring conflict of a sea-coax optical path, the system comprising: a monitoring device connected to two ends of the optical cable to be monitored; and the monitoring device
  • the connected network management device is configured to send a wavelength occupation request message to the opposite device on the selected optical cable to be monitored, and receive a wavelength occupation response message returned by the opposite device;
  • the message is parsed whether the requested wavelength is occupied by the peer device; if the requested wavelength is already occupied by the peer device, and the wavelength is switchable, the selected wavelength of the to-be-monitored cable is monitored by using another wavelength after the switching; If the requested wavelength is not occupied by the peer device, the selected wavelength of the to-be-monitored cable is monitored by using the requested wavelength;
  • the network management device is configured to send configuration information to the monitoring device, where the configuration information is The communication address of the peer device corresponding to the monitoring device is included in at least the communication address.
  • the technical solution of the present invention is that the technical solution of the embodiment of the present invention realizes conflict avoidance by monitoring communication and handshake between devices, and improves monitoring efficiency; and the monitoring device added to the expanded submarine cable network can also be conveniently added to existing monitoring devices. Among the monitoring tasks, it is more flexible and easy to expand.
  • FIG. 1 is a schematic diagram of a prior art cable television double-end monitoring networking diagram
  • FIG. 2 is a general flowchart of a scheduling method for avoiding double-end monitoring conflict of an optical cable optical path according to an embodiment of the present invention
  • FIG. 3 is a detailed flowchart of a scheduling method for avoiding double-end monitoring conflict of an optical cable optical path according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a scheduling system for avoiding double-end monitoring conflict of a sea-coax optical path according to an embodiment of the present invention.
  • Embodiments of the present invention provide a scheduling method, apparatus, and system for avoiding double-end monitoring conflicts of a sea-line optical path to solve the problem of monitoring wavelength conflict faced by COTDR (or OTDR) equipment when performing optical path monitoring.
  • the scheme realizes the check and avoidance of monitoring conflicts efficiently and independently through the communication and handshake between the COTDR (or OTDR) devices themselves, and realizes the monitoring line selection and scheduling of the devices themselves at the level of all monitoring devices on the whole network.
  • the COTDR (or OTDR) device in the subsequent embodiments of the present invention will be exemplified by the LME device.
  • FIG. 2 is an overall flowchart of the method. As shown in FIG. 2, the method includes:
  • the method further includes: if the requested wavelength is already occupied by the peer device, and the wavelength is not switchable, but there are other cable optical paths to be monitored, reselecting the optical cable path to be monitored, and reselecting The wavelength occupancy request is sent to the peer device on the optical cable path to be monitored.
  • the method further includes: if the requested wavelength is already occupied by the other party, and the wavelength is not switchable, there is no other optical cable path to be monitored; and after the random waiting time t, the method is further sent to the opposite device. Wavelength occupancy request.
  • the method further includes: receiving the configuration information of the network management device, obtaining the communication address of the peer device, and obtaining the communication address of the peer device to implement the local device and the peer device in each step shown in FIG. Communication between.
  • the communication address of the peer device may also be pre-configured on the local device, so that it does not need to be acquired from the network management device every time.
  • the method further includes: pre-setting a monitoring period, and initiating monitoring of the cable optical path according to the monitoring period.
  • FIG. 3 is a detailed flowchart of a scheduling method for avoiding double-end monitoring conflict of an optical cable optical path according to an embodiment of the present invention. As shown in Figure 3, the method includes:
  • the monitoring device relies on the DCN (Data Communication Network) in the network or the in-band communication of the LME device at both ends of the optical path to complete the communication between the monitoring device and the management of the network management.
  • the network management device delivers the information to the local device. Start monitoring command;
  • the local device After receiving the command, the local device sends a request for using the specific wavelength to occupy the optical path to the peer device according to the communication scheme in S301.
  • the peer device After receiving the request of the local device, the peer device checks its usage of the optical path, and returns the situation to the local device.
  • the local device After receiving the response, the local device parses the information that the wavelength is occupied by the peer device. S305. If the wavelength is not occupied, use the wavelength to monitor the optical path.
  • FIG. 4 is a functional block diagram of the device 10.
