WO2012122799A1 - 信号放大电路及放大输出信号的方法 - Google Patents

信号放大电路及放大输出信号的方法 Download PDF

Info

Publication number
WO2012122799A1
WO2012122799A1 PCT/CN2011/081130 CN2011081130W WO2012122799A1 WO 2012122799 A1 WO2012122799 A1 WO 2012122799A1 CN 2011081130 W CN2011081130 W CN 2011081130W WO 2012122799 A1 WO2012122799 A1 WO 2012122799A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
operational amplifier
output
circuit
amplifying circuit
Prior art date
Application number
PCT/CN2011/081130
Other languages
English (en)
French (fr)
Inventor
王林国
张滨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012122799A1 publication Critical patent/WO2012122799A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45654Indexing scheme relating to differential amplifiers the LC comprising one or more extra diodes not belonging to mirrors

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a signal amplifying circuit and a method of amplifying an output signal.
  • the output signal of the controller is usually weak, and it needs to be amplified and conditioned to drive subsequent actuators.
  • the signal amplification and conditioning circuit is usually implemented by an operational amplifier (op amp) circuit, and the operational amplifier itself is limited by the current process and internal structure, and the slew rate of the output voltage has a certain bottleneck (kV). /us).
  • FIG. 1 it is a typical signal amplifying circuit in the prior art.
  • 101 is an operational amplifier with its forward input terminal 102 grounded.
  • the output signal Vout is connected to the inverting input through a feedback resistor R2 to form a negative feedback.
  • the negative terminal 105 supply voltage V- needs to be less than 0, and the positive supply terminal 104 supply voltage V+ cannot exceed the amplitude of 104 to 105 (V+ minus V-), for a supply voltage
  • the rail-to-rail amplitude (V+ minus V-) needs to be less than 30V, then the positive supply voltage V+ of the positive supply voltage terminal needs to be less than 30V, and the circuit cannot output an amplified signal greater than 30V, that is, the output cannot be exceeded.
  • the amplitude of the op amp supply voltage is generated by the rail-to-rail amplitude (V+ minus V-)
  • FIG. 2 it is another typical signal amplifying circuit in the prior art.
  • DAC digital to analog converter
  • the output signal is usually in the form of a current source, such as Iin in Figure 2.
  • Iin current source
  • the voltage amplitude of the output signal is usually small, at the mV level, so the forward input of the op amp in the circuit shown in Figure 2 needs to be grounded, and its output signal Vout and input signal
  • the amplitude of the Vout at the output of the op amp cannot be greater than the forward supply voltage V+, which is the same as the circuit shown in Figure 1. For a 30V supply op amp, the circuit cannot output more than 30V. Amplified signal.
  • the current op amp products make the supply voltage of high-bandwidth op amps (such as greater than 100MHz) generally not exceed 30V.
  • the output amplification voltage of the operational amplifier and the output voltage of the conditioning circuit cannot exceed the supply voltage of the operational amplifier, and even the rail-to-rail operational amplifier can only be close to the supply voltage. Therefore, prior art signal amplification and conditioning circuits are not suitable for high voltage amplification of high bandwidth signals.
  • the present invention provides a signal amplifying circuit for solving the problem of high voltage amplification of an existing signal amplifying circuit that is not suitable for high bandwidth signals.
  • the present invention provides a signal amplifying circuit including an operational amplifier and a feedback network, the feedback network being connected between an output of the signal amplifying circuit and a negative input terminal of the operational amplifier,
  • the signal amplifying circuit further includes a boosting circuit connected between an output end of the operational amplifier and an output end of the signal amplifying circuit.
  • the signal amplifying circuit further includes a power amplifier connected between the boosting circuit and an output of the signal amplifying circuit.
  • the signal amplifying circuit further includes a step-down circuit, and an input end of the step-down circuit is connected to a positive power supply terminal, and an output end of the step-down circuit is connected to a positive power supply end of the operational amplifier.
