WO2012120886A1 - Three-dimensional radiographic apparatus and method - Google Patents

Three-dimensional radiographic apparatus and method Download PDF

Info

Publication number
WO2012120886A1
WO2012120886A1 PCT/JP2012/001584 JP2012001584W WO2012120886A1 WO 2012120886 A1 WO2012120886 A1 WO 2012120886A1 JP 2012001584 W JP2012001584 W JP 2012001584W WO 2012120886 A1 WO2012120886 A1 WO 2012120886A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
irradiation dose
dimensional
irradiation
Prior art date
Application number
PCT/JP2012/001584
Other languages
French (fr)
Japanese (ja)
Inventor
孝夫 桑原
大田 恭義
靖子 八尋
玲 長谷川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012120886A1 publication Critical patent/WO2012120886A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography

Definitions

  • the present invention relates to a three-dimensional radiography apparatus and method for irradiating a subject with radiation from two different imaging directions. More specifically, of the two shooting directions, the subject is irradiated with radiation having a predetermined irradiation dose from one shooting direction, and the subject is irradiated with radiation having an irradiation dose smaller than the irradiation dose in the one shooting direction from the other shooting direction.
  • the present invention relates to a three-dimensional radiography apparatus and method.
  • Patent Document 1 proposes a technique for displaying a warning when a set condition exceeds a maximum tube current product value.
  • the radiographic image may be a reference image taken with a lower irradiation dose than the standard image.
  • Patent Document 2 proposes a technique for reducing an irradiation dose in capturing a radiographic image visually recognized by a person other than the dominant eye based on the dominant eye information of the observer to be smaller than an irradiation dose in capturing a radiographic image visually recognized by the dominant eye. Yes.
  • the irradiation dose in one imaging direction is lowered in order to suppress the exposure dose of the patient, the irradiation dose in the other imaging direction is further reduced. As a result, the amount of radiation detected in the radiation emitted from the other imaging direction is reduced, and the image quality of the other radiation image may be degraded.
  • the object of the present invention is to reduce the exposure dose of a patient and reduce the image quality of the other radiation image in three-dimensional radiography in which the irradiation dose in the other imaging direction is smaller than the irradiation dose in one imaging direction.
  • a three-dimensional radiation imaging apparatus and method that can be secured are provided.
  • the three-dimensional radiographic apparatus of the present invention is a radiation having a predetermined irradiation dose (hereinafter referred to as one irradiation dose) from one of the two different imaging directions.
  • the image processing apparatus includes a condition setting unit and a display unit that displays both irradiation doses set by the imaging condition setting unit when the subject is imaged.
  • the three-dimensional radiography method of the present invention of two different imaging directions, radiation of a predetermined irradiation dose (hereinafter referred to as one irradiation dose) from one imaging direction, and one irradiation dose from the other imaging direction.
  • a predetermined irradiation dose hereinafter referred to as one irradiation dose
  • the other radiation dose both of the radiation doses are set and the subject is captured. Both irradiation doses are displayed.
  • the imaging condition setting unit may set the other irradiation dose based on the one irradiation dose, and the imaging condition setting unit may set the one irradiation dose to the other irradiation dose.
  • the other irradiation dose may be set by multiplying a predetermined coefficient.
  • the three-dimensional radiography apparatus of the present invention includes a breast thickness acquisition unit that acquires information about the breast thickness, and the imaging condition setting unit applies an irradiation dose based on the information about the breast thickness. It may be set so as to increase.
  • information on breast thickness in the three-dimensional radiography apparatus of the present invention does not mean only breast thickness information, but information that can calculate breast thickness, for example, compression that compresses the breast. It means to include the position information of the board.
  • the display unit may display an upper limit value and / or a lower limit value of the irradiation dose, and / or when one irradiation dose exceeds the upper limit value and / or the other.
  • a warning may be displayed when the irradiation dose is less than the lower limit.
  • the three-dimensional radiation imaging apparatus of the present invention includes a radiation detector that detects radiation passing through a subject, and an intermediate direction between one imaging direction and the other imaging direction is relative to a detection surface of the radiation detector. It may intersect with a vertical direction.
  • one imaging direction may be a direction perpendicular to the detection surface.
  • the angle formed by one imaging direction and the other imaging direction may be in the range of 2 ° to 5 °.
  • the three-dimensional radiography apparatus and method of the present invention of two mutually different imaging directions, radiation having a predetermined irradiation dose from one imaging direction and irradiation dose less than one irradiation dose from the other imaging direction.
  • 3D radiography where each subject is irradiated with radiation, both exposure doses are set, and when the subject is shot, the photographer displays both of the set exposure doses. Therefore, it is possible to estimate whether or not the exposure dose of the other radiation image is too small, and thus it is possible to secure the image quality of the other radiation image while suppressing the exposure dose of the patient.
  • FIG. 1 is a schematic configuration diagram of a first embodiment of a three-dimensional radiation imaging apparatus of the present invention.
  • the three-dimensional radiation imaging apparatus 100 includes a three-dimensional imaging apparatus main body 1, a computer 2 connected to the three-dimensional imaging apparatus main body 1, a monitor 3 connected to the computer 2, and an input unit 4.
  • FIG. 2 is a partial front view of the three-dimensional imaging apparatus main body 1.
  • the three-dimensional radiography apparatus 100 irradiates the breast M, which is a subject, from two different imaging directions D1 and D2 (see FIG. 2) of the three-dimensional imaging apparatus main body 1 to produce two radiographic images having parallax.
  • the radiographic image of the breast M is displayed in a three-dimensional manner using the two radiographic images captured and captured by the monitor 3.
  • the three-dimensional imaging apparatus main body 1 shoots a reference image by irradiating the breast M with radiation from the imaging direction D1 and irradiating the breast M with radiation from the imaging direction D2. Further, the radiation dose irradiated from the imaging direction D2 is smaller than the radiation dose of the radiation irradiated from the imaging direction D1.
  • the three-dimensional imaging apparatus main body 1 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate.
  • the arm part 13 connected with the base 11 is provided.
  • the arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • the imaging table 14 includes a charge amplifier that converts the charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples the voltage signal output from the charge amplifier, a voltage A circuit board such as an AD conversion circuit for converting a signal into a digital signal is installed.
  • the imaging table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the imaging table 14 is fixed to the base 11. can do.
  • the radiation detector 15 detects radiation applied to the detection surface 15a through the breast M.
  • the radiation detector 15 may be a so-called direct-type radiation image detector that directly receives radiation and generates charges, or once converts radiation into visible light and converts the visible light into a charge signal.
  • a so-called indirect radiation image detector may be used.
  • the radiation detector 15 includes a scattered radiation absorption grid 15b integrated with the radiation detector 15 on the detection surface 15a. The scattered radiation absorption grid 15b removes scattered radiation scattered by the breast M.
  • a radiation image signal readout method a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image is emitted by irradiating reading light. It is desirable to use a so-called optical readout system in which a signal is read out, but the present invention is not limited to this, and other systems may be used.
  • TFT thin film transistor
  • a radiation source 17 and a radiation source controller 32 are housed inside the radiation irradiation unit 16.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17, and the irradiation conditions of the radiation source 17, that is, the tube current (mA), the irradiation time (ms), and the tube voltage (kV).
  • a compression plate 18 that is disposed above the imaging table 14 and presses and compresses the breast M, a support portion 20 that supports the compression plate 18, and a support portion 20 that extends in the vertical direction.
  • a moving mechanism 19 for moving in the (Z direction) is provided. The position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34.
  • FIG. 3 is a block diagram showing a schematic configuration of the computer 2.
  • the computer 2 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 2a, the imaging condition setting unit 2b, the radiation shown in FIG. It comprises an image storage unit 2c, a dose display control unit 2d, and an image display control unit 2e.
  • CPU central processing unit
  • storage device such as a semiconductor memory, a hard disk, and an SSD
  • the control unit 2a, the imaging condition setting unit 2b, the radiation shown in FIG. It comprises an image storage unit 2c, a dose display control unit 2d, and an image display control unit 2e.
  • the control unit 2a controls the controllers 31 to 34 by outputting predetermined control signals to the various controllers 31 to 34.
  • the shooting condition setting unit 2b sets shooting conditions.
  • the radiographic image storage unit 2c stores radiographic image signals in the imaging directions D1 and D2 read from the radiation detector 15, respectively.
  • the dose display control unit 2d displays radiation doses (mAs) in the imaging directions D1 and D2 on the monitor 3 when performing radiography.
  • the image display control unit 2e performs predetermined processing on the two radiographic images to display the radiographic image of the breast M on the monitor 3 in a three-dimensional manner. Details of the imaging condition setting unit 2b and the dose display control unit 2d will be described later.
  • the monitor 3 corresponds to a display unit in claims, and displays radiation doses in the imaging directions D1 and D2 two-dimensionally at the time of radiography of the breast M, and uses the captured standard image and reference image.
  • the radiation image of the breast M is configured to be displayed three-dimensionally.
  • radiographic images based on two radiographic image signals are displayed using two screens, and a reference image is displayed on the right eye of the observer by using a half mirror, polarizing glass, or the like. It is possible to adopt a configuration in which a three-dimensional image is displayed by making the reference image incident on the left eye of the observer.
  • the base image may be incident on the left eye and the reference image on the right eye.
  • two radiographic images may be displayed in a superimposed manner while being shifted by a predetermined amount of parallax, and this may be displayed three-dimensionally by observing with a polarizing glass, or a parallax barrier method and a lenticular method.
  • the standard image and the reference image may be displayed on a 3D liquid crystal that can be viewed stereoscopically to display three-dimensionally.
  • the input unit 4 includes, for example, a keyboard, a mouse, a touch panel, and various switches, and accepts input of shooting conditions for each shooting direction, input of a shooting start instruction, and the like by a photographer.
  • Imaging conditions include imaging angle ⁇ , tube current (mA), irradiation time (sec), upper and lower limits of irradiation dose, tube voltage (kV), target type, filter type and focus size ( ⁇ m). included.
  • the photographing angle ⁇ is an angle formed by a direction V (see FIG. 2) perpendicular to the detection surface 15a and the photographing directions D1 and D2.
  • the combination of the shooting angles ⁇ in the shooting directions D1 and D2 is not particularly limited, but in this embodiment, the shooting angle ⁇ in the shooting direction D1 is 0 ° and the shooting angle ⁇ in the shooting direction D2 is 4 °.
  • the photographing angle ⁇ may be a negative value when the clockwise direction is positive (see FIG. 2).
  • the shooting angle ⁇ in the shooting direction D1 is preferably smaller than the shooting angle ⁇ in the shooting direction D2 so that the reference image can be easily viewed, that is, an intermediate direction D3 between the shooting direction D1 and the shooting direction D2 (FIG. 2). It is desirable that the reference) intersects the vertical direction V.
  • the imaging angle ⁇ in the imaging direction D1 is 0 °, that is, the imaging direction D1 is orthogonal to the detection surface 15a.
  • the angle formed by the shooting direction D1 and the shooting direction D2 is in the range of 2 ° to 5 °.