  • the device 10 includes: a communication unit 401.
  • the method is configured to send a wavelength occupation request message to the peer device on the selected optical cable to be monitored, and receive a wavelength occupation response message returned by the peer device.
  • the command parsing unit 402 is configured to use the wavelength occupation response message.
  • the probe management unit 403 is configured to: when the requested wavelength has been occupied by the peer device The optical path is monitored; when the requested wavelength is not occupied by the peer device, the selected optical cable to be monitored is monitored using the requested wavelength.
  • the detection management unit 403 is further configured to: when the requested wavelength is occupied by the peer device, and the wavelength is not switchable, but when there are other cable optical paths to be monitored, reselecting the optical cable to be detected, and The wavelength selection request message is sent to the peer device on the reselected submarine cable optical path.
  • the detection management unit 403 is further configured to: when the requested wavelength is occupied by the other party, and the wavelength is not switchable, and there is no other optical cable to be monitored; and after the random waiting time t, send the signal to the peer device again.
  • the wavelength occupancy request is further configured to: when the requested wavelength is occupied by the other party, and the wavelength is not switchable, and there is no other optical cable to be monitored; and after the random waiting time t, send the signal to the peer device again.
  • the wavelength occupancy request is further configured to: when the requested wavelength is occupied by the other party, and the wavelength is not switchable, and there is no other optical cable to be monitored.
  • FIG. 5 is a schematic diagram of the system. As shown in FIG. 5, the system includes: a plurality of monitoring devices 10 connected to both ends of the optical cable path to be monitored; and a network management device 20 connected to the monitoring device.
  • the monitoring device 10 is configured to send a wavelength occupation request message to the peer device on the selected optical cable to be monitored, and receive a wavelength occupation response message returned by the opposite device; and parse the requested request from the wavelength occupancy response message. Whether the wavelength is occupied by the peer device; if the requested wavelength is already occupied by the peer device, and the wavelength is switchable, the selected wavelength of the to-be-monitored cable is monitored by using another wavelength after switching; if the requested wavelength is If it is not occupied by the peer device, the selected wavelength of the submarine cable to be monitored is monitored by the requested wavelength;
  • the network management device 20 is configured to send configuration information to the monitoring device, where the configuration information includes at least the communication address of the peer device corresponding to the monitoring device.
  • the monitoring device 10 is further configured to: when the requested wavelength is occupied by the peer device, and the wavelength is not switchable, but when there are other optical cables to be monitored, reselect the optical cable to be detected, and The selected wavelength occupancy request is sent to the peer device on the selected optical cable to be monitored.
  • the monitoring device 10 is further configured to: when the requested wavelength has been occupied by the other party, and the wavelength is not switchable, and there is no other optical cable to be monitored; after a random waiting time t, the device is sent to the opposite device again. The wavelength occupancy request.
  • the communication network of the system includes: an in-band communication network between monitoring devices, or a data communication network DCN, or one of an in-band communication network or a DCN as a primary communication network, and the other as a backup Communications network.
  • the NMS is responsible for the control and management of all devices on the network
  • the LME is responsible for the monitoring of the optical fibers, which interact through the DCN network.
  • the NMS configures the LME to monitor the optical fiber line information to the LME, and then sends the communication address of the LME peer device to the LME to start monitoring. Then the NMS can be managed. It is not necessary to control each LME device in real time; the DCN communication unit in the LME device is responsible for communication between devices, the command parsing unit is responsible for command parsing of communication between devices, and the detection management unit is responsible for processing of conflict monitoring logic.
  • the double-ended monitoring device self-negotially monitors the wavelength conflict; in the case of double-ended wavelength collision, adjusts the line monitoring sequence, fully utilizes the idle optical path, and shortens the overall monitoring time; and the double-end wavelength conflicts and the local wavelength can be switched.
  • the local monitoring wavelength is selected to avoid collision.