  • the step-down circuit includes a first Zener diode and a first capacitor; a cathode of the first Zener diode is connected to a positive supply voltage terminal, an anode of the first Zener diode and a positive power supply terminal of the operational amplifier One end of the first capacitor is connected to a positive power supply terminal of the operational amplifier, and the other end of the first capacitor is connected to or grounded to the positive power supply voltage terminal.
  • the boosting circuit includes a second Zener diode, a second capacitor and a resistor; an output of the operational amplifier is connected to an anode of the second Zener diode, a cathode of the second Zener diode and the feedback Connected to the network; one end of the resistor is connected to the positive supply voltage end, and the other end of the resistor is opposite to the second The cathode of the Zener diode is connected; one end of the second capacitor is connected to the anode of the second Zener tube, and the other end of the second capacitor is connected to the cathode of the second Zener tube.
  • the positive supply terminal of the operational amplifier is connected to the power supply after the step-down.
  • the present invention provides a method of amplifying an output signal, the method comprising:
  • the new output signal is provided as a feedback signal to the feedback network.
  • the method further includes:
  • the supply voltage connected to the positive supply terminal of the operational amplifier is stepped down.
  • the method further includes:
  • the steps of using the boosted signal as a new output signal include:
  • the boosted signal is power amplified, and the power amplified signal is used as the new output signal.
  • the above signal amplifying circuit and the method for amplifying the output signal can effectively improve the output of the entire circuit, and better solve the high voltage amplification problem of the high bandwidth signal.
  • FIG. 1 is a schematic diagram of a signal amplifying circuit in the prior art
  • FIG. 2 is a schematic diagram of another signal amplifying circuit in the prior art
  • Embodiment 3 is a schematic structural view of Embodiment 1 of a signal amplifying circuit of the present invention.
  • FIG. 4 is a schematic structural view of a first application example of a signal amplifying circuit of the present invention.
  • FIG. 5 is a schematic structural diagram of a second application example of a signal amplifying circuit of the present invention.
  • FIG. 6 is a schematic diagram showing waveforms of signals in a signal amplifying circuit of the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 2 of a signal amplifying circuit of the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of an application circuit of the present invention. Preferred embodiment of the invention
  • the current high voltage amplification problem for solving high bandwidth signals requires waiting for the op amp device manufacturer to improve the process to introduce the next generation product.
  • the application of the present invention can solve the high voltage amplification problem of high bandwidth signals on the basis of existing operational amplifier devices.
  • the signal amplifying circuit includes a step-down circuit in addition to the boosting circuit.
  • the positive power supply voltage V+ is stepped down.
  • the circuit 302 then supplies power to the positive power supply terminal 104 of the operational amplifier 101.
  • the output terminal 106 of the operational amplifier passes through the boosting circuit 303 to obtain an output signal Vout, which is connected to the negative input terminal 103 of the operational amplifier via a feedback resistor R1. Since the buck circuit is used, for a 30V supply voltage op amp, V+ can be greater than 30V, and the output of the op amp can be up to 30V.
  • Vout can be greater than 30V.
  • the feedback signal from op amp 101 is taken from the final Vout to ensure signal amplification and conditioning accuracy of the circuit.
  • the portion shown at 301 is equivalent to an operational amplifier 101 that implements a high voltage version. It should be noted that the signal amplifying circuit of the present invention is as shown in 301, and its peripheral circuit can be connected in various ways as a normal operational amplifier.
  • FIG. 4 it is a schematic structural diagram of a signal amplifying circuit application example of the present invention.
  • the step-down circuit 302 of FIG. 3 is implemented by a Zener diode Z1 and a bypass capacitor C1.
