WO2012119528A1 - 一种菲涅尔聚集装置 - Google Patents

一种菲涅尔聚集装置 Download PDF

Info

Publication number
WO2012119528A1
WO2012119528A1 PCT/CN2012/071877 CN2012071877W WO2012119528A1 WO 2012119528 A1 WO2012119528 A1 WO 2012119528A1 CN 2012071877 W CN2012071877 W CN 2012071877W WO 2012119528 A1 WO2012119528 A1 WO 2012119528A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
fresnel
strip
concentrating device
field
Prior art date
Application number
PCT/CN2012/071877
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
Liu Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Yang filed Critical Liu Yang
Publication of WO2012119528A1 publication Critical patent/WO2012119528A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a solar concentrating device, in particular to a Fresnel concentrating device. Background technique
  • Solar thermal power generation is one of the most economical means to achieve high-power generation and replace conventional energy.
  • the advantages and disadvantages of the three methods of solar thermal power generation are very obvious, such as: tower efficiency is high, but one-time investment is large; Low cost, but low efficiency compared to tower and butterfly; butterfly single machine can be standardized production, but the scale is difficult to enlarge.
  • Concentrated Photovoltaic refers to the technology of directly converting concentrated sunlight into high-efficiency photovoltaic cells into electric energy. Concentrating photovoltaic is also an option to achieve low-cost solar power generation. Fresnel array in concentrating mode The program is also one of them.
  • the linear Fresnel solar concentrating device mainly comprises a linear Fresnel mirror strip system and a receiving device, the linear Fresnel mirror strip system comprising a linear mirror strip field, the linear mirror strip field being arranged in parallel by a plurality of parallel rows
  • the mirror strips are formed, and these mirror strips can be driven by the tracking device to track the movement of the sun, continuously ensuring that the incident light is reflected to the receiving device.
  • the sunlight reflected by the mirror strips is concentrated into a receiving device disposed above the mirror strips, through which the solar energy is converted into heat or electrical energy.
  • a receiving device can be disposed between the plurality of mirror strips to receive sunlight reflected by the plurality of mirror strips.
  • the Fresnel mirror field is arranged horizontally in a straight line, close to the base surface such as the ground, which brings some inconvenience factors, for example, 1.
  • the dust close to the ground is disturbed more, and The moisture is heavier, and the sun rays are reflected on the mirror strip of the Fresnel mirror field and then reflected to the high-rise receiving device.
  • the mirror strip surface of the Fresnel mirror is thickened, which greatly reduces the reflection ability of the mirror strip, requires a relatively short period of periodic cleaning, and because the Fresnel mirror field is closely arranged on the ground, The operator is not easy to clean. Only when the mirror strip is rotated to the vertical position, the operator enters from the gap between the mirror strips, so the width of the mirror strip must be very wide, for example 2 meters, which is larger. The required strength is increased, and the manufacturing cost is difficult to reduce. 3.
  • the flat mirror design of the mirror strip is theoretically, the width of the flat mirror strip is similar to the width of the receiver, in order to improve the tolerance of the tracking angle,
  • the receiving width of the receiving device is larger than the width of the flat mirror strip; in order to obtain the symmetry of the arrangement of the Fresnel mirror field and less end loss effect (the concentrated light is out of the axial direction of the receiver), the current mirror field Generally, the north-south arrangement is adopted, so the range of tracking is required to be wide, for example, plus or minus 80 degrees, so the mirror field, especially the mirror strip at the edge of the mirror field
  • the difference is small (or the width of the receiving device is wide), in order to obtain a higher concentration factor and better tolerance, the mirror field width is wide, the number of mirror strips is large, and the receiving
  • the device is arranged very high, for example, 18 meters or more, and even if the temperature of the heat transfer medium can be reached is about 250 ° C to 300 ° C, and the corresponding material cost cannot be reduced due
  • the mirror field is arranged horizontally in a straight line, and the mirror strip is in the process of tracking, especially the edge mirror strip of each mirror mirror field has a high light blocking rate (the back of the front mirror strip is blocked)
  • the light reflected from the mirror strip) reduces the light collecting efficiency of the mirror strip; 5.
  • the mirror mirror field is directly arranged on the ground, the floor space is large, the land utilization rate is not high, and the land resources are wasted. Therefore, how to improve the concentrating efficiency of Fresnel's mirror field, inconvenient maintenance and maintenance, construction cost and site utilization, etc. become a major issue of Fresnel gathering technology. Summary of the invention
  • the object of the present invention is mainly to solve the following problems: 1.
  • the serious problem of extinction, tolerance and occlusion rate of the concentrating device is not high; 2. Inconvenience of maintenance and maintenance of the concentrating device; 3.
  • the area of the concentrating device Large, land use is not high; 4, other issues affecting cost and reliability.
  • the present invention provides a Fresnel concentrating device comprising a mirror mirror field, a receiving device and a maintenance and repair space, wherein the mirror mirror field is composed of at least one column of mirror segments arranged in parallel, and the linear receiving device is parallel.
  • the maintenance and repair space is set at the bottom of the reflex mirror field, and the personnel and equipment approach the mirror group through this space.
  • the mirror strip has a mirror surface shape that is cylindrical and can rotate about its own axis of rotation.
  • the mirror strip has a mirror surface shape which is a special cylinder surface, has a certain converging ability, and can rotate around its own rotation axis.
  • the positions of the rotating shafts of the mirror strips in the vertical section of the mirror field are arranged along a straight line, and each of the mirror strips has the same angle of rotation during the tracking.
  • the mirror mirror field is disposed in a certain width directly under the receiving device, and the mirror strips are vertically arranged, for example, on two sides, so as to make room for forming a central passage, so as to facilitate mechanical vehicle passage and high altitude work. .
  • the position of the mirror strip rotating shaft in the vertical section of the mirror field is arranged along the curved array to obtain less shading rate.
  • the position of the rotating shaft is arranged along a concave curve.
  • the widths of the mirror strips are inconsistent, and the width of the mirror strips is wider as the closer to the receiving device is in each mirror mirror field, so that the mirror strips have similar tolerances. The difference, and the number of mirror strips.
  • the concave curve of the mirror field arrangement is fitted to a two-section linear arrangement with a concave angle of less than 180°, and the left and right sides are respectively connected by a linkage type to reduce the structure and reduce the cost.
  • the lower part of the mirror field is an arched support structure, and the mirror mirror is supported by the mirror shaft to improve the mechanical strength.
  • the Fresnel concentrating device can be applied to the field of photovoltaics, the receiving device being a linearly arranged solar cell stack.
  • the linearly arranged solar cell group may further be provided with a compound parabolic concentrator device (CPC) in a direction parallel to the linear focal line, and the light in the direction of the focus line is concentrated to form a direction along the focal line. Intermittent quasi-two-dimensional spotlight reception.
  • CPC compound parabolic concentrator device
  • the receiving device when the Fresnel concentrating device can be applied to the field of photothermal, the receiving device is a linear collector.
  • the receiving device is comprised of at least one U-shaped heat collecting tube comprising a glass sleeve, an inner layer absorber tube and an externally disposed compound parabolic concentrator device (CPC).
  • CPC compound parabolic concentrator device
  • the inlet and outlet of the U-shaped heat collecting tube are at the same end, and a self-operated temperature control valve is installed at the outlet of each U-shaped heat collecting tube, and the temperature of the outlet medium is detected, the flow rate is controlled, and the stable temperature is maintained. Heat medium output and operation are safe.