  • Effect 1 After the monitoring period of the network management device is monitored, the periodic monitoring of all the detecting devices is started uniformly, and the monitoring devices need not be scheduled after starting. The order of the optical paths is occupied. All the sequence is negotiated between the monitoring devices. The network management is not required to control the conflict prevention. For the offline of the network management, the monitoring equipment is not affected and the reliability is high;
  • Effect 2 Maximize the parallel monitoring of each optical path on the network. For the monitoring of the entire network, the time slice monitored by each device is uniformly allocated compared with the existing network management, and the device ensures that it can only be in a certain time. The monitoring plan, the monitoring time is shortened, and the efficiency is improved;
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

一种避免海缆光路双端监测冲突的调度方法、装置与系统,所述方法包括:在选择的待监测海缆光路上向对端设备发送波长占用请求消息,并接收对端设备返回的波长占用响应消息;从所述波长占用响应消息中解析出所请求的波长是否被对端设备占用;如果所请求的波长已经被对端设备占用,且波长可切换,则采用切换后的另一波长对选择的待监测海缆光路进行监测;如果所请求的波长未被对端设备占用,则采用请求的波长对选择的待监测海缆光路进行监测。本发明实施例的技术方案通过监测设备之间的通讯与握手实现冲突避免。

Description

避免海缆光路默端监测冲突的调度方法、 装置与系统 本申请要求于 2011年 3月 11日提交中国专利局、 申请号为 201110059179.4、 名称为 "避免海缆光路双端检测冲突的调度方法、 装置与系统" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,特别涉及一种避免海缆光路双端监测冲 突的调度方法、 装置与系统。
背景技术
现有技术中, 通常依靠 COTDR ( Coherent Optical Time Domain 光时域反射计)技术来监测海缆中的光路状况。 完整监测光路的状况需要从两 个方向分别监测, 并且需要避免两端同时使用同一光波长进行监测的情况。
图 1为现有技术的海缆光路双端监测组网图例, 如图 1所示, 在复杂组网情 况下, 由于存在多个端站(各端站对同一对光纤的占用互斥), 每个端站上的 一部 COTDR (或 OTDR )设备可能会需要监测多条光纤(端站内对于多条光纤 的监测互斥), 所以如何调度整个网络中各个端站上 COTDR (或 OTDR )监测 设备对各条光纤的监测时序以避免沖突成为必须要考虑的问题。
现有技术的一种解决方案是:在进行网络规划时规划出各个线路每个方向 上的监测时间, 各个站点从网管设备 20获得各自的监测时间, 并按照该时间进 行监测。如图 1所示,现有技术的 COTDR(或 OTDR )设备釆用 LME( Line Monitor Equipment, 线路监控设备) 来实现, 每对光纤被两部 LME监控, 如, 光纤 1 被 LME1和 LME2分时监控,用户为 LME1和 LME2分别配置对光纤 1的访问时间, 之后, LME1和 LME2以自身的时间为标准去定时启动对光纤 1的监测。 现有技 术的方法将波长冲突避免依赖于对端设备遵守规则这一前提,一旦对端设备不 遵守约定, 则会存在冲突的可能; 另外, 如果某个端站的时间不准确则会容易 发生冲突, 无法从根源上彻底的避免波长冲突的发生, 可靠性低。 发明内容
本发明实施例提供了一种避免海缆光路双端监测冲突的调度方法、装置与 系统, 通过监测设备之间的通讯与握手实现冲突避免。 一方面, 本发明实施例提供一种避免海缆光路双端监测冲突的调度方法, 所述方法包括:在选择的待监测海缆光路上向对端设备发送波长占用请求消息 , 并接收对端设备返回的波长占用响应消息;从所述波长占用响应消息中解析出 所请求的波长是否被对端设备占用; 如果所请求的波长已经被对端设备占用, 且波长可切换, 则采用切换后的另一波长对选择的待监测海缆光路进行监测; 如果所请求的波长未被对端设备占用,则采用请求的波长对选择的待监测海缆 光路进行监测。
