WO2012118221A1 - Separation method and separation device for phosphor mixture - Google Patents

Separation method and separation device for phosphor mixture Download PDF

Info

Publication number
WO2012118221A1
WO2012118221A1 PCT/JP2012/055530 JP2012055530W WO2012118221A1 WO 2012118221 A1 WO2012118221 A1 WO 2012118221A1 JP 2012055530 W JP2012055530 W JP 2012055530W WO 2012118221 A1 WO2012118221 A1 WO 2012118221A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
filter
liquid
mixture
magnetic field
Prior art date
Application number
PCT/JP2012/055530
Other languages
French (fr)
Japanese (ja)
Inventor
赤井 智子
山下 勝
達也 大木
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2012118221A1 publication Critical patent/WO2012118221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/01Recovery of luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention is not limited to a case where a phosphor is efficiently separated from a mixture of a plurality of types of phosphor fine powders having different magnetic susceptibility using a magnetic separation technique based on a gradient magnetic field.
  • the present invention also relates to a method for separating a phosphor mixture that includes purification to increase purity.
  • Fluorescent substances contain a large amount of rare earth elements, which are rare and valuable resources.
  • phosphors used in plasma displays and fluorescent lamps contain a large amount of expensive rare earth elements such as Tb and Eu. As shown in Table 1, various phosphors are used for displays or lamps.
  • Fluorescent lamp phosphors include BAM and SCA as blue phosphors, YOX and YVO as red phosphors, and LAP as green phosphors.
  • a phosphor that emits white light alone there is a calcium halophosphate phosphor (hereinafter also referred to as a halophosphate daylight phosphor) (CoolWhite, WarmWhite, and Daylight).
  • a halophosphate daylight phosphor hereinafter also referred to as a halophosphate daylight phosphor
  • the lamp there are a three-wavelength fluorescent lamp that emits white light by mixing these three color phosphors (blue red green), and a general color fluorescent lamp using a calcium halophosphate phosphor.
  • a method using a high magnetic field gradient magnetic separator is known as an industrial method for separating substances having different magnetic susceptibility using a high magnetic field gradient, although it does not separate phosphors.
  • a magnetic material is attached to the wire, steel wool, etc. by arranging a column packed with ferromagnetic wire, steel wool, etc. in the magnetic field and circulating the separation object therein (hereinafter referred to as magnetic adhesion). (Referred to as Japanese Patent Laid-Open No. 11-47632 (hereinafter referred to as' 632)).
  • the high magnetic field gradient magnetic separator is effective for adsorbing and separating a magnetic material from nonmagnetic materials, but cannot be applied as it is to a mixture of fine powders due to the structure of the apparatus. That is, the mixture of different types of phosphors collected from a used fluorescent lamp is an aggregate of fine powders, so that it has low wettability and high degree of adsorption to metal materials, and the magnetic susceptibility depending on the type of phosphor. Since the separation efficiency is low due to the small difference between the two, it is difficult to apply a high magnetic field gradient magnetic separator for the type separation of phosphors.
  • an object of the present invention is to provide a method for separating a phosphor mixture that efficiently separates a phosphor from a mixture of a plurality of types of phosphor fine powders having different magnetic susceptibility.
  • the method for separating a phosphor mixture according to the present invention includes a step of dispersing a mixture composed of a plurality of types of phosphors having different magnetic susceptibilities in a dispersion medium to prepare a mixture, and a mixture in the processing vessel.
  • the dispersion medium is a solution in which a low molecular surfactant is added to an aqueous solution of a polymer dispersant.
  • the installation step and the mixed solution recovery step are repeated using the recovered solution obtained in the mixed solution recovery step as a new mixed solution.
  • the method for separating the phosphor mixture further includes a washing step of washing the filter with a dispersion medium in a state where a magnetic field is applied and collecting the dispersion medium used for washing the filter, following the mixed solution collecting step.
  • the installation step, the mixed solution recovery step, and the cleaning step are repeated using the recovered solution from the cleaning step as a new mixed solution.
  • the method for separating the phosphor mixture further includes a magnetized material collection step of washing the filter with a dispersion medium in a state where the applied magnetic field is reduced, and collecting the dispersion medium used for washing the filter.
  • the installation step, the mixed solution recovery step, and the magnetic deposit recovery step are repeated using the recovery solution from the magnetic deposit recovery step as a new mixed solution.
  • the method for separating the phosphor mixture further includes a step of vibrating the filter in a state where a magnetic field is applied to the filter positioned in the mixed solution before the mixed solution collecting step.
  • the polymer dispersant is a polycarboxylic acid polymer dispersant.
  • the low molecular weight surfactant is amide propyl betaine laurate, sodium polyoxyethylene lauryl ether sulfate, polyoxyalkylene nonionic surfactant, polyoxyalkylene alkyl ether, polyhydric alcohol nonionic interface. It is a neutral detergent containing an activator or sodium alkyl ether sulfate.
  • the concentration of the polymeric dispersant is 0.02% to 3%, and the concentration of the low molecular surfactant is 0.004% to 0.1%.
  • a phosphor mixture separation apparatus includes a processing container that contains a mixture liquid containing a mixture of phosphors having different magnetic susceptibility and a filter formed of a ferromagnetic material therein, and a mixture.
  • a magnetic field generating unit that applies a magnetic field to the filter while being accommodated in the processing container, and a recovery unit that discharges and recovers the mixed liquid from the processing container in a state where the magnetic field is applied to the filter.
  • a liquid in which a mixture is dispersed in a dispersion medium which is a solution obtained by adding a low molecular surfactant to an aqueous solution of a polymer dispersant.
  • the wettability to the phosphor is high, and after reducing the magnetic field It can suppress that the fluorescent substance remains adhering to a filter, and can isolate
  • the purity of the specific phosphor can be increased by repeating the separation process for the recovered liquid obtained by the separation process of the phosphor-containing dispersion.
  • the phosphor mixture to be separated in the present embodiment is a mixture of phosphors in the form of fine powder (particle size on the order of ⁇ m, for example, 10 ⁇ m or less) collected by recycling a used fluorescent lamp.
  • the phosphor obtained by the recycling treatment is not usually a single type of phosphor, but a mixture of a blue phosphor, a red phosphor, a green phosphor, a white phosphor (halophosphoric acid daylight phosphor), and the like. Therefore, in order to reuse this, it is essential to separate the phosphors of the respective colors.
  • the apparatus used in the phosphor mixture separation method includes a processing tube 100, a filter 102, a magnetic field generation unit 104, a vibration unit 106, a charging unit 108, and a charging valve 110. And a discharge valve 112.
  • the processing tube 100 temporarily stores a solution (hereinafter also referred to as input solution) supplied from the input unit 108.
  • the filter 102 is formed of a ferromagnetic material and is a structure (for example, a mesh structure or an aggregate of fibrous materials) through which a dispersion liquid in which a phosphor described later is dispersed can pass through the filter 102. Placed in.
  • the filter 102 is made of, for example, an expanded metal made of magnetic stainless steel or stainless wool.
  • the filter is also called a matrix in a magnetic separator using a known gradient magnetic field.
  • the charging valve 110 can be opened and closed. When the charging valve 110 is opened, the charging solution 140 is charged into the processing tube 100. When the charging valve 110 is closed, the charging of the charging solution 140 into the processing tube 100 is stopped.
  • the discharge valve 112 can be opened and closed. When the discharge valve 112 is opened, the liquid in the processing tube 100 is discharged from the discharge port. The discharged liquid is collected by the collection container 114. When the discharge valve 112 is closed, the discharge is stopped and the introduced liquid is held in the processing tube 100.
  • the magnetic field generation unit 104 includes magnetic poles (pole pieces) 120 and 122 and coils 124 and 126. When a predetermined current is supplied to the coils 124 and 126 from a power source (not shown), the magnetic field generation unit 104 generates a magnetic field having a strength corresponding to the current value in a region where the filter 102 is disposed.
  • the magnetic poles 120 and 122 are for converging the magnetic field generated by the coils 124 and 126 to form a strong magnetic field.
  • the magnetic field generation unit 104 may not include the magnetic poles 120 and 122 as long as a magnetic field with a predetermined strength can be formed.
  • the magnetic field is formed so that the magnetic field direction 130 is orthogonal to the processing tube 100, but an electromagnet that forms a magnetic field in a direction along the processing tube 100 may be used.
  • the processing tube 100 may be disposed in a cylindrical solenoid coil.
  • the vibration unit 106 vibrates the processing tube 100 at a predetermined frequency in order to vibrate the filter 102. Since the phosphor particles to be separated are on the order of ⁇ m, the frequency is preferably a high-frequency frequency such as an ultrasonic wave, but may be a frequency of 100 Hz or less.
  • the outline of the separation process using this device is as follows.
  • the phosphor mixture is dispersed in a predetermined dispersion medium (liquid) to prepare an input liquid 140.
  • the input valve 110 is opened, and the input liquid 140 is input into the processing tube 100 from the input unit 108.
  • the magnetic field generator 104 generates a magnetic field near the filter 102.
  • the filter 102 of the ferromagnetic material is magnetized, and a gradient magnetic field (a magnetic field in which the magnetic field strength is not uniform but varies spatially) is formed around it.
  • the phosphor since the phosphor is magnetized, the phosphor receives a force by the gradient magnetic field, is attracted to the filter 102, and adheres to the filter 102.
  • the processing tube 100 is vibrated by the vibration unit 106, the phosphor separation efficiency can be increased.
  • Phosphors have different magnetic susceptibility depending on the type, and therefore the adhesion strength to the filter 102 is different.
  • Table 2 shows an example of the magnetic susceptibility of the phosphor.
  • the phosphor particles having a high magnetic susceptibility adhere more firmly to the filter 102 and are difficult to be separated from the filter 102 even when subjected to vibration.
  • phosphor particles having a low magnetic susceptibility cannot be stably attached to the filter 102 due to vibration, and are easily separated from the filter 102 and away from the filter 102. Therefore, by separating the filter 102, the separation efficiency of the mixed phosphor can be increased.
  • the magnetic susceptibility of each phosphor is expressed as magnetization (eu / g) per unit mass (1 g) when the magnetic field strength is 1000 Gauss.
  • Table 2 is an example, and the composition may differ depending on the manufacturer even if the phosphors have the same color. Moreover, even if it is the same manufacturer, the composition of the fluorescent substance of the same color may change with model numbers.
  • the recovery rate for each phosphor (ratio of the amount collected relative to the amount initially contained in the dispersion) has a relatively high magnetic susceptibility and a high value for the phosphor that is difficult to adhere to the filter 102 (it adheres weakly).
  • the value of the phosphor having a relatively high magnetic susceptibility and easily attached (strongly attached) to the filter 102 is low.
  • the recovery rate is a value of the phosphor that has a relatively low magnetic susceptibility and is difficult to adhere to the filter 102 (weakly adhering)
  • the value of the phosphor that has a relatively high magnetic susceptibility and easily adheres (strongly adheres) to the filter 102 is high. Therefore, by repeating the above processing using the collected phosphor mixture as a separation target, the mixed phosphor can be separated according to the magnetic susceptibility.
  • the filter 102 is disposed in the processing tube 100, and the phosphor mixture to be separated is dispersed in a dispersion medium to produce a phosphor-containing dispersion.
  • a dispersion medium When water is used as a dispersion medium, it is necessary to add a dispersant having a surface active action in order to prevent aggregation of the phosphor powder.
  • a commercially available neutral detergent can be used as the dispersant.
  • a commercially available neutral detergent has a strong foaming property, when a filter 102 (magnetic stainless steel expanded metal, stainless wool, or the like) is circulated, a large amount of bubbles are generated and difficult to disappear. It will be an obstacle.
  • a cleaning liquid is flowed after lowering the magnetic field, and the phosphor adhering to the filter 102 by magnetization (hereinafter also referred to as a magnetized phosphor) is recovered.
  • the phosphor is not easily detached from the filter 102 and the phosphor is likely to remain on the filter 102. For this reason, a large amount of cleaning liquid is required for recovery, which is an obstacle to performing a plurality of treatments.
  • the dispersing agent it is necessary to use a dispersing agent that has good wettability of the phosphor, does not cause aggregation, and does not collect the phosphor on the surface of the dispersion and the generated foam surface.
  • a polymeric dispersant and a foaming low molecular surfactant are used as the dispersant, and these are added to water at a predetermined ratio to produce a dispersion medium for dispersing the phosphor.
  • the polymer dispersant is preferably a polycarboxylic acid dispersant.
  • the amount of residual phosphor after washing for recovering the magnetized phosphor is suppressed to less than 2%, and the foam layer is formed in a short time after the treatment. Can be eliminated.
  • a magnetic field is applied to the filter 102.
  • the magnetic field generator 104 is energized to generate a magnetic field in the region where the filter 102 is disposed.
  • the magnitude of the applied magnetic field varies depending on the type of phosphor to be separated and the filter (matrix). For example, when using a green phosphor with a high magnetic susceptibility and using stainless steel with a thin wire diameter, the magnitude of the applied magnetic field is 1T or less, and the target is a blue phosphor with a low magnetic susceptibility. Is preferably 2T or more.
  • a dispersion medium in which the phosphor is not dispersed (hereinafter also referred to as a phosphor-free dispersion liquid) is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110 to the lower end of the filter 102.
  • Step 206 a phosphor-containing dispersion liquid (liquid in which a phosphor mixture is dispersed in a dispersion medium) is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110 to the upper end of the filter 102.
  • Step 208 a predetermined amount of the phosphor-free dispersion is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110.
  • the phosphor-free dispersion, the phosphor-containing dispersion, and the phosphor-free dispersion stay in the processing tube 100 from below.
  • step 210 the vibration processing unit 106 vibrates the processing tube 100 at a predetermined frequency for a predetermined time.
  • step 212 the discharge valve 112 is opened, and all the liquid in the processing tube 100 is discharged and recovered in the recovery container 114. Since the adhesion strength to the filter 102 differs according to the magnetic susceptibility of the phosphors mixed as described above, it is assumed that the same amount of phosphors is initially contained. The more the phosphor, the lower the magnetic susceptibility.
  • step 214 the inside of the processing tube 100 is washed with a phosphor-free dispersion, and the discharged liquid is collected.
  • the discharge valve 112 is closed, and a predetermined amount of the phosphor-free dispersion is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110. Thereafter, the discharge valve 112 is opened, and the phosphor-free dispersion in the processing tube 100 is discharged and collected in the collection container 114.
  • a different container is used as the recovery container 114 each time.
  • step 216 it is determined whether or not the predetermined number of times of cleaning has been completed. That is, until it is determined that the cleaning is completed, the cleaning and recovery processing in step 214 is repeated a predetermined number of times, and then the processing proceeds to step 218.
  • the phosphor-free dispersion liquid may be passed through the processing tube 100 at an increased flow rate while the discharge valve 112 is open.
  • step 218 the value of the current supplied to the magnetic field generator 104 is decreased to decrease the magnetic field strength (including the case where the magnetic field strength is set to 0). For example, the magnetic field strength is reduced to less than 0.2T.