  • the glass sleeve and the inner layer of the absorber tube maintain a vacuum in the space to reduce convective heat loss inside the U-shaped collector tube and to protect the absorption coating of the inner layer absorber tube for extended service life.
  • the space formed by the glass sleeve and the inner layer absorption tube is maintained in a dynamic vacuum state by continuous or intermittent evacuation.
  • the maintenance and repair space can be utilized comprehensively, for example, a parking lot or a food, vegetable, flower base or building roof, and the like.
  • the receiving device is arranged at a focal line position of the mirror field.
  • the width of the mirror strip is greater than or equal to the opening of the receiving device.
  • the maintenance access space is disposed at the lower bottom of the mirror field, at a height greater than or equal to 1.5 meters.
  • FIG. 1 is a schematic view showing an arrangement of an array of Fresnel concentrating devices according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing an overall structure of a Fresnel concentrating device according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structural view of a single mirror strip of the present invention
  • FIG. 5 is a schematic structural view of a receiving device of the present invention as a photovoltaic solar cell
  • FIG. 6 is a schematic structural view of a receiving device of the present invention as a photothermal solar collector.
  • Fig. 1 is a schematic view showing the arrangement of an array of Fresnel concentrating devices according to an embodiment of the present invention.
  • the conventional Fresnel mirror field 2 can be arranged close to the base surface in a horizontal direction.
  • the assembly device arrangement is as shown in FIG. 1a, and the array of Fresnel aggregation devices is composed of multiple phenanthrene.
  • a nematic concentrating device unit array arrangement such as 101, 102 and 103, the overall structure 1 of each Fresnel concentrating device unit, mainly comprising a mirror-arranged mirror field 2, a receiving device 3 and a maintenance access space 10;
  • the mirror field 2 comprises a plurality of parallel arranged mirror strips 4, and the plurality of mirror strips 4 are arranged in a concave curved array position along the concave curved array in the vertical section of the mirror mirror to reduce the mirror
  • the mutual occlusion loss between the plurality of mirror strips 4 arranged in the internal array of the mirror field 2 obtains less shading rate; and the mirror mirror field 2 is arranged to reflect the position in a certain width in the middle of the receiving device 3
  • the mirror strip 4 is used to make room, for example, vertically standing upright, forming a central passage 13 (see Figure lb), so that people and mechanical vehicles can pass through the work at height, when the work is completed.
  • the concave surface arranged by the mirror field 2 is fitted to a two-segment linear arrangement, as shown in Fig. 1, the mirror strip 4 originally arranged on the same side of the concave curve, for example 4- 1, 4-3 and 4-5, the fitting is arranged on the same straight line, and a linkage link 11 is arranged under each mirror strip 4 to realize the linkage of the multi-mirror strip 4 of the connecting rod mode, reducing Structure, reduce costs.
  • an arch-shaped support structure 12 is provided below the mirror field 2 for supporting the mirror field 2.
  • the widths of the plurality of mirror strips 4 are inconsistent, wherein the mirror strips 4-5 arranged at the intermediate position of the mirror mirror field 2 are wider than the mirror strips 4-1 and 4-3 arranged on both sides, that is, each set of mirrors
  • the width of the mirror strip 4 disposed inside the mirror field 1 is related to the position of the mirror strip 4 disposed in the mirror field. The closer the position is to the center position directly below the receiving device 3, the wider the width of the corresponding mirror strip 4 is.
  • Each mirror strip 4 obtains similar optical tolerance capability while reducing the number of mirror strips; the width of the mirror strip 4 is not too large, and the mirror of the mirror strip 4 can be improved while saving material and space.
  • the face of the mirror strip 4 of this design is a cylinder, it has a certain convergence ability, and at the same time, a certain arrangement of the mirror field 2, such as a north-south arrangement, has a wide range of tracking angles and can be wound around During the rotation of its own rotating shaft 5, there are under-focus and over-focus phenomena.
  • the width of the mirror strip 4 is equivalent to the opening of the receiving device 3, or wider, and can also be different. Moment of the sun The light is reflected into the same space, and there is a reasonable tolerance angle, so that a higher aggregation factor can be reliably obtained, and a better heat transfer medium temperature can be obtained.
  • the mirror field 2 is set as a flat mirror strip and a special cylindrical mirror strip, which can obtain better mirror strips while collecting light. Effectively controlling the cost reduction; the receiving device 3 is arranged at the focal line position of the mirror field 2.
  • the Fresnel concentrating device 1 can be applied to the field of photothermal, and the receiving device 3 is a linear collector. As shown in FIG. 1, the receiving device 3 is composed of one or more adjacent heat collecting tubes arranged in parallel, such as a U-shaped heat collecting tube.
  • the inlet and outlet of each U-shaped heat collecting tube are at the same end, adjacent to each other, and the self-operated temperature control valve 14 can be installed at the inlet end, without electronic closed-loop control device
  • the operation is stable and reliable, and the realization is simple; the outlet temperature is detected by the self-operated temperature control valve 14 to control the flow rate of the U-shaped heat collecting tube, the output of the stable temperature is ensured, and the system operation safety is ensured, the control is greatly simplified, and the economy is reliable.
  • the maintenance and repair space 10 is located at the bottom of the mirror field 2, at a certain height from the ground, for example, 1.5 meters, to facilitate the staff to inspect and repair the mirror field 2 under the mirror field or below, when facing the mirror When cleaning and maintenance, the angle of the mirror bar is adjusted to be upright or downward.
  • the design can also prevent the mirror field 2 from being relatively far away from the ground, and it can prevent moisture and dust. It can reduce the extinction effect of the dust layer on the sun light.
  • the maintenance and repair space can also be designed as parking under 1 0. Field or grain, flower planting base, and the Fresnel concentrating device can also be placed on the roof of the building, etc., to make full use of the increasingly tense valuable land resources.
  • the Fresnel concentrating device 1 can also be applied to the field of photovoltaics.
  • the receiving device 3 is a linearly arranged solar battery group, which converts the reflected concentrated light into an electrical energy output, and the linearly arranged solar battery cells are parallel along the linear focal line.
  • a compound parabolic concentrator device (CPC) can be further disposed, and active tracking in this dimension is not required, so that the light in the direction of the focus line can be concentrated to form a discontinuous quasi-two-dimensional concentrating reception arranged along the focal line direction. .
  • the design of the maintenance and repair space 10 of the Fresnel concentrating device 1 at a certain height from the ground, the mirror mirror 2 curve layout design, and the cylindrical design of the mirror strip 4 are horizontally straight compared to the conventional Fresnel mirror field. Placed on the ground, it has many advantages: For example, it reduces the dust disturbance close to the ground and has the disadvantage of heavy moisture. The sun light avoids the dust layer and directly enters the Fresnel mirror field and the receiving device, reducing the extinction effect.
  • the width of the mirror strip 4 is not designed to be wide between the cleaning personnel entering the mirror strip, so the required manufacturing cost is reduced; the mirror strip 4 is arranged in a cylindrical structure, and has a certain convergence capability compared to the flat mirror strip. , tracking in the wide range required At the angle, only the mirror strip can complete the under-focus and over-focus.
  • the width of the mirror strip 4 can be close to the width of the receiving device 3, even wider, the size range is wider, and the concentrating multiple is higher. Good tolerance, and the total width of each mirror field 2 does not have to be designed very wide, so the receiving device