另一方面,本发明实施例还提供一种避免海缆光路双端监测冲突的调度装 置, 所述装置包括: 通信单元, 用于在选择的待监测海缆光路上向对端设备发 送波长占用请求消息, 并接收对端设备返回的波长占用响应消息; 命令解析单 元,用于从所述波长占用响应消息中解析出所请求的波长是否被对端设备占用; 探测管理单元, 用于当所请求的波长已经被对端设备占用 , 且波长可切换时, 釆用切换后的另一波长对选择的待监测海缆光路进行监测;当所请求的波长未 被对端设备占用时, 采用请求的波长对选择的待监测海缆光路进行监测。
又一方面,本发明实施例还提供一种避免海缆光路双端监测冲突的调度系 统, 所述系统包括: 与多个待监测海缆光路两端连接的监测设备; 以及与所述 监测设备连接的网络管理设备; 所述监测设备, 用于在选择的待监测海缆光路 上向对端设备发送波长占用请求消息,并接收对端设备返回的波长占用响应消 息; 从所述波长占用响应消息中解析出所请求的波长是否被对端设备占用; 如 果所请求的波长已经被对端设备占用, 且波长可切换, 则采用切换后的另一波 长对选择的待监测海缆光路进行监测; 如果所请求的波长未被对端设备占用, 则采用请求的波长对选择的待监测海缆光路进行监测; 所述网络管理设备, 用 于向所述监测设备下发配置信息,所述配置信息中至少包含所述与监测设备对 应的对端设备的通信地址。
本发明的有益效果在于,本发明实施例的技术方案通过监测设备之间的通 信与握手来实现冲突避免,提高了监测效率; 对于扩容海缆网络中增加的监测 设备也能够方便的加入现有监测任务当中, 更灵活, 易于扩容。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术的海缆光路双端监测组网图例;
图 2为本发明实施例避免海缆光路双端监测冲突的调度方法整体流程图; 图 3为本发明实施例避免海缆光路双端监测沖突的调度方法详细流程图; 图 4为本发明实施例避免海缆光路双端监测沖突的调度装置功能框图; 图 5为本发明实施例避免海缆光路双端监测冲突的调度系统原理图。 具体实施方式
本发明实施例提供一种避免海缆光路双端监测冲突的调度方法、装置与系 统, 以解决 COTDR (或 OTDR )设备进行光路监测时所面临的监测波长冲突问 题。 该方案通过 COTDR (或 OTDR )设备自身之间的通讯与握手, 高效、 独立 的实现监测冲突的校验和避免,并且在全网所有监测设备的层面上实现设备自 身的监测线路选择和调度。 本发明后续实施例中的 COTDR (或 OTDR )设备将 采用 LME设备来举例说明。
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明实施例首先提供一种避免海缆光路双端监测冲突的调度方法, 图 2 为该方法的整体流程图, 如图 2所示, 该方法包括:
5201、在选择的待监测海缆光路上向对端设备发送波长占用请求消息, 并 接收对端设备返回的波长占用响应消息;
5202、从所述波长占用响应消息中解析出所请求的波长是否被对端设备占 用;
5203、 如果所请求的波长已经被对端设备占用, 且波长可切换, 则采用切 换后的另一波长对选择的待监测海缆光路进行监测;如果所请求的波长未被对 端设备占用, 则采用请求的波长对选择的待监测海缆光路进行监测。 可选地, 所述方法还包括: 如果所请求的波长已经被对端设备占用, 且波 长不可切换, 但存在其他待监测海缆光路时, 重新选择待监测海缆光路, 并在 重新选择的待监测海缆光路上向对端设备发送所述波长占用请求。
可选地, 所述方法还包括: 如果所请求的波长已经被对方占用, 且波长不 可切换, 也不存在其他待监测海缆光路; 则随机等待时间 t后, 再次向对端设 备发送所述波长占用请求。
可选地, 所述方法还包括: 接收网管设备的配置信息, 获取对端设备的通 信地址, 通过获取对端设备的通信地址就可以实现图 2所示各步骤中本端设备 与对端设备之间的通信。 当然, 对端设备的通信地址也有可能是预先配置于本 端设备的, 这样就不需要每次都从网管设备获取。
可选地, 所述方法还包括: 预先设置监测周期, 根据所述监测周期发起对 海缆光路的监测。
图 3为本发明实施例避免海缆光路双端监测冲突的调度方法详细流程图。 如图 3所示, 该方法包括:
S301、 监测设备在网络中依靠 DCN ( Data Communication Network, 数据 通讯网)或所负责监控光路两端的 LME设备的带内通信完成监测设备之间的通 信和接受网管的管理; 网管向本端设备下发启动监测命令;
S302、本端设备收到命令后基于 S301中的通信方案, 向对端设备发送使用 特定波长占用光路请求;
S303、对端设备接收到本端设备的请求后检查自己对光路的使用情况, 并 向本端设备返回该情况;
S304、 本端设备收到响应后, 解析出波长是否被对端设备占用的信息; S305、 如果波长未被占用, 则采用该波长对所述光路进行监测;
S306、 如果波长被占用, 且进一步判断本端波长是否可切换;
S307、 如果本端设备波长可切换, 则更换监测波长进行监测;
5308、 如果只有一个可用波长, 则继续判断是否还有其他待监测线路;
5309、如还有待监测的其他线路, 则重新选择其他线路, 并返回 S302进行 其他线路的监测;
