WO2012121068A1 - Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester - Google Patents

Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester Download PDF

Info

Publication number
WO2012121068A1
WO2012121068A1 PCT/JP2012/055009 JP2012055009W WO2012121068A1 WO 2012121068 A1 WO2012121068 A1 WO 2012121068A1 JP 2012055009 W JP2012055009 W JP 2012055009W WO 2012121068 A1 WO2012121068 A1 WO 2012121068A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
optically active
carbon atoms
amino
Prior art date
Application number
PCT/JP2012/055009
Other languages
French (fr)
Japanese (ja)
Inventor
利昭 相川
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US14/001,880 priority Critical patent/US20130338392A1/en
Priority to EP12755499.6A priority patent/EP2684864A4/en
Priority to CN2012800119236A priority patent/CN103402972A/en
Publication of WO2012121068A1 publication Critical patent/WO2012121068A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/34Preparation of optical isomers by separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C229/48Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/19Sulfonic acids having sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/25Sulfonic acids having sulfo groups bound to carbon atoms of rings other than six-membered aromatic rings of a carbon skeleton
    • C07C309/27Sulfonic acids having sulfo groups bound to carbon atoms of rings other than six-membered aromatic rings of a carbon skeleton containing carboxyl groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/42Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms

Definitions

  • the present invention relates to a method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
  • the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is useful as, for example, a synthetic intermediate of a pharmaceutical product such as an antiviral agent.
  • the racemate of ethyl acetate was optically resolved using di-p-toluoyl-D-tartaric acid, and the resulting optical purity was 55% e.e. e. (Hereinafter, ee represents the enantiomeric excess), the ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was converted to the methyl ester by transesterification, and then the enzyme reaction. Furthermore, by optically dividing, the optical purity is 97.2% e.e.
  • the present invention provides a method by which an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester having a high optical purity can be easily produced. That is, the present invention relates to reacting 1-amino-2-vinylcyclopropanecarboxylic acid ester with optically active tartaric acid or optically active camphorsulfonic acid in a solvent, and diastereomeric salt mixture obtained.
  • a method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester by isolating a stereomeric salt and treating the isolated diastereomeric salt with an inorganic acid or base is provided.
  • the method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester comprises 1-amino-2-vinylcyclopropanecarboxylic acid ester, optically active tartaric acid or optically active camphorsulfonic acid (hereinafter referred to as “active amino acid”). Is sometimes referred to as an optically active organic acid) in a solvent, and one diastereomeric salt of the resulting diastereomeric salt mixture is isolated (first step), Treating the stereomeric salt with an inorganic acid or base (second step).
  • the 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention is usually a (1R, 2S) isomer of 1-amino-2-vinylcyclopropanecarboxylic acid ester and (1S, 2R).
  • a mixture containing a large amount of either isomer Its optical purity is, for example, 40% e.e. e. 95% e.e. e. Less, preferably 55% e.e. e. 95% e.e. e. Less, more preferably 70% e.e. e. 90% e. e. Less, more preferably 75% e.e. e. 85% e.
  • the optically active organic acid used in the first step is optically active tartaric acid which is D-tartaric acid or L-tartaric acid, or optically active camphorsulfone such as D-10-camphorsulfonic acid and L-10-camphorsulfonic acid. It is an acid.
  • the amount of the optically active organic acid used in the first step is usually 1 mol or more with respect to 1 mol of 1-amino-2-vinylcyclopropanecarboxylic acid ester, and is 1 from the viewpoint of yield and economy.
  • the ratio of mol to 4 mol is preferable, and the ratio of 1 mol to 2 mol is more preferable.
  • Examples of the solvent used for the reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester and optically active organic acid include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, and isodecane.
  • the solvent is preferably an aromatic solvent, a ketone solvent, an ester solvent, an alcohol solvent, an ether solvent, or a mixture thereof, more preferably any one of an aromatic solvent, a ketone solvent, an ester solvent, and an ether solvent. It is a mixed solvent of 1 type and an alcohol solvent, More preferably, it is a mixture of toluene and an alcohol solvent, Especially preferably, it is a mixture of toluene and ethanol, or a mixture of toluene and 2-propanol.
  • the amount of the solvent used is preferably 1 to 50 mL, more preferably 3 to 30 mL based on 1 g of 1-amino-2-vinylcyclopropanecarboxylic acid ester, although it depends on the solvent used.
  • the reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester with an optically active organic acid is carried out, for example, by mixing a solvent and 1-amino-2-vinylcyclopropanecarboxylic acid ester, and adding the resulting mixture to an optically active compound.
  • the reaction temperature in the reaction between 1-amino-2-vinylcyclopropanecarboxylic acid ester and the optically active organic acid is not particularly limited, and is preferably 0 ° C. or higher and the boiling point of the solvent or lower, more preferably 0 ° C. or higher, 40 It is below °C.
  • Isolation of the diastereomeric salt which precipitates is performed by performing solid-liquid separation processes, such as filtration and a decantation, for example.
  • the resulting diastereomeric salt is a salt of 1-amino-2-vinylcyclopropanecarboxylic acid ester and an optically active organic acid. If precipitation of one diastereomeric salt is not observed from the mixture of diastereomeric salts in a solvent, after adding one of the diastereomeric salts prepared in advance as a seed crystal, a solution of the mixture of diastereomeric salts is added.
  • One diastereomeric salt can be preferentially precipitated by cooling.
  • the solution may be cooled as it is, but in order to improve the optical purity of the diastereomeric salt to be precipitated, the solution is heated to dissolve the precipitate, and then cooled. By doing so, it is preferable to preferentially precipitate one diastereomeric salt, and in the precipitation of the diastereomeric salt, one diastereomeric salt prepared in advance can be used as a seed crystal.
  • the higher the optical purity of the seed crystal the better, preferably 90% e.e. e. Or more, more preferably 95% e.e. e. Or more, more preferably 98% e.e. e. Or more, particularly preferably 99% e.e. e. That's it.
  • the drying treatment can be performed under normal pressure or reduced pressure conditions, preferably at a temperature selected from the range of 20 to 80 ° C.
  • the liquid resulting from the above-described solid-liquid separation treatment contains the other diastereomeric salt, and the other diastereomeric salt can be obtained from the liquid phase by a conventional method.
  • the optical purity can be further improved by subjecting the diastereomeric salt to a purification treatment. Recrystallization is preferred as the purification treatment.
  • a method in which a diastereomeric salt is dissolved in a solvent and cooled to precipitate a purified diastereomeric salt, a diastereomeric salt is dissolved in a solvent, and a purified diastereomer is added dropwise by adding a poor solvent Purification can be carried out by a method of precipitating the dimer salt, a method of precipitating the diastereomeric salt by distilling off the solvent after dissolving the diastereomeric salt in a solvent, or a combination thereof.
  • one of the diastereomeric salts prepared in advance can be added as a seed crystal.
  • Examples of the solvent for dissolving the diastereomeric salt in the purification treatment include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, and 2-pentanol.
  • the amount of the solvent for dissolving the diastereomeric salt in the purification treatment can be appropriately adjusted depending on the solvent used, and is preferably 1 to 10 mL with respect to 1 g of the diastereomeric salt.
  • the temperature at which the diastereomeric salt is dissolved is preferably 0 to 60 ° C, more preferably 10 to 40 ° C.
  • Examples of the poor solvent in the purification treatment include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum Aliphatic hydrocarbon solvents such as ether; benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, 1,2-di Aromatic solvents such as chlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichloro
  • the usage-amount of a poor solvent can be suitably adjusted with the precipitation degree of refinement
  • the diastereomeric salt is dissolved in a solvent and cooled to precipitate the purified diastereomeric salt, it is preferably cooled to a temperature selected from the range of 0 to 25 ° C. Cooling per hour The temperature is preferably 3 to 10 ° C.
  • the obtained diastereomeric salt is, for example, (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ester or (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylic acid ester and optically active.
  • Specific examples thereof include salts with an organic acid, and specific examples thereof include a salt of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate and L-tartaric acid and (1R, 2S) -1-amino-2.
  • the second step can be performed by mixing the isolated diastereomeric salt with an inorganic acid or base, and an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained.
  • the inorganic acid to be mixed with the diastereomeric salt is usually one having higher acidity than the optically active organic acid, and specific examples include hydrochloric acid, phosphoric acid, and sulfuric acid.
  • Preferred inorganic acids are hydrochloric acid and sulfuric acid. These inorganic acids can be used alone or in combination with a solvent described later.
  • the amount of inorganic acid used is usually 1 mol or more for hydrochloric acid and 0.5 mol or more for sulfuric acid with respect to 1 mol of diastereomeric salt. Mixing of the diastereomeric salt and the inorganic acid is preferably performed in a solvent.
  • solvents examples include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum ether and the like.
  • Aliphatic hydrocarbon solvent benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, 1,2-dichlorobenzene, 1, Aromatic solvents such as 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene; tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, di Such as til ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl
  • Ether solvent methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, 1-hexanol, 2-hexanol, iso Hexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol mono Chill ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl Alcohol solvents such as ether, diethylene glycol monoisopropyl ether, diethylene glycol mono
  • the solvent used for mixing the diastereomeric salt and the inorganic acid is preferably a mixed solvent of an aromatic solvent and a ketone solvent or an alcohol solvent, and more preferably a mixed solvent of an aromatic solvent and an alcohol solvent.
  • the amount of the solvent to be used is preferably 1 to 50 mL, more preferably 3 to 30 mL, per 1 g of diastereomeric salt.
  • Mixing of the diastereomeric salt and the inorganic acid can be performed, for example, by mixing the diastereomeric salt and the solvent and adding the inorganic acid thereto.
  • the mixing is preferably performed within a range of 0 to 40 ° C, more preferably within a range of 0 to 30 ° C.
  • the mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours.
  • the acid addition salt is
  • the acid addition salt can be obtained by subjecting it to a solid-liquid separation process such as filtration or decantation.
  • the obtained mixture is, for example, concentrated, mixed with a solvent in which the salt is difficult to dissolve, or cooled.
  • an acid addition salt is precipitated, and the precipitated acid addition salt is subjected to solid-liquid separation treatment such as filtration or decantation, for example, to give an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
  • solid-liquid separation treatment such as filtration or decantation, for example, to give an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
  • the obtained acid addition salt can be purified, for example, by recrystallization or the like, or free of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester in the same manner as in the base treatment of a diastereomeric salt described later. It can also be obtained as a base.
  • Specific examples of acid addition salts include addition salts of hydrochloric acid, phosphoric acid and sulfuric acid.
  • the filtrate obtained by the above-described solid-liquid separation treatment contains an optically active organic acid, and the optically active organic acid can be extracted from the filtrate by a conventional method and reused in the present invention.
  • the base to be mixed with the diastereomeric salt include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium methylate, sodium ethylate and potassium methylate. Examples thereof include alkali metal alcoholates such as lath and potassium ethylate.
  • Preferred bases are alkali metal hydroxides, especially sodium hydroxide.
  • the base can be used alone or in combination with a solvent described later.
  • the amount of the base used is preferably a ratio of 1 mol or more per 1 mol of the diastereomeric salt.
  • Mixing of the diastereomeric salt and the base is preferably performed in a solvent.
  • the solvent include alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, and 1-butanol; diethyl ether, t-butyl methyl ether, methisobutyl ether, diisopropyl ether, methylcyclopentyl ether, 1,2 -Ether solvents such as dimethoxymethane; aromatic solvents such as toluene, xylene and chlorobenzene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and t-butyl acetate Sol
  • the solvent is preferably an aromatic solvent, an alcohol solvent or water, or a mixture thereof, more preferably toluene or water, or a mixture thereof.
  • a base such as alkali metal hydroxide or alkali metal carbonate
  • water alone or an organic solvent having low compatibility with water for example, the above ether solvent, aromatic solvent, aliphatic hydrocarbon solvent
  • Ketone solvents, ester solvents, halogenated aliphatic hydrocarbon solvents are more preferably used as a mixture.
  • the amount of the solvent used for mixing the diastereomeric salt and the base is preferably 1 to 50 mL, more preferably 3 to 30 mL with respect to 1 g of the diastereomeric salt.
  • the diastereomeric salt and the base can be mixed, for example, by mixing the diastereomeric salt and the solvent and adding the base thereto. Mixing is preferably performed within a range of 0 to 60 ° C., more preferably within a range of 10 to 30 ° C. The mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours. Mixing of the diastereomeric salt and the base can be performed, for example, by the following method. A base is added to the mixture of water and diastereomeric salt to make the aqueous layer of the mixture basic (preferably pH 8.5 or higher), and an organic solvent having low compatibility with water is added to the resulting mixture.
  • a base is added to the mixture of water and diastereomeric salt to make the aqueous layer of the mixture basic (preferably pH 8.5 or higher), and an organic solvent having low compatibility with water is added to the resulting mixture.
  • an organic layer containing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained. If this organic layer is washed with water as necessary and then concentrated, an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained as a free base.
  • an alkali metal alcoholate is used as the base and an alcohol solvent is used as the solvent, the alkali metal salt of the optically active organic acid can be precipitated, and the precipitate is filtered off and the resulting filtrate is concentrated.
  • the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be isolated as a free base.
  • the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be purified by, for example, column chromatography.
  • the aqueous layer obtained by the liquid separation treatment contains an optically active organic acid, and the optically active organic acid can be recovered from the aqueous layer by a conventional method and reused in the present invention.
  • the optically active organic acid can be recovered from the alkali metal salt of the optically active organic acid filtered out as described above by a conventional method and reused in the present invention.
  • An optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester obtained by mixing a diastereomeric salt with a base is further mixed with an acid to form an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester. It can also be obtained as an acid addition salt of an ester.
  • the acid mixed with the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and perchloric acid; and aromatics such as paratoluenesulfonic acid and benzenesulfonic acid.
  • Aliphatic sulfonic acids such as methanesulfonic acid; aliphatic carboxylic acids such as acetic acid, propionic acid, citric acid, malic acid, succinic acid, lactic acid, maleic acid and fumaric acid; and phthalic acid, benzoic acid, Examples include aromatic carboxylic acids such as 4-nitrobenzoic acid and 4-chlorobenzoic acid.
  • the acid may be used alone or in combination with a solvent described later.
  • the acid is preferably an inorganic acid, more preferably sulfuric acid.
  • the amount of acid used is preferably, for example, 1 mol or more for hydrochloric acid and 0.5 mol or more for sulfuric acid with respect to 1 mol of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
  • the mixing of the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid is preferably performed in a solvent.
  • solvents examples include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum ether and the like.
  • Aliphatic hydrocarbon solvent benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, 1,2-dichlorobenzene, 1, Aromatic solvents such as 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene; tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, di Such as til ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl
  • Ether solvent methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, 1-hexanol, 2-hexanol, iso Hexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol mono Chill ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl Alcohol solvents such as ether, diethylene glycol monoisopropyl ether, diethylene glycol mono
  • the solvent used for mixing the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid is preferably a mixture of an aromatic solvent and a ketone solvent or an alcohol solvent, more preferably an aromatic solvent and an alcohol. It is a mixture with a solvent.
  • the amount of the solvent to be used is preferably 1 to 50 mL, more preferably 3 to 30 mL, with respect to 1 g of the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
  • the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid for example, the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the solvent are mixed, and the acid is added thereto. Can be done.
  • the mixing is preferably performed within a range of 0 to 40 ° C, more preferably within a range of 0 to 30 ° C.
  • the mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours.
  • An acid addition salt of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is precipitated in the mixture obtained by mixing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and acid.
  • the acid addition salt can be obtained by subjecting the acid addition salt to a solid-liquid separation treatment such as filtration or decantation.
  • a solid-liquid separation treatment such as filtration or decantation.
  • the acid addition salt is precipitated, and the acid addition salt can be taken out by subjecting the precipitated acid addition salt to a solid-liquid separation treatment such as filtration or decantation.
  • the extracted acid addition salt can be purified by, for example, recrystallization.
  • Specific examples of acid addition salts include addition salts of hydrochloric acid, phosphoric acid and sulfuric acid.
  • the optical purity of the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is, for example, 85% e.e. e. For example, 90% e.e. e. For example, 98% e.e. e. That's it.
  • optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester are (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl, (1S, 2R) -1-amino- T-butyl 2-vinylcyclopropanecarboxylate, t-butyl (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylate, methyl (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylate , Ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, t-butyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, (1R, 2S) -1-amino Methyl-2-vinylcyclopropanecarboxylate and its
  • the 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention can be produced according to a known method. For example, Journal of Organic Chemistry, Vol. 70, pages 5869-5879, 2005.
  • 1- (N-phenylmethyleneamino) -2-vinylcyclopropane obtained by reacting N-phenylmethyleneglycine ethyl ester with 1,4-dibromo-2-butene in the presence of a base by the method described in the year It can be produced by subjecting ethyl carboxylate to acid treatment or the like, and optically resolving the resulting racemic ethyl 1-amino-2-vinylcyclopropanecarboxylate with di-p-toluoyl-D-tartaric acid.
  • the 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention has the formula (4-2) (Wherein R 1 Represents an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms. ) It is preferable that it is a compound (compound (4-2)) shown by these, and a compound (4-2) is Formula (1).
  • Ar 1 Represents an optionally substituted phenyl group or an optionally substituted naphthyl group.
  • a compound represented by formula (compound (1)) and formula (2) (Where Y 1 And Y 2 Each independently represents a halogen atom, an alkanesulfonyloxy group having 1 to 6 carbon atoms, a perfluoroalkanesulfonyloxy group having 1 to 6 carbon atoms, or an optionally substituted benzenesulfonyloxy group.
  • the substituent of the benzenesulfonyloxy group is one or more substituents selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom and a nitro group.
  • the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester has the formula (4) (Wherein R 1 Is as defined above and C * 1 And C * 2 Represents an asymmetric carbon atom and C * 1 C in the R configuration * 2 Is S configuration and C * 1 C is an S configuration * 2 Is the R configuration. ) It becomes the compound shown by these.
  • R 1 As the alkyl group having 1 to 12 carbon atoms represented by, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl A linear or branched alkyl group having 1 to 12 carbon atoms such as a group, nonyl group, decyl group, undecyl group and dodecyl group, and a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and And a cyclic alkyl group having 3 to 12 carbon atoms such as cyclooctyl group, R 1 Examples of the alkenyl group having 2 to 12 carbon atoms represented by the formula include linear or branched alkeny
  • R 1 Is preferably an alkyl group having 1 to 12 carbon atoms, more preferably a methyl group, an ethyl group or a t-butyl group, and still more preferably a methyl group or an ethyl group.
  • Ar 1 Although the phenyl group or naphthyl group represented by these may be substituted, examples of the substituent include at least one group selected from the following group P1.
  • alkyl group having 1 to 12 carbon atoms An alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a nitro group, a cyano group, and a trifluoromethyl group;
  • examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • a linear or branched alkyl group having 1 to 12 carbon atoms such as nonyl group, decyl group, undecyl group and dodecyl group, and cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclo Examples thereof include cyclic alkyl groups having 3 to 12 carbon atoms such as octyl group; examples of alkoxy groups having 1 to 12 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, and isobutyloxy group.
  • T-butyloxy group pentyloxy group, hexyloxy group, heptyloxy group and Linear or branched alkoxy groups having 1 to 12 carbon atoms such as octyloxy and cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy and cyclooctyloxy And a cyclic alkyloxy group having 3 to 12 carbon atoms such as a group; examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • Ar 1 An optionally substituted phenyl group and Ar 1 Examples of the optionally substituted naphthyl group represented by the formula: phenyl group, 1-naphthyl group, 2-naphthyl group, 2-methylphenyl group, 2-methoxyphenyl group, 2-fluorophenyl group, 2- Chlorophenyl group, 2-bromophenyl group, 2-nitrophenyl group, 2-cyanophenyl group, 2- (trifluoromethyl) phenyl group, 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3 -Chlorophenyl group, 3-bromophenyl group, 3-nitrophenyl group, 3-cyanophenyl group, 3- (trifluoromethyl) phenyl group, 4-methylphenyl group, 4-methoxyphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-bromophenyl group, 4-nitrophenyl group
  • Ar 1 Is preferably an optionally substituted phenyl group, more preferably an optionally halogenated phenyl group, still more preferably a phenyl group or a 4-chlorophenyl group.
  • Y in formula (2) 1 And Y 2 examples of the halogen atom include a chlorine atom, a bromine atom and an iodine atom.
  • the alkanesulfonyloxy group having 1 to 6 carbon atoms include a methanesulfonyloxy group, an ethanesulfonyloxy group, a propanesulfonyloxy group, and a butane.
  • Examples thereof include a sulfonyloxy group, a pentanesulfonyloxy group, and a hexanesulfonyloxy group.
  • Examples of the perfluoroalkanesulfonyloxy group having 1 to 6 carbon atoms include a trifluoromethanesulfonyloxy group, a pentafluoroethanesulfonyloxy group, and a perfluoropropanesulfonyloxy group. And perfluorohexanesulfonyloxy group.
  • each hydrogen atom in the benzenesulfonyloxy group may be independently substituted with, for example, a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom and a nitro group.
  • alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and t-butyl.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. It is done.
  • benzenesulfonyloxy group examples include 4-methylbenzenesulfonyloxy group, 2-nitrobenzenesulfonyloxy group, 3-nitrobenzenesulfonyloxy group, 4-nitrobenzenesulfonyloxy group, and 2,4-dinitrobenzenesulfonyl.
  • examples thereof include an oxy group, a 4-fluorobenzenesulfonyloxy group, and a pentafluorobenzenesulfonyloxy group.
  • Y 1 And Y 2 Are preferably each independently a chlorine atom, a bromine atom or a methanesulfonyloxy group, more preferably a bromine atom.
  • compound (1) are N-phenylmethyleneglycine ethyl ester, N-naphthalen-1-ylmethyleneglycine ethyl ester, N-naphthalen-2-ylmethyleneglycine ethyl ester, N-furan-2-ylmethyleneglycine.
  • Ethyl ester N- (4-methylphenyl) methyleneglycine ethyl ester, N- (4-methoxyphenyl) methyleneglycine ethyl ester, N- (4-fluorophenyl) methyleneglycine ethyl ester, N- (4-chlorophenyl) methylene Glycine ethyl ester, N- [4- (trifluoromethyl) phenyl] methylene glycine ethyl ester, N- (3-chlorophenyl) methylene glycine ethyl ester, N- (4-chlorophenyl) methylene glycine ethyl ester, - phenylmethylene glycine t- butyl ester, N- (4-chlorophenyl) methylene glycine t- butyl ester, N- phenylmethylene glycine methyl ester and N
  • the compound (1) is preferably N-phenylmethyleneglycine ethyl ester, N-naphthalen-1-ylmethyleneglycine ethyl ester or N- (4-chlorophenyl) methyleneglycine ethyl ester.
  • Compound (1) can be produced according to any known method, and a commercially available product can also be used.
  • Specific examples of the compound (2) include (E) -1,4-dibromo-2-butene, (E) -1,4-dichloro-2-butene, (E) -1,4-dimethanesulfonyloxy- 2-butene and (E) -1-bromo-4-chloro-2-butene.
  • the compound (2) is preferably (E) -1,4-dibromo-2-butene or (E) -1,4-dichloro-2-butene, more preferably (E) -1,4-dibromo. -2-butene.
  • Compound (2) can be produced according to any known method, and a commercially available product can also be used.
  • the compound (3) are (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate, (1S, 2R) -1- [N- (4-chlorophenyl) Methylene] amino-2-vinylcyclopropanecarboxylate ethyl, (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate t-butyl, (1S, 2R) -1- [N -(4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate t-butyl, (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate methyl, (1S, 2R ) -1- [N- (4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate methyl (1S,
  • optically active quaternary ammonium salt used in the reaction between the compound (1) and the compound (2) include, for example, cinchona alkaloid derivatives (for example, Tetrahedron Letters, Vol. 40, pages 8671-8694, 1999). ), Tartaric acid derivatives (see, for example, Tetrahedron, 60, 7743-7754, 2004), axially asymmetric spiro-type quaternary ammonium salts (eg, Journal of American Chemical Society, 122, 5228-5229). , 2000)), and preferred quaternary ammonium salts include those represented by the formula (5) (Wherein Ar 2 And Ar 2 ' Each independently represents an optionally substituted phenyl group.
  • Ar 3 Represents an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms or an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 Represents an optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms
  • R 3 Represents a straight-chain hydrocarbon group having 1 to 12 carbon atoms, or R 2 And R 3 Together form a polymethylene group having 2 to 6 carbon atoms.
  • R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • Ar 2 And Ar 2 Examples of the optionally substituted phenyl group represented by: phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 3,5-dimethylphenyl group, 3,4, 5-trimethylphenyl group, 2-t-butylphenyl group, 3-t-butylphenyl group, 4-t-butylphenyl group, 2-t-butyloxyphenyl group, 3-t-butyloxyphenyl group, 4- t-butyloxyphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group, 2-chlorophenyl group, 3 -Chlorophenyl group, 4-chlorophenyl group, 3,5-dichlorophenyl group, 3,4,5-trichlorophenyl group, 2- (trifluoromethyl) phenyl Ny
  • Ar 2 And Ar 2 ' are preferably each independently 3-fluorophenyl group, 4-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group or 3,5-bis (trifluoromethyl) phenyl group More preferably, each is independently 3,4,5-trifluorophenyl group or 3,5-bis (trifluoromethyl) phenyl group, and more preferably both 3,5-bis (trifluoromethyl) phenyl. It is a group.
  • aromatic hydrocarbon group having 6 to 20 carbon atoms which may be substituted include, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, benzyl group, 2-tolyl group, 1,5 -Diphenyl-3-pentyl group, bis (4-tolyl) methyl group, 1,3-diphenyl-2-propyl group and bis (3,4-dimethylphenyl) methyl group can be mentioned.
  • Examples of the optionally substituted aliphatic hydrocarbon group represented by general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, C1-C20 linear alkyl group such as nonyl group, decyl group, undecyl group and dodecyl group, 1-methylethyl group, 1-methylpropyl group, 1-ethylpropyl group, 1-propylbutyl group, C1-C20 branched alkyl groups such as 1-butylpentyl group, 1-pentylhexyl group, 1-hexylheptyl group, 1-heptyloctyl group, 1-octylnonyl group and 1-nonylundecyl group, cyclopropyl A cyclic alkyl group having 3 to 20 carbon a
  • Group P2> An alkoxy group having 1 to 12 carbon atoms, an alkenyloxy group having 3 to 12 carbon atoms, an alkynyloxy group having 3 to 12 carbon atoms, and an aromatic group having 6 to 12 carbon atoms.
  • examples of the alkoxy group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group and linear or branched alkoxy group such as dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy And cyclic alkoxy groups such as a cycloheptyloxy group and a cyclooctyloxy group.
  • alkenyloxy group having 3 to 12 carbon atoms examples include 2-propenyloxy group, 2-butenyloxy group, 2-methyl-2 -Butenyloxy group and 3-methyl 2-butenyloxy group is exemplified, and examples of the alkynyloxy group having 3 to 12 carbon atoms include 2-propynyloxy group and 2-butynyloxy group.
  • aromatic group having 6 to 12 carbon atoms examples include phenyl group , Naphthyl group, benzofuranyl group, benzothiophenyl group, benzopyrazolyl group, benzoisoxazolyl group, benzoisothiazolyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, quinolinyl group and isoquinolinyl group .
  • 1 to 3 hydrogen atoms on the aromatic ring of the aromatic group may be each independently substituted with, for example, a substituent selected from the following group P3.
  • Group P3> A saturated hydrocarbon group having 1 to 12 carbon atoms, an aromatic group having 6 to 10 carbon atoms, a halogen atom, a nitro group, a trifluoromethyl group, a protected amino group, and a protected hydroxyl group.
  • examples of the saturated hydrocarbon group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and examples of the aromatic group having 6 to 10 carbon atoms include For example, phenyl group, 1-naphthyl group, 2-naphthyl group, 2-benzofuranyl group, 3-benzofuranyl group, 2-benzothiophen
  • Examples of the protected hydroxyl group include methoxy group and ethoxy group. , Propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, etc.
  • a cyclic alkyloxy group having 3 to 12 carbon atoms such as a linear or branched alkoxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, A methoxymethoxy group, a benzyloxy group, and an acetyloxy group are mentioned.
  • Ar 3 are preferably 1-naphthyl group, phenyl group, cyclohexyl group, t-butyl group, 1-methoxy-1,1-di-p-tolylmethyl group, 1-methoxy-1-ethylpropyl group, 1-methoxy-1 -Butylpentyl group, 1-methoxy-1-hexylheptyl group, 1-methoxy-1-octylnonyl group, 3-phenyl-1-methoxy-1- (2-phenylethyl) propyl group, more preferably 1- Methoxy-1,1-di-p-tolylmethyl group, 1-methoxy-1-ethylpropyl group, 1-methoxy-1-butylpentyl group, 1-methoxy-1-hexylheptyl group, 1-methoxy-1-octylnonyl A 3-phenyl-1-methoxy-1- (2-phenylethyl) propyl group
  • R 2 Examples of the optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by the formula: methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group , A hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, etc., a linear or branched alkyl group having 1 to 12 carbon atoms, and a cyclopropyl group, a cyclobutyl group, a cyclopentyl group C3-C12 cyclic alkyl group such as cyclohexyl group, cycloheptyl group and cyclooctyl group, 2-propenyl group, 2-butenyl group, 2-methyl-2-butenyl group
  • the position and number of substituents of the aliphatic hydrocarbon group having 1 to 12 carbon atoms are not particularly limited.
  • the number of substituents is preferably 1 to 3, and when having a plurality of substituents, they may be the same substituent or two or more different substituents.
  • R 2 Is preferably a linear or branched alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 1 to 8 carbon atoms, and still more preferably a methyl group.
  • R 3 Examples of the linear aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by: For example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl Group, decyl group, undecyl group, dodecyl group and the like, linear alkyl group having 1 to 12 carbon atoms, ethenyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 1-pentenyl group, 1-pentenyl group, C2-C12 linear alkenyl groups such as hexenyl group, 1-heptenyl group, 1-octenyl group and 1-undecenyl group, and ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl And a straight-chain alkynyl group having 2 to 12 carbon
  • R 3 Is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 1 to 8 carbon atoms, and still more preferably a methyl group.
  • R 2 And R 3 Together with each other to form a polymethylene group having 2 to 6 carbon atoms. Examples of the polymethylene group having 2 to 6 carbon atoms include a trimethylene group and a tetramethylene group.
  • R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Examples of the aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by: 2 The same thing as the C1-C12 aliphatic hydrocarbon group in the C1-C12 aliphatic hydrocarbon group which may have a substituent represented by these is mentioned.
  • Examples of the alkoxy group having 1 to 12 carbon atoms represented by the same group as the alkoxy group having 1 to 12 carbon atoms in the group P2 include the same.
  • R 4 And R 4 ' Are preferably each independently an alkoxy group having 1 to 12 carbon atoms, more preferably a methoxy group.
  • R 5 And R 5 ' Are preferably each independently an aliphatic hydrocarbon group having 1 to 12 carbon atoms, more preferably each independently a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably both t-Butyl group.
  • R 6 And R 6 ' Are preferably both hydrogen atoms.
  • Examples of the monovalent anion represented by the formula: hydroxide ion; halide ion such as chloride ion, bromide ion, iodide ion; methanesulfonate ion, ethanesulfonate ion, propanesulfonate ion, Alkanesulfonic acid ions having 1 to 6 carbon atoms such as butanesulfonic acid ions, pentanesulfonic acid ions, hexanesulfonic acid ions; benzenesulfonic acid ions, and the 1-3 hydrogen atoms contained in the benzenesulfonic acid are respectively Independently, alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group and hexyl group, and halogens such as
  • Specific examples of the compound (5) include compounds represented by the following formulas (5-1) to (5-7) and enantiomers thereof.
  • Compound (5) is produced by the method described in Tetrahedron Letters, 44, 2003, pages 5629-5632 (6). (Wherein Ar 2 , Ar 2 ' R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Is as defined above, and X represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom.
  • Formula (7) produced by any known method from a compound represented by, for example, an amino acid (Wherein R 2 , R 3 , Ar 3 And * are as defined above. ) If necessary, it is produced by reacting in the presence of a base such as sodium bicarbonate and a solvent such as acetone.
  • a base such as sodium bicarbonate
  • the optical purity of the optically active quaternary ammonium salt is not limited, and in order to obtain a compound (3) having high optical purity, preferably 90% e.e. e. Or more, more preferably 95% e.e. e. Or more, more preferably 98% e.e. e. That's it.
  • the reaction between compound (1) and compound (2) is preferably performed in the presence of a base.
  • Examples of the base used include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide; alkali metal carbonate compounds such as potassium carbonate and sodium carbonate; and tertiary amines such as triethylamine and diisopropylethylamine. It is done.
  • the base is preferably an alkali metal hydroxide, more preferably potassium hydroxide.
  • the reaction between compound (1) and compound (2) is preferably performed in a solvent.
  • Examples of the solvent include aliphatic hydrocarbon solvents, aromatic solvents, ether solvents, alcohol solvents, nitrile solvents, ester solvents, chlorinated aliphatic hydrocarbon solvents, aprotic polar solvents, and water.
  • solvents may be used alone or in combination of two or more.
  • examples of the aliphatic hydrocarbon solvent include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane and petroleum ether.
  • aromatic solvent examples include benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, 1,2 -Dichlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene, and ether solvents include, for example, tetrahydrofuran, Tyltetrahydrofuran, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxy
  • ester solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, t-butyl acetate, amyl acetate and isoamyl acetate, and chlorinated aliphatic hydrocarbon solvents.
  • Examples include dichloromethane, chloroform and 1,2-dichloroethane.
  • Examples of aprotic polar solvents include dimethyl sulfoxide, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyl.
  • the solvent is preferably a mixture of water and a solvent other than water, more preferably a mixture of water and an aromatic solvent or an ether solvent, and water and toluene or t-butyl methyl ether. It is more preferable to use in combination.
  • the amount of the compound (2) used is preferably 0.8 to 20 mol, more preferably 0, relative to 1 mol of the compound (1). .9 to 5 mole ratio.
  • the amount of the optically active quaternary ammonium salt used is not limited, and preferably 0.00001 to 0.5 mol relative to 1 mol of the compound (1). The ratio is more preferably 0.001 to 0.1 mol.
  • the amount of the base used is preferably 2 to 30 mol, more preferably 4 to 15 mol, relative to 1 mol of the compound (1). It is.
  • the amount of the solvent used is not particularly limited, but is preferably 1 to 100 mL with respect to 1 g of the compound (1), and 3 to 30 mL. Is more preferable.
  • the reaction temperature is preferably in the range of ⁇ 30 to 70 ° C., more preferably in the range of ⁇ 10 to 40 ° C.
  • the reaction time depends on the amount of optically active quaternary ammonium salt used, the reaction temperature, etc., but is preferably in the range of 1 to 120 hours.
  • the degree of progress of the reaction can be confirmed by an analytical means such as gas chromatography or liquid chromatography.
  • the mixing method of the reaction reagent is not specified.
  • the compound (1) is mixed with a solvent as necessary, the compound (2) and an optically active quaternary ammonium salt are added thereto, and then the resulting mixture is reacted.
  • the method of adjusting to temperature and adding a base to the mixture adjusted to reaction temperature is mentioned.
  • the optical purity of the compound (3) obtained by the reaction between the compound (1) and the compound (2) is 40% e.g. when the compound (5) is used as an optically active quaternary ammonium salt. e. 95% e.e. e. Less than, for example, 55% e.e. e. 95% e.e. e.
  • the obtained compound (3) may be isolated or may be used in the next step without isolation.
  • the reaction mixture after completion of the reaction is subjected to post-treatment such as neutralization, extraction washing, water washing, and concentration, and if necessary, adsorption of activated carbon treatment, silica treatment, alumina treatment, etc. It is subjected to purification treatment such as treatment, recrystallization, distillation and silica gel column chromatography.
  • Compound (4-2) is obtained by imine hydrolysis of compound (3).
  • imine hydrolysis means a reaction for converting an arylmethylideneamino group of compound (3) into an amino group.
  • the imine hydrolysis is not particularly limited as long as the ester moiety contained in the compound (3) is not hydrolyzed, and is preferably performed by mixing the compound (3) and an acid.
  • the acid used for imine hydrolysis include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and perchloric acid; aromatic sulfonic acids such as paratoluenesulfonic acid and benzenesulfonic acid; and aliphatics such as methanesulfonic acid.
  • Sulfonic acids such as acetic acid, propionic acid, citric acid, malic acid, succinic acid, lactic acid, maleic acid and fumaric acid; and phthalic acid, benzoic acid, 4-nitrobenzoic acid and 4-chlorobenzoic acid And aromatic carboxylic acids such as An acid may be used independently and may be used in mixture of 2 or more types. Moreover, you may use as a mixture with the solvent mentioned later.
  • the acid is preferably an inorganic acid, more preferably hydrochloric acid. When hydrochloric acid is used, its concentration may be adjusted as appropriate.
  • the amount of acid used is preferably adjusted so that the mixture obtained after mixing with the acid is in the range of pH 0 to pH 4. In order to adjust the pH to such a range, when the acid is hydrochloric acid, for example, 0.8 to 1.5 mol of hydrochloric acid may be used with respect to 1 mol of compound (3).
  • the imine hydrolysis is preferably performed in a solvent. Examples of the solvent used for imine hydrolysis include the same solvents as those used for the reaction between the above-mentioned compound (1) and compound (2), and water, an aromatic solvent, or an ether solvent is preferable.
  • the amount of the solvent to be used is preferably 1 to 100 mL, more preferably 3 to 30 mL, per 1 g of compound (3).
  • the temperature at which imine hydrolysis is carried out is usually within the range of 0 to 80 ° C, preferably within the range of 5 to 60 ° C, and more preferably within the range of 10 to 40 ° C.
  • the time for performing imine hydrolysis depends on the type and concentration of the acid used and the temperature for performing imine hydrolysis, but is preferably in the range of 1 minute to 20 hours, more preferably in the range of 10 minutes to 10 hours. It is.
  • the method for mixing the materials in imine hydrolysis is not limited, and examples thereof include a method in which compound (3) and a solvent are mixed and an acid is added to the resulting mixture.
  • the optical purity of the compound (4-2) obtained by imine hydrolysis is about the same as the optical purity of the compound (3) subjected to imine hydrolysis.
  • the optical purity of compound (4-2) obtained is, for example, 40% e. e. 95% e.e. e. Less than, for example, 55% e.e. e. 95% e.e. e.
  • the resulting compound (4-2) may be isolated or used in the production method of the present invention without isolation.
  • after subjecting the reaction mixture obtained by imine hydrolysis to post-treatments such as neutralization, extraction washing, water washing, and concentration it can also be subjected to the production method of the present invention.
  • the obtained aqueous layers were combined to obtain 7.93 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer.
  • the obtained aqueous solution was analyzed under the following high performance liquid chromatography analysis conditions and optical purity analysis conditions, and the yield and optical purity of ethyl ester A were calculated. Yield 66%. Optical purity 79% e.e. e.
  • ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate is mixed with L-tartrate, toluene and water, and 25% by weight aqueous sodium hydroxide solution is added dropwise thereto. After stirring the resulting mixture, the organic layer is separated to obtain a toluene solution containing ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate.
  • (1R, 2S) -1-Amino-2-vinylcyclopropanecarboxylic acid is mixed with an obtained toluene solution of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate to obtain (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid.
  • the salt of ethyl acid is obtained.
  • the obtained mixture was cooled to 0 ° C., and 5.25 g of a 50 wt% aqueous potassium hydroxide solution (46.8 mmol of potassium hydroxide) was added dropwise thereto and stirred at 0 ° C. for 20 hours. After completion of the reaction, 3 mL of water was added to the resulting mixture, and the organic layer obtained by liquid separation was washed with 3 mL of 20 wt% brine, and (1R, 2S) -1- (N-phenylmethylene) amino- An organic layer containing more ethyl 2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
  • aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 67%.
  • Optical purity 84% e.e. e. ⁇ Example 2> To 8.25 g of an aqueous solution of ethyl ester A (optical purity 84% ee, 3.1 mmol) obtained in Production Example 3, 20 mL of toluene was added at room temperature, and 0.39 g of 48 wt% aqueous sodium hydroxide solution was added to the mixture. Was dripped. After dropping, the mixture was stirred for 10 minutes and separated to take out the organic layer.
  • D-10-camphorsulfonate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, toluene and water are mixed, and a 25 wt% aqueous sodium hydroxide solution is added dropwise thereto. After stirring the resulting mixture, the organic layer is separated to obtain a toluene solution containing ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate.
  • (1R, 2S) -1-Amino-2-vinylcyclopropanecarboxylic acid is mixed with an obtained toluene solution of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate to obtain (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid.
  • the salt of ethyl acid is obtained.
  • the obtained mixture was cooled to 0 ° C, and 42.0 g of a 50 wt% aqueous potassium hydroxide solution (748 mmol of potassium hydroxide) was added dropwise over 3 hours, followed by stirring at 0 ° C for 16 hours. After completion of the reaction, 60 g of water was added to the resulting mixture, stirring was stopped and the liquids were separated, and the obtained organic layer was washed with 60 g of 20 wt% brine. After liquid separation, an organic layer containing more ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
  • the obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 65%.
  • the obtained mixture was cooled to 0 ° C., and 151 g of a 50 wt% potassium hydroxide aqueous solution (potassium hydroxide 1346 mmol) was added dropwise over 3 hours, followed by stirring at 0 ° C. for 24 hours. After completion of the reaction, 108 g of water was added to the resulting mixture, stirring was stopped and the liquids were separated, and the obtained organic layer was washed with 108 g of 20 wt% brine. After liquid separation, an organic layer containing more ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
  • the obtained aqueous layers were combined to obtain 118.5 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer.
  • the obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 64%. Optical purity 76% e.e. e. .
  • Example 4 15.6 g of an aqueous solution of ethyl ester A (optical purity 76% ee) obtained in Production Example 5 (14.9 mmol) was fractionated, and 15 g of isopropyl acetate was added to the separated aqueous solution at room temperature, and an additional 48 wt. A 1.85 g% aqueous sodium hydroxide solution was added dropwise. After the dropwise addition, the resulting mixture was stirred for 20 minutes, and the organic layer was separated. Extraction was performed by adding 5.0 g of isopropyl acetate to the obtained aqueous layer.
  • the organic layer obtained by extraction was combined with the previously separated organic layer and dried over magnesium sulfate to obtain a diisopropyl ether solution of ethyl ester A.
  • ethyl ester A 5.66 mmol
  • the solution was ethanol 2.0 g, 2-propanol 2.0 g and L-tartaric acid 0.85 g (5.66 mmol).
  • the mixture was added dropwise to the mixture at room temperature, stirred at room temperature for 1 hour, further cooled in an ice bath and stirred for 2 hours.
  • the optical purity was 41% e.e. e. Met.
  • Example 6 By filtering the slurry, an optical purity of 90% e.e. e. The above crystals can be obtained.
  • Example 6 28.78 g of the aqueous solution of ethyl ester A obtained in Production Example 5 was collected, 26.2 g of toluene was added to the collected aqueous solution at room temperature, and the mixture was stirred. 24 g was added dropwise. After dropping, the mixture was stirred for 30 minutes, and stirring was stopped to separate the organic layer. Extraction was performed by flowing 8.8 g of toluene into the obtained aqueous layer.
  • the organic layer obtained by extraction was combined with the previously separated organic layer, washed with 8.8 g of 20% by weight saline, and dried over magnesium sulfate to obtain a toluene solution of ethyl ester A.
  • ethyl ester A 34.5 g was collected (ethyl ester A, 20.3 mmol), and added dropwise at 30 ° C. to a mixture of 10.5 g of ethanol and 3.50 g (23.3 mmol) of L-tartaric acid. .
  • the resulting mixture was stirred at room temperature for 15 hours.
  • the slurry thus obtained was filtered to take out crystals, and the obtained crystals were washed with a mixed solvent of 7.0 g of toluene and 2.1 g of ethanol and dried under reduced pressure to obtain 5.49 g of crystals.
  • the content of L-tartrate salt of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was determined.
  • the content of L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was 5.00 g (16.4 mmol) (yield 81%).
  • the optical purity was determined. Optical purity 94% e.e. e. Among the obtained crystals, 1.50 g (L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, content 1.37 g (4.48 mmol)) was fractionated, Ethanol (6.0 g) and methanol (6.0 g) were added to the collected crystals, stirred, and heated in a 40 ° C. bath to dissolve the crystals. The obtained solution was heated in a bath at 40 ° C.
  • optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is useful, for example, as a synthetic intermediate for pharmaceuticals such as antiviral agents.
  • the present invention is useful because it provides a method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.