  • step 220 the inside of the processing tube 100 is washed with a phosphor-free dispersion, and the discharged liquid is collected. Since the adhesion strength to the filter 102 differs according to the magnetic susceptibility of the phosphors mixed as described above, if the same amount of phosphor is initially included, the liquid recovered in step 220 The phosphor contains more phosphors with higher magnetic susceptibility. That is, the phosphor having a high magnetic susceptibility is likely to remain attached to the filter 102 by the magnetic force even during the cleaning process of step 214 that is repeatedly performed.
  • step 222 it is determined whether or not to end. That is, until it is determined that the process is completed, the process of steps 202 to 220 is repeated using any one of the collected liquids collected a plurality of times so as not to mix.
  • the content of each phosphor contained in the liquid collected in step 212 and step 220 is different from the content of each phosphor contained in the phosphor-containing dispersion before processing.
  • the recovered liquid obtained in step 212 has a higher phosphor content in the phosphor mixture than in the phosphor-containing dispersion charged in step 206.
  • the recovered liquid in step 220 has a higher phosphor content in the phosphor mixture than in the phosphor-containing dispersion charged in step 206. Accordingly, by repeating the processes of steps 202 to 220 using the recovery liquid at a predetermined step, a recovery liquid having a high content of a specific phosphor can be obtained.
  • the content of the phosphor having the lowest magnetic susceptibility among the phosphors contained in the phosphor mixture in the recovered liquid is obtained by repeating the introduction of the recovered liquid in step 212 into the processing tube 100 in step 206. Can be high. Further, by repeating the charging of the recovery liquid in step 220 into the processing tube 100 in step 206, the content ratio of the phosphor having the highest magnetic susceptibility among the phosphors contained in the phosphor mixture in the recovery liquid. Can be high. Therefore, as the number of repetitions increases, the purity of the specific phosphor can be increased. In addition, it is desirable to determine which step of the recovered liquid is repeatedly used by analyzing the type and content rate of the phosphor initially contained in the phosphor mixture.
  • the dispersibility is good by mixing the phosphor fine powder and the dispersion (water added with a dispersant) and shaking. Further, a dispersing agent that does not allow the phosphor to adhere to the filter 102 is preferable. This is done by placing the filter 102, for example, a stainless steel expanded metal, in a shaking liquid (liquid immediately after the shaking is finished), and then taking out the filter 102 (stainless steel expanded metal) and washing it with the dispersion. It can be evaluated by confirming whether or not the phosphor is attached.
  • FIG. 3 shows the results of examining the adhesion of various dispersants having a surface active action.
  • the percentage value described after the dispersant name means the amount added (% by weight).
  • A means good dispersibility
  • C means poor dispersibility
  • B means the middle of them.
  • the description of the foaming column means the presence or absence of foaming and the strength of foaming.
  • the description in the column of adhesion indicates adhesion to the filter (stainless steel expanded metal), “A” means no adhesion, “C” means high adhesion, “B” means slight adhesion. .
  • the phosphor remains on the filter after the phosphor separation, and it is not preferable because it needs to be washed with a large amount of the dispersion.
  • many non-foaming (foaming “no”) or microfoaming (foaming “weak”) dispersants have a high surface tension. Regarding these, it is possible to improve wettability, eliminate adhesion to the filter, and enhance dispersibility by adding a low molecular surfactant having strong permeability.
  • a small amount of penetrating surfactant is added to the polymer type dispersant as the main dispersant.
  • the dispersing agent obtained by adding can be mentioned.
  • polymeric dispersant used as the main dispersant examples include polycarboxylic acid, naphthalene sulfonic acid formalin condensation system, and polyethylene glycol.
  • polycarboxylic acid-based dispersants see No. 1 and No. 2 in FIG. 3 that do not contain ash such as sodium and halogen are particularly preferable.
  • the concentration of the main dispersant must be at least the concentration at which the phosphor is not aggregated and dispersed. On the other hand, if the dispersant concentration is too high, the viscosity may increase and the separation efficiency may decrease, and it takes time to remove the dispersant after the phosphor separation. Therefore, the concentration (% by weight) of the dispersant in the dispersion is 0.02% to 3%, preferably 0.03% to 1%, more preferably 0.03% to 0.3%.
  • any surfactant such as a nonionic surfactant, an anionic surfactant, or an amphoteric surfactant may be used.
  • a nonionic surfactant such as an anionic surfactant, or an amphoteric surfactant
  • an amphoteric surfactant such as sodium ethylene alkyl ether sulfate
  • alkyl betaines such as alkyl betaines.
  • the commercially available neutral detergent containing said component can also be used as an additive.
  • nonionic surfactants such as polyoxyethylene alkyl ethers (No. 11 in FIG. 3) and betaines (see No. 22 in FIG. 3) that do not contain any ash such as sodium or halogen. ) And the like are particularly preferred.
  • the foamability of the additive (surfactant) is preferably 80 mm or more immediately after the measured value by the foaming force test defined by JIS K3362 at a concentration of 1%.
  • the concentration of the additive is 0.004% to 0.1%, preferably 0.005% to 0.05%, more preferably 0.01% to 0.02%.
  • the foaming power of the dispersion obtained by adding the additive to the dispersant is preferably less than 3 mm after 5 minutes.
  • the phosphor-free dispersion liquid is disposed above and below the phosphor-containing dispersion liquid in the processing tube 100.
  • the present invention is not limited to this, and the upper phosphor-free dispersion liquid may be omitted. Further, if the filter 102 is positioned in the phosphor-containing dispersion, the lower phosphor-free dispersion may not be present.
  • the filter 102 is vibrated has been described, it is not necessary to vibrate. If the vibration is not applied, the dispersion efficiency is lower than that when the vibration is applied, but the phosphor can be separated by increasing the number of repetitions of the treatment.
  • the present invention is not limited to this.
  • a container having an arbitrary shape is not limited to a tubular shape.
  • the filter 102 is washed in a state where a magnetic field having a predetermined intensity or more is applied has been described, but the present invention is not limited to this.
  • the magnetic deposit may be recovered by cleaning the filter 102 in a state where the magnetic field is reduced, without performing cleaning in a state where a magnetic field having a predetermined strength or higher is applied.
  • the separation process is repeated using the recovered liquid as a processing target as it is, but the present invention is not limited to this. If necessary, prepare a fine powder phosphor mixture from the collected liquid by filtration, drying treatment, etc., analyze the phosphor content ratio, and then use this phosphor mixture as needed to make a phosphor-containing dispersion. And the above separation process may be executed.
  • a phosphor-free dispersion was prepared by changing the blending concentration in water with the combination of the dispersant shown in FIG. 3 as the main dispersant and additive.
  • this dispersion liquid 0.2 L (liter), blue phosphor BAM (LP-B4 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 1.53 ⁇ 10 ⁇ 4 H / m) and red phosphor YOX (Mitsubishi Chemical Corporation)
  • a phosphor-containing dispersion was prepared by dispersing 0.5 g each of LP-RE1 (manufactured by company, measured value of magnetic susceptibility 0.83 ⁇ 10 ⁇ 4 H / m). Experiments were performed according to the procedure shown in FIG. 2 using this phosphor-containing dispersion as a target for separation treatment.
  • the phosphor non-containing dispersion liquid used for preparation of each phosphor containing dispersion liquid was used for the cleaning liquid.
  • a well-known Elise Magnetics magnetic separator (model HIW L4-20K) was used, and a stainless steel wool (length: about 20 cm, width: about 5 cm, thickness: about 2 cm) made of SUS430 was used for the filter (matrix).
  • the phosphor-free dispersion and the phosphor-containing dispersion were filled in the processing tube as described above.
  • the treatment tube was vibrated for 30 seconds using a massager manufactured by OMRON Corporation as a vibration device, and the discharge valve was opened to collect the phosphor not attached to the filter.
  • the discharge valve was once closed and 0.5 L of cleaning liquid was poured into the processing tube, and then the discharge valve was opened to clean the filter, and the discharged liquid was collected. Further, as the second washing, the filter was washed again by increasing the flow rate with 0.5 L of washing liquid while the discharge valve was opened, and the discharged liquid was collected. Thereafter, the power supply was turned off to reduce the magnetic field to 0, and 0.5 L of a cleaning solution was circulated to collect the phosphor that was magnetically attached to the filter. Further, about 1 L of the cleaning liquid was passed through the processing tube, and the amount of phosphor remaining on the filter was examined.
  • PCA1 is a special polycarboxylic acid-based dispersant, Poise (registered trademark) 520 manufactured by Kao Corporation
  • PCA2 is a special polycarboxylic acid-based dispersant
  • Kaorcera registered trademark 2000 manufactured by Kao Corporation
  • PCA3 is an ammonium polycarboxylate Nopco Santo RFA manufactured by San Nopco Co., Ltd., which is a dispersant
  • LAB is Amphital (registered trademark) 20AB manufactured by Kao Corporation, which is amidopropyl betaine laurate
  • SPAL is sodium polyoxyethylene lauryl ether sulfate.
  • PAAE is a polyoxyalkylene-based SN wet 980 manufactured by San Nopco
  • PAAE is a polyoxyalkylene alkyl ether, Nippon Emulsifier Co., Ltd. Newcol 2308LY
  • a polyhydric alcohol is a polyhydric alcohol It represents the San Nopco Co.
  • Nopco Wet SN-20T is a nonionic surfactant.
  • the “mixed liquid distribution” column the result of analyzing the first recovered liquid is described.
  • the upper part of each cell shows the ratio (% by weight) of the red phosphor and the blue phosphor, and the lower part shows the total weight. For example, no. In No. 1, a total of 248 mg of the phosphor was recovered from the first recovery liquid, and the breakdown shows that the red phosphor was 58% and the blue phosphor was 42%.
  • the column “First Wash” the result of analyzing the collected liquid of the first wash is similarly described. The same applies to the “second cleaning” column.
  • the column “Recovery of magnetic deposits” relates to the recovered liquid in a state where the magnetic field is reduced, and the column “Remaining amount” relates to the phosphor recovered by the last washing (phosphor remaining in the filter). , As well. In addition, No. 19 shows the result when vibration is not applied to the filter.
  • the ratio of the red phosphor having a low magnetic susceptibility is high in the first recovered liquid (mixed liquid circulation column).
  • the ratio of blue phosphors was high in the recovery liquid (line of magnetized material recovery) by washing with the body ratio increased and the magnetic field decreased. This depends on the difference in magnetic susceptibility between the red phosphor and the blue phosphor.
  • the concentration of the remaining phosphor is 0.003% (see No. 2). There were many. However, when the concentration was in the range of 0.015% to 0.05% (see No. 3 and No. 4), the amount of the remaining phosphor was reduced, which was effective. When the concentration exceeded 0.05%, the amount of the remaining phosphor was small, but the foaming property increased, and it took 1 hour or more for disappearance of the foam layer.
  • polyoxyethylene alkyl ether sodium sulfate (Emal 20C manufactured by Kao Corporation), a neutral detergent (Kao Family Fresh containing sodium alkyl ether sulfate ester), or a fine foaming surfactant
  • foaming polyoxyalkylene nonionic surfactant (SN wet 980 manufactured by San Nopco Co., Ltd.) or polyoxyalkylene alkyl ether (Newcol 2308-LY manufactured by Nippon Emulsifier Co., Ltd. was added at a concentration of 0.015%, respectively (No. 6 to No. 9) was also effective with a small amount of residual phosphor.
  • Kaocera 2000 made by Kao Co., Ltd. which is a special polycarboxylic acid-based dispersant for dispersing ceramic powder, which is a polymer type dispersant, or Nopco Santo RFA made by San Nopco, Inc., which is a polycarboxylic acid ammonium dispersant
  • concentration of Kaocera 2000 made by Kao Co., Ltd. which is a special polycarboxylic acid-based dispersant for dispersing ceramic powder, which is a polymer type dispersant, or Nopco Santo RFA made by San Nopco, Inc., which is a polycarboxylic acid ammonium dispersant
  • non-polymeric polyoxyethylene sorbitan monolaurate (Tween 20) is used as a main dispersant at a concentration of 0.05%, and LAB as an additive is added at a concentration of 0.01% (see No. 13)
  • polyoxyethylene sorbitan trioleate (Tween 85) is used as a main dispersant at a concentration of 0.05%, and LAB is added as an additive at a concentration of 0.015% (see No. 14)
  • PAAE non-polymeric microfoaming polyoxyalkylene alkyl ether
  • a commercial dishwasher detergent mainly composed of polyoxyalkylene alkyl ether as a main dispersant is used at a concentration of 0.15% and added to this Even when the addition of LAB concentration of 0.01% (see No.16) as the residual amount of the phosphor is often was not effective.
  • sodium hexametaphosphate which is an inorganic dispersant
  • the main dispersant at a concentration of 0.15% (see No. 17)
  • the remaining amount was large and was not effective.
  • the first recovered liquid contains red phosphor at a ratio of about 60%.
  • the high-purity red phosphor is obtained.
  • the red phosphor is also contained in the recovery liquid (first wash) obtained by the first washing at a ratio of about 60%, a red phosphor with high purity can be obtained similarly.
  • the recovery liquid magnetized substance recovery
  • the separation process is repeated using this recovery liquid to reduce the magnetic field.
  • a blue phosphor having a high purity can be obtained from the recovered liquid in a fresh state.
  • Blue phosphor BAM (Mitsubishi Chemical Corporation LP-B2, measured value of magnetic susceptibility 1.8 ⁇ 10 ⁇ 4 H / m)
  • Green phosphor LAP (Mitsubishi Chemical Corporation LP-G2, measured value of magnetic susceptibility) 1.6 ⁇ 10 ⁇ 3 H / m)
  • red phosphor YOX (LP-RE1 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 0.83 ⁇ 10 ⁇ 4 H / m) 1.0 g each was dispersed.
  • a phosphor-containing dispersion liquid 0.2 L was prepared, and the phosphor was separated.
  • As the dispersion medium No. 1 of Example 1 was used.
  • Pois 520 manufactured by Kao Co., Ltd. which is a special polycarboxylic acid polymer surfactant for dispersing pigments as a polymer dispersant, is used as a main dispersant, and propyl betaine laurate is used as an additive.
  • Anhitol 20AB manufactured by Kao Corporation was used. These are mixed with water at concentrations of 0.15 and 0.015%, respectively, to prepare a dispersion medium (phosphor-free dispersion), in which the above three colors of phosphors are dispersed, and phosphors are contained. A dispersion was prepared.
  • the collected liquid in the first distribution contains almost no green phosphor, and the mixture obtained from this collected liquid is a mixture of red and blue phosphors. It can be said. This contains many red phosphors with low magnetic susceptibility.
  • the ratio of the blue phosphor increases in the collected liquid by the first washing (first washing column), and the blue phosphor is contained in the collected liquid by the second strong washing (second washing column). became. This is because a large number of red phosphors having the lowest magnetic susceptibility among the three color phosphors were discharged before the first cleaning.
  • the content of the green phosphor was 80%. This indicates that the green phosphor had a high magnetic susceptibility and was stably magnetized on the filter. Furthermore, almost no phosphor remained in the liquid recovered by rewashing (column of residual amount).
  • Example 1 the combination of the main dispersant and the additive suitable in Example 1 is also effective for the separation of the phosphor mixture containing the green phosphor. It can also be seen that separating the green phosphor from the phosphor mixture is easier than separating the blue and red phosphors.
  • a phosphor-free dispersion was prepared using the same main dispersant and additive as in Example 2, and a blue phosphor BAM (LP-B4 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 1.5 ⁇ 10 ⁇ 4 H / m) and 1.0 g each of halophosphoric daylight phosphor (Daylight manufactured by Nichia Chemical Co., Ltd., measured value of magnetic susceptibility 0.39 ⁇ 10 ⁇ 4 H / m) are dispersed in the phosphor-containing dispersion liquid. 0.2 L was produced, and the phosphor was separated. The intensity of the applied magnetic field is 2T.
  • the collected liquid in the first distribution contains a lot of halophosphate daylight color phosphors with low magnetic susceptibility, and the ratio of blue phosphors increases and the magnetic field decreases with repeated washing.
  • the present invention it is possible to provide a method and an apparatus for efficiently separating a phosphor from a mixture composed of a plurality of types of phosphor fine powders having different magnetic susceptibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

