WO2012121379A1 - Spacer for liquid crystal display element, spacer fluid dispersion for liquid crystal display element, and liquid crystal display element - Google Patents

Spacer for liquid crystal display element, spacer fluid dispersion for liquid crystal display element, and liquid crystal display element Download PDF

Info

Publication number
WO2012121379A1
WO2012121379A1 PCT/JP2012/056153 JP2012056153W WO2012121379A1 WO 2012121379 A1 WO2012121379 A1 WO 2012121379A1 JP 2012056153 W JP2012056153 W JP 2012056153W WO 2012121379 A1 WO2012121379 A1 WO 2012121379A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display element
spacer
compound
Prior art date
Application number
PCT/JP2012/056153
Other languages
French (fr)
Japanese (ja)
Inventor
永井 康彦
敬三 西岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201280002863.1A priority Critical patent/CN103097950B/en
Priority to JP2012516412A priority patent/JP5087187B2/en
Publication of WO2012121379A1 publication Critical patent/WO2012121379A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to a spacer for a liquid crystal display element that can prevent light leakage and generation of thread-like domains and can improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal.
  • the present invention also relates to a liquid crystal display element spacer dispersion using the liquid crystal display element spacer and a liquid crystal display element.
  • the liquid crystal display element is configured by arranging liquid crystal between two glass substrates.
  • a spacer having a uniform particle diameter is used as a gap control material.
  • the alignment of the liquid crystal molecules regulated by the alignment film may be irregular around the spacer.
  • a phenomenon called “light omission” that transmits light from the backlight occurs around the spacer.
  • the contrast of the liquid crystal display element may be lowered, or the display quality called “white spot” may be lowered.
  • Such light leakage due to abnormal orientation occurs when a voltage is applied between the substrates. Even if the power of the liquid crystal display element is turned off after the voltage is applied, the light leakage phenomenon once generated is not solved.
  • Patent Document 1 listed below discloses a spacer in which the surface of a microsphere is coated with an organosilane compound.
  • the liquid crystal molecules are aligned perpendicular to the surface of the spacer by the organosilane compound present on the surface of the spacer. For this reason, abnormal orientation can be suppressed to some extent.
  • Patent Document 2 discloses a spacer in which a graft polymer chain having a long-chain alkyl group is introduced on the surface. Patent Document 2 describes that light leakage is prevented in a liquid crystal display element using a spacer according to an embodiment of the document.
  • abnormal orientation may not be sufficiently suppressed depending on the combination of the material of the microsphere and the molecular structure of the organosilane compound.
  • An object of the present invention is to use a spacer for a liquid crystal display element that can prevent light leakage and occurrence of thread-like domains and can improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal, and the spacer for the liquid crystal display element
  • the object is to provide a spacer dispersion for a liquid crystal display element and a liquid crystal display element.
  • the present invention provides a spacer for a liquid crystal display element in which the aggregation of the spacer hardly occurs when a spacer dispersion is obtained by dispersing in a dispersion medium, and a spacer dispersion for a liquid crystal display element using the spacer for a liquid crystal display element It is to provide a liquid and a liquid crystal display element.
  • the present invention comprises a base particle and a resin layer disposed on the surface of the base particle, the resin layer comprising a compound having an alkyl group having 24 to 30 carbon atoms, an alkylene
  • a spacer for a liquid crystal display element formed using a compound having an ether structure is provided.
  • the alkylene ether structure is a structure represented by the following formula (21A).
  • R represents an alkylene group, and the alkylene group has 2 or more and 6 or less carbon atoms.
  • the alkylene ether structure is an ethylene glycol structure.
  • the resin layer contains 5 mol% or more and 30 mol% or less of a component derived from the compound having an alkyl group having 24 to 30 carbon atoms.
  • the liquid crystal display element spacer according to the present invention is preferably a liquid crystal display element spacer disposed on a substrate by a wet method or an ink jet apparatus.
  • the spacer for a liquid crystal display element according to the present invention is preferably a liquid crystal display element spacer used for an STN type liquid crystal display element.
  • the spacer dispersion liquid for a liquid crystal display element according to the present invention includes a dispersion medium and a spacer for a liquid crystal display element that is dispersed in the dispersion medium and configured according to the present invention.
  • a liquid crystal display element includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and a liquid crystal disposed between the pair of substrates and configured according to the present invention. And a display element spacer.
  • the resin layer disposed on the surface of the base particle is formed using a compound having an alkyl group having 24 to 30 carbon atoms and a compound having an alkylene ether structure. Therefore, it is possible to prevent light leakage and generation of thread-like domains and improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal.
  • FIG. 1 is a cross-sectional view showing a spacer for a liquid crystal display element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a liquid crystal display element using a liquid crystal display element spacer according to an embodiment of the present invention.
  • FIG. 1 is a sectional view showing a spacer for a liquid crystal display element according to an embodiment of the present invention.
  • the resin layer 3 is formed using a compound having an alkyl group having 24 to 30 carbon atoms and a compound having an alkylene ether structure.
  • the liquid crystal display element spacer according to the present invention is suitably used as a liquid crystal display element spacer disposed on a substrate by a wet method or an inkjet apparatus.
  • the spacer for a liquid crystal display element according to the present invention is suitably used for an STN type liquid crystal display element.
  • the spacer for a liquid crystal display element according to the present invention may be used for a liquid crystal display element other than the STN type liquid crystal display element.
  • the present inventor has confirmed that the filamentous domain generated in the STN type liquid crystal display element is generated so as to connect the spacer and the other spacer with a straight line, and the filamentous domain further connects the spacer and the other spacer with a straight line. It was found that this occurs because the liquid crystal molecules are abnormally oriented so as to be tied. The reason why abnormal orientation called a thread domain occurs is considered as follows.
  • the liquid crystal display element usually has a liquid crystal cell in which liquid crystal is sealed between a pair of substrates arranged via a plurality of spacers.
  • the liquid crystal display element is manufactured by attaching a polarizing plate or the like to the liquid crystal cell.
  • the liquid crystal molecules are aligned in the direction perpendicular to the surface of the spacer around the spacer, whereas the liquid crystal molecules are aligned according to the regulating force of the alignment film at a position away from the spacer. is doing.
  • a polarizing plate or the like is attached to the liquid crystal cell while applying a pressing force with a roller or the like.
  • the alignment state Due to the pressing force applied at the time of pasting, a flow occurs in the aligned liquid crystal molecules according to the regulating force of the alignment film, and the alignment state is disturbed.
  • the liquid crystal molecules that are sufficiently separated from the spacer return to a predetermined alignment state according to the regulating force of the alignment film when the pressing force from the roller or the like is removed.
  • the liquid crystal molecules in the vicinity of the spacer are governed by the vertical alignment regulating force on the surface of the spacer, which is stronger than the regulating force of the alignment film, even if the pressing force from the roller or the like is removed.
  • the present inventor uses the liquid crystal display element spacer in which the specific resin layer is disposed on the surface of the base particle, thereby causing abnormal alignment of the liquid crystal at the interface between the liquid crystal and the spacer and between the plurality of spacers.
  • the present inventors have found that a liquid crystal display element having excellent display quality can be obtained because it becomes difficult to prevent light leakage and generation of thread domains.
  • the spacer for a liquid crystal display element according to the present invention even when an STN type liquid crystal display element is manufactured in particular, it is possible to effectively prevent the occurrence of light leakage and the generation of thread-like domains, and the liquid crystal sufficiently excellent in display quality. A display element can be obtained.
  • the spacer for a liquid crystal display element according to the present invention has base material particles and a resin layer disposed on the surface of the base material particles.
  • the resin layer may be disposed on the entire region of the surface of the base particle, or may be disposed on a partial region.
  • the resin layer preferably covers the surface of the base particle.
  • the resin layer is preferably a coating resin layer.
  • the resin layer is preferably attached to the surface of the base particle.
  • the material constituting the base particle is not particularly limited.
  • the material constituting the substrate particles may be an inorganic material or an organic material.
  • organic material examples include epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, resins obtained by polymerizing polymerizable monomers having an ethylenically unsaturated group, divinylbenzene-polyester resins, divinylbenzene- Examples thereof include styrene resin, divinylbenzene-acrylate resin, and diacryl phthalate resin.
  • Examples of the inorganic material include silicate glass, borosilicate glass, lead glass, soda lime glass, alumina, and alumina silicate glass.
  • the substrate particle may be a substrate particle formed only from the organic material, or may be a substrate particle formed only from the inorganic material, and both the organic material and the inorganic material.
  • the base material particle which has the composite structure formed by may be sufficient.
  • the base particle is formed of an organic material.
  • the spacer for the liquid crystal display element has an appropriate hardness that does not damage the alignment film formed on the substrate of the liquid crystal display element, and can easily follow a change in thickness due to thermal expansion or contraction. Become.
  • the preferable lower limit of the average particle diameter of the substrate particles is 1 ⁇ m, the preferable upper limit is 20 ⁇ m, and the more preferable upper limit is 10 ⁇ m.
  • the average particle diameter of the substrate particles is equal to or more than the above lower limit, the cell gap of the liquid crystal display element using the spacer is not too narrow, and a liquid crystal display element that is more excellent in display quality can be obtained.
  • the average particle diameter of the substrate particles is not more than the above upper limit, the cell gap of the liquid crystal display element using the spacer becomes even more uniform.
  • the average particle size of the substrate particles can be obtained by statistically processing the particle size measured using an optical microscope, an electron microscope, a coulter counter, or the like.
  • the CV value of the particle diameter of the substrate particles is preferably 10% or less.
  • the cell gap of the liquid crystal display element using the spacer becomes more uniform, and the display quality is further improved.
  • the resin layer is formed using a compound having a long-chain alkyl group having 24 to 30 carbon atoms (hereinafter sometimes referred to as compound A).
  • the resin layer includes a component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms.
  • the component is a reaction product of Compound A having a long-chain alkyl group having 24 to 30 carbon atoms.
  • the resin layer is preferably formed by reacting compound A having a long-chain alkyl group having 24 to 30 carbon atoms on the surface of the base particle. By using such compound A, a long-chain alkyl group having 24 to 30 carbon atoms can be introduced on the outer surface of the resin layer.
  • a liquid crystal display element free from light leakage derived from a long-chain alkyl group having 24 to 30 carbon atoms can be obtained.
  • the conventional surface-treated spacer has a pressing force that causes abnormal alignment, and a polarizing plate is applied by a roller or the like. Even when applied, for example, when the pressing force is removed, the liquid crystal molecules return to a predetermined alignment state in accordance with the regulating force of the alignment film, and it is difficult for the liquid crystal display element to form thread domains.
  • the spacer for a liquid crystal display element of the present invention even if a thread-like domain is generated, the original state without the thread-like domain can be obtained by performing treatment with ultrasonic waves or the like.
  • the carbon number of the long chain alkyl group is 24-30. When the carbon number of the alkyl group of the compound having a long-chain alkyl group is less than 24, light leakage occurs. A preferable lower limit of the carbon number of the long-chain alkyl group is 26. A compound having a long-chain alkyl group having 30 or less carbon atoms can be easily obtained.
  • the compound A having a long-chain alkyl group having 24 to 30 carbon atoms is preferably a monomer, and more preferably a (meth) acrylate monomer.
  • the compound A is preferably a long chain alkyl group-containing monomer having 24 to 30 carbon atoms, and more preferably a long chain alkyl group-containing (meth) acrylate monomer having 24 to 30 carbon atoms.
  • a long-chain alkyl group-containing monomer having 30 or less carbon atoms can be easily obtained.
  • the compound A having a long chain alkyl group having 24 to 30 carbon atoms is preferably a compound having a long chain alkyl group having 24 to 30 carbon atoms and a (meth) acryloyl group.
  • the said (meth) acrylate shows an acrylate and a methacrylate.
  • the (meth) acryloyl group represents an acryloyl group and a methacryloyl group.
  • Examples of the long-chain alkyl group-containing monomer having 24 to 30 carbon atoms include tetracosyl (meth) acrylate having 24 alkyl atoms, pentacosyl (meth) acrylate having 25 carbon atoms, and 26 carbon atoms. Hexacosyl (meth) acrylate, heptacosyl (meth) acrylate having 27 carbon atoms, octacosyl (meth) acrylate having 28 carbon atoms, nonacosyl (meth) acrylate having 29 carbon atoms, and triacontyl having 30 carbon atoms (Meth) acrylate etc. are mentioned.
  • the preferable lower limit of the content of the component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms in the resin layer is 5 mol%, and the preferable upper limit is 30 mol%.
  • the content of the component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms is equal to or more than the above lower limit, light leakage is more difficult to occur.
  • the content of the compound A having a long-chain alkyl group having 24 to 30 carbon atoms is not more than the above upper limit, a thread domain is more difficult to occur.
  • content of the component derived from the said compound A represents the preparation amount at the time of forming the said resin layer. That is, in order to form the resin layer, the preferable lower limit of the charged amount of the compound A is 5 mol%, and the preferable upper limit is 30 mol%.
  • the resin layer is formed using a compound having an alkylene ether structure (hereinafter sometimes referred to as compound B) together with a compound having an alkyl group having 24 to 30 carbon atoms.
  • Compound B preferably has an alkylene glycol skeleton.
  • the resin layer includes a component derived from the compound B having an alkylene ether structure. This component is a reaction product of Compound B having an alkylene ether structure.
  • the resin layer is preferably formed by reacting compound B having an alkylene ether structure on the surface of the base particle. By using such compound B, an alkylene ether structure can be introduced on the outer surface of the resin layer.
  • compound B can effectively suppress aggregation of spacers for liquid crystal display elements in the dispersion medium due to the alkylene ether structure.
  • aggregation of spacers for liquid crystal display elements can be significantly suppressed in a dispersion medium containing water.
  • the spacers can be hardly aggregated. For this reason, the spacer can be accurately arranged on the substrate by a wet method or an inkjet apparatus.
  • the spacer for a liquid crystal display element in which the resin layer is formed using the compound A and the compound B the aggregation of the spacer in the dispersion liquid can be suppressed in the spacer dispersion liquid due to the alkylene ether structure of the compound B.
  • the above-mentioned effects can be obtained due to the alkyl group having 24 to 30 carbon atoms of the compound A, the light leakage and the generation of thread domains can be prevented, and the liquid crystal display element can be prevented without disturbing the alignment of the liquid crystal. Display quality can be improved. This is because the alkylene ether structure exhibits a relatively high hydrophilicity, and in the dispersion, the structure having a relatively high hydrophilicity affects, whereas the long-chain alkyl group having 24 to 30 carbon atoms has a high hydrophobicity, This is considered to be due to the influence of this highly hydrophobic group in the liquid crystal.
  • the alkylene ether structure is a structure represented by the following formula (21).
  • R represents an alkylene group.
  • the alkylene group may be linear or have a branched structure. Carbon number of this alkylene group becomes like this. Preferably it is 2 or more, Preferably it is 6 or less, More preferably, it is 4 or less.
  • the alkylene ether structure is not particularly limited, and examples thereof include an ethylene glycol structure, a propylene glycol structure, a tetramethylene glycol structure, a pentamethylene glycol structure, and a hexamethylene glycol structure.
  • the alkylene ether structure is preferably a structure represented by the following formula (21A).
  • R represents an alkylene group, and the alkylene group has 2 or more and 6 or less carbon atoms. More preferably, the alkylene group has 4 or less carbon atoms.
  • the alkylene group may be linear or have a branched structure.
  • the alkylene ether structure is preferably an ethylene glycol structure, a propylene glycol structure, or a tetramethylene glycol structure.
  • the alkylene ether structure is more preferably an ethylene glycol structure or a propylene glycol structure, and further preferably an ethylene glycol structure.
  • the alkylene ether structure is preferably a propylene glycol structure or a tetramethylene glycol structure, preferably a propylene glycol structure, A methylene glycol structure is preferred.
  • Compound B preferably has a polyalkylene ether structure, more preferably a polyethylene glycol structure, a polypropylene glycol structure or a polytetramethylene glycol structure, more preferably a polyethylene glycol structure or a polypropylene glycol structure, More preferably, it has a structure.
  • the preferable lower limit of the content of the component derived from the compound B having the alkylene ether structure in the resin layer is 0.1 mol%, and the preferable upper limit is 20 mol%.
  • the content of the component derived from the compound B is not less than the above lower limit, the aggregation of the spacers in the dispersion can be further suppressed. If the content of the compound B is not more than the above upper limit, light leakage and generation of thread domains can be further prevented, and the display quality of the liquid crystal display element can be further improved without disturbing the alignment of the liquid crystal.
  • content of the component derived from the said compound B represents the preparation amount at the time of forming the said resin layer. That is, in order to form the resin layer, the preferable lower limit and the preferable upper limit of the charged amount of the compound B are the values described above.
  • Specific examples of the compound B having the alkylene ether structure include polyethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, polyethylene glycol polytetramethylene glycol monomethacrylate, polyethylene glycol polypropylene glycol monooctanol methacrylate, and the like.
  • the other compound constituting the resin layer is not particularly limited.
  • a compound having a hydroxyl group can be used.
  • the compound having a hydroxyl group include hydroxyethyl (meth) acrylate and methoxypolyethylene glycol (meth) acrylate.
  • alkyl (meth) acrylate When hydrophobicity is imparted to the resin layer of the spacer for liquid crystal display elements, alkyl (meth) acrylate, fluorine-containing (meth) acrylate, styrene derivatives such as styrene and p-chlorostyrene, glycidyl (meth) having a reactive site Acrylate, (meth) acrylic acid, (meth) acrylamide and the like can be used.
  • alkyl (meth) acrylate include butyl (meth) acrylate and stearyl (meth) acrylate.
  • fluorine-containing (meth) acrylate examples include trifluoroethyl (meth) acrylate and pentafluoropropyl (meth) acrylate.
  • the above compound having a hydroxyl group a compound having an epoxy group such as glycidyl (meth) acrylate, a monomer having a carboxyl group, or the like may be used. It can.
  • these other compounds only 1 type may be used and 2 or more types may be used together.
  • other polymerizable monomers copolymerizable with the monomers may be used.
  • the thickness of the resin layer is appropriately determined in consideration of the particle diameter of the substrate particles, the type and composition of the material constituting the resin layer, and the like.
  • the preferable lower limit of the thickness of the resin layer is 5 nm, and the preferable upper limit is 300 nm.
  • the thickness of the resin layer is 5 nm or more, the ability to prevent abnormal orientation is further enhanced, and light leakage is less likely to occur around the spacer in the liquid crystal display element.
  • the thickness of the resin layer is 300 nm or less, it is difficult for a plurality of spacers for liquid crystal display elements to be bonded to each other, and further, the resin layer is hardly deformed, so that the cell gap of the liquid crystal display element is made more uniform. can do.
  • a more preferable lower limit of the resin layer is 10 nm, and a more preferable upper limit is 100 nm.
  • the resin layer may be disposed on the entire region of the surface of the substrate particle, or may be disposed only on a part of the region. Even when the resin layer is disposed only in a part of the region, compared to the case where the resin layer is not present, in the portion where the resin layer is present, light leakage and generation of thread domains are prevented, and the alignment of the liquid crystal is prevented. The display quality of the liquid crystal display element can be improved without being disturbed.
  • the resin layer is disposed only on a partial region of the surface of the base particle, the surface area of the base particle in which the resin layer is disposed in 100% of the total surface area of the base particle. A preferred lower limit of the proportion is 0.15%. When the ratio of the surface area on which the resin layer is disposed is 0.15% or more, light leakage can be sufficiently prevented and the effect of preventing the occurrence of thread domains is sufficiently exhibited.
  • the spacer for a liquid crystal display element of the present invention for example, in the presence of a cerium-based catalyst such as ceric ammonium nitrate in the functional group on the surface of the base material particle, the length of 24 to 30 carbon atoms is used.
  • a method of reacting compound A having a chain alkyl group (Ce method), and introducing a polymerizable functional group by reacting an isocyanate having a polymerizable functional group such as methacryloxyethyl isocyanate with the functional group on the surface of the base material particle. Thereafter, a method (polymerization method) of reacting the compound A having a long-chain alkyl group having 24 to 30 carbon atoms with the compound A may be used.
  • the compound B may be reacted with the compound A, the compound B may be reacted after the reaction of the compound A, and the compound B is reacted before the reaction of the compound A. B may be reacted.
  • the compound A and the compound B may not be reacted, and the compound A and the compound B may be reacted.
  • the functional group on the surface of the base material particles is partially crosslinked with the organic material. It is entangled with the structure or adsorbed on the surface of the base particle. For this reason, polyvinyl alcohol exists on the surface of the substrate particles. The polyvinyl alcohol on the surface of the substrate particles is not removed even after the substrate particles are sufficiently washed while being heated.
  • the spacer for a liquid crystal display element of the present invention can be produced by the Ce method or the polymerization method starting from a hydroxyl group derived from polyvinyl alcohol on the surface of the substrate particle.
  • substrate particles having a hydroxyl group on the surface are preferably used.
  • the liquid crystal display element spacer according to the present invention is preferably a liquid crystal display element spacer disposed on a substrate by a wet method or an ink jet apparatus.
  • the liquid crystal display element spacer according to the present invention is preferably used by being dispersed in a dispersion medium. By dispersing the liquid crystal display element spacer in the dispersion medium, a liquid crystal display element spacer dispersion can be obtained.
  • the dispersion medium is not particularly limited.
  • a conventionally known dispersion medium used for the spacer dispersion liquid can be used.
  • the dispersion medium include isopropyl alcohol, water, methanol, and ethanol.
  • the dispersion medium preferably contains water, preferably contains alcohol, and preferably contains water and alcohol.
  • the alcohol is preferably isopropyl alcohol.
  • As for the said dispersion medium only 1 type may be used and 2 or more types may be used together.
  • the solid content concentration of the spacer in the spacer dispersion for the liquid crystal display element is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 10% by weight or less, more preferably 3% by weight or less. is there.
  • the solid content concentration is equal to or higher than the lower limit, an appropriate gap can be easily secured by a spacer in the liquid crystal display element.
  • the solid content concentration is less than or equal to the above upper limit, aggregates are further hardly generated in the spacer dispersion.
  • a liquid crystal display element includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and the liquid crystal display element spacer disposed between the pair of substrates.
  • the liquid crystal display element according to the present invention preferably includes a polarizing plate laminated on the outer surfaces of a pair of substrates.
  • the liquid crystal display element according to the present invention is preferably an STN type liquid crystal display element.
  • FIG. 2 is a cross-sectional view of a liquid crystal display element using a liquid crystal display element spacer according to an embodiment of the present invention.
  • the liquid crystal display element 11 shown in FIG. 2 has a pair of transparent glass substrates 12.
  • the transparent glass substrate 12 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 13 is formed on the insulating film in the transparent glass substrate 12. Examples of the material of the transparent electrode 13 include ITO.
  • the transparent electrode 13 can be formed by patterning, for example, by photolithography.
  • An alignment film 14 is formed on the transparent electrode 13 on the surface of the transparent glass substrate 12. Examples of the material of the alignment film 14 include polyimide.
  • a liquid crystal 15 is sealed between the pair of transparent glass substrates 12.
  • a plurality of liquid crystal display element spacers 1 are arranged between the pair of transparent glass substrates 12. The distance between the pair of transparent glass substrates 12 is regulated by the plurality of liquid crystal display element spacers 1.
  • a sealing agent 16 is disposed between the edges of the pair of transparent glass substrates 12. The sealing agent 16 prevents the liquid crystal 15 from flowing out.
  • a preferable lower limit of the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is 10 pieces / mm 2
  • a preferable upper limit is 1000 pieces / mm 2 .
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
  • the liquid crystal display element of the present invention can be manufactured by a conventionally known method except that the spacer for liquid crystal display element of the present invention is used.
  • Example 1 (1) Preparation of substrate particle A 5 parts by weight of carbon black, 100 parts by weight of divinylbenzene and 2 parts by weight of benzoyl peroxide are added to 800 parts by weight of a 3% by weight aqueous polyvinyl alcohol solution, and the mixture is stirred with a homogenizer. The particle size was adjusted. Then, it heated up to 80 degreeC under nitrogen stream, stirring, and reacted for 15 hours, and obtained microparticles
  • the 432 g of (meth) acrylic acid ester monomer mixture used was 91 g (8 mol%) triacontyl methacrylate, 233 g (73 mol%) isobutyl methacrylate, 36 g (16 mol%) methyl methacrylate, and 72 g (3 mol%) methoxypolyethylene glycol monomethacrylate. ).
  • the average particle diameter of the obtained spacer for a liquid crystal display element was measured, and the thickness of the coating resin layer was determined from the difference from the average particle diameter of the base particle A. As a result, the thickness of the coating resin layer was 0.03 ⁇ m.
  • the (meth) acrylic acid ester monomer mixed solution contains 241 g (30 mol%) triacontyl methacrylate, 115 g (51 mol%) isobutyl methacrylate, 25 g (16 mol%) methyl methacrylate, and 51 g (3 mol%) methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixture liquid contains 317 g (50 mol%) triacontyl methacrylate, 55 g (31 mol%) isobutyl methacrylate, 20 g (16 mol%) methyl methacrylate, and 40 g (3 mol%) methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixed solution contains 100 g (10 mol%) of hexacosyl methacrylate, 225 g (71 mol%) of isobutyl methacrylate, 36 g (16 mol%) of methyl methacrylate, and 71 g (3 mol%) of methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixed solution contains 307 g (50 mol%) of hexacosyl methacrylate, 60 g (31 mol%) of isobutyl methacrylate, 22 g (16 mol%) of methyl methacrylate, and 44 g (3 mol%) of methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixed solution contains 95 g (10 mol%) of tetracosyl methacrylate, 228 g (71 mol%) of isobutyl methacrylate, 36 g (16 mol%) of methyl methacrylate, and 72 g (3 mol%) of methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixed solution contains tetracosyl methacrylate 301 g (50 mol%), isobutyl methacrylate 63 g (31 mol%), methyl methacrylate 23 g (16 mol%), and methoxypolyethylene glycol monomethacrylate 46 g (3 mol%).
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • the (meth) acrylic acid ester monomer mixed liquid contains 181 g (30 mol%) of tetracosyl methacrylate, 104 g (51 mol%) of isobutyl methacrylate, 23 g (16 mol%) of methyl methacrylate, and 46 g (3 mol%) of methoxypolyethylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
  • Example 9 A (meth) acrylic acid ester monomer mixed solution containing 60 g (10 mol%) tetracosyl methacrylate, 104 g (71 mol%) isobutyl methacrylate, 23 g (16 mol%) methyl methacrylate, and 35 g (3 mol%) polypropylene glycol monomethacrylate A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid was changed.
  • Example 10 A (meth) acrylic acid ester monomer mixed liquid is mixed containing 24 g (30 mol%) triacontyl methacrylate, 104 g (51 mol%) isobutyl methacrylate, 23 g (16 mol%) methyl methacrylate, and 35 g (3 mol%) polypropylene glycol monomethacrylate.
  • a liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid was changed.
  • Example 11 The (meth) acrylic acid ester monomer mixture was mixed with 60 g (10 mol%) of tetracosyl methacrylate, 144 g (71 mol%) of isobutyl methacrylate, 23 g (16 mol%) of methyl methacrylate, and 37 g (3 mol%) of polypropylene glycol tetramethylene glycol monomethacrylate.
  • a spacer for a liquid crystal display element was obtained in the same manner as in Example 1 except that the mixture was changed to a mixed solution containing.
  • Example 12 The (meth) acrylic acid ester monomer mixture was mixed with 241 g (30 mol%) of triacontyl methacrylate, 104 g (51 mol%) of isobutyl methacrylate, 26 g (16 mol%) of methyl methacrylate, and 37 g (3 mol%) of polypropylene glycol tetramethylene glycol monomethacrylate.
  • a spacer for a liquid crystal display element was obtained in the same manner as in Example 1 except that the mixture was changed to a mixed solution containing.
  • An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering.
  • a polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by spin coating, and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the rubbing treatment for the alignment film, the liquid crystal display element spacers were wet-sprayed on the alignment film side of one substrate so that the number of spacers for a liquid crystal display element was 100 to 200 per 1 mm 2 .
  • this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
  • Time-of-flight secondary ion mass spectrometry TOF-SIMS analysis Time-of-flight secondary ion mass spectrometry TOF-SIMS (TOF-SIMS type 5 manufactured by ION-TOF) for all polymers on the surface of spacers for liquid crystal display elements The spectral intensity ratio of the long chain alkyl polymer was measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a spacer for a liquid crystal display element that can prevent the occurrence of light leakage and thread-like domains, and enhance the display quality of the liquid crystal display element without disturbing the orientation of the liquid crystals. Also provided is a liquid crystal display element that employs the spacer for a liquid crystal display element. This spacer (1) for a liquid crystal display element is provided with base particles (2), and a resin layer (3) disposed over a surface (2a) of the base particles (2). The resin layer (3) is formed using a compound having C24-30 alkyl groups, and a compound having an alkylene ether structure. This liquid crystal display element is provided with: a pair of substrates constituting a liquid crystal cell; liquid crystals disposed between the pair of substrates; and the spacer (1) for a liquid crystal display element, the spacer being sealed in between the pair of substrates.