  • the required support receiving device 3 can be arranged lower, for example 6 meters, the required support receiving device 3 is lower in intensity, the required cost can be reduced; the concave mirror surface of the mirror mirror field 2 is arranged, and the horizontal line is arranged in the tracking process of the mirror strip In particular, the shading rate between the edge mirror strips of the mirror field 2 is much reduced (the back of the front mirror strip blocks the proportion of light reflected from the back mirror strip), and the concentrating of the mirror strip is increased.
  • Efficiency Mirror mirror field 2 leaves the ground design maintenance and repair space 10, and can be easily used for maintenance, maintenance and cleaning in the superior environment of the operator. It can also be used in the lower part of the maintenance and repair space 10 to set up the parking lot or Sites for other uses, and the Fresnel concentrating device can also be placed on the roof of the building to maximize land utilization.
  • the Fresnel concentrating device overall structure 1 shown in Fig. 2 mainly comprises a mirror mirror field 2 and a receiving device 3;
  • the mirror mirror field 2 is composed of mirror strips 4 arranged in parallel, and a plurality of mirror strips 4, for example 4-1 4-3 and 4-5 are regularly arranged in the east-west direction, the mirror strip 4 has a face shape of a cylinder, and can rotate around its own rotation axis 5, and sunlight at different times is reflected into the same space;
  • the mirror strips 4-1, 4-3 and 4-5 can condense the sunlight reflection in the same space to form a common focal line;
  • the receiving device 3 is arranged at the focal line position of the mirror field 2, and the receiving device 3 It consists of a plurality of U-shaped heat collecting tubes 6 (see FIG. 6) arranged adjacent to each other in parallel.
  • FIG. 3 is a schematic view showing the arrangement of a mirror mirror field structure according to an embodiment of the present invention.
  • the mirror field 2 shown in Fig. 3 includes a plurality of mirror strips 4, such as 4-1, 4-3, 4-5, 4-8, 4- 12, and 4-12, which are arranged in a regular manner to illuminate the sun rays.
  • Converging near the receiving device 3 the position of the convergence point, not shown in the figure
  • the position of 4-1, 4-3, 4-5 as shown in Fig. 3 is the position where the sun is directly incident at the sun.
  • the mirror strips 4 at three different positions are in the position state when the reflection task is completed; in actual operation, the mirror strips 4 at any different positions at the same time correspond to the sun rays, and the concentrated light is completed.
  • the positions of the positions in the vicinity of the receiving device 3 are different; as shown in Fig. 3, the mirror field 2 is originally distributed along the curve A, and a piece of the position that can be changed is arranged within a certain width of the curve A and the right bottom of the receiving device 3.
  • a plurality of mirror strips 4 to make room, for example, standing vertically upright, providing a central passage 13 for mechanical vehicle passage and completion of aerial work; mirrors in the mirror field 2
  • the width of the strip 4 is inconsistent with the position, and the wider the mirror width of the mirror strip 4 disposed directly below the receiving device 3, for example, the width of the mirror strip 4-5 is larger than the width of the mirror strip 4-1;
  • the curve A is fitted into two straight lines, the straight line B and the straight line C, and the two sets of independent connecting rods 1 1 are uniformly tracked.
  • the right side of Figure 3 shows the non-operating state of the mirror field 2, that is, the cleaning state.
  • the cleaning mode is turned on, and the mirror field is turned on.
  • the mirror strips in 2, for example, 4-8, 4-10, and 4-12, are changed in position to be approximately vertical, and are cleaned.
  • Figure 4 is a schematic cross-sectional view of a single mirror strip of the present invention.
  • Figure 4 shows a partial structure of the mirror strip 4 and the receiving device 3; in the figure, the mirror surface of the mirror strip 4 is a cylinder surface, and three kinds of solar light incident mirror strips of -75°, 0, 75° are illustrated.
  • 4 corresponds to three different mirror states, respectively I, II, III, the mirror strip 4 rotates around its own axis of rotation 5, the mirror strip 4 has a face shape of a cylinder, has a certain convergence ability, and reflects at the same time
  • Mirror field 2 is arranged in the north-south direction.
  • the range of required tracking angle is wide, and in the process of rotating around its own rotation axis 5, there is under-focus and over-focus phenomenon.
  • the width of the mirror strip is comparable to the opening of the receiving device 3, and can even be wider, and can also reflect sunlight at different times into the space of the receiving device 3, so that a higher aggregation factor can be obtained, and a better heat transfer can be obtained.
  • the medium temperature reduces the required strength of the unit and reduces construction costs.
  • FIG. 5 is a schematic structural diagram of a receiving device of the present invention as a photovoltaic solar cell. As shown in FIG. 5, for the convenience of description, the structure of the photovoltaic solar cell group is rotated to the front side, and the solar cell group is composed of a plurality of photovoltaic cells 15 arranged in series in a line, and is arranged in the linear focal line of the Fresnel solar energy collecting device.
  • two compound parabolic concentrator devices (CPCs) 9 are arranged around the linearly arranged solar cell groups, respectively, which are arranged and arrayed in a parallel direction along the linear focal line, a compound parabolic concentrator device (CPC) 9-1, for linear coke
  • a compound parabolic concentrator device (CPC) 9-1 for linear coke
  • the light in the vertical direction of the line is concentrated;
  • a compound parabolic concentrator device (CPC) arranged along the vertical direction (radial direction) of the linear focal line and parallel along the linear focal line 9-2; the sun ray is incident on the compound parabola
  • the concentrator device (CPC) 9-2 it is reflected to the photovoltaic cell 15 disposed at the bottom of the compound parabolic concentrator device (CPC) 9, so that the tolerance performance in the vertical direction of the linear focal line can be increased.
  • the number of photovoltaic cells received in the parallel direction of the linear focal line can be reduced, the concentrating magnification and utilization efficiency can be improved, and intermittent quasi-two-dimensional concentrating reception arranged along the focal line direction can be formed; a plurality of compound parabolic concentrator devices (CPC)
  • the opening position can be set with a high transmittance thin glass 16 to form a closed space cavity with the photovoltaic cell 15, and the reflective coating of the compound parabolic concentrator device (CPC) 9 is protected to ensure the use efficiency and the service life thereof.
  • FIG. 6 is a schematic structural view of a receiving device of the present invention which is a photothermal solar heat collecting tube.
  • the receiving device 3 is composed of at least one U-shaped heat collecting tube 6, and a plurality of U-shaped heat collecting tubes 6 are juxtaposed.
  • Each of the U-shaped heat collecting tubes 6 includes a glass sleeve 7, an inner layer absorber tube 8, and a compound parabolic concentrator device (CPC) 9 disposed on the outer layer.
  • CPC compound parabolic concentrator device
  • the inlet and outlet of the plurality of U-shaped heat collecting tubes 6 are at the same end, and each U-shaped heat collecting tube 6 is provided with a self-operated temperature control valve 14, which does not require an electronic closed-loop control device, and is stable and reliable in operation, and is simple to implement;
  • the outlet temperature is detected by the self-operated temperature control valve 14, and the output and operation safety of the heat transfer medium maintaining a constant temperature are controlled by the temperature control flow rate;
  • the inner absorption tube 8 of the U-shaped heat collecting tube 6 is a heat transfer medium, which has good
  • the inner absorption tube 8 of the absorbing coating is disposed in the glass sleeve 7, and the internal space formed by the two is kept in a vacuum state or in a dynamic vacuum state to reduce the convective heat loss inside the U-shaped collector tube and protect the inner layer absorption.
  • the absorption coating of the tube prolongs the service life; in order to improve the receiving ability of the solar light, increase the tolerance of the receiving device 3, obtain a higher concentration ratio and better uniformity of light reception, in the U-shaped set
  • the exterior of the heat pipe 6 device is arranged with a compound parabolic concentrator device (CPC) 9; its opening can be arranged with a high transmittance thin glass 16 for sealing, and a glass sleeve 7 shape Sealed space of the cavity, the protective means a compound parabolic concentrator (CPC) of the reflective coating 9, to ensure its efficiency and increase its service life.
  • CPC compound parabolic concentrator

Description

一种菲淫尔聚集装置 技术领域
本发明涉及一种太阳能聚光装置, 特别是涉及一种菲涅尔聚集装置。 背景技术
太阳能作为一种洁净、 环保的能源, 长期以来人们一直致力于对其的开 发和利用。 特别是近年来, 由于油价的不断攀升和对环境保护要求的提高, 以及大气二氧化碳排放量的限制,各国更加努力地开展了太阳能利用方面的 研究, 特别是对如何更高效地获得和利用太阳能投入了更多的精力。
太阳能光热发电是实现大功率发电、替代常规能源的最为经济的手段之 一, 太阳能光热发电的三种方式各自优势缺点非常明显, 如: 塔式效率高, 但一次性投入大; 槽式成本低, 但相对塔式和蝶式效率低; 蝶式单机可标准 化生产, 但规模很难做大。
聚光光伏( CPV )是指将汇聚后的太阳光通过高转化效率的光伏电池直接转 换为电能的技术, 聚光光伏也是实现低成本太阳能发电的一种选择, 聚光方 式中菲涅尔阵列方案也是其一。
线性菲涅尔太阳能聚光装置主要包括线性菲涅尔反射镜条系统及接收 装置, 该线性菲涅尔反射镜条系统包括线性反射镜条场, 该线性反射镜条场 由多个并排平行设置的反射镜条组成, 同时这些反射镜条可通过跟踪装置驱 动以跟踪太阳的运动, 持续保证将入射光反射到接收装置。 这些反射镜条反 射的太阳光被集中射向设置于这些反射镜条上方的接收装置内,通过该接收 单元将太阳能转化为热能或电能。通常一个接收装置可设置在多个反射镜条 之间, 以便接收该多个反射镜条反射的太阳光。
目前的线性菲涅尔太阳能聚光系统中,菲涅尔镜场水平直线地布置,贴近 基础面如地面, 带来一些不便的因素, 例如 1、 通常而言贴近地面的灰尘扰 动比较多, 且潮气较重, 太阳光线入射菲涅尔镜场的反射镜条后反射至高高 架起的接收装置, 经过两次尘埃层, 会有消光效应, 减少一定的光效; 2、 一定时间后菲涅尔镜场的反射镜条面灰尘增厚,严重减少了反射镜条的反射 能力, 需要较短周期的定期清洗, 同时因为菲涅尔镜场紧密排列布置于地面 之上, 操作人员并不方便清洗, 只有将反射镜条转动到垂直位置, 操作人员 从反射镜条之间的缝隙中进入进行操作, 如此反射镜条的宽度必须很宽, 例 如 2米, 此尺寸较大, 所需强度提高, 制作成本很难下降; 3、 反射镜条的 平板反射镜设计, 从理论上说, 平板反射镜条的宽度与接收器的宽度相近, 为了提高跟踪角度的容差性, 接收装置的接受宽度大于平板反射镜条的宽 度; 为了获得菲涅尔镜场的布置对称和更少的端部损失效应(会聚的光线偏 出接受器的轴向过多) , 目前的镜场一般采用南北布置, 如此需要跟踪的范 围较宽, 例如正负 80度, 因此反射镜镜场特别是镜场边缘的反射镜条的容 差率很小 (或所需的接收装置的宽度很宽), 为获得更高的聚光倍数和更好 的容差率, 反射镜镜场宽度很宽, 反射镜条的数目众多, 且接收装置被布置 的很高, 例如 18米以上, 即使如此能达到的传热介质的温度大约为 250°C 〜300°C , 同时因接收装置等的所需强度的提高, 对应的材料成本无法消减; 4、 反射镜镜场水平直线布置, 反射镜条在跟踪的过程中, 特别是每组反射 镜镜场的边缘反射镜条之间的遮光率很严重(前反射镜条的背部遮挡了后反 射镜条反射来的光线) , 降低了反射镜条的聚光效率; 5、 反射镜镜场直接 布置于地面之上, 占地面积较大, 土地利用率不高, 浪费了土地资源。 因此 如何提高菲涅尔的反射镜场的聚光效率, 检修和维护不便, 建设成本和场地 利用率等问题, 成为菲涅尔聚集技术的重大课题。 发明内容
本发明的目的主要在于解决如下问题: 1、 聚集装置聚光效率不高的 消光、 容差率和遮挡率的严重问题; 2、 聚集装置检修和维护的不便问题; 3、 聚集装置占地面积大, 土地利用率不高的问题; 4、 其它一些影响成 本及可靠性的问题。
为解决上述问题, 本发明提供了一种菲涅尔聚集装置, 包括反射镜镜 场、 接收装置和维护检修空间, 其中反射镜镜场由至少一列平行布置的 反射镜条组成, 线性接收装置平行布置于反射镜条上, 维护检修空间设 置在反身镜镜场的下底部, 人员及装备通过此空间接近反射镜组等装置 机构, 进行安装调试、 清洁维修等工作。
在进一步的实施方式中, 所述反射镜条的反射镜面型为柱面面型, 且 能绕自身的旋转轴旋转。
优选地, 所述反射镜条的反射镜面型为特殊柱面, 具有一定的会聚能 力, 且能绕自身的旋转轴旋转。
在进一步的实施方式中, 所述反射镜镜场垂直截面内反射镜条的转轴 位置沿直线布置, 跟踪过程中各反射镜镜条具有相同转动角度。
优选地, 所述反射镜镜场中间位于接收装置正下方的一定宽度内布置 可改变位置例如靠两边垂直竖立的反射镜条, 以便腾出空间形成中心通 道, 以方便机械车辆通行和进行高空作业。
优选地, 所述反射镜镜场垂直截面内反射镜条转轴位置沿曲线阵列布 置, 以获得较少的遮光率。
优选地, 每组镜场中, 所述转轴位置沿凹型曲线布置。
在进一步的实施方式中, 所述反射镜条的宽度不一致, 反射镜条宽度 在每组反射镜镜场中越靠近接收装置的正下方其宽度越宽, 以使各反射 镜镜条获得相近的容差率, 并减少反射镜条数量。
优选地, 所述反射镜镜场布置的凹型曲线拟合为两段夹角小于 180° 的内凹分布的直线布置, 左右分别使用连杆式多组联动, 减化结构, 降 低成本。
优选地, 所述反射镜镜场下部为拱形支撑结构, 通过反射镜条转轴支 撑反射镜镜场, 提高机械强度。
在进一步的实施方式中, 所述菲涅尔聚集装置可以应用于光伏领域, 所述接收装置为线性布置的太阳能电池组。
在此应用方式中, 线性布置的太阳能电池组沿线性焦线平行的方向上 可进一步设置复合抛物聚集器装置(CPC ) , 对焦线方向的光线进行一定 的会聚, 形成沿焦线方向排布的间断准二维聚光接收。
在进一步的实施方式中, 所述菲涅尔聚集装置可以应用于光热领域 时, 所述接收装置为线性集热器。 优选地, 接收装置由至少一个 U型集热管组成, U型集热管包括玻璃 套管、 内层吸收管和外部布置的复合抛物聚集器装置 (CPC ) 。
