WO2012121340A1 - Preparation method for fluorine-containing olefins having organic-group substituents - Google Patents

Preparation method for fluorine-containing olefins having organic-group substituents Download PDF

Info

Publication number
WO2012121340A1
WO2012121340A1 PCT/JP2012/055992 JP2012055992W WO2012121340A1 WO 2012121340 A1 WO2012121340 A1 WO 2012121340A1 JP 2012055992 W JP2012055992 W JP 2012055992W WO 2012121340 A1 WO2012121340 A1 WO 2012121340A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
optionally substituted
formula
compound
Prior art date
Application number
PCT/JP2012/055992
Other languages
French (fr)
Japanese (ja)
Inventor
永井 隆文
足達 健二
柴沼 俊
専介 生越
大橋 理人
Original Assignee
国立大学法人大阪大学
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, ダイキン工業株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2013503606A priority Critical patent/JP5744175B2/en
Publication of WO2012121340A1 publication Critical patent/WO2012121340A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions

Definitions

  • the present invention relates to a method for producing a fluorine-containing olefin substituted with an organic group.
  • 1-Substituted fluorine-containing olefins such as 1,1,2-trifluorostyrene are compounds useful as raw materials for polymer electrolytes, for example, and 1,1-difluoro-2,2-diphenylethylene and the like.
  • 1,1-disubstituted fluorine-containing olefins are useful compounds as raw materials for, for example, pharmaceuticals such as enzyme inhibitors and ferroelectric materials.
  • a method for easily and efficiently producing these compounds has not been established.
  • 1,1-disubstituted fluorine-containing olefins can be produced by a difluoromethylene reaction by a Wittig reaction of a carbonyl compound (Non-patent Document 1).
  • the carbonyl compound is a ketone
  • the yield is low even when an excess amount (4-5 equivalents or more) of Wittig reagent is used, and further, carcinogenic hexamethyl phosphite triamide is used as the phosphorus compound. This method is problematic because it is essential.
  • fluorine-containing olefins substituted with organic groups eg, 1-substituted fluorine-containing olefins, 1,1-disubstituted fluorine-containing olefins, etc.
  • organic groups eg, 1-substituted fluorine-containing olefins, 1,1-disubstituted fluorine-containing olefins, etc.
  • TFE tetrafluoroethylene
  • Non-Patent Document 2 discloses that a carbon-halogen (C—X) bond of CF 2 ⁇ CFX (X: a halogen atom other than a fluorine atom) is converted into a carbon-lithium (C—Li) bond by butyl lithium. , A method for performing a C—C bond formation reaction is described. In Non-Patent Documents 3, 4 and 5, the C—Li bond Li generated as described above is further reconverted into a metal such as Sn and Si, and then a CC bond generation reaction is performed. A method is described.
  • Non-Patent Documents 6 to 8 describe a method of selectively replacing one fluorine atom by reacting TFE with an organolithium reagent or an organomagnesium reagent.
  • Ph represents a substituted or unsubstituted phenyl group.
  • alkyl lithium is reacted with HFC134a (CF 3 CFH 2 ), and fluorine-containing vinyl lithium is generated by elimination reaction. Furthermore, a fluorine-containing vinyl group is subjected to a coupling reaction via a vinyl zinc reagent generated by performing metal exchange with zinc.
  • HFP hexafluoropropene
  • TFE hexafluoropropene
  • organozinc reagent has a lower nucleophilicity than the lithium reagent and the magnesium reagent, it can be used under mild conditions. For this reason, organozinc reagents are used in carbon-carbon forming reactions by addition reactions to carbonyl groups and couplings using metal catalysts. However, it has not been reported so far that an organozinc reagent is used for a substitution reaction of a fluorine atom on a sp2-hybridized carbon atom of a fluorine-containing olefin in the absence of a transition metal catalyst.
  • An object of the present invention is to provide a production method capable of producing a fluorinated olefin substituted with an organic group in a simple and efficient manner (high yield, high selectivity, low cost) from a fluorinated olefin.
  • the inventors initially reacted a fluorine-containing olefin such as TFE with an organic zinc reagent in a suitable solvent in the absence of a transition metal catalyst and in the presence of a metal salt having Lewis acidity. It has been found that olefins can be produced in which the fluorine atom bonded to the sp2 hybrid carbon atom of the olefin is substituted with an organic group of an organozinc reagent.
  • the present inventors reacted a diphenylzinc reagent with TFE in an aprotic solvent having an appropriate polarity such as THF in the absence of a transition metal catalyst and in the presence of a salt such as lithium iodide. It has been found that ⁇ , ⁇ , ⁇ -trifluorostyrene can be obtained.
  • the reaction of the present invention including this reaction is considered to proceed as shown in the following reaction formula. However, the present invention is not limited to this.
  • the present inventors have reacted fluorine-containing olefins substituted with organic groups by reacting fluorine-containing olefins with organic zinc compounds in the absence of a transition metal catalyst. It has been found that it can be produced simply and efficiently (high yield, high selectivity, low cost), and the present invention has been completed.
  • the present invention relates to the following method for producing a substituted fluorine olefin.
  • Item 1 A method for producing a fluorine-containing olefin substituted with an organic group, comprising a step of reacting a fluorine-containing olefin and an organic zinc compound in the absence of a transition metal catalyst.
  • Item 2. Item 2. The production method according to Item 1, wherein at least one fluorine atom bonded to the sp2 hybrid carbon atom of the fluorine-containing olefin is substituted with an organic group in the organozinc compound.
  • Item 3. Item 3. The method according to Item 1 or 2, wherein the step is performed in a solvent.
  • Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the step is performed in the presence of a fluorine affinity compound and / or under heating.
  • the organozinc compound is 1) Formula (6a) or (6b): R 2 Zn (6a) (In the formula, two Rs may be the same or different and each may be an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted group.
  • RZnX (6b) (Wherein R is as defined in formula (6a); X represents Cl, Br or I), or 2) Formula (7): ZnX 2 (7) (Wherein X has the same meaning as in formula (6a).)
  • a compound represented by formula (8): RMgX (8) (In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group. X is as defined in formula (6a).) Item 5.
  • Item 5 The production method according to any one of Items 1 to 4, which is a compound produced in a reaction system from a compound represented by the formula: Item 6.
  • R is (1) an alkyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkoxy group and an aryl group; (2) a monocyclic, bicyclic, or optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group A tricyclic aryl group, (3) an alkenyl group optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group, or (4) The production method according to the above item 5, which is an alkynyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkoxy group, and an aryl group.
  • Item 7. The production method according to any one of Items 4 to 6, wherein the step is carried out in the presence of the fluorine affinity compound, and the fluorine affinity compound is lithium halide, magnesium halide, or zinc halide.
  • Item 8. The method according to Item 7, wherein the fluorine affinity compound is lithium halide.
  • Item 9. The fluorine-containing olefin substituted with the organic group has the formula (4) or (5): (In the formula, R represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group.) Item 9. The production method according to any one of Items 1 to 8, which is a compound represented by the formula:
  • a fluorine-containing olefin substituted with an organic group can be produced from a fluorine-containing olefin simply and efficiently (high yield, high selectivity, low cost). Furthermore, the process of the present invention has significant advantages in alkylating fluorinated olefins for the reasons described below.
  • a reaction between an alkylzinc compound having ⁇ hydrogen and a fluorine-containing olefin is carried out using a transition metal catalyst, a product in which the C—F bond is reduced is produced in addition to the alkylated product. This not only reduces the yield of alkylated product, but also becomes a barrier in purification.
  • the method of the present invention does not produce a reduced compound regardless of the structure of the alkyl group.
  • the present invention has not only a cost advantage by not using a catalyst but also a process advantage such as an improvement in yield and ease of product isolation and purification.
  • substitution means replacement of a hydrogen atom or a fluorine atom in a molecule with another atom or group.
  • substituted means replacement of a hydrogen atom or a fluorine atom in a molecule with another atom or group.
  • substituted means another atom or group replacing one or more hydrogen atoms or fluorine atoms in a molecule.
  • the production method of the present invention includes a step of reacting a fluorine-containing olefin and an organic zinc compound in the absence of a transition metal catalyst (sometimes referred to simply as a reaction step in the present specification).
  • examples of the fluorinated olefin used as a substrate include compounds in which at least one fluorine atom is bonded to two sp2 hybrid carbon atoms forming the olefin.
  • tetrafluoroethylene (TFE), hexafluoropropylene (HFP), trifluoroethylene, 1,1-difluoroethylene (vinylidene fluoride), 1,2-difluoroethylene, 1,1,2-chlorotri Fluoroethylene and the like can be mentioned, and TFE, trifluoroethylene, HFP and the like are preferable from the viewpoints of easy availability and versatility in fluorine chemistry.
  • the organozinc compound used in the production method of the present invention is a compound having an organic group capable of substituting a fluorine atom on the sp2 hybrid carbon atom of the fluorinated olefin, and functions as a nucleophile.
  • organic group of the organozinc compound examples include an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, and an optionally substituted aryl group. Is mentioned.
  • R 2 Zn (6a) Wherein two Rs are the same or different (preferably the same), an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or a substituted group Represents an aryl group which may be substituted.
  • RZnX (6b) (Wherein R has the same meaning as in formula (6a); X represents Cl, Br, or I)).
  • Formula (7) ZnX 2 (7) (Wherein X has the same meaning as in formula (6a).)
  • a compound represented by formula (8): RMgX (8) (Wherein R is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group; X Is the same meaning as in formula (6a).)
  • R is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group; X Is the same meaning as in formula (6a).
  • a compound that is generated in the reaction system by introducing the compound represented by formula (1) into the reaction system may be used.
  • the amount of the compound of formula (8) to be used is usually about 0.1 to 2 mol with respect to 1 mol of the compound of formula (7).
  • these compounds may form a solvate with a solvent used in the reaction system.
  • alkyl group of the “optionally substituted alkyl group” represented by R examples include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, Examples include lower (particularly C1-6) alkyl groups such as isopentyl, neopentyl, 1-methylpentyl, n-hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, and 3,3-dimethylbutyl.
  • Examples of the substituent on the alkyl group include: Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy; And aryl groups such as phenyl and naphthyl.
  • the alkyl group may be substituted with one or more (for example, 1 to 3 (particularly 1 to 2)) of the above substituents.
  • the production method of the present invention is simple and efficient even when R is a C2-6 alkyl group (high yield, high selectivity, low cost), and fluorine-containing substituted with an organic group (C2-6 alkyl group). It is particularly excellent in that olefin can be produced.
  • alkenyl group of the “optionally substituted alkenyl group” represented by R examples include vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and 3-butenyl. 2-ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5 -Lower (particularly C2-6) alkenyl groups such as hexenyl.
  • Examples of the substituent on the alkenyl group include: Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl; Ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, Lower (particularly C2-6) alkynyl groups such as 4-hexynyl, 5-hexynyl; Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy; And aryl groups such as phenyl and naphthyl.
  • alkynyl group of the “optionally substituted alkynyl group” represented by R examples include, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2- Examples include lower (particularly C2-6) alkynyl groups such as pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl and the like.
  • Examples of the substituent on the alkynyl group include: Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl; Vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4 A lower (especially C2-6) alkenyl group such as pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl; Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy; And aryl groups such as phenyl and naphthy
  • aryl group of the “optionally substituted aryl group” represented by R examples include monocyclic, bicyclic or tricyclic aryl groups such as phenyl, naphthyl, anthracenyl and phenanthryl groups. .
  • Examples of the substituent on the aryl group include: Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl; Lower (particularly C2-6) alkenyl groups such as vinyl, allyl and crotyl; Ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, Lower (particularly C2-6) alkynyl groups such as 4-hexynyl, 5-hexynyl; Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy; And
  • R is preferably an alkyl group optionally substituted with one or more substituents selected from the group consisting of a lower alkoxy group and an aryl group, or a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group And a monocyclic, bicyclic or tricyclic aryl group optionally substituted with one or more substituents selected from the group consisting of aryl groups, more preferably a phenyl group or a lower group ( In particular, it is a C1-6 alkyl group.
  • X is preferably Br or Cl.
  • organic zinc compound examples include diphenyl zinc and diethyl zinc.
  • the above-mentioned organozinc compound can be obtained as a commercial product or synthesized by a known method.
  • the amount of the fluorine-containing olefin and the organic zinc compound can be appropriately set according to the number of fluorine atoms that undergo substitution reaction in the fluorine-containing olefin.
  • the amount of the fluorine-containing olefin used is usually about 0.1 to 100 mol, preferably about 0.5 to 10 mol, per 1 mol of the organic zinc compound.
  • the reaction process of the present invention is carried out in the absence of a transition metal catalyst.
  • transition metal catalyst should be understood in the usual sense in the field of chemical synthesis.
  • the absence of a transition metal catalyst means that the amount of the transition metal catalyst is less than or equal to the amount that can substantially act as a catalyst.
  • the reaction step is carried out in the presence of a fluorine-affinity compound and / or under heating, whereby the reaction intermediate (2) or (2 ′) of the product (4) or (5) ) To facilitate the conversion to the product (4) or (5).
  • Fluorine-affinity compounds include a salt of a metal (hard metal) having an affinity with a fluorine atom and a weak acid (eg, lithium acetate), and a metal having an affinity for a fluorine atom (hard metal) and a halogen. Mention may be made of metal halides having Lewis acidity consisting of atoms. Examples of the metal halide include lithium halide, magnesium halide, and zinc halide. Specifically, lithium halides such as lithium chloride, lithium bromide and lithium iodide; magnesium halides such as magnesium bromide and magnesium iodide; zinc halides such as zinc chloride, zinc bromide and zinc iodide, etc. Is mentioned. Lithium halide such as lithium iodide is preferable.
  • the input amount is usually about 0.5 to 10 mol, preferably about 1 to 5 mol, relative to 1 mol of the organozinc reagent used. it can.
  • the reaction temperature is not particularly limited, but is usually ⁇ 100 ° C. to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably room temperature (about 20 ° C.) to 100 ° C.
  • the reaction step of the present invention is preferably carried out under heating. “Under heating” means that a temperature condition higher than room temperature is used. Specifically, for example, the reaction temperature is 30 ° C. to 70 ° C.
  • the upper limit reaction temperature can be set within a range in which dimerization does not proceed.
  • reaction time is not particularly limited, and the lower limit thereof is, for example, 10 minutes, 2 hours, 5 hours, 3 hours, while the upper limit thereof is, for example, about 15 days, about 7 days, 72 The time is about 50 hours.
  • the reaction atmosphere is not particularly limited, but is usually performed in an inert gas atmosphere such as argon or nitrogen in consideration of the activity of the organic zinc compound.
  • the reaction pressure may be increased, normal pressure, or reduced pressure. Usually, it is preferably carried out under pressure. In this case, the pressure is about 0.1 to 10 MPa, preferably about 0.1 to 1 MPa.
  • the reaction step of the present invention is preferably carried out in a solvent.
  • the solvent to be used is not particularly limited as long as it does not adversely affect the reaction.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • aliphatic hydrocarbon solvents such as hexane and cyclohexane
  • tetrahydrofuran (THF) ether solvents
  • dioxane diethyl ether, glyme, diglyme and the like
  • nitrile solvents such as acetonitrile, propionitrile, dimethylcyanamide, t-butyl nitrile and the like
  • ether solvents such as THF
  • nitrile solvents such as acetonitrile, propionitrile, and t-butylnitrile are preferable.
  • the fluorine-containing olefin substituted with an organic group thus obtained is preferably, for example, the formula (4) or (5): (In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group.) It is.
  • the compound of formula (4) and the compound of formula (5) may be produced as a mixture.
  • the production ratio of the compound of the formula (4) and the compound of the formula (5) can be controlled, for example, by the amount ratio of the fluorine-containing olefin and the organic zinc compound used as the substrate, the reaction time, and the like.
  • the compound of formula (4) is preferentially produced, increasing the amount of the organic zinc compound, and / or the reaction time.
  • the compound of formula (5) is preferentially produced.
  • the compound of Formula (4) and the compound of Formula (5) can be refine
  • two Rs may be the same or different.
  • the compound of formula (5) in which two Rs are different from each other is obtained by reacting the compound of formula (4) with an organozinc compound having an organic group different from the organozinc compound used for the production of formula (4). Can be synthesized.
  • the compound When isobutyronitrile is used as the solvent, the compound: Is generated.
  • the compound is a novel compound.
  • the formula (The symbols in the formula are as defined above.) Can also be produced.
  • the compound can be easily removed by known purification methods.
  • fluorine-containing olefin having an organic group examples include fluororubber, antireflection membrane material, ion exchange membrane, electrolyte membrane for fuel cell, liquid crystal material, piezoelectric element material, enzyme inhibitor, insecticide, etc. It is useful as a raw material.
  • Example 1 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in acetonitrile (0.4 mL) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume of 2 ml and the introduction pressure of 0.35 MPa, the same applies hereinafter) was added thereto. The reaction solution was left at 60 ° C. for 8 hours.
  • 1,1,2-trifluoro-1-butene 19 F-NMR (C 6 D 6 ): ⁇ -109.6--110.0 (m, 1F), -128.0--129.0 (m, 1F), -177.8--78.3 (m, 1F).
  • Example 2 In a glove box under an inert atmosphere, a solution of diphenylzinc (22.0 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in THF-d8 (0.3 mL) / THF (0.2 mL) 2 ml), and ⁇ , ⁇ , ⁇ -trifluorotoluene (12.3 ⁇ L, 0.100 mmol: internal standard for 19 F-NMR measurement) was added thereto. Furthermore, hexafluoropropene (HFP: 0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 40 ° C.
  • HFP hexafluoropropene
  • Example 3 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in dimethylcyanamide (0.4 mL) in a pressure-resistant tube (capacity 2 ml) under an inert atmosphere in a glove box. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 8 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 20%.
  • Example 4 Prepare an isopropionitrile (0.4 mL) solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 48 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 30%.
  • Example 5 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in t-butylnitrile (0.4 mL) in a pressure tube (2 ml capacity) in a glove box under an inert atmosphere. Then, ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 100 ° C. for 8 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, 1,1,2-trifluoro-1-butene was obtained in a yield of 54% and 3,4-difluoro-3-hexene in a yield of 6%. It was confirmed.
  • Example 6 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was allowed to stand at 20 ° C. for 330 hours.
  • Example 7 Prepare a heavy THF (0.4 mL) solution of diphenylzinc (22.0 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in a pressure tube (volume 2 ml) under an inert atmosphere in a glove box, ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 45 hours. The reaction was monitored by 19 F-NMR.
  • ⁇ , ⁇ , ⁇ -Trifluorostyrene was obtained in a yield of 33% and 1,2-difluoro-1,2-diphenylethylene in a yield of 5%. It was confirmed.
  • Example 8 Prepare a solution of diphenylzinc (22.0 mg, 0.100 mmol) in deuterated THF (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box, and add ⁇ , ⁇ , ⁇ -trifluorotoluene to it. (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 44 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, ⁇ , ⁇ , ⁇ -trifluorostyrene was obtained in a yield of 22% and 1,2-difluoro-1,2-diphenylethylene in a yield of 3%. It was confirmed.
  • Example 9 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) in an inert atmosphere in a glove box, and add ⁇ , ⁇ , ⁇ -trifluorotoluene to it. (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 24 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 6%.
  • Example 10 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium acetate (15.8 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 140 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 36%.
  • Example 11 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium acetate (36.0 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 16 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 26%.
  • Example 12 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium bromide (20.8 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box, ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 24 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, 1,1,2-trifluoro-1-butene was obtained in a yield of 28% and 3,4-difluoro-3-hexene in a yield of 3%. It was confirmed.
  • Example 13 Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium chloride (10.2 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. ⁇ , ⁇ , ⁇ -trifluorotoluene (14 ⁇ L, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 4 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 16%.
  • a fluorine-containing olefin substituted with an organic group can be easily and efficiently produced (high yield, high selectivity, and low cost).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a preparation method which enables the easy and efficient (high yield, high selectivity, low cost) preparation of fluorine-containing olefins having organic-group substituents, from fluorine-containing olefins. [Solution] A preparation method for fluorine-containing olefins having organic-group substituents, said method being characterised by including a process in which fluorine-containing olefins and an organic zinc compound are reacted in the absence of a transition metal catalyst.