  • the bypass capacitor C1 provides the AC part of the current supply current of the op amp 101, which ensures the dynamic performance of the op amp 101, and also makes the Zener Z1 only pass the DC current, which ensures the stability of the step-down voltage.
  • the tube Z2 and the bypass capacitor C2 realize the boosting circuit 303 in FIG.
  • the bypass capacitor C2 passes through the alternating current portion of the output current, and the resistor R2 provides the reverse bias DC current of the Zener diode Z2 through the supply voltage V+, ensuring the boosting
  • the stability of the voltage and the DC portion of the Vout output current ensure the accuracy of the output voltage Vout.
  • the structure of the boosting circuit shown in FIG. 4 is only an example, and those skilled in the art should understand that the boosting circuit has other implementation forms, for example, a cathode connection resistor can be connected to the second voltage regulator Z2.
  • Other components, and the resistor R2 in FIG. 4 may have other alternatives or be replaced with other components.
  • the corresponding step-down circuit is only an example.
  • the buck circuit has other implementations.
  • the bypass capacitor C1 in FIG. 4 can be grounded as shown in FIG. 5, and the op amp 101 can be powered by the power supply terminal.
  • the AC loop is smaller.
  • 6 is a waveform diagram of signals in the signal amplifying circuit of the present invention, wherein 601 is a waveform of the output voltage Vout, 602 is a waveform of a power supply voltage of the positive power supply terminal 104 of the operational amplifier 101, and 603 is a waveform of the input current Iin.
  • FIG. 7 it is a schematic structural diagram of the second embodiment of the signal amplifying circuit of the present invention.
  • the power supply V+ after the step-down is directly used to supply power to the positive power supply terminal 104 of the operational amplifier.
  • the improvement of the present invention is also the operational configuration of the booster circuits 303 and 701, and the peripheral circuits can be connected in a variety of ways as in the case of a conventional operational amplifier.
  • the above signal amplifying circuit can effectively improve the output of the entire circuit, and better solve the high voltage amplification problem of the high bandwidth signal.
  • FIG. 8 is a schematic structural diagram of an application circuit embodiment of the present invention.
  • the application circuit in FIG. 8 includes 701 and a power amplifying device 801 shown in FIG. 7, wherein an output signal of 701 passes through the power amplifying device 801.
  • the power signal Vout is obtained and fed back to the negative input terminal of the operational amplifier to ensure the accuracy of the output signal of the high power.
  • the above application circuit can be used as a direct drive actuator in the control system, or directly as a power amplifying device.
  • the present invention also provides a method of amplifying an output signal, the method comprising:
  • the new output signal is provided as a feedback signal to the feedback network.
  • the method may further include: stepping down the supply voltage connected to the positive power supply terminal of the operational amplifier. Since the supply voltage can be stepped down, the supply voltage supplied to the positive supply terminal of, for example, a 30V supply voltage amplifier is greater than 30V, thereby The output signal of the op amp can be up to 30V, so that the boosted signal can be greater than 30V.
  • the method may further include: connecting the positive power supply terminal of the operational amplifier to the power supply after the step-down.
  • the boosting the output signal of the operational amplifier and using the boosted signal as the output signal may include: boosting an output signal of the operational amplifier, and performing power amplification on the boosted signal to perform power The amplified signal is used as a new output signal.
  • the above method for providing an output signal can effectively improve the output of the entire circuit, and better solve the problem of high voltage amplification of the high bandwidth signal.
  • the invention can effectively improve the output of the whole circuit, and better solve the high voltage amplification problem of the high bandwidth signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种信号放大电路及放大输出信号的方法,其中,该信号放大电路包括运算放大器和反馈网络,所述反馈网络连接在所述信号放大电路的输出端和所述运算放大器的负向输入端之间,所述信号放大电路还包括升压电路,所述升压电路连接在所述运算放大器的输出端和所述信号放大电路的输出端之间。上述信号放大电路及放大输出信号的方法,可以有效地提高整个电路的输出,较好地解决了高带宽信号的高压放大问题。