在进一步实施方式中, U型集热管的进出口在同一端, 且每个 U型集 热管出口处安装自力式温控阀, 通过检测出口介质的温度, 控制流量的 大小, 保持稳定温度的传热介质输出和运行安全。
在进一步的实施方式中, 玻璃套管和内层吸收管形成的空间内保持真 空状态, 以减少 U型集热管内部的对流热损失且保护内层吸收管的吸收 涂层, 延长使用寿命。
优选地, 所述玻璃套管和内层吸收管形成的空间内通过连续或间歇抽 气, 保持动态真空状态。
在进一步的实施方式中,所述维护检修空间下方可以综合利用,例如, 停车场或粮食、 蔬菜、 花卉基地或建筑屋顶等等。
优选地, 接收装置布置在反射镜镜场的焦线位置。
优选地, 反射镜条的宽度大于或等于接收装置的开口。
优选地, 维护检修空间设置在反射镜镜场的下底部, 距离地面高度大 于等于 1.5米。 附图说明
下面将参照附图对本发明的具体实施方案进行更详细的说明, 在附图 中:
图 1是本发明的一种实施例的菲涅尔聚集装置的阵列布置示意图; 图 2是本发明的一种实施例的菲涅尔聚集装置整体结构布置示意图; 图 3是本发明的一种实施例的反射镜镜场结构布置示意图; 图 4是本发明的单个反射镜条的横截面结构示意图;
图 5是本发明的接收装置为光伏太阳能电池组的结构布置示意图; 图 6是本发明的接收装置为光热太阳能集热管的结构布置示意图。 具体实施方式 图 1 是本发明的一种实施例的菲涅尔聚集装置的阵列布置示意图。 常规的菲涅尔反射镜镜场 2可以设置贴近基础面沿水平方向直线布置, 为了获得更优的一些性能, 本聚集装置布置如图 la 所示, 菲涅尔聚集 装置的阵列由多个菲涅尔聚集装置单元阵列布置,例如 101、102和 103 , 每个菲涅尔聚集装置单元的整体结构 1 , 主要包括架高布置的反射镜镜 场 2、 接收装置 3和维护检修空间 10; 其中反射镜镜场 2包括多条平行 布置的反射镜条 4组成, 多个反射镜条 4整体在反射镜镜场垂直截面内 的反射镜条转轴位置沿凹形的曲线阵列布置, 以减少反射镜镜场 2内部 阵列布置的多个反射镜条 4之间的相互遮挡损失以获得较少的遮光率; 且反射镜镜场 2位于接收装置 3正下方的中间一定宽度内布置可改变位 置的反射镜条 4 以便腾出空间, 例如靠边垂直竖立, 形成中心通道 13 (见图 lb ) , 以方便人员和机械车辆通行进行高空作业, 当完成高空作 业后, 该位置的反射镜条 4回到原位, 继续进行反射聚光。 为了简化跟 踪驱动模式, 将反射镜镜场 2布置的凹型曲面拟合为两段直线布置, 如 图 1所示, 将原布置于凹形的曲线同侧上的反射镜条 4 , 例如 4-1、 4-3 和 4-5 , 拟合布置于同一条直线上, 且每片反射镜条 4之下布置有联动 连杆 11 , 以实现连杆方式的多反射镜条 4联动, 减化结构, 降低成本。 为提高反射镜镜场 2的机械强度, 在反射镜镜场 2下部设置拱形支撑结 构 12 , 用于支撑反射镜镜场 2。 多个反射镜条 4的宽度不一致, 其中反 射镜镜场 2中间位置布置的反射镜条 4-5较两边布置的反射镜条 4-1和 4-3的宽度要宽, 即每组反射镜镜场 1内部布置的反射镜条 4的宽度与 其布置在镜场内的位置有关, 所处位置越接近接收装置 3正下方的中心 位置, 其对应的反射镜条 4的宽度越宽, 在使各反射镜条 4获得相近的 光学容差能力的同时, 减少反射镜条数量; 反射镜条 4的宽度不宜制作 过大, 在节省材料和空间的同时, 也能提高反射镜条 4的反射镜精度; 因本设计的反射镜条 4的面型为柱面, 具有一定的会聚能力, 同时反射 镜镜场 2的一定布置, 例如南北布置, 所需跟踪角度的范围较宽, 且能 在绕自身的旋转轴 5旋转的过程中, 存在欠焦和过焦现象, 在保证一定 的高容差角度后, 反射镜条 4的宽度与接收装置 3的开口相当, 或者更 宽, 也能将不同时刻的太阳光反射至相同的空间内, 并且还有合理的容 差角度, 如此可以可靠地获得更高的聚集倍数, 获得更好的传热介质温 度, 降低装置的所需强度, 减少建设成本; 实际操作中反射镜镜场 2设 置为平板反射镜条和特殊柱面的反射镜条, 在获得较好的反射镜条聚光 的同时, 可以有效地控制降低成本; 在反射镜镜场 2的焦线位置布置接 收装置 3。
该菲涅尔聚集装置 1可以应用于光热领域,接收装置 3为线性集热器, 如图 1所示, 接收装置 3由一个或多个相邻平行布置的集热管, 如 U型集 热管 6 (图 1未示出, 见图 6 )组成, 每个 U型集热管的进出口在同一端, 相邻很近, 可在进口端设置自力式温控阀 14 , 不需电子闭环控制装置, 运 行稳定可靠, 实现简单; 通过自力式温控阀 14检测出口温度以控制 U型 集热管的流量, 保证稳定温度的输出的同时, 也保证的系统运行安全, 大 大简化控制, 经济可靠。 维护检修空间 1 0位于反射镜镜场 2 的下底部, 距地面一定高度, 例如 1. 5米, 以方便工作人员在镜场下方或后下方对反 射镜镜场 2检查和维修, 当对镜面进行清洁维护时, 镜条角度调整为竖立 或偏向下方。 另外如此的设计还可以将反射镜镜场 2相对远离地面, 起到 防潮湿和防灰尘的效果; 一定程度减少尘埃层对太阳光线的消光效应; 维 护检修空间 1 0 之下还可以设计成停车场或粮食、 花卉种植基地, 而且该 菲涅尔聚光装置还可以布置于建筑屋顶等等, 充分利用日益紧张的宝贵土 地资源。 该菲涅尔聚集装置 1也可以应用于光伏领域, 此时接收装置 3为 线性布置的太阳能电池组, 将反射会聚的光转化成电能输出, 线性布置的 太阳能电池组沿线性焦线平行的方向上可进一步设置复合抛物聚集器装 置 (CPC ) , 不需要在此维度内进行主动跟踪, 即可对焦线方向的光线进 行一定的会聚, 形成沿焦线方向排布的间断准二维聚光接收。
