WO2012120227A1 - Tuyere avec noyau aval presentant une forte courbure. - Google Patents

Tuyere avec noyau aval presentant une forte courbure. Download PDF

Info

Publication number
WO2012120227A1
WO2012120227A1 PCT/FR2012/050447 FR2012050447W WO2012120227A1 WO 2012120227 A1 WO2012120227 A1 WO 2012120227A1 FR 2012050447 W FR2012050447 W FR 2012050447W WO 2012120227 A1 WO2012120227 A1 WO 2012120227A1
Authority
WO
WIPO (PCT)
Prior art keywords
radius
curvature
core
downstream
region
Prior art date
Application number
PCT/FR2012/050447
Other languages
English (en)
Inventor
Stéphane Emmanuel Daniel BENSILUM
Jean Bertucchi
Mathieu GAILLOT
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1315749.0A priority Critical patent/GB2503142B8/en
Priority to US14/003,180 priority patent/US9341082B2/en
Publication of WO2012120227A1 publication Critical patent/WO2012120227A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/711Shape curved convex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the field of turbomachines, in particular aeronautical turbomachines such as aircraft engines.
  • the invention more particularly relates to a turbomachine nozzle, in which the working fluid circulates in normal operation from upstream to downstream, comprising at its downstream end an outer wall and a core whose upstream portion is surrounded by this outer wall and whose downstream part extends this upstream part downstream of this external wall, the boundary between the upstream part and the downstream part being defined by the intersection between the core and the surface formed of the bisectors of the acute angles formed by the lines perpendicular to this outer wall and passing through the downstream end of this outer wall and the straight lines perpendicular to the outer face of the core and passing through the downstream end of the outer wall, the space between the outer wall and the upstream portion of the core defining an annular vein whose axis is a longitudinal axis A.
  • upstream and downstream are defined with respect to the direction of normal circulation of the working fluid in the nozzle.
  • FIG. 1 schematically shows a turbomachine
  • the turbomachine comprises a nozzle 2, the downstream end comprises an outer wall 100, and a core 200 (this core can also be called "plug").
  • the outer wall 100 and the core 200 are coaxial, their longitudinal axis being an axis A (in the case represented, the axis A is the same as the axis of the turbomachine, in certain cases the axis A can be inclined relative to to the axis of the turbomachine).
  • the outer wall 100 has a downstream end 105.
  • the upstream portion 210 of the core 200 is surrounded by the outer wall 100. The space between this upstream portion 210 and the outer wall 100 thus forms an annular vein 300 of longitudinal axis A.
  • the downstream portion 230 of the core 200 extends this upstream portion 210 downstream of the outer wall 100, that is to say that this downstream portion 230 is not surrounded by the outer wall 100.
  • the upstream portion 210 and the downstream portion 230 meet at a boundary 220.
  • the positioning of this boundary 220 is defined as follows (see FIG. 3): At each point M of the downstream end 105 of the outer wall 100, it is considered a first straight line D1 passing through this point M and which is perpendicular to the outer wall 100, and a second straight line D2 passing through this point M and which is perpendicular to the outer face 206 of the core 200, and defining the straight line D which is the bisector of the acute angle formed by the first line D1 and the second line D2.
  • This set of straight lines D forms a surface S, and the intersection of this surface S with the external face 206 of the core 200 constitutes the boundary 220 between the upstream portion 210 and the downstream portion 230.
  • the portion of the surface S which is extends between the outer face 206 and the outer wall 100 constitutes the downstream orifice of the annular vein 300.
  • FIG. 3 represents the downstream part of a nozzle 2 according to the prior art, in longitudinal section.
  • the downstream portion 230 of the core 200 is conical and is close to the longitudinal axis A of the nozzle 2 from upstream to downstream.
  • the outer face 236 of this downstream portion 230 thus forms two segments which are such that the lines which extend them intersect on the longitudinal axis A.
  • the downstream end 239 of the core 200 is substantially hemispherical, that is to say that the side wall of the cone formed by the downstream portion 230 is curved at the top of this cone (downstream end) to form a portion of sphere .
  • the top of this cone may be truncated at its end, or extended by a cylindrical portion extending along the longitudinal axis A.
  • the cone formed by the downstream portion 230 of the core 200 has a half-angle at the vertex ⁇ which is weak.
  • the outer face of the core 200 must have, at the downstream orifice of the annular vein, a slope with respect to the longitudinal axis A which deviates at most about 10 ° from the slope relative to this axis A of the outer wall 100. If the slope of the outer face of the core 200 is too much greater than the slope of the outer wall 100, the annular vein has a downstream orifice which is too divergent (the annular vein flares at its outlet section), and this is detrimental from an aerodynamic point of view.
  • the half-angle at the top ⁇ which is directly related to the slope of the outer face of the core 200 is necessarily small, in practice less than 21 °.
  • a solution used in the prior art is to truncate the downstream portion 230 of the core 200 about mid-length, at the dashed line in Figure 3 which is therefore mid -distance between the downstream orifice of the annular vein 300 and the downstream end 239 of the core 200.
  • the wide downstream end of the core 200 resulting from this truncation leads to a penalty of aerodynamic performance which counterbalances the mass gain.
  • the present invention aims to remedy these disadvantages.
  • the invention aims to provide a nozzle that is lighter than existing nozzles, while maintaining its aerodynamic performance.
  • the outer face of the downstream portion of the core has, downstream of the boundary, a convex region of strong curvature at each point of which the radius of curvature R in a plane longitudinal radius is less than a first radius R1 equal to 30 times a radius of curvature H of the core in a plane transverse to a point of intersection of said boundary and said longitudinal radial plane, and a first region of slight curvature between said boundary and said convex region of strong curvature, at each point of which the radius of curvature R in said longitudinal radial plane is greater than a second radius R2 equal to 10 times said first radius RI.
  • the first region of small curvature may in particular have a length of not less than 0.02 times the radius of curvature H.