Description

液晶表示素子用スペーサ、液晶表示素子用スペーサ分散液及び液晶表示素子Liquid crystal display element spacer, liquid crystal display element spacer dispersion liquid, and liquid crystal display element
 本発明は、光抜け及び糸状ドメインの発生を防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位を高めることができる液晶表示素子用スペーサに関する。また、本発明は、該液晶表示素子用スペーサを用いた液晶表示素子用スペーサ分散液及び液晶表示素子に関する。 The present invention relates to a spacer for a liquid crystal display element that can prevent light leakage and generation of thread-like domains and can improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal. The present invention also relates to a liquid crystal display element spacer dispersion using the liquid crystal display element spacer and a liquid crystal display element.
 液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材として粒子径の揃ったスペーサが用いられている。 The liquid crystal display element is configured by arranging liquid crystal between two glass substrates. In the liquid crystal display element, in order to keep the distance (gap) between two glass substrates uniform and constant, a spacer having a uniform particle diameter is used as a gap control material.
 液晶表示素子では、液晶とスペーサとの界面で液晶分子がスペーサの表面に沿って配向する結果、スペーサの周辺で、配向膜によって規制された液晶分子の配向が変則的になることがある。このようなスペーサの周辺での液晶分子の異常な配向が起こると、スペーサの周囲に「光抜け」と呼ばれるバックライトからの光が透過する現象が生じる。このため、液晶表示素子のコントラストが低下したり、「ホワイトスポット」と呼ばれる表示品質の低下が生じたりすることがある。このような異常配向による光抜け現象は、基板間に電圧を印加する際などに生じる。電圧の印加後に、液晶表示素子の電源を落としても、一旦生じた光抜け現象は解消しない。 In the liquid crystal display element, as a result of the alignment of the liquid crystal molecules along the surface of the spacer at the interface between the liquid crystal and the spacer, the alignment of the liquid crystal molecules regulated by the alignment film may be irregular around the spacer. When such abnormal alignment of the liquid crystal molecules around the spacer occurs, a phenomenon called “light omission” that transmits light from the backlight occurs around the spacer. For this reason, the contrast of the liquid crystal display element may be lowered, or the display quality called “white spot” may be lowered. Such light leakage due to abnormal orientation occurs when a voltage is applied between the substrates. Even if the power of the liquid crystal display element is turned off after the voltage is applied, the light leakage phenomenon once generated is not solved.
 スペーサの周囲での液晶分子の異常配向を防止するスペーサとして、例えば、下記の特許文献1には、微球体の表面が有機シラン化合物により被覆されているスペーサが開示されている。このスペーサでは、スペーサの表面に存在する有機シラン化合物によって、液晶分子はスペーサの表面に対して垂直に配向する。このため、異常配向をある程度抑制できる。 As a spacer for preventing abnormal alignment of liquid crystal molecules around the spacer, for example, Patent Document 1 listed below discloses a spacer in which the surface of a microsphere is coated with an organosilane compound. In this spacer, the liquid crystal molecules are aligned perpendicular to the surface of the spacer by the organosilane compound present on the surface of the spacer. For this reason, abnormal orientation can be suppressed to some extent.
 また、下記の特許文献2には、長鎖アルキル基を有するグラフト重合体鎖が表面に導入されているスペーサが開示されている。特許文献2では、該文献の実施例のスペーサを用いた液晶表示素子において、光抜けが防止されることが記載されている。 Further, Patent Document 2 below discloses a spacer in which a graft polymer chain having a long-chain alkyl group is introduced on the surface. Patent Document 2 describes that light leakage is prevented in a liquid crystal display element using a spacer according to an embodiment of the document.
特開昭64-59212号公報JP-A-64-59212 特開平9-194842号公報JP-A-9-194842
 特許文献1に記載のスペーサでは、微球体の材質と有機シラン化合物の分子構造との組み合わせによっては、異常配向を十分に抑制できないことがある。 In the spacer described in Patent Document 1, abnormal orientation may not be sufficiently suppressed depending on the combination of the material of the microsphere and the molecular structure of the organosilane compound.
 特に、STN(Super Twisted Nematic)型液晶表示素子では、初期状態では光抜けが少なく、表示性能が良好であったとしても、液晶表示素子に外力が加わり基板間のギャップが変化すると、スペーサと他のスペーサとを直線上に結ぶ「糸状ドメイン」と呼ばれる糸状の光の透過が発生するという問題がある。 In particular, in a STN (Super Twisted Nematic) type liquid crystal display element, even if there is little light leakage in the initial state and display performance is good, if external force is applied to the liquid crystal display element and the gap between the substrates changes, spacers and others There is a problem that the transmission of thread-like light called “thread-like domain” that connects the spacers in a straight line occurs.
 一方で、特許文献2に記載のスペーサを用いても、「糸状ドメイン」の発生を充分に抑制できないことがある。 On the other hand, even if the spacer described in Patent Document 2 is used, the occurrence of “filamentous domains” may not be sufficiently suppressed.
 さらに、湿式散布又はインクジェット装置によりスペーサを基板上に配置するために、特許文献1,2に記載のような従来のスペーサを分散媒中に分散させてスペーサ分散液を得たときに、スペーサの分散性が低く、スペーサの凝集が生じることがある。このため、凝集したスペーサが基板上に配置されることがある。凝集したスペーサは、液晶表示素子の品質を大きく低下させる要因である。 Further, in order to dispose the spacers on the substrate by wet spraying or an ink jet device, when a conventional spacer as described in Patent Documents 1 and 2 is dispersed in a dispersion medium to obtain a spacer dispersion liquid, The dispersibility is low, and spacer aggregation may occur. For this reason, the aggregated spacer may be disposed on the substrate. Aggregated spacers are a factor that greatly deteriorates the quality of the liquid crystal display element.
 本発明の目的は、光抜け及び糸状ドメインの発生を防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位を高めることができる液晶表示素子用スペーサ、並びに該液晶表示素子用スペーサを用いた液晶表示素子用スペーサ分散液及び液晶表示素子を提供することである。 An object of the present invention is to use a spacer for a liquid crystal display element that can prevent light leakage and occurrence of thread-like domains and can improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal, and the spacer for the liquid crystal display element The object is to provide a spacer dispersion for a liquid crystal display element and a liquid crystal display element.
 さらに、本発明は、分散媒中に分散させてスペーサ分散液を得たときに、スペーサの凝集が生じ難い液晶表示素子用スペーサ、並びに該液晶表示素子用スペーサを用いた液晶表示素子用スペーサ分散液及び液晶表示素子を提供することである。 Furthermore, the present invention provides a spacer for a liquid crystal display element in which the aggregation of the spacer hardly occurs when a spacer dispersion is obtained by dispersing in a dispersion medium, and a spacer dispersion for a liquid crystal display element using the spacer for a liquid crystal display element It is to provide a liquid and a liquid crystal display element.
 本発明の広い局面によれば、基材粒子と、該基材粒子の表面上に配置された樹脂層とを備え、該樹脂層は、炭素数24~30のアルキル基を有する化合物と、アルキレンエーテル構造を有する化合物とを用いて形成されている、液晶表示素子用スペーサが提供される。 According to a wide aspect of the present invention, it comprises a base particle and a resin layer disposed on the surface of the base particle, the resin layer comprising a compound having an alkyl group having 24 to 30 carbon atoms, an alkylene Provided is a spacer for a liquid crystal display element formed using a compound having an ether structure.
 本発明に係る液晶表示素子用スペーサのある特定の局面では、上記アルキレンエーテル構造は、下記式(21A)で表される構造である。 In a specific aspect of the spacer for a liquid crystal display element according to the present invention, the alkylene ether structure is a structure represented by the following formula (21A).
Figure JPOXMLDOC01-appb-C000002
 上記式(21A)中、Rは、アルキレン基を表し、該アルキレン基の炭素数は、2以上、6以下である。
Figure JPOXMLDOC01-appb-C000002
In the above formula (21A), R represents an alkylene group, and the alkylene group has 2 or more and 6 or less carbon atoms.
 本発明に係る液晶表示素子用スペーサの他の特定の局面では、上記アルキレンエーテル構造は、エチレングリコール構造である。 In another specific aspect of the spacer for a liquid crystal display element according to the present invention, the alkylene ether structure is an ethylene glycol structure.
 本発明に係る液晶表示素子用スペーサの他の特定の局面では、上記樹脂層は、上記炭素数24~30のアルキル基を有する化合物に由来する成分を5mol%以上、30mol%以下含む。 In another specific aspect of the spacer for a liquid crystal display element according to the present invention, the resin layer contains 5 mol% or more and 30 mol% or less of a component derived from the compound having an alkyl group having 24 to 30 carbon atoms.
 本発明に係る液晶表示素子用スペーサは、湿式法又はインクジェット装置により基板上に配置される液晶表示素子用スペーサであることが好ましい。本発明に係る液晶表示素子用スペーサは、STN型液晶表示素子に用いられる液晶表示素子用スペーサであることが好ましい。 The liquid crystal display element spacer according to the present invention is preferably a liquid crystal display element spacer disposed on a substrate by a wet method or an ink jet apparatus. The spacer for a liquid crystal display element according to the present invention is preferably a liquid crystal display element spacer used for an STN type liquid crystal display element.
 本発明に係る液晶表示素子用スペーサ分散液は、分散媒と、該分散媒中に分散されており、かつ本発明に従って構成された液晶表示素子用スペーサとを含む。 The spacer dispersion liquid for a liquid crystal display element according to the present invention includes a dispersion medium and a spacer for a liquid crystal display element that is dispersed in the dispersion medium and configured according to the present invention.
 本発明に係る液晶表示素子は、液晶セルを構成する一対の基板と、該一対の基板間に封入された液晶と、上記一対の基板間に配置されており、かつ本発明に従って構成された液晶表示素子用スペーサとを備える。 A liquid crystal display element according to the present invention includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and a liquid crystal disposed between the pair of substrates and configured according to the present invention. And a display element spacer.
 本発明に係る液晶表示素子用スペーサは、基材粒子の表面上に配置された樹脂層が、炭素数24~30のアルキル基を有する化合物と、アルキレンエーテル構造を有する化合物とを用いて形成されているので、光抜け及び糸状ドメインの発生を防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位を高めることができる。 In the spacer for a liquid crystal display device according to the present invention, the resin layer disposed on the surface of the base particle is formed using a compound having an alkyl group having 24 to 30 carbon atoms and a compound having an alkylene ether structure. Therefore, it is possible to prevent light leakage and generation of thread-like domains and improve the display quality of the liquid crystal display element without disturbing the alignment of the liquid crystal.
図1は、本発明の一実施形態に係る液晶表示素子用スペーサを示す断面図である。FIG. 1 is a cross-sectional view showing a spacer for a liquid crystal display element according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る液晶表示素子用スペーサを用いた液晶表示素子を示す断面図である。FIG. 2 is a cross-sectional view showing a liquid crystal display element using a liquid crystal display element spacer according to an embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments and examples of the present invention with reference to the drawings.
 図1に、本発明の一実施形態に係る液晶表示素子用スペーサを断面図で示す。 FIG. 1 is a sectional view showing a spacer for a liquid crystal display element according to an embodiment of the present invention.
 図1に示す液晶表示素子用スペーサ1は、基材粒子2と、基材粒子2の表面2a上に配置された樹脂層3とを備える。樹脂層3は、炭素数24~30のアルキル基を有する化合物と、アルキレンエーテル構造を有する化合物とを用いて形成されている。 1 includes a base material particle 2 and a resin layer 3 disposed on the surface 2a of the base material particle 2. As shown in FIG. The resin layer 3 is formed using a compound having an alkyl group having 24 to 30 carbon atoms and a compound having an alkylene ether structure.
 本発明に係る液晶表示素子用スペーサは、湿式法又はインクジェット装置により基板上に配置される液晶表示素子用スペーサとして好適に用いられる。本発明に係る液晶表示素子用スペーサは、STN型液晶表示素子に好適に用いられる。但し、本発明に係る液晶表示素子用スペーサは、STN型液晶表示素子以外の液晶表示素子に用いてもよい。 The liquid crystal display element spacer according to the present invention is suitably used as a liquid crystal display element spacer disposed on a substrate by a wet method or an inkjet apparatus. The spacer for a liquid crystal display element according to the present invention is suitably used for an STN type liquid crystal display element. However, the spacer for a liquid crystal display element according to the present invention may be used for a liquid crystal display element other than the STN type liquid crystal display element.
 本発明者は、STN型液晶表示素子に発生する糸状ドメインは、スペーサと他のスペーサとを直線で結ぶように生じていることを確認し、更に糸状ドメインはスペーサと他のスペーサとを直線で結ぶように液晶分子が異常配向しているために発生することを見出した。糸状ドメインと呼ばれる異常配向が生じる理由は、以下の通りであると考えられる。 The present inventor has confirmed that the filamentous domain generated in the STN type liquid crystal display element is generated so as to connect the spacer and the other spacer with a straight line, and the filamentous domain further connects the spacer and the other spacer with a straight line. It was found that this occurs because the liquid crystal molecules are abnormally oriented so as to be tied. The reason why abnormal orientation called a thread domain occurs is considered as follows.