  • the tube current (mA) and the irradiation time (sec) are for adjusting the radiation dose (mAs) which is a tube current product.
  • the tube current product is described as an irradiation dose (mAs).
  • the input unit 4 may accept a direct input of irradiation dose (mAs).
  • the upper limit value of the irradiation dose (mAs) is for suppressing the exposure dose of the breast M, and the lower limit value is for ensuring the image quality of the radiation image.
  • the tube voltage (kv) adjusts the radiation quality of the radiation. By reducing the tube voltage (kv), the radiation becomes soft and the shadow of the breast M can be easily expressed.
  • the type of the target and the filter adjusts the spectral distribution of radiation, and is selected from molybdenum (Mo), rhodium (Rh), and aluminum (Al).
  • Mo molybdenum
  • Rh rhodium
  • Al aluminum
  • the focus size adjusts the sharpness of the radiographic image, and the resolution of the radiographic image is improved by reducing the focus size.
  • the photographing condition setting unit 2b receives imaging conditions from the input unit 4, and sets the irradiation dose (mAs) in the imaging directions D1 and D2 based on the received imaging conditions.
  • the imaging condition setting unit 2b multiplies the tube current product (mA) by the irradiation time (sec) to set the irradiation dose (mAs) in the imaging direction D1, and sets the irradiation dose (mAs) in the imaging direction D1 to 0. Multiply by a predetermined coefficient of about 5 to 0.7 to set the irradiation dose (mAs) in the imaging direction D2.
  • the coefficient can be arbitrarily changed by the photographer via the input unit 4.
  • the imaging condition setting unit 2b sets the received value as the irradiation dose (mAs) in the imaging direction D1.
  • the imaging condition setting unit 2b sets a combination of the tube current (mA) and the irradiation time (sec) in the imaging direction D2 that satisfies the irradiation dose (mAs) in the imaging directions D1 and D2 and the irradiation dose (mAs) in the imaging direction D2. To do.
  • the imaging condition setting unit 2b divides the value obtained by dividing the tube current (mA) in the imaging direction D1 and the irradiation dose (mAs) in the imaging direction D2 by the tube current (mA) in the imaging direction D1.
  • irradiation time (sec) May be set as the irradiation time (sec), and the value obtained by dividing the irradiation time (sec) in the imaging direction D1 and the irradiation dose (mAs) in the imaging direction D2 by the irradiation time (msec) in the imaging direction D1
  • the irradiation time (sec) in the direction D2 and the tube current (mA) may be set.
  • the dose display control unit 2d is for causing the monitor 3 to display the irradiation dose, the upper limit value, and the lower limit value in the imaging directions D1 and D2 before the 3D imaging apparatus body 1 performs radiography of the breast M.
  • FIG. 4 is a diagram illustrating an example of display of the irradiation dose (mAs), the upper limit value, and the lower limit value.
  • the dose display control unit 2d displays a warning when the irradiation dose (mAs) exceeds the upper limit value and / or less than the lower limit value.
  • 5, 6 and 7 are diagrams showing examples of display of irradiation dose accompanied by a warning, upper limit value and lower limit value.
  • the dose display control unit 2d may display the upper limit value or the lower limit value on the monitor 3.
  • the dose display control unit 2d displays a confirmation button that allows the photographer to confirm the irradiation dose as shown in FIGS. 4 to 6, the coefficient for calculating the irradiation dose (mAs) in the imaging direction D2 is 0.7, and in FIG. 7, it is 0.6.
  • FIG. 8 is a flowchart showing the operation of the first embodiment.
  • the breast M is installed, and the input unit 4 receives the respective imaging conditions in the imaging directions D1 and D2 (ST1).
  • the imaging condition setting unit 2b receives the imaging conditions in the imaging directions D1 and D2 (ST2), calculates the irradiation dose (mAs) in the imaging directions D1 and D2 (ST3), and sets each imaging condition (ST4). .
  • the control unit 2 a When the input unit 4 receives an instruction to start imaging, the control unit 2 a outputs a control signal for compressing the breast M to the compression plate controller 34.
  • the compression plate controller 34 receives the control signal and compresses the breast M with a predetermined pressure (ST6).
  • the dose display control unit 2d reads the irradiation dose (mAs), the upper limit value, and the lower limit value in the imaging directions D1 and D2 from the imaging condition setting unit 2b and displays them on the monitor 3 (ST7). Further, the dose display control unit 2d determines whether or not the irradiation dose (mAs) in the imaging directions D1 and D2 exceeds the upper limit value (ST8), and displays a warning on the monitor 3 if the upper limit value is exceeded. (ST9). Wait until the photographer confirms the warning, and after confirming the warning, the process returns to accepting the photographing conditions (ST1).
  • the imaging condition setting unit 2b determines whether or not the irradiation doses (mAs) in the imaging directions D1 and D2 are less than the lower limit value (ST10). If it is less than the value, a warning is displayed on the monitor 3 (ST9). Wait until the photographer confirms the warning, and after confirming the warning, the process returns to accepting the photographing conditions (ST1).
  • the arm controller 31 receives the control signal, and rotates the arm unit 13 so that the photographing direction D1 is perpendicular to the detection surface 15a.
  • the control unit 2a sends the tube voltage (kv), the tube current (mA) in the photographing direction D1, and the irradiation from the photographing condition setting unit 2b. Each time (sec) is read out and a control signal for irradiating the radiation source controller 31 with radiation from the radiation source 17 is output.
  • the radiation source controller 32 receives the control signal and emits radiation from the radiation source 17.
  • the control unit 2a outputs a control signal to the detector controller 33 so as to read out the radiation image signal.
  • the detector controller 33 receives the control signal and reads the radiation image signal from the radiation detector 15 that has detected the radiation.
  • the radiographic image storage unit 2c stores the radiographic image signal in the imaging direction D1, and the imaging of the reference image ends (ST11).
  • the arm controller 31 receives the control signal and rotates the arm unit 13 so that the photographing direction D2 is inclined by 4 ° with respect to the direction V perpendicular to the detection surface 15a.
  • the control unit 2a receives the tube voltage (kv) and the shooting direction D2 from the shooting condition setting unit 2b.
  • the tube current (mA) and the irradiation time (sec) are read out, and a control signal for causing the radiation source controller 32 to irradiate radiation from the radiation source 17 is output.
  • the radiation source controller 32 receives the control signal and emits radiation from the radiation source 17.
  • the control unit 2a outputs a control signal to the detector controller 33 so as to read out the radiation image signal.
  • the detector controller 33 receives the control signal and reads the radiation image signal from the radiation detector 15 that has detected the radiation.
  • the radiographic image storage unit 2c stores the radiographic image signal in the imaging direction D2, and the imaging of the reference image ends (ST12).
  • the image display control unit 2e reads out the radiographic image signals in the imaging directions D1 and D2 from the radiographic image storage unit 2c and performs predetermined pixel processing, and then displays the reference image and the reference image on the monitor 3, respectively. Then, the radiation image of the breast M is displayed three-dimensionally and the process is terminated (ST13).
  • the irradiation dose (mAs) is set to be increased based on information on the thickness of the breast M.
  • the amount of radiation absorbed by the breast M increases, so that the amount of detected radiation tends to decrease.
  • the amount of detected radiation is reduced and the image quality of the reference image cannot be guaranteed.
  • the computer 2 includes a breast thickness acquisition unit 2 f that acquires information related to the thickness of the breast M, and the imaging condition setting unit 2 b It differs from the first embodiment in that the irradiation dose (mAs) is set based on the information on the thickness. Therefore, in the second embodiment, only differences from the first embodiment will be described, and the same configurations and operations as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. To do.
  • the breast thickness acquisition unit 2 f acquires information on the thickness of the breast M from the compression plate controller 34.
  • the information regarding the thickness of the breast M is not limited to the thickness information of the breast M, but is information that allows the thickness of the breast M to be calculated.
  • the breast thickness acquisition unit 2 f acquires position information of the compression plate 18 after the breast M is compressed.
  • the imaging condition setting unit 2b receives positional information of the compression plate 18 after compression from the breast thickness acquisition unit 2f and determines that the thickness of the breast M exceeds a predetermined threshold, the irradiation doses in the imaging directions D1 and D2 ( (mAs) is multiplied by a coefficient of about 1.1 to 1.3 to set a large amount of irradiation dose (mAs) in the imaging directions D1 and D2.
  • the imaging condition setting unit 2b sets many irradiation doses (mAs) so that the irradiation dose (mAs) does not exceed the upper limit value. Further, the imaging condition setting unit 2b may set a large amount of irradiation dose (mAs) set in the imaging direction D2. The coefficient can be changed by the photographer via the input unit 4.
  • the imaging condition setting unit 2b sets many irradiation doses (mAs) in the imaging directions D1 and D2, the tube current (mA) in the imaging directions D1 and D2 so as to satisfy the irradiation doses (mAs) in the imaging directions D1 and D2. Also reset the irradiation time (sec).
  • FIG. 10 and FIG. 11 are flowcharts showing a series of processes of the three-dimensional radiation imaging apparatus 100 in the second embodiment.
  • the same processes (ST1) to (ST6) as in the first embodiment are performed.
  • the breast thickness acquisition unit 2f acquires positional information of the compression plate 18 from the compression plate controller 34 (ST14), and whether the imaging condition setting unit 2b exceeds the predetermined threshold value. It is determined whether or not (ST15).
  • each process ST7 to ST13 is performed as in the first embodiment.
  • the imaging condition setting unit 2b sets a large amount of each irradiation dose in the imaging directions D1 and D2 so as not to exceed the upper limit (ST16).
  • the irradiation dose (mAs), tube current (mA), and irradiation time (sec) in the imaging directions D1 and D2 are reset. Then, the same processes (ST7) to (ST13) as in the first embodiment are performed.
  • the monitor 3 applies the irradiation dose (mAs) in the imaging directions D1 and D2. Since the photographer can estimate the exposure dose of the breast M and confirm the irradiation dose (mAs) in the imaging direction D2, the image quality of the reference image can be ensured while suppressing the exposure dose of the breast M.
  • the imaging condition setting unit 2b sets the irradiation dose (mAs) in the imaging direction D2 based on the irradiation dose (mAs) in the imaging direction D1, the imaging direction D2 Therefore, it is possible to ensure the image quality of the reference image while suppressing the exposure dose of the breast M.
  • the image display control unit 2e acquires the positional information of the compression plate 18 after compression
  • the imaging condition setting unit 2b acquires the imaging direction based on the positional information of the compression plate 18 after compression.
  • the monitor 3 displays the upper limit value and the lower limit value of the irradiation dose (mAs), the photographer can set the irradiation dose (mAs) in the shooting directions D1 and D2 within a predetermined range. Since it can be confirmed, the image quality of the reference image can be ensured while reliably reducing the exposure dose of the breast M. Furthermore, according to the above-described embodiment, when the irradiation dose (mAs) in the imaging direction D1 exceeds the upper limit value and / or when the irradiation dose (mAs) in the imaging direction D2 is less than the lower limit value, the monitor 3 displays a warning. Therefore, the image quality of the reference image can be ensured while more reliably suppressing the exposure dose of the breast M.
  • the intermediate direction D3 between the shooting direction D1 and the shooting direction D2 intersects the direction V perpendicular to the detection surface 15a, it is possible to take a reference image that is easy to see.
  • the imaging direction D1 is a direction perpendicular to the detection surface 15a
  • the reference image can be used as an image captured by a two-dimensional radiation image.
  • the angle formed by the photographing direction D1 and the photographing direction D2 is 2 ° to 5 °, the three-dimensional display of the breast M that can be stereoscopically viewed using the standard image and the reference image is possible. it can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