Abstract

In this method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester, a 1-amino-2-vinylcyclopropane carboxylic acid ester and an optically active tartaric acid or an optically active camphorsulfonic acid are reacted in a solvent, one diastereomeric salt of the obtained diastereomeric salt mixture is isolated, and the isolated diastereomeric salt is treated with an inorganic acid or a base. Thereby, it is possible to obtain an optically active 1-amino-2-vinylcyclopropane carboxylic acid ester with high optical purity.

Description

光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造方法Process for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
 本発明は、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造方法に関する。 The present invention relates to a method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、例えば、抗ウイルス剤などの医薬品の合成中間体として有用であり、その製造方法に関し、例えば、1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのラセミ体をジ−p−トルオイル−D−酒石酸を用いて光学分割し、得られた光学純度が55%e.e.(以下、e.e.は鏡像体過剰率を表す。)の(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルをエステル交換反応によりメチルエステルに変換した後、酵素反応によりさらに光学分割することで、光学純度が97.2%e.e.の(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸メチルが得られることが知られている(Journal of Organic Chemistry,第70巻,5869−5879頁,2005年(Supporting  Information))。
 光学純度が高い光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを得るために、上記方法では、基質特異性が高い酵素を用いているので、光学純度が55%e.e.の(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルをメチルエステルに変換しなければならず、操作が煩雑になるという問題がある。
The optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is useful as, for example, a synthetic intermediate of a pharmaceutical product such as an antiviral agent. The racemate of ethyl acetate was optically resolved using di-p-toluoyl-D-tartaric acid, and the resulting optical purity was 55% e.e. e. (Hereinafter, ee represents the enantiomeric excess), the ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was converted to the methyl ester by transesterification, and then the enzyme reaction. Furthermore, by optically dividing, the optical purity is 97.2% e.e. e. Of (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate is known (Journal of Organic Chemistry, 70, 5869-5879, 2005 (Supporting Information)). .
In order to obtain an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester having a high optical purity, the above method uses an enzyme having a high substrate specificity, so that the optical purity is 55% e.e. e. The (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl must be converted to a methyl ester, which makes the operation complicated.
 本発明は、光学純度の高い光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを簡便に製造できる方法を提供する。
 即ち、本発明は、1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸とを溶媒中で反応させ、得られるジアステレオマー塩混合物の一方のジアステレオマー塩を単離し、単離したジアステレオマー塩を無機酸又は塩基で処理することにより、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを製造する方法を提供する。
The present invention provides a method by which an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester having a high optical purity can be easily produced.
That is, the present invention relates to reacting 1-amino-2-vinylcyclopropanecarboxylic acid ester with optically active tartaric acid or optically active camphorsulfonic acid in a solvent, and diastereomeric salt mixture obtained. A method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester by isolating a stereomeric salt and treating the isolated diastereomeric salt with an inorganic acid or base is provided.
 以下、本発明を詳細に説明する。本発明に係る光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造方法は、1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸(以下、光学活性有機酸と記すことがある。)とを溶媒中で反応させ、得られるジアステレオマー塩混合物の一方のジアステレオマー塩を単離する工程(第一工程)と、単離したジアステレオマー塩を無機酸又は塩基で処理する工程(第二工程)とを含む。
 本発明の製造方法に供される1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、通常、1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの(1R,2S)異性体と(1S,2R)異性体との混合物であり、いずれか一方の異性体を多く含む混合物を用いることが好ましい。その光学純度は、例えば、40%e.e.以上、95%e.e.未満であり、好ましくは、55%e.e.以上、95%e.e.未満であり、より好ましくは、70%e.e.以上、90%e.e.未満であり、さらに好ましくは、75%e.e.以上、85%e.e.未満である。
 第一工程で用いられる光学活性有機酸は、D−酒石酸若しくはL−酒石酸である光学活性な酒石酸、又は、D−10−カンファースルホン酸、L−10−カンファースルホン酸等の光学活性なカンファースルホン酸である。
 第一工程で用いられる光学活性有機酸の量は、1−アミノ−2−ビニルシクロプロパンカルボン酸エステル1モルに対して、通常1モル以上の割合であり、収率および経済性の観点から1モル~4モルの割合が好ましく、1モル~2モルの割合がより好ましい。
 1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との反応に用いられる溶媒としては、例えば、ペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、t−ブチルシクロヘキサン、石油エーテル等の脂肪族炭化水素溶媒;ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン、1,2,4−トリクロロベンゼン等の芳香族溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、アニソール、ジフェニルエーテル等のエーテル溶媒;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノt−ブチルエーテル等のアルコール溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル溶媒;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等の塩素化脂肪族炭化水素溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸t−ブチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル等のエステル溶媒;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン溶媒;ジメチルスルホキシド、スルホラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、N−メチルピロリドン、γ−ブチロラクトン、炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリジノン等の非プロトン性極性溶媒;水;及びこれらの混合物が挙げられる。
 溶媒は、好ましくは、芳香族溶媒、ケトン溶媒、エステル溶媒、アルコール溶媒、エーテル溶媒、又はこれらの混合物であり、より好ましくは、芳香族溶媒、ケトン溶媒、エステル溶媒、エーテル溶媒のうちのいずれか一種と、アルコール溶媒との混合溶媒であり、さらに好ましくはトルエンとアルコール溶媒との混合物であり、特に好ましくはトルエンとエタノールとの混合物又はトルエンと2−プロパノールとの混合物である。
 溶媒の使用量は、用いる溶媒にもよるが、1−アミノ−2−ビニルシクロプロパンカルボン酸エステル1gに対して、好ましくは1~50mLの割合、より好ましくは3~30mLの割合である。
 1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との反応は、例えば、溶媒と1−アミノ−2−ビニルシクロプロパンカルボン酸エステルとを混合し、得られる混合物に、光学活性有機酸を加えることにより行うこともできるし、溶媒と光学活性有機酸とを混合し、得られる混合物に1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを加えることにより行うこともできる。
 1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との反応における反応温度は特に限定されず、好ましくは0℃以上、溶媒の沸点以下であり、より好ましくは0℃以上、40℃以下である。
 溶媒中で生成するジアステレオマー塩の混合物より、優先的に析出する一方のジアステレオマー塩を単離することにより、一方のジアステレオマー塩を他方のジアステレオマー塩から分離することができる。析出するジアステレオマー塩の単離は、例えば濾過やデカンテーション等の固液分離処理を施すことにより行われる。得られるジアステレオマー塩は、1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との塩である。
 溶媒中のジアステレオマー塩の混合物から一方のジアステレオマー塩の析出が認められない場合、予め調製した一方のジアステレオマー塩を種晶として添加した後に、ジアステレオマー塩の混合物の溶液を冷却することにより、一方のジアステレオマー塩を優先的に析出させることができる。
 ジアステレオマー塩の析出が認められる場合は、溶液をそのまま冷却してもよいが、析出するジアステレオマー塩の光学純度を向上させるため、溶液を加熱して析出物を溶解させた後、冷却することにより、一方のジアステレオマー塩を優先的に析出させることが好ましく、かかるジアステレオマー塩の析出において、予め調製した一方のジアステレオマー塩を種晶として用いることもできる。種晶の光学純度は高い程よく、好ましくは90%e.e.以上であり、より好ましくは95%e.e.以上であり、さらに好ましくは98%e.e.以上であり、特に好ましくは99%e.e.以上である。
 ジアステレオマー塩の混合物の溶液を加熱する場合は、30℃以上、溶媒の沸点以下に加熱することが好ましい。冷却処理としては、0~25℃へ冷却することが好ましく、析出するジアステレオマー塩の光学純度を向上させるためには、徐々に冷却することが好ましい。
 一方のジアステレオマー塩を単離した後、得られたジアステレオマー塩の光学純度を向上させるため、ジアステレオマー塩に洗浄処理を施すことが好ましい。かかる洗浄処理には、例えば、1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との反応に用いた溶媒と同じ溶媒が用いられる。洗浄処理の後、乾燥処理を行うことが好ましい。乾燥処理は、常圧若しくは減圧条件下で、好ましくは20~80℃の範囲から選択される温度で行うことができる。
 上記の固液分離処理した結果の液体には、他方のジアステレオマー塩が含まれており、液相から常法により、他方のジアステレオマー塩を取得することもできる。
 ジアステレオマー塩を精製処理に付すことにより、光学純度をさらに向上させることもできる。
 精製処理としては、再結晶が好ましい。例えば、ジアステレオマー塩を溶媒に溶解し、冷却して精製されたジアステレオマー塩を析出させる方法、ジアステレオマー塩を溶媒に溶解させた後、貧溶媒を滴下して精製されたジアステレオマー塩を析出させる方法、ジアステレオマー塩を溶媒に溶解させた後、溶媒を留去して精製されたジアステレオマー塩を析出させる方法、又はこれらの組み合わせにより、精製処理を行うことができる。精製処理において、予め調製した一方のジアステレオマー塩を種晶として添加することもできる。
 精製処理において、ジアステレオマー塩を溶解させる溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノt−ブチルエーテル等のアルコール溶媒;水;及びこれらの混合物が挙げられ、好ましくはアルコール溶媒、水、及びこれらの混合物であり、より好ましくはメタノール、エタノール、及びこれらの混合物である。
 精製処理においてジアステレオマー塩を溶解させる溶媒の使用量は、用いる溶媒により適宜調節することができ、ジアステレオマー塩1gに対して、好ましくは1~10mLの割合である。ジアステレオマー塩を溶解させる温度は、好ましくは0~60℃であり、より好ましくは10~40℃である。
 精製処理における貧溶媒としては、例えば、ペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、t−ブチルシクロヘキサン、石油エーテル等の脂肪族炭化水素溶媒;ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン、1,2,4−トリクロロベンゼン等の芳香族溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサン等の環状のエーテル溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸t−ブチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル等のエステル溶媒;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン溶媒が挙げられ、好ましくは芳香族溶媒であり、より好ましくはトルエンである。貧溶媒の使用量は、精製ジアステレオマー塩の析出度合いにより適宜調節することができる。
 ジアステレオマー塩を溶媒に溶解し、冷却して精製されたジアステレオマー塩を析出させる場合は、0~25℃の範囲内から選択される温度に冷却することが好ましく、1時間あたりの冷却温度は3~10℃であることが好ましい。
 得られるジアステレオマー塩は、例えば、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エステル又は(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと光学活性有機酸との塩であり、その具体例は、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルとL−酒石酸との塩及び(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルとD−10−カンファースルホン酸との塩である。
 第二工程は、単離したジアステレオマー塩を無機酸又は塩基と混合することにより行うことができ、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを得ることができる。
 ジアステレオマー塩と混合する無機酸は、通常、光学活性有機酸よりも酸性度の高いものであり、具体的には、塩酸、リン酸、硫酸が挙げられる。好ましい無機酸は、塩酸及び硫酸である。これらの無機酸は、単独で用いることもできるし、後述する溶媒と混合して用いることもできる。
 無機酸の使用量は、ジアステレオマー塩1モルに対して、塩酸であれば通常1モル以上、硫酸であれば通常0.5モル以上である。
 ジアステレオマー塩と無機酸との混合は、好ましくは溶媒中で行われる。かかる溶媒としては、例えば、ペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、t−ブチルシクロヘキサン、石油エーテル等の脂肪族炭化水素溶媒;ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン、1,2,4−トリクロロベンゼン等の芳香族溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、アニソール、ジフェニルエーテル等のエーテル溶媒;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノt−ブチルエーテル等のアルコール溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル溶媒;酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸t−ブチル、酢酸アミル、酢酸イソアミル等のエステル溶媒;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン溶媒;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等の塩素化脂肪族炭化水素溶媒;蟻酸、酢酸、プロピオン酸等のカルボン酸溶媒;水;及びこれらの混合物が挙げられる。
 ジアステレオマー塩と無機酸との混合に用いる溶媒は、好ましくは芳香族溶媒と、ケトン溶媒又はアルコール溶媒との混合溶媒であり、より好ましくは芳香族溶媒とアルコール溶媒との混合溶媒である。溶媒の使用量は、ジアステレオマー塩1gに対し、好ましくは1~50mLの割合、より好ましくは3~30mLの割合である。
 ジアステレオマー塩と無機酸との混合は、例えば、ジアステレオマー塩と溶媒とを混合し、そこへ無機酸を添加することにより行うことができる。混合は、好ましくは0~40℃の範囲内で行われ、より好ましくは0~30℃の範囲内で行われる。混合時間は特に限定されず、好ましくは1分間~24時間の範囲内である。
 ジアステレオマー塩と無機酸との混合により得られた混合物中に、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルが酸付加塩として析出している場合は、該酸付加塩を、例えば濾過やデカンテーション等の固液分離処理に付すことにより、該酸付加塩を得ることができる。酸付加塩の析出が不十分である場合や、酸付加塩が析出していない場合は、得られた混合物を、例えば、濃縮処理、該塩を溶解し難い溶媒との混合処理、あるいは、冷却処理に付すことにより、酸付加塩を析出させ、析出した酸付加塩を、例えば濾過やデカンテーション等の固液分離処理に付すことにより、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを酸付加塩として得ることができる。得られた酸付加塩は、例えば再結晶等により精製することもできるし、後述するジアステレオマー塩の塩基処理と同様にして、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを遊離塩基として取得することもできる。
 酸付加塩の具体例としては、塩酸、リン酸及び硫酸の付加塩が挙げられる。
 上述した固液分離処理により得られる濾液には、光学活性有機酸が含まれており、該濾液から常法により光学活性有機酸を取り出し、本発明に再使用することができる。
 ジアステレオマー塩と混合する塩基としては、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムエチラート等のアルカリ金属アルコラートが挙げられる。好ましい塩基は、アルカリ金属水酸化物、特に水酸化ナトリウムである。塩基は、単独で用いることもできるし、後述する溶媒と混合して用いることもできる。
 塩基の使用量は、ジアステレオマー塩1モルに対して、好ましくは1モル以上の割合である。
 ジアステレオマー塩と塩基との混合は、溶媒中で行われることが好ましい。かかる溶媒としては、例えば、メタノール、エタノール、2−プロパノール、1−プロパノール、1−ブタノール等のアルコール溶媒;ジエチルエーテル、t−ブチルメチルエーテル、メチイソブチルエーテル、ジイソプロピルエーテル、メチルシクロペンチルエーテル、1,2−ジメトキシメタン等のエーテル溶媒;トルエン、キシレン、クロロベンゼン等の芳香族溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;酢酸エチル、酢酸t−ブチル等のエステル溶媒;ジクロロメタン等のハロゲン化脂肪族炭化水素溶媒;水;及びこれらの混合物が挙げられる。溶媒は、好ましくは芳香族溶媒、アルコール溶媒若しくは水、又はこれらの混合物であり、より好ましくはトルエン若しくは水、又はこれらの混合物である。塩基としてアルカリ金属水酸化物やアルカリ金属炭酸塩等の塩基を用いる場合は、水単独か又は水との相溶性が低い有機溶媒(例えば、上記のエーテル溶媒、芳香族溶媒、脂肪族炭化水素溶媒、ケトン溶媒、エステル溶媒、ハロゲン化脂肪族炭化水素溶媒)と水とを混合して用いることがより好ましい。
 ジアステレオマー塩と塩基との混合に用いる溶媒の使用量は、ジアステレオマー塩1gに対し、好ましくは1~50mLの割合、より好ましくは3~30mLの割合である。
 ジアステレオマー塩と塩基との混合は、例えば、ジアステレオマー塩と溶媒とを混合し、そこへ塩基を添加することにより行うことができる。混合は、好ましくは0~60℃の範囲内で行われ、より好ましくは10~30℃の範囲内で行われる。混合時間は特に限定されず、好ましくは1分間~24時間の範囲内である。
 ジアステレオマー塩と塩基との混合は、例えば下記の方法により行うことができる。
 水とジアステレオマー塩との混合物に塩基を加えて、混合物の水層を塩基性(好ましくはpH8.5以上)とし、得られた混合物に、水との相溶性が低い有機溶媒を加え、分液処理に付すことにより、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを含む有機層を得ることができる。かかる有機層を、必要に応じて水洗した後、濃縮すれば、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを遊離塩基として得ることができる。塩基としてアルカリ金属アルコラートを用い、溶媒としてアルコール溶媒を用いた場合は、光学活性有機酸のアルカリ金属塩を析出させることができ、この析出物を濾去して、得られた濾液を濃縮することにより、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルを遊離塩基として単離することができる。得られた光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、例えばカラムクロマトグラフィー等により、精製することもできる。
 上記分液処理により得られる水層には、光学活性有機酸が含まれており、水層から常法により光学活性有機酸を回収し、本発明に再使用することができる。また、上記で濾別された光学活性有機酸のアルカリ金属塩から、常法により光学活性有機酸を回収し、本発明に再使用することもできる。
 ジアステレオマー塩を塩基と混合することにより得られる光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、さらに酸と混合することにより、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの酸付加塩として取得することもできる。
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと混合する酸は、例えば、塩酸、硫酸、リン酸、硝酸及び過塩素酸等の無機酸;パラトルエンスルホン酸及びベンゼンスルホン酸等の芳香族スルホン酸;メタンスルホン酸等の脂肪族スルホン酸;酢酸、プロピオン酸、クエン酸、リンゴ酸、コハク酸、乳酸、マレイン酸及びフマル酸等の脂肪族カルボン酸;並びに、フタル酸、安息香酸、4−ニトロ安息香酸及び4−クロロ安息香酸等の芳香族カルボン酸が挙げられる。
 酸は、単独で用いてもよいし、後述する溶媒と混合して用いてもよい。酸は、好ましくは無機酸であり、より好ましくは硫酸である。
 酸の使用量は、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステル1モルに対して、例えば塩酸であれば1モル以上、硫酸であれば0.5モル以上が好ましい。
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと酸との混合は、好ましくは溶媒中で行われる。かかる溶媒としては、例えば、ペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、t−ブチルシクロヘキサン、石油エーテル等の脂肪族炭化水素溶媒;ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン、1,2,4−トリクロロベンゼン等の芳香族溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、アニソール、ジフェニルエーテル等のエーテル溶媒;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノt−ブチルエーテル等のアルコール溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル溶媒;酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸t−ブチル、酢酸アミル、酢酸イソアミル等のエステル溶媒;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン溶媒;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等の塩素化脂肪族炭化水素溶媒;水;及びこれらの混合物が挙げられる。
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと酸との混合に用いる溶媒は、好ましくは芳香族溶媒と、ケトン溶媒又はアルコール溶媒との混合物であり、より好ましくは芳香族溶媒とアルコール溶媒との混合物である。溶媒の使用量は、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステル1gに対し、好ましくは1~50mLの割合、より好ましくは3~30mLの割合である。
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと酸との混合は、例えば、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと溶媒とを混合し、そこへ酸を添加することにより行うことができる。混合は、好ましくは0~40℃の範囲内で行われ、より好ましくは0~30℃の範囲内で行われる。混合時間は特に限定されず、好ましくは1分間~24時間の範囲内である。
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと酸との混合により得られた混合物中に、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの酸付加塩が析出している場合は、該酸付加塩を、例えば濾過やデカンテーション等の固液分離処理に付すことにより、酸付加塩を得ることができる。酸付加塩の析出が不十分である場合や、酸付加塩が析出していない場合は、得られた混合物を、例えば、濃縮処理、該塩を溶解し難い溶媒との混合処理、あるいは、冷却処理に付すことにより、酸付加塩を析出させ、析出した酸付加塩を、例えば濾過やデカンテーション等の固液分離処理に付すことにより、酸付加塩を取り出すことができる。取り出した酸付加塩は、例えば再結晶等により精製することもできる。
 酸付加塩の具体例としては、塩酸、リン酸及び硫酸の付加塩が挙げられる。
 得られる光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの光学純度は、例えば85%e.e.以上であり、例えば90%e.e.以上であり、また例えば98%e.e.以上である。
 得られる光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの具体例は、(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸メチル、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸メチル及びそれらの鏡像異性体である。
 本発明の製造方法に供される1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、公知の方法に従って製造することができ、例えば、Journal of Organic Chemistry,第70巻,5869−5879頁,2005年記載の方法により、塩基の存在下、N−フェニルメチレングリシン エチルエステルと1,4−ジブロモ−2−ブテンとを反応させて得られる1−(N−フェニルメチレンアミノ)−2−ビニルシクロプロパンカルボン酸エチルを、酸処理等に付し、得られる1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのラセミ体をジ−p−トルオイル−D−酒石酸により光学分割するなどして製造することができる。1−アミノ−2−ビニルシクロプロパンカルボン酸エステルが光学活性有機酸以外の酸と塩を形成している場合には、光学活性有機酸と反応させる前に、該塩を塩基処理することが好ましい。
 本発明の製造方法に供される1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは式(4−2)
Figure JPOXMLDOC01-appb-I000009
(式中、Rは、炭素数1~12のアルキル基又は炭素数2~12のアルケニル基を表す。)
で示される化合物(化合物(4−2))であることが好ましく、化合物(4−2)は、式(1)
Figure JPOXMLDOC01-appb-I000010
(式中、Rは、上記と同義であり、Arは、置換されていてもよいフェニル基又は置換されていてもよいナフチル基を表す。)
で示される化合物(化合物(1))と、式(2)
Figure JPOXMLDOC01-appb-I000011
(式中、Y及びYはそれぞれ独立に、ハロゲン原子、炭素数1~6のアルカンスルホニルオキシ基、炭素数1~6のペルフルオロアルカンスルホニルオキシ基又は置換されていてもよいベンゼンスルホニルオキシ基を表す。ここで、該ベンゼンスルホニルオキシ基の置換基は、炭素数1~6のアルキル基、ハロゲン原子及びニトロ基からなる群から選ばれる一以上の置換基である。)
で示される化合物(化合物(2))とを、光学活性な4級アンモニウム塩の存在下で反応させ、得られる式(3)
Figure JPOXMLDOC01-appb-I000012
(式中、Ar及びRは、上記と同義である。)
で示される化合物(化合物(3))をイミン加水分解して製造されたものであることが好ましい。
 この場合、得られる光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは式(4)
Figure JPOXMLDOC01-appb-I000013
(式中、Rは、上記と同義であり、C*1及びC*2は不斉炭素原子を表し、C*1がR配置である場合はC*2はS配置であり、C*1がS配置である場合はC*2はR配置である。)
で示される化合物となる。
 Rで表される炭素数1~12のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、並びにシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基等の炭素数3~12の環状のアルキル基が挙げられ、Rで表される炭素数2~12のアルケニル基としては、例えば、エテニル基、2−プロペニル基、2−ブテニル基及び3−メチル−2−ブテニル基等の直鎖状若しくは分岐鎖状のアルケニル基、並びに1−シクロヘキセニル基等の環状のアルケニル基が挙げられる。
 Rは、好ましくは炭素数1~12のアルキル基であり、より好ましくはメチル基、エチル基又はt−ブチル基であり、さらに好ましくはメチル基又はエチル基である。
 式(1)及び式(3)において、Arで表されるフェニル基又はナフチル基は置換されていてもよいが、置換基として、例えば、下記群P1から選ばれる少なくとも一種の基が挙げられる。
<群P1>
 炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びトリフルオロメチル基。
 群P1において、炭素数1~12のアルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、並びにシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基等の炭素数3~12の環状のアルキル基が挙げられ;炭素数1~12のアルコキシ基としては例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基及びオクチルオキシ基等の炭素数1~12の直鎖状若しくは分岐鎖状のアルコキシ基、並びにシクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基及びシクロオクチルオキシ基等の炭素数3~12の環状のアルキルオキシ基が挙げられ;ハロゲン原子としては例えば、フッ素原子、塩素原子及び臭素原子が挙げられる。
 Arで表される置換されていてもよいフェニル基及びArで表される置換されていてもよいナフチル基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、2−メチルフェニル基、2−メトキシフェニル基、2−フルオロフェニル基、2−クロロフェニル基、2−ブロモフェニル基、2−ニトロフェニル基、2−シアノフェニル基、2−(トリフルオロメチル)フェニル基、3−メチルフェニル基、3−メトキシフェニル基、3−フルオロフェニル基、3−クロロフェニル基、3−ブロモフェニル基、3−ニトロフェニル基、3−シアノフェニル基、3−(トリフルオロメチル)フェニル基、4−メチルフェニル基、4−メトキシフェニル基、4−フルオロフェニル基、4−クロロフェニル基、4−ブロモフェニル基、4−ニトロフェニル基、4−シアノフェニル基、4−(トリフルオロメチル)フェニル基、2,3−ジクロロフェニル基、2,4−ジクロロフェニル基、3,4−ジクロロフェニル基及び3,4,5−トリクロロフェニル基が挙げられる。
 Arは、好ましくは、置換されていてもよいフェニル基であり、より好ましくは、ハロゲン置換されていてもよいフェニル基であり、さらに好ましくはフェニル基又は4−クロロフェニル基である。
 式(2)のY及びYにおいて、ハロゲン原子としては例えば、塩素原子、臭素原子及びヨウ素原子が挙げられ、炭素数1~6のアルカンスルホニルオキシ基としては例えば、メタンスルホニルオキシ基、エタンスルホニルオキシ基、プロパンスルホニルオキシ基、ブタンスルホニルオキシ基、ペンタンスルホニルオキシ基及びヘキサンスルホニルオキシ基が挙げられ、炭素数1~6のペルフルオロアルカンスルホニルオキシ基としては例えば、トリフルオロメタンスルホニルオキシ基、ペンタフルオロエタンスルホニルオキシ基、ペルフルオロプロパンスルホニルオキシ基及びペルフルオロヘキサンスルホニルオキシ基が挙げられる。
 式(2)のY及びYにおいて、ベンゼンスルホニルオキシ基中の水素原子はそれぞれ独立に、例えば、炭素数1~6のアルキル基、ハロゲン原子及びニトロ基からなる群から選ばれる基で置換されていてもよい。炭素数1~6のアルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基及びt−ブチルが挙げられ、ハロゲン原子としては例えば、フッ素原子、塩素原子及び臭素原子が挙げられる。置換されていてもよいベンゼンスルホニルオキシ基としては例えば、4−メチルベンゼンスルホニルオキシ基、2−ニトロベンゼンスルホニルオキシ基、3−ニトロベンゼンスルホニルオキシ基、4−ニトロベンゼンスルホニルオキシ基、2,4−ジニトロベンゼンスルホニルオキシ基、4−フルオロベンゼンスルホニルオキシ基及びペンタフルオロベンゼンスルホニルオキシ基が挙げられる。
 Y及びYは、好ましくは、それぞれ独立に塩素原子、臭素原子又はメタンスルホニルオキシ基であり、より好ましくは、共に臭素原子である。
 化合物(1)の具体例は、N−フェニルメチレングリシン エチルエステル、N−ナフタレン−1−イルメチレングリシン エチルエステル、N−ナフタレン−2−イルメチレングリシン エチルエステル、N−フラン−2−イルメチレングリシン エチルエステル、N−(4−メチルフェニル)メチレングリシン エチルエステル、N−(4−メトキシフェニル)メチレングリシン エチルエステル、N−(4−フルオロフェニル)メチレングリシン エチルエステル、N−(4−クロロフェニル)メチレングリシン エチルエステル、N−[4−(トリフルオロメチル)フェニル]メチレングリシン エチルエステル、N−(3−クロロフェニル)メチレングリシン エチルエステル、N−(4−クロロフェニル)メチレングリシン エチルエステル、N−フェニルメチレングリシン t−ブチルエステル、N−(4−クロロフェニル)メチレングリシン t−ブチルエステル、N−フェニルメチレングリシン メチルエステル及びN−(4−クロロフェニル)メチレングリシン メチルエステルである。
 化合物(1)は、好ましくは、N−フェニルメチレングリシン エチルエステル、N−ナフタレン−1−イルメチレングリシン エチルエステル又はN−(4−クロロフェニル)メチレングリシン エチルエステルである。
 化合物(1)は、任意の公知の方法に従って製造することができ、また、市販品を用いることもできる。
 化合物(2)の具体例は、(E)−1,4−ジブロモ−2−ブテン、(E)−1,4−ジクロロ−2−ブテン、(E)−1,4−ジメタンスルホニルオキシ−2−ブテン及び(E)−1−ブロモ−4−クロロ−2−ブテンである。化合物(2)は、好ましくは(E)−1,4−ジブロモ−2−ブテン又は(E)−1,4−ジクロロ−2−ブテンであり、より好ましくは(E)−1,4−ジブロモ−2−ブテンである。
 化合物(2)は、任意の公知の方法に従って製造することができ、また、市販品を用いることもできる。
 化合物(3)の具体例は、(1S,2R)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1S,2R)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1S,2R)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1S,2R)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1S,2R)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸メチル、(1S,2R)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸メチル、(1S,2R)−1−(N−ナフタレン−1−イルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1R,2S)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸エチル、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1R,2S)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸t−ブチル、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸メチル、(1R,2S)−1−[N−(4−クロロフェニル)メチレン]アミノ−2−ビニルシクロプロパンカルボン酸メチル、(1R,2S)−1−(N−ナフタレン−1−イルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチル、及びそれらの鏡像異性体との光学活性な混合物が挙げられる。
 化合物(1)と化合物(2)との反応に用いられる光学活性な4級アンモニウム塩としては、例えば、シンコナアルカロイド誘導体(例えば、Tetrahedron Letters,第40巻,8671~8674頁,1999年参照。)、酒石酸誘導体(例えば、Tetrahedron,第60巻,7743~7754頁,2004年参照。)、軸不斉スピロ型4級アンモニウム塩(例えば、Joural of American Chemical Society,第122巻,5228~5229頁,2000年参照。)等が挙げられ、好ましい4級アンモニウム塩としては、式(5)
Figure JPOXMLDOC01-appb-I000014
(式中、Ar及びAr2’はそれぞれ独立に、置換されていてもよいフェニル基を表す。Arは、置換されていてもよい炭素数6~20の芳香族炭化水素基又は置換されていてもよい炭素数1~20の脂肪族炭化水素基を表す。Rは、置換されていてもよい炭素数1~12の脂肪族炭化水素基を表し、Rは、炭素数1~12の直鎖状の炭化水素基を表すか、RとRとが一緒になって、炭素数2~6のポリメチレン基を形成する。R、R4’、R、R5’、R及びR6’はそれぞれ独立に、水素原子、炭素数1~12の脂肪族炭化水素基又は炭素数1~12のアルコキシ基を表す。*は、不斉炭素原子を表す。Xは、1価の陰イオンを表す。)
で示される化合物(化合物(5))が挙げられる。
 式(5)におけるAr及びAr2’で表されるフェニル基は置換されていてもよいが、置換基としては、例えば、上述した群P1から選ばれる基と同じものが挙げられる。
 Ar及びAr2’で表される置換されていてもよいフェニル基としては、例えば、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、3,5−ジメチルフェニル基、3,4,5−トリメチルフェニル基、2−t−ブチルフェニル基、3−t−ブチルフェニル基、4−t−ブチルフェニル基、2−t−ブチルオキシフェニル基、3−t−ブチルオキシフェニル基、4−t−ブチルオキシフェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、3,5−ジフルオロフェニル基、3,4,5−トリフルオロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、3,5−ジクロロフェニル基、3,4,5−トリクロロフェニル基、2−(トリフルオロメチル)フェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基及び3,5−ジフルオロ−4−(トリフルオロメチル)フェニル基が挙げられる。
 Ar及びAr2’は、好ましくはそれぞれ独立に3−フルオロフェニル基、4−フルオロフェニル基、3,5−ジフルオロフェニル基、3,4,5−トリフルオロフェニル基又は3,5−ビス(トリフルオロメチル)フェニル基であり、より好ましくはそれぞれ独立に3,4,5−トリフルオロフェニル基又は3,5−ビス(トリフルオロメチル)フェニル基であり、さらに好ましくは共に3,5−ビス(トリフルオロメチル)フェニル基である。
 Arで表される置換されていてもよい炭素数6~20の芳香族炭化水素基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、ベンジル基、2−トリル基、1,5−ジフェニル−3−ペンチル基、ビス(4−トリル)メチル基、1,3−ジフェニル−2−プロピル基及びビス(3,4−ジメチルフェニル)メチル基が挙げられる。Arで表される置換されていてもよい炭素数1~20の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の炭素数1~20の直鎖状のアルキル基、1−メチルエチル基、1−メチルプロピル基、1−エチルプロピル基、1−プロピルブチル基、1−ブチルペンチル基、1−ペンチルヘキシル基、1−ヘキシルヘプチル基、1−ヘプチルオクチル基、1−オクチルノニル基及び1−ノニルウンデシル基等の炭素数3~20の分岐状のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基等の炭素数3~20の環状のアルキル基、エテニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1−ヘプテニル基、1−オクテニル基及び1−ウンデセニル基等の炭素数2~20の直鎖状のアルケニル基、並びに、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、1−ペンチニル基、1−ヘキシニル基、1−ヘプチニル基、1−オクチニル及び1−ウンデシニル基等の炭素数2~20の直鎖状のアルキニル基が挙げられる。
 Arで表される置換されていてもよい炭素数6~20の芳香族炭化水素基における置換基、及びArで表される置換されていてもよい炭素数1~20の脂肪族炭化水素基における置換基としては、好ましくは下記群P2から選ばれる少なくとも一種の基が挙げられる。
<群P2>
 炭素数1~12のアルコキシ基、炭素数3~12のアルケニルオキシ基、炭素数3~12のアルキニルオキシ基及び炭素数6~12の芳香族基。
 群P2において、炭素数1~12のアルコキシ基としては例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基及びドデシルオキシ基等の直鎖状若しくは分岐鎖状のアルコキシ基、並びにシクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基及びシクロオクチルオキシ基等の環状のアルコキシ基が挙げられ、炭素数3~12のアルケニルオキシ基としては例えば、2−プロペニルオキシ基、2−ブテニルオキシ基、2−メチル−2−ブテニルオキシ基及び3−メチル−2−ブテニルオキシ基が挙げられ、炭素数3~12のアルキニルオキシ基としては例えば、2−プロピニルオキシ基及び2−ブチニルオキシ基が挙げられ、炭素数6~12の芳香族基としては例えば、フェニル基、ナフチル基、ベンゾフラニル基、ベンゾチオフェニル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノリニル基及びイソキノリニル基等が挙げられる。ここで、該芳香族基の芳香環上の1~3個の水素原子はそれぞれ独立に、例えば、下記群P3から選ばれる置換基で置換されていてもよい。
<群P3>
 炭素数1~12の飽和炭化水素基、炭素数6~10の芳香族基、ハロゲン原子、ニトロ基、トリフルオロメチル基、保護されたアミノ基及び保護された水酸基。