 液晶表示素子は、通常、複数のスペーサを介して配置された一対の基板間に液晶が封入された液晶セルを有する。液晶表示素子は、この液晶セルに偏光板等を貼り付けることで製造される。液晶セルを形成した段階では、スペーサの周囲においてスペーサの表面に対して液晶分子は垂直方向に配向しているのに対し、スペーサから離れている箇所では、配向膜による規制力に従って液晶分子は配向している。偏光板等は液晶セルに、ローラー等で押圧力を加えながら貼り付けられる。この貼り付け時に加えられる押圧力によって配向膜の規制力に従って配向した液晶分子に流れが生じて、配向状態に乱れが発生する。スペーサから充分に離れている液晶分子は、ローラー等からの押圧力が除去されると、配向膜の規制力に従って所定の配向状態に戻る。しかし、スペーサ近傍の液晶分子は、ローラー等からの押圧力が除去されても、配向膜の規制力よりも強いスペーサの表面の垂直配向の規制力に支配される。このため、配向膜の規制力に従った所定の配向状態に戻らず、異常な方向に配向したままスペーサと他のスペーサとを直線状に結んでいると思われる。このように糸状ドメインはスペーサの表面の強い垂直配向の規制力により発生すると思われる。 The liquid crystal display element usually has a liquid crystal cell in which liquid crystal is sealed between a pair of substrates arranged via a plurality of spacers. The liquid crystal display element is manufactured by attaching a polarizing plate or the like to the liquid crystal cell. At the stage of forming the liquid crystal cell, the liquid crystal molecules are aligned in the direction perpendicular to the surface of the spacer around the spacer, whereas the liquid crystal molecules are aligned according to the regulating force of the alignment film at a position away from the spacer. is doing. A polarizing plate or the like is attached to the liquid crystal cell while applying a pressing force with a roller or the like. Due to the pressing force applied at the time of pasting, a flow occurs in the aligned liquid crystal molecules according to the regulating force of the alignment film, and the alignment state is disturbed. The liquid crystal molecules that are sufficiently separated from the spacer return to a predetermined alignment state according to the regulating force of the alignment film when the pressing force from the roller or the like is removed. However, the liquid crystal molecules in the vicinity of the spacer are governed by the vertical alignment regulating force on the surface of the spacer, which is stronger than the regulating force of the alignment film, even if the pressing force from the roller or the like is removed. For this reason, it does not return to the predetermined alignment state according to the regulating force of the alignment film, and it seems that the spacer and other spacers are linearly connected while being aligned in an abnormal direction. Thus, it seems that the filamentous domain is generated by the strong vertical alignment regulating force on the surface of the spacer.
 本発明者は、基材粒子の表面に特定の上記樹脂層が配置された液晶表示素子用スペーサを用いることにより、液晶とスペーサとの界面、及び、複数のスペーサ間において液晶の異常配向が生じ難くなり、光抜け及び糸状ドメインの発生を防止でき、表示品質に優れた液晶表示素子が得られることを見出した。本発明に係る液晶表示素子用スペーサの使用により、特にSTN型液晶表示素子を製造した場合であっても、光抜け及び糸状ドメインの発生を効果的に防止でき、表示品質に充分に優れた液晶表示素子を得ることができる。 The present inventor uses the liquid crystal display element spacer in which the specific resin layer is disposed on the surface of the base particle, thereby causing abnormal alignment of the liquid crystal at the interface between the liquid crystal and the spacer and between the plurality of spacers. The present inventors have found that a liquid crystal display element having excellent display quality can be obtained because it becomes difficult to prevent light leakage and generation of thread domains. With the use of the spacer for a liquid crystal display element according to the present invention, even when an STN type liquid crystal display element is manufactured in particular, it is possible to effectively prevent the occurrence of light leakage and the generation of thread-like domains, and the liquid crystal sufficiently excellent in display quality. A display element can be obtained.
 本発明に係る液晶表示素子用スペーサは、基材粒子と、該基材粒子の表面上に配置された樹脂層とを有する。樹脂層は、基材粒子の表面の全領域上に配置されていてもよく、一部の領域上に配置されていてもよい。樹脂層は、基材粒子の表面を被覆していることが好ましい。樹脂層は、被覆樹脂層であることが好ましい。樹脂層は、基材粒子の表面に付着していることが好ましい。 The spacer for a liquid crystal display element according to the present invention has base material particles and a resin layer disposed on the surface of the base material particles. The resin layer may be disposed on the entire region of the surface of the base particle, or may be disposed on a partial region. The resin layer preferably covers the surface of the base particle. The resin layer is preferably a coating resin layer. The resin layer is preferably attached to the surface of the base particle.
 上記基材粒子を構成する材料は特に限定されない。基材粒子を構成する材料は、無機材料であってもよく、有機材料であってもよい。 The material constituting the base particle is not particularly limited. The material constituting the substrate particles may be an inorganic material or an organic material.
 上記有機材料は、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エチレン性不飽和基を有する重合性単量体を重合させて得られる樹脂、ジビニルベンゼン-ポリエステル樹脂、ジビニルベンゼン-スチレン樹脂、ジビニルベンゼン-アクリル酸エステル樹脂及びジアクリルフタレート樹脂等が挙げられる。 Examples of the organic material include epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, resins obtained by polymerizing polymerizable monomers having an ethylenically unsaturated group, divinylbenzene-polyester resins, divinylbenzene- Examples thereof include styrene resin, divinylbenzene-acrylate resin, and diacryl phthalate resin.
 上記無機材料は、例えば、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス、アルミナ及びアルミナシリケートガラス等が挙げられる。 Examples of the inorganic material include silicate glass, borosilicate glass, lead glass, soda lime glass, alumina, and alumina silicate glass.
 上記基材粒子は、上記有機材料のみにより形成された基材粒子であってもよく、上記無機材料のみにより形成された基材粒子であってもよく、上記有機材料と上記無機材料との双方により形成された複合構造を有する基材粒子であってもよい。なかでも、基材粒子は、有機材料により形成されていることが好ましい。この場合には、液晶表示素子用スペーサが、液晶表示素子の基板上に形成された配向膜を傷つけない程度の適度な硬度を有し、更に熱膨張又は熱収縮による厚みの変化に追随しやすくなる。 The substrate particle may be a substrate particle formed only from the organic material, or may be a substrate particle formed only from the inorganic material, and both the organic material and the inorganic material. The base material particle which has the composite structure formed by may be sufficient. Especially, it is preferable that the base particle is formed of an organic material. In this case, the spacer for the liquid crystal display element has an appropriate hardness that does not damage the alignment film formed on the substrate of the liquid crystal display element, and can easily follow a change in thickness due to thermal expansion or contraction. Become.
 上記基材粒子の平均粒子径の好ましい下限は1μm、好ましい上限は20μm、より好ましい上限は10μmである。上記基材粒子の平均粒子径が上記下限以上であると、スペーサを用いた液晶表示素子のセルギャップが狭くなりすぎず、表示品質により一層優れた液晶表示素子を得ることができる。上記基材粒子の平均粒子径が上記上限以下であると、スペーサを用いた液晶表示素子のセルギャップがより一層均一になる。 The preferable lower limit of the average particle diameter of the substrate particles is 1 μm, the preferable upper limit is 20 μm, and the more preferable upper limit is 10 μm. When the average particle diameter of the substrate particles is equal to or more than the above lower limit, the cell gap of the liquid crystal display element using the spacer is not too narrow, and a liquid crystal display element that is more excellent in display quality can be obtained. When the average particle diameter of the substrate particles is not more than the above upper limit, the cell gap of the liquid crystal display element using the spacer becomes even more uniform.
 上記基材粒子の平均粒子径は、光学顕微鏡、電子顕微鏡又はコールタカウンター等を用いて計測した粒子径を統計的に処理して求めることができる。 The average particle size of the substrate particles can be obtained by statistically processing the particle size measured using an optical microscope, an electron microscope, a coulter counter, or the like.
 上記基材粒子の粒子径のCV値は10%以下であることが好ましい。上記基材粒子の粒子径のCV値が10%以下であると、スペーサを用いた液晶表示素子のセルギャップがより一層均一になり、表示品質がより一層良好になる。 The CV value of the particle diameter of the substrate particles is preferably 10% or less. When the CV value of the particle diameter of the substrate particles is 10% or less, the cell gap of the liquid crystal display element using the spacer becomes more uniform, and the display quality is further improved.
 上記樹脂層は、炭素数24~30の長鎖アルキル基を有する化合物(以下、化合物Aと記載することがある)を用いて形成されている。上記樹脂層は、炭素数24~30の長鎖アルキル基を有する化合物Aに由来する成分を含む。該成分は、炭素数24~30の長鎖アルキル基を有する化合物Aの反応物である。上記樹脂層は、基材粒子の表面上で、炭素数24~30の長鎖アルキル基を有する化合物Aを反応させることにより形成されていることが好ましい。このような化合物Aの使用により、上記樹脂層の外表面に炭素数24~30の長鎖アルキル基を導入できる。さらに、化合物Aの使用により、炭素数24~30の長鎖アルキル基に由来して、光抜けのない液晶表示素子を得ることができる。また、本発明の液晶表示素子用スペーサをSTN型液晶表示素子の製造に用いた場合には、従来の表面処理されたスペーサでは異常配向を生じる程度の押圧力が、ローラー等で偏光板の貼り付け時などに加えられても、押圧力が除去されると配向膜の規制力に従って液晶分子が所定の配向状態に戻り、液晶表示素子に糸状ドメインが生じ難くなる。本発明の液晶表示素子用スペーサの使用によって、仮に糸状ドメインが発生した場合でも、超音波等により処理を行うことで糸状ドメインのない元の状態にすることができる。 The resin layer is formed using a compound having a long-chain alkyl group having 24 to 30 carbon atoms (hereinafter sometimes referred to as compound A). The resin layer includes a component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms. The component is a reaction product of Compound A having a long-chain alkyl group having 24 to 30 carbon atoms. The resin layer is preferably formed by reacting compound A having a long-chain alkyl group having 24 to 30 carbon atoms on the surface of the base particle. By using such compound A, a long-chain alkyl group having 24 to 30 carbon atoms can be introduced on the outer surface of the resin layer. Further, by using Compound A, a liquid crystal display element free from light leakage derived from a long-chain alkyl group having 24 to 30 carbon atoms can be obtained. In addition, when the liquid crystal display element spacer of the present invention is used in the manufacture of an STN type liquid crystal display element, the conventional surface-treated spacer has a pressing force that causes abnormal alignment, and a polarizing plate is applied by a roller or the like. Even when applied, for example, when the pressing force is removed, the liquid crystal molecules return to a predetermined alignment state in accordance with the regulating force of the alignment film, and it is difficult for the liquid crystal display element to form thread domains. By using the spacer for a liquid crystal display element of the present invention, even if a thread-like domain is generated, the original state without the thread-like domain can be obtained by performing treatment with ultrasonic waves or the like.
 上記長鎖アルキル基の炭素数は24~30である。上記長鎖アルキル基を有する化合物のアルキル基の炭素数が24未満であると、光抜けが発生する。上記長鎖アルキル基の炭素数の好ましい下限は26である。炭素数が30以下である長鎖アルキル基を有する化合物は容易に入手できる。上記炭素数24~30の長鎖アルキル基を有する化合物Aは、モノマーであることが好ましく、(メタ)アクリレートモノマーであることがより好ましい。すなわち、上記化合物Aは、炭素数24~30の長鎖アルキル基含有モノマーであることが好ましく、炭素数24~30の長鎖アルキル基含有(メタ)アクリレートモノマーであることがより好ましい。特に、炭素数が30以下である長鎖アルキル基含有モノマーは容易に入手できる。また、上記炭素数24~30の長鎖アルキル基を有する化合物Aは、炭素数24~30の長鎖アルキル基と(メタ)アクリロイル基とを有する化合物であることが好ましい。上記(メタ)アクリレートは、アクリレートとメタクリレートとを示す。上記(メタ)アクリロイル基は、アクリロイル基とメタクリロイル基とを示す。 The carbon number of the long chain alkyl group is 24-30. When the carbon number of the alkyl group of the compound having a long-chain alkyl group is less than 24, light leakage occurs. A preferable lower limit of the carbon number of the long-chain alkyl group is 26. A compound having a long-chain alkyl group having 30 or less carbon atoms can be easily obtained. The compound A having a long-chain alkyl group having 24 to 30 carbon atoms is preferably a monomer, and more preferably a (meth) acrylate monomer. That is, the compound A is preferably a long chain alkyl group-containing monomer having 24 to 30 carbon atoms, and more preferably a long chain alkyl group-containing (meth) acrylate monomer having 24 to 30 carbon atoms. In particular, a long-chain alkyl group-containing monomer having 30 or less carbon atoms can be easily obtained. The compound A having a long chain alkyl group having 24 to 30 carbon atoms is preferably a compound having a long chain alkyl group having 24 to 30 carbon atoms and a (meth) acryloyl group. The said (meth) acrylate shows an acrylate and a methacrylate. The (meth) acryloyl group represents an acryloyl group and a methacryloyl group.
 上記炭素数24~30の長鎖アルキル基含有モノマーは、例えば、アルキル基の炭素数が24であるテトラコシル(メタ)アクリレート、炭素数が25であるペンタコシル(メタ)アクリレート、炭素数が26であるヘキサコシル(メタ)アクリレート、炭素数が27であるヘプタコシル(メタ)アクリレート、炭素数が28であるオクタコシル(メタ)アクリレート、炭素数が29であるノナコシル(メタ)アクリレート、及び炭素数が30であるトリアコンチル(メタ)アクリレート等が挙げられる。 Examples of the long-chain alkyl group-containing monomer having 24 to 30 carbon atoms include tetracosyl (meth) acrylate having 24 alkyl atoms, pentacosyl (meth) acrylate having 25 carbon atoms, and 26 carbon atoms. Hexacosyl (meth) acrylate, heptacosyl (meth) acrylate having 27 carbon atoms, octacosyl (meth) acrylate having 28 carbon atoms, nonacosyl (meth) acrylate having 29 carbon atoms, and triacontyl having 30 carbon atoms (Meth) acrylate etc. are mentioned.
 上記樹脂層における上記炭素数24~30の長鎖アルキル基を有する化合物Aに由来する成分の含有量の好ましい下限は5mol%、好ましい上限は30mol%である。上記炭素数24~30の長鎖アルキル基を有する化合物Aに由来する成分の含有量が上記下限以上であると、光抜けがより一層生じ難くなる。上記炭素数24~30の長鎖アルキル基を有する化合物Aの含有量が上記上限以下であると、糸状ドメインがより一層生じ難くなる。 The preferable lower limit of the content of the component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms in the resin layer is 5 mol%, and the preferable upper limit is 30 mol%. When the content of the component derived from the compound A having a long-chain alkyl group having 24 to 30 carbon atoms is equal to or more than the above lower limit, light leakage is more difficult to occur. When the content of the compound A having a long-chain alkyl group having 24 to 30 carbon atoms is not more than the above upper limit, a thread domain is more difficult to occur.