5310、如果 S304中解析出波长已经被占用 ,且本端设备只有一个可用波长, 并无待监测的其他线路可选, 则等待随机时间 t后再次向对端设备发起请求。 对应于前述实施例的方法,本实施例还提供一种避免海缆光路双端监测冲 突的调度装置, 图 4为该装置 10的功能框图, 如图 4所示, 该装置 10包括: 通信 单元 401 ,用于在选择的待监测海缆光路上向对端设备发送波长占用请求消息, 并接收对端设备返回的波长占用响应消息; 命令解析单元 402, 用于从所述波 长占用响应消息中解析出所请求的波长是否被对端设备占用; 探测管理单元 403 , 用于当所请求的波长已经被对端设备占用, 且波长可切换时, 采用切换 后的另一波长对选择的待监测海缆光路进行监测;当所请求的波长未被对端设 备占用时, 采用请求的波长对选择的待监测海缆光路进行监测。
可选地, 所述探测管理单元 403 , 还用于当所请求的波长已经被对端设备 占用, 且波长不可切换, 但存在其他待监测海缆光路时, 重新选择待检测海缆 光路,并在重新选择的待监测海缆光路上向对端设备发送所述波长占用请求消 息。
可选, 所述探测管理单元 403, 还用于当所请求的波长已经被对方占用, 且波长不可切换, 也不存在其他待监测海缆光路时; 随机等待时间 t后, 再次 向对端设备发送所述波长占用请求。
对应于前述实施例的方法与装置,本发明实施例还提供一种避免海缆光路 默端监测冲突的调度系统, 图 5为该系统的原理图, 如图 5所示, 该系统包括: 与多个待监测海缆光路两端连接的监测设备 10;以及与所述监测设备连接的网 络管理设备 20。
所述监测设备 10,用于在选择的待监测海缆光路上向对端设备发送波长占 用请求消息, 并接收对端设备返回的波长占用响应消息; 从所述波长占用响应 消息中解析出所请求的波长是否被对端设备占用;如果所请求的波长已经被对 端设备占用, 且波长可切换, 则采用切换后的另一波长对选择的待监测海缆光 路进行监测; 如果所请求的波长未被对端设备占用, 则釆用请求的波长对选择 的待监测海缆光路进行监测;
所述网络管理设备 20, 用于向所述监测设备下发配置信息, 所述配置信息 中至少包含所述与监测设备对应的对端设备的通信地址。
可选地, 所述监测设备 10, 还用于当所请求的波长已经被对端设备占用, 且波长不可切换, 但存在其他待监测海缆光路时, 重新选择待检测海缆光路, 并在重新选择的待监测海缆光路上向对端设备发送所述波长占用请求。 可选地, 所述监测设备 10 , 还用于当所请求的波长已经被对方占用, 且波 长不可切换, 也不存在其他待监测海缆光路时; 随机等待时间 t后, 再次向对 端设备发送所述波长占用请求。
可选地, 所述系统的通信网络包括: 监测设备之间的带内通信网络, 或者 数据通信网 DCN, 或者将带内通信网络或者 DCN的其中之一作为主通信网络, 另一种作为备份通信网络。
如图 5所示, 该系统的具体工作原理是: NMS负责网络上所有设备的控制 管理, LME负责光纤的监控,其通过 DCN网络进行交互。在用户需要启动 LME 设备对光纤进行监测时, NMS将 LME待监测的光纤线路信息配置给 LME, 然 后将 LME对端设备的通信地址下发给 LME, 启动监测, 接下来 NMS就可以托 管, 而不需要实时的控制各个 LME设备; LME设备中 DCN通信单元负责设备 之间的通信, 命令解析单元负责设备之间通信的命令解析, 探测管理单元则负 责冲突监测逻辑的处理。
本发明技术方案中, 双端监测设备自协商监测波长冲突; 在双端波长冲突 情况下, 调整线路监测顺序, 充分利用空闲光路, 缩短整体监测时间; 在双端 波长沖突且本端波长可切换的情况下, 协商选择本端的监测波长以避免沖突。
通过上述技术特征, 本发明实施例的技术方案能够取得以下技术效果: 效果一: 网管配置监测设备各自的监测周期后, 统一启动所有探测设备的 周期性监测, 启动后不需要再调度各监测设备占用光路的先后顺序, 所有先后 顺序由监测设备之间协商完成, 不需要网管去控制防止冲突情况。对于网管的 离线, 监测设备不受影响, 可靠性高;
效杲二:最大化的并行了网络上各光路的监测,对于整个网络的监测来说, 相比现有的网管统一分配各设备监测的时间片、由设备确保自己只能在特定的 时间内监测的方案, 监测时间缩短, 效率提高;
效果三: 本方案中的冲突监测完全依赖于设备之间的协议协商机制, 对于 扩容海缆网络中增加的监测设备也能够方便的加入现有监测任务当中,更灵活, 易于扩容。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM ) 或随机存储记忆体 ( Random Access Memory, RAM )等。
以上实施例仅用以说明本发明实施例的技术方案, 而非对其限制; 尽管参 照前述实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当 理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部 分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质 脱离本发明实施例各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种避免海缆光路双端监测冲突的调度方法, 其特征在于, 所述方法 包括:
在选择的待监测海缆光路上向对端设备发送波长占用请求消息,并接收对 端设备返回的波长占用响应消息;