[Problem] To minimize patient exposure in a three-dimensional radiographic apparatus, wherein the exposure dose in one of two imaging directions is smaller than the exposure dose in the other imaging direction, while ensuring the quality of radiographic images in the one imaging direction. [Solution] A three-dimensional radiographic apparatus, which captures images by exposing a subject to radiation at a predetermined radiation exposure dose in one imaging direction, and a radiation exposure dose in the other imaging direction, which is less than the one exposure dose, wherein an imaging condition setting unit (2b) sets both exposure doses, and a monitor (3) displays both exposure doses set by the imaging condition setting unit (2b) when the subject undergoes imaging.

Description

3次元放射線撮影装置および方法Three-dimensional radiography apparatus and method
 本発明は、互いに異なる2つの撮影方向から放射線を被写体に照射して撮影する3次元放射線撮影装置および方法に関する。より詳しくは、2つの撮影方向のうち、一方の撮影方向から所定の照射線量の放射線、他方の撮影方向から一方の撮影方向における照射線量よりも少ない照射線量の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影装置および方法に関する。 The present invention relates to a three-dimensional radiography apparatus and method for irradiating a subject with radiation from two different imaging directions. More specifically, of the two shooting directions, the subject is irradiated with radiation having a predetermined irradiation dose from one shooting direction, and the subject is irradiated with radiation having an irradiation dose smaller than the irradiation dose in the one shooting direction from the other shooting direction. The present invention relates to a three-dimensional radiography apparatus and method.
 近年では診断をより行い易くするため、被写体に異なる2つの撮影方向から放射線を照射して互いに視差のある2つの放射線画像を取得することにより、立体視可能な放射線画像を撮影する3次元放射線撮影が知られている。 In recent years, in order to make diagnosis easier, three-dimensional radiography that captures stereoscopically visible radiographic images by irradiating a subject from two different radiographing directions and acquiring two radiographic images with parallax from each other It has been known.
 このような3次元放射線撮影は、被写体の放射線画像を平面視する2次元放射線撮影と比較して放射線の曝射回数が増えるため、患者の被曝量を抑えることが重要である。特許文献1には、設定した条件が最大管電流積値を超える場合に警告を表示する技術が提案されている。 In such 3D radiography, the number of radiation exposures is increased as compared to 2D radiography in which a radiographic image of a subject is viewed in plan view, so it is important to suppress the exposure dose of the patient. Patent Document 1 proposes a technique for displaying a warning when a set condition exceeds a maximum tube current product value.
 ところで、互いに視差を有する2枚の放射線画像を用いて立体視するには、必ずしも両方の放射線画像が同等の鮮明さを有する必要はなく、一方の放射線画像が鮮明に撮影された基準画像、他方の放射線画像が基準画像よりも照射線量を少なくして撮影された参照画像であってもよい。これにより、立体視が可能であるとともに、患者の被曝量も抑えることができる。 By the way, in order to perform stereoscopic viewing using two radiographic images having parallax, it is not always necessary that both radiographic images have the same sharpness, a reference image in which one radiographic image is clearly captured, the other The radiographic image may be a reference image taken with a lower irradiation dose than the standard image. Thereby, stereoscopic vision is possible and the exposure dose of the patient can be suppressed.
 特許文献2には、観察者の利き目情報に基づいて利き目以外で視認する放射線画像の撮影における照射線量を利き目で視認する放射線画像の撮影における照射線量よりも少なくする技術が提案されている。 Patent Document 2 proposes a technique for reducing an irradiation dose in capturing a radiographic image visually recognized by a person other than the dominant eye based on the dominant eye information of the observer to be smaller than an irradiation dose in capturing a radiographic image visually recognized by the dominant eye. Yes.
特開2010-234003号公報JP 2010-234003 A 特開2010-187735号公報JP 2010-187735 A
 しかしながら、上記のような3次元放射線撮影において、患者の被曝量を抑えるために一方の撮影方向における照射線量を下げると、他方の撮影方向における照射線量はさらに下がることになる。これにより、他方の撮影方向から照射された放射線のうち、検出される放射線量が少なくなり、他方の放射線画像の画質が劣化する虞がある。 However, in the three-dimensional radiography as described above, if the irradiation dose in one imaging direction is lowered in order to suppress the exposure dose of the patient, the irradiation dose in the other imaging direction is further reduced. As a result, the amount of radiation detected in the radiation emitted from the other imaging direction is reduced, and the image quality of the other radiation image may be degraded.
 本発明の目的は、上記事情に鑑み、他方の撮影方向における照射線量が一方の撮影方向における照射線量よりも少ない3次元放射線撮影において、患者の被曝量を抑えつつ、他方の放射線画像の画質を担保できる3次元放射線撮影装置および方法を提供する。 In view of the above circumstances, the object of the present invention is to reduce the exposure dose of a patient and reduce the image quality of the other radiation image in three-dimensional radiography in which the irradiation dose in the other imaging direction is smaller than the irradiation dose in one imaging direction. A three-dimensional radiation imaging apparatus and method that can be secured are provided.
 上記の課題を解決するために、本発明の3次元放射線撮影装置は、互いに異なる2つの撮影方向のうち、一方の撮影方向から所定の照射線量(以下、一方の照射線量という。)の放射線、他方の撮影方向から一方の照射線量よりも少ない照射線量(以下、他方の照射線量という。)の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影装置において、両方の照射線量を設定する撮影条件設定部と、被写体を撮影する際、撮影条件設定部により設定された両方の照射線量を表示する表示部とを備えたことを特徴とする。 In order to solve the above problems, the three-dimensional radiographic apparatus of the present invention is a radiation having a predetermined irradiation dose (hereinafter referred to as one irradiation dose) from one of the two different imaging directions. Imaging in which both irradiation doses are set in a three-dimensional radiography apparatus that irradiates a subject with radiation having an irradiation dose smaller than one irradiation dose (hereinafter referred to as the other irradiation dose) from the other imaging direction. The image processing apparatus includes a condition setting unit and a display unit that displays both irradiation doses set by the imaging condition setting unit when the subject is imaged.
 本発明の3次元放射線撮影方法は、互いに異なる2つの撮影方向のうち、一方の撮影方向から所定の照射線量(以下、一方の照射線量という。)の放射線、他方の撮影方向から一方の照射線量よりも少ない照射線量(以下、他方の照射線量という。)の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影方法において、両方の照射線量を設定し、被写体を撮影する際、設定された両方の照射線量を表示することを特徴とする。 In the three-dimensional radiography method of the present invention, of two different imaging directions, radiation of a predetermined irradiation dose (hereinafter referred to as one irradiation dose) from one imaging direction, and one irradiation dose from the other imaging direction. In the three-dimensional radiography method in which a subject is irradiated with a smaller amount of radiation (hereinafter referred to as the other radiation dose), and both of the radiation doses are set and the subject is captured. Both irradiation doses are displayed.
 また、本発明の3次元放射線撮影装置は、撮影条件設定部が、一方の照射線量に基づいて他方の照射線量を設定するものであってもよく、撮影条件設定部は、一方の照射線量に所定の係数を乗算して他方の照射線量を設定するものであってもよい。 In the three-dimensional radiography apparatus of the present invention, the imaging condition setting unit may set the other irradiation dose based on the one irradiation dose, and the imaging condition setting unit may set the one irradiation dose to the other irradiation dose. The other irradiation dose may be set by multiplying a predetermined coefficient.
 また、本発明の3次元放射線撮影装置は、被写体が乳房であり、この乳房の厚みに関する情報を取得する乳房厚取得部を備え、撮影条件設定部が、乳房の厚みに関する情報に基づいて照射線量を多くするように設定するものであってもよい。 Further, the three-dimensional radiography apparatus of the present invention includes a breast thickness acquisition unit that acquires information about the breast thickness, and the imaging condition setting unit applies an irradiation dose based on the information about the breast thickness. It may be set so as to increase.
 ここで、本発明の3次元放射線撮影装置における「乳房の厚みに関する情報」とは、乳房の厚み情報だけを意味するものではなく、乳房の厚みが算出可能な情報、たとえば、乳房を圧迫する圧迫板の位置情報等を含む意味である。 Here, “information on breast thickness” in the three-dimensional radiography apparatus of the present invention does not mean only breast thickness information, but information that can calculate breast thickness, for example, compression that compresses the breast. It means to include the position information of the board.
 また、本発明の3次元放射線撮影装置は、表示部が、照射線量の上限値および/または下限値を表示するものであってもよく、一方の照射線量が上限値を超える場合および/または他方の照射線量が下限値未満の場合に警告を表示するものであってもよい。 In the three-dimensional radiographic apparatus of the present invention, the display unit may display an upper limit value and / or a lower limit value of the irradiation dose, and / or when one irradiation dose exceeds the upper limit value and / or the other. A warning may be displayed when the irradiation dose is less than the lower limit.
 また、本発明の3次元放射線撮影装置は、被写体を通した放射線を検出する放射線検出器を備え、一方の撮影方向と他方の撮影方向との中間方向が、放射線検出器の検出面に対して垂直な方向と交差するものであってもよい。また、本発明の3次元放射線撮影装置は、一方の撮影方向が検出面に垂直な方向であってもよい。また、本発明の3次元放射線撮影装置は、一方の撮影方向と他方の撮影方向とのなす角度が2°~5°の範囲にあるものであってもよい。 The three-dimensional radiation imaging apparatus of the present invention includes a radiation detector that detects radiation passing through a subject, and an intermediate direction between one imaging direction and the other imaging direction is relative to a detection surface of the radiation detector. It may intersect with a vertical direction. In the three-dimensional radiation imaging apparatus of the present invention, one imaging direction may be a direction perpendicular to the detection surface. In the three-dimensional radiographic apparatus of the present invention, the angle formed by one imaging direction and the other imaging direction may be in the range of 2 ° to 5 °.
 本発明の3次元放射線撮影装置および方法によれば、互いに異なる2つの撮影方向のうち、一方の撮影方向から所定の照射線量の放射線、他方の撮影方向から一方の照射線量よりも少ない照射線量の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影において、両方の照射線量を設定し、被写体を撮影する際、設定された両方の照射線量を表示することにより、撮影者が、両方の撮影による患者の被曝量を推定できるとともに、他方の放射線撮影における照射線量が少なすぎるか否かを確認できるため、患者の被曝量を抑えつつ、他方の放射線画像の画質を担保できる。 According to the three-dimensional radiography apparatus and method of the present invention, of two mutually different imaging directions, radiation having a predetermined irradiation dose from one imaging direction and irradiation dose less than one irradiation dose from the other imaging direction. In 3D radiography, where each subject is irradiated with radiation, both exposure doses are set, and when the subject is shot, the photographer displays both of the set exposure doses. Therefore, it is possible to estimate whether or not the exposure dose of the other radiation image is too small, and thus it is possible to secure the image quality of the other radiation image while suppressing the exposure dose of the patient.
3次元放射線撮影装置の概略構成図Schematic configuration diagram of three-dimensional radiography apparatus 3次元撮影装置本体の一部の正面図Front view of a part of the 3D camera body 第1の実施形態におけるコンピュータの構成を示すブロック図The block diagram which shows the structure of the computer in 1st Embodiment. 照射線量、上限値および下限値の表示を示す図(その1)Diagram showing the display of irradiation dose, upper limit and lower limit (Part 1) 照射線量、上限値および下限値の表示を示す図(その2)Diagram showing the display of irradiation dose, upper limit and lower limit (Part 2) 照射線量、上限値および下限値の表示を示す図(その3)Diagram showing the display of irradiation dose, upper limit and lower limit (Part 3) 照射線量、上限値および下限値の表示を示す図(その4)The figure which shows the display of irradiation dose, an upper limit, and a lower limit (the 4) 第1の実施形態における作用を示すフローチャートThe flowchart which shows the effect | action in 1st Embodiment. 第2の実施形態におけるコンピュータの構成を示すブロック図Block diagram showing a configuration of a computer according to the second embodiment 第2の実施形態における作用を示すフローチャート(その1)Flowchart showing the operation in the second embodiment (part 1) 第2の実施形態における作用を示すフローチャート(その2)Flowchart showing the operation in the second embodiment (part 2)