 群P3において、炭素数1~12の飽和炭化水素基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基が挙げられ、炭素数6~10の芳香族基としては例えば、フェニル基、1−ナフチル基、2−ナフチル基、2−ベンゾフラニル基、3−ベンゾフラニル基、2−ベンゾチオフェニル基、2−ベンゾピラゾリル基、3−ベンゾイソオキサゾリル基、3−ベンゾイソチアゾリル基、2−ベンゾイミダゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−キノリニル基及び1−イソキノリニル基が挙げられ、ハロゲン原子としては例えば、フッ素原子、塩素原子及び臭素原子が挙げられ、保護されたアミノ基としては例えば、ベンジルアミノ基、2−メトキシベンジルアミノ基、2,4−ジメトキシベンジルアミノ基、アセチルアミノ基、ベンジルオキシカルボニルアミノ基、t−ブトキシカルボニルアミノ基及びアリルオキシカルボニルアミノ基が挙げられ、保護された水酸基としては例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等の炭素数1~12の直鎖状若しくは分岐鎖状のアルコキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基等の炭素数3~12の環状のアルキルオキシ基、メトキシメトキシ基、ベンジルオキシ基並びにアセチルオキシ基が挙げられる。
 Arは、好ましくは、1−ナフチル基、フェニル基、シクロヘキシル基、t−ブチル基、1−メトキシ−1,1−ジp−トリルメチル基、1−メトキシ−1−エチルプロピル基、1−メトキシ−1−ブチルペンチル基、1−メトキシ−1−ヘキシルヘプチル基、1−メトキシ−1−オクチルノニル基、3−フェニル−1−メトキシ−1−(2−フェニルエチル)プロピル基、より好ましくは、1−メトキシ−1,1−ジp−トリルメチル基、1−メトキシ−1−エチルプロピル基、1−メトキシ−1−ブチルペンチル基、1−メトキシ−1−ヘキシルヘプチル基、1−メトキシ−1−オクチルノニル基、3−フェニル−1−メトキシ−1−(2−フェニルエチル)プロピル基である。
 Rで表される置換されていてもよい炭素数1~12の脂肪族炭化水素基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、並びにシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基等の炭素数3~12の環状のアルキル基、2−プロペニル基、2−ブテニル基、2−メチル−2−ブテニル基及び3−メチル−2−ブテニル基等の炭素数3~12のアルケニル基、2−プロピニル基及び2−ブチニル基等の炭素数3~12のアルキニル基が挙げられる。
 炭素数1~12の脂肪族炭化水素基の置換基の位置及び数は特に限定されない。置換基の数は、好ましくは1~3個であり、複数の置換基を有する場合には、同一の置換基であってもよく、異なる二種以上の置換基であってもよい。かかる置換基としては、好ましくは上述した群P2から選ばれる置換基と同じものが挙げられる。
 Rは、好ましくは炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基であり、より好ましくは炭素数1~8の直鎖状のアルキル基であり、さらに好ましくはメチル基である。
 Rで表される炭素数1~12の直鎖状の脂肪族炭化水素基としては例えば、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の炭素数1~12の直鎖状のアルキル基、エテニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1−ヘプテニル基、1−オクテニル基及び1−ウンデセニル基等の炭素数2~12の直鎖状のアルケニル基、並びに、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、1−ペンチニル基、1−ヘキシニル基、1−ヘプチニル基、1−オクチニル及び1−ウンデシニル基等の炭素数2~12の直鎖状のアルキニル基が挙げられる。
 Rは、好ましくは炭素数1~12の直鎖状のアルキル基であり、より好ましくは炭素数1~8の直鎖状のアルキル基であり、さらに好ましくはメチル基である。
 RとRとが一緒になって、炭素数2~6のポリメチレン基を形成していてもよく、かかる炭素数2~6のポリメチレン基としては例えば、トリメチレン基及びテトラメチレン基が挙げられる。
 R、R4’、R、R5’、R及びR6’で表される炭素数1~12の脂肪族炭化水素基としては例えば、上述したRで表される置換基を有していてもよい炭素数1~12の脂肪族炭化水素基における炭素数1~12の脂肪族炭化水素基と同じものが挙げられる。
 R、R4’、R、R5’、R及びR6’で表される炭素数1~12のアルコキシ基としては例えば、群P2における炭素数1~12のアルコキシ基と同じものが挙げられる。
 R及びR4’は、好ましくはそれぞれ独立に炭素数1~12のアルコキシ基であり、より好ましくは共にメトキシ基である。
 R及びR5’は、好ましくはそれぞれ独立に炭素数1~12の脂肪族炭化水素基であり、より好ましくはそれぞれ独立に炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基であり、さらに好ましくは共にt−ブチル基である。
 R及びR6’は、好ましくは共に水素原子である。
 Xで表される1価の陰イオンとしては、例えば、水酸化物イオン;塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオン;メタンスルホン酸イオン、エタンスルホン酸イオン、プロパンスルホン酸イオン、ブタンスルホン酸イオン、ペンタンスルホン酸イオン、ヘキサンスルホン酸イオン等の炭素数1~6のアルカンスルホン酸イオン;ベンゼンスルホン酸イオンが挙げられ、該ベンゼンスルホン酸に含まれる1~3の水素原子はそれぞれ独立に、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基、フッ素原子、塩素原子等のハロゲン原子又はニトロ基で置換されていてもよい。
 Xは、好ましくはハロゲン化物イオンであり、より好ましくは臭化物イオンである。
 化合物(5)の具体例としては、下式(5−1)~(5−7)で示される化合物及びそれらの鏡像異性体が挙げられる。
Figure JPOXMLDOC01-appb-I000015
 化合物(5)は、Tetrahedron Letters,第44巻,2003年,第5629−5632頁に記載の方法により製造される式(6)
Figure JPOXMLDOC01-appb-I000016
(式中、Ar、Ar2’、R4’、R、R5’、R及びR6’は、上記と同義であり、Xは、塩素原子、臭素原子又はヨウ素原子等のハロゲン原子を表す。)
で示される化合物と、例えばアミノ酸から任意の公知の方法のより製造される式(7)
Figure JPOXMLDOC01-appb-I000017
(式中、R、R、Ar及び*は、上記と同義である。)
で示される化合物とを、必要に応じて、炭酸水素ナトリウム等の塩基及びアセトン等の溶媒の存在下で反応させることにより製造される。
 光学活性な4級アンモニウム塩の光学純度は限定されず、高い光学純度を有する化合物(3)を得るためには、好ましくは90%e.e.以上であり、より好ましくは95%e.e.以上であり、さらに好ましくは98%e.e.以上である。
 化合物(1)と化合物(2)との反応は、好ましくは、塩基の存在下で行われる。用いられる塩基としては例えば、水酸化ナトリウム、水酸化カリウム及び水酸化セシウム等のアルカリ金属水酸化物;炭酸カリウム及び炭酸ナトリウム等のアルカリ金属炭酸化合物;並びにトリエチルアミン及びジイソプロピルエチルアミン等の第3アミンが挙げられる。塩基は、好ましくはアルカリ金属水酸化物であり、より好ましくは水酸化カリウムである。
 化合物(1)と化合物(2)との反応は、好ましくは溶媒中で行われる。溶媒としては例えば、脂肪族炭化水素溶媒、芳香族溶媒、エーテル溶媒、アルコール溶媒、ニトリル溶媒、エステル溶媒、塩素化脂肪族炭化水素溶媒、非プロトン性極性溶媒及び水が挙げられる。これら溶媒は単独で用いてもよいし、二種以上を混合して用いてもよい。
 脂肪族炭化水素溶媒としては例えば、ペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、ウンデカン、ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、t−ブチルシクロヘキサン及び石油エーテルが挙げられ、芳香族溶媒としては例えば、ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン及び1,2,4−トリクロロベンゼンが挙げられ、エーテル溶媒としては例えば、テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、アニソール及びジフェニルエーテルが挙げられ、アルコール溶媒としては例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル及びジエチレングリコールモノt−ブチルエーテルが挙げられ、ニトリル溶媒としては例えば、アセトニトリル、プロピオニトリル及びベンゾニトリルが挙げられ、エステル溶媒としては例えば、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸t−ブチル、酢酸アミル及び酢酸イソアミルが挙げられ、塩素化脂肪族炭化水素溶媒としては例えば、ジクロロメタン、クロロホルム及び1,2−ジクロロエタンが挙げられ、非プロトン性極性溶媒としては例えば、ジメチルスルホキシド、スルホラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、N−メチルピロリドン、γ−ブチロラクトン、炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、1,3−ジメチル−2−イミダゾリジノン及び1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリジノンが挙げられる。溶媒は、水と、水以外の溶媒とを混合して用いることが好ましく、水と、芳香族溶媒又はエーテル溶媒とを混合して用いることがより好ましく、水と、トルエン又はt−ブチルメチルエーテルとを混合して用いることがさらに好ましい。
 化合物(1)と化合物(2)との反応において、化合物(2)の使用量は、化合物(1)1モルに対して、好ましくは0.8~20モルの割合であり、より好ましくは0.9~5モルの割合である。
 化合物(1)と化合物(2)との反応において、光学活性な4級アンモニウム塩の使用量は限定されず、化合物(1)1モルに対して、好ましくは0.00001~0.5モルの割合であり、より好ましくは0.001~0.1モルの割合である。
 化合物(1)と化合物(2)との反応において、塩基の使用量は、化合物(1)1モルに対して、好ましくは2~30モルの割合であり、より好ましくは4~15モルの割合である。
 化合物(1)と化合物(2)との反応が溶媒中で行われる場合、溶媒の使用量は特に限定されないが、化合物(1)1gに対して、1~100mLの割合が好ましく、3~30mLの割合がより好ましい。
 反応温度は、好ましくは−30~70℃の範囲内であり、より好ましくは−10~40℃の範囲内である。反応時間は、光学活性な4級アンモニウム塩の使用量や反応温度等に依存するが、好ましくは1~120時間の範囲内である。
 反応の進行度合いは、例えば、ガスクロマトグラフィーや液体クロマトグラフィー等の分析手段により確認することができる。
 反応試剤の混合方法は規定されず、例えば、化合物(1)を必要に応じて溶媒と混合し、そこへ化合物(2)及び光学活性な4級アンモニウム塩を添加した後、得られる混合物を反応温度に調整し、反応温度に調整した混合物に塩基を添加する方法が挙げられる。
 化合物(1)と化合物(2)との反応により得られる化合物(3)の光学純度は、光学活性な4級アンモニウム塩として化合物(5)を用いた場合、例えば40%e.e.以上、95%e.e.未満であり、例えば55%e.e.以上、95%e.e.未満であり、例えば70%e.e.以上、90%e.e.未満であり、また例えば75%e.e.以上、85%e.e.未満である。
 得られた化合物(3)は、単離してもよいし、単離することなく次の工程に使用してもよい。単離する場合には、反応終了後の反応混合物を、例えば、中和、抽出洗浄、水洗、濃縮等の後処理に付し、必要に応じて、活性炭処理、シリカ処理、アルミナ処理等の吸着処理、再結晶、蒸留、シリカゲルカラムクロマトグラフィー等の精製処理に付す。
 化合物(3)をイミン加水分解することにより、化合物(4−2)が得られる。ここで、イミン加水分解とは、化合物(3)のアリールメチリデンアミノ基をアミノ基へと変換する反応を意味する。
 イミン加水分解は、化合物(3)に含まれるエステル部位が加水分解されない方法であれば特に限定されず、好ましくは、化合物(3)と酸とを混合することにより行われる。
 イミン加水分解に用いられる酸としては例えば、塩酸、硫酸、リン酸、硝酸及び過塩素酸等の無機酸;パラトルエンスルホン酸及びベンゼンスルホン酸等の芳香族スルホン酸;メタンスルホン酸等の脂肪族スルホン酸;酢酸、プロピオン酸、クエン酸、リンゴ酸、コハク酸、乳酸、マレイン酸及びフマル酸等の脂肪族カルボン酸;並びに、フタル酸、安息香酸、4−ニトロ安息香酸及び4−クロロ安息香酸等の芳香族カルボン酸が挙げられる。
 酸は、単独で用いてもよいし、二種以上を混合して用いてもよい。また、後述する溶媒との混合物として用いてもよい。
 酸は、好ましくは無機酸であり、より好ましくは塩酸である。塩酸を用いる場合、その濃度を適宜調節して用いればよい。
 イミン加水分解において、好ましくは、酸と混合後に得られる混合物が、pH0~pH4の範囲となるように、酸の使用量を調節する。かかる範囲へpHを調節するためには、酸が塩酸である場合、化合物(3)1モルに対して、例えば0.8~1.5モルの塩酸を用いればよい。
 イミン加水分解は、好ましくは溶媒中で行われる。イミン加水分解に用いられる溶媒としては例えば、上述の化合物(1)と化合物(2)との反応に用いられる溶媒と同じものが挙げられ、好ましくは水、芳香族溶媒又はエーテル溶媒である。
 溶媒の使用量は、化合物(3)1gに対して、好ましくは1~100mLの割合であり、より好ましくは3~30mLの割合である。
 イミン加水分解を行う温度は、通常0~80℃の範囲内、好ましくは5~60℃の範囲内、より好ましくは10~40℃の範囲内である。
 イミン加水分解を行う時間は、用いる酸の種類・濃度やイミン加水分解を行う温度に依存するが、好ましくは1分間~20時間の範囲内であり、より好ましくは10分間~10時間の範囲内である。
 イミン加水分解における材料の混合方法は限定されないが、例えば、化合物(3)と溶媒とを混合し、得られる混合物に酸を添加する方法が挙げられる。
 イミン加水分解により得られる化合物(4−2)の光学純度は、イミン加水分解に付した化合物(3)の光学純度と同程度である。即ち、化合物(1)と化合物(2)との反応における光学活性な4級アンモニウム塩として化合物(5)を用いた場合、得られる化合物(4−2)の光学純度は、例えば40%e.e.以上、95%e.e.未満であり、例えば55%e.e.以上、95%e.e.未満であり、例えば70%e.e.以上、90%e.e.未満であり、また例えば75%e.e.以上、85%e.e.未満である。
 得られる化合物(4−2)は、単離してもよいし、単離することなく本発明の製造方法に用いてもよい。また、イミン加水分解により得られる反応混合物を、例えば、中和、抽出洗浄、水洗、濃縮等の後処理に付した後、本発明の製造方法に供することもできる。
Hereinafter, the present invention will be described in detail. The method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester according to the present invention comprises 1-amino-2-vinylcyclopropanecarboxylic acid ester, optically active tartaric acid or optically active camphorsulfonic acid (hereinafter referred to as “active amino acid”). Is sometimes referred to as an optically active organic acid) in a solvent, and one diastereomeric salt of the resulting diastereomeric salt mixture is isolated (first step), Treating the stereomeric salt with an inorganic acid or base (second step).
The 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention is usually a (1R, 2S) isomer of 1-amino-2-vinylcyclopropanecarboxylic acid ester and (1S, 2R). ) It is preferable to use a mixture containing a large amount of either isomer. Its optical purity is, for example, 40% e.e. e. 95% e.e. e. Less, preferably 55% e.e. e. 95% e.e. e. Less, more preferably 70% e.e. e. 90% e. e. Less, more preferably 75% e.e. e. 85% e. e. Is less than.
The optically active organic acid used in the first step is optically active tartaric acid which is D-tartaric acid or L-tartaric acid, or optically active camphorsulfone such as D-10-camphorsulfonic acid and L-10-camphorsulfonic acid. It is an acid.
The amount of the optically active organic acid used in the first step is usually 1 mol or more with respect to 1 mol of 1-amino-2-vinylcyclopropanecarboxylic acid ester, and is 1 from the viewpoint of yield and economy. The ratio of mol to 4 mol is preferable, and the ratio of 1 mol to 2 mol is more preferable.
Examples of the solvent used for the reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester and optically active organic acid include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, and isodecane. , Undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum ether and other aliphatic hydrocarbon solvents; benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, mono Fluorobenzene, α, α, α-trifluoromethylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene Aromatic solvents: tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl Ether solvents such as ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, anisole, diphenyl ether; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2 -Pentanol, isopentyl alcohol, 1-hexanol, 2-hexanol, isohexyl alcohol, 1-heptanol 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono alcohol solvents such as t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, diethylene glycol mono t-butyl ether; Nitrile solvents such as ril, propionitrile, benzonitrile; chlorinated aliphatic hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane; methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, Ester solvents such as t-butyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate; acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, Ketone solvents such as methyl isobutyl ketone, diethyl ketone, cyclopentanone, cyclohexanone; dimethyl sulfoxide, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, , N-dimethylpropionamide, N-methylpyrrolidone, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4, Aprotic polar solvents such as 5,6-tetrahydro-2 (1H) -pyridinone; water; and mixtures thereof.
The solvent is preferably an aromatic solvent, a ketone solvent, an ester solvent, an alcohol solvent, an ether solvent, or a mixture thereof, more preferably any one of an aromatic solvent, a ketone solvent, an ester solvent, and an ether solvent. It is a mixed solvent of 1 type and an alcohol solvent, More preferably, it is a mixture of toluene and an alcohol solvent, Especially preferably, it is a mixture of toluene and ethanol, or a mixture of toluene and 2-propanol.
The amount of the solvent used is preferably 1 to 50 mL, more preferably 3 to 30 mL based on 1 g of 1-amino-2-vinylcyclopropanecarboxylic acid ester, although it depends on the solvent used.
The reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester with an optically active organic acid is carried out, for example, by mixing a solvent and 1-amino-2-vinylcyclopropanecarboxylic acid ester, and adding the resulting mixture to an optically active compound. It can also be carried out by adding an organic acid, or by mixing a solvent and an optically active organic acid and adding 1-amino-2-vinylcyclopropanecarboxylic acid ester to the resulting mixture.
The reaction temperature in the reaction between 1-amino-2-vinylcyclopropanecarboxylic acid ester and the optically active organic acid is not particularly limited, and is preferably 0 ° C. or higher and the boiling point of the solvent or lower, more preferably 0 ° C. or higher, 40 It is below ℃.
By isolating one diastereomeric salt preferentially precipitated from a mixture of diastereomeric salts formed in a solvent, one diastereomeric salt can be separated from the other diastereomeric salt. . Isolation of the diastereomeric salt which precipitates is performed by performing solid-liquid separation processes, such as filtration and a decantation, for example. The resulting diastereomeric salt is a salt of 1-amino-2-vinylcyclopropanecarboxylic acid ester and an optically active organic acid.
If precipitation of one diastereomeric salt is not observed from the mixture of diastereomeric salts in a solvent, after adding one of the diastereomeric salts prepared in advance as a seed crystal, a solution of the mixture of diastereomeric salts is added. One diastereomeric salt can be preferentially precipitated by cooling.
When precipitation of diastereomeric salt is observed, the solution may be cooled as it is, but in order to improve the optical purity of the diastereomeric salt to be precipitated, the solution is heated to dissolve the precipitate, and then cooled. By doing so, it is preferable to preferentially precipitate one diastereomeric salt, and in the precipitation of the diastereomeric salt, one diastereomeric salt prepared in advance can be used as a seed crystal. The higher the optical purity of the seed crystal, the better, preferably 90% e.e. e. Or more, more preferably 95% e.e. e. Or more, more preferably 98% e.e. e. Or more, particularly preferably 99% e.e. e. That's it.
When heating a solution of a mixture of diastereomeric salts, it is preferably heated to 30 ° C. or higher and lower than the boiling point of the solvent. As the cooling treatment, cooling to 0 to 25 ° C. is preferable, and in order to improve the optical purity of the diastereomeric salt to be precipitated, it is preferable to gradually cool.
After isolating one of the diastereomeric salts, it is preferable to wash the diastereomeric salt in order to improve the optical purity of the obtained diastereomeric salt. For example, the same solvent as that used in the reaction between 1-amino-2-vinylcyclopropanecarboxylic acid ester and the optically active organic acid is used for the washing treatment. It is preferable to perform a drying process after the cleaning process. The drying treatment can be performed under normal pressure or reduced pressure conditions, preferably at a temperature selected from the range of 20 to 80 ° C.
The liquid resulting from the above-described solid-liquid separation treatment contains the other diastereomeric salt, and the other diastereomeric salt can be obtained from the liquid phase by a conventional method.
The optical purity can be further improved by subjecting the diastereomeric salt to a purification treatment.
Recrystallization is preferred as the purification treatment. For example, a method in which a diastereomeric salt is dissolved in a solvent and cooled to precipitate a purified diastereomeric salt, a diastereomeric salt is dissolved in a solvent, and a purified diastereomer is added dropwise by adding a poor solvent. Purification can be carried out by a method of precipitating the dimer salt, a method of precipitating the diastereomeric salt by distilling off the solvent after dissolving the diastereomeric salt in a solvent, or a combination thereof. . In the purification treatment, one of the diastereomeric salts prepared in advance can be added as a seed crystal.
Examples of the solvent for dissolving the diastereomeric salt in the purification treatment include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, and 2-pentanol. , Isopentyl alcohol, 1-hexanol, 2-hexanol, isohexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether , Alcohol solvents such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, diethylene glycol mono t-butyl ether; water; and mixtures thereof, preferably Is an alcohol solvent, water, and a mixture thereof, more preferably methanol, ethanol, and a mixture thereof.
The amount of the solvent for dissolving the diastereomeric salt in the purification treatment can be appropriately adjusted depending on the solvent used, and is preferably 1 to 10 mL with respect to 1 g of the diastereomeric salt. The temperature at which the diastereomeric salt is dissolved is preferably 0 to 60 ° C, more preferably 10 to 40 ° C.
Examples of the poor solvent in the purification treatment include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum Aliphatic hydrocarbon solvents such as ether; benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, α, α, α-trifluoromethylbenzene, 1,2-di Aromatic solvents such as chlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene; tetrahydrofuran, methyltetrahydrofuran, 1,4-di Cyclic ether solvents such as xanthone; methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, t-butyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propionic acid Ester solvents such as propyl and isopropyl propionate; ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, diethyl ketone, cyclopentanone and cyclohexanone are preferable, preferably aromatic A solvent, more preferably toluene. The usage-amount of a poor solvent can be suitably adjusted with the precipitation degree of refinement | purification diastereomeric salt.
When the diastereomeric salt is dissolved in a solvent and cooled to precipitate the purified diastereomeric salt, it is preferably cooled to a temperature selected from the range of 0 to 25 ° C. Cooling per hour The temperature is preferably 3 to 10 ° C.
The obtained diastereomeric salt is, for example, (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ester or (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylic acid ester and optically active. Specific examples thereof include salts with an organic acid, and specific examples thereof include a salt of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate and L-tartaric acid and (1R, 2S) -1-amino-2. -A salt of ethyl vinylcyclopropanecarboxylate and D-10-camphorsulfonic acid.
The second step can be performed by mixing the isolated diastereomeric salt with an inorganic acid or base, and an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained.
The inorganic acid to be mixed with the diastereomeric salt is usually one having higher acidity than the optically active organic acid, and specific examples include hydrochloric acid, phosphoric acid, and sulfuric acid. Preferred inorganic acids are hydrochloric acid and sulfuric acid. These inorganic acids can be used alone or in combination with a solvent described later.
The amount of inorganic acid used is usually 1 mol or more for hydrochloric acid and 0.5 mol or more for sulfuric acid with respect to 1 mol of diastereomeric salt.
Mixing of the diastereomeric salt and the inorganic acid is preferably performed in a solvent. Examples of such solvents include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum ether and the like. Aliphatic hydrocarbon solvent: benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, α, α, α-trifluoromethylbenzene, 1,2-dichlorobenzene, 1, Aromatic solvents such as 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene; tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, di Such as til ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, anisole, diphenyl ether, etc. Ether solvent; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, 1-hexanol, 2-hexanol, iso Hexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol mono Chill ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl Alcohol solvents such as ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, diethylene glycol mono t-butyl ether; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; ethyl acetate, propyl acetate, vinegar Ester solvents such as isopropyl acetate, butyl acetate, isobutyl acetate, t-butyl acetate, amyl acetate, isoamyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; dichloromethane, chloroform, Chlorinated aliphatic hydrocarbon solvents such as 1,2-dichloroethane; carboxylic acid solvents such as formic acid, acetic acid, propionic acid; water; and mixtures thereof.
The solvent used for mixing the diastereomeric salt and the inorganic acid is preferably a mixed solvent of an aromatic solvent and a ketone solvent or an alcohol solvent, and more preferably a mixed solvent of an aromatic solvent and an alcohol solvent. The amount of the solvent to be used is preferably 1 to 50 mL, more preferably 3 to 30 mL, per 1 g of diastereomeric salt.
Mixing of the diastereomeric salt and the inorganic acid can be performed, for example, by mixing the diastereomeric salt and the solvent and adding the inorganic acid thereto. The mixing is preferably performed within a range of 0 to 40 ° C, more preferably within a range of 0 to 30 ° C. The mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours.
When the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is precipitated as an acid addition salt in the mixture obtained by mixing the diastereomeric salt and the inorganic acid, the acid addition salt is For example, the acid addition salt can be obtained by subjecting it to a solid-liquid separation process such as filtration or decantation. When precipitation of the acid addition salt is insufficient or when the acid addition salt is not precipitated, the obtained mixture is, for example, concentrated, mixed with a solvent in which the salt is difficult to dissolve, or cooled. By subjecting to treatment, an acid addition salt is precipitated, and the precipitated acid addition salt is subjected to solid-liquid separation treatment such as filtration or decantation, for example, to give an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester. Can be obtained as an acid addition salt. The obtained acid addition salt can be purified, for example, by recrystallization or the like, or free of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester in the same manner as in the base treatment of a diastereomeric salt described later. It can also be obtained as a base.
Specific examples of acid addition salts include addition salts of hydrochloric acid, phosphoric acid and sulfuric acid.
The filtrate obtained by the above-described solid-liquid separation treatment contains an optically active organic acid, and the optically active organic acid can be extracted from the filtrate by a conventional method and reused in the present invention.
Examples of the base to be mixed with the diastereomeric salt include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium methylate, sodium ethylate and potassium methylate. Examples thereof include alkali metal alcoholates such as lath and potassium ethylate. Preferred bases are alkali metal hydroxides, especially sodium hydroxide. The base can be used alone or in combination with a solvent described later.
The amount of the base used is preferably a ratio of 1 mol or more per 1 mol of the diastereomeric salt.