This separation method for a phosphor comprises: a step of bringing, into a treatment tube (100), a mixed solution (140) prepared by dispersing, into a dispersion medium, a mixture made of a plurality of types of phosphors of different magnetic susceptibilities, and of positioning, within the mixed solution, a filter (102) formed of a ferromagnetic material; a step of discharging and recovering the mixed solution from the treatment tube in a state where a magnetic field (130) has been applied to the filter; a step of cleaning the filter with dispersion medium and recovering the dispersion medium; and a step of cleaning the filter with dispersion medium in a state where the magnetic field has been reduced and recovering the dispersion medium. The dispersion medium is a solution in which a low-molecular-weight surfactant has been added to an aqueous solution of a high-molecular-weight dispersion agent. Each of the recovery steps is repeated using the recovered solution as a new mixture. Because a dispersion medium having high wettability is used on a fine-powder phosphor, the phosphor can be efficiently separated.

Description

蛍光体混合物の分離方法及び分離装置Method and apparatus for separating phosphor mixture
 本発明は、勾配磁場による磁選技術を用いて、磁化率が異なる複数種類の蛍光体微粉末の混合物から、効率的に蛍光体を分離(完全に分離する場合に限らず、特定の蛍光体の純度を高くする精製をも含む)する蛍光体混合物の分離方法に関する。 The present invention is not limited to a case where a phosphor is efficiently separated from a mixture of a plurality of types of phosphor fine powders having different magnetic susceptibility using a magnetic separation technique based on a gradient magnetic field. The present invention also relates to a method for separating a phosphor mixture that includes purification to increase purity.
 蛍光体には、希少であり貴重な資源である希土類元素が多量に含まれている。例えば、プラズマディスプレイ及び蛍光ランプに使用される蛍光体にはTb、Eu等の高価な希土類元素が多量に含まれている。表1に示すように各種の蛍光体がディスプレイ用又はランプ用として使用されている。 Fluorescent substances contain a large amount of rare earth elements, which are rare and valuable resources. For example, phosphors used in plasma displays and fluorescent lamps contain a large amount of expensive rare earth elements such as Tb and Eu. As shown in Table 1, various phosphors are used for displays or lamps.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 蛍光ランプ用蛍光体には、青色蛍光体としてBAM及びSCA、赤色蛍光体としてYOX及びYVO、緑色蛍光体としてLAPがある。単体で白色に発光する蛍光体としては、ハロリン酸カルシウム蛍光体(以下、ハロリン酸昼光色蛍光体ともいう)(CoolWhite、WarmWhite、及びDaylight)がある。ランプとしては、これら3色の蛍光体(青赤緑)を混合して白色を発光する三波長蛍光ランプと、ハロリン酸カルシウム蛍光体を用いた一般色蛍光ランプがある。 Fluorescent lamp phosphors include BAM and SCA as blue phosphors, YOX and YVO as red phosphors, and LAP as green phosphors. As a phosphor that emits white light alone, there is a calcium halophosphate phosphor (hereinafter also referred to as a halophosphate daylight phosphor) (CoolWhite, WarmWhite, and Daylight). As the lamp, there are a three-wavelength fluorescent lamp that emits white light by mixing these three color phosphors (blue red green), and a general color fluorescent lamp using a calcium halophosphate phosphor.
 蛍光ランプの製造工程で生じる蛍光体の廃棄物には、両者のランプが混合している場合がある。また、使用済みの蛍光ランプから回収された蛍光体においては、ハロリン酸カルシウム蛍光体と3色の蛍光体が混合している場合が多い。さらに、青色蛍光体は加熱等によって発光元素であるEu2+がEu3+に劣化するので、青色蛍光体は再利用できない場合がある。これらの理由によって、回収された蛍光体をそのまま利用することは難しい。そのため、複数種類の蛍光体の混合物から、蛍光体を種類ごとに分離することが要望されている。 There is a case where both lamps are mixed in the phosphor waste generated in the manufacturing process of the fluorescent lamp. In many cases, phosphors collected from used fluorescent lamps are mixed with calcium halophosphate phosphors and phosphors of three colors. Further, the blue phosphor cannot be reused because Eu 2+ which is a light emitting element deteriorates to Eu 3+ by heating or the like. For these reasons, it is difficult to use the recovered phosphor as it is. Therefore, it is desired to separate phosphors for each type from a mixture of a plurality of types of phosphors.
 蛍光体を種別分離する方法として、ゼータ電位差を利用して捕集剤を用いて分離する方法(特開2004-83869号公報参照)、水性又は油性溶媒による溶液分離を利用する方法(特開2004-262978号公報参照)、帯電状態を利用する方法(特開2004-137320号公報参照)等が知られている。しかし、これらの方法は分離を目的とする蛍光体ごとに試薬又は装置を変更する必要があり、多種の蛍光体を分離する場合に複雑な処理が必要となる欠点がある。また、これらの分離方法は、表面電位又は吸着特性を利用して分離するものであり、蛍光体の表面状態が製品加工等によって変化した場合には分離できない可能性もある。 As a method for separating phosphors by type, a method using a collecting agent using a zeta potential difference (see Japanese Patent Application Laid-Open No. 2004-83869), a method using solution separation using an aqueous or oil-based solvent (Japanese Patent Application Laid-Open No. 2004-2004). -262978), a method using a charged state (see Japanese Patent Application Laid-Open No. 2004-137320), and the like are known. However, these methods have a drawback that it is necessary to change a reagent or an apparatus for each phosphor intended for separation, and complicated treatment is required when separating various phosphors. In addition, these separation methods are performed by utilizing the surface potential or adsorption characteristics, and may not be separated when the surface state of the phosphor changes due to product processing or the like.
 一方、蛍光体を分離するものでは無いが、高磁場勾配を利用して磁化率の異なる物質を分離する工業的方法として高磁場勾配磁選機を用いた方法が知られている。この方法は磁場中に強磁性のワイヤー、スチールウール等を詰めたカラムを配置してその中に分離対象物を流通させることにより、ワイヤー、及びスチールウール等に磁性体を付着(以下、磁着ともいう)させて分離する方法である(特開平11-47632号公報(以下、’632号公報という)参照)。 On the other hand, a method using a high magnetic field gradient magnetic separator is known as an industrial method for separating substances having different magnetic susceptibility using a high magnetic field gradient, although it does not separate phosphors. In this method, a magnetic material is attached to the wire, steel wool, etc. by arranging a column packed with ferromagnetic wire, steel wool, etc. in the magnetic field and circulating the separation object therein (hereinafter referred to as magnetic adhesion). (Referred to as Japanese Patent Laid-Open No. 11-47632 (hereinafter referred to as' 632)).
 ’632号公報に開示されたような高磁場勾配磁選機を蛍光体の分離に適用することが考えられる。その場合、高磁場勾配磁選機は、非磁性体の中から磁性体を吸着して分離することには有効であるが、装置の構造上、微粉末の混合物にはそのまま適用することはできない。即ち、使用済みの蛍光ランプから回収された異種蛍光体の混合物は、微粉末の集合体であるので、ぬれ性が低く金属材料への吸着度が高いこと、また、蛍光体の種類による磁化率の差が小さいために分離効率が悪いことから、蛍光体の種別分離には高磁場勾配磁選機の適用が難しい。 It is conceivable to apply a high magnetic field gradient magnetic separator as disclosed in the '632 publication to the separation of phosphors. In this case, the high magnetic field gradient magnetic separator is effective for adsorbing and separating a magnetic material from nonmagnetic materials, but cannot be applied as it is to a mixture of fine powders due to the structure of the apparatus. That is, the mixture of different types of phosphors collected from a used fluorescent lamp is an aggregate of fine powders, so that it has low wettability and high degree of adsorption to metal materials, and the magnetic susceptibility depending on the type of phosphor. Since the separation efficiency is low due to the small difference between the two, it is difficult to apply a high magnetic field gradient magnetic separator for the type separation of phosphors.
 したがって、本発明は、磁化率が異なる複数種類の蛍光体微粉末の混合物から、効率的に蛍光体を分離する蛍光体混合物の分離方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for separating a phosphor mixture that efficiently separates a phosphor from a mixture of a plurality of types of phosphor fine powders having different magnetic susceptibility.
 上記の目的は、下記によって達成することができる。 The above objective can be achieved by the following.
 即ち、本発明に係る蛍光体混合物の分離方法は、磁化率の異なる複数種類の蛍光体からなる混合物を、分散媒中に分散させて混合液を作製するステップと、処理容器内に混合液を入れ、この混合液中に強磁性材料で形成されたフィルタを位置させる設置ステップと、フィルタに磁場を印加した状態で、処理容器から混合液を排出して回収する混合液回収ステップとを含み、分散媒は、高分子型分散剤の水溶液に低分子型界面活性剤を添加した溶液である。 That is, the method for separating a phosphor mixture according to the present invention includes a step of dispersing a mixture composed of a plurality of types of phosphors having different magnetic susceptibilities in a dispersion medium to prepare a mixture, and a mixture in the processing vessel. An installation step of positioning a filter formed of a ferromagnetic material in the mixed solution, and a mixed solution recovery step of discharging and recovering the mixed solution from the processing container with a magnetic field applied to the filter, The dispersion medium is a solution in which a low molecular surfactant is added to an aqueous solution of a polymer dispersant.
 好ましくは、混合液回収ステップによる回収液を新たな混合液として、設置ステップ及び混合液回収ステップを繰返す。 Preferably, the installation step and the mixed solution recovery step are repeated using the recovered solution obtained in the mixed solution recovery step as a new mixed solution.
 より好ましくは、蛍光体混合物の分離方法は、混合液回収ステップに続き、磁場を印加した状態でフィルタを分散媒で洗浄し、フィルタの洗浄に使用した分散媒を回収する洗浄ステップをさらに含む。 More preferably, the method for separating the phosphor mixture further includes a washing step of washing the filter with a dispersion medium in a state where a magnetic field is applied and collecting the dispersion medium used for washing the filter, following the mixed solution collecting step.
 さらに好ましくは、洗浄ステップによる回収液を新たな混合液として、設置ステップ、混合液回収ステップ、及び洗浄ステップを繰返す。 More preferably, the installation step, the mixed solution recovery step, and the cleaning step are repeated using the recovered solution from the cleaning step as a new mixed solution.
 好ましくは、蛍光体混合物の分離方法は、印加された磁場を減少させた状態で、フィルタを分散媒で洗浄し、フィルタの洗浄に使用した分散媒を回収する磁着物回収ステップをさらに含む。 Preferably, the method for separating the phosphor mixture further includes a magnetized material collection step of washing the filter with a dispersion medium in a state where the applied magnetic field is reduced, and collecting the dispersion medium used for washing the filter.
 より好ましくは、磁着物回収ステップによる回収液を新たな混合液として、設置ステップ、混合液回収ステップ、及び磁着物回収ステップを繰返す。 More preferably, the installation step, the mixed solution recovery step, and the magnetic deposit recovery step are repeated using the recovery solution from the magnetic deposit recovery step as a new mixed solution.
 さらに好ましくは、蛍光体混合物の分離方法は、混合液回収ステップの前に、混合液中に位置させたフィルタに磁場を印加した状態で、フィルタを振動させるステップをさらに含む。 More preferably, the method for separating the phosphor mixture further includes a step of vibrating the filter in a state where a magnetic field is applied to the filter positioned in the mixed solution before the mixed solution collecting step.
 好ましくは、高分子型分散剤は、ポリカルボン酸系高分子分散剤である。 Preferably, the polymer dispersant is a polycarboxylic acid polymer dispersant.
 より好ましくは、低分子型界面活性剤は、ラウリン酸アミドプロピルベタイン、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシアルキレン系非イオン界面活性剤、ポリオキシアルキレンアルキルエーテル、多価アルコール系非イオン性界面活性剤、又は、アルキルエーテル硫酸エステルナトリウムを含有する中性洗剤である。 More preferably, the low molecular weight surfactant is amide propyl betaine laurate, sodium polyoxyethylene lauryl ether sulfate, polyoxyalkylene nonionic surfactant, polyoxyalkylene alkyl ether, polyhydric alcohol nonionic interface. It is a neutral detergent containing an activator or sodium alkyl ether sulfate.
 さらに好ましくは、高分子型分散剤の濃度は0.02%~3%であり、低分子型界面活性剤の濃度は0.004%~0.1%である。 More preferably, the concentration of the polymeric dispersant is 0.02% to 3%, and the concentration of the low molecular surfactant is 0.004% to 0.1%.
 本発明に係る蛍光体混合物の分離装置は、内部に強磁性材料で形成されたフィルタが配置され、磁化率の異なる複数種類の蛍光体からなる混合物を含む混合液を収容する処理容器と、混合物が処理容器内に収容された状態で、フィルタに磁場を印加する磁場発生部と、フィルタに磁場を印加した状態で、処理容器から混合液を排出して回収する回収部とを備え、混合液は、高分子型分散剤の水溶液に低分子型界面活性剤を添加した溶液である分散媒中に、混合物が分散した液体である。 A phosphor mixture separation apparatus according to the present invention includes a processing container that contains a mixture liquid containing a mixture of phosphors having different magnetic susceptibility and a filter formed of a ferromagnetic material therein, and a mixture. A magnetic field generating unit that applies a magnetic field to the filter while being accommodated in the processing container, and a recovery unit that discharges and recovers the mixed liquid from the processing container in a state where the magnetic field is applied to the filter. Is a liquid in which a mixture is dispersed in a dispersion medium, which is a solution obtained by adding a low molecular surfactant to an aqueous solution of a polymer dispersant.
 本発明によれば、蛍光体混合物の分散媒として高分子型分散剤の水溶液に低分子型界面活性剤を添加した溶液を使用するので、蛍光体に対するぬれ性が高く、磁場を減少させた後に蛍光体がフィルタに付着したままになることを抑制することができ、効率的に蛍光体を種類ごとに分離することができる。 According to the present invention, since a solution obtained by adding a low molecular weight surfactant to an aqueous solution of a polymeric dispersant is used as a dispersion medium of the phosphor mixture, the wettability to the phosphor is high, and after reducing the magnetic field It can suppress that the fluorescent substance remains adhering to a filter, and can isolate | separate fluorescent substance for every kind efficiently.
 蛍光体含有分散液の分離処理による回収液を対象として、さらに分離処理を繰返すことによって、特定の蛍光体の純度を高くすることができる。 The purity of the specific phosphor can be increased by repeating the separation process for the recovered liquid obtained by the separation process of the phosphor-containing dispersion.
本発明の実施の形態に係る蛍光体混合物の分離方法に使用する装置の構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of a structure of the apparatus used for the isolation | separation method of the fluorescent substance mixture which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体混合物の分離方法を示すフローチャートである。It is a flowchart which shows the separation method of the fluorescent substance mixture which concerns on embodiment of this invention. 界面活性作用を持つ分散剤と付着性の評価結果とを対応させて示す表である。It is a table | surface which matches and shows the dispersing agent which has surface active effect | action, and the evaluation result of adhesiveness. 実験結果を示す表である。It is a table | surface which shows an experimental result.
 以下の実施の形態では、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。 In the following embodiments, the same reference numerals are assigned to the same parts. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 本実施の形態の分離対象である蛍光体混合物は、使用済みの蛍光ランプをリサイクル処理して回収された微粉末状(粒子径がμmオーダ、例えば10μm以下)の蛍光体の混合物等である。リサイクル処理によって得られた蛍光体は、通常、単一種類の蛍光体ではなく、青色蛍光体、赤色蛍光体、緑色蛍光体、及び白色蛍光体(ハロリン酸昼光色蛍光体)等の混合物である。したがって、これを再利用するためには、各色の蛍光体に分離することが不可欠である。 The phosphor mixture to be separated in the present embodiment is a mixture of phosphors in the form of fine powder (particle size on the order of μm, for example, 10 μm or less) collected by recycling a used fluorescent lamp. The phosphor obtained by the recycling treatment is not usually a single type of phosphor, but a mixture of a blue phosphor, a red phosphor, a green phosphor, a white phosphor (halophosphoric acid daylight phosphor), and the like. Therefore, in order to reuse this, it is essential to separate the phosphors of the respective colors.
 図1を参照して、本実施の形態に係る蛍光体混合物の分離方法に使用される装置は、処理管100、フィルタ102、磁場発生部104、加振部106、投入部108、投入バルブ110、及び、排出バルブ112を備えている。 Referring to FIG. 1, the apparatus used in the phosphor mixture separation method according to the present embodiment includes a processing tube 100, a filter 102, a magnetic field generation unit 104, a vibration unit 106, a charging unit 108, and a charging valve 110. And a discharge valve 112.
 処理管100は、投入部108から投入される溶液(以下、投入液ともいう)を一時的に収容する。フィルタ102は、強磁性材料で形成され、後述する蛍光体を分散させた分散液が通過可能な構造物(例えば、網目状構造物、又は繊維状材料の集合体)であり、処理管100内に配置される。フィルタ102は、例えば磁性ステンレス製エキスパンドメタル、又はステンレスウール等で形成される。フィルタは、公知の勾配磁場を用いた磁選機においてはマトリックスとも呼ばれる。 The processing tube 100 temporarily stores a solution (hereinafter also referred to as input solution) supplied from the input unit 108. The filter 102 is formed of a ferromagnetic material and is a structure (for example, a mesh structure or an aggregate of fibrous materials) through which a dispersion liquid in which a phosphor described later is dispersed can pass through the filter 102. Placed in. The filter 102 is made of, for example, an expanded metal made of magnetic stainless steel or stainless wool. The filter is also called a matrix in a magnetic separator using a known gradient magnetic field.
 投入バルブ110は開閉可能であり、開かれた場合、投入液140を処理管100に投入し、閉じられた場合、投入液140の処理管100への投入を停止する。排出バルブ112は開閉可能であり、開かれた場合、処理管100内の液体を排出口から排出する。排出された液体は、回収容器114によって回収される。排出バルブ112が閉じられた場合、排出を停止し、投入された液体は処理管100内に保持される。 The charging valve 110 can be opened and closed. When the charging valve 110 is opened, the charging solution 140 is charged into the processing tube 100. When the charging valve 110 is closed, the charging of the charging solution 140 into the processing tube 100 is stopped. The discharge valve 112 can be opened and closed. When the discharge valve 112 is opened, the liquid in the processing tube 100 is discharged from the discharge port. The discharged liquid is collected by the collection container 114. When the discharge valve 112 is closed, the discharge is stopped and the introduced liquid is held in the processing tube 100.
 磁場発生部104は、磁極(ポールピース)120、122と、コイル124、126とを備えている。磁場発生部104は、電源(図示せず)からコイル124、126に所定の電流が供給されると、電流値に応じた強さの磁場をフィルタ102が配置された領域に発生する。磁極120、122は、コイル124、126によって生じる磁場を収束させて、強力な磁場を形成するためのものである。磁場発生部104は、所定の強度の磁場を形成できれば、磁極120、122を備えていなくてもよい。ここでは、磁場方向130が処理管100に直交する方向になるように磁場が形成されるが、処理管100に沿った方向に磁場を形成する電磁石を使用してもよい。例えば、処理管100を円筒形のソレノイドコイル内に配置してもよい。 The magnetic field generation unit 104 includes magnetic poles (pole pieces) 120 and 122 and coils 124 and 126. When a predetermined current is supplied to the coils 124 and 126 from a power source (not shown), the magnetic field generation unit 104 generates a magnetic field having a strength corresponding to the current value in a region where the filter 102 is disposed. The magnetic poles 120 and 122 are for converging the magnetic field generated by the coils 124 and 126 to form a strong magnetic field. The magnetic field generation unit 104 may not include the magnetic poles 120 and 122 as long as a magnetic field with a predetermined strength can be formed. Here, the magnetic field is formed so that the magnetic field direction 130 is orthogonal to the processing tube 100, but an electromagnet that forms a magnetic field in a direction along the processing tube 100 may be used. For example, the processing tube 100 may be disposed in a cylindrical solenoid coil.
 加振部106は、フィルタ102を振動させるために、処理管100を所定の振動数で振動させる。分離対象の蛍光体の粒子がμmオーダであるので、振動数は超音波等の高周波の振動数であることが望ましいが、100Hz以下の振動数であってもよい。 The vibration unit 106 vibrates the processing tube 100 at a predetermined frequency in order to vibrate the filter 102. Since the phosphor particles to be separated are on the order of μm, the frequency is preferably a high-frequency frequency such as an ultrasonic wave, but may be a frequency of 100 Hz or less.
 本装置を使用した分離処理の概要は次の通りである。蛍光体混合物を所定の分散媒(液体)に分散させて、投入液140を作製する。投入バルブ110を開き、投入部108から投入液140を処理管100に投入する。この状態で、磁場発生部104によって、フィルタ102付近に磁場を発生させる。これによって、強磁性材料のフィルタ102が磁化し、周囲に勾配磁場(磁場強度が一様で無く空間的に変化する磁場)を形成する。同時に、蛍光体も磁化するので、蛍光体は勾配磁場によって力を受け、フィルタ102に引き付けられ、フィルタ102に付着する。 The outline of the separation process using this device is as follows. The phosphor mixture is dispersed in a predetermined dispersion medium (liquid) to prepare an input liquid 140. The input valve 110 is opened, and the input liquid 140 is input into the processing tube 100 from the input unit 108. In this state, the magnetic field generator 104 generates a magnetic field near the filter 102. As a result, the filter 102 of the ferromagnetic material is magnetized, and a gradient magnetic field (a magnetic field in which the magnetic field strength is not uniform but varies spatially) is formed around it. At the same time, since the phosphor is magnetized, the phosphor receives a force by the gradient magnetic field, is attracted to the filter 102, and adheres to the filter 102.
 このとき、加振部106によって処理管100を振動させると、蛍光体の分離効率を上げることができる。蛍光体は、種類によって磁化率が異なるので、フィルタ102への付着強度が異なる。蛍光体の磁化率の例を表2に示す。磁化率の高い蛍光体粒子は、より強固にフィルタ102に付着し、振動を受けてもフィルタ102から離れ難い。一方、磁化率の低い蛍光体粒子は、振動によってフィルタ102に安定して付着できず、フィルタ102から容易に離れ、フィルタ102から遠ざけられる。したがって、フィルタ102を振動させることによって、混合している蛍光体の分離効率を上げることができる。 At this time, if the processing tube 100 is vibrated by the vibration unit 106, the phosphor separation efficiency can be increased. Phosphors have different magnetic susceptibility depending on the type, and therefore the adhesion strength to the filter 102 is different. Table 2 shows an example of the magnetic susceptibility of the phosphor. The phosphor particles having a high magnetic susceptibility adhere more firmly to the filter 102 and are difficult to be separated from the filter 102 even when subjected to vibration. On the other hand, phosphor particles having a low magnetic susceptibility cannot be stably attached to the filter 102 due to vibration, and are easily separated from the filter 102 and away from the filter 102. Therefore, by separating the filter 102, the separation efficiency of the mixed phosphor can be increased.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、各蛍光体の磁化率は、磁場強度が1000Gaussにおける単位質量(1g)当たりの磁化(eum/g)として表されている。なお、表2は一例であり、同じ色の蛍光体であっても、メーカーによって組成が異なることがあり得る。また、同じメーカーであっても、同じ色の蛍光体の組成が型番によって異なることがあり得る。 In Table 2, the magnetic susceptibility of each phosphor is expressed as magnetization (eu / g) per unit mass (1 g) when the magnetic field strength is 1000 Gauss. Table 2 is an example, and the composition may differ depending on the manufacturer even if the phosphors have the same color. Moreover, even if it is the same manufacturer, the composition of the fluorescent substance of the same color may change with model numbers.
 その後、排出バルブ112を開けて、処理管100内の分散液を回収する。蛍光体ごとの回収率(初期に分散液に含まれていた量に対する回収された量の割合)は、磁化率が比較的低くフィルタ102に付着し難い(弱く付着する)蛍光体の値が高く、磁化率が比較的高くフィルタ102に付着し易い(強く付着する)蛍光体の値が低い。また、排出後に処理管100からフィルタ102を取出して、付着している蛍光体を回収すると、その回収率は、磁化率が比較的低くフィルタ102に付着し難い(弱く付着する)蛍光体の値が低く、磁化率が比較的高くフィルタ102に付着し易い(強く付着する)蛍光体の値が高い。したがって、回収された蛍光体混合物を分離対象として、上記の処理を繰返すことによって、混合されている蛍光体を、磁化率に応じて分離することができる。 Thereafter, the discharge valve 112 is opened, and the dispersion liquid in the processing tube 100 is recovered. The recovery rate for each phosphor (ratio of the amount collected relative to the amount initially contained in the dispersion) has a relatively high magnetic susceptibility and a high value for the phosphor that is difficult to adhere to the filter 102 (it adheres weakly). The value of the phosphor having a relatively high magnetic susceptibility and easily attached (strongly attached) to the filter 102 is low. Further, when the filter 102 is taken out from the processing tube 100 after the discharge and the adhering phosphor is collected, the recovery rate is a value of the phosphor that has a relatively low magnetic susceptibility and is difficult to adhere to the filter 102 (weakly adhering) And the value of the phosphor that has a relatively high magnetic susceptibility and easily adheres (strongly adheres) to the filter 102 is high. Therefore, by repeating the above processing using the collected phosphor mixture as a separation target, the mixed phosphor can be separated according to the magnetic susceptibility.
 以下、図2を参照して、上記した蛍光体の分離方法及びそれに適した分散媒について、より詳細に説明する。 Hereinafter, with reference to FIG. 2, the above-described phosphor separation method and a dispersion medium suitable therefor will be described in more detail.
 ステップ200において準備を行なう。具体的には、フィルタ102を処理管100内に配置し、分離対象である蛍光体混合物を分散媒に分散させて蛍光体含有分散液を作製する。分散媒として水を用いる場合、蛍光体粉末の凝集を防ぐために界面活性作用を持つ分散剤を添加することが必要である。 Prepare in step 200. Specifically, the filter 102 is disposed in the processing tube 100, and the phosphor mixture to be separated is dispersed in a dispersion medium to produce a phosphor-containing dispersion. When water is used as a dispersion medium, it is necessary to add a dispersant having a surface active action in order to prevent aggregation of the phosphor powder.
 分散剤としては市販の中性洗剤を用いることも可能である。しかし市販の中性洗剤は、強い発泡性のためにフィルタ102(磁性ステンレス製エキスパンドメタル、又はステンレスウール等)を流通させたときに多量の泡が生じて消えにくいため、複数回の処理を行なうための支障となる。 A commercially available neutral detergent can be used as the dispersant. However, since a commercially available neutral detergent has a strong foaming property, when a filter 102 (magnetic stainless steel expanded metal, stainless wool, or the like) is circulated, a large amount of bubbles are generated and difficult to disappear. It will be an obstacle.
 また、蛍光体へのぬれ性の良好でない分散剤を用いた場合には、磁場を下げた後に洗浄液を流し、磁化によりフィルタ102に付着した蛍光体(以下、磁着蛍光体ともいう)を回収する際に蛍光体のフィルタ102からの脱離が起きにくく蛍光体がフィルタ102に残留し易い。そのため、回収のために多量の洗浄液を必要とし、複数回の処理を行なうための支障となる。 In addition, when a dispersant having poor wettability to the phosphor is used, a cleaning liquid is flowed after lowering the magnetic field, and the phosphor adhering to the filter 102 by magnetization (hereinafter also referred to as a magnetized phosphor) is recovered. In this case, the phosphor is not easily detached from the filter 102 and the phosphor is likely to remain on the filter 102. For this reason, a large amount of cleaning liquid is required for recovery, which is an obstacle to performing a plurality of treatments.
 分散剤としては、蛍光体のぬれ性が良好であり、凝集を起こさず、分散液表面及び生じた泡表面に蛍光体が集まらないような分散性の良いものを用いることが必要である。具体的には、分散剤として、高分子型分散剤及び発泡性の低分子型界面活性剤を用い、これらを所定の割合で水に添加して、蛍光体を分散させるための分散媒を作製する。高分子型分散剤は、ポリカルボン酸系分散剤であることが望ましい。 As the dispersing agent, it is necessary to use a dispersing agent that has good wettability of the phosphor, does not cause aggregation, and does not collect the phosphor on the surface of the dispersion and the generated foam surface. Specifically, a polymeric dispersant and a foaming low molecular surfactant are used as the dispersant, and these are added to water at a predetermined ratio to produce a dispersion medium for dispersing the phosphor. To do. The polymer dispersant is preferably a polycarboxylic acid dispersant.
 このような組合せの分散剤を用いることにより、後述するように、磁着蛍光体を回収するための洗浄後の残存蛍光体量を2%未満に抑え、且つ、処理後に短時間で泡層を消失させることができる。 By using such a combination of dispersing agents, as will be described later, the amount of residual phosphor after washing for recovering the magnetized phosphor is suppressed to less than 2%, and the foam layer is formed in a short time after the treatment. Can be eliminated.
 ステップ202において、フィルタ102に磁場を印加する。具体的には、磁場発生部104に通電して、フィルタ102を配置した領域に磁場を発生させる。印加磁場の大きさは、分離対象の蛍光体及びフィルタ(マトリックス)の種類によって異なる。例えば、磁化率の高い緑色蛍光体を対象とし、線径の細いステンレスウールを用いる場合には、印加磁場の大きさは1T以下であり、磁化率が高くない青色蛍光体等を対象とする場合には2T以上が好ましい。 In step 202, a magnetic field is applied to the filter 102. Specifically, the magnetic field generator 104 is energized to generate a magnetic field in the region where the filter 102 is disposed. The magnitude of the applied magnetic field varies depending on the type of phosphor to be separated and the filter (matrix). For example, when using a green phosphor with a high magnetic susceptibility and using stainless steel with a thin wire diameter, the magnitude of the applied magnetic field is 1T or less, and the target is a blue phosphor with a low magnetic susceptibility. Is preferably 2T or more.
 ステップ204において、蛍光体を分散させていない分散媒(以下、蛍光体非含有分散液ともいう)を、投入部108及び投入バルブ110を介して、フィルタ102の下端まで処理管100に投入する。 In step 204, a dispersion medium in which the phosphor is not dispersed (hereinafter also referred to as a phosphor-free dispersion liquid) is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110 to the lower end of the filter 102.
 ステップ206において、蛍光体含有分散液(蛍光体混合物を分散媒に分散させた液)を、投入部108及び投入バルブ110を介して、フィルタ102の上端まで処理管100に投入する。 In Step 206, a phosphor-containing dispersion liquid (liquid in which a phosphor mixture is dispersed in a dispersion medium) is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110 to the upper end of the filter 102.
 ステップ208において、所定量の蛍光体非含有分散液を、投入部108及び投入バルブ110を介して処理管100に投入する。これによって、処理管100内には、下から蛍光体非含有分散液、蛍光体含有分散液、及び蛍光体非含有分散液が滞留する。 In Step 208, a predetermined amount of the phosphor-free dispersion is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110. As a result, the phosphor-free dispersion, the phosphor-containing dispersion, and the phosphor-free dispersion stay in the processing tube 100 from below.
 ステップ210において、加振部106により、処理管100を所定の振動数で、所定時間振動させる。 In step 210, the vibration processing unit 106 vibrates the processing tube 100 at a predetermined frequency for a predetermined time.
 ステップ212において、排出バルブ112を開放して、処理管100内の液体を全て排出し、回収容器114に回収する。上記したように混合されている蛍光体の磁化率に応じて、フィルタ102への付着強度が異なるので、最初に同じ量の蛍光体が含まれているとした場合、ステップ212で回収された液体には、磁化率が低い蛍光体ほど多く含まれている。 In step 212, the discharge valve 112 is opened, and all the liquid in the processing tube 100 is discharged and recovered in the recovery container 114. Since the adhesion strength to the filter 102 differs according to the magnetic susceptibility of the phosphors mixed as described above, it is assumed that the same amount of phosphors is initially contained. The more the phosphor, the lower the magnetic susceptibility.
 ステップ214において、蛍光体非含有分散液で処理管100内を洗浄し、排出液を回収する。具体的には、排出バルブ112を閉めて、所定量の蛍光体非含有分散液を、投入部108及び投入バルブ110を介して、処理管100内に投入する。その後、排出バルブ112を開けて、処理管100内の蛍光体非含有分散液を排出し、回収容器114に回収する。なお、回収液142が混合しないように、回収容器114は、例えば毎回異なる容器を使用する。 In step 214, the inside of the processing tube 100 is washed with a phosphor-free dispersion, and the discharged liquid is collected. Specifically, the discharge valve 112 is closed, and a predetermined amount of the phosphor-free dispersion is introduced into the processing tube 100 through the introduction unit 108 and the introduction valve 110. Thereafter, the discharge valve 112 is opened, and the phosphor-free dispersion in the processing tube 100 is discharged and collected in the collection container 114. In order to prevent the recovery liquid 142 from being mixed, for example, a different container is used as the recovery container 114 each time.
 ステップ216において、所定回数の洗浄が終わったか否かを判定する。即ち、洗浄が終わったと判定されるまで、ステップ214の洗浄及び回収処理を所定回数繰返し、その後、処理はステップ218に移行する。なお、ステップ214の洗浄及び回収処理において、排出バルブ112を開けたまま、蛍光体非含有分散液を、流速を上げて処理管100内を通過させてもよい。 In step 216, it is determined whether or not the predetermined number of times of cleaning has been completed. That is, until it is determined that the cleaning is completed, the cleaning and recovery processing in step 214 is repeated a predetermined number of times, and then the processing proceeds to step 218. In the cleaning and recovery process in step 214, the phosphor-free dispersion liquid may be passed through the processing tube 100 at an increased flow rate while the discharge valve 112 is open.
 ステップ218において、磁場発生部104に通電する電流値を減少させて、磁場強度を減少させる(0にする場合を含む)。例えば、磁場強度を0.2T未満に減少させる。 In step 218, the value of the current supplied to the magnetic field generator 104 is decreased to decrease the magnetic field strength (including the case where the magnetic field strength is set to 0). For example, the magnetic field strength is reduced to less than 0.2T.
 ステップ220において、蛍光体非含有分散液で処理管100内を洗浄し、排出液を回収する。上記したように混合されている蛍光体の磁化率に応じて、フィルタ102への付着強度が異なるので、最初に同じ量の蛍光体が含まれているとした場合、ステップ220で回収された液体には、磁化率が高い蛍光体ほど多く含まれている。即ち、磁化率の高い蛍光体は、繰返し行なわれるステップ214の洗浄処理中にも、磁力によってフィルタ102に付着したままである可能性が高い。 In step 220, the inside of the processing tube 100 is washed with a phosphor-free dispersion, and the discharged liquid is collected. Since the adhesion strength to the filter 102 differs according to the magnetic susceptibility of the phosphors mixed as described above, if the same amount of phosphor is initially included, the liquid recovered in step 220 The phosphor contains more phosphors with higher magnetic susceptibility. That is, the phosphor having a high magnetic susceptibility is likely to remain attached to the filter 102 by the magnetic force even during the cleaning process of step 214 that is repeatedly performed.
 ステップ222において、終了するか否かを判定する。即ち、終了と判定されるまで、混合しないように複数回回収された回収液のうち何れか1回の回収液を用いて、ステップ202~220の処理を繰返す。 In step 222, it is determined whether or not to end. That is, until it is determined that the process is completed, the process of steps 202 to 220 is repeated using any one of the collected liquids collected a plurality of times so as not to mix.
 上記したように、ステップ212及びステップ220で回収された液体に含まれる各蛍光体の含有率は、処理前の蛍光体含有分散液に含まれていた各蛍光体の含有率と異なる。ステップ212による回収液は、ステップ206で投入された蛍光体含有分散液よりも、蛍光体混合物中の磁化率の最も低い蛍光体の含有率が高くなる。ステップ220による回収液は、ステップ206で投入された蛍光体含有分散液よりも、蛍光体混合物中の磁化率の最も高い蛍光体の含有率が高くなる。したがって、所定のステップの回収液を用いてステップ202~220の処理を繰返すことによって、特定の蛍光体の含有率が高い回収液を得ることができる。例えば、ステップ212の回収液を、ステップ206で処理管100に投入することを繰返すことにより、回収液において、蛍光体混合物に含まれていた蛍光体のうち磁化率の最も低い蛍光体の含有率を高くすることができる。また、ステップ220の回収液を、ステップ206で処理管100に投入することを繰返すことにより、回収液において、蛍光体混合物に含まれていた蛍光体のうち磁化率の最も高い蛍光体の含有率を高くすることができる。したがって、繰返し回数が多くなるほど、特定の蛍光体の純度を高くすることができる。なお、どのステップの回収液を繰返し使用するかは、蛍光体混合物に最初に含まれる蛍光体の種類及含有率を分析して決定することが望ましい。 As described above, the content of each phosphor contained in the liquid collected in step 212 and step 220 is different from the content of each phosphor contained in the phosphor-containing dispersion before processing. The recovered liquid obtained in step 212 has a higher phosphor content in the phosphor mixture than in the phosphor-containing dispersion charged in step 206. The recovered liquid in step 220 has a higher phosphor content in the phosphor mixture than in the phosphor-containing dispersion charged in step 206. Accordingly, by repeating the processes of steps 202 to 220 using the recovery liquid at a predetermined step, a recovery liquid having a high content of a specific phosphor can be obtained. For example, the content of the phosphor having the lowest magnetic susceptibility among the phosphors contained in the phosphor mixture in the recovered liquid is obtained by repeating the introduction of the recovered liquid in step 212 into the processing tube 100 in step 206. Can be high. Further, by repeating the charging of the recovery liquid in step 220 into the processing tube 100 in step 206, the content ratio of the phosphor having the highest magnetic susceptibility among the phosphors contained in the phosphor mixture in the recovery liquid. Can be high. Therefore, as the number of repetitions increases, the purity of the specific phosphor can be increased. In addition, it is desirable to determine which step of the recovered liquid is repeatedly used by analyzing the type and content rate of the phosphor initially contained in the phosphor mixture.
 以下に、蛍光体含有分散液及び蛍光体非含有分散液を作製するために使用する分散剤について、さらに詳細に説明する。 Hereinafter, the dispersant used for preparing the phosphor-containing dispersion and the phosphor-free dispersion will be described in more detail.
 蛍光体微粉末と分散液(分散剤を添加した水)とを混合し、振とうすることにより分散性が良好であるか否かを評価することができる。また、蛍光体がフィルタ102に付着しない分散剤が好ましい。これは、振とう液(振とう終了直後の液)中にフィルタ102、例えばステンレス製エキスパンドメタルを入れて静置し、その後、フィルタ102(ステンレス製エキスパンドメタル)を取出して分散液で洗浄して、蛍光体の付着の有無を確認することで、評価することができる。 It is possible to evaluate whether or not the dispersibility is good by mixing the phosphor fine powder and the dispersion (water added with a dispersant) and shaking. Further, a dispersing agent that does not allow the phosphor to adhere to the filter 102 is preferable. This is done by placing the filter 102, for example, a stainless steel expanded metal, in a shaking liquid (liquid immediately after the shaking is finished), and then taking out the filter 102 (stainless steel expanded metal) and washing it with the dispersion. It can be evaluated by confirming whether or not the phosphor is attached.
 界面活性作用を持つ種々の分散剤について付着性を調べた結果を、図3に示す。分散剤名の後ろに記載したパーセント値は、添加量(重量%)を意味する。分散性の列において、“A”が分散性良好、“C”が分散性不良、“B”がそれらの中間を意味する。発泡性の列の記載は、発泡性の有無、及び発泡性の強弱を意味する。付着性の列の記載は、フィルタ(ステンレス製エキスパンドメタル)への付着性を表し、“A”は全く付着性なし、“C”は高い付着性、“B”は若干付着性ありを意味する。 FIG. 3 shows the results of examining the adhesion of various dispersants having a surface active action. The percentage value described after the dispersant name means the amount added (% by weight). In the dispersibility column, “A” means good dispersibility, “C” means poor dispersibility, and “B” means the middle of them. The description of the foaming column means the presence or absence of foaming and the strength of foaming. The description in the column of adhesion indicates adhesion to the filter (stainless steel expanded metal), “A” means no adhesion, “C” means high adhesion, “B” means slight adhesion. .
 付着性のある分散液を用いた場合には蛍光体分離後にフィルタ上に蛍光体が残り、多量の分散液で洗浄する必要があり好ましくない。図3において非発泡性(発泡性「無」)又は微発泡性(発泡性「弱」)の分散剤は、表面張力が高いものが多い。これらに関しては、浸透性の強い低分子界面活性剤を添加することにより、ぬれ性を改善し、フィルタへの付着性をなくし、且つ、分散性を高めることが可能である。蛍光体のぬれ性が良好であり、フィルタに蛍光体が付着し難い分散液を作製するための分散剤として、主分散剤としての高分子型分散剤に、微量の浸透性の界面活性剤を添加して得られる分散剤を挙げることができる。 When an adhesive dispersion is used, the phosphor remains on the filter after the phosphor separation, and it is not preferable because it needs to be washed with a large amount of the dispersion. In FIG. 3, many non-foaming (foaming “no”) or microfoaming (foaming “weak”) dispersants have a high surface tension. Regarding these, it is possible to improve wettability, eliminate adhesion to the filter, and enhance dispersibility by adding a low molecular surfactant having strong permeability. As a dispersant for producing a dispersion liquid with good wettability of the phosphor and difficult to adhere the phosphor to the filter, a small amount of penetrating surfactant is added to the polymer type dispersant as the main dispersant. The dispersing agent obtained by adding can be mentioned.
 主分散剤とする高分子型分散剤の例として、ポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、又はポリエチレングリコール等を挙げることができる。分離後の蛍光体の使用を考えると、特にナトリウム等の灰分及びハロゲンの何れも含まないポリカルボン酸系分散剤(図3のNo.1及びNo.2参照)が好ましい。 Examples of the polymeric dispersant used as the main dispersant include polycarboxylic acid, naphthalene sulfonic acid formalin condensation system, and polyethylene glycol. Considering the use of the phosphor after separation, polycarboxylic acid-based dispersants (see No. 1 and No. 2 in FIG. 3) that do not contain ash such as sodium and halogen are particularly preferable.
 主分散剤の濃度としては、少なくとも蛍光体が凝集せず分散する濃度以上であることが必要である。一方、分散剤濃度が高すぎると、粘性が増加して分離効率が低下するおそれがあり、蛍光体分離後の分散剤除去に手間を要するため、分散剤は少ない方が好ましい。したがって、分散液中の分散剤の濃度(重量%)は、0.02%~3%、好ましくは0.03%~1%、より好ましくは0.03%~0.3%である。 The concentration of the main dispersant must be at least the concentration at which the phosphor is not aggregated and dispersed. On the other hand, if the dispersant concentration is too high, the viscosity may increase and the separation efficiency may decrease, and it takes time to remove the dispersant after the phosphor separation. Therefore, the concentration (% by weight) of the dispersant in the dispersion is 0.02% to 3%, preferably 0.03% to 1%, more preferably 0.03% to 0.3%.
 微量添加する浸透性の界面活性剤(以下、添加剤ともいう)としては、非イオン性界面活性剤、陰イオン性界面活性剤、又は両性界面活性剤等、何れの界面活性剤であっても良い。非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル、又は多価アルコール系非イオン性界面活性剤(後述の実施例1参照)等、陰イオン界面活性剤として直鎖アルキルベンゼンスルホン酸ナトリウム、又はポリオキシエチレンアルキルエーテル硫酸ナトリウム等、両性界面活性剤としてアルキルベタイン等を挙げることができる。また、添加剤として、上記の成分を含有する市販の中性洗剤を用いることもできる。分離後の使用を考えると、ナトリウム等の灰分及びハロゲンの何れも含まないポリオキシエチレンアルキルエーテル(図3のNo.11)等の非イオン性界面活性剤及びベタイン(図3のNo.22参照)等の両性界面活性剤が特に好ましい。添加剤(界面活性剤)の発泡性は、濃度1%において、JIS K3362で規定される起泡力試験による測定値が、直後80mm以上であることが好ましい。 As a penetrating surfactant to be added in a trace amount (hereinafter also referred to as an additive), any surfactant such as a nonionic surfactant, an anionic surfactant, or an amphoteric surfactant may be used. good. Polyoxyethylene alkyl ether or polyhydric alcohol nonionic surfactant (see Example 1 described later) as a nonionic surfactant, linear sodium alkylbenzene sulfonate or polyoxy as an anionic surfactant Examples of amphoteric surfactants such as sodium ethylene alkyl ether sulfate include alkyl betaines. Moreover, the commercially available neutral detergent containing said component can also be used as an additive. Considering use after separation, nonionic surfactants such as polyoxyethylene alkyl ethers (No. 11 in FIG. 3) and betaines (see No. 22 in FIG. 3) that do not contain any ash such as sodium or halogen. ) And the like are particularly preferred. The foamability of the additive (surfactant) is preferably 80 mm or more immediately after the measured value by the foaming force test defined by JIS K3362 at a concentration of 1%.
 添加剤の濃度は、低すぎるとぬれ性の改善効果がなく、脱磁後の洗浄による磁着蛍光体回収後にも、フィルタに蛍光体が残留するので好ましくない。濃度が高すぎると、発泡が激しく、処理後に泡層が長時間残って分離後のろ過等による回収処理に支障を来す。このため分散液中の添加剤の濃度は、0.004%~0.1%、好ましくは0.005%~0.05%、より好ましくは0.01%~0.02%である。また、添加剤を分散剤に添加した分散液の起泡力は、5分後に3mm未満が好ましい。 If the concentration of the additive is too low, there is no effect of improving wettability, and the phosphor remains in the filter even after recovery of the magnetized phosphor by washing after demagnetization. If the concentration is too high, foaming is severe and a foam layer remains for a long time after the treatment, which hinders the recovery process by filtration after separation. For this reason, the concentration of the additive in the dispersion is 0.004% to 0.1%, preferably 0.005% to 0.05%, more preferably 0.01% to 0.02%. Further, the foaming power of the dispersion obtained by adding the additive to the dispersant is preferably less than 3 mm after 5 minutes.
 上記では、処理管100内の蛍光体含有分散液の上下に蛍光体非含有分散液を配置したが、これに限定されず、上側の蛍光体非含有分散液は無くてもよい。また、蛍光体含有分散液内にフィルタ102が位置すれば、下側の蛍光体非含有分散液も無くてもよい。 In the above description, the phosphor-free dispersion liquid is disposed above and below the phosphor-containing dispersion liquid in the processing tube 100. However, the present invention is not limited to this, and the upper phosphor-free dispersion liquid may be omitted. Further, if the filter 102 is positioned in the phosphor-containing dispersion, the lower phosphor-free dispersion may not be present.
 また、フィルタ102を加振する場合を説明したが、加振しなくてもよい。加振しなければ、加振する場合よりも分散効率は低下するが、処理の繰返し回数を多くすれば蛍光体を分離することは可能である。 In addition, although the case where the filter 102 is vibrated has been described, it is not necessary to vibrate. If the vibration is not applied, the dispersion efficiency is lower than that when the vibration is applied, but the phosphor can be separated by increasing the number of repetitions of the treatment.
 上記では、蛍光体含有分散液を処理管100内に保持する場合を説明したが、これに限定されない。蛍光体含有分散液内にフィルタ102を配置させた状態で、蛍光体含有分散液を保持できれば、管状に限らず任意形状の容器を使用することができる。 In the above description, the case where the phosphor-containing dispersion is held in the processing tube 100 has been described, but the present invention is not limited to this. As long as the phosphor-containing dispersion liquid can be held in a state where the filter 102 is disposed in the phosphor-containing dispersion liquid, a container having an arbitrary shape is not limited to a tubular shape.
 上記では、所定強度以上の磁場を印加した状態でフィルタ102を洗浄する場合を説明したが、これに限定されない。所定強度以上の磁場を印加した状態で洗浄を行なわずに、磁場を減少させた状態でフィルタ102を洗浄して、磁着物を回収してもよい。 In the above description, the case where the filter 102 is washed in a state where a magnetic field having a predetermined intensity or more is applied has been described, but the present invention is not limited to this. The magnetic deposit may be recovered by cleaning the filter 102 in a state where the magnetic field is reduced, without performing cleaning in a state where a magnetic field having a predetermined strength or higher is applied.
 上記では、回収液をそのまま処理対象として分離処理を繰返す場合を説明したが、これに限定されない。適宜、ろ過、及び乾燥処理等により回収液から微粉末状の蛍光体混合物を作製し、蛍光体の含有比率を分析した後、必要に応じて、この蛍光体混合物を用いて蛍光体含有分散液を作製し、上記の分離処理を実行してもよい。 In the above description, the case has been described in which the separation process is repeated using the recovered liquid as a processing target as it is, but the present invention is not limited to this. If necessary, prepare a fine powder phosphor mixture from the collected liquid by filtration, drying treatment, etc., analyze the phosphor content ratio, and then use this phosphor mixture as needed to make a phosphor-containing dispersion. And the above separation process may be executed.
 また、上記では、何れかのステップで回収された回収液を用いて、繰返し分離処理を行なう場合を説明したが、これに限定されない。回収液に含まれる蛍光体の含有率がほぼ同じであれば、それらの回収液を混合した液体に対して分離処理を行なってもよい。 In the above description, the case where the separation process is repeatedly performed using the collected liquid collected in any step has been described, but the present invention is not limited to this. If the contents of the phosphors contained in the collected liquid are substantially the same, a separation process may be performed on the liquid obtained by mixing the collected liquids.
 以下に実験結果を示し、本発明の有効性を示す。 The experimental results are shown below to show the effectiveness of the present invention.
 図3に示した分散剤を主分散剤及び添加剤とする組合せで、水への配合濃度を変えて蛍光体非含有分散液を作製した。この分散液0.2L(リットル)に、青色蛍光体BAM(三菱化学株式会社製LP-B4、磁化率の実測値1.53×10-4H/m)及び赤色蛍光体YOX(三菱化学株式会社製LP-RE1、磁化率の実測値0.83×10-4H/m)各0.5gを分散させて、蛍光体含有分散液を作製した。この蛍光体含有分散液を分離処理の対象として、図2に示した手順にしたがって実験を行なった。なお、洗浄液には、各蛍光体含有分散液の作製に使用した蛍光体非含有分散液を用いた。 A phosphor-free dispersion was prepared by changing the blending concentration in water with the combination of the dispersant shown in FIG. 3 as the main dispersant and additive. In this dispersion liquid 0.2 L (liter), blue phosphor BAM (LP-B4 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 1.53 × 10 −4 H / m) and red phosphor YOX (Mitsubishi Chemical Corporation) A phosphor-containing dispersion was prepared by dispersing 0.5 g each of LP-RE1 (manufactured by company, measured value of magnetic susceptibility 0.83 × 10 −4 H / m). Experiments were performed according to the procedure shown in FIG. 2 using this phosphor-containing dispersion as a target for separation treatment. In addition, the phosphor non-containing dispersion liquid used for preparation of each phosphor containing dispersion liquid was used for the cleaning liquid.
 公知のエリーズマグネチックス社製磁選機(モデルHIW L4-20K)を用い、フィルタ(マトリックス)にはSUS430製のステンレスウール(長さ約20cm、幅約5cm、厚さ約2cm)を使用した。本磁選機により、フィルタに2Tの磁場を印加した後、上記したように蛍光体非含有分散液及び蛍光体含有分散液を処理管に満たした。この状態で、振動装置としてオムロン株式会社製マッサージ器を用いて処理管に30秒間振動を加え、排出バルブを開けてフィルタに付着していない蛍光体を回収した。次に、1回目の洗浄として、一旦排出バルブを閉じ、0.5Lの洗浄液を処理管に投入した後、排出バルブを開けてフィルタを洗浄し、その排出液を回収した。さらに、2回目の洗浄として、排出バルブを開けたまま0.5Lの洗浄液で、流速を上げて再度フィルタを洗浄し、その排出液を回収した。その後、電源をOFFして磁場を0まで減少させ、0.5Lの洗浄液を流通させて、フィルタに磁着していた蛍光体を回収した。さらに、洗浄液約1Lを処理管に流通させ、フィルタに残存する蛍光体量を調べた。 A well-known Elise Magnetics magnetic separator (model HIW L4-20K) was used, and a stainless steel wool (length: about 20 cm, width: about 5 cm, thickness: about 2 cm) made of SUS430 was used for the filter (matrix). After applying a 2T magnetic field to the filter with this magnetic separator, the phosphor-free dispersion and the phosphor-containing dispersion were filled in the processing tube as described above. In this state, the treatment tube was vibrated for 30 seconds using a massager manufactured by OMRON Corporation as a vibration device, and the discharge valve was opened to collect the phosphor not attached to the filter. Next, as the first cleaning, the discharge valve was once closed and 0.5 L of cleaning liquid was poured into the processing tube, and then the discharge valve was opened to clean the filter, and the discharged liquid was collected. Further, as the second washing, the filter was washed again by increasing the flow rate with 0.5 L of washing liquid while the discharge valve was opened, and the discharged liquid was collected. Thereafter, the power supply was turned off to reduce the magnetic field to 0, and 0.5 L of a cleaning solution was circulated to collect the phosphor that was magnetically attached to the filter. Further, about 1 L of the cleaning liquid was passed through the processing tube, and the amount of phosphor remaining on the filter was examined.
 その結果を図4に示す。図4の「評価」の列には総合的な評価が記載されている。“A”は蛍光体の分離に適切な結果であった場合、“C”は不適切な結果であった場合を表す。PCA1は特殊ポリカルボン酸系分散剤である花王株式会社製ポイズ(登録商標)520、PCA2は特殊ポリカルボン酸系分散剤である花王株式会社製カオーセラ(登録商標)2000、PCA3はポリカルボン酸アンモニウム分散剤であるサンノプコ株式会社製ノプコサントRFA、LABはラウリン酸アミドプロピルベタインである花王株式会社製アンヒトール(登録商標)20AB、SPLSはポリオキシエチレンラウリルエーテル硫酸ナトリウムである花王株式会社製エマール(登録商標)20C、PAAEはポリオキシアルキレン系であるサンノプコ株式会社製SNウェット980、PAAEはポリオキシアルキレンアルキルエーテルである日本乳化剤株式会社製Newcol 2308LY、多価アルコールは多価アルコール系非イオン性界面活性剤であるサンノプコ株式会社製ノプコウェットSN-20Tを表す。 The result is shown in FIG. In the column “Evaluation” in FIG. 4, comprehensive evaluation is described. “A” represents a case suitable for the separation of the phosphors, and “C” represents a case unsuitable. PCA1 is a special polycarboxylic acid-based dispersant, Poise (registered trademark) 520 manufactured by Kao Corporation, PCA2 is a special polycarboxylic acid-based dispersant, Kaorcera (registered trademark) 2000 manufactured by Kao Corporation, and PCA3 is an ammonium polycarboxylate Nopco Santo RFA manufactured by San Nopco Co., Ltd., which is a dispersant, LAB is Amphital (registered trademark) 20AB manufactured by Kao Corporation, which is amidopropyl betaine laurate, and SPAL is sodium polyoxyethylene lauryl ether sulfate. ) 20C, PAAE is a polyoxyalkylene-based SN wet 980 manufactured by San Nopco, PAAE is a polyoxyalkylene alkyl ether, Nippon Emulsifier Co., Ltd. Newcol 2308LY, a polyhydric alcohol is a polyhydric alcohol It represents the San Nopco Co. Nopco Wet SN-20T is a nonionic surfactant.
 「混合液流通」の列には、最初の回収液を分析した結果が記載されている。各セルの上段は、赤色蛍光体と青色蛍光体の比率(重量%)であり、下段は総重量を示す。例えば、No.1では、最初の回収液から、合計248mgの蛍光体が回収され、その内訳は、赤色蛍光体が58%、青色蛍光体が42%であったことを示している。「1回目洗浄」の列には、1回目の洗浄の回収液を分析した結果が、同様に記載されている。「2回目洗浄」の列も同様である。「磁着物回収」の列には、磁場を減少させた状態での回収液に関して、「残存量」の列には、最後の洗浄によって回収された蛍光体(フィルタに残っていた蛍光体)に関して、同様に記載されている。なお、No.19は、フィルタに振動を加えなかった場合の結果を示す。 In the “mixed liquid distribution” column, the result of analyzing the first recovered liquid is described. The upper part of each cell shows the ratio (% by weight) of the red phosphor and the blue phosphor, and the lower part shows the total weight. For example, no. In No. 1, a total of 248 mg of the phosphor was recovered from the first recovery liquid, and the breakdown shows that the red phosphor was 58% and the blue phosphor was 42%. In the column “First Wash”, the result of analyzing the collected liquid of the first wash is similarly described. The same applies to the “second cleaning” column. The column “Recovery of magnetic deposits” relates to the recovered liquid in a state where the magnetic field is reduced, and the column “Remaining amount” relates to the phosphor recovered by the last washing (phosphor remaining in the filter). , As well. In addition, No. 19 shows the result when vibration is not applied to the filter.
 図4に示した蛍光体の含有率から分かるように、実験全体において、最初の回収液(混合液流通の列)においては磁化率の低い赤色蛍光体の比率が高く、洗浄を繰返すと青色蛍光体の比率が上昇し、磁場を減少させた状態の洗浄による回収液(磁着物回収の列)では青色蛍光体の比率が高かった。これは、赤色蛍光体と青色蛍光体との磁化率の違いに依る。 As can be seen from the phosphor content shown in FIG. 4, in the entire experiment, the ratio of the red phosphor having a low magnetic susceptibility is high in the first recovered liquid (mixed liquid circulation column). The ratio of blue phosphors was high in the recovery liquid (line of magnetized material recovery) by washing with the body ratio increased and the magnetic field decreased. This depends on the difference in magnetic susceptibility between the red phosphor and the blue phosphor.
 主分散剤として、高分子型分散剤の顔料分散用特殊ポリカルボン酸系高分子界面活性剤である花王株式会社製ポイズ520を単独で用いた場合(No.1参照)、磁着物回収後の再洗浄時の残存蛍光体は6%以上(初期量1000mgに対して62mg)と多かった。 In the case of using Pois 520 manufactured by Kao Co., Ltd., which is a special polycarboxylic acid polymer surfactant for dispersing pigments as a polymer dispersant, as the main dispersant alone (see No. 1), The remaining phosphor at the time of re-washing was as high as 6% or more (62 mg with respect to the initial amount of 1000 mg).
 添加剤として発泡性界面活性剤のラウリン酸アミドプロピルベタインである花王株式会社製アンヒトール20ABを用い、その濃度を変化させた場合、濃度0.003%(No.2参照)では、残存蛍光体量が多かった。しかし、濃度0.015%~0.05%の範囲(No.3、No.4参照)では、残存蛍光体量が少なくなり、有効であった。濃度が0.05%を越えると残存蛍光体量は少なかったが、発泡性が増加し、泡層の消失に1時間以上を要した。 In the case where Amophor 20AB manufactured by Kao Co., Ltd., which is a foaming surfactant, lauramide amidopropyl betaine, is used as an additive, and the concentration is changed, the concentration of the remaining phosphor is 0.003% (see No. 2). There were many. However, when the concentration was in the range of 0.015% to 0.05% (see No. 3 and No. 4), the amount of the remaining phosphor was reduced, which was effective. When the concentration exceeded 0.05%, the amount of the remaining phosphor was small, but the foaming property increased, and it took 1 hour or more for disappearance of the foam layer.
 主分散剤の濃度を下げた場合、No.5のように0.03%でも残存蛍光体量は1.2%(初期量1000mgに対して12mg)と少なく、有効であった。図4には示していないが、分散剤の濃度が0.015%の場合には、蛍光体粉末が凝集し、分散しなかった。 When the concentration of the main dispersant is lowered, no. As shown in FIG. 5, even with 0.03%, the amount of residual phosphor was as low as 1.2% (12 mg with respect to the initial amount of 1000 mg), which was effective. Although not shown in FIG. 4, when the concentration of the dispersant was 0.015%, the phosphor powder aggregated and was not dispersed.
 添加剤の種類に関して、発泡性界面活性剤であるポリオキシエチレンアルキルエーテル硫酸ナトリウム(花王株式会社製エマール20C)、若しくは中性洗剤(アルキルエーテル硫酸エステルナトリウムを含有する花王ファミリーフレッシュ)、又は、微発泡性であるポリオキシアルキレン系非イオン界面活性剤(サンノプコ株式会社製SNウェット980)、若しくはポリオキシアルキレンアルキルエーテル(日本乳化剤製Newcol2308-LYをそれぞれ濃度0.015%で添加した場合(No.6~No.9参照)も残存蛍光体量は少なく、有効であった。 Regarding the type of additive, polyoxyethylene alkyl ether sodium sulfate (Emal 20C manufactured by Kao Corporation), a neutral detergent (Kao Family Fresh containing sodium alkyl ether sulfate ester), or a fine foaming surfactant When foaming polyoxyalkylene nonionic surfactant (SN wet 980 manufactured by San Nopco Co., Ltd.) or polyoxyalkylene alkyl ether (Newcol 2308-LY manufactured by Nippon Emulsifier Co., Ltd. was added at a concentration of 0.015%, respectively (No. 6 to No. 9) was also effective with a small amount of residual phosphor.
 主分散剤として、高分子型分散剤であるセラミック粉末分散用特殊ポリカルボン酸系分散剤である花王株式会社製カオーセラ2000、又は、ポリカルボン酸アンモニウム分散剤であるサンノプコ株式会社製ノプコサントRFAを濃度0.15%で用い、発泡性界面活性剤を濃度0.015%で添加した場合(No.10及びNo.11参照)も残存蛍光体量は少なく、有効であった。 As the main dispersant, concentration of Kaocera 2000 made by Kao Co., Ltd., which is a special polycarboxylic acid-based dispersant for dispersing ceramic powder, which is a polymer type dispersant, or Nopco Santo RFA made by San Nopco, Inc., which is a polycarboxylic acid ammonium dispersant Even when 0.15% was used and a foaming surfactant was added at a concentration of 0.015% (see No. 10 and No. 11), the amount of residual phosphor was small and effective.
 添加剤として非泡性界面活性剤であるp-トルエンスルホン酸Naを濃度0.2%で添加した場合(No.12参照)、残存量が10%を超え、有効ではなかった。 When p-toluenesulfonic acid Na, which is a non-foaming surfactant, was added at a concentration of 0.2% as an additive (see No. 12), the residual amount exceeded 10% and was not effective.
 主分散剤として高分子型でないポリオキシエチレンソルビタンモノラウレート(ツイーン20)を濃度0.05%で用い、これに添加剤としてLABを濃度0.01%で添加した場合(No.13参照)、主分散剤としてポリオキシエチレンソルビタントリオレエート(ツイーン85)を濃度0.05%で用い、これに添加剤としてLABを濃度0.015%で添加した場合(No.14参照)、主分散剤として高分子型でない微発泡性のポリオキシアルキレンアルキルエーテル(PAAE)を濃度0.15%で用い、これに添加剤としてLABを濃度0.03%で添加した場合(No.15参照)、及び、主分散剤としてポリオキシアルキレンアルキルエーテルを主成分とする市販食器洗浄機用洗剤を濃度0.15%で用い、これに添加剤としてLABを濃度0.01%で添加した場合(No.16参照)においても、蛍光体の残存量が多く、有効ではなかった。 When non-polymeric polyoxyethylene sorbitan monolaurate (Tween 20) is used as a main dispersant at a concentration of 0.05%, and LAB as an additive is added at a concentration of 0.01% (see No. 13) When polyoxyethylene sorbitan trioleate (Tween 85) is used as a main dispersant at a concentration of 0.05%, and LAB is added as an additive at a concentration of 0.015% (see No. 14), the main dispersant When a non-polymeric microfoaming polyoxyalkylene alkyl ether (PAAE) is used at a concentration of 0.15% and LAB is added as an additive at a concentration of 0.03% (see No. 15), and , A commercial dishwasher detergent mainly composed of polyoxyalkylene alkyl ether as a main dispersant is used at a concentration of 0.15% and added to this Even when the addition of LAB concentration of 0.01% (see No.16) as the residual amount of the phosphor is often was not effective.
 主分散剤として無機分散剤であるヘキサメタリン酸ナトリウムを濃度0.15%で用いた場合(No.17参照)、残存量が多く、有効ではなかった。 When sodium hexametaphosphate, which is an inorganic dispersant, was used as the main dispersant at a concentration of 0.15% (see No. 17), the remaining amount was large and was not effective.
 主分散剤として市販の中性洗剤を濃度0.15%で用いた場合(No.18参照)、分離効率は良好であり、残存量は1%未満であったが、24時間後でも回収液上に泡層が存在していた。 When a commercially available neutral detergent was used as the main dispersant at a concentration of 0.15% (see No. 18), the separation efficiency was good and the residual amount was less than 1%. There was a foam layer on top.
 No.3と同じ主分散剤及び添加剤の組合せを用い、振動を加えなかった場合(No.19参照)、最初の回収液(混合液流通)中に含まれる蛍光体の総量がNo.3の場合よりも多く、青色蛍光体の比率がNo.3の場合よりも低い。これは、磁化した蛍光体のフィルタへの付着効率が悪いこと、特に磁化率の高い青色蛍光体のフィルタへの付着効率が悪いことを表している。したがって、加振することによって、分離効率を高くすることができる。 No. When the same combination of the main dispersant and additive as in No. 3 was used and no vibration was applied (see No. 19), the total amount of phosphor contained in the first recovered liquid (mixed liquid flow) was No. 3. 3 and the ratio of the blue phosphor is No. 3. Lower than in case of 3. This indicates that the adhesion efficiency of the magnetized phosphor to the filter is poor, and in particular, the adhesion efficiency of the blue phosphor having a high magnetic susceptibility to the filter is poor. Therefore, the separation efficiency can be increased by applying vibration.
 以上のように、No.3~No.11の主分散剤及び添加剤の組合せが適切であった。これらの場合、最初の回収液(混合液流通)には、約60%の比率で赤色蛍光体が含まれるので、この回収液を用いて分離処理を繰返すことによって、純度の高い赤色蛍光体を得ることができる。1回目の洗浄によって得られる回収液(1回目洗浄)にも、約60%の比率で赤色蛍光体が含まれるので、同様に純度の高い赤色蛍光体を得ることができる。 As mentioned above, No. 3 to No. Eleven primary dispersant and additive combinations were suitable. In these cases, the first recovered liquid (mixed liquid circulation) contains red phosphor at a ratio of about 60%. By repeating the separation process using this recovered liquid, the high-purity red phosphor is obtained. Obtainable. Since the red phosphor is also contained in the recovery liquid (first wash) obtained by the first washing at a ratio of about 60%, a red phosphor with high purity can be obtained similarly.
 また、磁場を減少させた状態の回収液(磁着物回収)には、60%を超える比率で青色蛍光体が含まれるので、この回収液を用いて分離処理を繰返すことによって、磁場を減少させた状態の回収液から純度の高い青色蛍光体を得ることができる。 In addition, since the recovery liquid (magnetized substance recovery) in a state where the magnetic field is reduced contains blue phosphor in a ratio exceeding 60%, the separation process is repeated using this recovery liquid to reduce the magnetic field. A blue phosphor having a high purity can be obtained from the recovered liquid in a fresh state.
 青色蛍光体BAM(三菱化学株式会社製LP-B2、磁化率の実測値1.8×10-4H/m)、緑色蛍光体LAP(三菱化学株式会社製LP-G2、磁化率の実測値1.6×10-3H/m)及び赤色蛍光体YOX(三菱化学株式会社製LP-RE1、磁化率の実測値0.83×10-4H/m)各1.0gを分散させた蛍光体含有分散液0.2Lを作製し、蛍光体の分離処理を行なった。分散媒には、実施例1のNo.3と同様に、主分散剤として、高分子型分散剤の顔料分散用特殊ポリカルボン酸系高分子界面活性剤である花王株式会社製ポイズ520を用い、添加剤として、ラウリン酸プロピルベタインである花王株式会社製アンヒトール20ABを用いた。これらを、それぞれ濃度0.15及び0.015%で水に混合して、分散媒(蛍光体非含有分散液)を作製し、これに上記の3色の蛍光体を分散させ、蛍光体含有分散液を作製した。 Blue phosphor BAM (Mitsubishi Chemical Corporation LP-B2, measured value of magnetic susceptibility 1.8 × 10 −4 H / m), Green phosphor LAP (Mitsubishi Chemical Corporation LP-G2, measured value of magnetic susceptibility) 1.6 × 10 −3 H / m) and red phosphor YOX (LP-RE1 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 0.83 × 10 −4 H / m) 1.0 g each was dispersed. A phosphor-containing dispersion liquid 0.2 L was prepared, and the phosphor was separated. As the dispersion medium, No. 1 of Example 1 was used. 3, Pois 520 manufactured by Kao Co., Ltd., which is a special polycarboxylic acid polymer surfactant for dispersing pigments as a polymer dispersant, is used as a main dispersant, and propyl betaine laurate is used as an additive. Anhitol 20AB manufactured by Kao Corporation was used. These are mixed with water at concentrations of 0.15 and 0.015%, respectively, to prepare a dispersion medium (phosphor-free dispersion), in which the above three colors of phosphors are dispersed, and phosphors are contained. A dispersion was prepared.
 実験結果を、表3に示す。 The experimental results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、最初の流通の回収液(混合液流通の列)には、緑色蛍光体がほとんど含まれておらず、この回収液から得られた混合物は、赤色及び青色蛍光体の混合物であると言える。これには、磁化率の低い赤色蛍光体が多く含まれている。1回目の洗浄による回収液(1回目洗浄の列)では青色蛍光体の比率が増加し、2回目の強めの洗浄による回収液(2回目洗浄の列)では青色蛍光体が多く含まれるようになった。これは、3色の蛍光体のうち磁化率が最も低い赤色蛍光体が、1回目洗浄までに多く排出されたためである。 From Table 3, the collected liquid in the first distribution (mixed liquid distribution column) contains almost no green phosphor, and the mixture obtained from this collected liquid is a mixture of red and blue phosphors. It can be said. This contains many red phosphors with low magnetic susceptibility. The ratio of the blue phosphor increases in the collected liquid by the first washing (first washing column), and the blue phosphor is contained in the collected liquid by the second strong washing (second washing column). became. This is because a large number of red phosphors having the lowest magnetic susceptibility among the three color phosphors were discharged before the first cleaning.
 磁場を減少させた状態での洗浄(磁着物回収の列)による回収液では、緑色蛍光体の含有率が80%であった。これは、緑色蛍光体の磁化率が高く、安定してフィルタに磁着していたことを表している。さらに、再洗浄による回収液(残留量の列)には、蛍光体はほとんど残っていなかった。 In the recovered liquid obtained by washing with a reduced magnetic field (column for recovering magnetic deposits), the content of the green phosphor was 80%. This indicates that the green phosphor had a high magnetic susceptibility and was stably magnetized on the filter. Furthermore, almost no phosphor remained in the liquid recovered by rewashing (column of residual amount).
 以上のことから、実施例1で適切であった主分散剤及び添加剤の組合せは、緑色蛍光体を含む蛍光体混合物の分離にも有効であることが分かる。また、蛍光体混合物から緑色蛍光体を分離することは、青色及び赤色蛍光体の分離よりも容易であることが分かる。 From the above, it can be seen that the combination of the main dispersant and the additive suitable in Example 1 is also effective for the separation of the phosphor mixture containing the green phosphor. It can also be seen that separating the green phosphor from the phosphor mixture is easier than separating the blue and red phosphors.
 実施例2と同じ主分散剤及び添加剤を用いて、蛍光体非含有分散液を作製し、これに青色蛍光体BAM(三菱化学株式会社製LP-B4、磁化率の実測値1.5×10-4H/m)及びハロリン酸昼光色蛍光体(日亜化学製Daylight、磁化率の実測値0.39×10-4H/m)各1.0gを分散させて、蛍光体含有分散液0.2Lを作製し、蛍光体の分離処理を行なった。印加磁場の強度は2Tである。 A phosphor-free dispersion was prepared using the same main dispersant and additive as in Example 2, and a blue phosphor BAM (LP-B4 manufactured by Mitsubishi Chemical Corporation, measured value of magnetic susceptibility 1.5 × 10 −4 H / m) and 1.0 g each of halophosphoric daylight phosphor (Daylight manufactured by Nichia Chemical Co., Ltd., measured value of magnetic susceptibility 0.39 × 10 −4 H / m) are dispersed in the phosphor-containing dispersion liquid. 0.2 L was produced, and the phosphor was separated. The intensity of the applied magnetic field is 2T.
 その結果を、表4に示す。 The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、最初の流通の回収液(混合液流通の列)には、磁化率の低いハロリン酸昼光色蛍光体が多く含まれ、洗浄を繰返すと青色蛍光体の比率が増加し、磁場を下げた状態での洗浄による回収液(磁着物回収の列)には青色蛍光体が多かった。また、再洗浄による回収液(残留量の列)には、蛍光体はほとんど残っていなかった。したがって、実施例1で適切であった主分散剤及び添加剤の組合せは、ハロリン酸昼光色蛍光体の分離にも有効であることが分かる。 From Table 4, the collected liquid in the first distribution (mixed liquid distribution column) contains a lot of halophosphate daylight color phosphors with low magnetic susceptibility, and the ratio of blue phosphors increases and the magnetic field decreases with repeated washing. There were many blue phosphors in the collected liquid (line of magnetic deposit collection) by washing in the wet state. In addition, almost no phosphor remained in the liquid recovered by re-washing (column of residual amount). Therefore, it can be seen that the combination of the main dispersant and the additive suitable in Example 1 is also effective in separating the halophosphate daylight phosphor.
 本発明によれば、磁化率が異なる複数種類の蛍光体微粉末からなる混合物から、効率的に蛍光体を分離する方法及び装置を提供することができる。 According to the present invention, it is possible to provide a method and an apparatus for efficiently separating a phosphor from a mixture composed of a plurality of types of phosphor fine powders having different magnetic susceptibility.
100  処理管
102  フィルタ
104  磁場発生部
106  加振部
108  投入部
110  投入バルブ
112  排出バルブ
114  回収容器
120、122  磁極
124、126  コイル
130  磁場方向
140  投入液
142  回収液
100 Processing tube 102 Filter 104 Magnetic field generation unit 106 Excitation unit 108 Input unit 110 Input valve 112 Discharge valve 114 Recovery container 120, 122 Magnetic poles 124, 126 Coil 130 Magnetic field direction 140 Input liquid 142 Recovery liquid

Claims (11)

  1.  磁化率の異なる複数種類の蛍光体からなる混合物を、分散媒中に分散させて混合液を作製するステップと、
     処理容器内に前記混合液を入れ、該混合液中に強磁性材料で形成されたフィルタを位置させる設置ステップと、
     前記フィルタに磁場を印加した状態で、前記処理容器から前記混合液を排出して回収する混合液回収ステップとを含み、
     前記分散媒は、高分子型分散剤の水溶液に低分子型界面活性剤を添加した溶液である蛍光体混合物の分離方法。
    A step of dispersing a mixture of phosphors having different magnetic susceptibilities in a dispersion medium to produce a mixed solution;
    Placing the mixed solution in a processing vessel and positioning a filter formed of a ferromagnetic material in the mixed solution;
    A mixed liquid recovery step of discharging and recovering the mixed liquid from the processing container in a state where a magnetic field is applied to the filter,
    The method for separating a phosphor mixture, wherein the dispersion medium is a solution obtained by adding a low molecular surfactant to an aqueous solution of a polymer dispersant.
  2.  前記混合液回収ステップによる回収液を新たな混合液として、前記設置ステップ及び前記混合液回収ステップを繰返す請求項1に記載の蛍光体混合物の分離方法。 The method for separating a phosphor mixture according to claim 1, wherein the installation step and the mixed solution collecting step are repeated using the collected solution obtained in the mixed solution collecting step as a new mixed solution.
  3.  前記混合液回収ステップに続き、前記磁場を印加した状態で前記フィルタを前記分散媒で洗浄し、前記フィルタの洗浄に使用した前記分散媒を回収する洗浄ステップをさらに含む請求項1に記載の蛍光体混合物の分離方法。 2. The fluorescence according to claim 1, further comprising a cleaning step of cleaning the filter with the dispersion medium in a state where the magnetic field is applied, and recovering the dispersion medium used for cleaning the filter following the liquid mixture recovery step. Separation method of body mixture.
  4.  前記洗浄ステップによる回収液を新たな混合液として、前記設置ステップ、前記混合液回収ステップ、及び前記洗浄ステップを繰返す請求項3に記載の蛍光体混合物の分離方法。 4. The method for separating a phosphor mixture according to claim 3, wherein the collection liquid obtained in the washing step is used as a new mixed liquid, and the installation step, the mixed liquid collection step, and the washing step are repeated.
  5.  印加された前記磁場を減少させた状態で、前記フィルタを前記分散媒で洗浄し、前記フィルタの洗浄に使用した前記分散媒を回収する磁着物回収ステップをさらに含む請求項1に記載の蛍光体混合物の分離方法。 2. The phosphor according to claim 1, further comprising a magnetized substance recovery step of cleaning the filter with the dispersion medium in a state where the applied magnetic field is reduced, and recovering the dispersion medium used for cleaning the filter. Method for separating the mixture.
  6.  前記磁着物回収ステップによる回収液を新たな混合液として、前記設置ステップ、前記混合液回収ステップ、及び前記磁着物回収ステップを繰返す請求項5に記載の蛍光体混合物の分離方法。 6. The method for separating a phosphor mixture according to claim 5, wherein the installation liquid, the mixed liquid recovery step, and the magnetic deposit recovery step are repeated by using the recovered liquid from the magnetic deposit recovery step as a new mixed liquid.
  7.  前記混合液回収ステップの前に、前記混合液中に位置させた前記フィルタに前記磁場を印加した状態で、前記フィルタを振動させるステップをさらに含む請求項1に記載の蛍光体混合物の分離方法。 The method for separating a phosphor mixture according to claim 1, further comprising a step of vibrating the filter in a state where the magnetic field is applied to the filter positioned in the mixed solution before the mixed solution collecting step.
  8.  前記高分子型分散剤は、ポリカルボン酸系高分子分散剤である請求項1に記載の蛍光体混合物の分離方法。 The method for separating a phosphor mixture according to claim 1, wherein the polymer-type dispersant is a polycarboxylic acid-based polymer dispersant.
  9.  前記低分子型界面活性剤は、ラウリン酸アミドプロピルベタイン、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシアルキレン系非イオン界面活性剤、ポリオキシアルキレンアルキルエーテル、多価アルコール系非イオン性界面活性剤、又は、アルキルエーテル硫酸エステルナトリウムを含有する中性洗剤である請求項1に記載の蛍光体混合物の分離方法。 The low molecular weight surfactant includes amide propyl betaine laurate, sodium polyoxyethylene lauryl ether sulfate, polyoxyalkylene nonionic surfactant, polyoxyalkylene alkyl ether, polyhydric alcohol nonionic surfactant, Or the separation method of the fluorescent substance mixture of Claim 1 which is a neutral detergent containing alkyl ether sulfate ester sodium.
  10.  前記高分子型分散剤の濃度は、0.02%~3%であり、
     前記低分子型界面活性剤の濃度は、0.004%~0.1%である請求項1に記載の蛍光体混合物の分離方法。
    The concentration of the polymeric dispersant is 0.02% to 3%,
    The method for separating a phosphor mixture according to claim 1, wherein the concentration of the low molecular surfactant is 0.004% to 0.1%.
  11.  内部に強磁性材料で形成されたフィルタが配置され、磁化率の異なる複数種類の蛍光体からなる混合物を含む混合液を収容する処理容器と、
     前記混合物が前記処理容器内に収容された状態で、前記フィルタに磁場を印加する磁場発生部と、
     前記フィルタに磁場を印加した状態で、前記処理容器から前記混合液を排出して回収する回収部とを備え、
     前記混合液は、高分子型分散剤の水溶液に低分子型界面活性剤を添加した溶液である分散媒中に、前記混合物が分散した液体である、蛍光体混合物の分離装置。
    A processing container that contains a mixed solution containing a mixture of phosphors having different magnetic susceptibility and a filter formed of a ferromagnetic material inside,
    A magnetic field generator for applying a magnetic field to the filter in a state where the mixture is contained in the processing container;
    In a state where a magnetic field is applied to the filter, a recovery unit that discharges and recovers the mixed liquid from the processing container,
    The phosphor mixture separation apparatus, wherein the mixture is a liquid in which the mixture is dispersed in a dispersion medium, which is a solution obtained by adding a low molecular surfactant to an aqueous solution of a polymer dispersant.
PCT/JP2012/055530 2011-03-03 2012-03-05 Separation method and separation device for phosphor mixture WO2012118221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046339A JP5674142B2 (en) 2011-03-03 2011-03-03 Method and apparatus for separating phosphor mixture
JP2011-046339 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012118221A1 true WO2012118221A1 (en) 2012-09-07

Family

ID=46758141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055530 WO2012118221A1 (en) 2011-03-03 2012-03-05 Separation method and separation device for phosphor mixture

Country Status (2)

Country Link
JP (1) JP5674142B2 (en)
WO (1) WO2012118221A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023561A1 (en) * 2014-07-10 2016-01-15 Brgm PROCESS FOR RECYCLING LUMINESCENT POWDERS
CN106470765A (en) * 2014-06-16 2017-03-01 独立行政法人产业技术综合研究所 Selecting device and dressing method
US9884326B2 (en) 2013-06-28 2018-02-06 National Institute Of Advanced Industrial Science And Technology Matrix for magnetic separator and magnetic separator
US20200038877A1 (en) * 2016-10-13 2020-02-06 Randox Laboratories Ltd. Method of extracting material from a fluid and extractor
CN112657671A (en) * 2019-10-15 2021-04-16 国家能源投资集团有限责任公司 Magnetic separation device, online backwashing method and magnetic separation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055189A1 (en) * 2012-10-01 2014-04-10 General Electric Company Phosphor recovery method
CN103100553B (en) * 2013-01-25 2015-01-21 浙江力胜电子科技有限公司 Production line for comprehensively utilizing waste lamp tube of energy-saving lamp
CN103094024B (en) * 2013-01-25 2015-08-19 浙江力胜电子科技有限公司 A kind of fluorescent powder of energy saving lamp reclaims vibrating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013626A (en) * 2008-06-04 2010-01-21 National Institute Of Advanced Industrial & Technology Method for recycling waste phosphor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013626A (en) * 2008-06-04 2010-01-21 National Institute Of Advanced Industrial & Technology Method for recycling waste phosphor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKASHI HORIKAWA ET AL.: "Reuse and recycle processing for rare earth phosphors", MATERIALS INTEGRATION, vol. 24, no. 02, 1 February 2011 (2011-02-01), pages 37 - 43 *
TOMOKO AKAI: "Recent R&D for material technology of reducing or replacing rare earth elements in phosphor and recycling", FUNCTION & MATERIALS, vol. 31, no. 7, 5 June 2011 (2011-06-05), pages 25 - 30 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884326B2 (en) 2013-06-28 2018-02-06 National Institute Of Advanced Industrial Science And Technology Matrix for magnetic separator and magnetic separator
CN106470765A (en) * 2014-06-16 2017-03-01 独立行政法人产业技术综合研究所 Selecting device and dressing method
US20170128952A1 (en) * 2014-06-16 2017-05-11 National Institute Of Advanced Industrial Science And Technology Sorting device and sorting method
US10449550B2 (en) * 2014-06-16 2019-10-22 National Institute Of Advanced Industrial Science And Technology Sorting device and sorting method
FR3023561A1 (en) * 2014-07-10 2016-01-15 Brgm PROCESS FOR RECYCLING LUMINESCENT POWDERS
US20200038877A1 (en) * 2016-10-13 2020-02-06 Randox Laboratories Ltd. Method of extracting material from a fluid and extractor
US11602757B2 (en) * 2016-10-13 2023-03-14 Randox Laboratories Ltd. Method of extracting material from a fluid and extractor
CN112657671A (en) * 2019-10-15 2021-04-16 国家能源投资集团有限责任公司 Magnetic separation device, online backwashing method and magnetic separation method

Also Published As

Publication number Publication date
JP5674142B2 (en) 2015-02-25
JP2012184282A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2012118221A1 (en) Separation method and separation device for phosphor mixture
US8916049B2 (en) Method and apparatus for processing mixture
JP5846609B2 (en) Magnetic separation of rare cells
US8505735B2 (en) Vertical ring magnetic separator for de-ironing of pulverized coal ash and method using the same
US20120103913A1 (en) Method for removing metallic ions from contaminated water by sorption onto magnetic particles coated with ligands
CA2429296A1 (en) Method for separating a dispersed or dissolved substance and magnet separator
US10449550B2 (en) Sorting device and sorting method
JP5504992B2 (en) Method for recovering manganese oxide from dry cells
Otsuki et al. Separation of rare earth fluorescent powders by two-liquid flotation using organic solvents
US20080256719A1 (en) Method and Device for Cleaning of Textile Materials in a Water Environment
CN112657671B (en) Magnetic separation device, online back flushing method and magnetic separation method
JP2002224586A (en) Method of selecting fine particle by magnetic selection
JPS607769Y2 (en) Magnetizable particle separator
WO2014046164A1 (en) Compound separation method and separation device
Mishima et al. A study on the development of an open-gradient magnetic separator under dry condition
JPH02218447A (en) Wet magnetic separation
CN105895285A (en) Preparation method of silicon magnetic beads for efficiently extracting nucleic acid
JP4889022B2 (en) Method for separating components of fresh concrete or fresh mortar and method for recovering fibers mixed in fresh concrete or fresh mortar
JP2005140501A (en) Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance
Hayashi et al. Study on high gradient magnetic separation for selective removal of impurity from highly viscous fluid
FR3023561A1 (en) PROCESS FOR RECYCLING LUMINESCENT POWDERS
CN108786712A (en) A kind of novel magnetic materials and preparation method thereof of selective absorption rare earth ion
JP2000325936A (en) Method for cleaning polluted soil containing heavy metal
CN106334531A (en) Preparation method of quaternary ammonium salt based modified pulverized fuel ash magnetic bead phosphorus adsorbent
CS197270B2 (en) Method of separating the paramagnetic particles with the relativly high magnetic susceptibility from the paramagnetic particle with relativly low magnetic susceptibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752532

Country of ref document: EP

Kind code of ref document: A1