 以下、図面を参照して本発明の実施形態について説明する。図1は本発明の3次元放射線撮影装置の第1の実施形態における概略構成図である。3次元放射線撮影装置100は、図1に示すように、3次元撮影装置本体1、3次元撮影装置本体1に接続されたコンピュータ2、コンピュータ2に接続されたモニタ3および入力部4から構成されている。図2は3次元撮影装置本体1の一部正面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a first embodiment of a three-dimensional radiation imaging apparatus of the present invention. As shown in FIG. 1, the three-dimensional radiation imaging apparatus 100 includes a three-dimensional imaging apparatus main body 1, a computer 2 connected to the three-dimensional imaging apparatus main body 1, a monitor 3 connected to the computer 2, and an input unit 4. ing. FIG. 2 is a partial front view of the three-dimensional imaging apparatus main body 1.
 3次元放射線撮影装置100は、3次元撮影装置本体1が互いに異なる2つの撮影方向D1,D2(図2参照)から被写体である乳房Mに放射線を照射して視差を有する2枚の放射線画像を撮影し、モニタ3が撮影された2枚の放射線画像を用いて乳房Mの放射線画像を3次元表示するものである。 The three-dimensional radiography apparatus 100 irradiates the breast M, which is a subject, from two different imaging directions D1 and D2 (see FIG. 2) of the three-dimensional imaging apparatus main body 1 to produce two radiographic images having parallax. The radiographic image of the breast M is displayed in a three-dimensional manner using the two radiographic images captured and captured by the monitor 3.
 最初に3次元撮影装置本体1について説明する。3次元撮影装置本体1は、撮影方向D1から乳房Mに放射線を照射して基準画像、撮影方向D2から乳房Mに放射線を照射して参照画像をそれぞれ撮影するものである。また、撮影方向D2から照射する放射線の照射線量は、撮影方向D1から照射する放射線の放射線量よりも少ないものである。 First, the 3D imaging apparatus main body 1 will be described. The three-dimensional imaging apparatus main body 1 shoots a reference image by irradiating the breast M with radiation from the imaging direction D1 and irradiating the breast M with radiation from the imaging direction D2. Further, the radiation dose irradiated from the imaging direction D2 is smaller than the radiation dose of the radiation irradiated from the imaging direction D1.
 3次元撮影装置本体1は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。 As shown in FIG. 1, the three-dimensional imaging apparatus main body 1 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate. The arm part 13 connected with the base 11 is provided.
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。 The arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end. The rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
 撮影台14の内部には、フラットパネルディテクタ等の放射線検出器15および放射線検出器15からの電荷信号の読み出しを制御する検出器コントローラ33が備えられている。そして、撮影台14の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換回路等の回路基板が設置されている。 Inside the imaging table 14 are provided a radiation detector 15 such as a flat panel detector and a detector controller 33 that controls reading of charge signals from the radiation detector 15. The imaging table 14 includes a charge amplifier that converts the charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples the voltage signal output from the charge amplifier, a voltage A circuit board such as an AD conversion circuit for converting a signal into a digital signal is installed.
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転した時でも、撮影台14の向きは基台11に対し固定された向きとすることができる。 In addition, the imaging table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the imaging table 14 is fixed to the base 11. can do.
 放射線検出器15は、乳房Mを通して検出面15aに照射された放射線を検出するものである。放射線検出器15は、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線画像検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線画像検出器を用いるようにしてもよい。また、放射線検出器15は、検出面15a上に放射線検出器15と一体化された散乱線吸収グリッド15bを備えている。散乱線吸収グリッド15bは、乳房Mによって散乱された散乱線を除去するものである。 The radiation detector 15 detects radiation applied to the detection surface 15a through the breast M. The radiation detector 15 may be a so-called direct-type radiation image detector that directly receives radiation and generates charges, or once converts radiation into visible light and converts the visible light into a charge signal. A so-called indirect radiation image detector may be used. The radiation detector 15 includes a scattered radiation absorption grid 15b integrated with the radiation detector 15 on the detection surface 15a. The scattered radiation absorption grid 15b removes scattered radiation scattered by the breast M.
 また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフされることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。 As a radiation image signal readout method, a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image is emitted by irradiating reading light. It is desirable to use a so-called optical readout system in which a signal is read out, but the present invention is not limited to this, and other systems may be used.
 放射線照射部16の内部には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17の照射条件、すなわち管電流(mA)、照射時間(ms)および管電圧(kV)を制御するものである。 A radiation source 17 and a radiation source controller 32 are housed inside the radiation irradiation unit 16. The radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17, and the irradiation conditions of the radiation source 17, that is, the tube current (mA), the irradiation time (ms), and the tube voltage (kV).
 また、アーム部13の中央部には、撮影台14の上方に配置されて乳房Mを押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19とが設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。 Further, in the central portion of the arm portion 13, a compression plate 18 that is disposed above the imaging table 14 and presses and compresses the breast M, a support portion 20 that supports the compression plate 18, and a support portion 20 that extends in the vertical direction. A moving mechanism 19 for moving in the (Z direction) is provided. The position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34.
 次にコンピュータ2について説明する。図3はコンピュータ2の概略構成を示すブロック図である。コンピュータ2は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイスなどを備えており、これらのハードウェアによって、図3に示すような制御部2a、撮影条件設定部2b、放射線画像記憶部2c、線量表示制御部2dおよび画像表示制御部2eから構成されている。 Next, the computer 2 will be described. FIG. 3 is a block diagram showing a schematic configuration of the computer 2. The computer 2 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 2a, the imaging condition setting unit 2b, the radiation shown in FIG. It comprises an image storage unit 2c, a dose display control unit 2d, and an image display control unit 2e.
 制御部2aは、各種のコントローラ31~34に対して所定の制御信号を出力しコントローラ31~34の制御を行うものである。撮影条件設定部2bは、撮影条件を設定するものである。放射線画像記憶部2cは、放射線検出器15から読み出された撮影方向D1,D2の放射線画像信号をそれぞれ記憶するものである。 The control unit 2a controls the controllers 31 to 34 by outputting predetermined control signals to the various controllers 31 to 34. The shooting condition setting unit 2b sets shooting conditions. The radiographic image storage unit 2c stores radiographic image signals in the imaging directions D1 and D2 read from the radiation detector 15, respectively.
 線量表示制御部2dは、放射線撮影を行う際に撮影方向D1,D2の照射線量(mAs)をモニタ3に表示させるものである。画像表示制御部2eは、2枚の放射線画像に対して所定の処理を施してモニタ3に乳房Mの放射線画像を3次元表示させるものである。なお、撮影条件設定部2bおよび線量表示制御部2dの詳細については後述する。 The dose display control unit 2d displays radiation doses (mAs) in the imaging directions D1 and D2 on the monitor 3 when performing radiography. The image display control unit 2e performs predetermined processing on the two radiographic images to display the radiographic image of the breast M on the monitor 3 in a three-dimensional manner. Details of the imaging condition setting unit 2b and the dose display control unit 2d will be described later.
 モニタ3は、請求項における表示部に相当するものであり、乳房Mの放射線撮影の際に、撮影方向D1,D2の照射線量を2次元表示するとともに、撮影された基準画像および参照画像を用いて乳房Mの放射線画像を3次元表示するように構成されたものである。 The monitor 3 corresponds to a display unit in claims, and displays radiation doses in the imaging directions D1 and D2 two-dimensionally at the time of radiography of the breast M, and uses the captured standard image and reference image. The radiation image of the breast M is configured to be displayed three-dimensionally.
 3次元表示する構成としては、たとえば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラスなどを用いることで基準画像を観察者の右目に入射させ、参照画像を観察者の左目に入射させることによって3次元画像を表示する構成を採用することができる。なお、基準画像を左目、参照画像を右目に入射させるものであってもよい。 As a configuration for three-dimensional display, for example, radiographic images based on two radiographic image signals are displayed using two screens, and a reference image is displayed on the right eye of the observer by using a half mirror, polarizing glass, or the like. It is possible to adopt a configuration in which a three-dimensional image is displayed by making the reference image incident on the left eye of the observer. The base image may be incident on the left eye and the reference image on the right eye.
 また、たとえば、2つの放射線画像を所定の視差量だけずらして重ね合わせて表示し、これを偏光グラスで観察することで3次元表示する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、基準画像および参照画像を立体視可能な3D液晶に表示することによって3次元表示する構成としてもよい。 In addition, for example, two radiographic images may be displayed in a superimposed manner while being shifted by a predetermined amount of parallax, and this may be displayed three-dimensionally by observing with a polarizing glass, or a parallax barrier method and a lenticular method. As described above, the standard image and the reference image may be displayed on a 3D liquid crystal that can be viewed stereoscopically to display three-dimensionally.
 次に入力部4について説明する。入力部4は、たとえば、キーボード、マウス、タッチパネルおよび各種スイッチから構成されるものであり、撮影者による撮影方向毎の撮影条件の入力や撮影開始指示の入力等を受け付けるものである。撮影条件には、撮影角度θ、管電流(mA)、照射時間(sec)、照射線量の上限値および下限値、管電圧(kV)、ターゲットの種類、フィルタの種類および焦点サイズ(μm)が含まれる。 Next, the input unit 4 will be described. The input unit 4 includes, for example, a keyboard, a mouse, a touch panel, and various switches, and accepts input of shooting conditions for each shooting direction, input of a shooting start instruction, and the like by a photographer. Imaging conditions include imaging angle θ, tube current (mA), irradiation time (sec), upper and lower limits of irradiation dose, tube voltage (kV), target type, filter type and focus size (μm). included.
 撮影角度θは、検出面15aに垂直な方向V(図2参照)と撮影方向D1,D2のなす角度である。撮影方向D1,D2における撮影角度θの組み合わせは特に限定されるものではないが、本実施形態では、撮影方向D1の撮影角度θが0°、撮影方向D2の撮影角度θが4°とする。なお、撮影角度θは、時計回りが正方向とし(図2参照)、負の値であってもよい。 The photographing angle θ is an angle formed by a direction V (see FIG. 2) perpendicular to the detection surface 15a and the photographing directions D1 and D2. The combination of the shooting angles θ in the shooting directions D1 and D2 is not particularly limited, but in this embodiment, the shooting angle θ in the shooting direction D1 is 0 ° and the shooting angle θ in the shooting direction D2 is 4 °. The photographing angle θ may be a negative value when the clockwise direction is positive (see FIG. 2).
 撮影方向D1の撮影角度θは、基準画像を視認しやすいものとするため、撮影方向D2の撮影角度θよりも小さいことが望ましい、すなわち撮影方向D1と撮影方向D2との中間方向D3(図2参照)が垂直な方向Vと交差することが望ましい。また、基準画像を2次元放射線撮影による放射線画像としての利用を図るため、撮影方向D1の撮影角度θが0°、すなわち撮影方向D1が検出面15aと直交することが望ましい。さらに、立体視を可能にするため、撮影方向D1と撮影方向D2のなす角度が2°~5°の範囲であることが望ましい。 The shooting angle θ in the shooting direction D1 is preferably smaller than the shooting angle θ in the shooting direction D2 so that the reference image can be easily viewed, that is, an intermediate direction D3 between the shooting direction D1 and the shooting direction D2 (FIG. 2). It is desirable that the reference) intersects the vertical direction V. In order to use the reference image as a radiographic image by two-dimensional radiography, it is desirable that the imaging angle θ in the imaging direction D1 is 0 °, that is, the imaging direction D1 is orthogonal to the detection surface 15a. Further, in order to enable stereoscopic viewing, it is desirable that the angle formed by the shooting direction D1 and the shooting direction D2 is in the range of 2 ° to 5 °.