 なお、本明細書において上記化合物Aに由来する成分の含有量は、上記樹脂層を形成する際の仕込み量を表す。すなわち、上記樹脂層を形成するために、上記化合物Aの仕込み量の好ましい下限は5mol%、好ましい上限は30mol%である。 In addition, in this specification, content of the component derived from the said compound A represents the preparation amount at the time of forming the said resin layer. That is, in order to form the resin layer, the preferable lower limit of the charged amount of the compound A is 5 mol%, and the preferable upper limit is 30 mol%.
 上記樹脂層は、炭素数24~30のアルキル基を有する化合物とともに、アルキレンエーテル構造を有する化合物(以下、化合物Bと記載することがある)を用いて形成されている。化合物Bは、アルキレングリコール骨格を有することが好ましい。上記樹脂層は、アルキレンエーテル構造を有する化合物Bに由来する成分を含む。該成分は、アルキレンエーテル構造を有する化合物Bの反応物である。上記樹脂層は、基材粒子の表面上で、アルキレンエーテル構造を有する化合物Bを反応させることにより形成されていることが好ましい。このような化合物Bの使用により、上記樹脂層の外表面にアルキレンエーテル構造を導入できる。さらに、化合物Bの使用により、アルキレンエーテル構造に由来して、分散媒中で液晶表示素子用スペーサの凝集を効果的に抑制することができる。特に、水を含む分散媒中で、液晶表示素子用スペーサの凝集を顕著に抑制することができる。 The resin layer is formed using a compound having an alkylene ether structure (hereinafter sometimes referred to as compound B) together with a compound having an alkyl group having 24 to 30 carbon atoms. Compound B preferably has an alkylene glycol skeleton. The resin layer includes a component derived from the compound B having an alkylene ether structure. This component is a reaction product of Compound B having an alkylene ether structure. The resin layer is preferably formed by reacting compound B having an alkylene ether structure on the surface of the base particle. By using such compound B, an alkylene ether structure can be introduced on the outer surface of the resin layer. Furthermore, the use of compound B can effectively suppress aggregation of spacers for liquid crystal display elements in the dispersion medium due to the alkylene ether structure. In particular, aggregation of spacers for liquid crystal display elements can be significantly suppressed in a dispersion medium containing water.
 すなわち、化合物Aと化合物Bとを用いて樹脂層が形成された液晶表示素子用スペーサを分散媒中に分散させた場合に、スペーサの凝集を生じ難くすることができる。このため、湿式法又はインクジェット装置によりスペーサを、基板上に精度よく配置させることができる。化合物Aと化合物Bとを用いて樹脂層が形成された液晶表示素子用スペーサでは、スペーサ分散液中において、化合物Bのアルキレンエーテル構造に由来して分散液中でのスペーサの凝集を抑制できる一方で、液晶中では、化合物Aの炭素数24~30のアルキル基に由来して上述の効果を得ることができ、光抜け及び糸状ドメインの発生を防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位を高めることができる。これは、アルキレンエーテル構造が比較的高い親水性を示し、分散液中ではこの親水性が比較的高い構造が影響するのに対し、炭素数24~30の長鎖アルキル基は疎水性が高く、液晶中ではこの疎水性が高い基が影響するためであると考えられる。 That is, when the liquid crystal display element spacer in which the resin layer is formed using the compound A and the compound B is dispersed in the dispersion medium, the spacers can be hardly aggregated. For this reason, the spacer can be accurately arranged on the substrate by a wet method or an inkjet apparatus. In the spacer for a liquid crystal display element in which the resin layer is formed using the compound A and the compound B, the aggregation of the spacer in the dispersion liquid can be suppressed in the spacer dispersion liquid due to the alkylene ether structure of the compound B. In the liquid crystal, the above-mentioned effects can be obtained due to the alkyl group having 24 to 30 carbon atoms of the compound A, the light leakage and the generation of thread domains can be prevented, and the liquid crystal display element can be prevented without disturbing the alignment of the liquid crystal. Display quality can be improved. This is because the alkylene ether structure exhibits a relatively high hydrophilicity, and in the dispersion, the structure having a relatively high hydrophilicity affects, whereas the long-chain alkyl group having 24 to 30 carbon atoms has a high hydrophobicity, This is considered to be due to the influence of this highly hydrophobic group in the liquid crystal.
 上記アルキレンエーテル構造は、下記式(21)で表される構造である。 The alkylene ether structure is a structure represented by the following formula (21).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(21)中、Rは、アルキレン基を表す。該アルキレン基は、直鎖状であってもよく、分岐構造を有していてもよい。該アルキレン基の炭素数は、好ましくは2以上、好ましくは6以下、より好ましくは4以下である。 In the above formula (21), R represents an alkylene group. The alkylene group may be linear or have a branched structure. Carbon number of this alkylene group becomes like this. Preferably it is 2 or more, Preferably it is 6 or less, More preferably, it is 4 or less.
 上記アルキレンエーテル構造としては特に限定されず、エチレングリコール構造、プロピレングリコール構造、テトラメチレングリコール構造、ペンタメチレングリコール構造及びヘキサメチレングリコール構造が挙げられる。 The alkylene ether structure is not particularly limited, and examples thereof include an ethylene glycol structure, a propylene glycol structure, a tetramethylene glycol structure, a pentamethylene glycol structure, and a hexamethylene glycol structure.
 分散媒中での液晶表示素子用スペーサの凝集をより一層抑制する観点からは、上記アルキレンエーテル構造は、下記式(21A)で表される構造であることが好ましい。 From the viewpoint of further suppressing the aggregation of the spacer for liquid crystal display element in the dispersion medium, the alkylene ether structure is preferably a structure represented by the following formula (21A).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(21A)中、Rは、アルキレン基を表し、該アルキレン基の炭素数は、2以上、6以下である。該アルキレン基の炭素数はより好ましくは4以下である。該アルキレン基は、直鎖状であってもよく、分岐構造を有していてもよい。 In the above formula (21A), R represents an alkylene group, and the alkylene group has 2 or more and 6 or less carbon atoms. More preferably, the alkylene group has 4 or less carbon atoms. The alkylene group may be linear or have a branched structure.
 分散媒中での液晶表示素子用スペーサの凝集を更に一層抑制する観点からは、上記アルキレンエーテル構造は、エチレングリコール構造、プロピレングリコール構造又はテトラメチレングリコール構造であることが好ましい。分散媒中での液晶表示素子用スペーサの凝集を更に一層抑制する観点からは、上記アルキレンエーテル構造は、エチレングリコール構造又はプロピレングリコール構造であることがより好ましく、エチレングリコール構造であることが更に好ましい。また、分散液中での液晶表示素子用スペーサの凝集を抑制するために、上記アルキレンエーテル構造は、プロピレングリコール構造又はテトラメチレングリコール構造であることが好ましく、プロピレングリコール構造であることが好ましく、テトラメチレングリコール構造であることが好ましい。化合物Bは、ポリアルキレンエーテル構造を有することが好ましく、ポリエチレングリコール構造、ポリプロピレングリコール構造又はポリテトラメチレングリコール構造を有することがより好ましく、ポリエチレングリコール構造又はポリプロピレングリコール構造であることがより好ましく、ポリエチレングリコール構造を有することが更に好ましい。 From the viewpoint of further suppressing aggregation of the spacers for liquid crystal display elements in the dispersion medium, the alkylene ether structure is preferably an ethylene glycol structure, a propylene glycol structure, or a tetramethylene glycol structure. From the viewpoint of further suppressing the aggregation of the spacer for the liquid crystal display element in the dispersion medium, the alkylene ether structure is more preferably an ethylene glycol structure or a propylene glycol structure, and further preferably an ethylene glycol structure. . In order to suppress aggregation of the spacer for liquid crystal display element in the dispersion, the alkylene ether structure is preferably a propylene glycol structure or a tetramethylene glycol structure, preferably a propylene glycol structure, A methylene glycol structure is preferred. Compound B preferably has a polyalkylene ether structure, more preferably a polyethylene glycol structure, a polypropylene glycol structure or a polytetramethylene glycol structure, more preferably a polyethylene glycol structure or a polypropylene glycol structure, More preferably, it has a structure.
 上記樹脂層における上記アルキレンエーテル構造を有する化合物Bに由来する成分の含有量の好ましい下限は0.1mol%、好ましい上限は20mol%である。上記化合物Bに由来する成分の含有量が上記下限以上であると、分散液中でのスペーサの凝集をより一層抑制できる。上記化合物Bの含有量が上記上限以下であると、光抜け及び糸状ドメインの発生をより一層防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位をより一層高めることができる。 The preferable lower limit of the content of the component derived from the compound B having the alkylene ether structure in the resin layer is 0.1 mol%, and the preferable upper limit is 20 mol%. When the content of the component derived from the compound B is not less than the above lower limit, the aggregation of the spacers in the dispersion can be further suppressed. If the content of the compound B is not more than the above upper limit, light leakage and generation of thread domains can be further prevented, and the display quality of the liquid crystal display element can be further improved without disturbing the alignment of the liquid crystal.
 なお、本明細書において上記化合物Bに由来する成分の含有量は、上記樹脂層を形成する際の仕込み量を表す。すなわち、上記樹脂層を形成するために、上記化合物Bの仕込み量の好ましい下限及び好ましい上限が上述した値である。 In addition, in this specification, content of the component derived from the said compound B represents the preparation amount at the time of forming the said resin layer. That is, in order to form the resin layer, the preferable lower limit and the preferable upper limit of the charged amount of the compound B are the values described above.
 上記アルキレンエーテル構造を有する化合物Bの具体例としては、ポリエチレングリコールモノメタクリレート、メトキシポリエチレングリコールモノメタクリレート、ポリエチレングリコールポリテトラメチレングリコールモノメタクリレート及びポリエチレングリコールポリプロピレングリコールモノオクタノールメタクリレート等が挙げられる。 Specific examples of the compound B having the alkylene ether structure include polyethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, polyethylene glycol polytetramethylene glycol monomethacrylate, polyethylene glycol polypropylene glycol monooctanol methacrylate, and the like.
 上記樹脂層を構成する他の化合物としては特に限定されない。例えば、液晶表示素子用スペーサの樹脂層に親水性を付与する場合には、水酸基を有する化合物等を用いることができる。上記水酸基を有する化合物としては、ヒドロキシエチル(メタ)アクリレート及びメトキシポリエチレングリコール(メタ)アクリレート等が挙げられる。液晶表示素子用スペーサの樹脂層に疎水性を付与する場合には、アルキル(メタ)アクリレート、フッ素含有(メタ)アクリレート、スチレンやp-クロロスチレンなどのスチレン誘導体、反応部位を有するグリシジル(メタ)アクリレート、(メタ)アクリル酸、及び(メタ)アクリルアミド等を用いることができる。上記アルキル(メタ)アクリレートとしては、(メタ)アクリル酸ブチル及び(メタ)アクリル酸ステアリル等が挙げられる。上記フッ素含有(メタ)アクリレートとしては、トリフルオロエチル(メタ)アクリレート及びペンタフルオロプロピル(メタ)アクリレート等が挙げられる。液晶表示素子用スペーサの樹脂層に反応性を付与したい場合には、上記水酸基を有する化合物、グリシジル(メタ)アクリレートなどのエポキシ基を有する化合物、及びカルボキシル基を有する単量体等を用いることができる。これらの他の化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。これら単量体とともに、該単量体と共重合可能な他の重合性単量体を用いてもよい。 The other compound constituting the resin layer is not particularly limited. For example, when hydrophilicity is imparted to the resin layer of the spacer for a liquid crystal display element, a compound having a hydroxyl group can be used. Examples of the compound having a hydroxyl group include hydroxyethyl (meth) acrylate and methoxypolyethylene glycol (meth) acrylate. When hydrophobicity is imparted to the resin layer of the spacer for liquid crystal display elements, alkyl (meth) acrylate, fluorine-containing (meth) acrylate, styrene derivatives such as styrene and p-chlorostyrene, glycidyl (meth) having a reactive site Acrylate, (meth) acrylic acid, (meth) acrylamide and the like can be used. Examples of the alkyl (meth) acrylate include butyl (meth) acrylate and stearyl (meth) acrylate. Examples of the fluorine-containing (meth) acrylate include trifluoroethyl (meth) acrylate and pentafluoropropyl (meth) acrylate. When it is desired to impart reactivity to the resin layer of the spacer for liquid crystal display elements, the above compound having a hydroxyl group, a compound having an epoxy group such as glycidyl (meth) acrylate, a monomer having a carboxyl group, or the like may be used. it can. As for these other compounds, only 1 type may be used and 2 or more types may be used together. Along with these monomers, other polymerizable monomers copolymerizable with the monomers may be used.
 上記樹脂層の厚さは、上記基材粒子の粒子径、樹脂層を構成する材料の種類及び組成等を考慮して適宜決定される。上記樹脂層の厚さの好ましい下限は5nm、好ましい上限は300nmである。上記樹脂層の厚さが5nm以上であると、異常配向を防止する性能がより一層高くなり、液晶表示素子においてスペーサの周囲で光抜けがより一層生じ難くなる。上記樹脂層の厚さが300nm以下であると、複数の液晶表示素子用スペーサ同士の合着が起こり難くなり、更に樹脂層の変形が生じ難くなるので液晶表示素子のセルギャップをより一層均一にすることができる。上記樹脂層のより好ましい下限は10nm、より好ましい上限は100nmである。 The thickness of the resin layer is appropriately determined in consideration of the particle diameter of the substrate particles, the type and composition of the material constituting the resin layer, and the like. The preferable lower limit of the thickness of the resin layer is 5 nm, and the preferable upper limit is 300 nm. When the thickness of the resin layer is 5 nm or more, the ability to prevent abnormal orientation is further enhanced, and light leakage is less likely to occur around the spacer in the liquid crystal display element. When the thickness of the resin layer is 300 nm or less, it is difficult for a plurality of spacers for liquid crystal display elements to be bonded to each other, and further, the resin layer is hardly deformed, so that the cell gap of the liquid crystal display element is made more uniform. can do. A more preferable lower limit of the resin layer is 10 nm, and a more preferable upper limit is 100 nm.