从所述波长占用响应消息中解析出所请求的波长是否被对端设备占用; 如果所请求的波长已经被对端设备占用, 且波长可切换, 则采用切换后的 另一波长对选择的待监测海缆光路进行监测;如果所请求的波长未被对端设备 占用, 则采用请求的波长对选择的待监测海缆光路进行监测。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 如果所请求的波长已经被对端设备占用, 且波长不可切换, 但存在其他待 监测海缆光路时, 重新选择待检测海缆光路, 并在重新选择的待监测海缆光路 上向对端设备发送所述波长占用请求。
3、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 如果所请求的波长已经被对方占用, 且波长不可切换, 也不存在其他待监 测海缆光路; 则随机等待时间 t后, 再次向对端设备发送所述波长占用请求。
4、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 接收网管设备的配置信息, 获取对端设备的通信地址。
5、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 预先设置监测周期, 根据所述监测周期发起对海缆光路的监测。
6、 一种避免海缆光路双端监测冲突的调度装置, 其特征在于, 所述装置 包括:
通信单元,用于在选择的待监测海缆光路上向对端设备发送波长占用请求 消息, 并接收对端设备返回的波长占用响应消息;
命令解析单元,用于从所述波长占用响应消息中解析出所请求的波长是否 被对端设备占用;
探测管理单元, 用于当所请求的波长已经被对端设备占用, 且波长可切换 时, 采用切换后的另一波长对选择的待监测海缆光路进行监测; 当所请求的波 长未被对端设备占用时, 采用请求的波长对选择的待监测海缆光路进行监测。
7、 根据权利要求 6所述的装置, 其特征在于, 所述探测管理单元,还用于当所请求的波长已经被对端设备占用, 且波长 不可切换, 但存在其他待监测海缆光路时, 重新选择待检测海缆光路, 并在重 新选择的待监测海缆光路上向对端设备发送所述波长占用请求消息。
8、 根据权利要求 6所述的装置, 其特征在于,
所述探测管理单元,还用于当所请求的波长已经被对方占用, 且波长不可 切换, 也不存在其他待监测海缆光路时; 随机等待时间 t后, 再次向对端设备 发送所述波长占用请求。
9、 一种避免海缆光路双端监测冲突的调度系统, 其特征在于, 所述系统 包括: 与多个待监测海缆光路两端连接的监测设备; 以及与所述监测设备连接 的网络管理设备;
所述监测设备,用于在选择的待监测海缆光路上向对端设备发送波长占用 请求消息, 并接收对端设备返回的波长占用响应消息; 从所述波长占用响应消 息中解析出所请求的波长是否被对端设备占用;如果所请求的波长已经被对端 设备占用, 且波长可切换, 则釆用切换后的另一波长对选择的待监测海缆光路 进行监测; 如果所请求的波长未被对端设备占用, 则采用请求的波长对选择的 待监测海缆光路进行监测;
所述网络管理设备, 用于向所述监测设备下发配置信息, 所述配置信息中 至少包含所述与监测设备对应的对端设备的通信地址。
10、 根据权利要求 9所述的系统, 其特征在于,
所述监测设备, 还用于当所请求的波长已经被对端设备占用, 且波长不可 切换, 但存在其他待监测海缆光路时, 重新选择待检测海缆光路, 并在重新选
11、 根据权利要求 9所述的系统, 其特征在于,
所述监测设备,还用于当所请求的波长已经被对方占用,且波长不可切换, 也不存在其他待监测海缆光路时; 随机等待时间 t后, 再次向对端设备发送所 述波长占用请求。
12、根据权利要求 9所述的系统,其特征在于,所述系统的通信网络包括: 监测设备之间的带内通信网络,或者数据通信网 DCN,或者将带内通信网络或 者 DCN的其中之一作为主通信网络, 另一种作为备份通信网络。
PCT/CN2012/072189 2011-03-11 2012-03-12 避免海缆光路双端监测冲突的调度方法、装置与系统 WO2012122926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/023,013 US20140010531A1 (en) 2011-03-11 2013-09-10 Scheduling method, apparatus, and system for avoiding dual-end monitoring conflict for submarine cable optical line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110059179.4A CN102170308B (zh) 2011-03-11 2011-03-11 避免海缆光路双端监测冲突的调度方法、装置与系统
CN201110059179.4 2011-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/023,013 Continuation US20140010531A1 (en) 2011-03-11 2013-09-10 Scheduling method, apparatus, and system for avoiding dual-end monitoring conflict for submarine cable optical line