 管電流(mA)および照射時間(sec)は、管電流積である放射線の照射線量(mAs)を調整するものである。以下の説明においては、管電流積を照射線量(mAs)として説明する。なお、入力部4は、照射線量(mAs)の直接の入力を受け付けるものであってもよい。照射線量(mAs)の上限値は、乳房Mの被曝量を抑えるためのものであり、下限値は放射線画像の画質担保するためのものである。 The tube current (mA) and the irradiation time (sec) are for adjusting the radiation dose (mAs) which is a tube current product. In the following description, the tube current product is described as an irradiation dose (mAs). The input unit 4 may accept a direct input of irradiation dose (mAs). The upper limit value of the irradiation dose (mAs) is for suppressing the exposure dose of the breast M, and the lower limit value is for ensuring the image quality of the radiation image.
 管電圧(kv)は放射線の線質を調整するものであり、管電圧(kv)を低くすることで放射線が軟質になり、乳房Mの陰影の表現がしやすくなる。ターゲットおよびフィルタの種類は、放射線のスペクトル分布を調整するものであり、モリブデン(Mo)、ロジウム(Rh)およびアルミニウム(Al)から選択される。焦点サイズは、放射線画像の先鋭性を調整するものであり、焦点サイズを小さくすることで放射線画像の解像度が向上する。 The tube voltage (kv) adjusts the radiation quality of the radiation. By reducing the tube voltage (kv), the radiation becomes soft and the shadow of the breast M can be easily expressed. The type of the target and the filter adjusts the spectral distribution of radiation, and is selected from molybdenum (Mo), rhodium (Rh), and aluminum (Al). The focus size adjusts the sharpness of the radiographic image, and the resolution of the radiographic image is improved by reducing the focus size.
 撮影条件設定部2bについて詳細に説明する。撮影条件設定部2bは、入力部4から撮影条件を受け取り、受け取った撮影条件に基づいて、撮影方向D1,D2の照射線量(mAs)を設定するものである。また、撮影条件設定部2bは、管電流積(mA)に照射時間(sec)を乗算して撮影方向D1の照射線量(mAs)を設定するとともに、撮影方向D1の照射線量(mAs)に0.5~0.7程度の所定の係数を乗算して撮影方向D2の照射線量(mAs)を設定する。上記の係数は、撮影者が入力部4を介して任意に変更可能なものである。なお、入力部4が撮影方向D1の照射線量(mAs)を直接受け付けた場合、撮影条件設定部2bは、受け付けた値を撮影方向D1の照射線量(mAs)に設定する。 The photographing condition setting unit 2b will be described in detail. The imaging condition setting unit 2b receives imaging conditions from the input unit 4, and sets the irradiation dose (mAs) in the imaging directions D1 and D2 based on the received imaging conditions. The imaging condition setting unit 2b multiplies the tube current product (mA) by the irradiation time (sec) to set the irradiation dose (mAs) in the imaging direction D1, and sets the irradiation dose (mAs) in the imaging direction D1 to 0. Multiply by a predetermined coefficient of about 5 to 0.7 to set the irradiation dose (mAs) in the imaging direction D2. The coefficient can be arbitrarily changed by the photographer via the input unit 4. When the input unit 4 directly receives the irradiation dose (mAs) in the imaging direction D1, the imaging condition setting unit 2b sets the received value as the irradiation dose (mAs) in the imaging direction D1.
 撮影条件設定部2bは、撮影方向D1,D2の照射線量(mAs)、撮影方向D2の照射線量(mAs)を満たす、撮影方向D2の管電流(mA)および照射時間(sec)の組み合わせを設定する。撮影条件設定部2bは、撮影方向D1の管電流(mA)、撮影方向D2の照射線量(mAs)を撮影方向D1の管電流(mA)で除算した値を、撮影方向D2の管電流(mA)、照射時間(sec)として設定してもよく、撮影方向D1の照射時間(sec)、撮影方向D2の照射線量(mAs)を撮影方向D1の照射時間(msec)で除算した値を、撮影方向D2の照射時間(sec)、管電流(mA)として設定してもよい。 The imaging condition setting unit 2b sets a combination of the tube current (mA) and the irradiation time (sec) in the imaging direction D2 that satisfies the irradiation dose (mAs) in the imaging directions D1 and D2 and the irradiation dose (mAs) in the imaging direction D2. To do. The imaging condition setting unit 2b divides the value obtained by dividing the tube current (mA) in the imaging direction D1 and the irradiation dose (mAs) in the imaging direction D2 by the tube current (mA) in the imaging direction D1. ), May be set as the irradiation time (sec), and the value obtained by dividing the irradiation time (sec) in the imaging direction D1 and the irradiation dose (mAs) in the imaging direction D2 by the irradiation time (msec) in the imaging direction D1 The irradiation time (sec) in the direction D2 and the tube current (mA) may be set.
 線量表示制御部2dは、3次元撮影装置本体1が乳房Mの放射線撮影を行う前に撮影方向D1,D2の照射線量、上限値および下限値をモニタ3に表示させるものである。図4は、照射線量(mAs)、上限値および下限値の表示の一例を示す図である。また、線量表示制御部2dは、照射線量(mAs)が上限値を超える場合および/または下限値未満の場合に警告表示させるものである。図5、図6および図7は、警告を伴う照射線量、上限値および下限値の表示の一例を示す図である。なお、線量表示制御部2dは上限値と下限値のどちらか一方をモニタ3に表示させるものであってもよい。 The dose display control unit 2d is for causing the monitor 3 to display the irradiation dose, the upper limit value, and the lower limit value in the imaging directions D1 and D2 before the 3D imaging apparatus body 1 performs radiography of the breast M. FIG. 4 is a diagram illustrating an example of display of the irradiation dose (mAs), the upper limit value, and the lower limit value. The dose display control unit 2d displays a warning when the irradiation dose (mAs) exceeds the upper limit value and / or less than the lower limit value. 5, 6 and 7 are diagrams showing examples of display of irradiation dose accompanied by a warning, upper limit value and lower limit value. The dose display control unit 2d may display the upper limit value or the lower limit value on the monitor 3.
 線量表示制御部2dは、図4~図7に示すように、撮影者に照射線量を確認させる確認ボタンを表示させる。なお、図4~図6においては撮影方向D2の照射線量(mAs)を算出する係数が0.7、図7においては0.6である。 The dose display control unit 2d displays a confirmation button that allows the photographer to confirm the irradiation dose as shown in FIGS. 4 to 6, the coefficient for calculating the irradiation dose (mAs) in the imaging direction D2 is 0.7, and in FIG. 7, it is 0.6.
 3次元放射線撮影装置100の一連の作用について説明する。図8は、第1の実施形態の作用を示すフローチャートである。まず、乳房Mが設置され、入力部4が撮影方向D1,D2のそれぞれの撮影条件を受け付ける(ST1)。撮影条件設定部2bが、撮影方向D1,D2のそれぞれの撮影条件を受け取り(ST2)、撮影方向D1,D2の照射線量(mAs)を算出し(ST3)、各撮影条件を設定する(ST4)。 A series of operations of the three-dimensional radiation imaging apparatus 100 will be described. FIG. 8 is a flowchart showing the operation of the first embodiment. First, the breast M is installed, and the input unit 4 receives the respective imaging conditions in the imaging directions D1 and D2 (ST1). The imaging condition setting unit 2b receives the imaging conditions in the imaging directions D1 and D2 (ST2), calculates the irradiation dose (mAs) in the imaging directions D1 and D2 (ST3), and sets each imaging condition (ST4). .
 入力部4が撮影開始の指示を受け付けるまで待機する(ST5)。入力部4が撮影開始の指示を受け付けると、制御部2aが、乳房Mを圧迫する制御信号を圧迫板コントローラ34に出力する。圧迫板コントローラ34が、制御信号を受け取って所定圧で乳房Mを圧迫する(ST6)。 Wait until the input unit 4 receives an instruction to start shooting (ST5). When the input unit 4 receives an instruction to start imaging, the control unit 2 a outputs a control signal for compressing the breast M to the compression plate controller 34. The compression plate controller 34 receives the control signal and compresses the breast M with a predetermined pressure (ST6).
 線量表示制御部2dが、撮影条件設定部2bから撮影方向D1,D2における照射線量(mAs)、上限値および下限値を読み出してモニタ3に表示させる(ST7)。また、線量表示制御部2dは、撮影方向D1,D2の照射線量(mAs)が上限値以を超えるか否かを判別し(ST8)、上限値を超える場合にはモニタ3に警告を表示させる(ST9)。撮影者が警告を確認するまで待機し、警告確認後に撮影条件の受け付けに戻る(ST1)。 The dose display control unit 2d reads the irradiation dose (mAs), the upper limit value, and the lower limit value in the imaging directions D1 and D2 from the imaging condition setting unit 2b and displays them on the monitor 3 (ST7). Further, the dose display control unit 2d determines whether or not the irradiation dose (mAs) in the imaging directions D1 and D2 exceeds the upper limit value (ST8), and displays a warning on the monitor 3 if the upper limit value is exceeded. (ST9). Wait until the photographer confirms the warning, and after confirming the warning, the process returns to accepting the photographing conditions (ST1).
 撮影方向D1,D2の照射線量が上限値以下の場合、撮影条件設定部2bは、撮影方向D1,D2の照射線量(mAs)が下限値未満であるか否かを判別し(ST10)、下限値未満の場合には、モニタ3に警告を表示させる(ST9)。撮影者が警告を確認するまで待機して警告確認後に撮影条件の受け付けに戻る(ST1)。 When the irradiation doses in the imaging directions D1 and D2 are less than or equal to the upper limit value, the imaging condition setting unit 2b determines whether or not the irradiation doses (mAs) in the imaging directions D1 and D2 are less than the lower limit value (ST10). If it is less than the value, a warning is displayed on the monitor 3 (ST9). Wait until the photographer confirms the warning, and after confirming the warning, the process returns to accepting the photographing conditions (ST1).
 撮影方向D1,D2の照射線量が下限値以上の場合、基準画像の撮影が開始する。まず、制御部2aが、撮影方向D1の撮影角度θ=0°を撮影条件設定部2bから読み出してアームコントローラ31にアーム部13を回転させる制御信号を出力する。アームコントローラ31が制御信号を受け取り、撮影方向D1が検出面15aに対して垂直な方向となるように、アーム部13を回転させる。 When the exposure dose in the imaging directions D1 and D2 is equal to or higher than the lower limit value, imaging of the reference image starts. First, the control unit 2a reads the shooting angle θ = 0 ° in the shooting direction D1 from the shooting condition setting unit 2b, and outputs a control signal for rotating the arm unit 13 to the arm controller 31. The arm controller 31 receives the control signal, and rotates the arm unit 13 so that the photographing direction D1 is perpendicular to the detection surface 15a.
 アーム部13が検出面15aに対して垂直な姿勢P1(図2参照)になると、制御部2aが、撮影条件設定部2bから管電圧(kv)、撮影方向D1の管電流(mA)および照射時間(sec)をそれぞれ読み出して放射線源コントローラ31に放射線源17から放射線を照射させる制御信号を出力する。放射線源コントローラ32が、制御信号を受け取って放射線源17から放射線を照射させる。 When the arm unit 13 is in the posture P1 (see FIG. 2) perpendicular to the detection surface 15a, the control unit 2a sends the tube voltage (kv), the tube current (mA) in the photographing direction D1, and the irradiation from the photographing condition setting unit 2b. Each time (sec) is read out and a control signal for irradiating the radiation source controller 31 with radiation from the radiation source 17 is output. The radiation source controller 32 receives the control signal and emits radiation from the radiation source 17.
 制御部2aが、検出器コントローラ33に放射線画像信号の読み出しを行うよう制御信号を出力する。検出器コントローラ33が、制御信号を受け取って放射線を検出した放射線検出器15から放射線画像信号を読み出す。放射線画像記憶部2cが、撮影方向D1の放射線画像信号を記憶して基準画像の撮影が終了する(ST11)。 The control unit 2a outputs a control signal to the detector controller 33 so as to read out the radiation image signal. The detector controller 33 receives the control signal and reads the radiation image signal from the radiation detector 15 that has detected the radiation. The radiographic image storage unit 2c stores the radiographic image signal in the imaging direction D1, and the imaging of the reference image ends (ST11).
 次に、制御部2aが、撮影方向D2の撮影角度θ=4°を撮影条件設定部2bから読み出してアームコントローラ31にアーム部13を回転させる制御信号を出力する。アームコントローラ31が、制御信号を受け取って撮影方向D2が検出面15aに垂直な方向Vに対して4°傾くように、アーム部13を回転させる。 Next, the control unit 2a reads the shooting angle θ = 4 ° in the shooting direction D2 from the shooting condition setting unit 2b and outputs a control signal for rotating the arm unit 13 to the arm controller 31. The arm controller 31 receives the control signal and rotates the arm unit 13 so that the photographing direction D2 is inclined by 4 ° with respect to the direction V perpendicular to the detection surface 15a.