 上記樹脂層は、上記基材粒子の表面の全領域上に配置されていてもよいし、一部の領域上にのみ配置されていてもよい。上記樹脂層が一部の領域にのみ配置されている場合でも、上記樹脂層がない場合と比べて、上記樹脂層の存在する部分において、光抜け及び糸状ドメインの発生を防ぎ、液晶の配向を乱すことなく液晶表示素子の表示品位を高めることができる。上記樹脂層が上記基材粒子の表面の一部の領域上にのみ配置されている場合、上記基材粒子の全表面積100%中、上記樹脂層が配置されている上記基材粒子の表面積の割合の好ましい下限は0.15%である。上記樹脂層が配置されている表面積の割合が0.15%以上であると、光抜けを十分に防止することができ、糸状ドメイン発生の防止効果が十分に発揮される。 The resin layer may be disposed on the entire region of the surface of the substrate particle, or may be disposed only on a part of the region. Even when the resin layer is disposed only in a part of the region, compared to the case where the resin layer is not present, in the portion where the resin layer is present, light leakage and generation of thread domains are prevented, and the alignment of the liquid crystal is prevented. The display quality of the liquid crystal display element can be improved without being disturbed. When the resin layer is disposed only on a partial region of the surface of the base particle, the surface area of the base particle in which the resin layer is disposed in 100% of the total surface area of the base particle. A preferred lower limit of the proportion is 0.15%. When the ratio of the surface area on which the resin layer is disposed is 0.15% or more, light leakage can be sufficiently prevented and the effect of preventing the occurrence of thread domains is sufficiently exhibited.
 本発明の液晶表示素子用スペーサを製造する方法としては、例えば、上記基材粒子の表面の官能基に、硝酸第二セリウムアンモニウム等のセリウム系触媒の存在下、上記炭素数24~30の長鎖アルキル基を有する化合物Aを反応させる方法(Ce法)、並びに上記基材粒子の表面の官能基に、メタクリロキシエチルイソシアネート等の重合官能基を有するイソシアネートを反応させて重合性官能基を導入した後、これに上記炭素数24~30の長鎖アルキル基を有する化合物Aを反応させる方法(重合法)等が挙げられる。上記樹脂層を形成するために、上記化合物Aとともに上記化合物Bを反応させてもよく、上記化合物Aの反応の後に上記化合物Bを反応させてもよく、上記化合物Aの反応の前に上記化合物Bを反応させてもよい。上記樹脂層において、上記化合物Aと上記化合物Bとは反応していなくてもよく、上記化合物Aと上記化合物Bとは反応していてもよい。 As a method for producing the spacer for a liquid crystal display element of the present invention, for example, in the presence of a cerium-based catalyst such as ceric ammonium nitrate in the functional group on the surface of the base material particle, the length of 24 to 30 carbon atoms is used. A method of reacting compound A having a chain alkyl group (Ce method), and introducing a polymerizable functional group by reacting an isocyanate having a polymerizable functional group such as methacryloxyethyl isocyanate with the functional group on the surface of the base material particle. Thereafter, a method (polymerization method) of reacting the compound A having a long-chain alkyl group having 24 to 30 carbon atoms with the compound A may be used. In order to form the resin layer, the compound B may be reacted with the compound A, the compound B may be reacted after the reaction of the compound A, and the compound B is reacted before the reaction of the compound A. B may be reacted. In the resin layer, the compound A and the compound B may not be reacted, and the compound A and the compound B may be reacted.
 例えば、有機材料を用いて上記基材粒子を製造する際に分散助剤としてポリビニルアルコールを用いた場合には、上記基材粒子の表面の官能基は、ポリビニルアルコールの一部が有機材料の架橋構造に絡み合ったり、基材粒子の表面に吸着したりする。このため、基材粒子の表面にポリビニルアルコールが存在する。基材粒子の表面上のポリビニルアルコールは、基材粒子を加熱しながら充分に洗浄した後であっても除去されない。上記基材粒子の表面上のポリビニルアルコールに由来する水酸基を起点として、上記Ce法又は上記重合法により、本発明の液晶表示素子用スペーサを製造することができる。上記基材粒子として、表面に水酸基を有する基材粒子を用いることが好ましい。 For example, when polyvinyl alcohol is used as a dispersion aid when producing the base material particles using an organic material, the functional group on the surface of the base material particles is partially crosslinked with the organic material. It is entangled with the structure or adsorbed on the surface of the base particle. For this reason, polyvinyl alcohol exists on the surface of the substrate particles. The polyvinyl alcohol on the surface of the substrate particles is not removed even after the substrate particles are sufficiently washed while being heated. The spacer for a liquid crystal display element of the present invention can be produced by the Ce method or the polymerization method starting from a hydroxyl group derived from polyvinyl alcohol on the surface of the substrate particle. As the substrate particles, substrate particles having a hydroxyl group on the surface are preferably used.
 基材粒子を得る際にポリビニルアルコールを用いない場合には、基材粒子の表面に適当な反応性官能基を導入し、該反応性官能基を起点として、上記Ce法又は上記重合法により、本発明の液晶表示素子用スペーサを製造することができる。 When polyvinyl alcohol is not used when obtaining the base particles, an appropriate reactive functional group is introduced on the surface of the base particles, and starting from the reactive functional group, the Ce method or the polymerization method, The spacer for liquid crystal display elements of this invention can be manufactured.
 本発明に係る液晶表示素子用スペーサは、湿式法又はインクジェット装置により基板上に配置される液晶表示素子用スペーサであることが好ましい。湿式法又はインクジェット装置により基板上にスペーサを配置するために、本発明に係る液晶表示素子用スペーサは、分散媒に分散させて用いられることが好ましい。液晶表示素子用スペーサを分散媒に分散させることにより、液晶表示素子用スペーサ分散液を得ることができる。 The liquid crystal display element spacer according to the present invention is preferably a liquid crystal display element spacer disposed on a substrate by a wet method or an ink jet apparatus. In order to dispose the spacer on the substrate by a wet method or an ink jet apparatus, the liquid crystal display element spacer according to the present invention is preferably used by being dispersed in a dispersion medium. By dispersing the liquid crystal display element spacer in the dispersion medium, a liquid crystal display element spacer dispersion can be obtained.
 上記分散媒は特に限定されない。スペーサ分散液に用いられている従来公知の分散媒を用いることができる。上記分散媒としては、イソプロピルアルコール、水、メタノール及びエタノール等が挙げられる。上記分散媒は、水を含むことが好ましく、アルコールを含むことが好ましく、水とアルコールとを含むことが好ましい。該アルコールはイソプロピルアルコールであることが好ましい。上記分散媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The dispersion medium is not particularly limited. A conventionally known dispersion medium used for the spacer dispersion liquid can be used. Examples of the dispersion medium include isopropyl alcohol, water, methanol, and ethanol. The dispersion medium preferably contains water, preferably contains alcohol, and preferably contains water and alcohol. The alcohol is preferably isopropyl alcohol. As for the said dispersion medium, only 1 type may be used and 2 or more types may be used together.
 液晶表示素子用スペーサ分散液中のスペーサの固形分濃度は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは10重量%以下、より好ましくは3重量%以下である。上記固形分濃度が上記下限以上であると、液晶表示素子においてスペーサにより適切なギャップを容易に確保できる。上記固形分濃度が上記上限以下であると、スペーサ分散液中で凝集物がより一層生じ難くなる。 The solid content concentration of the spacer in the spacer dispersion for the liquid crystal display element is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 10% by weight or less, more preferably 3% by weight or less. is there. When the solid content concentration is equal to or higher than the lower limit, an appropriate gap can be easily secured by a spacer in the liquid crystal display element. When the solid content concentration is less than or equal to the above upper limit, aggregates are further hardly generated in the spacer dispersion.
 本発明に係る液晶表示素子は、液晶セルを構成する一対の基板と、該一対の基板間に封入された液晶と、該一対の基板間に配置された上記液晶表示素子用スペーサとを備える。本発明に係る液晶表示素子は、一対の基板の外表面に積層された偏光板を備えることが好ましい。本発明に係る液晶表示素子は、STN型液晶表示素子であることが好ましい。 A liquid crystal display element according to the present invention includes a pair of substrates constituting a liquid crystal cell, a liquid crystal sealed between the pair of substrates, and the liquid crystal display element spacer disposed between the pair of substrates. The liquid crystal display element according to the present invention preferably includes a polarizing plate laminated on the outer surfaces of a pair of substrates. The liquid crystal display element according to the present invention is preferably an STN type liquid crystal display element.
 図2に、本発明の一実施形態に係る液晶表示素子用スペーサを用いた液晶表示素子を断面図で示す。 FIG. 2 is a cross-sectional view of a liquid crystal display element using a liquid crystal display element spacer according to an embodiment of the present invention.
 図2に示す液晶表示素子11は、一対の透明ガラス基板12を有する。透明ガラス基板12は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板12における絶縁膜上に透明電極13が形成されている。透明電極13の材料としては、ITO等が挙げられる。透明電極13は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板12の表面上の透明電極13上に、配向膜14が形成されている。配向膜14の材料としては、ポリイミド等が挙げられている。 The liquid crystal display element 11 shown in FIG. 2 has a pair of transparent glass substrates 12. The transparent glass substrate 12 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 . A transparent electrode 13 is formed on the insulating film in the transparent glass substrate 12. Examples of the material of the transparent electrode 13 include ITO. The transparent electrode 13 can be formed by patterning, for example, by photolithography. An alignment film 14 is formed on the transparent electrode 13 on the surface of the transparent glass substrate 12. Examples of the material of the alignment film 14 include polyimide.
 一対の透明ガラス基板12間には、液晶15が封入されている。一対の透明ガラス基板12間には、複数の液晶表示素子用スペーサ1が配置されている。複数の液晶表示素子用スペーサ1により、一対の透明ガラス基板12の間隔が規制されている。一対の透明ガラス基板12の縁部間には、シール剤16が配置されている。シール剤16によって、液晶15の外部への流出が防がれている。 A liquid crystal 15 is sealed between the pair of transparent glass substrates 12. A plurality of liquid crystal display element spacers 1 are arranged between the pair of transparent glass substrates 12. The distance between the pair of transparent glass substrates 12 is regulated by the plurality of liquid crystal display element spacers 1. A sealing agent 16 is disposed between the edges of the pair of transparent glass substrates 12. The sealing agent 16 prevents the liquid crystal 15 from flowing out.
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度の好ましい下限は10個/mm、好ましい上限は1000個/mmである。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。 In the liquid crystal display element, a preferable lower limit of the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is 10 pieces / mm 2 , and a preferable upper limit is 1000 pieces / mm 2 . When the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform. When the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
 本発明の液晶表示素子は、本発明の液晶表示素子用スペーサを用いること以外は、従来公知の方法で製造可能である。 The liquid crystal display element of the present invention can be manufactured by a conventionally known method except that the spacer for liquid crystal display element of the present invention is used.
 以下に実施例を挙げて本発明を更に詳しく説明する。本発明は以下の実施例にのみ限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)基材粒子Aの作製
 3重量%ポリビニルアルコール水溶液800重量部に、カーボンブラック5重量部と、ジビニルベンゼン100重量部と、過酸化ベンゾイル2重量部とを加え、ホモジナイザーにて撹拌して粒度調整を行った。その後、撹拌しながら窒素気流下にて80℃まで昇温し15時間反応を行い、微粒子を得た。得られた微粒子を熱イオン交換水及びメタノールにて洗浄した後、分級操作を行うことにより基材粒子Aを得た。得られた基材粒子Aの平均粒子径は6.0μm、CV値は5%であった。
Example 1
(1) Preparation of substrate particle A 5 parts by weight of carbon black, 100 parts by weight of divinylbenzene and 2 parts by weight of benzoyl peroxide are added to 800 parts by weight of a 3% by weight aqueous polyvinyl alcohol solution, and the mixture is stirred with a homogenizer. The particle size was adjusted. Then, it heated up to 80 degreeC under nitrogen stream, stirring, and reacted for 15 hours, and obtained microparticles | fine-particles. The obtained fine particles were washed with hot ion-exchanged water and methanol, and then classified to obtain substrate particles A. The average particle diameter of the obtained base particle A was 6.0 μm, and the CV value was 5%.
 (2)液晶表示素子用スペーサの製造
 セパラブルフラスコに、得られた基材粒子A100g、N,N-ジメチルホルムアミド220g、及び、(メタ)アクリル酸エステルモノマー混合液432gを加え、撹拌した。
(2) Production of spacer for liquid crystal display element To a separable flask, 100 g of the obtained base particle A, 220 g of N, N-dimethylformamide and 432 g of a (meth) acrylate monomer mixture were added and stirred.
 用いた(メタ)アクリル酸エステルモノマー混合液432gは、トリアコンチルメタクリレート91g(8mol%)、イソブチルメタクリレート233g(73mol%)、メチルメタクリレート36g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート72g(3mol%)を含む混合液である。 The 432 g of (meth) acrylic acid ester monomer mixture used was 91 g (8 mol%) triacontyl methacrylate, 233 g (73 mol%) isobutyl methacrylate, 36 g (16 mol%) methyl methacrylate, and 72 g (3 mol%) methoxypolyethylene glycol monomethacrylate. ).
 次いで、反応系に窒素ガスを導入し、30℃にて3時間撹拌した。その後、1N硝酸水溶液で調製した0.1モル/Lの硝酸第二セリウムアンモニウム溶液21gを追加し、10時間反応させた。反応終了後、得られた微粒子をテトラヒドロフランにて洗浄し、真空乾燥器にて、減圧乾燥を行い、液晶表示素子用スペーサを得た。 Next, nitrogen gas was introduced into the reaction system and stirred at 30 ° C. for 3 hours. Thereafter, 21 g of a 0.1 mol / L ceric ammonium nitrate solution prepared with a 1N aqueous nitric acid solution was added and reacted for 10 hours. After completion of the reaction, the obtained fine particles were washed with tetrahydrofuran and dried under reduced pressure in a vacuum dryer to obtain a liquid crystal display element spacer.
 得られた液晶表示素子用スペーサの平均粒子径を測定し、基材粒子Aの平均粒子径との差から被覆樹脂層の厚さを求めた。この結果、被覆樹脂層の厚さは、0.03μmであった。 The average particle diameter of the obtained spacer for a liquid crystal display element was measured, and the thickness of the coating resin layer was determined from the difference from the average particle diameter of the base particle A. As a result, the thickness of the coating resin layer was 0.03 μm.
 (実施例2)
 (メタ)アクリル酸エステルモノマー混合液を、トリアコンチルメタクリレート241g(30mol%)、イソブチルメタクリレート115g(51mol%)、メチルメタクリレート25g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート51g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 2)