Description

信号放大电路及放大输出信号的方法
技术领域
本发明涉及电子技术领域, 尤其涉及一种信号放大电路及放大输出信号 的方法。
背景技术
在电子装置中, 有多种场合需要信号的放大与调理, 特别是在控制系统 中, 控制器的输出信号通常都是比较微弱的, 需要经过放大与调理后才能驱 动后续执行机构。 在现有技术中, 信号放大与调理电路通常釆用运放 (运算放 大器)电路实现, 而运放本身受当前工艺和内部结构限制, 输出电压的压摆率 (Slew Rate)存在一定瓶颈 (kV/us)。
如图 1所示, 为现有技术中一种典型信号放大电路。 图 1 中, 101为运 算放大器, 其正向输入端 102接地, 输出信号 Vout通过反馈电阻 R2接至反 向输入端, 形成负反馈, 输出信号 Vout 与输入信号 Vin 的放大关系为: Vout=(R2/Rl)*Vin , 其中 R1为输入电阻; 要保证此正常放大关系, 运放 101 的工作条件是其输入端 102、 103及输出端 106信号 Vout的幅值在正负端供 电电压 (V+、 V-)之间, 因此输出信号 Vout的幅值不能大于 V+。 而由于运放 101正向输入端 102接地, 负端 105供电电压 V-需小于 0, 正供电端 104供 电电压 V+不能超过 104到 105的幅值 (V+减 V-), 对于一供电电压为 30V的 运放, 要求轨到轨幅值 (V+减 V-)需小于 30V, 则正供电电压端的正供电电压 V+也需小于 30V, 进而该电路无法输出大于 30V的放大信号, 即不能输出超 过运放供电电压的幅值。
如图 2所示, 为现有技术中另一种典型的信号放大电路。 对于数字控制 系统, 其控制信号通常需要经过数模转换器 DAC (Digital to Analog Converter)201转换成模拟信号。对于高带宽的 DAC器件,基于实现成本和输 出信号抗干扰等因素的考虑, 其输出信号通常是以电流源的形式, 如图 2中 Iin。 而基于器件功耗考虑, 其输出信号的电压幅值通常很小, 在 mV级别, 所以图 2所示电路中运放的正向输入端需要接地,其输出信号 Vout与输入信 号 Iin的放大关系为: Vout=Iin*Rl , 同样运放输出端的 Vout幅值大小不能大 于正向供电电压 V+, 与图 1所示电路相同, 对于 30V供电运放, 该电路无 法输出大于 30V的放大信号。
由此可见, 当前运放产品使得高带宽运放的 (如大于 100MHz)供电电压一 般不超过 30V。 而现有技术中, 应用运放的信号放大与调理电路输出电压都 不能超过运放的供电电压, 即使对轨到轨 (Rail to Rail)的运放也只能接近于供 电电压。 因此, 现有技术中的信号放大与调理电路并不适用于对高带宽信号 的高压放大。
发明内容 本发明提供了一种信号放大电路, 用以解决现有信号放大电路不适用于 高带宽信号的高压放大问题。
本发明提供了一种信号放大电路, 所述信号放大电路包括运算放大器和 反馈网络, 所述反馈网络连接在所述信号放大电路的输出端和所述运算放大 器的负向输入端之间, 其特征在于, 所述信号放大电路还包括升压电路, 所 述升压电路连接在所述运算放大器的输出端和所述信号放大电路的输出端之 间。
所述信号放大电路还包括功率放大器, 所述功率放大器连接在所述升压 电路和所述信号放大电路的输出端之间。
所述信号放大电路还包括降压电路, 所述降压电路的输入端与正供电电 压端相连, 所述降压电路的输出端与所述运算放大器的正供电端相连。
所述降压电路包括第一稳压管和第一电容; 所述第一稳压管的阴极与正 供电电压端相连,所述第一稳压管的阳极与所述运算放大器的正供电端相连; 所述第一电容的一端与所述运算放大器的正供电端相连, 所述第一电容的另 一端与所述正供电电压端相连或接地。
所述升压电路包括第二稳压管、 第二电容和电阻; 所述运算放大器的输 出端与所述第二稳压管的阳极相连, 所述第二稳压管的阴极与所述反馈网络 相连; 所述电阻的一端与正供电电压端相连, 所述电阻的另一端与所述第二 稳压管的阴极相连; 所述第二电容的一端与所述第二稳压管的阳极相连, 所 述第二电容的另一端与所述第二稳压管的阴极相连。
运算放大器的正供电端与降压后的电源相连。
本发明提供了一种放大输出信号的方法, 所述方法包括:
对运算放大器的输出信号进行升压,将升压后的信号作为新的输出信号; 以及
将所述新的输出信号作为反馈信号提供给反馈网络。
在对运算放大器的输出信号进行升压之前, 所述方法还包括:
对与运算放大器的正供电端相连的供电电压降压。 在对运算放大器的输出信号进行升压之前, 所述方法还包括:
将运算放大器的正供电端与降压后的电源相连。
将升压后的信号作为新的输出信号的步骤包括:
对升压后的信号进行功率放大, 将进行功率放大后的信号作为该新的输 出信号。
上述信号放大电路及放大输出信号的方法, 可以有效地提高整个电路的 输出, 较好地解决了高带宽信号的高压放大问题。 附图概述
图 1为现有技术中一种信号放大电路的示意图;
图 2为现有技术中另一种信号放大电路的示意图;
图 3为本发明的信号放大电路实施例一的结构示意图;
图 4为本发明的信号放大电路应用示例一的结构示意图;
图 5为本发明的信号放大电路应用示例二的结构示意图;
图 6为本发明的信号放大电路中信号的波形示意图;
图 7为本发明的信号放大电路实施例二的结构示意图;
图 8为本发明的应用电路实施例的结构示意图。 本发明的较佳实施方式
下面结合附图对技术方案作进一步地详细描述。
本发明提供了一种信号放大电路, 所述信号放大电路包括运算放大器和 反馈网络, 所述反馈网络连接在所述信号放大电路的输出端和所述运算放大 器的负向输入端之间, 所述信号放大电路还包括升压电路, 所述升压电路连 接在所述运算放大器的输出端和所述信号放大电路的输出端之间。
与现有技术相比较, 在现有技术中, 目前解决高带宽信号的高压放大问 题需要等待运放器件制造商改进工艺推出下一代产品。 本发明的应用能够在 现有运放器件的基础上, 解决高带宽信号的高压放大问题。
如图 3所示, 为本发明的信号放大电路实施例一的结构示意图, 在该实 施例中, 信号放大电路除了包括升压电路, 还包括降压电路; 图 3中正供电 电压 V+经过降压电路 302后再给运放 101的正供电端 104供电,运放的输出 端 106经过升压电路 303得到输出信号 Vout, Vout经过反馈电阻 R1接至运 放的负向输入端 103。 由于釆用了降压电路, 对于 30V供电电压运放, V+可 以大于 30V, 而运放输出端信号最高可以达 30V, 经过后续升压电路后可实 现 Vout 大于 30V。 运放 101的反馈信号从最终的 Vout获取, 可保证该电路 的信号放大与调理精度。 如图 3所示电路的输入输出关系同一般运放电路, 还是 Vout=Iin*Rl。 301所示部分相当于实现了一个高压版本的运放 101。 需 要指出的是, 本发明的信号放大电路如 301所示, 其外围电路可以如普通运 放一样有多种接法。
如图 4所示, 为本发明的信号放大电路应用示例一的结构示意图, 图 4 中,由稳压管 Z1和旁路电容 C1实现图 3中的降压电路 302。旁路电容 C1 提 供运放 101所需正供电端供电电流的交流部分, 保证运放 101的动态性能, 也使稳压管 Z1只通过直流电流, 保证了降压电压的稳定性; 通过稳压管 Z2 和旁路电容 C2实现了图 3中的升压电路 303 , 旁路电容 C2通过输出电流的 交流部分, 电阻 R2通过供电电压 V+提供稳压管 Z2的反偏直流电流, 保证 了升压电压的稳定性和提供 Vout输出电流的直流部分, 保证输出电压 Vout 的精度。 需要说明的是, 图 4中所示的升压电路的结构只是一个示例, 本领域的 技术人员应当理解该升压电路还有其他实现形式, 例如可以在第二稳压器 Z2 的阴极连接电阻等其他元件, 且图 4中的电阻 R2也可以有其他的替代形式, 或替换成其他元件。 当然, 相应的降压电路也只是一个示例, 该降压电路还 有其他的实现方式,例如图 4中的旁路电容 C1可如图 5所示接地,可使运放 101正供电端供电的交流回路更小。 图 6为本发明信号放大电路中信号的波 形示意图, 其中, 601为输出电压 Vout的波形, 602为运放 101的正供电端 104供电电压的波形, 603为输入电流 Iin的波形。
如图 7所示, 为本发明的信号放大电路实施例二的结构示意图, 图 7中 直接釆用降压后的电源 V+给运放的正供电端 104供电。 另外, 与图 3相似, 本发明的改进之处也是升压电路 303和 701所示运放配置, 其外围电路可以 如普通运放一样有多种接法。
需要说明的是,上述图 3-图 7所示的实施例中提到的输出电压 Vout与输 出信号 Vout是同一概念。
上述信号放大电路, 可以有效地提高整个电路的输出, 较好地解决了高 带宽信号的高压放大问题。
如图 8所示, 为本发明的应用电路实施例的结构示意图, 图 8中的应用 电路包括图 7中所示的 701和功率放大装置 801 , 其中, 701的输出信号经过 功率放大装置 801后得到功率信号 Vout, 再反馈至运放的负向输入端, 保证 大功率的输出信号精度,上述应用电路可用作控制系统中直接驱动执行机构, 或直接作为功率放大装置等。
本发明还提供了一种放大输出信号的方法, 所述方法包括:
对运算放大器的输出信号进行升压,将升压后的信号作为新的输出信号; 以及
将所述新的输出信号作为反馈信号提供给反馈网络。
优选地,对运算放大器的输出信号进行升压之前, 所述方法还可以包括: 对与运算放大器的正供电端相连的供电电压降压。由于可以对供电电压降压, 使得提供给例如 30V供电电压运放正供电端的供电电压大于 30V, 从而使得 运放输出端信号最高可以达 30V,进而使得经过升压后的信号可以大于 30V。 另外, 所述对运算放大器的输出信号进行升压之前, 所述方法还可以包 括: 将与运算放大器的正供电端与降压后的电源相连。
进一步地, 所述对运算放大器的输出信号进行升压, 将升压后的信号作 为输出信号可以包括: 对运算放大器的输出信号进行升压, 对升压后的信号 进行功率放大, 将进行功率放大后的信号作为新的输出信号。
上述提供输出信号的方法, 可以有效地提高整个电路的输出, 较好地解 决了高带宽信号的高压放大问题。
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性
与现有技术相比, 本发明可以有效地提高整个电路的输出, 较好地解决 了高带宽信号的高压放大问题。

Claims

权 利 要 求 书
1、 一种信号放大电路, 包括运算放大器和反馈网络, 所述反馈网络连接 在所述信号放大电路的输出端和所述运算放大器的负向输入端之间, 其特征 在于, 所述信号放大电路还包括升压电路, 所述升压电路连接在所述运算放 大器的输出端和所述信号放大电路的输出端之间。
2、 根据权利要求 1所述的信号放大电路, 其中,
所述信号放大电路还包括功率放大器, 所述功率放大器连接在所述升压 电路和所述信号放大电路的输出端之间。
3、 根据权利要求 1或 2所述的信号放大电路, 其中,
所述信号放大电路还包括降压电路, 所述降压电路的输入端与正供电电 压端相连, 所述降压电路的输出端与所述运算放大器的正供电端相连。
4、 根据权利要求 3所述的信号放大电路, 其中,
所述降压电路包括第一稳压管和第一电容; 所述第一稳压管的阴极与正 供电电压端相连,所述第一稳压管的阳极与所述运算放大器的正供电端相连; 所述第一电容的一端与所述运算放大器的正供电端相连, 所述第一电容的另 一端与所述正供电电压端相连或接地。
5、 根据权利要求 4所述的信号放大电路, 其中,
所述升压电路包括第二稳压管、 第二电容和电阻; 所述运算放大器的输 出端与所述第二稳压管的阳极相连, 所述第二稳压管的阴极与所述反馈网络 相连; 所述电阻的一端与正供电电压端相连, 所述电阻的另一端与所述第二 稳压管的阴极相连; 所述第二电容的一端与所述第二稳压管的阳极相连, 所 述第二电容的另一端与所述第二稳压管的阴极相连。
6、 根据权利要求 1所述的信号放大电路, 其中,
运算放大器的正供电端与降压后的电源相连。
7、 一种放大输出信号的方法, 包括:
对运算放大器的输出信号进行升压,将升压后的信号作为新的输出信号; 以及 将所述新的输出信号作为反馈信号提供给反馈网络。
8、根据权利要求 7所述的方法, 其在对运算放大器的输出信号进行升压 的步骤之前, 还包括:
对与运算放大器的正供电端相连的供电电压降压。
9、根据权利要求 7所述的方法, 其在对运算放大器的输出信号进行升压 的步骤之前, 还包括:
将运算放大器的正供电端与降压后的电源相连。
10、 根据权利要求 7-9任一权利要求所述的方法, 其中,
将升压后的信号作为新的输出信号的步骤包括:
对升压后的信号进行功率放大, 将进行功率放大后的信号作为所述新的 输出信号。
PCT/CN2011/081130 2011-03-11 2011-10-21 信号放大电路及放大输出信号的方法 WO2012122799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110058394.2 2011-03-11
CN2011100583942A CN102684617A (zh) 2011-03-11 2011-03-11 信号放大电路及提高输出信号的方法