 アーム部13が検出面15aに垂直な方向Vに対して4°傾いた姿勢P2(図2参照)になると、制御部2aが、撮影条件設定部2bから管電圧(kv)、撮影方向D2の管電流(mA)および照射時間(sec)をそれぞれ読み出して放射線源コントローラ32に放射線源17から放射線を照射させる制御信号を出力する。放射線源コントローラ32が、制御信号を受け取って放射線源17から放射線を照射させる。 When the arm unit 13 is in a posture P2 (see FIG. 2) inclined by 4 ° with respect to the direction V perpendicular to the detection surface 15a, the control unit 2a receives the tube voltage (kv) and the shooting direction D2 from the shooting condition setting unit 2b. The tube current (mA) and the irradiation time (sec) are read out, and a control signal for causing the radiation source controller 32 to irradiate radiation from the radiation source 17 is output. The radiation source controller 32 receives the control signal and emits radiation from the radiation source 17.
 制御部2aが、検出器コントローラ33に放射線画像信号の読み出しを行うよう制御信号を出力する。検出器コントローラ33が、制御信号を受け取って放射線を検出した放射線検出器15から放射線画像信号を読み出す。放射線画像記憶部2cが、撮影方向D2の放射線画像信号を記憶して参照画像の撮影が終了する(ST12)。 The control unit 2a outputs a control signal to the detector controller 33 so as to read out the radiation image signal. The detector controller 33 receives the control signal and reads the radiation image signal from the radiation detector 15 that has detected the radiation. The radiographic image storage unit 2c stores the radiographic image signal in the imaging direction D2, and the imaging of the reference image ends (ST12).
 画像表示制御部2eが、放射線画像記憶部2cから撮影方向D1,D2のそれぞれの放射線画像信号を読み出して所定の画素処理を施した後、モニタ3に基準画像および参照画像をそれぞれ表示させることにより、乳房Mの放射線画像を3次元表示して処理を終了する(ST13)。 The image display control unit 2e reads out the radiographic image signals in the imaging directions D1 and D2 from the radiographic image storage unit 2c and performs predetermined pixel processing, and then displays the reference image and the reference image on the monitor 3, respectively. Then, the radiation image of the breast M is displayed three-dimensionally and the process is terminated (ST13).
 次に、3次元撮影装置の第2の実施形態について説明する。第2の実施形態は、乳房Mの厚みに関する情報に基づいて、照射線量(mAs)を多くするように設定するものである。一般的に、圧迫された乳房Mの厚みが厚い場合、乳房Mで吸収される放射線の量が多くなるため、検出される放射線量が少なくなる傾向がある。これにより、特に参照画像の撮影の際に、検出される放射線の量が少なくなって参照画像の画質が担保できない虞がある。 Next, a second embodiment of the three-dimensional imaging device will be described. In the second embodiment, the irradiation dose (mAs) is set to be increased based on information on the thickness of the breast M. In general, when the compressed breast M is thick, the amount of radiation absorbed by the breast M increases, so that the amount of detected radiation tends to decrease. As a result, particularly when the reference image is captured, there is a possibility that the amount of detected radiation is reduced and the image quality of the reference image cannot be guaranteed.
 このため、第2の実施形態は、図9に示すように、コンピュータ2が、乳房Mの厚みに関する情報を取得する乳房厚取得部2fを備え、撮影条件設定部2bが、取得した乳房Mの厚みに関する情報に基づいて、照射線量(mAs)を設定している点において第1の実施形態と相違する。したがって、第2の実施形態については、第1の実施形態との相違点のみを説明するとともに、第1の実施形態と同一の構成および作用については、同一の番号を付してその説明を省略する。 Therefore, in the second embodiment, as shown in FIG. 9, the computer 2 includes a breast thickness acquisition unit 2 f that acquires information related to the thickness of the breast M, and the imaging condition setting unit 2 b It differs from the first embodiment in that the irradiation dose (mAs) is set based on the information on the thickness. Therefore, in the second embodiment, only differences from the first embodiment will be described, and the same configurations and operations as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. To do.
 乳房厚取得部2fは、圧迫板コントローラ34から乳房Mの厚みに関する情報を取得するものである。ここで、乳房Mの厚みに関する情報とは、乳房Mの厚み情報に限定されず、乳房Mの厚みが算出可能な情報である。具体的に、乳房厚取得部2fは、乳房Mを圧迫した後の圧迫板18の位置情報を取得するものである。 The breast thickness acquisition unit 2 f acquires information on the thickness of the breast M from the compression plate controller 34. Here, the information regarding the thickness of the breast M is not limited to the thickness information of the breast M, but is information that allows the thickness of the breast M to be calculated. Specifically, the breast thickness acquisition unit 2 f acquires position information of the compression plate 18 after the breast M is compressed.
 撮影条件設定部2bは、乳房厚取得部2fから圧迫した後の圧迫板18の位置情報を受け取り、乳房Mの厚みが所定の閾値を超えると判断した場合、撮影方向D1,D2の照射線量(mAs)に1.1~1.3程度の係数を乗算して撮影方向D1,D2の照射線量(mAs)を多く設定するものである。 When the imaging condition setting unit 2b receives positional information of the compression plate 18 after compression from the breast thickness acquisition unit 2f and determines that the thickness of the breast M exceeds a predetermined threshold, the irradiation doses in the imaging directions D1 and D2 ( (mAs) is multiplied by a coefficient of about 1.1 to 1.3 to set a large amount of irradiation dose (mAs) in the imaging directions D1 and D2.
 この際、撮影条件設定部2bは、照射線量(mAs)が上限値を超えないように照射線量(mAs)を多く設定する。また、撮影条件設定部2bは、撮影方向D2の設定された照射線量(mAs)のみを多く設定してもよい。なお、上記の係数は、撮影者が入力部4を介して変更可能なものである。 At this time, the imaging condition setting unit 2b sets many irradiation doses (mAs) so that the irradiation dose (mAs) does not exceed the upper limit value. Further, the imaging condition setting unit 2b may set a large amount of irradiation dose (mAs) set in the imaging direction D2. The coefficient can be changed by the photographer via the input unit 4.
 撮影条件設定部2bは、撮影方向D1,D2の照射線量(mAs)を多く設定すると、撮影方向D1,D2の照射線量(mAs)を満たすように、撮影方向D1,D2の管電流(mA)および照射時間(sec)を再設定する。 When the imaging condition setting unit 2b sets many irradiation doses (mAs) in the imaging directions D1 and D2, the tube current (mA) in the imaging directions D1 and D2 so as to satisfy the irradiation doses (mAs) in the imaging directions D1 and D2. Also reset the irradiation time (sec).
 第2の実施形態における3次元放射線撮影装置100の一連の処理について説明する。図10および図11は、第2の実施形態における3次元放射線撮影装置100の一連の処理を示すフローチャートである。第1の実施形態と同様の各処理(ST1)~(ST6)が行われる。 A series of processes of the three-dimensional radiation imaging apparatus 100 in the second embodiment will be described. FIG. 10 and FIG. 11 are flowcharts showing a series of processes of the three-dimensional radiation imaging apparatus 100 in the second embodiment. The same processes (ST1) to (ST6) as in the first embodiment are performed.
 乳房Mが圧迫されると、乳房厚取得部2fが圧迫板コントローラ34から圧迫板18の位置情報を取得し(ST14)、撮影条件設定部2bが、乳房Mの厚みが所定の閾値を超えるか否かを判断する(ST15)。乳房Mの厚みが所定の閾値以下の場合は第1の実施形態と同様に各処理(ST7~ST13)が行われる。乳房Mの厚みが所定の閾値を超える場合、撮影条件設定部2bが、撮影方向D1,D2のそれぞれの照射線量を、上限値を超えないように多く設定する(ST16)。この際、撮影方向D1,D2の照射線量(mAs)、管電流(mA)および照射時間(sec)を再設定する。そして、第1の実施形態と同様の各処理(ST7)~(ST13)が行われる。 When the breast M is compressed, the breast thickness acquisition unit 2f acquires positional information of the compression plate 18 from the compression plate controller 34 (ST14), and whether the imaging condition setting unit 2b exceeds the predetermined threshold value. It is determined whether or not (ST15). When the thickness of the breast M is equal to or smaller than the predetermined threshold value, each process (ST7 to ST13) is performed as in the first embodiment. When the thickness of the breast M exceeds a predetermined threshold, the imaging condition setting unit 2b sets a large amount of each irradiation dose in the imaging directions D1 and D2 so as not to exceed the upper limit (ST16). At this time, the irradiation dose (mAs), tube current (mA), and irradiation time (sec) in the imaging directions D1 and D2 are reset. Then, the same processes (ST7) to (ST13) as in the first embodiment are performed.
 上記の実施形態によれば、撮影条件設定部2bが撮影方向D1,D2の照射線量(mAs)を設定し、乳房Mを撮影する際、モニタ3が撮影方向D1,D2の照射線量(mAs)を表示するため、撮影者が乳房Mの被曝量を推定できるとともに、撮影方向D2の照射線量(mAs)を確認できるため、乳房Mの被曝量を抑えつつ、参照画像の画質を担保できる。 According to the above embodiment, when the imaging condition setting unit 2b sets the irradiation dose (mAs) in the imaging directions D1 and D2, and the breast M is imaged, the monitor 3 applies the irradiation dose (mAs) in the imaging directions D1 and D2. Since the photographer can estimate the exposure dose of the breast M and confirm the irradiation dose (mAs) in the imaging direction D2, the image quality of the reference image can be ensured while suppressing the exposure dose of the breast M.
 また、上記の実施形態によれば、撮影条件設定部2bが、撮影方向D1の照射線量(mAs)に基づいて撮影方向D2の照射線量(mAs)を設定する場合であっても、撮影方向D2の照射線量(mAs)を確実に確認できるため、乳房Mの被曝量を抑えつつ、参照画像の画質を担保できる。 Further, according to the above embodiment, even when the imaging condition setting unit 2b sets the irradiation dose (mAs) in the imaging direction D2 based on the irradiation dose (mAs) in the imaging direction D1, the imaging direction D2 Therefore, it is possible to ensure the image quality of the reference image while suppressing the exposure dose of the breast M.
 また、上記の実施形態によれば、画像表示制御部2eが圧迫後の圧迫板18の位置情報を取得し、撮影条件設定部2bが圧迫後の圧迫板18の位置情報に基づいて、撮影方向D1,D2の照射線量(mAs)を多くして設定することにより、乳房Mが厚いため吸収される放射線が多い場合であっても、確実に乳房Mの被曝量を抑えつつ、参照画像の画質を担保できる。 Further, according to the above-described embodiment, the image display control unit 2e acquires the positional information of the compression plate 18 after compression, and the imaging condition setting unit 2b acquires the imaging direction based on the positional information of the compression plate 18 after compression. By setting the irradiation doses (mAs) of D1 and D2 to be large, the image quality of the reference image is reliably suppressed while suppressing the exposure dose of the breast M even if the breast M is thick and the radiation absorbed is large. Can be secured.
 また、上記の実施形態によれば、モニタ3が照射線量(mAs)の上限値および下限値を表示するため、撮影者は、撮影方向D1,D2の照射線量(mAs)が所定の範囲内であることを確認できるため、確実に乳房Mの被曝量を抑えつつ、参照画像の画質を担保できる。さらに、上記の実施形態によれば、撮影方向D1の照射線量(mAs)が上限値を超える場合および/または撮影方向D2の照射線量(mAs)が下限値未満の場合、モニタ3が警告を表示するため、より確実に乳房Mの被曝量を抑えつつ、参照画像の画質を担保できる。 According to the above embodiment, since the monitor 3 displays the upper limit value and the lower limit value of the irradiation dose (mAs), the photographer can set the irradiation dose (mAs) in the shooting directions D1 and D2 within a predetermined range. Since it can be confirmed, the image quality of the reference image can be ensured while reliably reducing the exposure dose of the breast M. Furthermore, according to the above-described embodiment, when the irradiation dose (mAs) in the imaging direction D1 exceeds the upper limit value and / or when the irradiation dose (mAs) in the imaging direction D2 is less than the lower limit value, the monitor 3 displays a warning. Therefore, the image quality of the reference image can be ensured while more reliably suppressing the exposure dose of the breast M.
 また、上記の実施形態によれば、撮影方向D1と撮影方向D2の中間方向D3が検出面15aに対して垂直な方向Vと交差するため、視認しやすい基準画像の撮影が可能である。また、上記の実施形態によれば、撮影方向D1が検出面15aに垂直な方向であるため、基準画像は2次元放射線画像で撮影された画像としても利用可能である。また、上記の実施形態によれば、撮影方向D1と撮影方向D2とのなす角度が2°~5°であるため、基準画像および参照画像を用いて立体視可能な乳房Mの3次元表示ができる。 Further, according to the above-described embodiment, since the intermediate direction D3 between the shooting direction D1 and the shooting direction D2 intersects the direction V perpendicular to the detection surface 15a, it is possible to take a reference image that is easy to see. Further, according to the above embodiment, since the imaging direction D1 is a direction perpendicular to the detection surface 15a, the reference image can be used as an image captured by a two-dimensional radiation image. Further, according to the above-described embodiment, since the angle formed by the photographing direction D1 and the photographing direction D2 is 2 ° to 5 °, the three-dimensional display of the breast M that can be stereoscopically viewed using the standard image and the reference image is possible. it can.