Description

有機基で置換された含フッ素オレフィンの製造方法Method for producing fluorine-containing olefin substituted with organic group
 本発明は、有機基で置換された含フッ素オレフィンの製造方法に関する。 The present invention relates to a method for producing a fluorine-containing olefin substituted with an organic group.
 1,1,2-トリフルオロスチレン等の1-置換含フッ素オレフィンは、例えば、高分子電解質の原料等として有用な化合物であり、また、1,1-ジフルオロ-2,2-ジフェニルエチレン等の1,1-二置換含フッ素オレフィンは、例えば、酵素阻害剤等の医薬品、強誘電性材料等の原料として有用な化合物である。しかし、これらの化合物を簡便かつ効率的に製造する方法は確立されていない。 1-Substituted fluorine-containing olefins such as 1,1,2-trifluorostyrene are compounds useful as raw materials for polymer electrolytes, for example, and 1,1-difluoro-2,2-diphenylethylene and the like. 1,1-disubstituted fluorine-containing olefins are useful compounds as raw materials for, for example, pharmaceuticals such as enzyme inhibitors and ferroelectric materials. However, a method for easily and efficiently producing these compounds has not been established.
 例えば、1,1-二置換含フッ素オレフィンは、カルボニル化合物のWittig反応によるジフルオロメチレン化反応で製造できることが報告されている(非特許文献1)。
しかしながら、カルボニル化合物がケトンである場合には、Wittig試薬を過剰量(4~5等量以上)用いても収率が低く、さらにはリン化合物として、発癌性のヘキサメチル亜リン酸トリアミドの使用が必須であることから、この方法は問題を有している。
For example, it has been reported that 1,1-disubstituted fluorine-containing olefins can be produced by a difluoromethylene reaction by a Wittig reaction of a carbonyl compound (Non-patent Document 1).
However, when the carbonyl compound is a ketone, the yield is low even when an excess amount (4-5 equivalents or more) of Wittig reagent is used, and further, carcinogenic hexamethyl phosphite triamide is used as the phosphorus compound. This method is problematic because it is essential.
 そのため、入手容易なテトラフルオロエチレン(TFE)等の含フッ素オレフィンから、有機基で置換された含フッ素オレフィン(例、1-置換含フッ素オレフィン、1,1-二置換含フッ素オレフィン等)が簡便に製造できれば、極めて有用な合成手法となり得る。 Therefore, fluorine-containing olefins substituted with organic groups (eg, 1-substituted fluorine-containing olefins, 1,1-disubstituted fluorine-containing olefins, etc.) can be easily obtained from readily available fluorine-containing olefins such as tetrafluoroethylene (TFE). Can be a very useful synthesis technique.
 これまで、有機基で置換された含フッ素オレフィンの製造方法として、例えば、以下の方法が報告されている。 So far, for example, the following method has been reported as a method for producing a fluorine-containing olefin substituted with an organic group.
 非特許文献2には、CF=CFX(X:フッ素原子以外のハロゲン原子)の炭素-ハロゲン(C-X)結合を、ブチルリチウムにより炭素-リチウム(C-Li)結合に変換してから、C-C結合生成反応を行う方法が記載されている。また、非特許文献3、4及び5には、前記のようにして生成したC-Li結合のLiを、さらにSn、Si等の金属に再変換してから、C-C結合生成反応を行う方法が記載されている。 Non-Patent Document 2 discloses that a carbon-halogen (C—X) bond of CF 2 ═CFX (X: a halogen atom other than a fluorine atom) is converted into a carbon-lithium (C—Li) bond by butyl lithium. , A method for performing a C—C bond formation reaction is described. In Non-Patent Documents 3, 4 and 5, the C—Li bond Li generated as described above is further reconverted into a metal such as Sn and Si, and then a CC bond generation reaction is performed. A method is described.
 しかしながら、これらの方法は、原料のCF=CFXの入手が比較的困難又は高価であること、及び第一段階に発生するC-Li結合を有する含フッ素リチウム試薬が非常に不安定であるため、反応を-100℃程度の冷却下において実施する必要があることに不利点がある。このため、これらは実用的な方法ではない。 However, these methods are relatively difficult or expensive to obtain the raw material CF 2 ═CFX, and the fluorine-containing lithium reagent having a C—Li bond generated in the first stage is very unstable. However, there is a disadvantage that the reaction needs to be carried out under cooling of about −100 ° C. For this reason, these are not practical methods.
 非特許文献6~8には、TFEに、有機リチウム試薬又は有機マグネシウム試薬を反応させて、1個のフッ素原子を選択的に置換する方法が記載されている。次の反応式中、Phは置換又は無置換のフェニル基を示す。 Non-Patent Documents 6 to 8 describe a method of selectively replacing one fluorine atom by reacting TFE with an organolithium reagent or an organomagnesium reagent. In the following reaction formula, Ph represents a substituted or unsubstituted phenyl group.
 PhLi+CF=CF→PhCF=CF(非特許文献6)
 PhMgBr+CF=CF→PhCF=CF(非特許文献7、8)
 これらの方法は、目的物を高い選択性で得るためには、反応を低温で行うと共に、原料のTFEを大過剰に用いる必要があるという不利点がある。反応温度が上がると反応の進行が制御出来なくなり、目的物とともに、1,2‐付加体や更なる多置換体が生成してしまう。このため、目的物の収率は大きく低下する。一方、求核性の低い有機ランタニド試薬を用いた場合も、目的物の収率は向上しない(非特許文献9)。
PhLi + CF 2 = CF 2 → PhCF = CF 2 (Non-patent Document 6)
PhMgBr + CF 2 = CF 2 → PhCF = CF 2 (Non-patent Documents 7 and 8)
These methods have the disadvantages that in order to obtain the desired product with high selectivity, it is necessary to carry out the reaction at a low temperature and to use the raw material TFE in a large excess. When the reaction temperature rises, the progress of the reaction cannot be controlled, and 1,2-adducts and further polysubstituted products are produced together with the target product. For this reason, the yield of a target object falls significantly. On the other hand, even when an organic lanthanide reagent with low nucleophilicity is used, the yield of the target product is not improved (Non-patent Document 9).
 非特許文献10に記載の方法では、HFC134a(CFCFH)にアルキルリチウムを反応させ、脱離反応により含フッ素ビニルリチウムを発生させている。さらに、亜鉛と金属交換を行って生成したビニル亜鉛試薬を経由して、含フッ素ビニル基をカップリング反応させている。 In the method described in Non-Patent Document 10, alkyl lithium is reacted with HFC134a (CF 3 CFH 2 ), and fluorine-containing vinyl lithium is generated by elimination reaction. Furthermore, a fluorine-containing vinyl group is subjected to a coupling reaction via a vinyl zinc reagent generated by performing metal exchange with zinc.
 しかし、この方法は、高価なアルキルリチウムを過剰量用いる必要があること、及び生成する含フッ素ビニルリチウムが不安定性を有するので反応温度を精密にコントロールする必要があること、に不利点がある。 However, this method has disadvantages in that it is necessary to use an excessive amount of expensive alkyl lithium and that the reaction temperature must be precisely controlled because the fluorine-containing vinyl lithium to be produced has instability.
 一方で、最近になって、遷移金属触媒を用いてTFEの炭素-フッ素結合を活性化させて、有機亜鉛試薬によりフッ素を有機基に置換する方法が報告されている(特許文献1、非特許文献11)。
 この手法の利点は、反応条件が前記に比べて緩和で、生成物の選択性が高いことである。しかし、この方法は、パラジウム等の高価な遷移金属を用いる必要がある点に不利点がある。
On the other hand, recently, a method has been reported in which a transition metal catalyst is used to activate a carbon-fluorine bond of TFE, and an organic zinc reagent replaces fluorine with an organic group (Patent Document 1, Non-Patent Document 1). Reference 11).
The advantages of this approach are that the reaction conditions are relaxed compared to the above and the product selectivity is high. However, this method has a disadvantage in that an expensive transition metal such as palladium needs to be used.
 一方、TFEと同様に一般的にフッ素樹脂の原料として用いられるヘキサフルオロプロペン(HFP)においても、炭素-フッ素結合の置換反応は有機リチウム(非特許文献12及び13)及び有機マグネシウム試薬(非特許文献14)を用いてなされている。特に有機リチウムとの反応では、TFEと同様に、反応条件が制限される。 On the other hand, in hexafluoropropene (HFP), which is generally used as a raw material for fluororesins as in TFE, the substitution reaction of the carbon-fluorine bond is performed with organolithium (Non-patent documents 12 and 13) and organomagnesium reagent (non-patent). Reference 14). Especially in the reaction with organolithium, the reaction conditions are limited in the same manner as TFE.
 以上のことから、収率が高く、反応温度の精密なコントロールが不要な反応を可能にする反応試薬が求められている。 From the above, there is a demand for a reaction reagent that enables a reaction with a high yield and that does not require precise control of the reaction temperature.
 ところで、有機亜鉛試薬は、リチウム試薬及びマグネシウム試薬よりも求核性が低いので緩和な条件下で使用できる。このため、有機亜鉛試薬は、カルボニル基への付加反応や金属触媒を用いたカップリングによる炭素-炭素形成反応に用いられている。しかしながらこれまで、有機亜鉛試薬を、遷移金属触媒の不存在下に含フッ素オレフィンのsp2混成炭素原子上のフッ素原子の置換反応に用いることは報告されていない。 By the way, since the organozinc reagent has a lower nucleophilicity than the lithium reagent and the magnesium reagent, it can be used under mild conditions. For this reason, organozinc reagents are used in carbon-carbon forming reactions by addition reactions to carbonyl groups and couplings using metal catalysts. However, it has not been reported so far that an organozinc reagent is used for a substitution reaction of a fluorine atom on a sp2-hybridized carbon atom of a fluorine-containing olefin in the absence of a transition metal catalyst.
特開2010-229129号公報JP 2010-229129 A
 本発明は、含フッ素オレフィンから、簡便かつ効率的(高収率、高選択性、低コスト)に、有機基で置換された含フッ素オレフィンを製造できる製造方法を提供することを目的とする。 An object of the present invention is to provide a production method capable of producing a fluorinated olefin substituted with an organic group in a simple and efficient manner (high yield, high selectivity, low cost) from a fluorinated olefin.
 本発明者らは、当初、遷移金属触媒の不存在下、且つルイス酸性を有する金属塩の存在下、適当な溶媒中でTFE等の含フッ素オレフィンと有機亜鉛試薬を反応させたところ、含フッ素オレフィンのsp2混成炭素原子に結合したフッ素原子が有機亜鉛試薬の有機基で置換されたオレフィンを製造できることを見いだした。 The inventors initially reacted a fluorine-containing olefin such as TFE with an organic zinc reagent in a suitable solvent in the absence of a transition metal catalyst and in the presence of a metal salt having Lewis acidity. It has been found that olefins can be produced in which the fluorine atom bonded to the sp2 hybrid carbon atom of the olefin is substituted with an organic group of an organozinc reagent.
 具体的には、本発明者らは、遷移金属触媒の不存在下、且つヨウ化リチウム等の塩の存在下、THF等の適度な極性を有する非プロトン溶媒中でTFEにジフェニル亜鉛試薬を反応させると、α,β,β-トリフルオロスチレンが得られることを見いだした。この反応を包含する本発明の反応は、下記の反応式のように進行していると考えられる。但し、本発明はこれに限定されるものではない。 Specifically, the present inventors reacted a diphenylzinc reagent with TFE in an aprotic solvent having an appropriate polarity such as THF in the absence of a transition metal catalyst and in the presence of a salt such as lithium iodide. It has been found that α, β, β-trifluorostyrene can be obtained. The reaction of the present invention including this reaction is considered to proceed as shown in the following reaction formula. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明者らは、かかる知見に基づきさらに研究を重ねた結果、遷移金属触媒の不存在下で、含フッ素オレフィンと有機亜鉛化合物とを反応させることにより、有機基で置換された含フッ素オレフィンを簡便かつ効率的(高収率、高選択性、低コスト)に製造できることを見出し、本発明を完成するに至った。 As a result of further research based on such knowledge, the present inventors have reacted fluorine-containing olefins substituted with organic groups by reacting fluorine-containing olefins with organic zinc compounds in the absence of a transition metal catalyst. It has been found that it can be produced simply and efficiently (high yield, high selectivity, low cost), and the present invention has been completed.
 すなわち、本発明は、以下の置換されたフッ素オレフィンの製造方法に関する。 That is, the present invention relates to the following method for producing a substituted fluorine olefin.
項1.有機基で置換された含フッ素オレフィンの製造方法であって、遷移金属触媒の不存在下で、含フッ素オレフィンと有機亜鉛化合物とを反応させる工程を含むことを特徴とする製造方法。
項2.前記含フッ素オレフィンのsp2混成炭素原子に結合した少なくとも1個のフッ素原子が、有機亜鉛化合物中の有機基で置換される前記項1に記載の製造方法。
項3.前記工程が溶媒中で実施される前記項1又は2に記載の方法。
項4.前記工程がフッ素親和性化合物の存在下及び/又は加熱下で実施される前記項1~3のいずれかに記載の製造方法。
項5.前記有機亜鉛化合物が、
1)式(6a)又は(6b):
 RZn     (6a)
(式中、2個のRは、同じか又は異なって、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基を示す。)
 RZnX     (6b)
(式中、Rは式(6a)における意義と同意義である;XはCl、Br又はIを示す。)で表される化合物であるか、
2)式(7):
 ZnX     (7)
(式中、Xは式(6a)における意義と同意義である。)
で表される化合物と、式(8):
 RMgX     (8)
(式中、Rは置換基を有していてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換基を有していてもよいアリール基を示す;Xは式(6a)における意義と同意義である。)
で表される化合物とから反応系中で生成する化合物である、前記項1~4のいずれかに記載の製造方法。
項6.Rが、
(1)低級アルコキシ基及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルキル基、
(2)低級アルキル基、低級アルケニル基、低級アルキニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよい、単環式、二環式又は三環式のアリール基、
(3)低級アルキル基、低級アルキニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルケニル基、又は
(4)低級アルキル基、低級アルケニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルキニル基
である前記項5に記載の製造方法。
項7.前記工程が前記フッ素親和性化合物の存在下で実施され、且つ該フッ素親和性化合物がハロゲン化リチウム、ハロゲン化マグネシウム、又はハロゲン化亜鉛である前記項4~6のいずれかに記載の製造方法。
項8.前記フッ素親和性化合物がハロゲン化リチウムである前記項7に記載の製造方法。
項9.前記有機基で置換された含フッ素オレフィンが、式(4)又は(5):
Figure JPOXMLDOC01-appb-C000003
 (式中、Rは置換されていてもよいアリール基、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。)
で表される化合物である前記項1~8のいずれかに記載の製造方法。
Item 1. A method for producing a fluorine-containing olefin substituted with an organic group, comprising a step of reacting a fluorine-containing olefin and an organic zinc compound in the absence of a transition metal catalyst.
Item 2. Item 2. The production method according to Item 1, wherein at least one fluorine atom bonded to the sp2 hybrid carbon atom of the fluorine-containing olefin is substituted with an organic group in the organozinc compound.
Item 3. Item 3. The method according to Item 1 or 2, wherein the step is performed in a solvent.
Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the step is performed in the presence of a fluorine affinity compound and / or under heating.
Item 5. The organozinc compound is
1) Formula (6a) or (6b):
R 2 Zn (6a)
(In the formula, two Rs may be the same or different and each may be an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted group. Represents an aryl group.)
RZnX (6b)
(Wherein R is as defined in formula (6a); X represents Cl, Br or I), or
2) Formula (7):
ZnX 2 (7)
(Wherein X has the same meaning as in formula (6a).)
A compound represented by formula (8):
RMgX (8)
(In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group. X is as defined in formula (6a).)
Item 5. The production method according to any one of Items 1 to 4, which is a compound produced in a reaction system from a compound represented by the formula:
Item 6. R is
(1) an alkyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkoxy group and an aryl group;
(2) a monocyclic, bicyclic, or optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group A tricyclic aryl group,
(3) an alkenyl group optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group, or
(4) The production method according to the above item 5, which is an alkynyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkoxy group, and an aryl group.
Item 7. Item 7. The production method according to any one of Items 4 to 6, wherein the step is carried out in the presence of the fluorine affinity compound, and the fluorine affinity compound is lithium halide, magnesium halide, or zinc halide.
Item 8. Item 8. The method according to Item 7, wherein the fluorine affinity compound is lithium halide.
Item 9. The fluorine-containing olefin substituted with the organic group has the formula (4) or (5):
Figure JPOXMLDOC01-appb-C000003
(In the formula, R represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group.)
Item 9. The production method according to any one of Items 1 to 8, which is a compound represented by the formula:
 本発明の製造方法によれば、含フッ素オレフィンから、簡便かつ効率的(高収率、高選択性、低コスト)に、有機基で置換された含フッ素オレフィンを製造できる。
 さらに言えば、本発明の方法は、以下に述べる理由から、含フッ素オレフィンのアルキル化において大きな利点を有する。
 遷移金属触媒を用いて、β水素を有するアルキル亜鉛化合物と含フッ素オレフィンとの反応を行うと、アルキル化された生成物以外にC-F結合が還元された生成物が生成する。このため、アルキル化生成物の収率が低下するだけでなく、精製においての障壁になる。これに対して、本発明の方法では、アルキル基の構造にかかわらず、還元された化合物は生成しない。この様に、本発明においては、触媒を用いないことによるコスト面の利点だけでなく、収率の向上、さらには生成物の単離精製工程における容易さというプロセス面での利点も有する。
According to the production method of the present invention, a fluorine-containing olefin substituted with an organic group can be produced from a fluorine-containing olefin simply and efficiently (high yield, high selectivity, low cost).
Furthermore, the process of the present invention has significant advantages in alkylating fluorinated olefins for the reasons described below.
When a reaction between an alkylzinc compound having β hydrogen and a fluorine-containing olefin is carried out using a transition metal catalyst, a product in which the C—F bond is reduced is produced in addition to the alkylated product. This not only reduces the yield of alkylated product, but also becomes a barrier in purification. In contrast, the method of the present invention does not produce a reduced compound regardless of the structure of the alkyl group. As described above, the present invention has not only a cost advantage by not using a catalyst but also a process advantage such as an improvement in yield and ease of product isolation and purification.
 本明細書中、「置換」とは分子中の水素原子又はフッ素原子を別の原子又は基で置き換えることを意味する。
 本明細書中、「置換基」とは分子中の1個以上の水素原子又はフッ素原子と置き換わる別の原子又は基を意味する。
In the present specification, “substitution” means replacement of a hydrogen atom or a fluorine atom in a molecule with another atom or group.
In the present specification, the “substituent” means another atom or group replacing one or more hydrogen atoms or fluorine atoms in a molecule.
 本発明の製造方法は、遷移金属触媒の不存在下で、含フッ素オレフィンと有機亜鉛化合物とを反応させる工程(本明細書中、単に反応工程と称する場合がある)を含む。 The production method of the present invention includes a step of reacting a fluorine-containing olefin and an organic zinc compound in the absence of a transition metal catalyst (sometimes referred to simply as a reaction step in the present specification).
 本発明で、基質として使用される含フッ素オレフィンとしては、オレフィンを形成する2つのsp2混成炭素原子に少なくとも1つのフッ素原子が結合している化合物が挙げられる。具体的には、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、トリフルオロエチレン、1,1-ジフルオロエチレン(ビニリデンフロリド)、1,2-ジフルオロエチレン、1,1,2-クロロトリフルオロエチレン等が挙げられ、入手の容易性、フッ素化学における汎用性等の観点から、TFE、トリフルオロエチレン、HFP等が好ましい。 In the present invention, examples of the fluorinated olefin used as a substrate include compounds in which at least one fluorine atom is bonded to two sp2 hybrid carbon atoms forming the olefin. Specifically, tetrafluoroethylene (TFE), hexafluoropropylene (HFP), trifluoroethylene, 1,1-difluoroethylene (vinylidene fluoride), 1,2-difluoroethylene, 1,1,2-chlorotri Fluoroethylene and the like can be mentioned, and TFE, trifluoroethylene, HFP and the like are preferable from the viewpoints of easy availability and versatility in fluorine chemistry.
 本発明の製造方法で用いられる有機亜鉛化合物は、含フッ素オレフィンのsp2混成炭素原子上のフッ素原子を置換し得る有機基を有する化合物であり、求核試薬として働く。 The organozinc compound used in the production method of the present invention is a compound having an organic group capable of substituting a fluorine atom on the sp2 hybrid carbon atom of the fluorinated olefin, and functions as a nucleophile.
 当該有機亜鉛化合物が有する有機基としては、例えば、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基等が挙げられる。 Examples of the organic group of the organozinc compound include an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, and an optionally substituted aryl group. Is mentioned.
 有機亜鉛化合物としては、
1)式(6a)又は(6b):
 RZn     (6a)
(式中、2個のRは、同じか又は異なって(好ましくは同一)、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基を示す。)
 RZnX     (6b)
(式中、Rは式(6a)における意義と同意義であり;XはCl、Br又はIを示す。)で表される化合物が挙げられる。
 あるいは、有機亜鉛化合物として、
2)式(7):
 ZnX     (7)
(式中、Xは式(6a)における意義と同意義である。)
で表される化合物と、式(8):
 RMgX     (8)
(式中、Rは置換基を有していてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換基を有していてもよいアリール基;Xは式(6a)における意義と同意義である。)
で表される化合物とを反応系に投入することによって反応系中で生成する化合物
を用いてもよい。
 式(8)の化合物の使用量は、式(7)の化合物1モルに対して、通常0.1~2モル程度である。
As an organic zinc compound,
1) Formula (6a) or (6b):
R 2 Zn (6a)
Wherein two Rs are the same or different (preferably the same), an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or a substituted group Represents an aryl group which may be substituted.)
RZnX (6b)
(Wherein R has the same meaning as in formula (6a); X represents Cl, Br, or I)).
Alternatively, as an organozinc compound,
2) Formula (7):
ZnX 2 (7)
(Wherein X has the same meaning as in formula (6a).)
A compound represented by formula (8):
RMgX (8)
(Wherein R is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group; X Is the same meaning as in formula (6a).)
A compound that is generated in the reaction system by introducing the compound represented by formula (1) into the reaction system may be used.
The amount of the compound of formula (8) to be used is usually about 0.1 to 2 mol with respect to 1 mol of the compound of formula (7).
 なお、これらの化合物は、反応系内において用いられる溶媒と溶媒和物を形成していてもよい。 In addition, these compounds may form a solvate with a solvent used in the reaction system.
 Rで示される「置換されていてもよいアルキル基」のアルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、1-メチルペンチル、n-ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル等の低級(特にC1~6)アルキル基が挙げられる。
 アルキル基上の置換基としては、例えば、
メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ等の低級(特にC1~6)アルコキシ基;
フェニル、ナフチル等のアリール基
等が挙げられる。
 アルキル基は、1個以上(例えば、1~3個(特に1~2個))の前記置換基で置換されていてもよい。
 本発明の製造方法は、RがC2~6アルキル基の場合にも簡便かつ効率的(高収率、高選択性、低コスト)に有機基(C2~6アルキル基)で置換された含フッ素オレフィンを製造できる点で特に優れている。
Examples of the alkyl group of the “optionally substituted alkyl group” represented by R include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, Examples include lower (particularly C1-6) alkyl groups such as isopentyl, neopentyl, 1-methylpentyl, n-hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, and 3,3-dimethylbutyl.
Examples of the substituent on the alkyl group include:
Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy;
And aryl groups such as phenyl and naphthyl.
The alkyl group may be substituted with one or more (for example, 1 to 3 (particularly 1 to 2)) of the above substituents.
The production method of the present invention is simple and efficient even when R is a C2-6 alkyl group (high yield, high selectivity, low cost), and fluorine-containing substituted with an organic group (C2-6 alkyl group). It is particularly excellent in that olefin can be produced.
 Rで示される「置換されていてもよいアルケニル基」のアルケニル基としては、例えば、ビニル、1-プロペニル、イソプロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、2-エチル-1-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル等の低級(特にC2~6)アルケニル基が挙げられる。
 アルケニル基上の置換基としては、例えば、
メチル、エチル、n-プロピル、イソプロピル、n-ブチル、n-ヘキシル等の低級(特にC1~6)アルキル基;
エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル等の低級(特にC2~6)アルキニル基;
メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ等の低級(特にC1~6)アルコキシ基;
フェニル、ナフチル等のアリール基
等が挙げられる。
 アルケニル基は、1個以上(例えば、1~3個(特に1~2個))の前記置換基で置換されていてもよい。
Examples of the alkenyl group of the “optionally substituted alkenyl group” represented by R include vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and 3-butenyl. 2-ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5 -Lower (particularly C2-6) alkenyl groups such as hexenyl.
Examples of the substituent on the alkenyl group include:
Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl;
Ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, Lower (particularly C2-6) alkynyl groups such as 4-hexynyl, 5-hexynyl;
Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy;
And aryl groups such as phenyl and naphthyl.
The alkenyl group may be substituted with one or more (eg, 1 to 3 (especially 1 to 2)) of the above substituents.
 Rで示される「置換されていてもよいアルキニル基」のアルキニル基としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル等の低級(特にC2~6)アルキニル基が挙げられる。
 アルキニル基上の置換基としては、例えば、
メチル、エチル、n-プロピル、イソプロピル、n-ブチル、n-ヘキシル等の低級(特にC1~6)アルキル基;
ビニル、1-プロペニル、イソプロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、2-エチル-1-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニル等の低級(特にC2~6)アルケニル基;
メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ等の低級(特にC1~6)アルコキシ基;
フェニル、ナフチル等のアリール基
等が挙げられる。
 アルキニル基は、1個以上(例えば、1~3個(特に1~2個))の前記置換基で置換されていてもよい。
Examples of the alkynyl group of the “optionally substituted alkynyl group” represented by R include, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2- Examples include lower (particularly C2-6) alkynyl groups such as pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl and the like.
Examples of the substituent on the alkynyl group include:
Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl;
Vinyl, 1-propenyl, isopropenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-ethyl-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4 A lower (especially C2-6) alkenyl group such as pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl;
Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy;
And aryl groups such as phenyl and naphthyl.
The alkynyl group may be substituted with one or more (eg, 1 to 3 (particularly 1 to 2)) of the above substituents.
 Rで示される「置換されていてもよいアリール基」のアリール基としては、例えば、フェニル、ナフチル、アントラセニル、フェナントリル基等の、単環式、二環式又は三環式のアリール基が挙げられる。
 アリール基上の置換基としては、例えば、
メチル、エチル、n-プロピル、イソプロピル、n-ブチル、n-ヘキシル等の低級(特にC1~6)アルキル基;
ビニル、アリル、クロチル等の低級(特にC2~6)アルケニル基;
エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル等の低級(特にC2~6)アルキニル基;
メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ等の低級(特にC1~6)アルコキシ基;
フェニル、ナフチル等のアリール基
等が挙げられる。
 アリール基は、1個以上(例えば、1~4個(特に1~2個))の前記置換基で置換されていてもよい。
Examples of the aryl group of the “optionally substituted aryl group” represented by R include monocyclic, bicyclic or tricyclic aryl groups such as phenyl, naphthyl, anthracenyl and phenanthryl groups. .
Examples of the substituent on the aryl group include:
Lower (especially C1-6) alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl;
Lower (particularly C2-6) alkenyl groups such as vinyl, allyl and crotyl;
Ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, Lower (particularly C2-6) alkynyl groups such as 4-hexynyl, 5-hexynyl;
Lower (particularly C1-6) alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy;
And aryl groups such as phenyl and naphthyl.
The aryl group may be substituted with one or more (for example, 1 to 4 (particularly 1 to 2)) of the above-described substituents.
 Rは、好ましくは、低級アルコキシ基及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルキル基、又は低級アルキル基、低級アルケニル基、低級アルキニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよい、単環式、二環式又は三環式のアリール基であり、より好ましくはフェニル基、又は低級(特にC1~6)アルキル基である。 R is preferably an alkyl group optionally substituted with one or more substituents selected from the group consisting of a lower alkoxy group and an aryl group, or a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group And a monocyclic, bicyclic or tricyclic aryl group optionally substituted with one or more substituents selected from the group consisting of aryl groups, more preferably a phenyl group or a lower group ( In particular, it is a C1-6 alkyl group.
 Xは、好ましくはBr又はClである。 X is preferably Br or Cl.
 有機亜鉛化合物の具体例としては、ジフェニル亜鉛、ジエチル亜鉛が挙げられる。 Specific examples of the organic zinc compound include diphenyl zinc and diethyl zinc.
 前記の有機亜鉛化合物は、市販品にて入手するか、又は公知の方法によって合成することができる。 The above-mentioned organozinc compound can be obtained as a commercial product or synthesized by a known method.
 含フッ素オレフィン及び有機亜鉛化合物の使用量は、含フッ素オレフィンにおいて置換反応するフッ素原子の数に応じ適宜設定することができる。通常、含フッ素オレフィンの使用量は、通常、有機亜鉛化合物1モルに対して、0.1~100モル程度、好ましくは0.5~10モル程度を用いることができる。 The amount of the fluorine-containing olefin and the organic zinc compound can be appropriately set according to the number of fluorine atoms that undergo substitution reaction in the fluorine-containing olefin. Usually, the amount of the fluorine-containing olefin used is usually about 0.1 to 100 mol, preferably about 0.5 to 10 mol, per 1 mol of the organic zinc compound.
 本発明の反応工程は、遷移金属触媒の不存在下で実施される。
 本明細書中、用語「遷移金属触媒」は、化学合成分野における通常の意味で理解されるべきである。
 遷移金属触媒の不存在下とは、遷移金属触媒の量が、触媒として実質的に作用し得る量以下であることを意味する。
The reaction process of the present invention is carried out in the absence of a transition metal catalyst.
In the present specification, the term “transition metal catalyst” should be understood in the usual sense in the field of chemical synthesis.
The absence of a transition metal catalyst means that the amount of the transition metal catalyst is less than or equal to the amount that can substantially act as a catalyst.
 本発明の製造方法では、前記反応工程をフッ素親和性化合物の存在下、及び/又は加熱下で行わせることにより、生成物(4)又は(5)の反応中間体(2)又は(2’)からの脱離工程を促進させ、生成物(4)又は(5)への変換を容易にする。 In the production method of the present invention, the reaction step is carried out in the presence of a fluorine-affinity compound and / or under heating, whereby the reaction intermediate (2) or (2 ′) of the product (4) or (5) ) To facilitate the conversion to the product (4) or (5).
 フッ素親和性化合物としては、フッ素原子との親和性を有する金属(ハードな金属)と弱酸との塩(例、酢酸リチウム)、及びフッ素原子との親和性を有する金属(ハードな金属)とハロゲン原子とからなるルイス酸性を有する金属ハロゲン化物を挙げることができる。金属ハロゲン化物としては、例えば、ハロゲン化リチウム、ハロゲン化マグネシウム、ハロゲン化亜鉛等が挙げられる。具体的には、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウム;臭化マグネシウム、ヨウ化マグネシウム等のハロゲン化マグネシウム;塩化亜鉛、臭化亜鉛、ヨウ化亜鉛等のハロゲン化亜鉛等が挙げられる。好ましくは、ヨウ化リチウム等のハロゲン化リチウムである。 Fluorine-affinity compounds include a salt of a metal (hard metal) having an affinity with a fluorine atom and a weak acid (eg, lithium acetate), and a metal having an affinity for a fluorine atom (hard metal) and a halogen. Mention may be made of metal halides having Lewis acidity consisting of atoms. Examples of the metal halide include lithium halide, magnesium halide, and zinc halide. Specifically, lithium halides such as lithium chloride, lithium bromide and lithium iodide; magnesium halides such as magnesium bromide and magnesium iodide; zinc halides such as zinc chloride, zinc bromide and zinc iodide, etc. Is mentioned. Lithium halide such as lithium iodide is preferable.
 反応系にフッ素親和性化合物を投入する場合、その投入量は、通常、使用する有機亜鉛試薬1モルに対して、通常0.5~10モル程度、好ましくは1~5モル程度とすることができる。 When a fluorine-affinity compound is added to the reaction system, the input amount is usually about 0.5 to 10 mol, preferably about 1 to 5 mol, relative to 1 mol of the organozinc reagent used. it can.
 反応温度は、特に制限されないが、通常、-100℃~200℃、好ましくは0℃~150℃、より好ましくは室温(20℃程度)~100℃が挙げられる。前述のように本発明の反応工程は、加熱下で実施される事が好ましい。「加熱下」とは、室温より高い温度条件を用いることを意味し、具体的には、例えば、反応温度が30℃~70℃である。なお、高温では生成物であるトリフルオロビニル誘導体の2量化が進行する場合があるため、2量化が進行しない範囲で上限の反応温度を設定することができる。 The reaction temperature is not particularly limited, but is usually −100 ° C. to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably room temperature (about 20 ° C.) to 100 ° C. As described above, the reaction step of the present invention is preferably carried out under heating. “Under heating” means that a temperature condition higher than room temperature is used. Specifically, for example, the reaction temperature is 30 ° C. to 70 ° C. In addition, since dimerization of the product trifluorovinyl derivative may proceed at high temperatures, the upper limit reaction temperature can be set within a range in which dimerization does not proceed.
 また、反応時間も特に制限されないが、その下限としては、例えば、10分間、2時間、5時間、3時間が挙げられ、一方、その上限としては、例えば、15日程度、7日程度、72時間程度、50時間程度が挙げられる。 Also, the reaction time is not particularly limited, and the lower limit thereof is, for example, 10 minutes, 2 hours, 5 hours, 3 hours, while the upper limit thereof is, for example, about 15 days, about 7 days, 72 The time is about 50 hours.
 反応雰囲気は、特に限定されないが、有機亜鉛化合物の活性を考慮して、通常アルゴン、窒素等の不活性ガス雰囲気下で行われる。また、反応圧力は、加圧でも、常圧でもよいし、減圧でもよい。通常、加圧下で行うことが好ましく、その場合の圧力は、0.1~10MPa程度、好ましくは0.1~1MPa程度である。 The reaction atmosphere is not particularly limited, but is usually performed in an inert gas atmosphere such as argon or nitrogen in consideration of the activity of the organic zinc compound. Further, the reaction pressure may be increased, normal pressure, or reduced pressure. Usually, it is preferably carried out under pressure. In this case, the pressure is about 0.1 to 10 MPa, preferably about 0.1 to 1 MPa.
 本発明の反応工程は、好ましくは溶媒中で実施される。使用する溶媒としては、反応に悪影響を与えない溶媒であれば特に制限はなく、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;テトラヒドロフラン(THF)、ジオキサン、ジエチルエーテル、グライム、ジグライム等のエーテル系溶媒等;アセトニトリル、プロピオニトリル、ジメチルシアナミド、t-ブチルニトリル等のニトリル系溶媒を使用することができる。中でも、THF等のエーテル系溶媒;アセトニトリル、プロピオニトリル、t-ブチルニトリル等のニトリル系溶媒が好ましい。 The reaction step of the present invention is preferably carried out in a solvent. The solvent to be used is not particularly limited as long as it does not adversely affect the reaction. For example, aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; tetrahydrofuran (THF), ether solvents such as dioxane, diethyl ether, glyme, diglyme and the like; nitrile solvents such as acetonitrile, propionitrile, dimethylcyanamide, t-butyl nitrile and the like can be used. Of these, ether solvents such as THF; nitrile solvents such as acetonitrile, propionitrile, and t-butylnitrile are preferable.
 このようにして得られる、有機基で置換された含フッ素オレフィンは、好ましくは、例えば、式(4)又は(5):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基を示す。)
である。
The fluorine-containing olefin substituted with an organic group thus obtained is preferably, for example, the formula (4) or (5):
Figure JPOXMLDOC01-appb-C000004
(In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group.)
It is.
 式(4)の化合物、及び式(5)の化合物は、混合物として生成し得る。式(4)の化合物、及び式(5)の化合物の生成比は、必要に応じて、例えば、基質として使用される含フッ素オレフィンと有機亜鉛化合物の量比、及び反応時間等によって制御できる。含フッ素オレフィンの量を大きくすること、及び/又は反応時間を短くすることにより、式(4)の化合物が優先的に生成し、有機亜鉛化合物の量を大きくすること、及び/又は反応時間を長くすることにより、式(5)の化合物が優先的に生成する。また、式(4)の化合物、及び式(5)の化合物は、必要に応じて、蒸留等の公知の精製法によって精製することができる。
 式(5)において2つのRは同一であってもよく、異なっていてもよい。2つのRが互いに異なる式(5)の化合物は、例えば、式(4)の化合物を、当該式(4)の生成に使用した有機亜鉛化合物とは異なる有機基を有する有機亜鉛化合物と反応させることによって合成することができる。
The compound of formula (4) and the compound of formula (5) may be produced as a mixture. The production ratio of the compound of the formula (4) and the compound of the formula (5) can be controlled, for example, by the amount ratio of the fluorine-containing olefin and the organic zinc compound used as the substrate, the reaction time, and the like. By increasing the amount of fluorine-containing olefin and / or shortening the reaction time, the compound of formula (4) is preferentially produced, increasing the amount of the organic zinc compound, and / or the reaction time. By lengthening, the compound of formula (5) is preferentially produced. Moreover, the compound of Formula (4) and the compound of Formula (5) can be refine | purified by well-known purification methods, such as distillation, as needed.
In the formula (5), two Rs may be the same or different. For example, the compound of formula (5) in which two Rs are different from each other is obtained by reacting the compound of formula (4) with an organozinc compound having an organic group different from the organozinc compound used for the production of formula (4). Can be synthesized.
 なお、前記溶媒として、イソブチロニトリルを使用した場合、化合物:
Figure JPOXMLDOC01-appb-C000005
が生成される。当該化合物は、新規化合物である。
When isobutyronitrile is used as the solvent, the compound:
Figure JPOXMLDOC01-appb-C000005
Is generated. The compound is a novel compound.
 また、不純物として、式:
Figure JPOXMLDOC01-appb-C000006
(式中の記号は前記と同意義)
で表される化合物も生成され得る。当該化合物は、公知の精製法で容易に取り除ける。
Also as an impurity, the formula:
Figure JPOXMLDOC01-appb-C000006
(The symbols in the formula are as defined above.)
Can also be produced. The compound can be easily removed by known purification methods.
 このようにして得られた有機基を有する含フッ素オレフィンは、例えば、フッ素ゴム、反射防止膜材料、イオン交換膜、燃料電池用電解質膜、液晶材料、圧電素子材料、酵素阻害薬、殺虫剤等の原料として有用である。 Examples of the fluorine-containing olefin having an organic group thus obtained include fluororubber, antireflection membrane material, ion exchange membrane, electrolyte membrane for fuel cell, liquid crystal material, piezoelectric element material, enzyme inhibitor, insecticide, etc. It is useful as a raw material.
 以下に実施例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施例に限定されるものではないことは言うまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. Needless to say, the present invention is not limited to the following examples.
 実施例1
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)のアセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol:上述の容器容量2mlと導入圧力0.35MPaから算出した。以下同様)を加えた。この反応溶液を60℃で8時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが22%の収率で得られたことを確認した。
 1,1,2-トリフルオロ-1-ブテン: 
19F-NMR(C6D6):δ -109.6 - -110.0(m,1F), -128.0 - -129.0(m,1F), -177.8 - -78.3(m,1F).
Example 1
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in acetonitrile (0.4 mL) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume of 2 ml and the introduction pressure of 0.35 MPa, the same applies hereinafter) was added thereto. The reaction solution was left at 60 ° C. for 8 hours. The reaction was monitored by 19 F-NMR, and it was confirmed that 1,1,2-trifluoro-1-butene was obtained at a yield of 22% from the internal standard.
1,1,2-trifluoro-1-butene:
19 F-NMR (C 6 D 6 ): δ -109.6--110.0 (m, 1F), -128.0--129.0 (m, 1F), -177.8--78.3 (m, 1F).
 実施例2
 グローブボックス中、不活性雰囲気下で、ジフェニル亜鉛(22.0mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)のTHF-d8(0.3 mL)/THF (0.2mL) 溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(12.3μL, 0.100mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにヘキサフルオロプロペン (HFP: 0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を40℃で18時間さらに60℃で24時間放置した。反応を19F-NMRで追跡し、内部標準より、1-フェニルパーフルオロプロパ-1-エンが23%(E/Z=5.5:1)の収率で得られたことを確認した。
(E)-1-フェニルパーフルオロプロパ-1-エン((E)-1-phenylperfluoroprop-1-ene): 
19F NMR (THF-d8): -174.1 (dq, JFF= 11, 133 Hz, 1F), -148.0 (dq, JFF = 22, 133 Hz, 1F), -69.6 (dd, JFF= 11, 22 Hz, 3F).
(Z)-1-フェニルパーフルオロプロパ-1-エン((Z)-1-phenylperfluoroprop-1-ene): 
19F NMR (THF-d8): -159.3 (dq, JFF= 12, 13 Hz, 1F), -109.9 (dq, JFF = 12, 8 Hz, 1F), -68.5 (dd, JFF= 8, 13 Hz, 3F).
Example 2
In a glove box under an inert atmosphere, a solution of diphenylzinc (22.0 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in THF-d8 (0.3 mL) / THF (0.2 mL) 2 ml), and α, α, α-trifluorotoluene (12.3 μL, 0.100 mmol: internal standard for 19 F-NMR measurement) was added thereto. Furthermore, hexafluoropropene (HFP: 0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 40 ° C. for 18 hours and further at 60 ° C. for 24 hours. The reaction was monitored by 19 F-NMR, and it was confirmed that 1-phenylperfluoroprop-1-ene was obtained at a yield of 23% (E / Z = 5.5: 1) from the internal standard.
(E) -1-phenylperfluoroprop-1-ene ((E) -1-phenylperfluoroprop-1-ene):
19 F NMR (THF-d 8 ): -174.1 (dq, J FF = 11, 133 Hz, 1F), -148.0 (dq, J FF = 22, 133 Hz, 1F), -69.6 (dd, J FF = 11, 22 Hz, 3F).
(Z) -1-phenylperfluoroprop-1-ene ((Z) -1-phenylperfluoroprop-1-ene):
19 F NMR (THF-d 8 ): -159.3 (dq, J FF = 12, 13 Hz, 1F), -109.9 (dq, J FF = 12, 8 Hz, 1F), -68.5 (dd, J FF = 8, 13 Hz, 3F).
 実施例3
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)のジメチルシアナミド(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol:  上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で8時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが20%の収率で得られたことを確認した。
Example 3
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in dimethylcyanamide (0.4 mL) in a pressure-resistant tube (capacity 2 ml) under an inert atmosphere in a glove box. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 8 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 20%.
 実施例4
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)のイソプロピオニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で48時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが30%の収率で得られたことを確認した。
Example 4
Prepare an isopropionitrile (0.4 mL) solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 48 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 30%.
 実施例5
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)のt-ブチルニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を100℃で8時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが54%、3,4-ジフルオロ-3-ヘキセンが6%の収率で得られたことを確認した。
Example 5
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in t-butylnitrile (0.4 mL) in a pressure tube (2 ml capacity) in a glove box under an inert atmosphere. Then, α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 100 ° C. for 8 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, 1,1,2-trifluoro-1-butene was obtained in a yield of 54% and 3,4-difluoro-3-hexene in a yield of 6%. It was confirmed.
 実施例6
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を20℃で330時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが67%、3,4-ジフルオロ-3-ヘキセンが5%の収率で得られたことを確認した。
Example 6
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure-resistant tube (2 ml capacity) in a glove box under an inert atmosphere. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was allowed to stand at 20 ° C. for 330 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, 1,1,2-trifluoro-1-butene was obtained in a yield of 67% and 3,4-difluoro-3-hexene in a yield of 5%. It was confirmed.
 実施例7
 グローブボックス中、不活性雰囲気下で、ジフェニル亜鉛(22.0mg, 0.100mmol)とヨウ化リチウム(32.2mg, 0.240mmol)の重THF(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で45時間放置した。反応を19F-NMRで追跡し、内部標準より、α,α,β-トリフルオロスチレンが33%、1,2-ジフルオロ-1,2-ジフェニルエチレンが5%の収率で得られたことを確認した。
α,α,β-トリフルオロスチレン: 
1H-NMR(C6D6):δ 7.16 (tt, J=7.5, 1.5Hz, 1H), 7.47 (dd, J=8.5, 7.5 Hz, 2H), 7.59 (dd, J=8.5, 1.5 Hz, 2H).
19F-NMR(C6D6):δ -103.5(dd,J=72,32Hz,1F),-118.0(dd,J=72,107Hz,1F),-179.2(dd,J=107,32Hz,1F).
1,2-ジフルオロ-1,2-ジフェニルエチレン:
19F-NMR(C6D6):δ trans体-154.8(s)、cis体-130.5(s).
Example 7
Prepare a heavy THF (0.4 mL) solution of diphenylzinc (22.0 mg, 0.100 mmol) and lithium iodide (32.2 mg, 0.240 mmol) in a pressure tube (volume 2 ml) under an inert atmosphere in a glove box, Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 45 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, α, α, β-trifluorostyrene was obtained in a yield of 33% and 1,2-difluoro-1,2-diphenylethylene in a yield of 5%. It was confirmed.
α, α, β-Trifluorostyrene:
1 H-NMR (C 6 D 6 ): δ 7.16 (tt, J = 7.5, 1.5Hz, 1H), 7.47 (dd, J = 8.5, 7.5 Hz, 2H), 7.59 (dd, J = 8.5, 1.5 Hz , 2H).
19 F-NMR (C 6 D 6 ): δ -103.5 (dd, J = 72, 32 Hz, 1F), -118.0 (dd, J = 72, 107 Hz, 1F), -179.2 (dd, J = 107, 32 Hz, 1F).
1,2-difluoro-1,2-diphenylethylene:
19 F-NMR (C 6 D 6 ): δ trans -154.8 (s), cis -130.5 (s).
 実施例8
 グローブボックス中、不活性雰囲気下で、ジフェニル亜鉛(22.0mg, 0.100mmol)の重THF(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で44時間放置した。反応を19F-NMRで追跡し、内部標準より、α,α,β-トリフルオロスチレンが22%、1,2-ジフルオロ-1,2-ジフェニルエチレンが3%の収率で得られたことを確認した。
Example 8
Prepare a solution of diphenylzinc (22.0 mg, 0.100 mmol) in deuterated THF (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box, and add α, α, α-trifluorotoluene to it. (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 44 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, α, α, β-trifluorostyrene was obtained in a yield of 22% and 1,2-difluoro-1,2-diphenylethylene in a yield of 3%. It was confirmed.
 実施例9
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で24時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが6%の収率で得られたことを確認した。
Example 9
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) in an inert atmosphere in a glove box, and add α, α, α-trifluorotoluene to it. (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 24 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 6%.
 実施例10
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)と酢酸リチウム(15.8mg, 0.240mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で140時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが36%の収率で得られたことを確認した。
Example 10
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium acetate (15.8 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 140 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 36%.
 実施例11
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)と酢酸リチウム(36.0mg, 0.240mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で16時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが26%の収率で得られたことを確認した。
Example 11
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium acetate (36.0 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 16 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, it was confirmed that 1,1,2-trifluoro-1-butene was obtained in a yield of 26%.
 実施例12
 グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)と臭化リチウム(20.8mg, 0.240mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で24時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが28%、3,4-ジフルオロ-3-ヘキセンが3%の収率で得られたことを確認した。
Example 12
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium bromide (20.8 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box, Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard at the time of 19 F-NMR measurement) was added thereto. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 24 hours. The reaction was monitored by 19 F-NMR. Based on the internal standard, 1,1,2-trifluoro-1-butene was obtained in a yield of 28% and 3,4-difluoro-3-hexene in a yield of 3%. It was confirmed.
 実施例13
グローブボックス中、不活性雰囲気下で、ジエチル亜鉛(12.5mg, 0.100mmol)と塩化リチウム(10.2mg, 0.240mmol)の重アセトニトリル(0.4 mL)溶液を耐圧チューブ(容量2ml)中に調製し、これにα,α,α-トリフルオロトルエン(14μL, 0.114mmol: 19F-NMR測定時の内部標準)を加えた。さらにここにTFE(0.313mmol: 上述の容器容量と導入圧力0.35MPaから算出した。)を加えた。この反応溶液を60℃で4時間放置した。反応を19F-NMRで追跡し、内部標準より、1,1,2-トリフルオロ-1-ブテンが16%の収率で得られたことを確認した。
Example 13
Prepare a solution of diethylzinc (12.5 mg, 0.100 mmol) and lithium chloride (10.2 mg, 0.240 mmol) in deuterated acetonitrile (0.4 mL) in a pressure tube (2 ml capacity) under an inert atmosphere in a glove box. Α, α, α-trifluorotoluene (14 μL, 0.114 mmol: internal standard for 19 F-NMR measurement) was added. Further, TFE (0.313 mmol: calculated from the above-mentioned container volume and introduction pressure 0.35 MPa) was added thereto. The reaction solution was left at 60 ° C. for 4 hours. The reaction was monitored by 19 F-NMR, and it was confirmed from the internal standard that 1,1,2-trifluoro-1-butene was obtained in a yield of 16%.
 本発明によれば、有機基で置換された含フッ素オレフィンを簡便かつ効率的(高収率、高選択性、低コスト)に製造できる。 According to the present invention, a fluorine-containing olefin substituted with an organic group can be easily and efficiently produced (high yield, high selectivity, and low cost).

Claims (9)

  1. 有機基で置換された含フッ素オレフィンの製造方法であって、遷移金属触媒の不存在下で、含フッ素オレフィンと有機亜鉛化合物とを反応させる工程を含むことを特徴とする製造方法。 A method for producing a fluorine-containing olefin substituted with an organic group, comprising a step of reacting a fluorine-containing olefin and an organic zinc compound in the absence of a transition metal catalyst.
  2. 前記含フッ素オレフィンのsp2混成炭素原子に結合した少なくとも1個のフッ素原子が、有機亜鉛化合物中の有機基で置換される請求項1に記載の製造方法。 The production method according to claim 1, wherein at least one fluorine atom bonded to the sp2 hybrid carbon atom of the fluorine-containing olefin is substituted with an organic group in the organozinc compound.
  3. 前記工程が溶媒中で実施される請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the step is carried out in a solvent.
  4. 前記工程がフッ素親和性化合物の存在下及び/又は加熱下で実施される請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the step is carried out in the presence of a fluorine affinity compound and / or under heating.
  5. 前記有機亜鉛化合物が、
    1)式(6a)又は(6b):
     RZn     (6a)
    (式中、2個のRは、同じか又は異なって、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基を示す。)
     RZnX     (6b)
    (式中、Rは式(6a)における意義と同意義である;XはCl、Br又はIを示す。)で表される化合物であるか、
    2)式(7):
     ZnX     (7)
    (式中、Xは式(6a)における意義と同意義である。)
    で表される化合物と、式(8):
     RMgX     (8)
    (式中、Rは置換基を有していてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換基を有していてもよいアリール基を示す;Xは式(6a)における意義と同意義である。)
    で表される化合物とから反応系中で生成する化合物
    である
    請求項1~4のいずれかに記載の製造方法。
    The organozinc compound is
    1) Formula (6a) or (6b):
    R 2 Zn (6a)
    (In the formula, two Rs may be the same or different and each may be an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted group. Represents an aryl group.)
    RZnX (6b)
    (Wherein R is as defined in formula (6a); X represents Cl, Br or I), or
    2) Formula (7):
    ZnX 2 (7)
    (Wherein X has the same meaning as in formula (6a).)
    A compound represented by formula (8):
    RMgX (8)
    (In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group. X is as defined in formula (6a).)
    The production method according to any one of claims 1 to 4, which is a compound produced in a reaction system from a compound represented by the formula:
  6. Rが、
    (1)低級アルコキシ基及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルキル基、
    (2)低級アルキル基、低級アルケニル基、低級アルキニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよい、単環式、二環式又は三環式のアリール基、
    (3)低級アルキル基、低級アルキニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルケニル基、又は
    (4)低級アルキル基、低級アルケニル基、低級アルコキシ基、及びアリール基からなる群より選ばれる1個以上の置換基で置換されていてもよいアルキニル基
    である請求項5に記載の製造方法。
    R is
    (1) an alkyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkoxy group and an aryl group;
    (2) a monocyclic, bicyclic, or optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group A tricyclic aryl group,
    (3) an alkenyl group optionally substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkynyl group, a lower alkoxy group, and an aryl group, or
    (4) The production method according to claim 5, which is an alkynyl group which may be substituted with one or more substituents selected from the group consisting of a lower alkyl group, a lower alkenyl group, a lower alkoxy group and an aryl group.
  7. 前記工程が前記フッ素親和性化合物の存在下で実施され、且つ該フッ素親和性化合物がハロゲン化リチウム、ハロゲン化マグネシウム、又はハロゲン化亜鉛である請求項4~6のいずれかに記載の製造方法。 The production method according to any one of claims 4 to 6, wherein the step is carried out in the presence of the fluorine affinity compound, and the fluorine affinity compound is lithium halide, magnesium halide, or zinc halide.
  8. 前記フッ素親和性化合物がハロゲン化リチウムである請求項7に記載の製造方法。 The production method according to claim 7, wherein the fluorine affinity compound is lithium halide.
  9. 前記有機基で置換された含フッ素オレフィンが、式(4)又は(5):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、又は置換されていてもよいアリール基を示す。)
    で表される化合物である請求項1~8のいずれかに記載の製造方法。
    The fluorine-containing olefin substituted with the organic group has the formula (4) or (5):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R represents an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, or an optionally substituted aryl group.)
    The production method according to any one of claims 1 to 8, which is a compound represented by the formula:
PCT/JP2012/055992 2011-03-10 2012-03-08 Preparation method for fluorine-containing olefins having organic-group substituents WO2012121340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503606A JP5744175B2 (en) 2011-03-10 2012-03-08 Method for producing fluorine-containing olefin substituted with organic group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011053624 2011-03-10
JP2011-053624 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121340A1 true WO2012121340A1 (en) 2012-09-13

Family

ID=46798295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055992 WO2012121340A1 (en) 2011-03-10 2012-03-08 Preparation method for fluorine-containing olefins having organic-group substituents

Country Status (2)

Country Link
JP (1) JP5744175B2 (en)
WO (1) WO2012121340A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508988A (en) * 1993-04-15 1996-09-24 ルセル ユクラフ New production method of β-alkoxyacrylic acid
CN101525267A (en) * 2009-04-24 2009-09-09 河南工业大学 Method for preparing hexachlorobutadiene
JP2010229129A (en) * 2009-03-05 2010-10-14 Osaka Univ Method for synthesizing organic fluorine compound
JP2011201877A (en) * 2010-03-03 2011-10-13 Daikin Industries Ltd Method for producing reduced form of tetrafluoroethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508988A (en) * 1993-04-15 1996-09-24 ルセル ユクラフ New production method of β-alkoxyacrylic acid
JP2010229129A (en) * 2009-03-05 2010-10-14 Osaka Univ Method for synthesizing organic fluorine compound
CN101525267A (en) * 2009-04-24 2009-09-09 河南工业大学 Method for preparing hexachlorobutadiene
JP2011201877A (en) * 2010-03-03 2011-10-13 Daikin Industries Ltd Method for producing reduced form of tetrafluoroethylene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. YAMADA ET AL.: "Preparation and Addition- Elimination Reactions of Benzyl alpha,beta,beta- Trifluoroacrylate. A New Stereoselective Approach to (Z)-p-Substituted a,p- Difluoroacrylates", JOURNAL OF ORGANIC CHEMISTRY, vol. 73, no. 2, 2008, pages 522 - 528 *
S.YAMADA ET AL.: "An Effective Preparation of Sulfonyl- or Sulfinyl-Substituted Fluorinated Alkenes and their Stereoselective Addition- Elimination Reactions with Organocuprates", CHEMISTRY--AN ASIAN JOURNAL, vol. 5, no. 8, 2010, pages 1846 - 1853 *

Also Published As

Publication number Publication date
JP5744175B2 (en) 2015-07-01
JPWO2012121340A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5595480B2 (en) Method for producing substituted fluorine-containing olefin
JP5939980B2 (en) Process for producing halogenated precursors of alkenones in the presence of a solvent
JP5562069B2 (en) Synthesis method of organic fluorine compounds
JP5787979B2 (en) Method for producing fluorine-containing olefin substituted with organic group
JP5744175B2 (en) Method for producing fluorine-containing olefin substituted with organic group
JP6410072B2 (en) Method for producing fluorine-containing olefin substituted with organic group
JP2013095669A (en) Method for producing fluorine-containing alkane
TWI328577B (en)
JP2014076986A (en) Method for producing aryl ester of thionocarboxylic acid
JP5858825B2 (en) Method for producing trifluorovinyl derivative
JP2000509390A (en) Synthesis of cycloalkyldiarylphosphines
JP2001192346A (en) Method for producing perfluoroalkadiene
JP2004026800A (en) Method for manufacturing perfluoro unsaturated hydrocarbon by dehalogenation reaction
JP5585992B2 (en) Method for producing nucleophilic adduct using Grignard reaction and nucleophilic addition reagent
JPH0687772A (en) Preparation of perhalogenated olefin
US20120220803A1 (en) Process for Production of Trialkylphosphine
JP4635251B2 (en) Organic bismuth compound and process for producing the same
JP4370187B2 (en) Method for producing fluorine-containing unsaturated ester
EP2554530B1 (en) Method for producing 3-chloro-pentafluoropropene
JP6261908B2 (en) 1-acyl-2- (substituted phenyl) naphthalene and process for producing the same
US20220324883A1 (en) Method for producing fluorine-containing (cyclo)alkenyl zinc halide compound
JP6235286B2 (en) (Bromodifluoromethyl) benzene derivatives and methods for producing them
Burton et al. Chain-extension reactions via insitu capture of the dibromofluoromethide ion with difluoromethylene fluoro-olefins
JP2015193589A (en) METHOD FOR PRODUCING 1,1,1,3,3,3-HEXAFLUORO-tert-BUTANOL
JP2007238527A (en) Method of manufacturing fluorine-containing propargyl alcohol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755755

Country of ref document: EP

Kind code of ref document: A1