The (meth) acrylic acid ester monomer mixed solution contains 241 g (30 mol%) triacontyl methacrylate, 115 g (51 mol%) isobutyl methacrylate, 25 g (16 mol%) methyl methacrylate, and 51 g (3 mol%) methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例3)
 (メタ)アクリル酸エステルモノマー混合液を、トリアコンチルメタクリレート317g(50mol%)、イソブチルメタクリレート55g(31mol%)、メチルメタクリレート20g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート40g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 3)
The (meth) acrylic acid ester monomer mixture liquid contains 317 g (50 mol%) triacontyl methacrylate, 55 g (31 mol%) isobutyl methacrylate, 20 g (16 mol%) methyl methacrylate, and 40 g (3 mol%) methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例4)
 (メタ)アクリル酸エステルモノマー混合液を、ヘキサコシルメタクリレート100g(10mol%)、イソブチルメタクリレート225g(71mol%)、メチルメタクリレート36g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート71g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
Example 4
The (meth) acrylic acid ester monomer mixed solution contains 100 g (10 mol%) of hexacosyl methacrylate, 225 g (71 mol%) of isobutyl methacrylate, 36 g (16 mol%) of methyl methacrylate, and 71 g (3 mol%) of methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例5)
 (メタ)アクリル酸エステルモノマー混合液を、ヘキサコシルメタクリレート307g(50mol%)、イソブチルメタクリレート60g(31mol%)、メチルメタクリレート22g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート44g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 5)
The (meth) acrylic acid ester monomer mixed solution contains 307 g (50 mol%) of hexacosyl methacrylate, 60 g (31 mol%) of isobutyl methacrylate, 22 g (16 mol%) of methyl methacrylate, and 44 g (3 mol%) of methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例6)
 (メタ)アクリル酸エステルモノマー混合液を、テトラコシルメタクリレート95g(10mol%)、イソブチルメタクリレート228g(71mol%)、メチルメタクリレート36g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート72g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 6)
The (meth) acrylic acid ester monomer mixed solution contains 95 g (10 mol%) of tetracosyl methacrylate, 228 g (71 mol%) of isobutyl methacrylate, 36 g (16 mol%) of methyl methacrylate, and 72 g (3 mol%) of methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例7)
 (メタ)アクリル酸エステルモノマー混合液を、テトラコシルメタクリレート301g(50mol%)、イソブチルメタクリレート63g(31mol%)、メチルメタクリレート23g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート46g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 7)
The (meth) acrylic acid ester monomer mixed solution contains tetracosyl methacrylate 301 g (50 mol%), isobutyl methacrylate 63 g (31 mol%), methyl methacrylate 23 g (16 mol%), and methoxypolyethylene glycol monomethacrylate 46 g (3 mol%). A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例8)
 (メタ)アクリル酸エステルモノマー混合液を、テトラコシルメタクリレート181g(30mol%)、イソブチルメタクリレート104g(51mol%)、メチルメタクリレート23g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート46g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 8)
The (meth) acrylic acid ester monomer mixed liquid contains 181 g (30 mol%) of tetracosyl methacrylate, 104 g (51 mol%) of isobutyl methacrylate, 23 g (16 mol%) of methyl methacrylate, and 46 g (3 mol%) of methoxypolyethylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid mixture was changed.
 (実施例9)
 (メタ)アクリル酸エステルモノマー混合液を、テトラコシルメタクリレート60g(10mol%)、イソブチルメタクリレート104g(71mol%)、メチルメタクリレート23g(16mol%)、及びポリプロピレングリコールモノメタクリレート35g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
Example 9
A (meth) acrylic acid ester monomer mixed solution containing 60 g (10 mol%) tetracosyl methacrylate, 104 g (71 mol%) isobutyl methacrylate, 23 g (16 mol%) methyl methacrylate, and 35 g (3 mol%) polypropylene glycol monomethacrylate A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid was changed.
 (実施例10)
 (メタ)アクリル酸エステルモノマー混合液を、トリアコンチルメタクリレート24g(30mol%)、イソブチルメタクリレート104g(51mol%)、メチルメタクリレート23g(16mol%)、及びポリプロピレングリコルモノメタクリレート35g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 10)
A (meth) acrylic acid ester monomer mixed liquid is mixed containing 24 g (30 mol%) triacontyl methacrylate, 104 g (51 mol%) isobutyl methacrylate, 23 g (16 mol%) methyl methacrylate, and 35 g (3 mol%) polypropylene glycol monomethacrylate. A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid was changed.
 (実施例11)
 (メタ)アクリル酸エステルモノマー混合液を、テトラコシルメタクリレート60g(10mol%)、イソブチルメタクリレート144g(71mol%)、メチルメタクリレート23g(16mol%)、及びポリプロピレングリコールテトラメチレングリコールモノメタクリレート37g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 11)
The (meth) acrylic acid ester monomer mixture was mixed with 60 g (10 mol%) of tetracosyl methacrylate, 144 g (71 mol%) of isobutyl methacrylate, 23 g (16 mol%) of methyl methacrylate, and 37 g (3 mol%) of polypropylene glycol tetramethylene glycol monomethacrylate. A spacer for a liquid crystal display element was obtained in the same manner as in Example 1 except that the mixture was changed to a mixed solution containing.
 (実施例12)
 (メタ)アクリル酸エステルモノマー混合液を、トリアコンチルメタクリレート241g(30mol%)、イソブチルメタクリレート104g(51mol%)、メチルメタクリレート26g(16mol%)、及びポリプロピレングリコールテトラメチレングリコールモノメタクリレート37g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Example 12)
The (meth) acrylic acid ester monomer mixture was mixed with 241 g (30 mol%) of triacontyl methacrylate, 104 g (51 mol%) of isobutyl methacrylate, 26 g (16 mol%) of methyl methacrylate, and 37 g (3 mol%) of polypropylene glycol tetramethylene glycol monomethacrylate. A spacer for a liquid crystal display element was obtained in the same manner as in Example 1 except that the mixture was changed to a mixed solution containing.
 (比較例1)
 (メタ)アクリル酸エステルモノマー混合液を、ドコシルメタクリレート294g(50mol%)、イソブチルメタクリレート66g(31mol%)、メチルメタクリレート24g(16mol%)、及びメトキシポリエチレングリコールモノメタクリレート48g(3mol%)を含む混合液に変更したこと以外は、実施例1と同様にして液晶表示素子用スペーサを得た。
(Comparative Example 1)
A (meth) acrylic acid ester monomer mixture solution containing 294 g (50 mol%) docosyl methacrylate, 66 g (31 mol%) isobutyl methacrylate, 24 g (16 mol%) methyl methacrylate, and 48 g (3 mol%) methoxypolyethylene glycol monomethacrylate A liquid crystal display element spacer was obtained in the same manner as in Example 1 except that the liquid was changed.
 (評価)
 実施例及び比較例で得られた液晶表示素子用スペーサを用いて、STN型液晶表示素子を作製し、光抜け、糸状ドメイン及び湿式散布性を、下記の評価方法を用いて評価した。
(Evaluation)
Using the spacers for liquid crystal display elements obtained in Examples and Comparative Examples, STN type liquid crystal display elements were produced, and light leakage, thread domains, and wet dispersibility were evaluated using the following evaluation methods.
 (1)STN型液晶表示素子の作製
 イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で液晶表示素子用スペーサを固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
(1) Manufacture of STN type liquid crystal display element In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the spacer concentration for liquid crystal display element is 2% by weight in 100% by weight of the obtained spacer dispersion. Was added and stirred to obtain a spacer dispersion liquid crystal display device.
 一対の透明ガラス板(縦50mm、横50mm、厚さ0.4mm)の一面に、CVD法によりSiO膜を蒸着した後、SiO膜の表面全体にスパッタリングによりITO膜を形成した。得られたITO膜付きガラス基板に、スピンコート法によりポリイミド配向膜組成物(日産化学社製、SE3510)を塗工し、280℃で90分間焼成することによりポリイミド配向膜を形成した。配向膜にラビング処理を施した後、一方の基板の配向膜側に、液晶表示素子用スペーサを1mm当たり100~200個となるように湿式散布した。他方の基板の周辺にシール剤を形成した後、この基板とスペーサを散布した基板とをラビング方向が90°になるように対向配置させ、両者を貼り合わせた。その後、160℃で90分間処理してシール剤を硬化させて、空セル(液晶の入ってない画面)を得た。得られた空セルに、カイラル剤入りのSTN型液晶(DIC社製)を注入し、次に注入口を封止剤で塞いだ後、120℃で30分間熱処理してSTN型液晶表示素子を得た。 An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering. A polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by spin coating, and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the rubbing treatment for the alignment film, the liquid crystal display element spacers were wet-sprayed on the alignment film side of one substrate so that the number of spacers for a liquid crystal display element was 100 to 200 per 1 mm 2 . After forming a sealant around the other substrate, this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
 (2)光抜けの評価
 得られたSTN型液晶表示素子を、ノーマリーブラック表示モードになるように配置した偏光フィルムで挟み込み、7V、17V、30V及び50Vの電圧を印加した。その後、顕微鏡で200倍に拡大した写真を撮り、光抜けの状態(液晶の配向状態)を観察した。その結果、スペーサ周囲に液晶の異常配向発生がない場合を「◎」、スペーサ周囲のごく一部に液晶の異常配向発生が認められた場合を「○」、スペーサ周囲の全周に液晶の異常配向発生が認められた場合を「×」と評価した。
(2) Evaluation of light leakage The obtained STN type liquid crystal display element was sandwiched between polarizing films arranged to be in a normally black display mode, and voltages of 7V, 17V, 30V and 50V were applied. Then, the photograph expanded 200 times with the microscope was taken, and the state of light omission (alignment state of liquid crystal) was observed. As a result, “◎” indicates that there is no abnormal alignment of the liquid crystal around the spacer, “○” indicates that abnormal alignment of the liquid crystal is observed in a very small portion around the spacer, and abnormal liquid crystal appears on the entire periphery of the spacer. The case where the occurrence of orientation was observed was evaluated as “x”.
 (3)糸状ドメインの評価
 シリコン製ラバーを貼り付けたローラーをプッシュプルゲージに取り付け、プッシュプルゲージをローラー回転方向が地面に対して水平方向を向くようにスタンドへ固定した。このプッシュプルゲージは、地面に対して垂直方向へ移動させることができる。ローラーの下へ、スライド式ステージを置き、STN型液晶表示素子を固定できるようにした。スライド式ステージの上にSTN型液晶表示素子を置き、固定したプッシュプルゲージを下方へ移動させ、STN型液晶表示素子へ圧力を加えた。ローラーで加圧されたSTN型液晶表示素子をスライドさせた後、パネル内における糸状ドメインの発生の有無を、100倍の倍率で、偏光顕微鏡で確認した。徐々にSTN型液晶表示素子へ加える圧力を高くして、糸状ドメインが発生したときの圧力(糸状ドメイン発生圧力、N)を測定した。
(3) Evaluation of thread-like domain A roller with silicon rubber attached was attached to a push-pull gauge, and the push-pull gauge was fixed to a stand so that the roller rotation direction was horizontal with respect to the ground. This push-pull gauge can be moved in a direction perpendicular to the ground. A slide-type stage was placed under the roller so that the STN type liquid crystal display element could be fixed. The STN type liquid crystal display element was placed on the slide type stage, the fixed push-pull gauge was moved downward, and pressure was applied to the STN type liquid crystal display element. After sliding the STN type liquid crystal display element pressed with a roller, the presence or absence of the occurrence of thread domains in the panel was confirmed with a polarizing microscope at a magnification of 100 times. The pressure applied to the STN type liquid crystal display element was gradually increased, and the pressure when the filamentous domain was generated (filamentous domain generation pressure, N) was measured.
 (4)湿式散布性の評価
 イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で液晶表示素子用スペーサを固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。12時間放置した後の液晶表示素子用スペーサを、面積450cmのガラス基板上に150個/mmの散布密度で湿式散布し、ガラス基板上に液晶表示素子用スペーサを付着させた。その後、6.3mm当たりに3個、4個及び5個以上のスペーサが凝集した塊の個数を計数した。
(4) Evaluation of wet sprayability In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the solid content concentration of the spacer for liquid crystal display element is 2% by weight in 100% by weight of the obtained spacer dispersion. Were added as described above and stirred to obtain a spacer dispersion liquid crystal display device. The liquid crystal display element spacers after standing for 12 hours were wet-sprayed onto a glass substrate having an area of 450 cm 2 at a spraying density of 150 pieces / mm 2 , and the liquid crystal display element spacers were adhered to the glass substrate. Thereafter, the number of lumps in which three, four and five or more spacers aggregated per 6.3 mm 2 was counted.
 (5)飛行時間型二次イオン質量分析TOF-SIMS分析
 飛行時間型二次イオン質量分析TOF-SIMS(ION-TOF社製 TOF-SIMS 5型)により、液晶表示素子用スペーサ表面における全ポリマーに対する長鎖アルキルポリマーのスペクトル強度比を測定した。TOF-SIMSにより負の電荷を帯びたイオン長鎖アルキルポリマー、イソブチルメタクリレートポリマー、メチルメタクリレートポリマー、メトキシポリエチレングリコールモノメタクリレートポリマー、ポリプロピレングリコールモノメタクリレートポリマー及びポリプロピレングリコールテトラメチレングリコールモノメタクリレートポリマーを分析し、導入率を測定した。
(5) Time-of-flight secondary ion mass spectrometry TOF-SIMS analysis Time-of-flight secondary ion mass spectrometry TOF-SIMS (TOF-SIMS type 5 manufactured by ION-TOF) for all polymers on the surface of spacers for liquid crystal display elements The spectral intensity ratio of the long chain alkyl polymer was measured. Analyzes and introduces negatively charged ionic long-chain alkyl polymer, isobutyl methacrylate polymer, methyl methacrylate polymer, methoxy polyethylene glycol monomethacrylate polymer, polypropylene glycol monomethacrylate polymer and polypropylene glycol tetramethylene glycol monomethacrylate polymer by TOF-SIMS The rate was measured.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1…液晶表示素子用スペーサ
 2…基材粒子
 2a…表面
 3…樹脂層
 11…液晶表示素子
 12…透明ガラス基板
 13…透明電極
 14…配向膜
 15…液晶
 16…シール剤
DESCRIPTION OF SYMBOLS 1 ... Spacer for liquid crystal display elements 2 ... Base material particle 2a ... Surface 3 ... Resin layer 11 ... Liquid crystal display element 12 ... Transparent glass substrate 13 ... Transparent electrode 14 ... Orientation film 15 ... Liquid crystal 16 ... Sealing agent

Claims (8)

  1.  基材粒子と、
     前記基材粒子の表面上に配置された樹脂層とを備え、
     前記樹脂層は、炭素数24~30のアルキル基を有する化合物と、アルキレンエーテル構造を有する化合物とを用いて形成されている、液晶表示素子用スペーサ。
    Substrate particles,
    A resin layer disposed on the surface of the substrate particles,
    The spacer for a liquid crystal display element, wherein the resin layer is formed using a compound having an alkyl group having 24 to 30 carbon atoms and a compound having an alkylene ether structure.
  2.  前記アルキレンエーテル構造は、下記式(21A)で表される構造である、請求項1に記載の液晶表示素子用スペーサ。
    Figure JPOXMLDOC01-appb-C000001
     前記式(21A)中、Rは、アルキレン基を表し、該アルキレン基の炭素数は、2以上、6以下である。
    The spacer for liquid crystal display elements according to claim 1, wherein the alkylene ether structure is a structure represented by the following formula (21A).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (21A), R represents an alkylene group, and the alkylene group has 2 or more and 6 or less carbon atoms.
  3.  前記アルキレンエーテル構造はエチレングリコール構造である、請求項2に記載の液晶表示素子用スペーサ。 The liquid crystal display element spacer according to claim 2, wherein the alkylene ether structure is an ethylene glycol structure.
  4.  前記樹脂層は、前記炭素数24~30のアルキル基を有する化合物に由来する成分を5mol%以上、30mol%以下含む、請求項1~3のいずれか1項に記載の液晶表示素子用スペーサ。 4. The spacer for a liquid crystal display element according to claim 1, wherein the resin layer contains 5 mol% or more and 30 mol% or less of a component derived from the compound having an alkyl group having 24 to 30 carbon atoms.
  5.  湿式法又はインクジェット装置により基板上に配置される液晶表示素子用スペーサである、請求項1~4のいずれか1項に記載の液晶表示素子用スペーサ。 The liquid crystal display element spacer according to any one of claims 1 to 4, which is a liquid crystal display element spacer disposed on a substrate by a wet method or an inkjet apparatus.
  6.  STN型液晶表示素子に用いられる液晶表示素子用スペーサである、請求項1~5のいずれか1項に記載の液晶表示素子用スペーサ。 The liquid crystal display element spacer according to any one of claims 1 to 5, which is a liquid crystal display element spacer used in an STN type liquid crystal display element.
  7.  分散媒と、
     前記分散媒中に分散された請求項1~6のいずれか1項に記載の液晶表示素子用スペーサとを含む、液晶表示素子用スペーサ分散液。
    A dispersion medium;
    A spacer dispersion liquid for a liquid crystal display element, comprising the liquid crystal display element spacer according to any one of claims 1 to 6 dispersed in the dispersion medium.
  8.  液晶セルを構成する一対の基板と、
     前記一対の基板間に封入された液晶と、
     前記一対の基板間に配置された請求項1~6のいずれか1項に記載の液晶表示素子用スペーサとを備える、液晶表示素子。
    A pair of substrates constituting a liquid crystal cell;
    Liquid crystal sealed between the pair of substrates;
    A liquid crystal display element comprising: the liquid crystal display element spacer according to claim 1 disposed between the pair of substrates.
PCT/JP2012/056153 2011-03-09 2012-03-09 Spacer for liquid crystal display element, spacer fluid dispersion for liquid crystal display element, and liquid crystal display element WO2012121379A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002863.1A CN103097950B (en) 2011-03-09 2012-03-09 Spacer for liquid crystal display element, spacer fluid dispersion for liquid crystal display element, and liquid crystal display element
JP2012516412A JP5087187B2 (en) 2011-03-09 2012-03-09 Liquid crystal display element spacer, liquid crystal display element spacer dispersion liquid, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051910 2011-03-09
JP2011051910 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012121379A1 true WO2012121379A1 (en) 2012-09-13