Claims (10)

  1.  互いに異なる2つの撮影方向のうち、一方の撮影方向から所定の照射線量の放射線、他方の撮影方向から前記一方の照射線量よりも少ない照射線量の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影装置において、
     両方の照射線量を設定する撮影条件設定部と、
     前記被写体を撮影する際、前記撮影条件設定部により設定された両方の照射線量を表示する表示部とを備えたことを特徴とする3次元放射線撮影装置。
    Three-dimensional radiation that is shot by irradiating a subject with radiation having a predetermined irradiation dose from one of the two different shooting directions, and radiation with an irradiation dose smaller than the first irradiation dose from the other shooting direction. In the shooting device,
    An imaging condition setting unit for setting both irradiation doses,
    A three-dimensional radiation imaging apparatus comprising: a display unit configured to display both irradiation doses set by the imaging condition setting unit when imaging the subject.
  2.  前記撮影条件設定部が、前記一方の照射線量に基づいて前記他方の照射線量を設定することを特徴とする請求項1に記載の3次元放射線撮影装置。 The three-dimensional radiography apparatus according to claim 1, wherein the imaging condition setting unit sets the other irradiation dose based on the one irradiation dose.
  3.  前記撮影条件設定部が、前記一方の照射線量に所定の係数を乗算して前記他方の照射線量を設定することを特徴とする請求項1または2に記載の3次元放射線撮影装置。 3. The three-dimensional radiography apparatus according to claim 1, wherein the imaging condition setting unit sets the other irradiation dose by multiplying the one irradiation dose by a predetermined coefficient.
  4.  前記被写体が乳房であり、該乳房の厚みに関する情報を取得する乳房厚取得部を備え、
     前記撮影条件設定部が、前記乳房の厚みに関する情報に基づいて前記照射線量を多くするように設定することを特徴とする請求項1~3のいずれか1項に記載の3次元放射線撮影装置。
    The subject is a breast, and includes a breast thickness acquisition unit that acquires information on the thickness of the breast,
    The three-dimensional radiography apparatus according to any one of claims 1 to 3, wherein the imaging condition setting unit sets the irradiation dose to be increased based on information on the thickness of the breast.
  5.  前記表示部が、前記照射線量の上限値および/または下限値を表示することを特徴とする請求項1~4のいずれか1項に記載の3次元放射線撮影装置。 The three-dimensional radiation imaging apparatus according to any one of claims 1 to 4, wherein the display unit displays an upper limit value and / or a lower limit value of the irradiation dose.
  6.  前記表示部が、前記一方の照射線量が前記上限値を超える場合および/または前記他方の照射線量が前記下限値未満の場合に警告を表示することを特徴とする請求項5に記載の3次元放射線撮影装置。 The three-dimensional display according to claim 5, wherein the display unit displays a warning when the one irradiation dose exceeds the upper limit value and / or when the other irradiation dose is less than the lower limit value. Radiography equipment.
  7.  前記被写体を通した放射線を検出する放射線検出器を備え、
     前記一方の撮影方向と前記他方の撮影方向との中間方向が、前記放射線検出器の検出面に対して垂直な方向と交差することを特徴とする請求項1~6のいずれか1項に記載の3次元放射線撮影装置。
    A radiation detector for detecting radiation passing through the subject;
    The intermediate direction between the one imaging direction and the other imaging direction intersects a direction perpendicular to the detection surface of the radiation detector. 3D radiography equipment.
  8.  前記一方の撮影方向が前記検出面に垂直な方向であることを特徴とする請求項1~7のいずれか1項に記載の3次元放射線撮影装置。 The three-dimensional radiation imaging apparatus according to any one of claims 1 to 7, wherein the one imaging direction is a direction perpendicular to the detection surface.
  9.  前記一方の撮影方向と前記他方の撮影方向とのなす角度が2°~5°の範囲にあることを特徴とする請求項1~8のいずれか1項に記載の3次元放射線撮影装置。 The three-dimensional radiographic apparatus according to any one of claims 1 to 8, wherein an angle formed by the one imaging direction and the other imaging direction is in a range of 2 ° to 5 °.
  10.  互いに異なる2つの撮影方向のうち、一方の撮影方向から所定の照射線量の放射線、他方の撮影方向から前記一方の照射線量よりも少ない照射線量の放射線を被写体にそれぞれ照射して撮影する3次元放射線撮影方法において、
     両方の前記照射線量を設定し、
     前記被写体を撮影する際、前記設定された両方の照射線量を表示することを特徴とする3次元放射線撮影方法。
    Three-dimensional radiation that is shot by irradiating a subject with radiation having a predetermined irradiation dose from one of the two different shooting directions, and radiation with an irradiation dose smaller than the first irradiation dose from the other shooting direction. In the shooting method,
    Set both said doses,
    A three-dimensional radiography method, wherein both of the set irradiation doses are displayed when the subject is imaged.
PCT/JP2012/001584 2011-03-10 2012-03-08 Three-dimensional radiographic apparatus and method WO2012120886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161451292P 2011-03-10 2011-03-10
US61/451,292 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012120886A1 true WO2012120886A1 (en) 2012-09-13