  • said first region of low curvature may have a length no greater than 0.8 times the radius H, and / or no greater than 0.55 times the distance between said boundary and a downstream end of the core in the direction of the longitudinal axis A.
  • lengths in this context mean axial lengths in the direction of the longitudinal axis A.
  • said convex region of strong curvature may have a length of not less than 1.9 times the radius H and / or not greater than 2.7 times the radius H.
  • FIG. 1 schematically shows a turbojet engine in longitudinal section
  • FIG. 2 shows the downstream part of a nozzle according to the invention
  • Figure 3 shows the downstream part of a nozzle according to the prior art.
  • Figure 2 shows the downstream part of a nozzle 1 according to the invention, extending along a longitudinal axis A. For reasons of symmetry, only half of the nozzle 1 above the longitudinal axis A is shown.
  • the outer wall 100 of the nozzle, and the outer face 206 of the core 200 make a small angle between them, which is at most of the order of 10 °.
  • downstream portion 230 of the core 200 Immediately downstream of the boundary 220 is the downstream portion 230 of the core 200.
  • the outer face 236 of this downstream portion 230 of the core 200 has in a longitudinal radial plane, near the boundary 220, a region convex of strong curvature 250.
  • this convex region of high curvature 250 is in the first third of the total length of the downstream portion 230 of the core 200, that is, in the most upstream of this downstream part 230.
  • strong curvature is meant a curvature whose radius of curvature is less than a first radius R1 equal to 30 times the radius H of the core 200 at the border 220.
  • This radius of curvature is defined in a radial plane, that is to say a plane containing the longitudinal axis A.
  • This radius of curvature of the outer face 236 is thus defined, at a point P of the outer face 236, as being the radius R of a circle contained in this radial longitudinal plane, passing through this point P, and marrying the outer face 236 closer.
  • This radius R is given by the formula:
  • y (x) is the equation of the curve formed by the intersection of the outer face and this radial plane
  • y is the first derivative of y with respect to x
  • y is the second derivative of y with respect to x.
  • this plane (x, y) is a radial plane containing the longitudinal axis A. In FIG. 2, it is the plane of the sheet.
  • the boundary 220 extends in a transverse plane perpendicular to the longitudinal axis A and forms a circle centered on this axis.
  • this boundary 220 may be elliptical, with a ratio of between the minor diameter and the major diameter of the ellipse can be as low as 0.85.
  • the radius H is the radius of this boundary 220 in this plane transverse to a point of intersection of the boundary 220 with the longitudinal radial plane illustrated.
  • the radius of curvature R at a point P of the region of strong curvature 250 in this same longitudinal radial plane is shown in FIG.
  • the radius of curvature R is less than the first radius R1.
  • the flare at the outlet of the annular vein 300 because of the strong curvature towards the longitudinal axis A at the convex region of strong curvature 250 causes a slowing of the air at this level, and therefore a recompression of the air.
  • the radius of curvature R at each point of the convex region of strong curvature 250 is less than half the first radius R1.
  • the mass of the turbomachine provided with such a nozzle is then reduced further, which is advantageous.
  • this region of strong curvature may in particular be between 1.9 and 2.7 times the radius H.
  • the convex region of strong curvature 250 is not immediately adjacent to the boundary 220.
  • the outer face 236 has, between the border 220 and the convex region of strong curvature 250, a first region of low curvature 240 at each point of which any radius of curvature in a longitudinal radial plane is greater than a second radius R2 equal to 10 times the first radius RI.
  • this first region of low curvature 240 forms the entirety of the outer face 236 situated between the boundary 220 and the convex region of strong curvature 250.
  • this first region of small curvature 240 is advantageous for this first region of small curvature 240 to be greater than 1 cm in length, measured along the outer face 236.
  • the length of this region of low curvature 240 can be an axial length, that is to say, measured on the longitudinal axis A, of between 0.02 and 0.8 times the radius H.
  • the core 200 Downstream of the convex region of strong curvature 250, the core 200 has a second region of small curvature 260, in which any radius of curvature (in a longitudinal radial plane) is greater than the first radius RI. This lower curvature helps to prevent a delamination of the boundary layer on the outer face 236.
  • the outer face 236 has, downstream of the convex region of strong curvature 250, a second region of small curvature 260 at each point of which any radius of curvature in a radial plane is greater than a second radius R2 equal to 10 times the first radius RI.
  • This second region of low curvature 260 begins immediately downstream of the region of strong curvature 250.
  • low curvature regions are regions in which the curvature can also be zero.
  • these first and second regions of low curvature 240, 260 may be straight, that is to say that the outer face 236 is, in these regions of low curvature 240,260, conical.
  • the second region of low curvature 260 forms the entire outer face 236 downstream of the region of strong curvature 250.
  • the downstream end 239 of the core 200 is truncated, as shown in FIG.
  • this downstream end 239 is substantially hemispherical, or extended by a cylindrical portion.
  • this downstream end 239 is substantially hemispherical, or extended by a cylindrical portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Une tuyère de turbomachine d'axe longitudinal A comprenant, en son extrémité aval, une paroi externe (100) et un noyau (200) dont seule la partie amont (210) est entourée par cette paroi externe (100), la frontière (220) entre la partie amont (210) et la partie aval (230) étant définie par l'intersection entre le noyau (200) et la surface formée des bissectrices D des angles aigus formés par les droites perpendiculaires à cette paroi externe (100) et les droites perpendiculaires à la face externe (206) du noyau (200) passant par l'extrémité aval (105) de cette paroi externe (100). La face externe (236) de la partie aval (230) du noyau (200) présente près de la frontière (220) une région convexe de forte courbure (250) avec un rayon de courbure R dans un plan radial inférieur à 30 fois le rayon H du noyau (200) au niveau de la frontière (220), et une première région de faible courbure (240) entre ladite frontière (220) et ladite région convexe de forte courbure (250).

Description

TUYERE AVEC NOYAU AVAL PRESENTANT UNE FORTE COURBURE
La présente invention concerne le domaine des turbomachines, notamment des turbomachines aéronautiques telles que des moteurs d'avion.
L'invention concerne plus particulièrement une tuyère de turbomachine, dans laquelle le fluide de travail circule en fonctionnement normal de l'amont vers aval, comprenant à son extrémité aval une paroi externe et un noyau dont la partie amont est entourée par cette paroi externe et dont la partie aval prolonge cette partie amont en aval de cette paroi externe, la frontière entre la partie amont et la partie aval étant définie par l'intersection entre le noyau et la surface formée des bissectrices des angles aigus formés par les droites perpendiculaires à cette paroi externe et passant par l'extrémité aval de cette paroi externe et les droites perpendiculaires à la face externe de ce noyau et passant par l'extrémité aval de la paroi externe, l'espace entre la paroi externe et la partie amont du noyau définissant une veine annulaire dont l'axe est un axe longitudinal A.
Dans la description qui suit, les termes "amont" et "aval" sont définis par rapport au sens de circulation normal du fluide de travail dans la tuyère.
Les termes "interne" et "externe" indiquent une partie située radialement à, ou orientée radialement vers, l'intérieur ou l'extérieur respectivement par rapport à l'axe longitudinal de la tuyère.
La figure 1 montre, de façon schématique, une turbomachine
(moteur d'avion) 1 en coupe longitudinale. En fonctionnement normal, le fluide de travail, formé dans cet exemple par de l'air et des gaz de combustion, circulent de l'amont vers l'aval, c'est-à-dire de la gauche vers la droite sur la figure 1. La turbomachine comporte une tuyère 2 dont l'extrémité aval comporte une paroi externe 100, et un noyau 200 (ce noyau peut également être appelé "plug"). La paroi externe 100 et le noyau 200 sont coaxiaux, leur axe longitudinal étant un axe A (dans le cas représenté l'axe A est le même que l'axe de la turbomachine. Dans certains cas l'axe A peut être incliné par rapport à l'axe de la turbomachine). La paroi externe 100 présente une extrémité aval 105. La partie amont 210 du noyau 200 est entourée par la paroi externe 100. L'espace entre cette partie amont 210 et la paroi externe 100 forme ainsi une veine annulaire 300 d'axe longitudinal A.
La partie aval 230 du noyau 200 prolonge cette partie amont 210 en aval de la paroi externe 100, c'est-à-dire que cette partie aval 230 n'est pas entourée par la paroi externe 100.
La partie amont 210 et la partie aval 230 se rejoignent à une frontière 220. Le positionnement de cette frontière 220 est défini comme suit (voir figure 3) : En chaque point M de l'extrémité aval 105 de la paroi externe 100, on considère une première droite Dl passant par ce point M et qui est perpendiculaire à la paroi externe 100, et une seconde droite D2 passant par ce point M et qui est perpendiculaire à la face externe 206 du noyau 200, et on définit la droite D qui est la bissectrice de l'angle aigu formé par la première droite Dl et la seconde droite D2. Cet ensemble de droites D forme une surface S, et l'intersection de cette surface S avec la face externe 206 du noyau 200 constitue la frontière 220 entre la partie amont 210 et la partie aval 230. La portion de la surface S qui s'étend entre la face externe 206 et la paroi externe 100 constitue l'orifice aval de la veine annulaire 300.
La figure 3 représente la partie aval d'une tuyère 2 selon l'art antérieur, en coupe longitudinale. Dans une telle tuyère 2, la partie aval 230 du noyau 200 est conique et se rapproche de l'axe longitudinal A de la tuyère 2 de l'amont vers l'aval. En coupe longitudinale, la face externe 236 de cette partie aval 230 forme donc deux segments qui sont tels que les droites qui les prolongent se croisent sur l'axe longitudinal A.
Pour raisons de symétrie, seule la moitié de la tuyère au dessus de l'axe longitudinal A est représentée.
L'extrémité aval 239 du noyau 200 est sensiblement hémisphérique, c'est-à-dire que la paroi latérale du cône formé par la partie aval 230 se recourbe au niveau du sommet de ce cône (extrémité aval) pour former une portion de sphère. Alternativement, le sommet de ce cône peut être tronqué à son extrémité, ou prolongé par une portion cylindrique s'étendant selon l'axe longitudinal A.
Dans tous les cas, le cône formé par la partie aval 230 du noyau 200 possède un demi-angle au sommet β qui est faible. En effet, la face externe du noyau 200 doit présenter, au niveau de l'orifice aval de la veine annulaire, une pente par rapport à l'axe longitudinal A qui s'écarte au plus d'environ 10° de la pente par rapport à cet axe A de la paroi externe 100. Si la pente de la face externe du noyau 200 est trop supérieure à la pente de la paroi externe 100, la veine annulaire présente un orifice aval qui est trop divergent (la veine annulaire s'évase au niveau de sa section de sortie), et cela est préjudiciable d'un point de vue aérodynamique. Le demi-angle au sommet β, qui est directement lié à la pente de la face externe du noyau 200 est donc nécessairement faible, en pratique inférieur à 21°.
Une telle géométrie permet de minimiser les perturbations aérodynamiques causées par le noyau 200, et les coûts de fabrication de la tuyère 2. Cependant, le noyau 200 est alors d'une longueur plus importante, et est donc plus lourd, ce qui est préjudiciable.
Pour pallier à cet inconvénient et gagner en masse, une solution utilisée dans l'art antérieur consiste à tronquer la partie aval 230 du noyau 200 environ à mi-longueur, au niveau du trait en pointillé sur la figure 3 qui se situe donc à mi-distance entre l'orifice aval de la veine annulaire 300 et l'extrémité aval 239 du noyau 200. Cependant, la large extrémité aval du noyau 200 résultant de cette troncature entraîne une pénalité de performances aérodynamiques qui contrebalance le gain en masse.
Bien que, dans l'état de la technique, comme par exemple dans le brevet GB 1 417 504, des tuyères aient été illustrées avec des noyaux présentant une convexité plus ou moins prononcée dans un plan radial longitudinal, il s'est révélé très difficile d'empêcher le décollement de la couche limite du fluide de travail de la surface externe du noyau, provoquant des turbulences en aval de la tuyère et des possibles pertes de rendement. Ce phénomène est particulièrement prononcé quand la turbomachine est un moteur à réaction monté sous un pylône d'aile d'aéronef. Dans ce cas, l'interférence du jet propulsif avec le pylône facilite le décollement de la couche limite.
La présente invention vise à remédier à ces inconvénients.
L'invention vise à proposer une tuyère qui soit moins lourde que les tuyères existantes, tout en conservant ses performances aérodynamiques.
Ce but est atteint grâce au fait que la face externe de la partie aval du noyau présente, en aval de la frontière, une région convexe de forte courbure en chaque point de laquelle le rayon de courbure R dans un plan radial longitudinal est inférieur à un premier rayon RI égal à 30 fois un rayon de courbure H du noyau dans un plan transversal à un point d'intersection de ladite frontière et ledit plan radial longitudinal, et une première région de faible courbure, entre ladite frontière et ladite région convexe de forte courbure, en chaque point de laquelle le rayon de courbure R dans ledit plan radial longitudinal est supérieur à un deuxième rayon R2 égal à 10 fois ledit premier rayon RI.
Grâce à ces dispositions, on obtient un gain de masse pour la tuyère par rapport aux tuyères existantes, et on obtient des performances aérodynamiques de la tuyère au moins égales à celles des tuyères existantes. La transition à travers la première région de faible courbure vers la région convexe de forte courbure permet d'atténuer les effets aérodynamiques tendant au décollement de la couche limite de la surface du noyau. Ainsi, la stabilité de l'écoulement est améliorée, et donc la consommation en carburant est réduite.
Afin de faciliter la transition vers la région convexe de forte courbure, la première région de faible courbure peut notamment avoir une longueur non inférieure à 0,02 fois le rayon de courbure H. Toutefois, pour limiter la longueur totale du noyau, ladite première région de faible courbure peut avoir une longueur non supérieure à 0,8 fois le rayon H, et/ou non supérieure à 0,55 fois la distance entre ladite frontière et une extrémité aval du noyau suivant la direction de l'axe longitudinal A. Sauf indication du contraire, on entend par « longueurs », dans le présent contexte, des longueurs axiales suivant la direction de l'axe longitudinal A.
Afin aussi de limiter l'encombrement tout en assurant la stabilité de l'écoulement du fluide de travail en aval de la frontière, ladite région convexe de forte courbure peut avoir une longueur non inférieure à 1,9 fois le rayon H et/ou non supérieure à 2,7 fois le rayon H. L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la figure 1 montre, de façon schématique, un turboréacteur en coupe longitudinale,
- la figure 2 montre la partie aval d'une tuyère selon l'invention,
- la figure 3 montre la partie aval d'une tuyère selon l'art antérieur. La figure 2 montre la partie aval d'une tuyère 1 selon l'invention, s'étendant selon un axe longitudinal A. Pour raisons de symétrie, seule la moitié de la tuyère 1 au dessus de l'axe longitudinal A est représentée.
Au niveau de l'orifice aval de la veine annulaire 300, c'est-à-dire au niveau de la frontière 220, la paroi externe 100 de la tuyère, et la face externe 206 du noyau 200 font entre elles un angle faible, qui est au plus de l'ordre de 10°.
Immédiatement en aval de la frontière 220 se situe la partie aval 230 du noyau 200. Selon l'invention, la face externe 236 de cette partie aval 230 du noyau 200 présente dans un plan radial longitudinal, à proximité de la frontière 220, une région convexe de forte courbure 250.
L'expression "à proximité de" signifie que cette région convexe de forte courbure 250 se situe dans le premier tiers de la longueur totale de la partie aval 230 du noyau 200, c'est-à-dire dans les 33% les plus en amont de cette partie aval 230.
Par "forte courbure", on entend une courbure dont le rayon de courbure est inférieur à un premier rayon RI égal à 30 fois le rayon H du noyau 200 au niveau de la frontière 220. Ce rayon de courbure est défini dans un plan radial, c'est-à-dire un plan contenant l'axe longitudinal A. Ce rayon de courbure de la face externe 236 est ainsi défini, en un point P de la face externe 236, comme étant le rayon R d'un cercle contenu dans ce plan radial longitudinal, passant par ce point P, et venant épouser la face externe 236 au plus près. Ce rayon R est donné par la formule :
Figure imgf000007_0001
où y(x) est l'équation de la courbe formée par l'intersection de la face externe et de ce plan radial, y est la dérivée première de y par rapport à x, et y est la dérivée seconde de y par rapport à x.
Dans le cas présent, ce plan (x,y) est un plan radial contenant l'axe longitudinal A. En figure 2, il s'agit du plan de la feuille.
Dans la tuyère axisymétrique du mode de réalisation illustré, la frontière 220 s'étend dans un plan transversal perpendiculaire à l'axe longitudinal A et forme un cercle centré sur cet axe. Toutefois, dans d'autres modes de réalisation alternatifs avec des tuyères non- axisymétriques, cette frontière 220 peut être elliptique, avec un rapport entre le diamètre mineur et le diamètre majeur de l'ellipse pouvant être aussi bas que 0,85.
Comme représenté sur la figure 2, le rayon H est le rayon de cette frontière 220 dans ce plan transversal à un point d'intersection de la frontière 220 avec le plan radial longitudinal illustré. Le rayon de courbure R en un point P de la région de forte courbure 250 dans ce même plan radial longitudinal est représenté sur la figure 2.
Ainsi, en tout point P de la région convexe de forte courbure 250 de la face externe 236 de la partie aval du noyau 200, le rayon de courbure R est inférieur au premier rayon RI.
L'évasement en sortie de la veine annulaire 300 à cause de la forte courbure en direction de l'axe longitudinal A au niveau de la région convexe de forte courbure 250 entraîne un ralentissement de l'air à ce niveau, et donc une recompression de l'air.
Des études numériques effectuées par les inventeurs ont montré, de façon surprenante, que cette recompression n'entraînait pas de décollement préjudiciable de la couche limite au niveau de cette région de forte courbure 250. Au contraire, on obtient, avec un noyau selon l'invention, une réduction de 0,3% de la consommation spécifique en carburant de la turbomachine munie d'une telle tuyère selon l'invention.
Avantageusement, le rayon de courbure R en chaque point de la région convexe de forte courbure 250 est inférieur à la moitié du premier rayon RI.
La masse de la turbomachine munie d'une telle tuyère est alors réduite davantage, ce qui est avantageux.
Afin d'assurer la stabilité de l'écoulement, cette région de forte courbure peut notamment avoir une longueur entre 1,9 et 2,7 fois le rayon H.
Il est préférable, d'un point de vue aérodynamique (stabilité de l'écoulement) et donc de la consommation en carburant, que la région convexe de forte courbure 250 ne soit pas immédiatement adjacente à la frontière 220. En particulier, il peut être préférable que transition d'une courbure faible ou nulle sur la frontière 220 à la courbure forte dans la région convexe de forte courbure 250 s'effectue progressivement.
Ainsi, il est avantageux que la face externe 236 présente, entre la frontière 220 et la région convexe de forte courbure 250, une première région de faible courbure 240 en chaque point de laquelle tout rayon de courbure dans un plan radial longitudinal est supérieur à un deuxième rayon R2 égal à 10 fois le premier rayon RI.
Par exemple, cette première région de faible courbure 240 forme la totalité de la face externe 236 située entre la frontière 220 et la région convexe de forte courbure 250.
Les essais effectués par les inventeurs ont montré qu'il est avantageux que cette première région de faible courbure 240 soit de longueur supérieure à 1 cm, mesurée le long de la face externe 236. En particulier, la longueur de cette région de faible courbure 240 peut être une longueur axiale, c'est-à-dire, mesurée sur l'axe longitudinal A, d'entre 0,02 et 0,8 fois le rayon H.
En aval de la région convexe de forte courbure 250, le noyau 200 présente une seconde région de faible courbure 260, dans laquelle tout rayon de courbure (dans un plan radial longitudinal) est supérieur au premier rayon RI. Cette plus faible courbure contribue à éviter qu'il se produise un décollement de la couche limite sur la face externe 236.
Avantageusement, la face externe 236 présente, en aval de la région convexe de forte courbure 250, une seconde région de faible courbure 260 en chaque point de laquelle tout rayon de courbure dans un plan radial est supérieur à un deuxième rayon R2 égal à 10 fois le premier rayon RI.
Cette seconde région de faible courbure 260 commence immédiatement en aval de la région de forte courbure 250.
Dans le présent contexte, on entend par « régions à faible courbure » des régions dans lesquelles la courbure peut aussi être nulle.
Par exemple, ces première et seconde régions de faible courbure 240, 260 peuvent être droites, c'est-à-dire que la face externe 236 est, dans ces régions de faible courbure 240,260, conique.
Par exemple, la seconde région de faible courbure 260 forme la totalité de la face externe 236 située en aval de la région de forte courbure 250.
L'extrémité aval 239 du noyau 200 est tronquée, comme représenté sur la figure 2.
Alternativement, cette extrémité aval 239 est sensiblement hémisphérique, ou prolongée par une partie cylindrique. Dans tous les cas, selon l'invention, on obtient une réduction de longueur selon l'axe longitudinal A de la partie aval 230 du noyau 200 d'au moins 20% par rapport à un noyau d'une tuyère selon l'art antérieur.

Claims

REVENDICATIONS
1. Tuyère (2) de turbomachine (1) dans laquelle un fluide de travail circule en fonctionnement normal de l'amont vers l'aval, comprenant à son extrémité aval une paroi externe (100) et un noyau (200) dont la partie amont (210) est entourée par ladite paroi externe (100) et dont la partie aval (230) prolonge cette partie amont (210) en aval de ladite paroi externe (100), la frontière (220) entre ladite partie amont (210) et ladite partie aval (230) étant définie par l'intersection entre le noyau (200) et la surface (S) formée des bissectrices (D) des angles aigus formés par les droites (Dl) perpendiculaires à cette paroi externe (100) et passant par l'extrémité aval (105) de cette paroi externe et les droites (D2) perpendiculaires à la face externe (206) dudit noyau (200) et passant par l'extrémité aval (105) de ladite paroi externe (100), l'espace entre ladite paroi externe (100) et ladite partie amont (210) du noyau (200) définissant une veine annulaire (300) dont l'axe est un axe longitudinal A, ladite tuyère (2) étant caractérisée en ce que la face externe (236) de ladite partie aval (230) du noyau (200) présente, en aval de ladite frontière (220), une région convexe de forte courbure (250) en chaque point de laquelle le rayon de courbure R dans un plan radial longitudinal est inférieur à un premier rayon RI égal à 30 fois un rayon H dudit noyau (200) dans un plan transversal à un point d'intersection de ladite frontière (220) et ledit plan radial longitudinal, et une première région de faible courbure (240), entre ladite frontière (220) et ladite région convexe de forte courbure (250), en chaque point de laquelle tout rayon de courbure R dans ledit plan radial longitudinal est supérieur à un deuxième rayon R2 égal à 10 fois ledit premier rayon RI.
2. Tuyère (2) selon la revendication 1 caractérisée en ce que, en chaque point de ladite région convexe de forte courbure (250), le rayon de courbure R est inférieur à la moitié dudit premier rayon RI.
3. Tuyère (2) selon l'une quelconque des revendications 1 ou 2, caractérisée en ce que ladite première région de faible courbure (240) a une longueur non inférieure à 0,02 fois le rayon H.
4. Tuyère (2) selon la revendication 3, caractérisée en ce que ladite première région de faible courbure (240) a une longueur non supérieure à 0,8 fois le rayon H.
5. Tuyère (2) selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que ladite première région de faible courbure (240) a une longueur non supérieure à 0,55 fois la distance entre ladite frontière (220) et une extrémité aval du noyau (200) suivant la direction de l'axe longitudinal A.
6. Tuyère (2) selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ladite région de forte courbure (250) a une longueur non inférieure à 1,9 fois le rayon H.
7. Tuyère (2) selon la revendication 6, caractérisée en ce que ladite région convexe de forte courbure (250) a une longueur non supérieure à 2,7 fois le rayon H.
8. Tuyère (2) selon l'une quelconque des revendications 1 à 7 caractérisée en ce que la face externe (236) de ladite partie aval (230) du noyau (200) présente, en aval de ladite région convexe de forte courbure (250), une seconde région de faible courbure (260) en chaque point de laquelle tout rayon de courbure R dans un plan radial longitudinal est supérieur à un deuxième rayon R2 égal à 10 fois ledit premier rayon RI.
9. Tuyère (2) selon l'une quelconque des revendications 1 à 5 caractérisée en ce que l'extrémité aval (239) dudit noyau (200) est tronquée.
PCT/FR2012/050447 2011-03-04 2012-03-02 Tuyere avec noyau aval presentant une forte courbure. WO2012120227A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1315749.0A GB2503142B8 (en) 2011-03-04 2012-03-02 A turbine engine exhaust pipe having a core with a sharp curvature
US14/003,180 US9341082B2 (en) 2011-03-04 2012-03-02 Pipe having an upstream core having a sharp curvature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151782A FR2972224B1 (fr) 2011-03-04 2011-03-04 Tuyere avec noyau aval presentant une forte courbure
FR1151782 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120227A1 true WO2012120227A1 (fr) 2012-09-13

Family

ID=45930890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050447 WO2012120227A1 (fr) 2011-03-04 2012-03-02 Tuyere avec noyau aval presentant une forte courbure.

Country Status (4)

Country Link
US (1) US9341082B2 (fr)
FR (1) FR2972224B1 (fr)
GB (1) GB2503142B8 (fr)
WO (1) WO2012120227A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994460B1 (fr) * 2012-08-09 2018-04-27 Safran Aircraft Engines Cone d'ejection pour turbomachine comportant des moyens d'aspiration de couche limite d'un flux d'air
CN112455699B (zh) * 2020-11-13 2024-01-02 中国航空工业集团公司沈阳飞机设计研究所 一种高融合飞机后体

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829020A (en) * 1973-06-13 1974-08-13 Boeing Co Translating sleeve variable area nozzle and thrust reverser
GB1386232A (en) * 1971-03-31 1975-03-05 Short Brothers & Harland Ltd Fluid propulsion systems
US3881315A (en) * 1973-03-19 1975-05-06 Gen Electric Fan duct flow deflector
US3897001A (en) * 1974-06-12 1975-07-29 Gen Electric Nozzle and auxiliary inlet arrangement for gas turbine engine
GB1417504A (en) 1972-05-02 1975-12-10 Snecma Variable-geometry nozzles for jet propulsion engines
US4073440A (en) * 1976-04-29 1978-02-14 The Boeing Company Combination primary and fan air thrust reversal control systems for long duct fan jet engines
US4137992A (en) * 1976-12-30 1979-02-06 The Boeing Company Turbojet engine nozzle for attenuating core and turbine noise
US4802629A (en) * 1982-10-22 1989-02-07 The Boeing Company Plug-type exhaust nozzle having a variable centerbody and translating shroud
US5054998A (en) * 1988-09-30 1991-10-08 The Boeing Company, Inc. Thrust reversing system for counter rotating propellers
EP1031510A2 (fr) * 1999-02-25 2000-08-30 The Boeing Company Tuyère d'échappement pour une nacelle de turboréacteur à soufflante avec bouchon pour embout primaire concave
EP1619376A2 (fr) * 2004-07-23 2006-01-25 General Electric Company Tuyère d'échappement à virole divisée
EP1930579A2 (fr) * 2006-11-30 2008-06-11 United Technologies Corporation Mélangeur de flux thermiquement découplé
EP2159403A2 (fr) * 2008-08-27 2010-03-03 General Electric Company Tuyère d'échappement à pente variable
FR2942457A1 (fr) * 2009-02-24 2010-08-27 Snecma Nacelle de turboreacteur a structure d'entree d'air amovible

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833140A (en) * 1996-12-12 1998-11-10 United Technologies Corporation Variable geometry exhaust nozzle for a turbine engine
GB0505246D0 (en) * 2005-03-15 2005-04-20 Rolls Royce Plc Engine noise
US8393158B2 (en) * 2007-10-24 2013-03-12 Gulfstream Aerospace Corporation Low shock strength inlet
US8776527B1 (en) * 2008-06-17 2014-07-15 Rolls-Royce North American Technologies, Inc. Techniques to reduce infrared detection of a gas turbine engine
US8434293B2 (en) * 2009-08-06 2013-05-07 The Boeing Company High stiffness shape memory alloy actuated aerostructure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1386232A (en) * 1971-03-31 1975-03-05 Short Brothers & Harland Ltd Fluid propulsion systems
GB1417504A (en) 1972-05-02 1975-12-10 Snecma Variable-geometry nozzles for jet propulsion engines
US3881315A (en) * 1973-03-19 1975-05-06 Gen Electric Fan duct flow deflector
US3829020A (en) * 1973-06-13 1974-08-13 Boeing Co Translating sleeve variable area nozzle and thrust reverser
US3897001A (en) * 1974-06-12 1975-07-29 Gen Electric Nozzle and auxiliary inlet arrangement for gas turbine engine
US4073440A (en) * 1976-04-29 1978-02-14 The Boeing Company Combination primary and fan air thrust reversal control systems for long duct fan jet engines
US4137992A (en) * 1976-12-30 1979-02-06 The Boeing Company Turbojet engine nozzle for attenuating core and turbine noise
US4802629A (en) * 1982-10-22 1989-02-07 The Boeing Company Plug-type exhaust nozzle having a variable centerbody and translating shroud
US5054998A (en) * 1988-09-30 1991-10-08 The Boeing Company, Inc. Thrust reversing system for counter rotating propellers
EP1031510A2 (fr) * 1999-02-25 2000-08-30 The Boeing Company Tuyère d'échappement pour une nacelle de turboréacteur à soufflante avec bouchon pour embout primaire concave
EP1619376A2 (fr) * 2004-07-23 2006-01-25 General Electric Company Tuyère d'échappement à virole divisée
EP1930579A2 (fr) * 2006-11-30 2008-06-11 United Technologies Corporation Mélangeur de flux thermiquement découplé
EP2159403A2 (fr) * 2008-08-27 2010-03-03 General Electric Company Tuyère d'échappement à pente variable
FR2942457A1 (fr) * 2009-02-24 2010-08-27 Snecma Nacelle de turboreacteur a structure d'entree d'air amovible

Also Published As

Publication number Publication date
US20130336772A1 (en) 2013-12-19
GB2503142A (en) 2013-12-18
GB201315749D0 (en) 2013-10-16
GB2503142B (en) 2017-09-27
GB2503142B8 (en) 2018-10-17
FR2972224B1 (fr) 2018-04-20
US9341082B2 (en) 2016-05-17
FR2972224A1 (fr) 2012-09-07

Similar Documents

Publication Publication Date Title
CA2593186C (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP2710298B1 (fr) Chambre annulaire de combustion pour une turbomachine
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
EP2279341B1 (fr) Dispositif de réduction du bruit généré par un réacteur d'aéronef à conduits de fluide coudés
CA2743009C (fr) Entree d'air d'un moteur d'avion a helices propulsives non carenees
EP2539226B1 (fr) Dispositif de reduction du bruit des interactions jet/pylône sur turboreacteurs
EP2917519A2 (fr) Support de tube d'évacuation d'air dans une turbomachine
CA2801221A1 (fr) Compresseur et turbomachine a rendement optimise
EP2191124B1 (fr) Cone d'éjection des gaz pour turboréacteur d'aéronef, turboréacteur et ensemble moteur associés
EP3548730B1 (fr) Système correcteur d'effet pogo
WO2012120227A1 (fr) Tuyere avec noyau aval presentant une forte courbure.
EP3794218B1 (fr) Aube de turbine comprenant un système passif de réduction des phénomènes tourbillonaires dans un flux d'air qui la parcourt
FR3079211A1 (fr) Ensemble propulsif d'aeronef comportant deux moteurs adjacents, dont les tuyeres de sorties presentent une portion droite a proximite d'un plan median de l'ensemble propulsif
EP4045397B1 (fr) Ensemble pour turbomachine
FR3065497A1 (fr) Canal d'ejection d'air vers le sommet et vers l'aval d'une pale d'aube de turbomachine
FR3009026A1 (fr) Corps central d'echappement pour une turbomachine
EP4042070B1 (fr) Canne de prévaporisation pour une chambre de combustion de turbomachine
FR3007801A1 (fr) Element d'injection
FR3065944A1 (fr) Nacelle de turbomachine destinee a etre installee devant une voilure d'avion
FR2927673A1 (fr) Aube de soufflante avec aspiration en pied et soufflage en tete
FR3043649A1 (fr) Voilure motorisee et aeronef equipe d'une telle voilure
FR2981126A1 (fr) Tuyere asymetrique de turbomachine
FR3039202A1 (fr) Aeronef comportant une turbomachine integree au fuselage arriere a alimentation variable
FR2981134A1 (fr) Dispositif avec paroi avec au moins deux ouvertures debouchant dans un flux de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12712319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1315749

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120302

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14003180

Country of ref document: US

Ref document number: 1315749.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 12712319

Country of ref document: EP

Kind code of ref document: A1