本菲涅尔聚集装置 1 的离地一定高度的维护检修空间 1 0的设计、 反 射镜镜场 2曲线布置设计、 反射镜条 4的柱面设计, 较之传统的菲涅尔镜 场水平直线地布置于地面上, 具有很多优点: 例如, 减少了贴近地面的灰尘 扰动比较多, 且潮气较重的弊端, 太阳光线避开尘埃层直接入射菲涅尔镜场 和接收装置, 减少消光效应, 提高聚光效率; 避开尘埃层, 具有更长的清洗 周期, 操作人员在定期清洗时轻松方便, 且操作环境优越, 在反射镜镜场 2 底下的阴凉区进行轻松的巡检及维护清洗; 反射镜条 4宽度不为了清洗人员 进入反射镜条之间而设计的很宽, 因此所需制作成本下降; 反射镜条 4设置 成柱面结构, 较之平板反射镜条, 具有一定的会聚能力, 在所需大范围跟踪 角度时, 只需反射镜条完成欠焦和过焦即可, 反射镜条 4的宽度可以与接收 装置 3的宽度相近, 甚至宽很多, 尺寸范围较宽, 具有更高的聚光倍数和更 好的容差率, 且每组反射镜镜场 2的总宽度不必设计的很宽, 因此接收装置
3可以布置的较低, 例如 6米, 所需支撑接收装置 3强度的较低, 所需成本 可以降低; 反射镜镜场 2的内凹曲面布置, 较水平直线布置在反射镜条的跟 踪过程中, 特别是反射镜镜场 2的边缘反射镜条之间的遮光率减轻很多 (前 反射镜条的背部遮挡了后反射镜条反射来的光线比例减少) , 增加了反射镜 条的聚光效率; 反射镜镜场 2离开地面设计维护检修空间 10 ,在满足操作人 员的优越环境下轻松完成检修、 维护和清洗的同时, 还可以在维护检修空间 10 的下部可以综合利用, 设置停车场或其他用途的场地, 而且该菲涅尔聚 光装置还可以布置于建筑屋顶, 最大幅度地提高土地利用率。
图 2是本发明的一种实施例的菲涅尔聚集装置整体结构布置示意图。 图 2所示菲涅尔聚集装置整体结构 1 ,主要包括反射镜镜场 2和接收装置 3; 反 射镜镜场 2由平行布置的反射镜条 4组成, 多个反射镜条 4例如 4-1、 4-3 和 4-5东西方向上规律阵列布置, 反射镜条 4的面型为柱面, 且能绕自身的 旋转轴 5旋转, 不同时刻的太阳光反射至相同的空间内; 多个反射镜条 4-1、 4-3和 4-5能将太阳光反射会聚于相同的空间内, 形成共同的焦线; 在反射 镜镜场 2的焦线位置布置接收装置 3 , 接收装置 3由多个相邻平行布置的 U 型集热管 6 (详见图 6 )组成。
图 3是本发明的一种实施例的反射镜镜场结构布置示意图。 如图 3所 示反射镜镜场 2包括多个反射镜条 4 , 例如 4-1、 4-3、 4-5、 4-8、 4- 12和 4-12 , 按照规律布置后将太阳光线会聚于接收装置 3附近(会聚点位置, 图中没有标示) , 如图 3所示的 4-1 , 4-3 , 4-5所处的位置为太阳光正垂 直入射时所处的位置为太阳光一定角度入射时, 三个不同位置的反射镜 条 4完成反射任务时, 分别处于的位置状态; 实际操作中, 同一时刻的 任何不同位置的反射镜条 4对应将太阳光线,完成会聚光线于接收装置 3 附近的所处的位置状态都不相同; 如图 3所示, 反射镜镜场 2原本沿曲 线 A分布, 在曲线 A和接收装置 3的正底部一定宽度内布置可改变位置 的一条或多条反射镜条 4以便腾出空间, 例如靠边垂直竖立, 设置中心 通道 13 , 用以机械车辆通行和完成高空作业; 反射镜镜场 2内的反射镜 条 4的宽度随着位置不同宽度不一致, 越靠近接收装置 3正下方布置的 反射镜条 4的镜宽宽度越宽, 例如, 反射镜条 4-5宽度大于反射镜条 4-1 的宽度; 为了实现多个反射镜条 4的连杆方式的统一联动, 将曲线 A拟 合成两条直线, 直线 B和直线 C , 分两组独立地连杆 1 1统一跟踪。 图 3 右边示意了反射镜镜场 2的非工作状态, 即清洗状态, 当反射镜镜场 2 的反射表面不清洁, 且某天不适宜跟踪获取太阳能时, 开启清洗模式, 将反射镜镜场 2内的反射镜条例如 4-8、 4-10和 4-12 , 改变其位置为近似 垂直的状态, 对其进行清洗。
图 4是本发明的单个反射镜条的横截面结构示意图。 图 4示意了反 射镜条 4和接收装置 3的部分结构; 图中反射镜条 4的反射镜面为柱面, 且示意出了 -75° , 0, 75° 的三种太阳光线入射反射镜条 4对应于三个不 同的反射镜状态, 分别为 I, II, III, 反射镜条 4绕自身的旋转轴 5旋转, 反射镜条 4的面型为柱面, 具有一定的会聚能力, 同时反射镜镜场 2的 南北方向布置, 所需跟踪角度的范围较宽, 且能在绕自身的旋转轴 5旋 转的过程中, 存在欠焦和过焦现象, 在保证一定的高容差角度后, 反射 镜条的宽度与接收装置 3的开口相当, 甚至可以更宽, 也能将不同时刻 的太阳光反射至接收装置 3的空间内, 如此可以获得更高的聚集倍数, 获得更好的传热介质温度, 降低装置的所需强度, 减少建设成本。
图 5是本发明的接收装置为光伏太阳能电池组的结构布置示意图。 如图 5所示, 为了方便描述将光伏太阳能电池组的结构旋转为正面示意, 太阳能电池组由多个串联成线性布置的光伏电池 15组成, 布置于菲涅尔 太阳能据集装置的线性焦线位置上, 线性布置的太阳能电池组周边布置 两种复合抛物聚集器装置 (CPC ) 9 , 分别为沿线性焦线平行方向设置和 阵列的复合抛物聚集器装置 (CPC ) 9-1 , 对线性焦线垂直方向的光线进 行一定的会聚; 沿线性焦线的垂直方向 (径向) 上设置且沿线性焦线平 行方向阵列的复合抛物聚集器装置 (CPC ) 9-2; 太阳光线入射至复合抛 物聚集器装置( CPC ) 9-2后,经反射至布置于复合抛物聚集器装置( CPC ) 9底部光伏电池 15 , 如此可以实现增加线性焦线垂直方向上的容差性能, 同时可以减少在线性焦线平行方向上接收光伏电池的数目, 提高聚光倍 数和利用效率, 且形成沿焦线方向排布的间断准二维聚光接收; 多个复 合抛物聚集器装置 (CPC ) 开口位置可以设置高透过率薄玻璃 16进行封 盖, 与光伏电池 15形成密闭空间腔体, 保护复合抛物聚集器装置(CPC ) 9的反射涂层, 保证其使用效率和提高其使用寿命。
图 6是本发明的接收装置为光热太阳能集热管的结构布置示意图。 如图 6所示, 接收装置 3由至少一个 U型集热管 6组成, 多条 U型集热 管 6并列组成。 每个 U型集热管 6分别包括玻璃套管 7、 内层吸收管 8 和外层布置的复合抛物聚集器装置 (CPC ) 9。 在实施的运行中多个 U型 集热管 6的进出口在同一端, 且每个 U型集热管 6设置有自力式温控阀 14 , 不需电子闭环控制装置, 运行稳定可靠, 实现简单; 通过自力式温 控阀 14检测出口温度, 通过温度控制流量的大小, 保持一定恒定温度的 传热介质输出和运行安全; U型集热管 6的内层吸收管 8内部为传热介 质, 具有良好的吸收涂层的内层吸收管 8布置于玻璃套管 7内, 两者形 成的内部空间保持真空状态, 或处于动态真空状态, 以减少 U型集热管 内部的对流热损失且保护内层吸收管的吸收涂层, 延长使用寿命; 为了 提高太阳光线的接收能力, 增大接收装置 3的容差性、 获得更高的聚光 倍率和更好的光线接收的均勾性, 在 U型集热管 6装置的外部布置复合 抛物聚集器装置(CPC ) 9; 其开口处可以布置高透过率薄玻璃 16进行封 盖, 与玻璃套管 7形成密闭空间腔体, 保护复合抛物聚集器装置 (CPC ) 9的反射涂层, 保证其使用效率和提高其使用寿命。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本 发明可以有许多变化。因此,所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要求书所涵盖的范围之内。本发明所要求保护的范围仅由 所述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种菲涅尔聚集装置, 包括反射镜镜场 (2) 、 接收装置 (3 ) 和 维护检修空间 ( 10) , 其特征在于: 所述反射镜镜场 (2) 由一条以上平 行布置的反射镜条(4)组成, 所述接收装置 (3 )平行布置于所述反射 镜条(4) 焦线位置上, 所述维护检修空间 (10)设置在所述反身镜镜场
(2) 的下底部。
2、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜条(4) 在所述反射镜镜场 (2) 垂直截面内的反射镜条转轴位置 沿曲线布置。
3、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜条(4) 在所述反射镜镜场 (2) 垂直截面内的反射镜条转轴位置 沿凹型曲线布置。
4、 根据权利要求 3所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜条(4) 在所述反射镜镜场 (2) 垂直截面内的反射镜条转轴位置 布置的 型曲线拟合为两段直线。
5、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜条(4) 所处位置越接近接收装置 (3) 正下方的中心位置, 其对 应的反射镜条(4 ) 的宽度越宽。
6、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于, 所述 反射镜镜场 (2) 中位于接收装置 (3 ) 正下方中间位置的反射镜条(4) 可以通过临时移开形成中心通道( 13 ) 。
7、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜镜场 (2)设置有连杆 ( 11 ) 。
8、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜镜场 (2) 下部设置有一拱形支撑结构 ( 12) 。
9、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 反射镜条(4) 的反射面型为柱面。
10、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 接收装置 (3) 包括线性集热器。
11、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 接收装置(3 ) 包括至少一个 U型集热管 (6 ) , 所述 U型集热管 (6 )之 间并列布置。
12、 根据权利要求 10所述的一种菲涅尔聚集装置, 其特征在于: 所 述线性集热器包括玻璃套管 (7) 、 内层吸收管 (8) 和复合抛物聚集器 装置(9)。
13、 根据权利要求 11所述的一种菲涅尔聚集装置, 其特征在于: 所 述 U型集热管 (6)设置有自力式温控阀 (14) 。
14、 根据权利要求 12所述的一种菲涅尔聚集装置, 其特征在于: 所 述玻璃套管 (7) 和内层吸收管 (8) 形成的空间保持真空状态。
15、 根据权利要求 12所述的一种菲涅尔聚集装置, 其特征在于: 所 述玻璃套管 (7) 和内层吸收管 (8) 形成的空间保持动态真空状态。
16、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 维护检修空间 ( 10)距离地面高度大于等于 1.5米。
17、 根据权利要求 1所述的一种菲涅尔聚集装置, 其特征在于: 所述 接收装置 (3) 包括线性布置的太阳能电池组。
18、 根据权利要求 17所述的一种菲涅尔聚集装置, 其特征在于: 所 述线性布置的太阳能电池组沿线性焦线平行的方向上设置复合抛物聚集 器装置 (9) 。
19、 根据权利要求 18所述的一种菲涅尔聚集装置, 其特征在于: 所 述复合抛物聚集器装置 (9 ) 开口位置设置玻璃 (16) 进行封盖, 与光伏 电池 15形成密闭空间腔体。
PCT/CN2012/071877 2011-03-09 2012-03-02 一种菲涅尔聚集装置 WO2012119528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110056194.3 2011-03-09
CN2011100561943A CN102681154A (zh) 2011-03-09 2011-03-09 一种菲涅尔聚集装置

Publications (1)

Publication Number Publication Date
WO2012119528A1 true WO2012119528A1 (zh) 2012-09-13

Family

ID=46797487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071877 WO2012119528A1 (zh) 2011-03-09 2012-03-02 一种菲涅尔聚集装置

Country Status (2)

Country Link
CN (1) CN102681154A (zh)
WO (1) WO2012119528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355998A (zh) * 2016-05-09 2017-11-17 秦皇岛市瑜阳光能科技有限公司 一种不等距阶梯式的线性菲涅尔太阳能聚光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808030A (zh) * 2012-11-15 2014-05-21 上海能辉电力科技有限公司 一种太阳能线性聚光型集热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201401992Y (zh) * 2009-03-19 2010-02-10 江苏省华扬太阳能有限公司 U型集热管和太阳能集热器
US20100051016A1 (en) * 2008-08-27 2010-03-04 Ammar Danny F Modular fresnel solar energy collection system
CN101762079A (zh) * 2010-02-04 2010-06-30 益科博能源科技(上海)有限公司 线性菲涅尔太阳集热器装置
CN101839563A (zh) * 2004-02-17 2010-09-22 澳斯拉有限公司 多管式太阳能收集器结构
CN101858649A (zh) * 2010-05-28 2010-10-13 益科博能源科技(上海)有限公司 菲涅尔太阳集热装置
WO2011001545A1 (ja) * 2009-07-02 2011-01-06 三井造船株式会社 太陽光発電装置、及びその集光方法
CN202018534U (zh) * 2011-03-09 2011-10-26 刘阳 一种菲涅尔聚集装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201359397Y (zh) * 2009-01-04 2009-12-09 刘阳 一种太阳能聚集装置和采用该装置的建筑构件
CN201615962U (zh) * 2009-03-22 2010-10-27 北京智慧剑科技发展有限责任公司 一种太阳能线性多镜变焦多向跟踪利用系统
CN101858655A (zh) * 2010-06-18 2010-10-13 益科博能源科技(上海)有限公司 一维菲涅尔太阳能收集器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839563A (zh) * 2004-02-17 2010-09-22 澳斯拉有限公司 多管式太阳能收集器结构
US20100051016A1 (en) * 2008-08-27 2010-03-04 Ammar Danny F Modular fresnel solar energy collection system
CN201401992Y (zh) * 2009-03-19 2010-02-10 江苏省华扬太阳能有限公司 U型集热管和太阳能集热器
WO2011001545A1 (ja) * 2009-07-02 2011-01-06 三井造船株式会社 太陽光発電装置、及びその集光方法
CN101762079A (zh) * 2010-02-04 2010-06-30 益科博能源科技(上海)有限公司 线性菲涅尔太阳集热器装置
CN101858649A (zh) * 2010-05-28 2010-10-13 益科博能源科技(上海)有限公司 菲涅尔太阳集热装置
CN202018534U (zh) * 2011-03-09 2011-10-26 刘阳 一种菲涅尔聚集装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355998A (zh) * 2016-05-09 2017-11-17 秦皇岛市瑜阳光能科技有限公司 一种不等距阶梯式的线性菲涅尔太阳能聚光器

Also Published As

Publication number Publication date
CN102681154A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
CN1773190B (zh) 一种太阳能热电联供系统
WO2012113195A1 (zh) 基于碟式聚光的太阳能二次聚光分频方法及其装置
CN101976972A (zh) 一种可控双状态反光聚光太阳能集热发电装置
MX2012012260A (es) Un sistema recolector de energia solar.
CN106123365B (zh) 结合阳光房的线性菲涅尔反射式太阳能集热装置
CN202018534U (zh) 一种菲涅尔聚集装置
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
WO2016000437A1 (zh) 一种框架以及具有该框架的太阳能集热装置
CN102013843A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN107314555A (zh) 一种二级曲面菲涅尔反射式太阳能真空集热装置
CN201352013Y (zh) 一种新型太阳能聚光集热系统
CN101776330A (zh) 一种新型太阳能聚光集热方法及系统
CN103673320A (zh) 太阳集热装置
CN202583585U (zh) 一种高倍率线性菲涅尔聚光装置
WO2013189097A1 (zh) 聚焦式太阳能集热装置及集热系统
WO2012119528A1 (zh) 一种菲涅尔聚集装置
WO2014026575A1 (zh) 一种太阳能建筑一体化装置
CN102466329A (zh) 太阳能收集装置
CN108981190B (zh) 一种全方位跟踪抛物面镜热能吸收系统
US10082318B2 (en) Linear fresnel light concentrating device with high multiplying power
CN101976973A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN101776325B (zh) 内聚光与外聚光结合的复合抛物面聚光器
WO2014176881A1 (zh) 一种管状聚光光伏电池组件
CN210688776U (zh) 一种光热光伏耦合供能免跟踪太阳能聚光器
CN103795326A (zh) 一种可控双状态反光聚光太阳能集热发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755643

Country of ref document: EP

Kind code of ref document: A1