Publications (1)

Publication Number Publication Date
WO2012122926A1 true WO2012122926A1 (zh) 2012-09-20

Family

ID=44491303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072189 WO2012122926A1 (zh) 2011-03-11 2012-03-12 避免海缆光路双端监测冲突的调度方法、装置与系统

Country Status (3)

Country Link
US (1) US20140010531A1 (zh)
CN (1) CN102170308B (zh)
WO (1) WO2012122926A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170308B (zh) * 2011-03-11 2014-02-19 华为海洋网络有限公司 避免海缆光路双端监测冲突的调度方法、装置与系统
CN105187120A (zh) * 2015-08-21 2015-12-23 桂林聚联科技有限公司 一种使用一个监测波长实现超长距离光缆监测的装置及方法
US10225005B1 (en) * 2018-03-09 2019-03-05 Elbex Video Ltd. Communication infrastructure devices and support tools for intelligent residences or businesses and communicating method with and operating intelligent electrical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155432A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 光突发交换系统中时延抖动的保护方法和核心节点
CN101605284A (zh) * 2009-07-13 2009-12-16 中兴通讯股份有限公司 Otu单板可用波长的获取方法及装置
CN101984561A (zh) * 2010-11-15 2011-03-09 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法
CN102170308A (zh) * 2011-03-11 2011-08-31 华为海洋网络有限公司 避免海缆光路双端监测冲突的调度方法、装置与系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728484B1 (en) * 1999-09-07 2004-04-27 Nokia Corporation Method and apparatus for providing channel provisioning in optical WDM networks
DE10105675B4 (de) * 2001-02-08 2004-02-12 Siemens Ag Verfahren zum Verbindungsaufbau in zumindest einem optischen WDM-Übertragungssystem
US7113706B2 (en) * 2001-08-13 2006-09-26 Lee Feinberg Systems and methods for placing line terminating equipment of optical communication systems in customer points of presence
US7483631B2 (en) * 2002-12-24 2009-01-27 Intel Corporation Method and apparatus of data and control scheduling in wavelength-division-multiplexed photonic burst-switched networks
US20050196175A1 (en) * 2004-03-05 2005-09-08 Evangelides Stephen G.Jr. Method and apparatus for obtaining status information concerning an in-service optical transmission line
US7469104B2 (en) * 2005-04-27 2008-12-23 Red Sky Subsea, Ltd. COTDR arrangement for an undersea optical transmission system comprising multiple cable stations and multiple transmission segments
CN101051869A (zh) * 2007-05-17 2007-10-10 上海光朗信通讯技术有限公司 光缆通信线路安防监控系统