Mixing of the diastereomeric salt and the base is preferably performed in a solvent. Examples of the solvent include alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, and 1-butanol; diethyl ether, t-butyl methyl ether, methisobutyl ether, diisopropyl ether, methylcyclopentyl ether, 1,2 -Ether solvents such as dimethoxymethane; aromatic solvents such as toluene, xylene and chlorobenzene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and t-butyl acetate Solvent; halogenated aliphatic hydrocarbon solvents such as dichloromethane; water; and mixtures thereof. The solvent is preferably an aromatic solvent, an alcohol solvent or water, or a mixture thereof, more preferably toluene or water, or a mixture thereof. When a base such as alkali metal hydroxide or alkali metal carbonate is used as the base, water alone or an organic solvent having low compatibility with water (for example, the above ether solvent, aromatic solvent, aliphatic hydrocarbon solvent) , Ketone solvents, ester solvents, halogenated aliphatic hydrocarbon solvents) and water are more preferably used as a mixture.
The amount of the solvent used for mixing the diastereomeric salt and the base is preferably 1 to 50 mL, more preferably 3 to 30 mL with respect to 1 g of the diastereomeric salt.
The diastereomeric salt and the base can be mixed, for example, by mixing the diastereomeric salt and the solvent and adding the base thereto. Mixing is preferably performed within a range of 0 to 60 ° C., more preferably within a range of 10 to 30 ° C. The mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours.
Mixing of the diastereomeric salt and the base can be performed, for example, by the following method.
A base is added to the mixture of water and diastereomeric salt to make the aqueous layer of the mixture basic (preferably pH 8.5 or higher), and an organic solvent having low compatibility with water is added to the resulting mixture. By subjecting to a liquid separation treatment, an organic layer containing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained. If this organic layer is washed with water as necessary and then concentrated, an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be obtained as a free base. When an alkali metal alcoholate is used as the base and an alcohol solvent is used as the solvent, the alkali metal salt of the optically active organic acid can be precipitated, and the precipitate is filtered off and the resulting filtrate is concentrated. The optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be isolated as a free base. The obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester can be purified by, for example, column chromatography.
The aqueous layer obtained by the liquid separation treatment contains an optically active organic acid, and the optically active organic acid can be recovered from the aqueous layer by a conventional method and reused in the present invention. In addition, the optically active organic acid can be recovered from the alkali metal salt of the optically active organic acid filtered out as described above by a conventional method and reused in the present invention.
An optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester obtained by mixing a diastereomeric salt with a base is further mixed with an acid to form an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester. It can also be obtained as an acid addition salt of an ester.
Examples of the acid mixed with the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and perchloric acid; and aromatics such as paratoluenesulfonic acid and benzenesulfonic acid. Aliphatic sulfonic acids such as methanesulfonic acid; aliphatic carboxylic acids such as acetic acid, propionic acid, citric acid, malic acid, succinic acid, lactic acid, maleic acid and fumaric acid; and phthalic acid, benzoic acid, Examples include aromatic carboxylic acids such as 4-nitrobenzoic acid and 4-chlorobenzoic acid.
The acid may be used alone or in combination with a solvent described later. The acid is preferably an inorganic acid, more preferably sulfuric acid.
The amount of acid used is preferably, for example, 1 mol or more for hydrochloric acid and 0.5 mol or more for sulfuric acid with respect to 1 mol of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
The mixing of the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid is preferably performed in a solvent. Examples of such solvents include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane, petroleum ether and the like. Aliphatic hydrocarbon solvent: benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, α, α, α-trifluoromethylbenzene, 1,2-dichlorobenzene, 1, Aromatic solvents such as 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene; tetrahydrofuran, methyltetrahydrofuran, 1,4-dioxane, di Such as til ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, anisole, diphenyl ether, etc. Ether solvent; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, 1-hexanol, 2-hexanol, iso Hexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol mono Chill ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl Alcohol solvents such as ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, diethylene glycol mono t-butyl ether; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; ethyl acetate, propyl acetate, vinegar Ester solvents such as isopropyl acetate, butyl acetate, isobutyl acetate, t-butyl acetate, amyl acetate, isoamyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; dichloromethane, chloroform, Chlorinated aliphatic hydrocarbon solvents such as 1,2-dichloroethane; water; and mixtures thereof.
The solvent used for mixing the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid is preferably a mixture of an aromatic solvent and a ketone solvent or an alcohol solvent, more preferably an aromatic solvent and an alcohol. It is a mixture with a solvent. The amount of the solvent to be used is preferably 1 to 50 mL, more preferably 3 to 30 mL, with respect to 1 g of the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.
For mixing the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the acid, for example, the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and the solvent are mixed, and the acid is added thereto. Can be done. The mixing is preferably performed within a range of 0 to 40 ° C, more preferably within a range of 0 to 30 ° C. The mixing time is not particularly limited, and is preferably in the range of 1 minute to 24 hours.
An acid addition salt of optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is precipitated in the mixture obtained by mixing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester and acid. In this case, the acid addition salt can be obtained by subjecting the acid addition salt to a solid-liquid separation treatment such as filtration or decantation. When precipitation of the acid addition salt is insufficient or when the acid addition salt is not precipitated, the obtained mixture is, for example, concentrated, mixed with a solvent in which the salt is difficult to dissolve, or cooled. By subjecting to treatment, the acid addition salt is precipitated, and the acid addition salt can be taken out by subjecting the precipitated acid addition salt to a solid-liquid separation treatment such as filtration or decantation. The extracted acid addition salt can be purified by, for example, recrystallization.
Specific examples of acid addition salts include addition salts of hydrochloric acid, phosphoric acid and sulfuric acid.
The optical purity of the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is, for example, 85% e.e. e. For example, 90% e.e. e. For example, 98% e.e. e. That's it.
Specific examples of the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester are (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl, (1S, 2R) -1-amino- T-butyl 2-vinylcyclopropanecarboxylate, t-butyl (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylate, methyl (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylate , Ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, t-butyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, (1R, 2S) -1-amino Methyl-2-vinylcyclopropanecarboxylate and its enantiomers.
The 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention can be produced according to a known method. For example, Journal of Organic Chemistry, Vol. 70, pages 5869-5879, 2005. 1- (N-phenylmethyleneamino) -2-vinylcyclopropane obtained by reacting N-phenylmethyleneglycine ethyl ester with 1,4-dibromo-2-butene in the presence of a base by the method described in the year It can be produced by subjecting ethyl carboxylate to acid treatment or the like, and optically resolving the resulting racemic ethyl 1-amino-2-vinylcyclopropanecarboxylate with di-p-toluoyl-D-tartaric acid. it can. When 1-amino-2-vinylcyclopropanecarboxylic acid ester forms a salt with an acid other than the optically active organic acid, it is preferable to base-treat the salt before reacting with the optically active organic acid. .
The 1-amino-2-vinylcyclopropanecarboxylic acid ester used in the production method of the present invention has the formula (4-2)
Figure JPOXMLDOC01-appb-I000009
(Wherein R 1 Represents an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms. )
It is preferable that it is a compound (compound (4-2)) shown by these, and a compound (4-2) is Formula (1).
Figure JPOXMLDOC01-appb-I000010
(Wherein R 1 Is as defined above, Ar 1 Represents an optionally substituted phenyl group or an optionally substituted naphthyl group. )
A compound represented by formula (compound (1)) and formula (2)
Figure JPOXMLDOC01-appb-I000011
(Where Y 1 And Y 2 Each independently represents a halogen atom, an alkanesulfonyloxy group having 1 to 6 carbon atoms, a perfluoroalkanesulfonyloxy group having 1 to 6 carbon atoms, or an optionally substituted benzenesulfonyloxy group. Here, the substituent of the benzenesulfonyloxy group is one or more substituents selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom and a nitro group. )
And a compound (compound (2)) represented by the formula (3) obtained by reacting in the presence of an optically active quaternary ammonium salt.
Figure JPOXMLDOC01-appb-I000012
(Wherein Ar 1 And R 1 Is as defined above. )
It is preferable that it is manufactured by imine hydrolysis of the compound (compound (3)) shown by these.
In this case, the obtained optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester has the formula (4)
Figure JPOXMLDOC01-appb-I000013
(Wherein R 1 Is as defined above and C * 1 And C * 2 Represents an asymmetric carbon atom and C * 1 C in the R configuration * 2 Is S configuration and C * 1 C is an S configuration * 2 Is the R configuration. )
It becomes the compound shown by these.
R 1 As the alkyl group having 1 to 12 carbon atoms represented by, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl A linear or branched alkyl group having 1 to 12 carbon atoms such as a group, nonyl group, decyl group, undecyl group and dodecyl group, and a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and And a cyclic alkyl group having 3 to 12 carbon atoms such as cyclooctyl group, R 1 Examples of the alkenyl group having 2 to 12 carbon atoms represented by the formula include linear or branched alkenyl groups such as ethenyl group, 2-propenyl group, 2-butenyl group and 3-methyl-2-butenyl group And cyclic alkenyl groups such as a 1-cyclohexenyl group.
R 1 Is preferably an alkyl group having 1 to 12 carbon atoms, more preferably a methyl group, an ethyl group or a t-butyl group, and still more preferably a methyl group or an ethyl group.
In Formula (1) and Formula (3), Ar 1 Although the phenyl group or naphthyl group represented by these may be substituted, examples of the substituent include at least one group selected from the following group P1.
<Group P1>
An alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a nitro group, a cyano group, and a trifluoromethyl group;
In the group P1, examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. , A linear or branched alkyl group having 1 to 12 carbon atoms such as nonyl group, decyl group, undecyl group and dodecyl group, and cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclo Examples thereof include cyclic alkyl groups having 3 to 12 carbon atoms such as octyl group; examples of alkoxy groups having 1 to 12 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, and isobutyloxy group. T-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group and Linear or branched alkoxy groups having 1 to 12 carbon atoms such as octyloxy and cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy and cyclooctyloxy And a cyclic alkyloxy group having 3 to 12 carbon atoms such as a group; examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
Ar 1 An optionally substituted phenyl group and Ar 1 Examples of the optionally substituted naphthyl group represented by the formula: phenyl group, 1-naphthyl group, 2-naphthyl group, 2-methylphenyl group, 2-methoxyphenyl group, 2-fluorophenyl group, 2- Chlorophenyl group, 2-bromophenyl group, 2-nitrophenyl group, 2-cyanophenyl group, 2- (trifluoromethyl) phenyl group, 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3 -Chlorophenyl group, 3-bromophenyl group, 3-nitrophenyl group, 3-cyanophenyl group, 3- (trifluoromethyl) phenyl group, 4-methylphenyl group, 4-methoxyphenyl group, 4-fluorophenyl group, 4-chlorophenyl group, 4-bromophenyl group, 4-nitrophenyl group, 4-cyanophenyl group, 4- (trifluoro Romechiru) phenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, and a 3,4-dichlorophenyl group, and 3,4,5-trichlorophenyl groups.
Ar 1 Is preferably an optionally substituted phenyl group, more preferably an optionally halogenated phenyl group, still more preferably a phenyl group or a 4-chlorophenyl group.
Y in formula (2) 1 And Y 2 In the above, examples of the halogen atom include a chlorine atom, a bromine atom and an iodine atom. Examples of the alkanesulfonyloxy group having 1 to 6 carbon atoms include a methanesulfonyloxy group, an ethanesulfonyloxy group, a propanesulfonyloxy group, and a butane. Examples thereof include a sulfonyloxy group, a pentanesulfonyloxy group, and a hexanesulfonyloxy group. Examples of the perfluoroalkanesulfonyloxy group having 1 to 6 carbon atoms include a trifluoromethanesulfonyloxy group, a pentafluoroethanesulfonyloxy group, and a perfluoropropanesulfonyloxy group. And perfluorohexanesulfonyloxy group.
Y in formula (2) 1 And Y 2 In the above, each hydrogen atom in the benzenesulfonyloxy group may be independently substituted with, for example, a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom and a nitro group. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and t-butyl. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. It is done. Examples of the optionally substituted benzenesulfonyloxy group include 4-methylbenzenesulfonyloxy group, 2-nitrobenzenesulfonyloxy group, 3-nitrobenzenesulfonyloxy group, 4-nitrobenzenesulfonyloxy group, and 2,4-dinitrobenzenesulfonyl. Examples thereof include an oxy group, a 4-fluorobenzenesulfonyloxy group, and a pentafluorobenzenesulfonyloxy group.
Y 1 And Y 2 Are preferably each independently a chlorine atom, a bromine atom or a methanesulfonyloxy group, more preferably a bromine atom.
Specific examples of compound (1) are N-phenylmethyleneglycine ethyl ester, N-naphthalen-1-ylmethyleneglycine ethyl ester, N-naphthalen-2-ylmethyleneglycine ethyl ester, N-furan-2-ylmethyleneglycine. Ethyl ester, N- (4-methylphenyl) methyleneglycine ethyl ester, N- (4-methoxyphenyl) methyleneglycine ethyl ester, N- (4-fluorophenyl) methyleneglycine ethyl ester, N- (4-chlorophenyl) methylene Glycine ethyl ester, N- [4- (trifluoromethyl) phenyl] methylene glycine ethyl ester, N- (3-chlorophenyl) methylene glycine ethyl ester, N- (4-chlorophenyl) methylene glycine ethyl ester, - phenylmethylene glycine t- butyl ester, N- (4-chlorophenyl) methylene glycine t- butyl ester, N- phenylmethylene glycine methyl ester and N- (4-chlorophenyl) methylene glycine methyl ester.
The compound (1) is preferably N-phenylmethyleneglycine ethyl ester, N-naphthalen-1-ylmethyleneglycine ethyl ester or N- (4-chlorophenyl) methyleneglycine ethyl ester.
Compound (1) can be produced according to any known method, and a commercially available product can also be used.
Specific examples of the compound (2) include (E) -1,4-dibromo-2-butene, (E) -1,4-dichloro-2-butene, (E) -1,4-dimethanesulfonyloxy- 2-butene and (E) -1-bromo-4-chloro-2-butene. The compound (2) is preferably (E) -1,4-dibromo-2-butene or (E) -1,4-dichloro-2-butene, more preferably (E) -1,4-dibromo. -2-butene.
Compound (2) can be produced according to any known method, and a commercially available product can also be used.
Specific examples of the compound (3) are (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate, (1S, 2R) -1- [N- (4-chlorophenyl) Methylene] amino-2-vinylcyclopropanecarboxylate ethyl, (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate t-butyl, (1S, 2R) -1- [N -(4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate t-butyl, (1S, 2R) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate methyl, (1S, 2R ) -1- [N- (4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate methyl (1S, 2R) -1- (N-na) Ethyl (talen-1-ylmethylene) amino-2-vinylcyclopropanecarboxylate, ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate, (1R, 2S) -1- [N- (4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate ethyl, (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate t-butyl, (1R , 2S) -1- [N- (4-Chlorophenyl) methylene] amino-2-vinylcyclopropanecarboxylate t-butyl, (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropane Methyl carboxylate, (1R, 2S) -1- [N- (4-chlorophenyl) methylene] amino-2-vinylcyclo Methyl Ropankarubon acid, (1R, 2S) -1- (N-naphthalen-1-ylmethylene) amino-2-vinyl-cyclopropanecarboxylic acid ethyl, and optically active mixtures of their enantiomers thereof.
Examples of the optically active quaternary ammonium salt used in the reaction between the compound (1) and the compound (2) include, for example, cinchona alkaloid derivatives (for example, Tetrahedron Letters, Vol. 40, pages 8671-8694, 1999). ), Tartaric acid derivatives (see, for example, Tetrahedron, 60, 7743-7754, 2004), axially asymmetric spiro-type quaternary ammonium salts (eg, Journal of American Chemical Society, 122, 5228-5229). , 2000)), and preferred quaternary ammonium salts include those represented by the formula (5)
Figure JPOXMLDOC01-appb-I000014
(Wherein Ar 2 And Ar 2 ' Each independently represents an optionally substituted phenyl group. Ar 3 Represents an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms or an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms. R 2 Represents an optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms, R 3 Represents a straight-chain hydrocarbon group having 1 to 12 carbon atoms, or R 2 And R 3 Together form a polymethylene group having 2 to 6 carbon atoms. R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. * Represents an asymmetric carbon atom. X Represents a monovalent anion. )
The compound (compound (5)) shown by these is mentioned.
Ar in formula (5) 2 And Ar 2 ' The phenyl group represented by may be substituted, and examples of the substituent include the same groups as those selected from the group P1 described above.
Ar 2 And Ar 2 ' Examples of the optionally substituted phenyl group represented by: phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 3,5-dimethylphenyl group, 3,4, 5-trimethylphenyl group, 2-t-butylphenyl group, 3-t-butylphenyl group, 4-t-butylphenyl group, 2-t-butyloxyphenyl group, 3-t-butyloxyphenyl group, 4- t-butyloxyphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group, 2-chlorophenyl group, 3 -Chlorophenyl group, 4-chlorophenyl group, 3,5-dichlorophenyl group, 3,4,5-trichlorophenyl group, 2- (trifluoromethyl) phenyl Nyl group, 3- (trifluoromethyl) phenyl group, 4- (trifluoromethyl) phenyl group, 3,5-bis (trifluoromethyl) phenyl group and 3,5-difluoro-4- (trifluoromethyl) phenyl Groups.
Ar 2 And Ar 2 ' Are preferably each independently 3-fluorophenyl group, 4-fluorophenyl group, 3,5-difluorophenyl group, 3,4,5-trifluorophenyl group or 3,5-bis (trifluoromethyl) phenyl group More preferably, each is independently 3,4,5-trifluorophenyl group or 3,5-bis (trifluoromethyl) phenyl group, and more preferably both 3,5-bis (trifluoromethyl) phenyl. It is a group.
Ar 3 Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms which may be substituted include, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, benzyl group, 2-tolyl group, 1,5 -Diphenyl-3-pentyl group, bis (4-tolyl) methyl group, 1,3-diphenyl-2-propyl group and bis (3,4-dimethylphenyl) methyl group can be mentioned. Ar 3 Examples of the optionally substituted aliphatic hydrocarbon group represented by general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, C1-C20 linear alkyl group such as nonyl group, decyl group, undecyl group and dodecyl group, 1-methylethyl group, 1-methylpropyl group, 1-ethylpropyl group, 1-propylbutyl group, C1-C20 branched alkyl groups such as 1-butylpentyl group, 1-pentylhexyl group, 1-hexylheptyl group, 1-heptyloctyl group, 1-octylnonyl group and 1-nonylundecyl group, cyclopropyl A cyclic alkyl group having 3 to 20 carbon atoms, such as a group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; Group having 1 to 20 carbon atoms such as 1 group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 1-pentenyl group, 1-hexenyl group, 1-heptenyl group, 1-octenyl group and 1-undecenyl group. Linear alkenyl groups, as well as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 1-pentynyl, 1-hexynyl, 1-heptynyl, 1-octynyl and 1-undecynyl groups And straight-chain alkynyl groups having 2 to 20 carbon atoms such as
Ar 3 A substituent in the optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms represented by the formula: 3 Examples of the substituent in the optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by the formula (1) include at least one group selected from the following group P2.
<Group P2>
An alkoxy group having 1 to 12 carbon atoms, an alkenyloxy group having 3 to 12 carbon atoms, an alkynyloxy group having 3 to 12 carbon atoms, and an aromatic group having 6 to 12 carbon atoms.