Publications (1)

Publication Number Publication Date
WO2012122799A1 true WO2012122799A1 (zh) 2012-09-20

Family

ID=46816091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081130 WO2012122799A1 (zh) 2011-03-11 2011-10-21 信号放大电路及放大输出信号的方法

Country Status (2)

Country Link
CN (1) CN102684617A (zh)
WO (1) WO2012122799A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682900B (zh) * 2013-11-26 2019-03-22 深圳市海洋王照明工程有限公司 增压扩展控制电路
CN104201995B (zh) * 2014-08-27 2017-12-26 北京贝威通石油科技有限公司 信号放大电路
CN104606783B (zh) * 2015-02-13 2017-10-10 杨阳 智能电针仪、智能终端及其放大电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108207A (ja) * 1984-11-01 1986-05-26 Hitachi Shonan Denshi Kk 電流増大回路
JPS62116004A (ja) * 1985-11-15 1987-05-27 Hitachi Electronics Eng Co Ltd ドライバ
JPS6416006A (en) * 1987-07-09 1989-01-19 Nec Corp Dc amplifier circuit
JPH05121974A (ja) * 1991-10-25 1993-05-18 Nec Corp 電流ブースター付きボルテージフオロワ
JPH06276037A (ja) * 1993-03-24 1994-09-30 Sharp Corp オーディオ用パワーアンプ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580104A (en) * 1984-06-18 1986-04-01 The Perkin-Elmer Corporation High voltage operational amplifier
CN2911728Y (zh) * 2006-07-11 2007-06-13 镇江汉邦科技有限公司 背光电源
CN201066821Y (zh) * 2007-08-01 2008-05-28 青岛海信电器股份有限公司 升压电路
CN101232239B (zh) * 2008-02-28 2010-06-09 北京创毅视讯科技有限公司 一种升压电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108207A (ja) * 1984-11-01 1986-05-26 Hitachi Shonan Denshi Kk 電流増大回路
JPS62116004A (ja) * 1985-11-15 1987-05-27 Hitachi Electronics Eng Co Ltd ドライバ
JPS6416006A (en) * 1987-07-09 1989-01-19 Nec Corp Dc amplifier circuit
JPH05121974A (ja) * 1991-10-25 1993-05-18 Nec Corp 電流ブースター付きボルテージフオロワ
JPH06276037A (ja) * 1993-03-24 1994-09-30 Sharp Corp オーディオ用パワーアンプ

Also Published As

Publication number Publication date
CN102684617A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
US9154031B2 (en) Current mode DC-DC conversion device with fast transient response
CN103703867B (zh) 用于使用晶体管饱和控制将电压供应到电力负载的电压供应设备和方法
US9294057B2 (en) Efficient low noise high speed amplifier
US8466743B2 (en) Ground-referenced common-mode amplifier circuit and related method
WO2012122799A1 (zh) 信号放大电路及放大输出信号的方法
CN103023323A (zh) 平均电感电流式电压控制方法及其可变参考电压产生装置
US8106643B2 (en) Power supply apparatus
JP2012249231A5 (zh)
CN105490537B (zh) 一种电源管理电路
JPH06509196A (ja) 改良された電力供給用レギュレータ
US8558610B2 (en) Integrator input error correction circuit and circuit method
CN106712513B (zh) 峰值电流检测电路及功率变换装置
CN103516218B (zh) 电源供应装置
CN106208688B (zh) 开关电力变换器及其控制方法
CN203217411U (zh) 一种低压稳压电源
CN113381594B (zh) 一种提升级联功率器稳定性的电流纹波前馈控制系统
CN102195485B (zh) 直流转直流转换器
CN105763028A (zh) 恒流转恒压变换器及恒流转恒压装置
CN208423352U (zh) 一种数据线
CN206962712U (zh) 一种可调直流高压电源
CN109375690A (zh) 一种串联型开关稳压电路
TWI396965B (zh) 電源供應裝置
CN211765224U (zh) 一种汽车转向语音播报器电路
CN105785834B (zh) 模拟量输出板卡和模拟量输出方法
CN104519618B (zh) 一种led驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861209

Country of ref document: EP

Kind code of ref document: A1