CN101729141B (zh) * 2008-10-21 2013-06-05 华为技术有限公司 对海缆系统进行监测的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155432A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 光突发交换系统中时延抖动的保护方法和核心节点
CN101605284A (zh) * 2009-07-13 2009-12-16 中兴通讯股份有限公司 Otu单板可用波长的获取方法及装置
CN101984561A (zh) * 2010-11-15 2011-03-09 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法
CN102170308A (zh) * 2011-03-11 2011-08-31 华为海洋网络有限公司 避免海缆光路双端监测冲突的调度方法、装置与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU BO ET AL.: "On-Line Supervision for Undersea Optical Fiber System and Technique of Coherent Optical Time-Domain Reflectometer", JIANGSU COMMUNICATION TECHNOLOGY, vol. 17, no. 6, December 2011 (2011-12-01), pages 27 - 30 *

Also Published As

Publication number Publication date
CN102170308B (zh) 2014-02-19
CN102170308A (zh) 2011-08-31
US20140010531A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
CN107547589B (zh) 一种数据采集处理方法以及装置
RU2259640C2 (ru) Способ управления процессом кольцевой проверки в пассивной оптической сети ethernet
KR100759742B1 (ko) 매체 변환기 및 장애 검출 기술
US9712901B2 (en) Interconnection system, apparatus, and data transmission method
US20140317671A1 (en) Method and system for transmitting network video
WO2019052069A1 (zh) 一种主备竞争方法、装置及应用设备
WO2012122926A1 (zh) 避免海缆光路双端监测冲突的调度方法、装置与系统
CN113542150B (zh) 一种数据传输方法、装置及中心端网桥
US20200389359A1 (en) Unidirectional link detection mode auto-detection
US10149139B2 (en) Connection control method by communication terminal
EP3534657B1 (en) Dynamic time allocation method and device
US11962401B2 (en) Reducing connection validation (CV) time in an optical node
CN108599984A (zh) 共享端口状态的方法、接入设备及支持双归属保护的系统
US20180329758A1 (en) Method and device for transmitting managing instruction and managing automatic scaling function of vnf
WO2020013091A1 (ja) 通信装置及び通信方法
WO2022069064A1 (en) Methods and apparatuses for mobile communication systems
JP7449521B2 (ja) 無線デバイスの通信方法、無線デバイス及びコンピュータ読み取り可能な記憶媒体
JP6982246B2 (ja) 通信装置、通信システム及び通信方法
CN105553864B (zh) 降低lmp中消息数量的方法及装置
WO2013056569A1 (zh) 一种板间通信的方法及通信设备
WO2023050160A1 (zh) 信道接入参数的更新方法、装置、设备及存储介质
WO2017133666A1 (zh) 接入方法、ue的能力和/或操作特征的确定方法及装置
JP2014515218A (ja) サービス品質(qos)管理のための方法および装置
JP5573434B2 (ja) 情報処理装置の通信プログラム、情報処理装置、情報処理システム及び情報処理システムの通信方法
CN111294949A (zh) 策略信息的接收、发送方法及装置、终端、基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758136

Country of ref document: EP

Kind code of ref document: A1