Family

ID=46798330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056153 WO2012121379A1 (en) 2011-03-09 2012-03-09 Spacer for liquid crystal display element, spacer fluid dispersion for liquid crystal display element, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP5087187B2 (en)
CN (1) CN103097950B (en)
WO (1) WO2012121379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132740A (en) * 2017-02-17 2018-08-23 積水化学工業株式会社 Particle and liquid crystal display element
CN111019050A (en) * 2019-12-20 2020-04-17 镇江爱邦电子科技有限公司 Monodisperse polymer microsphere for dry spraying machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206540A (en) * 1999-01-12 2000-07-28 Sekisui Chem Co Ltd Spacer for liquid crystal display device, its production and liquid crystal display device
JP2000321582A (en) * 1999-05-10 2000-11-24 Sekisui Chem Co Ltd Spacer for liquid crystal display element and liquid crystal display element
JP2005181918A (en) * 2003-12-24 2005-07-07 Hayakawa Rubber Co Ltd Liquid crystal cell spacer and liquid crystal panel
JP2011133869A (en) * 2009-11-26 2011-07-07 Sekisui Chem Co Ltd Spacer for liquid crystal display element and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
US6187440B1 (en) * 1998-09-14 2001-02-13 Rohm And Haas Company Polymer particles
CN100500703C (en) * 2004-09-28 2009-06-17 积水化学工业株式会社 Spherical resin fine particles, process for producing spherical resin fine particles, and spacer for liquid crystal display element
CA2670246A1 (en) * 2006-12-15 2008-06-19 Basf Se Preparation of polymer dispersions in the presence of organic polymer particles
JPWO2008123569A1 (en) * 2007-03-30 2010-07-15 ナトコ株式会社 Fine particle dispersion
CN101868509B (en) * 2007-11-19 2014-09-10 巴斯夫欧洲公司 Use of highly branched polymers in polymer dispersions for gloss colours

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206540A (en) * 1999-01-12 2000-07-28 Sekisui Chem Co Ltd Spacer for liquid crystal display device, its production and liquid crystal display device
JP2000321582A (en) * 1999-05-10 2000-11-24 Sekisui Chem Co Ltd Spacer for liquid crystal display element and liquid crystal display element
JP2005181918A (en) * 2003-12-24 2005-07-07 Hayakawa Rubber Co Ltd Liquid crystal cell spacer and liquid crystal panel
JP2011133869A (en) * 2009-11-26 2011-07-07 Sekisui Chem Co Ltd Spacer for liquid crystal display element and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132740A (en) * 2017-02-17 2018-08-23 積水化学工業株式会社 Particle and liquid crystal display element
CN111019050A (en) * 2019-12-20 2020-04-17 镇江爱邦电子科技有限公司 Monodisperse polymer microsphere for dry spraying machine
CN111019050B (en) * 2019-12-20 2022-08-19 镇江爱邦电子科技有限公司 Monodisperse polymer microsphere for dry spraying machine

Also Published As

Publication number Publication date
JP5087187B2 (en) 2012-11-28
CN103097950A (en) 2013-05-08
CN103097950B (en) 2015-02-04
JPWO2012121379A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
CN102629013B (en) Liquid crystal display device and manufacturing method thereof
CN102122100B (en) Method for manufacturing polymer stable alignment type liquid crystal display panel
US20130287970A1 (en) Liquid Crystal Medium Composition and Liquid Crystal Display Using Same
WO2013159400A1 (en) Liquid crystal medium composition, liquid crystal display device using same, and manufacturing method therefor
WO2011004519A1 (en) Liquid crystal display panel and process for production thereof
TWI403808B (en) Method of fabricating liquid crystal display
WO2014045923A1 (en) Liquid crystal display device and method for manufacturing same
JP5087187B2 (en) Liquid crystal display element spacer, liquid crystal display element spacer dispersion liquid, and liquid crystal display element
JP5480780B2 (en) Liquid crystal display element spacer and liquid crystal display element
US11078314B2 (en) Fluorine-containing copolymer, composition for forming film, and optical film
WO2018028018A1 (en) Liquid crystal medium mixture and liquid crystal display panel
WO2014043957A1 (en) Liquid crystal medium mixture and liquid crystal display using liquid crystal medium mixture
WO2014043963A1 (en) Liquid crystal medium mixture and liquid crystal display using liquid crystal medium mixture
TW202041638A (en) Laminate, adhesive layer, and adhesive sheet
JP3860688B2 (en) Spacer for liquid crystal display device and liquid crystal display device
JP2008083571A (en) Liquid crystal display element and spacer for same
WO2014043956A1 (en) Liquid crystal medium mixture and liquid crystal display using liquid crystal medium mixture
JP3822991B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT SPACER, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY ELEMENT
JP2008058816A (en) Spacer for liquid crystal display element, and liquid crystal display element
JP2004117564A (en) Spacer for liquid crystal display device, and liquid crystal display device
JP2005309365A (en) Spacer for liquid crystal display element and liquid crystal display element
JP4052864B2 (en) Spacer for liquid crystal display element and liquid crystal display element using the same
JP2006251085A (en) Spacer for liquid crystal display element, and liquid crystal display element
JPH09281507A (en) Spacer for liquid crystal display element and liquid crystal display element
WO2021120304A1 (en) Liquid crystal material, liquid crystal display panel and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002863.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012516412

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754997

Country of ref document: EP

Kind code of ref document: A1