In the group P2, examples of the alkoxy group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group and linear or branched alkoxy group such as dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy And cyclic alkoxy groups such as a cycloheptyloxy group and a cyclooctyloxy group. Examples of the alkenyloxy group having 3 to 12 carbon atoms include 2-propenyloxy group, 2-butenyloxy group, 2-methyl-2 -Butenyloxy group and 3-methyl 2-butenyloxy group is exemplified, and examples of the alkynyloxy group having 3 to 12 carbon atoms include 2-propynyloxy group and 2-butynyloxy group. Examples of the aromatic group having 6 to 12 carbon atoms include phenyl group , Naphthyl group, benzofuranyl group, benzothiophenyl group, benzopyrazolyl group, benzoisoxazolyl group, benzoisothiazolyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, quinolinyl group and isoquinolinyl group . Here, 1 to 3 hydrogen atoms on the aromatic ring of the aromatic group may be each independently substituted with, for example, a substituent selected from the following group P3.
<Group P3>
A saturated hydrocarbon group having 1 to 12 carbon atoms, an aromatic group having 6 to 10 carbon atoms, a halogen atom, a nitro group, a trifluoromethyl group, a protected amino group, and a protected hydroxyl group.
In the group P3, examples of the saturated hydrocarbon group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group, and examples of the aromatic group having 6 to 10 carbon atoms include For example, phenyl group, 1-naphthyl group, 2-naphthyl group, 2-benzofuranyl group, 3-benzofuranyl group, 2-benzothiophenyl group, 2-benzopyrazolyl group, 3-benzoisoxazolyl group, 3-benzo Isothiazolyl group, 2-benzimidazolyl group, 2-benzoxazolyl group, 2-benzothiazolyl group , 2-quinolinyl group and 1-isoquinolinyl group, halogen atoms include, for example, fluorine atom, chlorine atom and bromine atom, and protected amino groups include, for example, benzylamino group, 2-methoxybenzylamino Group, 2,4-dimethoxybenzylamino group, acetylamino group, benzyloxycarbonylamino group, t-butoxycarbonylamino group and allyloxycarbonylamino group. Examples of the protected hydroxyl group include methoxy group and ethoxy group. , Propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, etc. Straight carbon number 1-12 A cyclic alkyloxy group having 3 to 12 carbon atoms such as a linear or branched alkoxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, A methoxymethoxy group, a benzyloxy group, and an acetyloxy group are mentioned.
Ar 3 Are preferably 1-naphthyl group, phenyl group, cyclohexyl group, t-butyl group, 1-methoxy-1,1-di-p-tolylmethyl group, 1-methoxy-1-ethylpropyl group, 1-methoxy-1 -Butylpentyl group, 1-methoxy-1-hexylheptyl group, 1-methoxy-1-octylnonyl group, 3-phenyl-1-methoxy-1- (2-phenylethyl) propyl group, more preferably 1- Methoxy-1,1-di-p-tolylmethyl group, 1-methoxy-1-ethylpropyl group, 1-methoxy-1-butylpentyl group, 1-methoxy-1-hexylheptyl group, 1-methoxy-1-octylnonyl A 3-phenyl-1-methoxy-1- (2-phenylethyl) propyl group.
R 2 Examples of the optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by the formula: methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group , A hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, etc., a linear or branched alkyl group having 1 to 12 carbon atoms, and a cyclopropyl group, a cyclobutyl group, a cyclopentyl group C3-C12 cyclic alkyl group such as cyclohexyl group, cycloheptyl group and cyclooctyl group, 2-propenyl group, 2-butenyl group, 2-methyl-2-butenyl group and 3-methyl-2-butenyl Examples thereof include alkenyl groups having 3 to 12 carbon atoms such as groups, and alkynyl groups having 3 to 12 carbon atoms such as 2-propynyl groups and 2-butynyl groups.
The position and number of substituents of the aliphatic hydrocarbon group having 1 to 12 carbon atoms are not particularly limited. The number of substituents is preferably 1 to 3, and when having a plurality of substituents, they may be the same substituent or two or more different substituents. As such a substituent, the same substituent as the substituent selected from the group P2 described above is preferably used.
R 2 Is preferably a linear or branched alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 1 to 8 carbon atoms, and still more preferably a methyl group.
R 3 Examples of the linear aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by: For example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl Group, decyl group, undecyl group, dodecyl group and the like, linear alkyl group having 1 to 12 carbon atoms, ethenyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 1-pentenyl group, 1-pentenyl group, C2-C12 linear alkenyl groups such as hexenyl group, 1-heptenyl group, 1-octenyl group and 1-undecenyl group, and ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl And a straight-chain alkynyl group having 2 to 12 carbon atoms such as 1-pentynyl group, 1-hexynyl group, 1-heptynyl group, 1-octynyl group and 1-undecynyl group.
R 3 Is preferably a linear alkyl group having 1 to 12 carbon atoms, more preferably a linear alkyl group having 1 to 8 carbon atoms, and still more preferably a methyl group.
R 2 And R 3 Together with each other to form a polymethylene group having 2 to 6 carbon atoms. Examples of the polymethylene group having 2 to 6 carbon atoms include a trimethylene group and a tetramethylene group.
R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Examples of the aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by: 2 The same thing as the C1-C12 aliphatic hydrocarbon group in the C1-C12 aliphatic hydrocarbon group which may have a substituent represented by these is mentioned.
R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Examples of the alkoxy group having 1 to 12 carbon atoms represented by the same group as the alkoxy group having 1 to 12 carbon atoms in the group P2 include the same.
R 4 And R 4 ' Are preferably each independently an alkoxy group having 1 to 12 carbon atoms, more preferably a methoxy group.
R 5 And R 5 ' Are preferably each independently an aliphatic hydrocarbon group having 1 to 12 carbon atoms, more preferably each independently a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably both t-Butyl group.
R 6 And R 6 ' Are preferably both hydrogen atoms.
X Examples of the monovalent anion represented by the formula: hydroxide ion; halide ion such as chloride ion, bromide ion, iodide ion; methanesulfonate ion, ethanesulfonate ion, propanesulfonate ion, Alkanesulfonic acid ions having 1 to 6 carbon atoms such as butanesulfonic acid ions, pentanesulfonic acid ions, hexanesulfonic acid ions; benzenesulfonic acid ions, and the 1-3 hydrogen atoms contained in the benzenesulfonic acid are respectively Independently, alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group and hexyl group, and halogens such as fluorine atom and chlorine atom It may be substituted with an atom or a nitro group.
X Is preferably a halide ion, more preferably a bromide ion.
Specific examples of the compound (5) include compounds represented by the following formulas (5-1) to (5-7) and enantiomers thereof.
Figure JPOXMLDOC01-appb-I000015
Compound (5) is produced by the method described in Tetrahedron Letters, 44, 2003, pages 5629-5632 (6).
Figure JPOXMLDOC01-appb-I000016
(Wherein Ar 2 , Ar 2 ' R 4 , R 4 ' , R 5 , R 5 ' , R 6 And R 6 ' Is as defined above, and X represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom. )
Formula (7) produced by any known method from a compound represented by, for example, an amino acid
Figure JPOXMLDOC01-appb-I000017
(Wherein R 2 , R 3 , Ar 3 And * are as defined above. )
If necessary, it is produced by reacting in the presence of a base such as sodium bicarbonate and a solvent such as acetone.
The optical purity of the optically active quaternary ammonium salt is not limited, and in order to obtain a compound (3) having high optical purity, preferably 90% e.e. e. Or more, more preferably 95% e.e. e. Or more, more preferably 98% e.e. e. That's it.
The reaction between compound (1) and compound (2) is preferably performed in the presence of a base. Examples of the base used include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide; alkali metal carbonate compounds such as potassium carbonate and sodium carbonate; and tertiary amines such as triethylamine and diisopropylethylamine. It is done. The base is preferably an alkali metal hydroxide, more preferably potassium hydroxide.
The reaction between compound (1) and compound (2) is preferably performed in a solvent. Examples of the solvent include aliphatic hydrocarbon solvents, aromatic solvents, ether solvents, alcohol solvents, nitrile solvents, ester solvents, chlorinated aliphatic hydrocarbon solvents, aprotic polar solvents, and water. These solvents may be used alone or in combination of two or more.
Examples of the aliphatic hydrocarbon solvent include pentane, hexane, isohexane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, isodecane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclohexane, t-butylcyclohexane and petroleum ether. Examples of the aromatic solvent include benzene, toluene, ethylbenzene, isopropylbenzene, t-butylbenzene, xylene, mesitylene, monochlorobenzene, monofluorobenzene, α, α, α-trifluoromethylbenzene, 1,2 -Dichlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene, and ether solvents include, for example, tetrahydrofuran, Tyltetrahydrofuran, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, t-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, anisole Examples of alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, and the like. 1-hexanol, 2-hexanol, isohexyl alcohol, 1-heptanol, 2-heptanol, 3-hepta , Isopeptyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono t-butyl ether, diethylene glycol Examples include monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, and diethylene glycol mono t-butyl ether. Examples include ester solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, t-butyl acetate, amyl acetate and isoamyl acetate, and chlorinated aliphatic hydrocarbon solvents. Examples include dichloromethane, chloroform and 1,2-dichloroethane. Examples of aprotic polar solvents include dimethyl sulfoxide, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyl. Propionamide, N-methylpyrrolidone, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, 1,3-dimethyl-2-imidazolidinone and 1,3-dimethyl-3,4,5,6- Tet Hydro -2 (1H) - pyridinone and the like. The solvent is preferably a mixture of water and a solvent other than water, more preferably a mixture of water and an aromatic solvent or an ether solvent, and water and toluene or t-butyl methyl ether. It is more preferable to use in combination.
In the reaction between the compound (1) and the compound (2), the amount of the compound (2) used is preferably 0.8 to 20 mol, more preferably 0, relative to 1 mol of the compound (1). .9 to 5 mole ratio.
In the reaction between the compound (1) and the compound (2), the amount of the optically active quaternary ammonium salt used is not limited, and preferably 0.00001 to 0.5 mol relative to 1 mol of the compound (1). The ratio is more preferably 0.001 to 0.1 mol.
In the reaction between the compound (1) and the compound (2), the amount of the base used is preferably 2 to 30 mol, more preferably 4 to 15 mol, relative to 1 mol of the compound (1). It is.
When the reaction between the compound (1) and the compound (2) is carried out in a solvent, the amount of the solvent used is not particularly limited, but is preferably 1 to 100 mL with respect to 1 g of the compound (1), and 3 to 30 mL. Is more preferable.
The reaction temperature is preferably in the range of −30 to 70 ° C., more preferably in the range of −10 to 40 ° C. The reaction time depends on the amount of optically active quaternary ammonium salt used, the reaction temperature, etc., but is preferably in the range of 1 to 120 hours.
The degree of progress of the reaction can be confirmed by an analytical means such as gas chromatography or liquid chromatography.
The mixing method of the reaction reagent is not specified. For example, the compound (1) is mixed with a solvent as necessary, the compound (2) and an optically active quaternary ammonium salt are added thereto, and then the resulting mixture is reacted. The method of adjusting to temperature and adding a base to the mixture adjusted to reaction temperature is mentioned.
The optical purity of the compound (3) obtained by the reaction between the compound (1) and the compound (2) is 40% e.g. when the compound (5) is used as an optically active quaternary ammonium salt. e. 95% e.e. e. Less than, for example, 55% e.e. e. 95% e.e. e. For example 70% e.e. e. 90% e. e. Less than, for example, 75% e.e. e. 85% e. e. Is less than.
The obtained compound (3) may be isolated or may be used in the next step without isolation. In the case of isolation, the reaction mixture after completion of the reaction is subjected to post-treatment such as neutralization, extraction washing, water washing, and concentration, and if necessary, adsorption of activated carbon treatment, silica treatment, alumina treatment, etc. It is subjected to purification treatment such as treatment, recrystallization, distillation and silica gel column chromatography.
Compound (4-2) is obtained by imine hydrolysis of compound (3). Here, imine hydrolysis means a reaction for converting an arylmethylideneamino group of compound (3) into an amino group.
The imine hydrolysis is not particularly limited as long as the ester moiety contained in the compound (3) is not hydrolyzed, and is preferably performed by mixing the compound (3) and an acid.
Examples of the acid used for imine hydrolysis include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and perchloric acid; aromatic sulfonic acids such as paratoluenesulfonic acid and benzenesulfonic acid; and aliphatics such as methanesulfonic acid. Sulfonic acids; aliphatic carboxylic acids such as acetic acid, propionic acid, citric acid, malic acid, succinic acid, lactic acid, maleic acid and fumaric acid; and phthalic acid, benzoic acid, 4-nitrobenzoic acid and 4-chlorobenzoic acid And aromatic carboxylic acids such as
An acid may be used independently and may be used in mixture of 2 or more types. Moreover, you may use as a mixture with the solvent mentioned later.
The acid is preferably an inorganic acid, more preferably hydrochloric acid. When hydrochloric acid is used, its concentration may be adjusted as appropriate.
In the imine hydrolysis, the amount of acid used is preferably adjusted so that the mixture obtained after mixing with the acid is in the range of pH 0 to pH 4. In order to adjust the pH to such a range, when the acid is hydrochloric acid, for example, 0.8 to 1.5 mol of hydrochloric acid may be used with respect to 1 mol of compound (3).
The imine hydrolysis is preferably performed in a solvent. Examples of the solvent used for imine hydrolysis include the same solvents as those used for the reaction between the above-mentioned compound (1) and compound (2), and water, an aromatic solvent, or an ether solvent is preferable.
The amount of the solvent to be used is preferably 1 to 100 mL, more preferably 3 to 30 mL, per 1 g of compound (3).
The temperature at which imine hydrolysis is carried out is usually within the range of 0 to 80 ° C, preferably within the range of 5 to 60 ° C, and more preferably within the range of 10 to 40 ° C.
The time for performing imine hydrolysis depends on the type and concentration of the acid used and the temperature for performing imine hydrolysis, but is preferably in the range of 1 minute to 20 hours, more preferably in the range of 10 minutes to 10 hours. It is.
The method for mixing the materials in imine hydrolysis is not limited, and examples thereof include a method in which compound (3) and a solvent are mixed and an acid is added to the resulting mixture.
The optical purity of the compound (4-2) obtained by imine hydrolysis is about the same as the optical purity of the compound (3) subjected to imine hydrolysis. That is, when compound (5) is used as the optically active quaternary ammonium salt in the reaction between compound (1) and compound (2), the optical purity of compound (4-2) obtained is, for example, 40% e. e. 95% e.e. e. Less than, for example, 55% e.e. e. 95% e.e. e. For example 70% e.e. e. 90% e. e. Less than, for example, 75% e.e. e. 85% e. e. Is less than.
The resulting compound (4-2) may be isolated or used in the production method of the present invention without isolation. Moreover, after subjecting the reaction mixture obtained by imine hydrolysis to post-treatments such as neutralization, extraction washing, water washing, and concentration, it can also be subjected to the production method of the present invention.
 以下、実施例により本発明をさらに詳細に説明する。
<製造例1> ((E)−N−フェニルメチレングリシン エチルエステルの製造)
 グリシンエチルエステル塩酸塩13.8g(98.9mmol)とトルエン50gとを混合し、そこにジメチルスルホシキド10gを室温で加え、さらにベンズアルデヒド10.0g(94.2mmol)を加えた。得られた混合物を12℃で撹拌し、そこへ25重量%水酸化ナトリウム水溶液16.5g(水酸化ナトリウム104mmol)を3時間かけて滴下した。滴下終了後、得られた混合物を11℃~13℃で20時間攪拌した。反応終了後、反応混合物を5℃に冷却し、そこへ水11.4mLを滴下した。その後、攪拌を停止して分液を行い、得られた有機層を20重量%食塩水19gで洗浄した。有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧留去して(E)−N−フェニルメチレングリシン エチルエステルのトルエン溶液43.6g((E)−N−フェニルメチレングリシン エチルエステル含量16.5g)を得た(収率92%)。
<製造例2> (1−アミノ−2−ビニルシクロプロパンカルボン酸エチル(エチルエステルAと略記)の製造)
Figure JPOXMLDOC01-appb-I000018
 製造例1で得た(E)−N−フェニルメチレングリシン エチルエステルのトルエン溶液2.60g((E)−N−フェニルメチレングリシン エチルエステル含量:0.98g、5.14mmol)とトルエン10mLとを混合し、そこに(E)−1,4−ジブロモ−2−ブテン1.00g(4.68mmol)と式(5−6)で示される化合物0.028g(0.023mmol)とを室温で加えた。得られた混合物を0℃に冷却し、そこに50%水酸化カリウム水溶液5.25g(水酸化カリウム46.8mmol)を滴下し、0℃で20時間攪拌した。反応終了後、得られた混合物に水3mLを加え、攪拌を停止して分液し、得られた有機層を20重量%食塩水3mLで洗浄した。分液後、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチルをその鏡像異性体よりも多く含む混合物の有機層を得た。
 続いて、得られた有機層に1M−塩酸水4.7mLを加えて、室温で2時間攪拌してイミン加水分解を行い、反応終了後、分液して得られた有機層に水3mLを加えて抽出を行った。得られた水層を合わせ、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル塩酸塩をその鏡像異性体よりも多く含むエチルエステルAの水溶液7.93gを得た。得られた水溶液を、下記の高速液体クロマトグラフィー分析条件及び光学純度分析条件で分析し、エチルエステルAの収率及び光学純度を算出した。収率66%。光学純度79%e.e.
<高速液体クロマトグラフィー分析条件>
カラム:YMC Pack ODS−A−302(4.6×150mm,5μm)
 移動相:A=40mMKHPO水(pH3.5−HPO)、
     B=メタノール
     A/B=10%(0min)→10%(5min)→70%(25min)→70%(45min)
 流量:1.0mL/分
 検出器:波長220nm
 保持時間:11.7分 ((1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチル)
<光学純度分析条件>
 カラム:CHIRALPAK(ダイセル化学工業登録商標)AD−RH
     (4.6×150mm,5μm)
 移動相:A=20mMリン酸水素二カリウム水溶液(リン酸でpH8.0に調製)、
     B=アセトニトリル
     A/B=80/20
  流量:0.5mL/分
 検出器:波長215nm
 保持時間:(1R,2S)体=14.7分、(1S,2R)体=16.2分
<実施例1>
 製造例2で得たエチルエステルA(光学純度79%e.e.、3.1mmol)の水溶液8.17gにトルエン20mLを室温で加え、さらに48重量%水酸化ナトリウム水溶液0.39gを滴下した。滴下後、10分間攪拌した後、攪拌を停止して分液し、有機層を分取した。有機層に2−プロパノール10mLを加えて攪拌し、L−酒石酸0.46g(3.1mmol)を加えた。得られた混合物を終夜室温で攪拌した後、得られたスラリーを濾過した。濾過により取得した結晶をトルエン2mLと2−プロパノール0.5mLとの混合溶媒で洗浄し、減圧乾燥して(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩0.81g(2.6mmol)を得た(収率83%)。得られた結晶を製造例2に記載の光学純度分析条件で分析し、光学純度を求めた。光学純度90%e.e.
(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩
H−NMR(CDOD,400MHz)δppm:5.78−5.67(1H,m),5.35(1H,dd,J=1.4,17.1Hz),5.16(1H,dd,J=1.4,10.3Hz),4.42(2H,s),4.30−4.22(2H,m),2.34(1H,q,J=8.8Hz),1.73−1.64(2H,m),1.30(3H,t,J=6.8Hz).
 得られた(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩、トルエン及び水を混合し、これに25重量%水酸化ナトリウム水溶液を滴下する。得られる混合物を攪拌した後、有機層を分取することにより、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルを含むトルエン溶液が得られる。得られる(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのトルエン溶液に硫酸等の酸を混合することで、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルの塩が得られる。
<製造例3> (エチルエステルAの製造)
 製造例1で得た(E)−N−フェニルメチレングリシン エチルエステルのトルエン溶液2.60g((E)−N−フェニルメチレングリシン エチルエステル含量:0.98g、5.14mmol)とトルエン10mLとを混合し、そこに(E)−1,4−ジブロモ−2−ブテン1.00g(4.68mmol)と式(5−7)で示される化合物0.027g(0.023mmol)とを室温で加えた。得られた混合物を0℃に冷却し、そこに50重量%水酸化カリウム水溶液5.25g(水酸化カリウム46.8mmol)を滴下し、0℃で20時間攪拌した。反応終了後、得られた混合物に水3mLを加え、分液して得られた有機層を20重量%食塩水3mLで洗浄し、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチルをその鏡像異性体よりも多く含む有機層を得た。
 続いて、得られた有機層に1M塩酸4.7mLを加えて、室温で2時間攪拌してイミン加水分解を行い、反応終了後、分液して得られた有機層に水3mLを加えて抽出を行った。得られた水層を合わせ、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル塩酸塩をその鏡像異性体よりも多く含むエチルエステルAの水溶液7.93gを得た。得られた水溶液を製造例2に記載の高速液体クロマトグラフィー分析条件及び光学純度分析条件で分析し、エチルエステルAの収率及び光学純度を算出した。収率67%。光学純度84%e.e.
<実施例2>
 製造例3により得られたエチルエステルA(光学純度84%e.e.、3.1mmol)の水溶液8.25gにトルエン20mLを室温で加え、その混合物に48重量%水酸化ナトリウム水溶液0.39gを滴下した。滴下後、10分攪拌し、分液して有機層を取り出した。その有機層に2−プロパノール10mLを加え、得られた混合物にD−10−カンファースルホン酸0.73g(3.1mmol)を加え、終夜室温で攪拌した後、減圧濃縮して2−プロパノールを留去させ、結晶を析出させた。こうして得られたスラリーを2時間攪拌して、濾過した。得られた結晶をトルエン2mLで洗浄し、減圧乾燥して(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのD−10−カンファースルホン酸塩0.95g(2.5mmol)を得た(収率78%)。得られた結晶を製造例2に記載の光学純度分析条件で分析し、光学純度を求めた。光学純度99%e.e.(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのD−10−カンファースルホン酸塩
H−NMR(CDOD,400MHz)δppm:5.79−5.69(1H,m),5.40(1H,dd,J=1.4,17.1Hz),5.23(1H,dd,J=1.4,10.3Hz),4.35−4.23(2H,m),2.76(1H,d,J=15.1Hz),2.70−2.60(1H,m),2.43−2.28(2H,m),2.08−1.96(2H,m),1.89(1H,d,J=18.6Hz),1.82−1.68(2H,m),1.65−1.56(1H,m),1.45−1.36(1H,m),1.31(3H,t,J=6.8Hz),1.12(3H,s),0.85(3H,s).
(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのD−10−カンファースルホン酸塩、トルエン及び水を混合し、ここに25重量%水酸化ナトリウム水溶液を滴下する。得られる混合物を攪拌した後、有機層を分取することにより、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルを含むトルエン溶液が得られる。得られる(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのトルエン溶液に硫酸等の酸を混合することで、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルの塩が得られる。
<製造例4> (エチルエステルAの製造)
 製造例1で得た(E)−N−フェニルメチレングリシン エチルエステルのトルエン溶液75.0g((E)−N−フェニルメチレングリシン エチルエステル含量:18.8g、98.2mmol)とトルエン84gとを混合し、そこに(E)−1,4−ジブロモ−2−ブテン20.0g(93.5mmol)、グリシンエチルエステル塩酸塩1.31g(9.4mmol)、及び式(5−1)で示される化合物0.29g(0.28mmol)を室温で加えた。得られた混合物を0℃に冷却し、そこに50重量%水酸化カリウム水溶液42.0g(水酸化カリウム 748mmol)を3時間かけて滴下し、0℃で16時間攪拌した。反応終了後、得られた混合物に水60gを加え、攪拌を停止して分液し、得られた有機層を20重量%食塩水60gで洗浄した。分液後、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチルをその鏡像異性体よりも多く含む有機層を得た。
 続いて、得られた有機層に室温で水27.0gを加えた後、35重量%塩酸8.77gを室温で20分間かけて滴下し、室温で2時間イミン加水分解を行った。イミン加水分解終了後、水層を分取した後、有機層に0.5重量%塩酸18.3gを室温で加え、抽出した。得られた水層を合わせ、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル塩酸塩をその鏡像異性体よりも多く含むエチルエステルAの水溶液66.6gを得た。得られた水溶液を製造例2に記載の高速液体クロマトグラフィー分析条件及び光学純度分析条件で分析し、エチルエステルAの収率及び光学純度を算出した。収率65%。光学純度78%e.e.
<実施例3>
 製造例4により得られたエチルエステルA(光学純度78%e.e.、9.05mmol)の水溶液10.0gを分取し、分取した水溶液にトルエン12gを室温で流入し、その混合物に48重量%水酸化ナトリウム水溶液1.11gを滴下した。滴下後、20分攪拌し、攪拌を停止して有機層を分取した。得られた水層にトルエン3.0gを加えて抽出を行った。得られた有機層と、先に分取した有機層とを合わせ、硫酸マグネシウムで乾燥した後、有機層にエタノール4.5gを加え、さらにL−酒石酸1.36g(9.05mmol)を加えた。得られた混合物を終夜室温で攪拌した後、アイスバスで冷却して5時間攪拌した。得られたスラリーを濾過して結晶を取り出し、結晶をトルエン3.0gとエタノール0.3gとの混合溶媒で洗浄し、減圧乾燥して(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩2.09g(6.85mmol)を得た(収率76%)。得られた結晶を製造例2に記載の光学純度分析条件で分析することで、光学純度を求めた。光学純度97%e.e.。
<製造例5> (エチルエステルAの製造)
 製造例1で得た(E)−N−フェニルメチレングリシン エチルエステルのトルエン溶液141.6g((E)−N−フェニルメチレングリシン エチルエステル含量:33.8g、177mmol)とトルエン180gとを混合し、そこに(E)−1,4−ジブロモ−2−ブテン36.0g(168mmol)及び式(5−1)で示される化合物0.53g(0.51mmol)を室温で加えた。得られた混合物を0℃に冷却し、そこに50重量%水酸化カリウム水溶液151g(水酸化カリウム 1346mmol)を3時間かけて滴下し、0℃で24時間攪拌した。反応終了後、得られた混合物に水108gを加え、攪拌を停止して分液し、得られた有機層を20重量%食塩水108gで洗浄した。分液後、(1R,2S)−1−(N−フェニルメチレン)アミノ−2−ビニルシクロプロパンカルボン酸エチルをその鏡像異性体よりも多く含む有機層を得た。