Family

ID=46797857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001584 WO2012120886A1 (en) 2011-03-10 2012-03-08 Three-dimensional radiographic apparatus and method

Country Status (1)

Country Link
WO (1) WO2012120886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080926A1 (en) * 2012-11-22 2014-05-30 富士フイルム株式会社 Radiographic imaging system, radiographic imaging method and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253555A (en) * 2007-04-05 2008-10-23 Fujifilm Corp Radiation tomographic image acquisition apparatus
JP2010187735A (en) * 2009-02-16 2010-09-02 Fujifilm Corp Radiographic imaging apparatus
JP2010234003A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Breast photographing stereotactic instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253555A (en) * 2007-04-05 2008-10-23 Fujifilm Corp Radiation tomographic image acquisition apparatus
JP2010187735A (en) * 2009-02-16 2010-09-02 Fujifilm Corp Radiographic imaging apparatus
JP2010234003A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Breast photographing stereotactic instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080926A1 (en) * 2012-11-22 2014-05-30 富士フイルム株式会社 Radiographic imaging system, radiographic imaging method and recording medium
JP2014100437A (en) * 2012-11-22 2014-06-05 Fujifilm Corp Radiographic imaging system, radiographic imaging method, and program
US9820714B2 (en) 2012-11-22 2017-11-21 Fujifilm Corporation Radiographic imaging system, radiographic imaging method and non-transitory recording medium

Similar Documents

Publication Publication Date Title
JP2012050519A (en) Mammographic apparatus
WO2012090472A1 (en) Imaging control device and imaging control method
US20120051501A1 (en) Radiation image radiographing apparatus and radiation image radiographing and displaying method
WO2012120841A1 (en) Radiological imaging method and device
JP2012029742A (en) Radiological image capturing and displaying method and apparatus
JP2012061187A (en) Radiation ray image display device and method
US20120027169A1 (en) Radiological image radiographing and displaying method and apparatus
JP2012061197A (en) Radiation ray image photographing device and method
WO2012127819A1 (en) Three-dimensional radiographic apparatus and method
WO2012114757A1 (en) Radiographic imaging method and device
WO2012120886A1 (en) Three-dimensional radiographic apparatus and method
JP2012157551A (en) Radiation image photographing apparatus and method
JP2012066049A (en) Radiation imaging apparatus and stereoscopic image display method
JP5506726B2 (en) Radiation image capturing method, radiation detector, and radiation image capturing apparatus
JP2012050517A (en) Radiographic apparatus
WO2012056695A1 (en) Three-dimensional image display device, method, and program
WO2012039121A1 (en) Radiation image capturing device and radiation image capturing method
WO2012115089A1 (en) Radiological image-capturing device and method
WO2012105188A1 (en) Stereoscopic image display device and method, and program
JP2012071107A (en) Radiological image radiographing apparatus and radiographing method thereof
JP2012050518A (en) Radiation imaging apparatus
WO2012056718A1 (en) Three-dimensional radiation image display device, method, and program
WO2012029726A1 (en) Method and apparatus for imaging/displaying breast image
WO2012114766A1 (en) Stereoscopic radiological image generating device, method, and program
WO2012114758A1 (en) Radiographic imaging method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP