WO2012118153A1 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
WO2012118153A1
WO2012118153A1 PCT/JP2012/055252 JP2012055252W WO2012118153A1 WO 2012118153 A1 WO2012118153 A1 WO 2012118153A1 JP 2012055252 W JP2012055252 W JP 2012055252W WO 2012118153 A1 WO2012118153 A1 WO 2012118153A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
layered
layer
conductive metal
protective element
Prior art date
Application number
PCT/JP2012/055252
Other languages
French (fr)
Japanese (ja)
Inventor
久 薄井
新 田中
Original Assignee
タイコエレクトロニクスジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイコエレクトロニクスジャパン合同会社 filed Critical タイコエレクトロニクスジャパン合同会社
Priority to CN201280021008.5A priority Critical patent/CN103503109A/en
Priority to KR1020177027395A priority patent/KR20170116202A/en
Priority to KR1020137026128A priority patent/KR20140021593A/en
Priority to JP2013502402A priority patent/JPWO2012118153A1/en
Publication of WO2012118153A1 publication Critical patent/WO2012118153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/143Electrical contacts; Fastening fusible members to such contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member

Landscapes

  • Fuses (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

In order to provide a protective element that is capable of providing protection against excess currents while also allowing larger currents to flow, this protective element comprises: a layered element, which is formed by an insulating resin, and has at least one pass-through opening; thin conductive metal layers positioned on each main surface of the layered element; and a fuse layer, which is positioned on the sides that define the at least one pass-through opening, and electrically connects the thin conductive metal layers.

Description

保護素子Protective element
 本発明は、電気装置を保護する保護素子、より詳しくは、電気装置に含まれる電気要素または回路を保護する保護素子に関する。例えば、2次電池のような電気装置内で過剰の電流が流れた場合に、その電流の流れを遮断する保護素子、即ち、過電流保護素子に関する。 The present invention relates to a protective element for protecting an electric device, and more particularly to a protective element for protecting an electric element or circuit included in the electric device. For example, the present invention relates to a protection element that cuts off a current flow when an excessive current flows in an electric device such as a secondary battery, that is, an overcurrent protection element.
 円筒型リチウムイオン2次電池の充電または放電時に過剰電流が流れる場合にその電流の流れを遮断する保護素子として、温度ヒューズ素子、電流ヒューズ素子、ポリマーPTC素子等が使用されている。中でも、ポリマーPTC素子は、2次電池の封口板に組み込んで配置できるので、特に多数の2次電池によって構成する電池パックがコンパクトになる点で有用である。 A thermal fuse element, a current fuse element, a polymer PTC element, or the like is used as a protective element that cuts off the flow of excess current when a cylindrical lithium ion secondary battery is charged or discharged. Among these, since the polymer PTC element can be arranged by being incorporated in a sealing plate of a secondary battery, it is particularly useful in that a battery pack constituted by a large number of secondary batteries becomes compact.
 しかしながら、市販されているPTC素子は、大きな電流(例えば20Aの電流)を通電することができない。また、PTC素子は、異常が取り除かれて温度が低下すると、低抵抗となる復帰性を有するが、そのような復帰性は、用途によっては問題が生じる場合がある。例えば、多並列で使用する円筒型リチウムイオン2次電池セルにおいてPTC素子を使用する場合、PTC素子を使用している短絡したセルを取り除かない限り、そのセルが発熱し続け、結果的に電池セルが破裂する可能性がある。 However, a commercially available PTC element cannot pass a large current (for example, a current of 20 A). Further, the PTC element has a recoverability that becomes low resistance when the abnormality is removed and the temperature is lowered. However, such a recoverability may cause a problem depending on the application. For example, when a PTC element is used in a cylindrical lithium ion secondary battery cell that is used in parallel, the cell continues to generate heat unless the short-circuited cell using the PTC element is removed, resulting in a battery cell. May burst.
 このような問題点を考慮して、円筒型リチウムイオン2次電池セルにおいて、例えば封口板の内側でPTC素子に代えて、スペーサを使用することが提案されている(下記非特許文献1参照)。しかしながら、スペーサを用いる場合、過剰電流に対する保護を確保できないという問題点がある。 Considering such problems, it has been proposed to use a spacer instead of the PTC element inside the sealing plate, for example, in the cylindrical lithium ion secondary battery cell (see Non-Patent Document 1 below). . However, when a spacer is used, there is a problem that protection against excess current cannot be secured.
 そこで、本発明が解決しようとする課題は、より大きい電流を流すことを可能にしながらも、過剰電流に対する保護を提供できる保護素子を提供することである。 Therefore, a problem to be solved by the present invention is to provide a protective element that can provide protection against excess current while allowing a larger current to flow.
 第1の要旨において、本発明は、
 絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
 層状要素の各主表面上に位置する導電性金属薄層、および
 該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層
を有して成る、保護素子を提供する。
In the first aspect, the present invention provides:
A layered element formed of insulating resin and having at least one through opening;
A conductive metal thin layer located on each main surface of the layered element, and a fuse layer located on a side surface defining at least one of the through openings and electrically connecting the conductive metal thin layer A protective element is provided.
 第2の要旨において、本発明は、上述および後述するような本発明の保護素子を有して成る電気装置、例えば2次電池を提供する。より詳しくは、2次電池セル、これを組み合わせた2次電池セルアッセンブリまたは2次電池パックを提供する。 In a second aspect, the present invention provides an electric device, for example, a secondary battery, comprising the protective element of the present invention as described above and below. More specifically, the present invention provides a secondary battery cell, a secondary battery cell assembly or a secondary battery pack that is a combination thereof.
 本発明の保護素子は、絶縁性樹脂により形成された層状要素を有して成り、この層状要素は、少なくとも1つの貫通開口部を有する。この開口部は、層状要素の厚さ方向に沿って延びて層状要素を貫通しており、その厚さ方向に垂直な方向の断面形状は特に限定されるものではないが、例えば円形であるのが好ましい。この場合、貫通開口部は円柱状の空間部である。しかしながら、他の形状、例えば正方形、菱形、長方形、楕円形であってもよい。貫通開口部の数は、少なくとも1つである。即ち、1つまたは2つ以上であり、例えば2つ、3つ、4つ、5つであってよいが、保護素子に要求される保護の程度に応じて、適宜選択できる。1つの貫通開口部を有する場合、貫通開口部は層状要素の中心部、より詳しくは、厚さ方向に垂直な方向の断面形状の中心部に位置するのが好ましい。 The protective element of the present invention comprises a layered element formed of an insulating resin, and this layered element has at least one through opening. The opening extends along the thickness direction of the layered element and penetrates the layered element, and the cross-sectional shape in the direction perpendicular to the thickness direction is not particularly limited, but is circular, for example. Is preferred. In this case, the through opening is a cylindrical space. However, other shapes, such as squares, rhombuses, rectangles, and ellipses may be used. The number of through openings is at least one. That is, it may be one, two or more, and may be two, three, four, five, for example, but can be appropriately selected according to the degree of protection required for the protection element. In the case of having one through opening, the through opening is preferably located at the center of the layered element, more specifically at the center of the cross-sectional shape in the direction perpendicular to the thickness direction.
 層状要素を構成する絶縁性樹脂は、電気的に絶縁性を有する樹脂であれば特に限定されるものではない。例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、フッ素系樹脂等の樹脂を例示できる。特にポリエチレンやポリフッ化ビニリデンのような樹脂を使用するのが好ましく、そのような樹脂は、ポリマーPTC素子に用いるポリマーと同様の柔軟性を持っており、ポリマーPTC素子に代えて本発明の保護素子を2次電池セルの封口板に組み込むことができ、また、一般的に電気装置において信頼して使用できるという点で有利である。別の態様では、本発明の保護素子を、上述の2次電池セルの封口板の内側で用いられているスペーサに代えて素子使用することができ、その場合、保護素子は、ワッシャーとして使用することができる。 The insulating resin constituting the layered element is not particularly limited as long as it is an electrically insulating resin. For example, resins such as polyethylene, polypropylene, polycarbonate, and fluorine resin can be exemplified. In particular, it is preferable to use a resin such as polyethylene or polyvinylidene fluoride. Such a resin has the same flexibility as the polymer used for the polymer PTC element, and the protective element of the present invention is used instead of the polymer PTC element. Can be incorporated into the sealing plate of the secondary battery cell, and is generally advantageous in that it can be used reliably in electric devices. In another aspect, the protective element of the present invention can be used in place of the spacer used inside the sealing plate of the secondary battery cell described above, in which case the protective element is used as a washer. be able to.
 この層状要素は、その各主表面上に、即ち、その両側の主表面上に配置された導電性金属薄層を有して成る。この金属薄層は、導電性を有する金属の薄い層(例えば、厚さが0.1μm~100μm程度の層)であれば特に限定されるものではなく、例えば銅、ニッケル、アルミニウム、金等の金属によって構成できる。 The layered element comprises a thin conductive metal layer disposed on each main surface thereof, that is, on the main surfaces on both sides thereof. The thin metal layer is not particularly limited as long as it is a thin layer of conductive metal (for example, a layer having a thickness of about 0.1 μm to 100 μm). For example, copper, nickel, aluminum, gold, etc. It can be made of metal.
 導電性金属薄層が各主表面上に位置する層状要素は、例えば層状要素を構成する絶縁性樹脂を、金属薄層を構成する金属シート(または金属箔)と一緒に同時押し出して、金属シート(または金属箔)の間に絶縁性樹脂が挟まれた状態の押出物を得ることによって、製造することができる。別の態様では、絶縁性樹脂の層状物を例えば押出によって得、この層状物を金属シート(または金属箔)の間に挟み、これらを一体に熱圧着して圧着物を得ることによって、製造することもできる。このような押出物(または圧着物)は、導電性金属薄層を両側の主表面に有する、絶縁性樹脂の層状要素が多数隣接して集合した状態であり、押出物(または圧着物)を所定の形状・寸法に切り出して、単一の、各主表面上に導電性薄層を有する層状要素を得ることができる。 The layered element in which the conductive metal thin layer is located on each main surface is obtained by, for example, extruding an insulating resin constituting the layered element together with the metal sheet (or metal foil) constituting the metal thin layer, It can be manufactured by obtaining an extrudate in which an insulating resin is sandwiched between (or metal foils). In another embodiment, a layered product of an insulating resin is obtained by, for example, extrusion, the layered product is sandwiched between metal sheets (or metal foils), and these are thermocompression bonded together to obtain a pressed product. You can also. Such an extrudate (or pressure-bonded product) is a state in which a large number of layered elements of insulating resin having conductive metal thin layers on both main surfaces are gathered adjacent to each other. A single layered element having a conductive thin layer on each main surface can be obtained by cutting into a predetermined shape and size.
 更に、別の態様では、絶縁性樹脂の層状要素に導電性金属のメッキを施すことによって、両側の主表面上に導電性金属薄層を形成してもよい。この場合も、上述のような集合状態のものを得、その後、個別の層状要素に分割するのが好ましい。 Furthermore, in another aspect, a conductive metal thin layer may be formed on the main surfaces on both sides by plating a conductive metal on the insulating resin layered element. In this case as well, it is preferable to obtain the aggregated state as described above and then divide it into individual layered elements.
 このように、メッキする場合、層状要素は、その主表面に別の金属層、特に好ましくは金属箔を、例えば上述と同様に、押出または熱圧着することによって、予め別の金属層を層状要素に密着させておくのが特に好ましい。この場合、この別の金属層の上に、導電性金属薄層をメッキによって形成するのが好ましい。このように導電性金属薄層をメッキによって形成する場合、導電性金属薄層としてのメッキ層が、層状要素に既に密着している別の金属層に密着できるという点で有利である。例えば、本発明の保護素子は、層状要素の両側主要面に別の金属層としてニッケル箔を有し、ニッケルメッキによって形成された導電性金属薄層およびヒューズ層を有する。即ち、導電性金属薄層とヒューズ層とを同時に形成できる点で有利である。 Thus, in the case of plating, the layered element is preliminarily separated from the layered element by extruding or thermocompressing another metal layer, particularly preferably a metal foil, on its main surface, for example as described above. It is particularly preferable to keep it in close contact. In this case, it is preferable to form a thin conductive metal layer by plating on the other metal layer. When the conductive metal thin layer is formed by plating in this way, it is advantageous in that the plating layer as the conductive metal thin layer can be in close contact with another metal layer that is already in close contact with the layered element. For example, the protection element of the present invention has a nickel foil as another metal layer on both principal surfaces of the layered element, and has a thin conductive metal layer and a fuse layer formed by nickel plating. That is, it is advantageous in that the conductive metal thin layer and the fuse layer can be formed simultaneously.
 層状要素の形態は、厚さ方向のディメンションが他のディメンションより小さい、このましくは相当小さいもの(例えばシート状形態)であれば、特に限定されるものではない。層状要素の平面形状(層状要素を真上から見た場合の図形、例えば図2に示す保護素子の輪郭形状、従って、主表面の形状)または層状要素の厚さ方向に垂直な方向の断面形状が、幾何学的に線対称および/または点対称の形状、例えば、円形、正方形、長方形、菱形、環状(特に円環状、いわゆるドーナツ状)等であるのが好ましい。 The form of the layered element is not particularly limited as long as the dimension in the thickness direction is smaller than the other dimensions, or preferably considerably small (for example, a sheet-like form). The planar shape of the layered element (the figure when the layered element is viewed from directly above, for example, the contour shape of the protective element shown in FIG. 2, and thus the shape of the main surface) or the sectional shape in the direction perpendicular to the thickness direction of the layered element Are preferably geometrically line-symmetrical and / or point-symmetrical shapes, for example, circular, square, rectangular, rhombus, annular (especially annular, so-called donut-shaped), and the like.
 中でも、層状要素は、環状、特に円環状であるのが好ましい。環状の場合、中央の開口部、例えば円環状の場合の中央の円形開口部が、本発明の貫通開口部であってよい。また、層状要素は、環形状を規定する内側周と外側周との間の部分(例えばその中間部)に、追加の貫通開口部、例えば断面が円形の貫通開口部を1またはそれ以上有してよい。従って、層状要素は、少なくとも1つの貫通開口部を有する。 Among them, the layered element is preferably annular, particularly annular. In the case of an annular shape, the central opening, for example, the central circular opening in the case of an annular shape, may be the through opening of the present invention. Further, the layered element has one or more additional through openings, for example, through holes having a circular cross section, at a portion between the inner circumference and the outer circumference defining the ring shape (for example, an intermediate portion thereof). It's okay. Thus, the layered element has at least one through opening.
 本発明の保護素子は、そのような貫通開口部の少なくとも1つを規定する側面上に位置するヒューズ層を有する。このヒューズ層は、層状要素の両側主表面に位置する導電性金属薄層を電気的に接続すると共に、一方の主表面上の導電性金属薄層から他方の主表面上の導電性金属薄層に向かって過剰電流が流れようとする場合に、過剰電流が集中的にヒューズ層を流れる結果、それが溶融して回路を開くことによって、そのような電流の流れを遮断する機能(いわゆるヒューズとしての機能)を有する。そのようヒューズ層は、少なくとも1つの貫通開口部を規定する側面上に形成されている。より詳しくは、両側の導電性金属薄層を電気的に接続できる限り、そのような側面の少なくとも一部分にヒューズ層が形成されていてもよいが、そのような側面の全体にわたって形成されているのが好ましい。形成方法は特に限定されるものではないが、導電性金属をメッキ(例えば電解メッキまたは無電解メッキ)する、例えばニッケルメッキすることによって形成するのが特に好ましい。ヒューズ層の厚さは、メッキ条件によってコントロールできるが、例えば0.001~0.02mmであるのが好ましい。 The protective element of the present invention has a fuse layer located on a side surface that defines at least one of such through openings. The fuse layer electrically connects the thin conductive metal layers located on the main surfaces on both sides of the layered element, and the thin conductive metal layer on one main surface to the thin conductive metal layer on the other main surface. When excess current is about to flow towards the fuse layer, the excess current flows through the fuse layer intensively, and as a result, it melts and opens the circuit, thereby blocking such current flow (so-called fuse Function). Such a fuse layer is formed on a side surface defining at least one through opening. More specifically, as long as the thin conductive metal layers on both sides can be electrically connected, a fuse layer may be formed on at least a part of such a side surface. Is preferred. The formation method is not particularly limited, but it is particularly preferable to form the conductive metal by plating (for example, electrolytic plating or electroless plating), for example, by nickel plating. The thickness of the fuse layer can be controlled by plating conditions, but is preferably 0.001 to 0.02 mm, for example.
 ヒューズ層を側面上に有する貫通開口部を1つ設ける場合、層状要素は円形または他の適当な、元々穴の無い平板形状であり、その中心部(平面形状が円形(即ち、円板状)である層状要素のように、そのような中心部が存在する場合)に貫通開口部(「中心貫通開口部」とも呼ぶ)を設けるのが好ましい。その結果、層状要素は厳密には環状の形状を有することになる。このような環状の形状を有する層状要素の一方の主表面の導電性金属薄層を流れる電流は、貫通開口部の一方の端部に向かって流れ、その後、ヒューズ層を通過して、貫通開口部の他方の端部から層状要素の他方の主表面の導電性金属薄層上を放射状に流れる。 When a single through opening having a fuse layer on the side is provided, the layered element is circular or other suitable flat plate shape without holes, and its central portion (planar shape is circular (ie, disk shape) It is preferable to provide a through opening (also referred to as “center through opening”) in such a layered element where such a central portion exists). As a result, the layered element has a strictly annular shape. The current flowing through the thin conductive metal layer on one main surface of the layered element having such an annular shape flows toward one end of the through opening, and then passes through the fuse layer to form the through opening. Flows radially from the other end of the part over the thin conductive metal layer on the other main surface of the layered element.
 このように層状要素に貫通開口部を1つ設ける態様では、後で詳細に説明する複数の貫通開口部を設ける態様と比較して、より大きい貫通開口部を環状要素の中心部に、中心貫通開口部として、設けるのが好ましく、その貫通開口部の側面上にヒューズ層を設ける。そのような保護素子は、抵抗値を小さくできるので、大容量の電流(好ましくは20Aより大きい電流、例えば30~40Aまたはそれより大きい電流、例えば50A)を流す場合に好適に使用できる。また、貫通開口部を1つ設けるだけであるので、保護素子の製造が簡単になる。 Thus, in the aspect in which one through opening is provided in the layered element, a larger through opening is formed in the central part of the annular element as compared with an aspect in which a plurality of through openings to be described in detail later is provided. The opening is preferably provided, and a fuse layer is provided on the side surface of the through opening. Since such a protective element can reduce the resistance value, it can be suitably used when a large-capacity current (preferably a current larger than 20 A, for example, a current of 30 to 40 A or larger, such as 50 A) is passed. Moreover, since only one through opening is provided, the manufacture of the protective element is simplified.
 好ましい態様では、層状要素は、後述する図2または図4に示すように、内側周30および外側周34によって規定される円環状である。層状要素の内側周を規定する円の直径は、例えば6~10mmであり、その外側周を規定する円の直径は、例えば13~17mmであるのが好ましい。30~40Aの電流を流す場合の保護素子としては、内側周の円の直径は例えば6.5mmであり、ヒューズ層の厚さは、例えば0.01mmであるのが好ましい。 In a preferred embodiment, the layered element has an annular shape defined by an inner periphery 30 and an outer periphery 34, as shown in FIG. The diameter of the circle defining the inner circumference of the layered element is preferably 6 to 10 mm, for example, and the diameter of the circle defining the outer circumference is preferably 13 to 17 mm, for example. As a protection element when a current of 30 to 40 A is passed, it is preferable that the diameter of the inner circumference circle is 6.5 mm, for example, and the thickness of the fuse layer is 0.01 mm, for example.
 複数の貫通開口部を設ける場合、層状要素を通過する電流が可及的に均等に各貫通開口部のヒューズ層を流れるように貫通開口部を配置するのが好ましい。例えば、中心貫通開口部を有する円環状の層状要素の周状部分(即ち、内側周と外側周とによって規定される層状要素の本体部分)に、同じ断面形状およびサイズを有する貫通開口部(「周辺貫通開口部」とも呼ぶ)を複数設けてよく、この場合、円環を規定する内側周の円の中心に関して等角度で貫通開口部を設けるのが好ましい。例えば、180°毎に2つ、120°毎に3つ、90°毎に4つ、60°毎に6つ貫通開口部を設ける。但し、保護素子の使用の条件に応じて、層状要素は、周辺貫通開口部を1つのみ有してもよい。従って、周状貫通開口部の数は、例えば1~6であってよい。 When providing a plurality of through openings, it is preferable to arrange the through openings so that the current passing through the layered element flows through the fuse layer of each through opening as evenly as possible. For example, in a circumferential portion of an annular layered element having a central through opening (ie, a body portion of a layered element defined by an inner circumference and an outer circumference), a through opening having the same cross-sectional shape and size (“ In this case, it is preferable to provide the through openings at an equal angle with respect to the center of the inner circumferential circle that defines the ring. For example, two through openings are provided every 180 °, three every 120 °, four every 90 °, and six every 60 °. However, depending on the conditions of use of the protective element, the layered element may have only one peripheral through opening. Therefore, the number of circumferential through openings may be 1 to 6, for example.
 円環状の層状要素を規定する、内側周の円、即ち、中心貫通開口部の断面円の直径が他の貫通開口部、即ち、周辺貫通開口部の直径と同じであるか、それより小さい場合、そのような中心貫通開口部を規定する側面にもヒューズ層を設けてもよい。逆に、中心貫通開口部の断面円の直径が周辺貫通開口部の断面円の直径より大きい場合、中心貫通開口部を規定する側面上にはヒューズ層を設けないのが好ましい。 When the diameter of the inner circumferential circle defining the toroidal layered element, i.e. the cross-sectional circle of the central through opening, is equal to or smaller than the diameter of the other through openings, i.e. the peripheral through openings A fuse layer may also be provided on the side surface defining such a central through opening. Conversely, when the diameter of the cross-sectional circle of the central through opening is larger than the diameter of the cross-sectional circle of the peripheral through opening, it is preferable not to provide a fuse layer on the side surface that defines the central through opening.
 このように中心貫通開口部にヒューズ層を設けるか否かは、保護素子の各貫通開口部に設けたヒューズ層を流れる電流が実質的に等量となるか否かにより判断する。簡単には、中心貫通開口部が周辺貫通開口部より大きな円形断面を有する場合、中心貫通開口部にヒューズ層を設けると、保護素子を流れる電流の実質的に大部分そのヒューズ層を流れ易く、より小さい円形断面を有する他の貫通開口部に設けたヒューズ層を電流が流れ難いため、他の貫通開口部にヒューズ層を設ける意味が薄れる。 Whether or not the fuse layer is provided in the central through opening as described above is determined by whether or not the current flowing through the fuse layer provided in each through opening of the protective element is substantially equal. Briefly, when the central through opening has a larger circular cross section than the peripheral through opening, if a fuse layer is provided in the central through opening, substantially the majority of the current flowing through the protective element is likely to flow through the fuse layer, Since it is difficult for current to flow through the fuse layer provided in another through opening having a smaller circular cross section, the meaning of providing the fuse layer in the other through opening is reduced.
 1つの好ましい態様では、層状要素は、外側周および内側周によって規定される環状要素であり、内側周面によって貫通開口部が中心貫通開口部として規定され、更に、別の貫通開口部が、層状要素の内部、即ち、層状要素を規定する内側周と外側周との間(即ち、層状要素を規定する絶縁性樹脂の部分)貫通して周辺貫通開口部として存在してよい。従って、この場合、層状要素には、内側周によって規定される中心貫通開口部(1つ)および層状要素の本体部分中を貫通する少なくとも1つの貫通開口部(上述の周辺貫通開口部に対応)が存在する。 In one preferred embodiment, the layered element is an annular element defined by an outer periphery and an inner periphery, the inner peripheral surface defines the through opening as a central through opening, and another through opening is layered It may exist as a peripheral through opening through the interior of the element, ie, between the inner and outer perimeters that define the layered element (ie, the portion of the insulating resin that defines the layered element). Accordingly, in this case, the layered element has a central through opening (one) defined by the inner circumference and at least one through opening (corresponding to the peripheral through opening described above) penetrating through the body part of the layered element. Exists.
 この態様では、ヒューズ層は、周辺貫通開口部を規定する側面(即ち、壁)上に存在する。中心貫通開口部の直径が周辺貫通開口部の直径と大差なく、中心貫通開口部にヒューズ層が存在するとした場合に、そのヒューズ層にも、周辺貫通開口部のヒューズ層と同等に電流が流れるであろうと予想される場合、中心貫通開口部にもヒューズ層を設けてもよい。中心貫通開口部の直径が周辺貫通開口部の直径より大きく、中心貫通開口部にヒューズ層が存在するとした場合に、そのヒューズ層に、周辺貫通開口部のヒューズ層より遥かに多量の電流が流れるであろうと予想される場合、周辺貫通開口部にヒューズ層を設ける意味がなくなるため、中心貫通開口部にヒューズを設けない。 In this embodiment, the fuse layer exists on the side surface (that is, the wall) that defines the peripheral through opening. When the diameter of the central through opening is not much different from the diameter of the peripheral through opening and a fuse layer exists in the central through opening, current flows in the fuse layer as well as the fuse layer in the peripheral through opening. If expected, a fuse layer may also be provided in the central through opening. When the diameter of the central through opening is larger than the diameter of the peripheral through opening and a fuse layer exists in the central through opening, a much larger amount of current flows through the fuse layer than the fuse layer of the peripheral through opening. In the case where it is expected, there is no point in providing a fuse layer in the peripheral through opening, and therefore no fuse is provided in the central through opening.
 従って、複数の貫通開口部を有する環状の層状要素、例えば円環状の層状要素を有する保護素子の1つの態様では、中心貫通開口部はヒューズ層を有さず、その回りで周状に配置された複数の周辺貫通開口部を有する。周辺貫通開口部を設ける周は通常1重であるのが好ましいが、場合によっては複数重の周、例えば2重の周または3重の周であってもよい。このように、周辺貫通開口部のみにヒューズ層を設ける態様は、設ける周辺貫通開口部の数に応じて、保護素子の抵抗値をコントロールできる。基本的には、周辺貫通開口部の数を増やすと、抵抗値が減少し、逆に、数を減らすと、抵抗値が増える。従って、上述の中心貫通開口部のみにヒューズ層を設ける態様と比較して、設ける貫通開口部の数を単に変えることによって、保護素子の抵抗値を容易かつ精密に変えることができる利点がある。 Therefore, in one aspect of a protective element having an annular layered element having a plurality of through openings, for example, an annular layered element, the central through opening does not have a fuse layer and is arranged circumferentially around it. And a plurality of peripheral through openings. The circumference in which the peripheral through-opening is provided is usually preferably single, but in some cases, it may be a multiple circumference, for example, a double circumference or a triple circumference. As described above, in the aspect in which the fuse layer is provided only in the peripheral through opening, the resistance value of the protection element can be controlled according to the number of peripheral through openings provided. Basically, when the number of peripheral through openings is increased, the resistance value is decreased. Conversely, when the number is decreased, the resistance value is increased. Accordingly, there is an advantage that the resistance value of the protection element can be easily and precisely changed by simply changing the number of through openings provided, as compared with the above-described embodiment in which the fuse layer is provided only in the central through opening.
 層状要素が環形状、例えば円環状である場合、周辺貫通開口部は、層状要素の中心に関して対照的に位置するのが好ましい。周辺貫通開口部が複数存在する場合、例えば環状要素の中心、即ち、内側周を規定する図形、例えば円の中心の周囲で等角度で2~12個、好ましくは4~10個、より好ましくは5~9個、特に好ましくは6~8個、例えば180°毎に2個、120°毎に3個、90°毎に4個、60°毎に6個、45°毎に8個、40°毎に9個、36°毎に10個、存在するように構成してよい。 When the layered element is ring-shaped, for example annular, the peripheral through-opening is preferably located in contrast to the center of the layered element. When there are a plurality of peripheral through openings, for example, the center of the annular element, that is, the figure defining the inner circumference, for example, 2 to 12, preferably 4 to 10, more preferably the same angle around the center of the circle. 5-9, particularly preferably 6-8, eg 2 every 180 °, 3 every 120 °, 4 every 90 °, 6 every 60 °, 8 every 45 °, 40 It may be configured so that there are 9 pieces per degree and 10 pieces every 36 degrees.
 具体的な態様では、中心貫通開口部(ヒューズ層を設けない)の直径は6~10mmであり、その周囲の周辺貫通開口部(ヒューズ層を設ける)の断面円の直径は、0.2~1mmである。このような態様では、層状要素の外径は、例えば13~17mmであるのが好ましい。20~30Aの電流を流す場合の保護素子としては、例えば、直径0.6mmの周辺貫通開口部を4つ設け、ヒューズ層の厚さは、例えば0.01mmであるのが好ましい。 In a specific embodiment, the diameter of the central through opening (without the fuse layer) is 6 to 10 mm, and the diameter of the cross-sectional circle around the peripheral through opening (with the fuse layer) is 0.2 to 1 mm. In such an embodiment, the outer diameter of the layered element is preferably 13 to 17 mm, for example. For example, four protective through elements having a diameter of 0.6 mm are provided as protective elements when a current of 20 to 30 A is passed, and the thickness of the fuse layer is preferably 0.01 mm, for example.
 尚、いずれの態様においても、貫通開口部は、その断面形状(即ち、層状要素の厚さ方向に垂直な断面の形状)は円形であるのが好ましいが、いずれの適当な他の断面形状を有してもよく、通常円形断面を有するのが好ましい。別の態様では、正方形、長方形、菱形、三角形等であってもよい。その場合、上述の直径は、他の断面形状の相当直径に対応する。 In any embodiment, the through-opening portion preferably has a circular cross-sectional shape (that is, a cross-sectional shape perpendicular to the thickness direction of the layered element), but may have any appropriate other cross-sectional shape. It may preferably have a generally circular cross section. In another aspect, a square, a rectangle, a rhombus, a triangle, etc. may be sufficient. In that case, the above-mentioned diameter corresponds to the equivalent diameter of another cross-sectional shape.
 貫通開口部を規定する側面(または周面)上に設けたヒューズ層は、層状要素の両側主表面を電気的に接続すると共に、一方の主表面から他方の主表面に向かって過剰電流が流れようとする場合に、ヒューズ層に過剰電流が集中的に流れる結果、それが溶融することによって、そのような電流の流れを遮断する機能を有する。そのようなヒューズ層を構成する材料は、導電性材料、特に導電性金属層である。例えば、銅、ニッケル、アルミニウム、金等の金属の薄い層によりヒューズ層を形成するのが好ましい。ヒューズ層は、それを構成する金属をメッキすることによって形成するのが特に好ましい。 The fuse layer provided on the side surface (or peripheral surface) that defines the through opening electrically connects the main surfaces on both sides of the layered element, and excess current flows from one main surface to the other main surface. In such a case, as a result of excessive current flowing through the fuse layer in a concentrated manner, it melts, thereby having a function of interrupting such current flow. The material constituting such a fuse layer is a conductive material, in particular a conductive metal layer. For example, the fuse layer is preferably formed of a thin layer of metal such as copper, nickel, aluminum, or gold. The fuse layer is particularly preferably formed by plating a metal constituting the fuse layer.
 従って、想定される過剰電流量に応じて溶融するように、貫通開口部の断面形状、貫通開口部の大きさ(通常、直径)および層状要素の厚さ方向に沿った貫通開口部の長さ、ヒューズの材料およびその層の厚さ、ならびに貫通開口部の数および配置等の種々のファクターを選択し、その数値等を所定のように選択する。この選択は、当業者であれば、これらのファクターに関して例えば試行錯誤によって、実施することができる。 Therefore, the cross-sectional shape of the through-opening, the size of the through-opening (usually the diameter), and the length of the through-opening along the thickness direction of the layered element so as to melt according to the assumed excess current amount Various factors such as the material of the fuse and the thickness of the layer, and the number and arrangement of the through openings are selected, and the numerical values are selected in a predetermined manner. This selection can be made by those skilled in the art with respect to these factors, for example by trial and error.
 1つの好ましい態様では、導電性金属薄層およびヒューズ層が、導電性金属のメッキによって、より好ましくはニッケルメッキによって、一体に形成されている。この場合、貫通開口部を有する層状要素をそのような金属でメッキすることによって、これらの層を同時にかつ一体に形成できるので有利である。即ち、ヒューズ層と導電性金属薄層とは、同じ種類の金属で形成される。メッキ法としては、電解メッキまたは無電解メッキ法を用いることができる。 In one preferred embodiment, the conductive metal thin layer and the fuse layer are integrally formed by conductive metal plating, more preferably by nickel plating. In this case, it is advantageous that these layers can be formed simultaneously and integrally by plating a layered element having a through opening with such a metal. That is, the fuse layer and the conductive metal thin layer are formed of the same type of metal. As the plating method, electrolytic plating or electroless plating can be used.
 特に好ましい態様では、層状要素の主表面と導電性金属薄層との間に、層状要素に予め密着している金属箔、好ましくはニッケル箔が存在する。この場合、メッキ層として形成された導電性金属薄層が金属箔に密着でき、その結果、導電性金属薄層が金属箔を介して層状要素に強固に結合するという利点がある。 In a particularly preferred embodiment, there is a metal foil, preferably a nickel foil, which is in close contact with the layered element, between the main surface of the layered element and the conductive metal thin layer. In this case, there is an advantage that the conductive metal thin layer formed as the plating layer can be in close contact with the metal foil, and as a result, the conductive metal thin layer is firmly bonded to the layered element via the metal foil.
 本発明の保護素子は、保護すべき回路またはそれを構成する電気要素を保護するために、第1電気要素(例えば2次電池)と別の電気要素としての第2電気要素(例えば充電器)とを電気的に直接的または間接的に接続するためにこれらの間に位置し、その結果、一方の導電性金属薄層は第1電気要素と直接または間接的に接触し、他方の導電性金属薄層は第2電気要素と直接または間接的に接触する。従って、本発明の保護素子、ならびにそれによって電気的に接続された回路および/または電気要素を有して成る電気装置をも本発明は提供する。 The protection element of the present invention includes a first electric element (for example, a secondary battery) and a second electric element (for example, a charger) as another electric element in order to protect a circuit to be protected or an electric element constituting the circuit. Between the two, so that one of the thin conductive metal layers is in direct or indirect contact with the first electrical element and the other conductive The thin metal layer is in direct or indirect contact with the second electrical element. Accordingly, the present invention also provides an electrical device comprising the protection element of the present invention and the circuits and / or electrical elements electrically connected thereby.
 本発明の保護素子は、層状要素の両側の主表面上に導電性金属薄層を有し、これらをヒューズ層が電気的に接続することによって大きい電流を流すことを可能にしながらも、過剰電流が流れる場合には、ヒューズ層に過剰電流が集中的に流れる結果、ヒューズ層が溶融して回路が遮断され、それによって過剰電流の流れを遮断できる。 The protection element of the present invention has a thin conductive metal layer on the main surfaces on both sides of the layered element, and allows a large current to flow by electrically connecting them with the fuse layer, but also an excess current. As a result, excessive current flows intensively in the fuse layer, so that the fuse layer is melted and the circuit is cut off, whereby the flow of excess current can be cut off.
図1は、本発明の保護素子を、その厚さ方向に沿った断面図にて模式的に示す。FIG. 1 schematically shows a protection element of the present invention in a sectional view along the thickness direction. 図2は、図1に示す保護素子を、平面図にて模式的に示す。FIG. 2 schematically shows the protection element shown in FIG. 1 in a plan view. 図3は、本発明の別の態様の保護素子を、その厚さ方向に沿った断面図にて模式的に示す。FIG. 3 schematically shows a protective element according to another aspect of the present invention in a cross-sectional view along the thickness direction. 図4は、図3に示す保護素子を、平面図にて模式的に示す。FIG. 4 schematically shows the protection element shown in FIG. 3 in a plan view.
 図面を参照して、本発明の保護素子をより詳細に説明する。図1に、本発明の保護素子の1つの態様を、その厚さ方向に沿った断面図にて模式的に示し(切断面として現れる部分をAで示す)、また、図2に、図1に示す保護素子を、平面図(即ち、図1においてその上方から矢印Bによって示すように保護素子を見た時の様子)にて模式的に示す。 The protection element of the present invention will be described in more detail with reference to the drawings. FIG. 1 schematically shows one embodiment of the protection element of the present invention in a cross-sectional view along the thickness direction (a portion appearing as a cut surface is indicated by A), and FIG. Is schematically shown in a plan view (that is, when the protective element is viewed from above as shown by an arrow B in FIG. 1).
 図示した保護素子10は、絶縁性樹脂により形成され、少なくとも1つの貫通開口部、図示した態様では、断面円形の中心貫通開口部12および断面円形の周辺貫通開口部14の2つの貫通開口部を有する、円環状の層状要素16を有して成る。層状要素16の両側の主表面18および20上に位置する導電性金属薄層22および24を有する。尚、図示した態様では、層状要素16と導電性金属薄層22および24との間に別の金属層26および28が存在する。 The illustrated protection element 10 is formed of an insulating resin, and includes at least one through opening, in the illustrated embodiment, two through openings, a central through opening 12 having a circular cross section and a peripheral through opening 14 having a circular cross section. And having an annular layered element 16. It has thin conductive metal layers 22 and 24 located on the major surfaces 18 and 20 on both sides of the layered element 16. In the illustrated embodiment, there are other metal layers 26 and 28 between the layered element 16 and the thin conductive metal layers 22 and 24.
 図示した態様では、中心貫通開口部12を規定する、円環の内側周30上に、即ち、円環の内側の側面上にはヒューズ層は存在しない。図示した態様では、円環の内側周30と外側周34との間の層状要素の本体部分36に位置する周辺貫通開口部14を規定する円周状側面38上にヒューズ層40が存在する。 In the illustrated embodiment, there is no fuse layer on the inner circumference 30 of the ring, that is, on the inner side surface of the ring, which defines the central through opening 12. In the illustrated embodiment, a fuse layer 40 is present on a circumferential side 38 that defines a peripheral through opening 14 located in the body portion 36 of the layered element between the inner periphery 30 and the outer periphery 34 of the annulus.
 図示した態様では、ヒューズ層40を有する周辺貫通開口部14は、層状要素の中心Oを通過する直径(図2にて破線にて図示)に沿って本体部分36の中間に設けた1つのみであるが、直径方向に沿って反対側にもそのような周辺貫通開口部を設けてよい。その場合、中心Oの回りで180°毎に2個の周辺貫通開口部を設けたことになる。更に別の態様では、円の中心Oを基準にして、好ましくは3~12個、より好ましくは4~10個、特に好ましくは6~8個のヒューズ層を有する周辺貫通開口部を等角度で設けてよく、例えば120°毎に3個、90°毎に4個、60°毎に6個、あるいは45°毎に8個のヒューズ層を有する周辺貫通開口部を等角度で設けてよい。 In the illustrated embodiment, only one peripheral through opening 14 having a fuse layer 40 is provided in the middle of the body portion 36 along a diameter (shown in broken lines in FIG. 2) that passes through the center O of the layered element. However, such a peripheral through opening may be provided on the opposite side along the diametrical direction. In that case, two peripheral through openings are provided around the center O every 180 °. In yet another aspect, the peripheral through-openings having preferably 3 to 12, more preferably 4 to 10, and particularly preferably 6 to 8 fuse layers are equiangular with respect to the center O of the circle. For example, peripheral through openings having three fuse layers every 120 °, four every 90 °, six every 60 °, or eight fuse layers every 45 ° may be provided at an equal angle.
 尚、図示した態様では、中心貫通開口部12の直径が、周辺貫通開口部14の直径より遥かに大きいため、円環の内側周30の側面上にはヒューズ層が存在しないが、中心貫通開口部の直径が周辺貫通開口部の直径と同等または小さい場合、必要に応じて、円環の内側周30の側面上にヒューズ層を設けてもよい。尚、ある態様では、保護素子を配置すべき電気装置に中心貫通開口部に対応する凸部を設けておくと、中心貫通開口部の大きい直径部分内にそのような凸部が嵌まり込むことによって、保護素子を電気装置に位置決めできる場合がある。例えば、2次電池セルの封口板にそのような凸部を設け、中心貫通開口部にその凸部が嵌まり込むようにすることによって、封口板に保護素子を位置決めできる。 In the illustrated embodiment, since the diameter of the central through opening 12 is much larger than the diameter of the peripheral through opening 14, there is no fuse layer on the side surface of the inner periphery 30 of the ring, but the central through opening When the diameter of the part is equal to or smaller than the diameter of the peripheral through opening, a fuse layer may be provided on the side surface of the inner periphery 30 of the ring as necessary. In addition, in a certain aspect, when a convex portion corresponding to the central through opening is provided in the electrical device in which the protection element is to be disposed, such a convex portion is fitted into a large diameter portion of the central through opening. In some cases, the protective element can be positioned on the electric device. For example, the protective element can be positioned on the sealing plate by providing such a convex portion on the sealing plate of the secondary battery cell and fitting the convex portion into the central through opening.
 別の態様では、層状要素16は、中心貫通開口部12を有さず(従って、層状要素は円板形状)、少なくとも1つの周辺貫通開口部14のみを有し、それがヒューズ層40を有してよい。 In another aspect, the layered element 16 does not have a central through-opening 12 (and thus the layered element is disk-shaped) and has only at least one peripheral through-opening 14 that has a fuse layer 40. You can do it.
 本発明の更に別の態様の保護素子10’を図3および図4に、図1および図2と同様に示す。尚、図1および図2と同じ要素については、同じ符号を用いている。図示した態様では、層状要素16は、図1の保護素子10が有する周辺貫通開口部14を有さず、中心貫通開口部12のみを有し、それがヒューズ層32を有する。 Protective element 10 'according to still another embodiment of the present invention is shown in FIGS. 3 and 4 in the same manner as FIGS. In addition, the same code | symbol is used about the same element as FIG. 1 and FIG. In the illustrated embodiment, the layered element 16 does not have the peripheral through-opening 14 that the protection element 10 of FIG. 1 has, but has only the central through-opening 12, which has the fuse layer 32.
 図1および図2に示す本発明の保護素子を製造した。従って、ヒューズ層40のみを有し、図3の保護素子10’が有するヒューズ層32を有さない保護素子10を製造した。但し、周辺貫通開口部14は、中心Oの回りで周状に等角度で4つ形成した。 The protective element of the present invention shown in FIGS. 1 and 2 was manufactured. Therefore, the protection element 10 having only the fuse layer 40 and not including the fuse layer 32 included in the protection element 10 ′ of FIG. 3 was manufactured. However, four peripheral through openings 14 were formed at equal angles around the center O in a circumferential shape.
 最初に、絶縁性樹脂のシート(ポリエチレン製、厚さ0.3mm、層状要素16に対応)を準備し、その両側にニッケル箔(厚さ:22μm、別の金属層26および28に対応)を配置し、加熱下、これらを一体に押圧して、ニッケル箔を絶縁性樹脂のシートの両主表面に貼り付けた圧着物を得た。 First, a sheet of insulating resin (made of polyethylene, thickness 0.3 mm, corresponding to the layered element 16) is prepared, and nickel foil (thickness: 22 μm, corresponding to the other metal layers 26 and 28) is provided on both sides thereof. These were placed and pressed together under heating to obtain a pressure-bonded product in which nickel foil was attached to both main surfaces of the sheet of insulating resin.
 圧着物の所定の箇所に直径0.6mmの貫通孔(周辺貫通開口部14に対応)を形成し、その後、圧着物を電解法によるニッケルメッキ処理に付した。メッキにより形成したニッケル層(導電性金属薄層22および24に対応)の厚さは、約0.01mmであった。次に、圧着物から円環状要素を打ち抜き、4つの貫通孔が円環状要素の中心の回りで所定の箇所に90°毎に位置する本発明の保護素子10を得た。 A through-hole having a diameter of 0.6 mm (corresponding to the peripheral through-opening 14) was formed at a predetermined location of the pressure-bonded product, and then the pressure-bonded material was subjected to nickel plating by an electrolytic method. The thickness of the nickel layer (corresponding to the thin conductive metal layers 22 and 24) formed by plating was about 0.01 mm. Next, the annular element was punched out from the pressure-bonded article, and the protection element 10 of the present invention was obtained in which the four through holes were positioned at predetermined positions around the center of the annular element at every 90 °.
 得られた円環状要素の外側周円34の直径は15mmであり、内側周円30の直径(即ち、中心貫通開口部の直径)は6.4mmであった。この円環状要素は、層状要素としての絶縁樹脂層16の両側主表面に別の金属層26および28として機能するニッケル箔を有し、円環状部分の本体部分36の中間部分に4つの周辺貫通開口部14を有した。また、円環状要素は、導電性金属薄層22および24としてのメッキ層をニッケル箔上に有し、周辺貫通開口部を規定する内側周面上にヒューズ層40として機能するメッキ層を有した。 The diameter of the outer circumferential circle 34 of the obtained annular element was 15 mm, and the diameter of the inner circumferential circle 30 (that is, the diameter of the central through opening) was 6.4 mm. This annular element has nickel foil functioning as another metal layer 26 and 28 on both main surfaces of the insulating resin layer 16 as a layered element, and four peripheral penetrations in the middle part of the body part 36 of the annular part. An opening 14 was provided. Further, the annular element had a plating layer as the conductive thin metal layers 22 and 24 on the nickel foil, and a plating layer functioning as the fuse layer 40 on the inner peripheral surface defining the peripheral through opening. .
 得られた本発明の保護素子に一方の導電性金属薄層22から他方の導電性金属薄層24に所定の電流(20A)を流し、10分後の保護素子の導電性金属薄層22の表面温度上昇を測定した。また、保護素子のヒューズとしての電流遮断時間(即ち、100Aの電流を流した時のヒューズ層が溶断するまでの時間)を測定した。 A predetermined current (20 A) is passed through the protective element of the present invention from one conductive metal thin layer 22 to the other conductive metal thin layer 24, and the conductive metal thin layer 22 of the protective element 10 minutes later. The surface temperature rise was measured. Moreover, the current interruption time (that is, the time until the fuse layer was blown when a current of 100 A was passed) as a fuse of the protective element was measured.
 その結果、表面温度上昇はいずれの箇所においても10℃以下であり、また、電流遮断時間は、電流遮断時間は0.1秒以下であった。 As a result, the surface temperature increase was 10 ° C. or less at any location, and the current interruption time was 0.1 second or less.
 図3および図4に示す本発明の保護素子を製造した。従って、周辺貫通開口部を有さず、中心貫通開口部の周囲にヒューズ層32のみを有す保護素子10’を製造した。尚、製造方法においては、中心貫通開口部に相当する開口部を圧着物に形成した後に、メッキ処理によってヒューズ層を形成し、その後、円環状要素を打ち抜くことによって保護素子10’を得た以外は実施例1と同様に実施した。中心貫通開口部の直径は、6.5mmであり、ヒューズ層の厚さは0.1mmであった。 The protective element of the present invention shown in FIGS. 3 and 4 was manufactured. Therefore, the protective element 10 ′ having only the fuse layer 32 around the central through opening without having the peripheral through opening was manufactured. In addition, in the manufacturing method, after forming the opening corresponding to the center through-opening in the press-bonded product, a fuse layer is formed by plating, and then the protective element 10 ′ is obtained by punching out the annular element. Was carried out in the same manner as in Example 1. The diameter of the central through opening was 6.5 mm, and the thickness of the fuse layer was 0.1 mm.
 得られた本発明の保護素子に一方の導電性金属薄層22から他方の導電性金属薄層24に所定の電流(30~40A)を流し、10分後の保護素子の導電性金属薄層22の表面温度上昇を測定した。また、保護素子のヒューズとしての電流遮断時間(即ち、100Aの電流を流した時のヒューズ層が溶断するまでの時間)を測定した。 A predetermined current (30 to 40 A) is passed from one conductive metal thin layer 22 to the other conductive metal thin layer 24 through the obtained protective element of the present invention, and the conductive metal thin layer of the protective element after 10 minutes. 22 surface temperature rises were measured. Moreover, the current interruption time (that is, the time until the fuse layer was blown when a current of 100 A was passed) as a fuse of the protective element was measured.
 その結果、表面温度上昇はいずれの箇所においても10℃以下であり、また、電流遮断時間は、電流遮断時間は約0.1秒であった。 As a result, the increase in surface temperature was 10 ° C. or less at any location, and the current interruption time was about 0.1 seconds.
 これらの結果から、本発明の保護素子は、より大きい電流を流すことを可能にしながらも、過剰電流に対する保護を提供できることが分かる。従って、本発明の保護素子において、定常的に流すことの出来る電流値を極端に大きくした場合、例えば円筒型リチウムイオン2次電池セルにおいて、封口板に組み込まれたニッケルワッシャー、ステンレス材料にニッケルめっきを施したワッシャー等の代替品として利用することも可能である。この場合、保護素子は、絶縁性樹脂により形成された層状要素を有するので、樹脂の弾性によってワッシャーとしての機能が向上する。従って、本発明は、上述の本発明の保護素子の特徴を有するワッシャーをも提供する。 From these results, it can be seen that the protection element of the present invention can provide protection against excess current while allowing a larger current to flow. Therefore, in the protection element of the present invention, when the current value that can be steadily passed is extremely increased, for example, in a cylindrical lithium ion secondary battery cell, a nickel washer incorporated in a sealing plate, nickel plating on a stainless material It can also be used as an alternative to washers that have been subjected to. In this case, since the protective element has a layered element formed of an insulating resin, the function as a washer is improved by the elasticity of the resin. Accordingly, the present invention also provides a washer having the features of the protective element of the present invention described above.
10,10’…保護素子、12…中心貫通開口部、14…周辺貫通開口部、
16…層状要素、18,20…主表面、22,24…導電性金属薄層、
26,28…別の金属層、 30…内側周、32…ヒューズ層、34…外側周、
36…本体部分、38…側面、40…ヒューズ層。
10, 10 '... protective element, 12 ... central through opening, 14 ... peripheral through opening,
16 ... layered element, 18, 20 ... main surface, 22, 24 ... thin conductive metal layer,
26, 28 ... another metal layer, 30 ... inner circumference, 32 ... fuse layer, 34 ... outer circumference,
36 ... main body part, 38 ... side surface, 40 ... fuse layer.

Claims (12)

  1.  絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
     層状要素の各主表面上に位置する導電性金属薄層、および
     該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層
    を有して成る、保護素子。
    A layered element formed of insulating resin and having at least one through opening;
    A conductive metal thin layer located on each main surface of the layered element, and a fuse layer located on a side surface defining at least one of the through openings and electrically connecting the conductive metal thin layer A protective element.
  2.  導電性金属薄層およびヒューズ層は金属をメッキすることによって一体に形成されていることを特徴とする請求項1に記載の保護素子。 2. The protective element according to claim 1, wherein the thin conductive metal layer and the fuse layer are integrally formed by plating a metal.
  3.  メッキする金属はニッケルであることを特徴とする請求項2に記載の保護素子。 The protective element according to claim 2, wherein the metal to be plated is nickel.
  4.  層状要素と導電性金属薄層との間に位置する金属箔を更に有して成ることを特徴とする請求項2または3に記載の保護素子。 The protective element according to claim 2, further comprising a metal foil positioned between the layered element and the conductive metal thin layer.
  5.  金属箔は、ニッケル箔であることを特徴とする請求項4に記載の保護素子。 The protective element according to claim 4, wherein the metal foil is a nickel foil.
  6.  層状要素は、内側周面および外側周面により規定される環状要素であって、内側周面によって規定される1つの貫通開口部を有することを特徴とする請求項1~5のいずれかに記載の保護素子。 The layered element is an annular element defined by an inner peripheral surface and an outer peripheral surface, and has one through opening defined by the inner peripheral surface. Protection element.
  7.  層状要素は、内側周面と外側周面により規定され、少なくとも2つの貫通開口部を有する環状要素であって、これらの貫通開口部は、内側周面によって規定される中心貫通開口部および内側周面と外側周面との間に位置する少なくとも1つの周辺貫通開口部であり、周辺貫通開口部がヒューズ層を有することを特徴とする請求項1~5のいずれかに記載の保護素子。 The laminar element is an annular element defined by an inner peripheral surface and an outer peripheral surface and having at least two through openings, the through openings comprising a central through opening and an inner periphery defined by the inner peripheral surface. 6. The protection element according to claim 1, wherein the protective element is at least one peripheral through opening located between the surface and the outer peripheral surface, and the peripheral through opening has a fuse layer.
  8.  層状要素において、周辺貫通開口部は、中心貫通開口部の回りに等角度で6~8個設けられていることを特徴とする請求項7に記載の保護素子。 The protective element according to claim 7, wherein in the layered element, 6 to 8 peripheral through openings are provided at an equal angle around the central through opening.
  9.  層状要素は円環状形状を有することを特徴とする請求項1~8のいずれかに記載の保護素子。 The protective element according to any one of claims 1 to 8, wherein the layered element has an annular shape.
  10.  請求項1~9のいずれかに記載の保護素子を有して成ることを特徴とする電気装置。 An electric device comprising the protective element according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載の保護素子を有して成ることを特徴とする2次電池セル。 A secondary battery cell comprising the protective element according to any one of claims 1 to 9.
  12.  絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
     層状要素の各主表面上に位置する導電性金属薄層、および
     該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層
    を有して成る、ワッシャー。
    A layered element formed of insulating resin and having at least one through opening;
    A conductive metal thin layer located on each main surface of the layered element, and a fuse layer located on a side surface defining at least one of the through openings and electrically connecting the conductive metal thin layer A washer.
PCT/JP2012/055252 2011-03-03 2012-03-01 Protective element WO2012118153A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280021008.5A CN103503109A (en) 2011-03-03 2012-03-01 Protective element
KR1020177027395A KR20170116202A (en) 2011-03-03 2012-03-01 Protective element
KR1020137026128A KR20140021593A (en) 2011-03-03 2012-03-01 Protective element
JP2013502402A JPWO2012118153A1 (en) 2011-03-03 2012-03-01 Protective element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-046064 2011-03-03
JP2011046064 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012118153A1 true WO2012118153A1 (en) 2012-09-07

Family

ID=46758079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055252 WO2012118153A1 (en) 2011-03-03 2012-03-01 Protective element

Country Status (5)

Country Link
JP (1) JPWO2012118153A1 (en)
KR (2) KR20170116202A (en)
CN (1) CN103503109A (en)
TW (1) TWI549154B (en)
WO (1) WO2012118153A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129462A1 (en) * 2013-02-20 2014-08-28 タイコエレクトロニクスジャパン合同会社 Opening sealing body
JP2015046390A (en) * 2013-07-29 2015-03-12 タイコエレクトロニクスジャパン合同会社 Protection element
WO2019017382A1 (en) * 2017-07-20 2019-01-24 三洋電機株式会社 Cylindrical battery
JP2020145088A (en) * 2019-03-07 2020-09-10 Littelfuseジャパン合同会社 Sealing body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628688B (en) 2012-08-31 2018-07-01 太谷電子日本合同公司 Protective element, electrical apparatus, secondary battery cell and washer
TWI629703B (en) 2012-08-31 2018-07-11 太谷電子日本合同公司 Protective element, electrical apparatus, secondary battery cell and washer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315802A (en) * 1995-05-16 1996-11-29 Sony Corp Fuse built-in terminal and battery or power source appliance
JPH1050184A (en) * 1996-07-30 1998-02-20 Kyocera Corp Chip fuse element
JPH10275546A (en) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd Thermal fuse and mounting structure of thermal fuse in secondary battery
JP2007280807A (en) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd Fuse and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385475B2 (en) * 2002-01-10 2008-06-10 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
CN202025698U (en) * 2011-05-13 2011-11-02 Aem科技(苏州)股份有限公司 Suspended fuse wire type surface-mounted fuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315802A (en) * 1995-05-16 1996-11-29 Sony Corp Fuse built-in terminal and battery or power source appliance
JPH1050184A (en) * 1996-07-30 1998-02-20 Kyocera Corp Chip fuse element
JPH10275546A (en) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd Thermal fuse and mounting structure of thermal fuse in secondary battery
JP2007280807A (en) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd Fuse and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129462A1 (en) * 2013-02-20 2014-08-28 タイコエレクトロニクスジャパン合同会社 Opening sealing body
CN105027318A (en) * 2013-02-20 2015-11-04 泰科电子日本合同会社 Opening sealing body
JPWO2014129462A1 (en) * 2013-02-20 2017-02-02 Littelfuseジャパン合同会社 Sealing body
TWI620367B (en) * 2013-02-20 2018-04-01 太谷電子日本合同公司 Sealing body
CN110635072A (en) * 2013-02-20 2019-12-31 力特电子(日本)有限责任公司 Sealing body
JP2015046390A (en) * 2013-07-29 2015-03-12 タイコエレクトロニクスジャパン合同会社 Protection element
WO2019017382A1 (en) * 2017-07-20 2019-01-24 三洋電機株式会社 Cylindrical battery
JPWO2019017382A1 (en) * 2017-07-20 2020-05-28 三洋電機株式会社 Cylindrical battery
JP7070571B2 (en) 2017-07-20 2022-05-18 三洋電機株式会社 Cylindrical battery
JP2020145088A (en) * 2019-03-07 2020-09-10 Littelfuseジャパン合同会社 Sealing body
JP7241571B2 (en) 2019-03-07 2023-03-17 Littelfuseジャパン合同会社 sealing body

Also Published As

Publication number Publication date
TW201241858A (en) 2012-10-16
KR20170116202A (en) 2017-10-18
JPWO2012118153A1 (en) 2014-07-07
KR20140021593A (en) 2014-02-20
CN103503109A (en) 2014-01-08
TWI549154B (en) 2016-09-11

Similar Documents

Publication Publication Date Title
WO2012118153A1 (en) Protective element
KR102090686B1 (en) Protection element
JP6231985B2 (en) Protective element
JP3677295B2 (en) PTC element and battery assembly using the same
US9023218B2 (en) Method of making fusible links
JP6209585B2 (en) Sealing body
JP6502366B2 (en) Protection element
CN111740045B (en) Sealing body
US20180082769A1 (en) Protective Element
JP6891148B2 (en) Protective element
JP6779228B2 (en) PTC element
JP6352095B2 (en) Protective element
WO2017056988A1 (en) Protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026128

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12752006

Country of ref document: EP

Kind code of ref document: A1