 続いて、得られた有機層に室温で水48.6gを加えた後、35重量%塩酸15.8gを室温で20分かけて滴下し、室温で2時間イミン加水分解を行った。イミン加水分解終了後、水層を分取した後、有機層に0.5重量%塩酸水溶液32.4gを室温で加え、抽出した。得られた水層を合わせ、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチル塩酸塩をその鏡像異性体よりも多く含むエチルエステルAの水溶液118.5gを得た。得られた水溶液を製造例2に記載の高速液体クロマトグラフィー分析条件及び光学純度分析条件で分析し、エチルエステルAの収率及び光学純度を算出した。収率64%。光学純度76%e.e.。
<実施例4>
 製造例5で得たエチルエステルA(光学純度76%e.e.)、14.9mmol)の水溶液15.6gを分取し、分取した水溶液に酢酸イソプロピル15gを室温で加え、さらに48重量%水酸化ナトリウム水溶液1.85gを滴下した。滴下後、得られた混合物を20分間攪拌し、有機層を分取した。得られた水層に酢酸イソプロピル5.0gを加えて抽出を行った。抽出により得られた有機層と、先に分取した有機層とを合わせ、硫酸マグネシウムで乾燥し、エチルエステルAの酢酸イソプロピル溶液を得た。
 得られた溶液のうち、5.97gを分取し(エチルエステルA、2.96mmol)、そこにL−酒石酸0.44g(2.6mmol)を加えて攪拌した。その混合物に、エタノールを2mL加えて、終夜室温で攪拌した後、アイスバスで冷却して2時間攪拌した。そのスラリーの上澄み液を製造例2に記載の光学純度分析条件で分析すると、その光学純度は19%e.e.であった。このスラリーを濾過することで、光学純度90%e.e.以上の(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩を得ることができる。
<実施例5>
 製造例5で得たエチルエステルA(光学純度76%e.e.、17.8mmol)を分取し、分取した水溶液にジイソプロピルエーテル18gを室温で加えて攪拌し、その混合物に48重量%水酸化ナトリウム水溶液2.22gを滴下した。滴下後、20分攪拌し、有機層を分取した。得られた水層にジイソプロピルエーテル6.0gを加えて抽出を行った。抽出により得られた有機層と、先に分取した有機層とを合わせ、硫酸マグネシウムで乾燥し、エチルエステルAのジイソプロピルエーテル溶液を得た。
 得られた溶液のうち、9.46gを分取し(エチルエステルA、5.66mmol)、その溶液をエタノール2.0g、2−プロパノール2.0g及びL−酒石酸0.85g(5.66mmol)の混合物に室温で滴下した後、室温で1時間攪拌し、さらにアイスバスで冷却して2時間攪拌した。得られたスラリーの上澄み液を製造例2記載の光学純度分析条件で分析すると、その光学純度は41%e.e.であった。このスラリーを濾過することで、光学純度90%e.e.以上の結晶を得ることができる。
<実施例6>
 製造例5で得たエチルエステルAの水溶液28.78gを分取し、分取した水溶液にトルエン26.2gを室温で加えて攪拌し、得られた混合物に48重量%水酸化ナトリウム水溶液3.24gを滴下した。滴下後、30分攪拌し、攪拌を停止して有機層を分取した。得られた水層にトルエン8.8gを流入して抽出を行った。抽出により得られた有機層と、先に分取した有機層とを合わせ、20重量%食塩水8.8gで洗浄し、硫酸マグネシウムで乾燥してエチルエステルAのトルエン溶液を得た。
 得られたトルエン溶液のうち、34.5gを分取し(エチルエステルA、20.3mmol)、エタノール10.5gとL−酒石酸3.50g(23.3mmol)との混合物に30℃で滴下した。得られた混合物を室温で15時間攪拌した。こうして得られたスラリーを濾過して結晶を取り出し、得られた結晶をトルエン7.0gとエタノール2.1gとの混合溶媒で洗浄し、減圧乾燥して結晶5.49gを得た。この結晶を製造例2記載の定量分析条件で分析することで、(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩の含量を求めた。(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩の含量は5.00g(16.4mmol)であった(収率81%)。得られた結晶を製造例2記載の光学純度分析条件で分析することで、光学純度を求めた。光学純度94%e.e.
 得られた結晶のうち、1.50g((1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩、含量1.37g(4.48mmol))を分取し、分取した結晶にエタノール6.0gとメタノール6.0gとを加えて攪拌し、40℃のバスで加熱して結晶を溶解させた。得られた溶液を40℃のバスで加熱したまま、減圧濃縮することで溶媒7gを留去し、得られた濃縮物に(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩(光学純度100%e.e.)を接種した。得られたスラリーを室温に冷却し、そのスラリーにトルエン6.0gを滴下した。このスラリーを室温で2時間攪拌した後、アイスバスで冷却し、2時間攪拌した。こうして得られたスラリーを濾過して結晶を取り出し、得られた結晶をトルエン1.5gとエタノール0.75gとの混合溶媒で洗浄し、減圧乾燥して(1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エチルのL−酒石酸塩1.08g(3.54mmol)を得た。収率79%。得られた結晶を製造例2記載の光学純度分析条件で分析することで、その光学純度を求めた。光学純度100%e.e.
Hereinafter, the present invention will be described in more detail with reference to examples.
<Production Example 1> (Production of (E) -N-phenylmethyleneglycine ethyl ester)
13.8 g (98.9 mmol) of glycine ethyl ester hydrochloride and 50 g of toluene were mixed, 10 g of dimethyl sulfoxide was added thereto at room temperature, and 10.0 g (94.2 mmol) of benzaldehyde was further added. The obtained mixture was stirred at 12 ° C., and 16.5 g of a 25 wt% aqueous sodium hydroxide solution (104 mmol of sodium hydroxide) was added dropwise thereto over 3 hours. After completion of the dropwise addition, the obtained mixture was stirred at 11 to 13 ° C. for 20 hours. After completion of the reaction, the reaction mixture was cooled to 5 ° C., and 11.4 mL of water was added dropwise thereto. Then, stirring was stopped and liquid separation was performed, and the obtained organic layer was washed with 19 g of 20 wt% saline. After the organic layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and 43.6 g of (E) -N-phenylmethyleneglycine ethyl ester in toluene solution ((E) -N-phenylmethyleneglycine ethyl ester content 16.5 g). ) Was obtained (yield 92%).
<Production Example 2> (Production of ethyl 1-amino-2-vinylcyclopropanecarboxylate (abbreviated as ethyl ester A))
Figure JPOXMLDOC01-appb-I000018
2.60 g ((E) -N-phenylmethyleneglycine ethyl ester content: 0.98 g, 5.14 mmol) of toluene solution of (E) -N-phenylmethyleneglycine ethyl ester obtained in Production Example 1 and 10 mL of toluene. Then, 1.00 g (4.68 mmol) of (E) -1,4-dibromo-2-butene and 0.028 g (0.023 mmol) of the compound represented by formula (5-6) were added thereto at room temperature. It was. The obtained mixture was cooled to 0 ° C., and 5.25 g of a 50% aqueous potassium hydroxide solution (46.8 mmol of potassium hydroxide) was added dropwise thereto, followed by stirring at 0 ° C. for 20 hours. After completion of the reaction, 3 mL of water was added to the resulting mixture, stirring was stopped and the liquids were separated, and the obtained organic layer was washed with 3 mL of 20 wt% brine. After separation, an organic layer of a mixture containing more ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
Subsequently, 4.7 mL of 1M aqueous hydrochloric acid was added to the obtained organic layer, and the mixture was stirred at room temperature for 2 hours to carry out imine hydrolysis. After completion of the reaction, 3 mL of water was added to the organic layer obtained by liquid separation. In addition, extraction was performed. The obtained aqueous layers were combined to obtain 7.93 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer. The obtained aqueous solution was analyzed under the following high performance liquid chromatography analysis conditions and optical purity analysis conditions, and the yield and optical purity of ethyl ester A were calculated. Yield 66%. Optical purity 79% e.e. e.
<High-performance liquid chromatography analysis conditions>
Column: YMC Pack ODS-A-302 (4.6 × 150 mm, 5 μm)
Mobile phase: A = 40 mM KH 2 PO 4 water (pH 3.5-H 3 PO 4 ),
B = methanol A / B = 10% (0 min) → 10% (5 min) → 70% (25 min) → 70% (45 min)
Flow rate: 1.0 mL / min Detector: Wavelength 220 nm
Retention time: 11.7 minutes (ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate)
<Optical purity analysis conditions>
Column: CHIRALPAK (registered trademark of Daicel Chemical Industries) AD-RH
(4.6 × 150mm, 5μm)
Mobile phase: A = 20 mM dipotassium hydrogen phosphate aqueous solution (prepared to pH 8.0 with phosphoric acid),
B = acetonitrile A / B = 80/20
Flow rate: 0.5 mL / min Detector: Wavelength 215 nm
Retention time: (1R, 2S) form = 14.7 minutes, (1S, 2R) form = 16.2 minutes <Example 1>
To 8.17 g of an aqueous solution of ethyl ester A (optical purity 79% ee, 3.1 mmol) obtained in Production Example 2, 20 mL of toluene was added at room temperature, and 0.39 g of a 48 wt% aqueous sodium hydroxide solution was further added dropwise. . After dripping, after stirring for 10 minutes, stirring was stopped and liquid-separated and the organic layer was fractionated. To the organic layer, 10 mL of 2-propanol was added and stirred, and 0.46 g (3.1 mmol) of L-tartaric acid was added. The resulting mixture was stirred overnight at room temperature and then the resulting slurry was filtered. The crystals obtained by filtration were washed with a mixed solvent of 2 mL of toluene and 0.5 mL of 2-propanol, and dried under reduced pressure. L-Tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate 0.81 g (2.6 mmol) was obtained (yield 83%). The obtained crystals were analyzed under the optical purity analysis conditions described in Production Example 2 to determine the optical purity. Optical purity 90% e.e. e.
L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate
1 H-NMR (CD 3 OD, 400 MHz) δ ppm: 5.78-5.67 (1H, m), 5.35 (1H, dd, J = 1.4, 17.1 Hz), 5.16 (1H , Dd, J = 1.4, 10.3 Hz), 4.42 (2H, s), 4.30-4.22 (2H, m), 2.34 (1H, q, J = 8.8 Hz) , 1.73-1.64 (2H, m), 1.30 (3H, t, J = 6.8 Hz).
The obtained ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate is mixed with L-tartrate, toluene and water, and 25% by weight aqueous sodium hydroxide solution is added dropwise thereto. After stirring the resulting mixture, the organic layer is separated to obtain a toluene solution containing ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate. (1R, 2S) -1-Amino-2-vinylcyclopropanecarboxylic acid is mixed with an obtained toluene solution of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate to obtain (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid. The salt of ethyl acid is obtained.
<Production Example 3> (Production of ethyl ester A)
2.60 g ((E) -N-phenylmethyleneglycine ethyl ester content: 0.98 g, 5.14 mmol) of toluene solution of (E) -N-phenylmethyleneglycine ethyl ester obtained in Production Example 1 and 10 mL of toluene. Then, 1.00 g (4.68 mmol) of (E) -1,4-dibromo-2-butene and 0.027 g (0.023 mmol) of the compound represented by formula (5-7) were added thereto at room temperature. It was. The obtained mixture was cooled to 0 ° C., and 5.25 g of a 50 wt% aqueous potassium hydroxide solution (46.8 mmol of potassium hydroxide) was added dropwise thereto and stirred at 0 ° C. for 20 hours. After completion of the reaction, 3 mL of water was added to the resulting mixture, and the organic layer obtained by liquid separation was washed with 3 mL of 20 wt% brine, and (1R, 2S) -1- (N-phenylmethylene) amino- An organic layer containing more ethyl 2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
Subsequently, 4.7 mL of 1M hydrochloric acid was added to the obtained organic layer, and the mixture was stirred at room temperature for 2 hours to carry out imine hydrolysis. After completion of the reaction, 3 mL of water was added to the organic layer obtained by liquid separation. Extraction was performed. The obtained aqueous layers were combined to obtain 7.93 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer. The obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 67%. Optical purity 84% e.e. e.
<Example 2>
To 8.25 g of an aqueous solution of ethyl ester A (optical purity 84% ee, 3.1 mmol) obtained in Production Example 3, 20 mL of toluene was added at room temperature, and 0.39 g of 48 wt% aqueous sodium hydroxide solution was added to the mixture. Was dripped. After dropping, the mixture was stirred for 10 minutes and separated to take out the organic layer. 10 mL of 2-propanol was added to the organic layer, 0.73 g (3.1 mmol) of D-10-camphorsulfonic acid was added to the resulting mixture, and the mixture was stirred overnight at room temperature and concentrated under reduced pressure to distill 2-propanol. Crystallized out. The slurry thus obtained was stirred for 2 hours and filtered. The obtained crystals were washed with 2 mL of toluene and dried under reduced pressure. 0.95 g (2.5 mmol) of D-10-camphorsulfonate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate (Yield 78%). The obtained crystals were analyzed under the optical purity analysis conditions described in Production Example 2 to determine the optical purity. Optical purity 99% e.e. e. D-10-camphorsulfonate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate
1 H-NMR (CD 3 OD, 400 MHz) δ ppm: 5.79-5.69 (1H, m), 5.40 (1H, dd, J = 1.4, 17.1 Hz), 5.23 (1H , Dd, J = 1.4, 10.3 Hz), 4.35-4.23 (2H, m), 2.76 (1H, d, J = 15.1 Hz), 2.70-2.60 ( 1H, m), 2.43-2.28 (2H, m), 2.08-1.96 (2H, m), 1.89 (1H, d, J = 18.6 Hz), 1.82- 1.68 (2H, m), 1.65 to 1.56 (1H, m), 1.45 to 1.36 (1H, m), 1.31 (3H, t, J = 6.8 Hz), 1.12 (3H, s), 0.85 (3H, s).
D-10-camphorsulfonate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, toluene and water are mixed, and a 25 wt% aqueous sodium hydroxide solution is added dropwise thereto. After stirring the resulting mixture, the organic layer is separated to obtain a toluene solution containing ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate. (1R, 2S) -1-Amino-2-vinylcyclopropanecarboxylic acid is mixed with an obtained toluene solution of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate to obtain (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid. The salt of ethyl acid is obtained.
<Production Example 4> (Production of ethyl ester A)
75.0 g ((E) -N-phenylmethyleneglycine ethyl ester content: 18.8 g, 98.2 mmol) of toluene solution of (E) -N-phenylmethyleneglycine ethyl ester obtained in Production Example 1 and 84 g of toluene (E) -1,4-dibromo-2-butene 20.0 g (93.5 mmol), glycine ethyl ester hydrochloride 1.31 g (9.4 mmol), and the formula (5-1) 0.29 g (0.28 mmol) of the compound to be added at room temperature. The obtained mixture was cooled to 0 ° C, and 42.0 g of a 50 wt% aqueous potassium hydroxide solution (748 mmol of potassium hydroxide) was added dropwise over 3 hours, followed by stirring at 0 ° C for 16 hours. After completion of the reaction, 60 g of water was added to the resulting mixture, stirring was stopped and the liquids were separated, and the obtained organic layer was washed with 60 g of 20 wt% brine. After liquid separation, an organic layer containing more ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
Subsequently, after 27.0 g of water was added to the obtained organic layer at room temperature, 8.77 g of 35 wt% hydrochloric acid was added dropwise at room temperature over 20 minutes, and imine hydrolysis was performed at room temperature for 2 hours. After completion of the imine hydrolysis, the aqueous layer was separated, and 18.3 g of 0.5 wt% hydrochloric acid was added to the organic layer at room temperature for extraction. The obtained aqueous layers were combined to obtain 66.6 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer. The obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 65%. Optical purity 78% e.e. e.
<Example 3>
10.0 g of an aqueous solution of ethyl ester A (optical purity 78% ee, 9.05 mmol) obtained in Production Example 4 was fractionated, and 12 g of toluene was poured into the separated aqueous solution at room temperature. 1.11 g of a 48 wt% aqueous sodium hydroxide solution was added dropwise. After dropping, the mixture was stirred for 20 minutes, stirring was stopped, and the organic layer was separated. Extraction was performed by adding 3.0 g of toluene to the obtained aqueous layer. The obtained organic layer and the previously separated organic layer were combined and dried over magnesium sulfate, 4.5 g of ethanol was added to the organic layer, and 1.36 g (9.05 mmol) of L-tartaric acid was further added. . The resulting mixture was stirred overnight at room temperature, then cooled in an ice bath and stirred for 5 hours. The obtained slurry was filtered to take out crystals, washed with a mixed solvent of 3.0 g of toluene and 0.3 g of ethanol, and dried under reduced pressure (1R, 2S) -1-amino-2-vinylcyclopropane. 2.09 g (6.85 mmol) of L-tartrate salt of ethyl carboxylate was obtained (76% yield). By analyzing the obtained crystals under the optical purity analysis conditions described in Production Example 2, the optical purity was determined. Optical purity 97% e.e. e. .
<Production Example 5> (Production of ethyl ester A)
141.6 g ((E) -N-phenylmethyleneglycine ethyl ester content: 33.8 g, 177 mmol) of toluene solution of (E) -N-phenylmethyleneglycine ethyl ester obtained in Production Example 1 was mixed with 180 g of toluene. Then, 36.0 g (168 mmol) of (E) -1,4-dibromo-2-butene and 0.53 g (0.51 mmol) of the compound represented by the formula (5-1) were added thereto at room temperature. The obtained mixture was cooled to 0 ° C., and 151 g of a 50 wt% potassium hydroxide aqueous solution (potassium hydroxide 1346 mmol) was added dropwise over 3 hours, followed by stirring at 0 ° C. for 24 hours. After completion of the reaction, 108 g of water was added to the resulting mixture, stirring was stopped and the liquids were separated, and the obtained organic layer was washed with 108 g of 20 wt% brine. After liquid separation, an organic layer containing more ethyl (1R, 2S) -1- (N-phenylmethylene) amino-2-vinylcyclopropanecarboxylate than its enantiomer was obtained.
Subsequently, after 48.6 g of water was added to the obtained organic layer at room temperature, 15.8 g of 35 wt% hydrochloric acid was added dropwise at room temperature over 20 minutes, and imine hydrolysis was performed at room temperature for 2 hours. After completion of imine hydrolysis, the aqueous layer was separated, and 32.4 g of 0.5 wt% aqueous hydrochloric acid solution was added to the organic layer at room temperature for extraction. The obtained aqueous layers were combined to obtain 118.5 g of an aqueous solution of ethyl ester A containing (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ethyl hydrochloride more than its enantiomer. The obtained aqueous solution was analyzed under the high performance liquid chromatography analysis conditions and optical purity analysis conditions described in Production Example 2, and the yield and optical purity of ethyl ester A were calculated. Yield 64%. Optical purity 76% e.e. e. .
<Example 4>
15.6 g of an aqueous solution of ethyl ester A (optical purity 76% ee) obtained in Production Example 5 (14.9 mmol) was fractionated, and 15 g of isopropyl acetate was added to the separated aqueous solution at room temperature, and an additional 48 wt. A 1.85 g% aqueous sodium hydroxide solution was added dropwise. After the dropwise addition, the resulting mixture was stirred for 20 minutes, and the organic layer was separated. Extraction was performed by adding 5.0 g of isopropyl acetate to the obtained aqueous layer. The organic layer obtained by the extraction and the organic layer separated earlier were combined and dried over magnesium sulfate to obtain an isopropyl acetate solution of ethyl ester A.
Of the obtained solution, 5.97 g was collected (ethyl ester A, 2.96 mmol), and 0.44 g (2.6 mmol) of L-tartaric acid was added thereto and stirred. 2 mL of ethanol was added to the mixture and stirred overnight at room temperature, then cooled in an ice bath and stirred for 2 hours. When the supernatant of the slurry was analyzed under the optical purity analysis conditions described in Production Example 2, the optical purity was 19% e.e. e. Met. By filtering the slurry, an optical purity of 90% e.e. e. The above L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate can be obtained.
<Example 5>
The ethyl ester A (optical purity 76% ee, 17.8 mmol) obtained in Production Example 5 was fractionated, and 18 g of diisopropyl ether was added to the separated aqueous solution at room temperature, followed by stirring. Sodium hydroxide aqueous solution 2.22g was dripped. After dropping, the mixture was stirred for 20 minutes, and the organic layer was separated. Extraction was performed by adding 6.0 g of diisopropyl ether to the obtained aqueous layer. The organic layer obtained by extraction was combined with the previously separated organic layer and dried over magnesium sulfate to obtain a diisopropyl ether solution of ethyl ester A.
Of the resulting solution, 9.46 g was fractionated (ethyl ester A, 5.66 mmol), and the solution was ethanol 2.0 g, 2-propanol 2.0 g and L-tartaric acid 0.85 g (5.66 mmol). The mixture was added dropwise to the mixture at room temperature, stirred at room temperature for 1 hour, further cooled in an ice bath and stirred for 2 hours. When the supernatant of the obtained slurry was analyzed under the optical purity analysis conditions described in Production Example 2, the optical purity was 41% e.e. e. Met. By filtering the slurry, an optical purity of 90% e.e. e. The above crystals can be obtained.
<Example 6>
28.78 g of the aqueous solution of ethyl ester A obtained in Production Example 5 was collected, 26.2 g of toluene was added to the collected aqueous solution at room temperature, and the mixture was stirred. 24 g was added dropwise. After dropping, the mixture was stirred for 30 minutes, and stirring was stopped to separate the organic layer. Extraction was performed by flowing 8.8 g of toluene into the obtained aqueous layer. The organic layer obtained by extraction was combined with the previously separated organic layer, washed with 8.8 g of 20% by weight saline, and dried over magnesium sulfate to obtain a toluene solution of ethyl ester A.
Of the obtained toluene solution, 34.5 g was collected (ethyl ester A, 20.3 mmol), and added dropwise at 30 ° C. to a mixture of 10.5 g of ethanol and 3.50 g (23.3 mmol) of L-tartaric acid. . The resulting mixture was stirred at room temperature for 15 hours. The slurry thus obtained was filtered to take out crystals, and the obtained crystals were washed with a mixed solvent of 7.0 g of toluene and 2.1 g of ethanol and dried under reduced pressure to obtain 5.49 g of crystals. By analyzing the crystals under the quantitative analysis conditions described in Production Example 2, the content of L-tartrate salt of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was determined. The content of L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate was 5.00 g (16.4 mmol) (yield 81%). By analyzing the obtained crystals under the optical purity analysis conditions described in Production Example 2, the optical purity was determined. Optical purity 94% e.e. e.
Among the obtained crystals, 1.50 g (L-tartrate of ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate, content 1.37 g (4.48 mmol)) was fractionated, Ethanol (6.0 g) and methanol (6.0 g) were added to the collected crystals, stirred, and heated in a 40 ° C. bath to dissolve the crystals. The obtained solution was heated in a bath at 40 ° C. and concentrated under reduced pressure to distill off 7 g of the solvent, and the resulting concentrate was ethyl (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylate. Of L-tartrate (optical purity 100% ee). The resulting slurry was cooled to room temperature, and 6.0 g of toluene was added dropwise to the slurry. The slurry was stirred at room temperature for 2 hours, then cooled in an ice bath and stirred for 2 hours. The slurry thus obtained was filtered to take out crystals. The obtained crystals were washed with a mixed solvent of 1.5 g of toluene and 0.75 g of ethanol, dried under reduced pressure, and (1R, 2S) -1-amino-2. -1.08 g (3.54 mmol) of L-tartrate of ethyl vinylcyclopropanecarboxylate was obtained. Yield 79%. By analyzing the obtained crystal under the optical purity analysis conditions described in Production Example 2, the optical purity was determined. Optical purity 100% e. e.
 光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルは、例えば、抗ウイルス剤などの医薬品の合成中間体として有用である。
 本発明は、光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造方法を提供することから有用である。
The optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester is useful, for example, as a synthetic intermediate for pharmaceuticals such as antiviral agents.
The present invention is useful because it provides a method for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester.

Claims (9)

  1.  1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸とを溶媒中で反応させ、得られるジアステレオマー塩混合物の一方のジアステレオマー塩を単離し、単離したジアステレオマー塩を無機酸又は塩基で処理する光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルの製造方法。 1-amino-2-vinylcyclopropanecarboxylic acid ester is reacted with optically active tartaric acid or optically active camphorsulfonic acid in a solvent, and one diastereomeric salt of the resulting diastereomeric salt mixture is isolated. A process for producing an optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester, wherein the isolated diastereomeric salt is treated with an inorganic acid or base.
  2.  1−アミノ−2−ビニルシクロプロパンカルボン酸エステルが式(4−2)
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは、炭素数1~12のアルキル基又は炭素数2~12のアルケニル基を表す。)
    で示される化合物であり、得られる光学活性1−アミノ−2−ビニルシクロプロパンカルボン酸エステルが式(4)
    Figure JPOXMLDOC01-appb-I000002
    (式中、Rは、上記と同義であり、C*1及びC*2は不斉炭素原子を表し、C*1がR配置である場合はC*2はS配置であり、C*1がS配置である場合はC*2はR配置である。)
    で示される化合物である請求項1に記載の方法。
    1-amino-2-vinylcyclopropanecarboxylic acid ester is represented by the formula (4-2)
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, R 1 represents an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms.)
    And the optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester obtained is represented by the formula (4):
    Figure JPOXMLDOC01-appb-I000002
    Wherein R 1 is as defined above, C * 1 and C * 2 represent an asymmetric carbon atom, C * 2 is S configuration when C * 1 is R configuration, C * When 1 is in S configuration, C * 2 is in R configuration.)
    The method of Claim 1 which is a compound shown by these.
  3.  1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸との反応が、芳香族溶媒、ケトン溶媒、エステル溶媒、アルコール溶媒、エーテル溶媒、又はこれらの混合物中で行われる請求項1に記載の方法。 The reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester with optically active tartaric acid or optically active camphorsulfonic acid is an aromatic solvent, ketone solvent, ester solvent, alcohol solvent, ether solvent, or a mixture thereof. The method according to claim 1, wherein the method is carried out in a medium.
  4.  1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸との反応が、芳香族溶媒とアルコール溶媒との混合溶媒中で行われる請求項1に記載の方法。 The reaction of 1-amino-2-vinylcyclopropanecarboxylic acid ester with optically active tartaric acid or optically active camphorsulfonic acid is performed in a mixed solvent of an aromatic solvent and an alcohol solvent. Method.
  5.  式(1)
    Figure JPOXMLDOC01-appb-I000003
    (式中、Rは、炭素数1~12のアルキル基又は炭素数2~12のアルケニル基を表し、Arは、置換されていてもよいフェニル基又は置換されていてもよいナフチル基を表す。)
    で示される化合物と、式(2)
    Figure JPOXMLDOC01-appb-I000004
    (式中、Y及びYはそれぞれ独立に、ハロゲン原子、炭素数1~6のアルカンスルホニルオキシ基、炭素数1~6のペルフルオロアルカンスルホニルオキシ基又はベンゼンスルホニルオキシ基を表す。ここで、該ベンゼンスルホニルオキシ基に含まれる水素原子はそれぞれ独立に、炭素数1~6のアルキル基、ハロゲン原子及びニトロ基からなる群から選ばれる基で置換されていてもよい。)
    で示される化合物とを、光学活性な4級アンモニウム塩の存在下で反応させ、得られる式(3)
    Figure JPOXMLDOC01-appb-I000005
    (式中、Ar及びRは、上記と同義である。)
    で示される化合物をイミン加水分解して式(4−2)
    Figure JPOXMLDOC01-appb-I000006
    (式中、Rは、上記と同義である。)
    で示される化合物を得、次いで、式(4−2)で示される化合物を光学活性な酒石酸又は光学活性なカンファースルホン酸と溶媒中で反応させ、得られるジアステレオマー塩混合物の一方のジアステレオマー塩を単離し、単離したジアステレオマー塩を無機酸又は塩基で処理する式(4)
    Figure JPOXMLDOC01-appb-I000007
    (式中、Rは、上記と同義であり、C*1及びC*2は不斉炭素原子を表し、C*1がR配置である場合はC*2はS配置であり、C*1がS配置である場合はC*2はR配置である。)
    で示される化合物の製造方法。
    Formula (1)
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, R 1 represents an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms, and Ar 1 represents an optionally substituted phenyl group or an optionally substituted naphthyl group. To express.)
    And a compound of formula (2)
    Figure JPOXMLDOC01-appb-I000004
    Wherein Y 1 and Y 2 each independently represent a halogen atom, an alkanesulfonyloxy group having 1 to 6 carbon atoms, a perfluoroalkanesulfonyloxy group having 1 to 6 carbon atoms or a benzenesulfonyloxy group. The hydrogen atom contained in the benzenesulfonyloxy group may be independently substituted with a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom and a nitro group.
    And a compound represented by the formula (3) obtained by reacting in the presence of an optically active quaternary ammonium salt.
    Figure JPOXMLDOC01-appb-I000005
    (In the formula, Ar 1 and R 1 are as defined above.)
    And the compound represented by formula (4-2)
    Figure JPOXMLDOC01-appb-I000006
    (Wherein R 1 has the same meaning as above).
    Then, the compound represented by formula (4-2) is reacted with optically active tartaric acid or optically active camphorsulfonic acid in a solvent, and one diastereomer of the resulting diastereomeric salt mixture is obtained. Formula (4) in which a mer salt is isolated and the isolated diastereomeric salt is treated with an inorganic acid or base
    Figure JPOXMLDOC01-appb-I000007
    Wherein R 1 is as defined above, C * 1 and C * 2 represent an asymmetric carbon atom, C * 2 is S configuration when C * 1 is R configuration, C * When 1 is in S configuration, C * 2 is in R configuration.)
    The manufacturing method of the compound shown by these.
  6.  光学活性な4級アンモニウム塩が、式(5)
    Figure JPOXMLDOC01-appb-I000008
    (式中、Ar及びAr2’はそれぞれ独立に、置換されていてもよいフェニル基を表す。Arは、置換されていてもよい炭素数6~20の芳香族炭化水素基又は置換されていてもよい炭素数1~20の脂肪族炭化水素基を表す。Rは、置換されていてもよい炭素数1~12の脂肪族炭化水素基を表し、Rは、炭素数1~12の直鎖状の炭化水素基を表すか、RとRとが一緒になって、炭素数2~6のポリメチレン基を形成する。R、R4’、R、R5’、R及びR6’はそれぞれ独立に、水素原子、炭素数1~12の脂肪族炭化水素基又は炭素数1~12のアルコキシ基を表す。*は、不斉炭素原子を表す。Xは、1価の陰イオンを表す。)
    で示される光学活性な化合物である請求項5記載の方法。
    An optically active quaternary ammonium salt has the formula (5)
    Figure JPOXMLDOC01-appb-I000008
    (Wherein, Ar 2 and Ar 2 'are each independently, .Ar 3 representing a phenyl group which may be substituted is an aromatic hydrocarbon group or substituted optionally substituted 6 carbon atoms also be ~ 20 R 2 represents an optionally substituted aliphatic hydrocarbon group having 1 to 12 carbon atoms, and R 3 represents an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms. 12 represents a straight-chain hydrocarbon group, or R 2 and R 3 together form a polymethylene group having 2 to 6 carbon atoms: R 4 , R 4 ′ , R 5 , R 5 ′ , R 6 and R 6 ′ each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, * represents an asymmetric carbon atom, X Represents a monovalent anion.)
    The method of Claim 5 which is an optically active compound shown by these.
  7.  Ar及びAr2’が共に、3,5−ビス(トリフルオロメチル)フェニル基であり、R及びR6’が共に水素原子であり、R及びRがそれぞれ独立に炭素数1~12のアルキル基である請求項6に記載の方法。 Ar 2 and Ar 2 ′ are both 3,5-bis (trifluoromethyl) phenyl groups, R 6 and R 6 ′ are both hydrogen atoms, and R 2 and R 3 are each independently of 1 to The method of claim 6, which is 12 alkyl groups.
  8.  Arが、炭素数1~12のアルコキシ基を有する炭素数6~20の芳香族炭化水素基又は炭素数1~12のアルコキシ基を有する炭素数1~20の脂肪族炭化水素基である請求項6に記載の方法。 Ar 3 is an aromatic hydrocarbon group having 6 to 20 carbon atoms having an alkoxy group having 1 to 12 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms having an alkoxy group having 1 to 12 carbon atoms Item 7. The method according to Item 6.
  9.  (1R,2S)−1−アミノ−2−ビニルシクロプロパンカルボン酸エステル又は(1S,2R)−1−アミノ−2−ビニルシクロプロパンカルボン酸エステルと、光学活性な酒石酸又は光学活性なカンファースルホン酸との塩。 (1R, 2S) -1-amino-2-vinylcyclopropanecarboxylic acid ester or (1S, 2R) -1-amino-2-vinylcyclopropanecarboxylic acid ester and optically active tartaric acid or optically active camphorsulfonic acid And salt.
PCT/JP2012/055009 2011-03-10 2012-02-22 Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester WO2012121068A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/001,880 US20130338392A1 (en) 2011-03-10 2012-02-22 Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester
EP12755499.6A EP2684864A4 (en) 2011-03-10 2012-02-22 Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester
CN2012800119236A CN103402972A (en) 2011-03-10 2012-02-22 Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011052639 2011-03-10
JP2011-052639 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121068A1 true WO2012121068A1 (en) 2012-09-13

Family

ID=46798036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055009 WO2012121068A1 (en) 2011-03-10 2012-02-22 Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester

Country Status (5)

Country Link
US (1) US20130338392A1 (en)
EP (1) EP2684864A4 (en)
JP (1) JP2012197264A (en)
CN (1) CN103402972A (en)
WO (1) WO2012121068A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146881A1 (en) * 2014-03-28 2017-04-13 株式会社カネカ Method for producing 1-arylimino-2-vinylcyclopropanecarboxylic acid derivative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193901A (en) * 2000-10-18 2002-07-10 Kuraray Co Ltd Method of optical resolution of (1s*,4r*)-4-amino-2- cyclopentene-1-carboxylic esters
JP2002522557A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor peptide
JP2009122215A (en) * 2007-11-13 2009-06-04 Ricoh Co Ltd Developer carrier, developing device, process cartridge and image forming apparatus
WO2010110361A1 (en) * 2009-03-26 2010-09-30 第一三共株式会社 Method for producing bicyclic γ-amino acid derivative

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019066A1 (en) * 2009-08-10 2011-02-17 住友化学株式会社 Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
JP5476859B2 (en) * 2009-08-25 2014-04-23 住友化学株式会社 Process for producing optically active ethyl 1-amino-2-ethenylcyclopropane-1-carboxylate or acid addition salt thereof, and intermediate used in the process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522557A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor peptide
JP2002193901A (en) * 2000-10-18 2002-07-10 Kuraray Co Ltd Method of optical resolution of (1s*,4r*)-4-amino-2- cyclopentene-1-carboxylic esters
JP2009122215A (en) * 2007-11-13 2009-06-04 Ricoh Co Ltd Developer carrier, developing device, process cartridge and image forming apparatus
WO2010110361A1 (en) * 2009-03-26 2010-09-30 第一三共株式会社 Method for producing bicyclic γ-amino acid derivative

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEAULIEU, PIERRE L. ET AL.: "Synthesis of (1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic Acid Vinyl-ACCA) Derivatives: Key Intermediates for the Preparation of Inhibitors of the Hepatitis C Virus NS3 Protease", JOURNAL OF ORGANIC CHEMISTRY, vol. 70, no. 15, 2005, pages 5869 - 5879, XP002415438 *
BELYK, KEVIN M. ET AL.: "Enantioselective synthesis of (lR,2S)-l-amino-2- vinylcyclopropanecarboxylic acid ethyl ester (Vinyl-ACCA-OEt) by asymmetric phase-transfer catalyzed cyclopropanation of (E)-N- phenylmethyleneglycine ethyl ester", ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 14, no. 3, 2010, pages 692 - 700, XP008151560 *
JOURAL OF AMERICAN CHEMICAL SOCIETY, vol. 122, 2000, pages 5,228 - 5,229
JOURNAL OF ORGANIC CHEMISTRY, vol. 70, 2005, pages 5,869 - 5,879
See also references of EP2684864A4
TETRAHEDRON LETTERS, vol. 40, 1999, pages 8,671 - 8,674
TETRAHEDRON LETTERS, vol. 44, 2003, pages 5,629 - 5,632
TETRAHEDRON, vol. 60, 2004, pages 7,743 - 7,754

Also Published As

Publication number Publication date
EP2684864A4 (en) 2014-08-20
CN103402972A (en) 2013-11-20
JP2012197264A (en) 2012-10-18
EP2684864A1 (en) 2014-01-15
US20130338392A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
EP2802554B1 (en) PREPARATION OF OPTICALLY PURE ß-AMINO ACID TYPE ACTIVE PHARMACEUTICAL INGREDIENTS AND INTERMEDIATES THEREOF
CN115504920A (en) Pyrrolidone and preparation method thereof
US20100179319A1 (en) Process for production of optically active mirtazapine
JP5387040B2 (en) Method for optical resolution of alkylpiperidin-3-ylcarbamate and intermediates thereof
US8742162B2 (en) Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
WO2012121068A1 (en) Method of producing optically active 1-amino-2-vinylcyclopropane carboxylic acid ester
JP5140776B1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
JP2009256298A (en) Optical resolution method for piperidin-3-ylcarbamate compound, and its intermediate
JP5673169B2 (en) Quaternary ammonium salt and method for producing cyclopropane compound using the same
JP5476859B2 (en) Process for producing optically active ethyl 1-amino-2-ethenylcyclopropane-1-carboxylate or acid addition salt thereof, and intermediate used in the process
WO2017043626A1 (en) Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative
KR20140107250A (en) Optical resolution method for bicyclic compound using asymmetric catalyst
JP2013010732A (en) Method for producing proline compound
WO2011004778A1 (en) Method for producing optically active compound
JP2002371060A (en) Method for producing optically active aminopiperidine derivative
EP2174940A1 (en) Process for production of optically active mirtazapine
JP4109446B2 (en) Process for producing pure trans-2-[(α-methylbenzyl) amino] cyclopentanol as a diastereoisomer
KR20090026794A (en) Method for preparing an optically active amlodipine
KR20100022272A (en) A novel method for preparing s-(-)-amlodipine from racemic amlodipine
JPH07258215A (en) Production of optically active 1-(4-chloropyridin-2-yl)-2-(pyridin-2-yl)ethylamine
JP2012036093A (en) Method for manufacturing (s)-1-phenyl-1,2,3,4-tetrahydroisoquinoline
JP2007023040A (en) Stereoselective synthesis of 3,4-disubstituted cyclopentanone and related compound
JP2005060231A (en) Method for producing new acidic optical resolving agent and optical resolution of amines using the same
WO2010090341A1 (en) Method of manufacturing optically active trans-4-aminopiperidine-3-ol compound
JP2008273840A (en) Method for producing benzylamine derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012755499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14001880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE