WO2012118069A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012118069A1
WO2012118069A1 PCT/JP2012/054903 JP2012054903W WO2012118069A1 WO 2012118069 A1 WO2012118069 A1 WO 2012118069A1 JP 2012054903 W JP2012054903 W JP 2012054903W WO 2012118069 A1 WO2012118069 A1 WO 2012118069A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
display
gradation
display device
Prior art date
Application number
PCT/JP2012/054903
Other languages
French (fr)
Japanese (ja)
Inventor
貢祥 平田
歳久 内田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012118069A1 publication Critical patent/WO2012118069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a multi-primary color liquid crystal display device that performs display using four or more primary colors.
  • liquid crystal display devices have been improved, and the use for television receivers is progressing. Although the viewing angle characteristics of liquid crystal display devices have been improved, further improvements are desired. In particular, there is a strong demand for improving the viewing angle characteristics of a liquid crystal display device using a vertical alignment type liquid crystal layer (sometimes referred to as a VA mode liquid crystal display device).
  • a vertical alignment type liquid crystal layer sometimes referred to as a VA mode liquid crystal display device.
  • VA mode liquid crystal display devices currently used in large display devices such as televisions employ an alignment division structure in which a plurality of liquid crystal domains are formed in one pixel in order to improve viewing angle characteristics. .
  • the MVA mode is the mainstream.
  • the MVA mode is disclosed in Patent Document 1, for example.
  • a plurality of liquid crystal domains having different alignment directions (tilt directions) in each pixel are provided by providing an alignment regulating structure on each liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer interposed therebetween. Specifically, four types of orientation directions are formed.
  • the alignment regulating structure slits (openings) provided in the electrodes and ribs (projection structure) are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer.
  • the slits and ribs are linear, so that the alignment regulating force on the liquid crystal molecules is within the pixel. In this case, there is a problem that the response speed is distributed. In addition, since the light transmittance of the region where the slits and ribs are provided is lowered, there is also a problem that display luminance is lowered.
  • an alignment division structure in the VA mode liquid crystal display device by defining the pretilt direction with the alignment film.
  • the applicant of the present application has proposed a VA mode liquid crystal display device in which an alignment division structure is formed as described above in Patent Document 2.
  • a quadrant alignment structure is formed by defining a pretilt direction with an alignment film. That is, when a voltage is applied to the liquid crystal layer, four liquid crystal domains are formed in one pixel.
  • Such a quadrant alignment structure is sometimes simply referred to as a 4D structure.
  • a pretilt direction defined by one alignment film of a pair of alignment films opposed via a liquid crystal layer and a pretilt defined by the other alignment film are provided.
  • the directions differ from each other by approximately 90 °. Therefore, when a voltage is applied, the liquid crystal molecules are twisted.
  • the VA mode in which the liquid crystal molecules are twisted by using a pair of vertical alignment films provided so that the pretilt directions (alignment processing directions) are orthogonal to each other is a VATN (Vertical Alignment Twisted Nematic) mode or RTN. Also called (Reverse Twisted Nematic) mode.
  • the applicant of the present application calls the display mode of the liquid crystal display device of Patent Document 2 as the 4D-RTN mode.
  • one color display pixel is composed of three pixels that display red, green, and blue, which are the three primary colors of light, thereby enabling color display.
  • Patent Document 3 a method for widening the color reproduction range of a liquid crystal display device by increasing the number of primary colors used for display to four or more has been proposed.
  • one color display pixel CP is configured by four pixels of a red pixel R, a green pixel G, a blue pixel B, and a yellow pixel Y, thereby reducing the color reproduction range. Can be wide.
  • one color display pixel CP may be configured by five pixels of the red pixel R, the green pixel G, the blue pixel B, the cyan pixel C, and the yellow pixel Y. Then, as in the liquid crystal display device 800 shown in FIG.
  • one color display pixel CP is constituted by six pixels of a red pixel R, a green pixel G, a blue pixel B, a cyan pixel C, a magenta pixel M, and a yellow pixel Y. May be.
  • the color reproduction range can be made wider than that of a conventional liquid crystal display device that performs display using three primary colors.
  • a liquid crystal display device that performs display using four or more primary colors is called a multi-primary color liquid crystal display device.
  • the size of some of the plurality of pixels constituting the color display pixel may be set differently from the size of other pixels.
  • Patent Document 4 proposes a liquid crystal display device in which a red pixel has the largest size among a plurality of pixels constituting a color display pixel.
  • the inventor of the present application examined the adoption of a 4D-RTN mode for a multi-primary color liquid crystal display device. As a result, it was found that when the 4D-RTN mode is adopted in the multi-primary color liquid crystal display device having a specific configuration, the display quality is deteriorated. Specifically, if one color display pixel contains a pixel with a width different from that of the other pixels, the response speed is significantly reduced when performing monochrome display with a relatively small pixel. I understood that.
  • the color display pixel CP of the liquid crystal display device 900 includes a red pixel R, a green pixel G, a blue pixel B, and a yellow pixel Y.
  • the widths of the red pixel R and the blue pixel B are relatively large, and the widths of the green pixel G and the yellow pixel Y are relatively small.
  • FIG. 20 shows an example of response speed when the 4D-RTN mode is used for the liquid crystal display device 900.
  • the voltage corresponding to the highest gradation is applied to all the pixels constituting the color display pixel CP from the black display state (the state where all the pixels constituting the color display pixel CP display the lowest gradation).
  • the relationship between the time (msec) and the luminance level when the (maximum gradation voltage) is applied is shown (curve indicated as “black ⁇ white” in the figure).
  • the highest gradation voltage is applied only to the red pixel R from the black display state
  • the highest gradation voltage is applied only to the green pixel G from the black display state
  • the blue pixel B is changed from the black display state.
  • FIG. 20 shows that the response speed is lower in the case of monochromatic display than in the case of white display.
  • the response speed is significantly reduced. For this reason, the trailing of the color close to the primary color is severe and the display quality is degraded.
  • the response speed is remarkably reduced in pixels having relatively small widths (green pixel G and yellow pixel Y in the example of FIG. 20). . Therefore, a colored tail with high visibility occurs, and the display quality deteriorates.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels.
  • the object is to suppress a reduction in display quality caused by a reduction in response speed in a pixel having a small width when the RTN mode is employed.
  • the liquid crystal display device has a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, and four or more pixels displaying different colors constitute a color display pixel.
  • a drive circuit for supplying a voltage, and the four or more pixels constituting the color display pixel include a first type pixel having a predetermined first width in a row direction, and a row.
  • a second type pixel having a second width smaller than the first width in the direction along the direction, and the driving circuit is configured to change the display gradation from the lowest gradation to the highest gradation.
  • Display voltage for displaying the highest gradation An undershoot voltage having a magnitude between a display voltage for displaying the lowest gradation and a display voltage for performing the highest gradation is supplied in the vertical scanning period before the vertical scanning period. Undershoot driving can be performed, and when the display gray level of all the four or more pixels constituting the color display pixel transitions from the lowest gray level to the highest gray level, the drive circuit can perform undershoot driving.
  • the display gradation of the pixel of the second type is the lowest gradation while the display gradation of the pixel adjacent to the second type pixel in the row direction remains the lowest gradation.
  • the undershoot drive is performed on the second type pixel.
  • the driving circuit applies the second type pixel along the row direction when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation. Even when the difference between the absolute value of the display voltage for displaying the target gradation of the adjacent pixel and the absolute value of the display voltage for displaying the maximum gradation is 6 V or more, the second type Undershoot drive is performed on the pixel.
  • the undershoot voltage is not less than 0.5 times and not more than 0.9 times the display voltage for displaying the highest gradation.
  • the liquid crystal display device includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, and four or more pixels displaying different colors constitute a color display pixel.
  • a liquid crystal display device comprising: a liquid crystal panel having a vertical alignment type liquid crystal layer; a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween; and a plurality of pixels each having a vertical scanning period
  • a drive circuit that supplies a display voltage to the four or more pixels constituting the color display pixel, the first type of pixels having a predetermined first width in the row direction; And a second type pixel having a second width smaller than the first width in the row direction, and all the display floors of the four or more pixels constituting the color display pixel Tone transition from lowest to highest Display gray level of a pixel adjacent to the second type pixel in the row direction rather than the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition Is supplied to the
  • the second type pixel is supplied to the second type pixel in a vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation.
  • the absolute value of the display voltage includes the absolute value of the display voltage for displaying the target gradation of the pixel adjacent in the row direction to the second type pixel and the display voltage for displaying the maximum gradation. When the difference from the absolute value of 6V is 6V or more is smaller than when it is less than 6V.
  • the four or more pixels constituting the color display pixel include a red pixel that displays red, a green pixel that displays green, and a blue pixel that displays blue.
  • the four or more pixels constituting the color display pixel further include a yellow pixel for displaying yellow.
  • the red pixel and the blue pixel are each the first type pixel, and at least one of the green pixel and the yellow pixel is the second type pixel.
  • the four or more pixels constituting the color display pixel are four pixels of the red pixel, the green pixel, the blue pixel, and the yellow pixel, and the green pixel and the yellow pixel. Both pixels are the second type of pixel.
  • the first substrate has a first alignment film provided on the surface on the liquid crystal layer side
  • the second substrate is provided on the surface on the liquid crystal layer side.
  • Each of the plurality of pixels has a predetermined tilt direction of the liquid crystal molecules in the layer surface of the liquid crystal layer and in the vicinity of the center in the thickness direction when a voltage is applied to the liquid crystal layer.
  • the second direction, the third direction, and the fourth direction are four directions in which the difference between any two directions is approximately equal to an integral multiple of 90 °.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are respectively adjacent to other liquid crystal domains and arranged in a matrix of 2 rows and 2 columns. ing.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged so that the tilt direction differs by approximately 90 ° between adjacent liquid crystal domains.
  • the first direction is approximately 45 °, approximately 135 °, approximately 225 °, or approximately 315 °.
  • the liquid crystal panel further includes a pair of polarizing plates that are opposed to each other via the liquid crystal layer and are arranged so that their transmission axes are substantially orthogonal to each other, the first direction, The second direction, the third direction, and the fourth direction form an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  • the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, a pretilt direction defined by the first alignment film, and a pretilt direction defined by the second alignment film; Differ from each other by approximately 90 °.
  • a pretilt angle defined by the first alignment film and a pretilt angle defined by the second alignment film are substantially equal to each other.
  • each of the first alignment film and the second alignment film is a photo-alignment film.
  • a 4D-RTN mode when adopted in a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels, Decrease in display quality due to a decrease in response speed can be suppressed.
  • FIG. 1A shows a pretilt direction on the TFT substrate side
  • FIG. 1B shows a pretilt direction on the CF substrate side
  • FIG. A tilt direction and a dark region when a voltage is applied to the layer are shown.
  • segmentation method of a pixel (a) shows the pretilt direction by the side of a TFT substrate, (b) shows the pretilt direction by the side of a CF substrate, (c) is a voltage to a liquid crystal layer.
  • a tilt direction and a dark region when is applied are shown. It is a figure for demonstrating the other alignment division
  • FIG. 9 is a diagram schematically illustrating a liquid crystal panel 1 included in the liquid crystal display device 100, and is a cross-sectional view taken along line 9A-9A ′ in FIG. It is a graph which shows the response speed (relationship between time (msec) and a luminance level) at the time of undershoot drive.
  • FIG. 20 is a graph showing a response speed (relationship between time (msec) and luminance level) when a 4D-RTN mode is used in the liquid crystal display device 900 shown in FIG.
  • the present invention is widely used when a 4D-RTN mode is employed in a multi-primary color liquid crystal display device.
  • the 4D-RTN mode is an RTN mode (VATN mode) in which a four-division alignment structure (4D structure) is formed in each pixel, and a liquid crystal display device employing the 4D-RTN mode has a vertical alignment.
  • a liquid crystal layer of the type is provided.
  • the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which liquid crystal molecules are aligned at an angle of about 85 ° or more with respect to the substrate surface (or the surface of the alignment film) when no voltage is applied.
  • the liquid crystal molecules contained in the vertical alignment type liquid crystal layer have negative dielectric anisotropy.
  • pixel refers to a minimum unit for expressing a specific gradation in display, and a unit for expressing each gradation of primary colors (red, green, blue, etc.) used for display. (Also referred to as “dots”).
  • a combination of a plurality of pixels constitutes (defines) one “color display pixel” which is a minimum unit for performing color display.
  • a “sub-pixel” is a unit that is included in one pixel and that can display different luminances.
  • a predetermined luminance (gradation) with respect to a display voltage input to one pixel is expressed by the plurality of sub-pixels.
  • the “pretilt direction” is the alignment direction of the liquid crystal molecules defined by the alignment film, and indicates the azimuth angle direction in the display surface. Further, the angle formed by the liquid crystal molecules with the surface of the alignment film at this time is referred to as “pretilt angle”.
  • performing the process for expressing the ability to define the pretilt direction in a predetermined direction on the alignment film is expressed as “giving a pretilt direction to the alignment film” in the present specification, and the alignment film
  • the pretilt direction defined by is sometimes simply referred to as “the pretilt direction of the alignment film”.
  • a quadrant alignment structure can be formed by changing the combination of the pretilt directions by a pair of alignment films facing each other through the liquid crystal layer.
  • the pixel divided into four has four liquid crystal domains.
  • Each liquid crystal domain is characterized by a tilt direction (also referred to as “reference alignment direction”) of liquid crystal molecules in the layer plane of the liquid crystal layer and in the thickness direction near the center when a voltage is applied to the liquid crystal layer.
  • the tilt direction (reference orientation direction) has a dominant influence on the viewing angle dependency of each domain. This tilt direction is also the azimuth direction.
  • the reference of the azimuth angle direction is the horizontal direction of the display surface, and the counterclockwise direction is positive (when the display surface is compared to a clock face, the 3 o'clock direction is azimuth angle 0 ° and the counterclockwise direction is positive).
  • the tilt directions of the four liquid crystal domains are four directions (for example, 12 o'clock direction, 9 o'clock direction, 6 o'clock direction, and 3 o'clock direction) in which the difference between any two directions is approximately equal to an integral multiple of 90 °.
  • the viewing angle characteristics are averaged and a good display can be obtained.
  • the areas occupied by the four liquid crystal domains in the pixels are substantially equal to each other.
  • the difference between the area of the largest liquid crystal domain and the area of the smallest liquid crystal domain among the four liquid crystal domains is preferably 25% or less of the largest area.
  • a vertical alignment type liquid crystal layer exemplified in the following embodiment includes liquid crystal molecules having negative dielectric anisotropy (nematic liquid crystal material having negative dielectric anisotropy), and a pretilt direction defined by one alignment film.
  • the pretilt direction defined by the other alignment film is substantially 90 ° different from each other, and the tilt direction (reference alignment direction) is defined in the middle of these two pretilt directions.
  • a chiral agent may be added to the liquid crystal layer as necessary.
  • the pretilt angles defined by each of the pair of alignment films are preferably substantially equal to each other. Since the pretilt angles are substantially equal, an advantage that display luminance characteristics can be improved is obtained. In particular, by making the difference in pretilt angle within 1 °, the tilt direction (reference alignment direction) of the liquid crystal molecules near the center of the liquid crystal layer can be stably controlled, and the display luminance characteristics can be improved. . This is because when the difference in the pretilt angle exceeds 1 °, the tilt direction varies depending on the position in the liquid crystal layer, and as a result, the transmittance varies (that is, a region having a transmittance lower than the desired transmittance is formed). This is probably because
  • the pretilt direction is imparted to the alignment film by a photo-alignment process.
  • a photo-alignment film containing a photosensitive group By using a photo-alignment film containing a photosensitive group, the variation in the pretilt angle can be controlled to 1 ° or less.
  • the photosensitive group preferably contains at least one photosensitive group selected from the group consisting of a 4-chalcone group, a 4'-chalcone group, a coumarin group, and a cinnamoyl group.
  • FIG. 1 shows a pixel P1 having a quadrant alignment structure (4D structure).
  • FIG. 1 shows a substantially square pixel P1 corresponding to a substantially square pixel electrode, but the shape of the pixel is not limited.
  • the pixel P1 may be substantially rectangular.
  • the pixel P1 has four liquid crystal domains D1, D2, D3, and D4 as shown in FIG.
  • the areas of the liquid crystal domains D1, D2, D3, and D4 are equal to each other, and the example shown in FIG. 1 is an example of the most preferable 4D structure in view angle characteristics.
  • the four liquid crystal domains D1, D2, D3 and D4 are arranged in a matrix of 2 rows and 2 columns.
  • the respective tilt directions (reference alignment directions) of the liquid crystal domains D1, D2, D3, and D4 are t1, t2, t3, and t4, these are the difference between any two directions is approximately equal to an integral multiple of 90 ° 4
  • the tilt direction t1 of the liquid crystal domain D1 is about 225 °
  • the tilt direction t2 of the liquid crystal domain D2 is about 315 °
  • the tilt direction t4 of the liquid crystal domain D4 is approximately 135 °. That is, the liquid crystal domains D1, D2, D3, and D4 are arranged such that their tilt directions differ by approximately 90 ° between adjacent liquid crystal domains.
  • the pair of polarizing plates facing each other through the liquid crystal layer are arranged so that the transmission axes (polarization axes) are substantially orthogonal to each other. More specifically, one transmission axis is the display surface. Are arranged so that the other transmission axis is substantially parallel to the vertical direction of the display surface. Therefore, the tilt directions t1, t2, t3, and t4 form an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  • the arrangement of the transmission axes of the polarizing plates is the same as that described above.
  • FIGS. 2A, 2B, and 2C are diagrams for explaining the alignment dividing method of the pixel P1 shown in FIG. 2A shows the pretilt directions PA1 and PA2 of the alignment film provided on the TFT substrate (lower substrate), and FIG. 2B is provided on the color filter (CF) substrate (upper substrate).
  • the pretilt directions PB1 and PB2 of the alignment film are shown.
  • FIG. 2C shows the tilt direction when a voltage is applied to the liquid crystal layer.
  • the orientation direction of the liquid crystal molecules as viewed from the observer side is schematically shown, and the liquid crystal molecules are aligned so that the bottom end of the liquid crystal molecules shown in a conical shape is close to the observer. Indicates that the camera is tilted.
  • the area on the TFT substrate side (area corresponding to one pixel P1) is divided into two parts on the left and right, and the vertical alignment of each area (left area and right area).
  • Orientation treatment is performed so that pretilt directions PA1 and PA2 antiparallel to the film are given.
  • photo-alignment processing is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow.
  • the left region is irradiated with light
  • the right region is shielded by the light shielding portion of the photomask, and when the right region is irradiated with light, the left region is similarly shielded.
  • the area on the CF substrate side (area corresponding to one pixel P1) is vertically divided into two areas, and each area (upper area and lower area) is perpendicular to each other.
  • Alignment processing is performed so that pretilt directions PB1 and PB2 antiparallel to the alignment film are provided.
  • photo-alignment processing is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow.
  • the alignment-divided pixel P1 can be formed as shown in FIG. 2C by bonding together the TFT substrate and the CF substrate that have been subjected to the alignment treatment. it can.
  • the pretilt direction of the alignment film of the TFT substrate and the pretilt direction of the alignment film of the CF substrate are approximately 90 to each other.
  • the tilt direction (reference orientation direction) is defined in the middle direction between these two pretilt directions.
  • the combination of the pretilt directions by the upper and lower alignment films is different from that of the other liquid crystal domains, and thereby, four tilt directions are realized in one pixel P1.
  • the dark region DR includes a cross-shaped dark line (cross-shaped portion) CL located at the boundary between the liquid crystal domains D1, D2, D3, and D4, and a linear dark line (in the vicinity of the edge of the pixel electrode, extending substantially parallel to the edge).
  • a straight portion) SL and is generally bowl-shaped as a whole.
  • the cross-shaped dark line CL is formed by aligning the liquid crystal molecules so that the alignment is continuous between the liquid crystal domains so as to be parallel or orthogonal to the transmission axis of the polarizing plate at the boundary between the liquid crystal domains.
  • the linear dark line SL near the edge indicates that the azimuth angle direction perpendicular to the edge of the pixel electrode to which the liquid crystal domain is adjacent and inward of the pixel electrode is more than 90 ° with respect to the tilt direction (reference alignment direction) of the liquid crystal domain. If there is an edge portion that forms a corner of the shape, it is formed. This is because the tilt direction of the liquid crystal domain and the direction of the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode have components opposite to each other. This is considered to be oriented in parallel or orthogonal.
  • the method of aligning and dividing one pixel into four liquid crystal domains D1 to D4 (that is, the arrangement of the liquid crystal domains D1 to D4 in the pixel) is not limited to the examples of FIGS.
  • the alignment-divided pixel P2 is formed as shown in FIG. 3C by bonding the TFT substrate and the CF substrate that have been subjected to the alignment treatment as shown in FIGS. 3A and 3B. Can do.
  • the pixel P2 like the pixel P1, has four liquid crystal domains D1 to D4. The tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
  • the liquid crystal domains D1 to D4 are arranged in the order of upper left, lower left, lower right, and upper right (that is, counterclockwise from the upper left), whereas in the pixel P2, the liquid crystal domains D1 to D4 are They are arranged in the order of lower right, upper right, upper left, and lower left (that is, counterclockwise from the lower right). This is because the pretilt direction is opposite between the left and right regions of the TFT substrate and the upper and lower regions of the CF substrate in the pixel P1 and the pixel P2.
  • the alignment-divided pixel P3 as shown in FIG. 4 (c) is formed by bonding the TFT substrate and the CF substrate that have been subjected to the alignment treatment as shown in FIGS. 4 (a) and 4 (b). Can do.
  • the pixel P3 has four liquid crystal domains D1 to D4 like the pixel P1.
  • the tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
  • the liquid crystal domains D1 to D4 are arranged in the order of upper right, lower right, lower left, and upper left (that is, clockwise from the upper right). This is because the pretilt direction is opposite between the left and right regions of the TFT substrate between the pixel P1 and the pixel P3.
  • the pixel P4 that is divided in alignment as shown in FIG. 5C is formed. Can do.
  • the pixel P4 has four liquid crystal domains D1 to D4 like the pixel P1.
  • the tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
  • the liquid crystal domains D1 to D4 are arranged in the order of lower left, upper left, upper right, and lower right (that is, clockwise from the lower left). This is because the pretilt direction is opposite between the upper region and the lower region of the CF substrate between the pixel P1 and the pixel P4.
  • the arrangement of the liquid crystal domains D1 to D4 in the pixel As described above, various arrangements can be adopted as the arrangement of the liquid crystal domains D1 to D4 in the pixel. As shown in FIGS. 2 to 5, when the arrangement of the liquid crystal domains D1 to D4 is different, the generation pattern of the dark line SL in the vicinity of the edge is different, so that the overall shape of the dark region DR is different. In the pixels P1 and P2 shown in FIGS. 2 and 3, the dark region DR has a substantially bowl shape, whereas in the pixels P3 and P4 shown in FIGS. 4 and 5, the dark region DR has an approximately 8 character shape. (Eight-letter shape inclined from the vertical direction).
  • a multi-primary color liquid crystal display device for example, the liquid crystal display device 900 shown in FIG. 19
  • the liquid crystal display device 900 shown in FIG. 19 simply adopting the 4D-RTN mode, refer to FIG. 20 when performing monochromatic display with pixels having a relatively small width.
  • the reason why the response speed is significantly reduced as described above will be described.
  • the decrease in response speed is due to alignment failure that occurs when a voltage is applied.
  • the voltage applied to the liquid crystal layer is a voltage corresponding to the highest gradation (for example, about 0 V). 7V)
  • some of the liquid crystal molecules are subjected to the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode, and are different from the original alignment directions (tilt directions t1 to t4 shown in FIG. 1). Falls in the direction.
  • the direction in which the liquid crystal molecules are tilted is parallel to or perpendicular to the transmission axis of the polarizing plate. Therefore, the liquid crystal molecules tilted in such a direction cause a decrease in transmittance.
  • the influence of the pixel electrode edge on the entire pixel becomes large, and thus a decrease in transmittance increases.
  • the luminance level once increases to some extent immediately after voltage application, and then gradually increases. This gradual increase in luminance level is due to the fact that liquid crystal molecules that fall in a direction different from the original orientation due to the edge of the pixel electrode rotate slowly in the liquid crystal layer plane (in the plane parallel to the substrate). The process of returning to the orientation of is shown.
  • liquid crystal display device it is possible to suppress a decrease in response speed due to the alignment failure as described above.
  • specific embodiments of the liquid crystal display device according to the present invention will be described.
  • FIG. 6 shows a liquid crystal display device 100 according to this embodiment.
  • the liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns.
  • the plurality of pixels include a red pixel R that displays red, a green pixel G that displays green, a blue pixel B that displays blue, and a yellow pixel Y that displays yellow.
  • These four pixels (red pixel R, green pixel G, blue pixel B, and yellow pixel Y) that display different colors constitute (specify) a color display pixel CP that is a minimum unit for performing color display.
  • the liquid crystal display device 100 is a multi-primary color liquid crystal display device that performs display using four primary colors (red, green, blue, and yellow).
  • the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are arranged in one row and four columns in the color display pixel CP.
  • the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are arranged in this order from the left side to the right side in the color display pixel CP.
  • the width W2 along the respective row directions of the green pixel G and the yellow pixel Y is larger than the width W1 along the respective row directions of the red pixel R and the blue pixel B. Is small.
  • the four pixels constituting the color display pixel CP have “first type” pixels (red pixels R and R) having a predetermined first width (width W1 in FIG. 6) along the row direction.
  • the first type pixel and the second type pixel are adjacent to each other along the row direction, and are alternately arranged along the row direction.
  • each area of the red pixel R and the blue pixel B and the width W2 of the green pixel G and the yellow pixel Y are in the above-described relationship (W1> W2), each area of the red pixel R and the blue pixel B is green. It is larger than each area of the pixel G and the yellow pixel Y.
  • the area of the red pixel R is larger than that of the yellow pixel Y, as in the liquid crystal display device disclosed in Patent Document 4, it is brighter red (high brightness) than when each pixel has the same area. Can be displayed.
  • the liquid crystal display device 100 performs display in the 4D-RTN mode.
  • Each pixel of the liquid crystal display device 100 has, for example, the same quadrant alignment structure as any of the pixels P1 to P4 shown in FIGS.
  • the liquid crystal display device 100 includes a liquid crystal panel 1 and a drive circuit 2.
  • the liquid crystal panel 1 has a plurality of pixels already described.
  • the drive circuit 2 supplies a display voltage to each of the plurality of pixels every one vertical scanning period.
  • one vertical scan period is about 16.7 msec.
  • one vertical scanning period is approximately 8.3 msec when performing double speed driving, and one vertical scanning period is approximately 4.2 msec when performing quadruple speed driving. is there.
  • the display voltage supplied to each pixel is not limited to the voltage (grayscale voltage) corresponding to the gradation to be displayed, but an overshoot voltage for improving response characteristics, pseudo impulse drive (black insertion drive), or the like. Including all voltages supplied to the pixel, such as a black display voltage for.
  • FIG. 8 and 9 show examples of the specific structure of the liquid crystal panel 1.
  • FIG. 8 is a plan view showing a region corresponding to one color display pixel CP (that is, four pixels) of the liquid crystal panel 1.
  • FIG. 9 is a cross-sectional view showing a region corresponding to two pixels (red pixel R and green pixel G), and is a cross-sectional view taken along line 9A-9A 'in FIG.
  • the liquid crystal panel 1 includes a vertical alignment type liquid crystal layer 30, an active matrix substrate (hereinafter referred to as “TFT substrate”) 10 and a counter substrate (hereinafter referred to as “color filter substrate”) that face each other with the liquid crystal layer 30 interposed therebetween. 20).
  • TFT substrate active matrix substrate
  • color filter substrate counter substrate
  • the liquid crystal layer 30 includes liquid crystal molecules having negative dielectric anisotropy (that is, ⁇ ⁇ 0).
  • the liquid crystal molecules of the liquid crystal layer 30 are aligned substantially perpendicular to the substrate surface when no voltage is applied to the liquid crystal layer 30.
  • the TFT substrate 10 includes a pixel electrode 11 provided in each of a plurality of pixels, a plurality of scanning wirings (gate bus lines) 12 extending in the row direction, and a plurality of signal wirings (source bus lines) 13 extending in the column direction.
  • the TFT substrate 10 further has a plurality of storage capacitor lines (CS bus lines) 14 extending in the row direction.
  • the pixel electrode 11 is connected to a TFT (Thin Film Transistor) 15 provided in each pixel.
  • the TFT 15 is supplied with a scanning signal from the corresponding scanning wiring 12 and supplied with a display signal (signal voltage) from the corresponding signal wiring 13.
  • the scanning wiring 12 is provided on an insulating transparent substrate (for example, a glass substrate) 10a.
  • auxiliary capacitance wiring 14 is also provided on the transparent substrate 10a.
  • the auxiliary capacitance line 14 is formed of the same conductive film as the scanning line 12.
  • a gate insulating film 16 is provided so as to cover the scanning wiring 12 and the auxiliary capacitance wiring 14.
  • a signal wiring 13 is provided on the gate insulating film 16.
  • An auxiliary capacitance electrode 17 is also provided on the gate insulating film 16.
  • the auxiliary capacitance electrode 17 is formed of the same conductive film as the signal wiring 13.
  • the auxiliary capacitance electrode 17 is electrically connected to the drain electrode of the TFT 15 via the connection electrode 17a.
  • An interlayer insulating film 18 is provided so as to cover the signal wiring 13 and the auxiliary capacitance electrode 17.
  • a pixel electrode 11 is provided on the interlayer insulating film 18.
  • the pixel electrode 11 is connected to the auxiliary capacitance electrode 17 in the contact hole CH formed in the interlayer insulating film 18, and is electrically connected to the TFT 15 via the auxiliary capacitance electrode 17 and the connection electrode 17a. .
  • the same signal voltage is supplied to the pixel electrode 11 and the auxiliary capacitance electrode 17 via the TFT 15.
  • the portion of the auxiliary capacitance line 14 facing the auxiliary capacitance electrode 17 functions as an auxiliary capacitance counter electrode constituting the auxiliary capacitance.
  • a storage capacitor counter voltage (CS voltage) is supplied to the storage capacitor wiring (storage capacitor counter electrode) 14.
  • An alignment film 19 is formed on the outermost surface of the TFT substrate 10 (the surface on the liquid crystal layer 30 side).
  • the alignment film 19 is given a pretilt direction by a photo-alignment process. That is, the alignment film 19 is a photo-alignment film.
  • the counter substrate 20 has a counter electrode 21 that faces the pixel electrode 11.
  • the counter electrode 21 is provided on an insulating transparent substrate (for example, a glass substrate) 20a.
  • An alignment film 29 is formed on the outermost surface of the counter substrate 20 (the surface on the liquid crystal layer 30 side).
  • the alignment film 29 is given a pretilt direction by a photo-alignment process. That is, the alignment film 29 is a photo-alignment film.
  • the counter substrate 20 further includes a color filter layer and a light shielding layer (black matrix).
  • the color filter layer corresponds to the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y, a red color filter that transmits red light, a green color filter that transmits green light, and blue light.
  • a blue color filter that transmits light and a yellow color filter that transmits yellow light are included.
  • the liquid crystal panel 1 further includes a pair of polarizing plates 41 and 42.
  • the pair of polarizing plates 41 and 42 are opposed to each other with at least the liquid crystal layer 30 therebetween, and are arranged so that their transmission axes (polarization axes) are substantially orthogonal to each other.
  • the tilt directions of the four liquid crystal domains D1 to D4 included in each pixel form an angle of approximately 45 ° with the transmission axes of the pair of polarizing plates 41 and 42.
  • the liquid crystal display device 100 is a multi-primary color liquid crystal display device that performs display in the 4D-RTN mode.
  • the driving circuit 2 included in the liquid crystal display device 100 has a vertical line before a vertical scanning period for supplying a display voltage for displaying the highest gradation when the display gradation changes from the lowest gradation to the highest gradation.
  • the scanning period typically, the vertical scanning period immediately after the transition
  • an undershoot voltage such a display voltage
  • undershoot driving that transiently supplies an undershoot voltage (voltage having an absolute value smaller than the original value) is referred to as “undershoot driving”.
  • the drive circuit 2 Since the drive circuit 2 performs undershoot driving, the voltage applied to the liquid crystal layer 30 immediately after the transition of the display gradation becomes lower than the original (that is, the torque for depressing the liquid crystal molecules becomes weak), so that the original orientation direction The number of liquid crystal molecules that fall in a different direction from that of the liquid crystal becomes smaller, and the occurrence of alignment defects can be suppressed. Therefore, as a result, the luminance level can be quickly reached the target value.
  • FIG. 10 shows an example of response speed when undershoot drive is performed.
  • FIG. 10 shows that when only the red pixel R is shifted to the highest gradation from the black display state (the state where all the pixels constituting the color display pixel CP display the lowest gradation), only the green pixel G is the highest.
  • the response speed is improved for all of the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y by performing the undershoot drive.
  • the white display state (the color display pixel CP is configured from the black display state).
  • the display state is switched to a state in which all the pixels to be displayed are in the highest gradation)
  • the response is delayed only for the green pixel G and the yellow pixel Y, so the displayed color is colored magenta. End up.
  • the driving circuit 2 of the liquid crystal display device 100 performs undershoot driving when all the display gradations of the four pixels constituting the color display pixel CP transition from the lowest gradation to the highest gradation.
  • the display gradation of the pixel here, the red pixel R or the blue pixel B, which is the first type pixel
  • the second type pixel the green pixel G or the yellow pixel Y
  • undershoot driving is performed on the second type pixel.
  • the undershoot drive is not performed, and the display from the black display state to the single color display state by the second type pixel is performed.
  • undershoot driving is performed for the second type pixel.
  • undershoot driving is performed in the vertical scanning period immediately after the transition of the display gradation, in the liquid crystal display device 100 in this embodiment, all the display floors of the four pixels constituting the color display pixel CP are displayed.
  • the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the tone transitions from the lowest gradation to the highest gradation In the vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation while the display gradation of the adjacent pixels remains at the lowest gradation. It can also be said that the absolute value of the display voltage supplied to the pixel of the type is small.
  • the liquid crystal display device 100 when monochromatic display is performed with the second type pixel (pixel having a relatively small width), undershoot driving is performed with respect to the second type pixel. Accordingly, it is possible to suppress a decrease in response speed in the second type pixel, and thus it is possible to suppress the occurrence of colored tailing.
  • undershoot driving is not performed when white display is performed. Therefore, the response speed at the time of white display does not decrease, and the tailing level does not deteriorate.
  • the liquid crystal display device 100 according to this embodiment performs selective undershoot driving for a specific pixel, thereby realizing high-quality display.
  • the driving circuit 2 detects the pixel adjacent to the second type pixel along the row direction. Even when the difference between the absolute value of the display voltage for displaying the target gradation and the absolute value of the display voltage for displaying the maximum gradation is 6 V or more, the second type pixel is used.
  • the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation is The difference between the absolute value of the display voltage for displaying the target gradation of the pixel adjacent to the second type pixel in the row direction and the absolute value of the display voltage for displaying the maximum gradation is It is preferable that the case of 6V or more is smaller than the case of less than 6V.
  • the display voltage corresponding to 240 gradations is exemplified as the undershoot voltage, but the undershoot voltage is not limited to this.
  • the undershoot voltage is preferably set to an appropriate level that can sufficiently prevent the occurrence of alignment failure and can quickly reach the target luminance level.
  • the display voltage is preferably 0.5 to 0.9 times, more preferably 0.7 to 0.8 times the display voltage for displaying the tone.
  • liquid crystal display device 100 it is possible to suppress a decrease in response speed when performing a monochrome display with a second type (that is, a relatively small width) of pixels.
  • first type pixel and the second type pixel are alternately arranged along the row direction, but the first type pixel and the second type pixel are illustrated as examples.
  • the arrangement of the type pixels is not limited to this.
  • FIG. 11 shows another example of the arrangement of the first type pixel and the second type pixel.
  • a plurality of pixels in the color display pixel CP are arranged in the order of red pixel R, yellow pixel Y, green pixel G, and blue pixel B from the left side to the right side. That is, the first type pixel, the second type pixel, the second type pixel, and the first type pixel are arranged from the left side to the right side.
  • a plurality of second type pixels green pixel G and yellow pixel Y
  • the liquid crystal display device in this embodiment can perform multi-pixel driving (pixel division driving).
  • multi-pixel driving the problem that the ⁇ characteristic (gamma characteristic) observed from the front direction is different from the ⁇ characteristic observed from the oblique direction, that is, the viewing angle dependency of the ⁇ characteristic is improved.
  • the ⁇ characteristic is the gradation dependency of display luminance.
  • one pixel is composed of a plurality of sub-pixels that can display different luminances, and a predetermined luminance corresponding to a display signal input to the pixels is displayed.
  • multi-pixel driving is a technique for improving the viewing angle dependency of the ⁇ characteristics of pixels by combining different ⁇ characteristics of a plurality of sub-pixels.
  • FIG. 12 shows a liquid crystal display device 200 according to this embodiment.
  • FIG. 12 is a plan view showing a region corresponding to one color display pixel (four pixels of red pixel R, green pixel G, blue pixel B, and yellow pixel Y) of the liquid crystal display device 200.
  • Each pixel of the liquid crystal display device 200 has a plurality of sub-pixels sp1 and sp2 that can apply different voltages to the liquid crystal layer in each pixel.
  • a plurality (specifically two) of sub-pixels sp1 and sp2 are arranged along the column direction. Although two subpixels sp1 and sp2 are illustrated here, each pixel may have three or more subpixels.
  • the pixel electrode 11 of each pixel has two subpixel electrodes 11A and 11B so as to correspond to the two subpixels sp1 and sp2.
  • the two subpixel electrodes 11A and 11B are connected to the corresponding TFTs 15A and 15B, respectively.
  • the gate electrodes of the two TFTs 15A and 15B are connected to the common scanning wiring 12, and are on / off controlled by the same gate signal.
  • the source electrodes of the two TFTs 15A and 15B are connected to a common signal line 13.
  • An auxiliary capacitor is provided for each of the two sub-pixels sp1 and sp2.
  • the auxiliary capacitance electrode 17 constituting the auxiliary capacitance of one subpixel sp1 is electrically connected to the drain electrode of the TFT 15A, and the auxiliary capacitance electrode 17 constituting the auxiliary capacitance of the other subpixel sp2 is connected to the drain of the TFT 15B. It is electrically connected to the electrode.
  • the storage capacitor counter electrode 14b constituting the storage capacitor of the sub-pixel sp1 is electrically connected to the storage capacitor line 14A, and the storage capacitor counter electrode 14b forming the storage capacitor of the sub-pixel sp2 is connected to the storage capacitor line 14B. Is electrically connected.
  • the storage capacitor counter electrode 14b of the subpixel sp1 and the storage capacitor counter electrode 14b of the subpixel sp2 are independent from each other, and different voltages (CS voltages) are supplied from the storage capacitor lines 14A and 14B, respectively.
  • CS voltages different voltages supplied to the storage capacitor counter electrode 14b
  • the effective voltage applied to the liquid crystal layer 30 of the sub-pixel sp1 and the liquid crystal layer 30 of the sub-pixel sp2 is made different by using capacitive division. Accordingly, the display luminance can be different between the sub-pixel sp1 and the sub-pixel sp2.
  • each pixel of the liquid crystal display device 200 has the same quadrant alignment structure as any of the pixels P1 to P4 shown in FIGS. From the viewpoint of viewing angle characteristics, it is more preferable that each of the sub-pixel sp1 and the sub-pixel sp2 has a quadrant alignment structure.
  • the green pixels G and the yellow pixels Y are arranged in the row directions rather than the widths of the red pixels R and the blue pixels B in the row directions.
  • the width is small. That is, the red pixel R and the blue pixel B are “first type” pixels, and the green pixel G and the yellow pixel Y are “second type” pixels.
  • the liquid crystal display device 200 according to the present embodiment also performs selective undershoot driving for the second type of pixels, similarly to the liquid crystal display device 100 according to the first embodiment. For this reason, it is possible to suppress a decrease in response speed when performing monochrome display with the second type pixel, and thus it is possible to suppress the occurrence of colored tailing. Further, the response speed at the time of white display does not decrease, and the tailing level does not deteriorate. Therefore, the liquid crystal display device 200 in the present embodiment can also perform high-quality display.
  • the red pixel R and the blue pixel B are the first type pixels and the green pixel G and the yellow pixel Y are the second type pixels is exemplified. Is not limited to this. For example, only one of the green pixel G and the yellow pixel Y may be the second type pixel. Which pixel has a relatively large width (that is, which pixel has a relatively large area) may be appropriately determined in accordance with the application, specifications, and the like of the liquid crystal display device.
  • a configuration in which a plurality of pixels are arranged in one row and a plurality of columns in the color display pixel CP is illustrated.
  • a plurality of pixels may be arranged in a plurality of rows and a plurality of columns.
  • a red pixel R as a first type pixel and a green pixel G as a second type pixel are alternately arranged in a certain pixel row.
  • Blue pixels B that are one type of pixels and yellow pixels Y that are a second type of pixels are alternately arranged. Therefore, four pixels are arranged in 2 rows and 2 columns in the color display pixel CP.
  • the number of the plurality of pixels constituting the color display pixel CP is not limited to four.
  • the present invention is widely used in a liquid crystal display device in which the color display pixel CP includes four or more pixels that display different colors.
  • the color display pixel CP may be configured by five pixels, or may be configured by six pixels as in the liquid crystal display device 400 illustrated in FIG.
  • the color display pixel CP includes a cyan pixel C that displays cyan and a magenta pixel M that displays magenta in addition to the red pixel R, green pixel G, blue pixel B, and yellow pixel Y. .
  • the type (combination) of the pixels constituting the color display pixel CP is not limited to the above example.
  • the color display pixel CP when the color display pixel CP is configured by four pixels, the color display pixel CP may be configured by the red pixel R, the green pixel G, the blue pixel B, and the cyan pixel C, or the red pixel R, the green pixel
  • the color display pixel CP may be configured by G, the blue pixel B, and the magenta pixel M.
  • the color display pixel CP may be configured by a red pixel R, a green pixel G, a blue pixel B, and a white pixel W that displays white.
  • a color filter that is colorless and transparent that is, transmits white light
  • the added primary color is white, the effect of widening the color reproduction range cannot be obtained, but the display luminance of one color display pixel CP can be improved.
  • the liquid crystal display device 100 is performed by performing selective undershoot driving for the second type pixels. As with 200 and 200, high-quality display can be performed.
  • the color display pixel CP includes only the first type pixel and the second type pixel, that is, there are two types of pixel widths along the row direction in the color display pixel CP.
  • the width of the pixel along the row direction may be three or more types.
  • the color display pixel CP includes a first type pixel whose width along the row direction is a predetermined first width, and a second width whose width along the row direction is smaller than the first width.
  • the pixel further includes a “third type” pixel having a width along the row direction smaller than the first width and larger than the second width. Also good.
  • the present invention when a 4D-RTN mode is adopted in a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels, Decrease in display quality due to a decrease in response speed can be suppressed.
  • the liquid crystal display device according to the present invention is suitably used for applications that require high quality display such as television receivers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device (100) is provided with a liquid crystal panel (1) and a drive circuit (2). Four or more pixels, which constitute a color display pixel (CP), and which respectively display different colors, include a first type pixel in which the width in the row direction is a predetermined first width (W1), and a second type pixel, in which the width in the row direction is a second width (W2) that is smaller than the first width (W1). The drive circuit (2) is capable of performing undershoot drive when a display gradation level shifts to a highest gradation level from a lowest gradation level. The drive circuit (2) does not perform the undershoot drive when the display gradation levels of all of the four or more pixels constituting the color display pixel (CP) shift to the highest gradation level from the lowest gradation level, and when the display gradation level of the pixel adjacent to the second type pixel in the row direction remains at the lowest gradation level, and the display gradation level of the second type pixel shifts to the highest gradation level from the lowest gradation level, the drive circuit performs the undershoot drive with respect to the second type pixel.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、特に、4つ以上の原色を用いて表示を行う多原色液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a multi-primary color liquid crystal display device that performs display using four or more primary colors.
 液晶表示装置の表示特性が改善され、テレビジョン受像機などへの利用が進んでいる。液晶表示装置の視野角特性は向上したもののさらなる改善が望まれている。特に、垂直配向型の液晶層を用いた液晶表示装置(VAモードの液晶表示装置と呼ばれることもある。)の視野角特性を改善する要求は強い。 The display characteristics of liquid crystal display devices have been improved, and the use for television receivers is progressing. Although the viewing angle characteristics of liquid crystal display devices have been improved, further improvements are desired. In particular, there is a strong demand for improving the viewing angle characteristics of a liquid crystal display device using a vertical alignment type liquid crystal layer (sometimes referred to as a VA mode liquid crystal display device).
 現在、テレビ等の大型表示装置に用いられているVAモードの液晶表示装置には、視野角特性を改善するために、1つの画素に複数の液晶ドメインを形成する配向分割構造が採用されている。配向分割構造を形成する方法としては、MVAモードが主流である。MVAモードは、例えば特許文献1に開示されている。 VA mode liquid crystal display devices currently used in large display devices such as televisions employ an alignment division structure in which a plurality of liquid crystal domains are formed in one pixel in order to improve viewing angle characteristics. . As a method of forming the alignment division structure, the MVA mode is the mainstream. The MVA mode is disclosed in Patent Document 1, for example.
 MVAモードでは、垂直配向型液晶層を挟んで対向する一対の基板のそれぞれの液晶層側に配向規制構造を設けることによって、各画素内に配向方向(チルト方向)が異なる複数の液晶ドメイン(典型的には配向方向は4種類)が形成される。配向規制構造としては、電極に設けたスリット(開口部)や、リブ(突起構造)が用いられ、液晶層の両側から配向規制力が発揮される。 In the MVA mode, a plurality of liquid crystal domains having different alignment directions (tilt directions) in each pixel (typically) are provided by providing an alignment regulating structure on each liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer interposed therebetween. Specifically, four types of orientation directions are formed. As the alignment regulating structure, slits (openings) provided in the electrodes and ribs (projection structure) are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer.
 しかしながら、スリットやリブを用いると、従来のTNモードで用いられていた配向膜によってプレチルト方向を規定した場合と異なり、スリットやリブが線状であることから、液晶分子に対する配向規制力が画素内で不均一となるため、応答速度に分布が生じるという問題がある。また、スリットやリブを設けた領域の光透過率が低下するので、表示輝度が低下するという問題もある。 However, when slits or ribs are used, unlike the case where the pretilt direction is defined by the alignment film used in the conventional TN mode, the slits and ribs are linear, so that the alignment regulating force on the liquid crystal molecules is within the pixel. In this case, there is a problem that the response speed is distributed. In addition, since the light transmittance of the region where the slits and ribs are provided is lowered, there is also a problem that display luminance is lowered.
 上述の問題を回避するためには、VAモードの液晶表示装置についても、配向膜でプレチルト方向を規定することによって配向分割構造を形成することが好ましい。そのようにして配向分割構造が形成されたVAモードの液晶表示装置を、本願出願人は、特許文献2に提案している。 In order to avoid the above-described problem, it is preferable to form an alignment division structure in the VA mode liquid crystal display device by defining the pretilt direction with the alignment film. The applicant of the present application has proposed a VA mode liquid crystal display device in which an alignment division structure is formed as described above in Patent Document 2.
 特許文献2に開示されている液晶表示装置では、配向膜でプレチルト方向を規定することによって、4分割配向構造が形成される。つまり、液晶層に電圧が印加されたときに、1つの画素内に4つの液晶ドメインが形成される。このような4分割配向構造を、単に4D構造と呼ぶこともある。 In the liquid crystal display device disclosed in Patent Document 2, a quadrant alignment structure is formed by defining a pretilt direction with an alignment film. That is, when a voltage is applied to the liquid crystal layer, four liquid crystal domains are formed in one pixel. Such a quadrant alignment structure is sometimes simply referred to as a 4D structure.
 また、特許文献2に開示されている液晶表示装置では、液晶層を介して対向する一対の配向膜のうちの一方の配向膜によって規定されるプレチルト方向と、他方の配向膜によって規定されるプレチルト方向とは互いに略90°異なっている。そのため、電圧印加時には、液晶分子はツイスト配向をとる。このように、プレチルト方向(配向処理方向)が互いに直交するように設けられた一対の垂直配向膜を用いることによって液晶分子がツイスト配向をとるVAモードは、VATN(Vertical Alignment Twisted Nematic)モードあるいはRTN(Reverse Twisted Nematic)モードと呼ばれることもある。既に説明したように、特許文献2の液晶表示装置では4D構造が形成されることから、本願出願人は、特許文献2の液晶表示装置の表示モードを4D-RTNモードと呼んでいる。 Further, in the liquid crystal display device disclosed in Patent Document 2, a pretilt direction defined by one alignment film of a pair of alignment films opposed via a liquid crystal layer and a pretilt defined by the other alignment film are provided. The directions differ from each other by approximately 90 °. Therefore, when a voltage is applied, the liquid crystal molecules are twisted. Thus, the VA mode in which the liquid crystal molecules are twisted by using a pair of vertical alignment films provided so that the pretilt directions (alignment processing directions) are orthogonal to each other is a VATN (Vertical Alignment Twisted Nematic) mode or RTN. Also called (Reverse Twisted Nematic) mode. As already described, since the 4D structure is formed in the liquid crystal display device of Patent Document 2, the applicant of the present application calls the display mode of the liquid crystal display device of Patent Document 2 as the 4D-RTN mode.
 液晶分子のプレチルト方向を配向膜に規定させる具体的な方法としては、特許文献2にも記載されているように、光配向処理を行う方法が有望視されている。光配向処理は、非接触で処理できるので、ラビング処理のように摩擦による静電気の発生が無く、歩留まりを向上させることができる。 As a specific method for defining the pretilt direction of the liquid crystal molecules in the alignment film, as described in Patent Document 2, a method of performing photo-alignment treatment is considered promising. Since the photo-alignment treatment can be performed in a non-contact manner, there is no generation of static electricity due to friction unlike the rubbing treatment, and the yield can be improved.
 また、近年、上述したような視野角特性の改善に加え、液晶表示装置の色再現範囲(表示可能な色の範囲)の拡大が望まれている。一般的な液晶表示装置では、光の三原色である赤、緑、青を表示する3つの画素によって1つのカラー表示画素が構成されており、そのことによってカラー表示が可能になっている。これに対し、特許文献3に開示されているような、表示に用いる原色の数を4つ以上に増やすことによって液晶表示装置の色再現範囲を広くする手法が提案されている。 In recent years, in addition to the improvement in viewing angle characteristics as described above, it is desired to expand the color reproduction range (displayable color range) of a liquid crystal display device. In a general liquid crystal display device, one color display pixel is composed of three pixels that display red, green, and blue, which are the three primary colors of light, thereby enabling color display. On the other hand, as disclosed in Patent Document 3, a method for widening the color reproduction range of a liquid crystal display device by increasing the number of primary colors used for display to four or more has been proposed.
 例えば、図16に示す液晶表示装置600のように、赤画素R、緑画素G、青画素Bおよび黄画素Yの4つの画素によって1つのカラー表示画素CPを構成することにより、色再現範囲を広くすることができる。あるいは、図17に示す液晶表示装置700のように、赤画素R、緑画素G、青画素B、シアン画素Cおよび黄画素Yの5つの画素によって1つのカラー表示画素CPを構成してもよいし、図18に示す液晶表示装置800のように、赤画素R、緑画素G、青画素B、シアン画素C、マゼンタ画素Mおよび黄画素Yの6つの画素によって1つのカラー表示画素CPを構成してもよい。4つ以上の原色を用いることにより、三原色を用いて表示を行う従来の液晶表示装置よりも色再現範囲を広くすることができる。4つ以上の原色を用いて表示を行う液晶表示装置は、多原色液晶表示装置と呼ばれる。 For example, as in the liquid crystal display device 600 shown in FIG. 16, one color display pixel CP is configured by four pixels of a red pixel R, a green pixel G, a blue pixel B, and a yellow pixel Y, thereby reducing the color reproduction range. Can be wide. Alternatively, as in the liquid crystal display device 700 illustrated in FIG. 17, one color display pixel CP may be configured by five pixels of the red pixel R, the green pixel G, the blue pixel B, the cyan pixel C, and the yellow pixel Y. Then, as in the liquid crystal display device 800 shown in FIG. 18, one color display pixel CP is constituted by six pixels of a red pixel R, a green pixel G, a blue pixel B, a cyan pixel C, a magenta pixel M, and a yellow pixel Y. May be. By using four or more primary colors, the color reproduction range can be made wider than that of a conventional liquid crystal display device that performs display using three primary colors. A liquid crystal display device that performs display using four or more primary colors is called a multi-primary color liquid crystal display device.
 多原色液晶表示装置では、カラー表示画素を構成する複数の画素のうちの一部の画素のサイズが、他の画素のサイズと異なるように設定されることがある。例えば特許文献4には、カラー表示画素を構成する複数の画素のうちで赤画素のサイズがもっとも大きい液晶表示装置が提案されている。 In the multi-primary color liquid crystal display device, the size of some of the plurality of pixels constituting the color display pixel may be set differently from the size of other pixels. For example, Patent Document 4 proposes a liquid crystal display device in which a red pixel has the largest size among a plurality of pixels constituting a color display pixel.
特開平11-242225号公報Japanese Patent Laid-Open No. 11-242225 国際公開第2006/132369号International Publication No. 2006/132369 特表2004-529396号公報JP-T-2004-529396 国際公開第2007/148519号International Publication No. 2007/148519
 本願発明者は、多原色液晶表示装置への4D-RTNモードの採用を検討した。その結果、特定の構成を有する多原色液晶表示装置に4D-RTNモードを採用すると、表示品位の低下が発生することがわかった。具体的には、1つのカラー表示画素内に他の画素と幅の異なる画素が含まれていると、相対的に幅の小さい画素で単色表示を行う際、応答速度の低下が顕著に発生してしまうことがわかった。 The inventor of the present application examined the adoption of a 4D-RTN mode for a multi-primary color liquid crystal display device. As a result, it was found that when the 4D-RTN mode is adopted in the multi-primary color liquid crystal display device having a specific configuration, the display quality is deteriorated. Specifically, if one color display pixel contains a pixel with a width different from that of the other pixels, the response speed is significantly reduced when performing monochrome display with a relatively small pixel. I understood that.
 ここで、図19に示す液晶表示装置900を例として、上述した応答速度の低下をより具体的に説明する。液晶表示装置900のカラー表示画素CPは、赤画素R、緑画素G、青画素Bおよび黄画素Yによって構成されている。液晶表示装置900では、図19に示すように、赤画素Rおよび青画素Bの幅が相対的に大きく、緑画素Gおよび黄画素Yの幅が相対的に小さい。 Here, taking the liquid crystal display device 900 shown in FIG. 19 as an example, the above-described decrease in response speed will be described more specifically. The color display pixel CP of the liquid crystal display device 900 includes a red pixel R, a green pixel G, a blue pixel B, and a yellow pixel Y. In the liquid crystal display device 900, as shown in FIG. 19, the widths of the red pixel R and the blue pixel B are relatively large, and the widths of the green pixel G and the yellow pixel Y are relatively small.
 図20に、液晶表示装置900に4D-RTNモードを用いた場合の応答速度の例を示す。図20には、黒表示状態(カラー表示画素CPを構成するすべての画素が最低階調を表示している状態)からカラー表示画素CPを構成するすべての画素に最高階調に対応する電圧(最高階調電圧)を印加したときの時間(msec)と輝度レベルとの関係が示されている(図中に「黒→白」と表記されている曲線)。また、図20には、黒表示状態から赤画素Rのみに最高階調電圧を印加したとき、黒表示状態から緑画素Gのみに最高階調電圧を印加したとき、黒表示状態から青画素Bのみに最高階調電圧を印加したときおよび黒表示状態から黄画素Yのみに最高階調電圧を印加したときについても、時間(msec)と輝度レベルとの関係が示されている(それぞれ図中に「黒→赤」、「黒→緑」、「黒→青」、「黒→黄」と表記されている曲線)。なお、図20に示す例では、1垂直走査期間は約8.3msecである(つまり2倍速駆動)。 FIG. 20 shows an example of response speed when the 4D-RTN mode is used for the liquid crystal display device 900. In FIG. 20, the voltage corresponding to the highest gradation is applied to all the pixels constituting the color display pixel CP from the black display state (the state where all the pixels constituting the color display pixel CP display the lowest gradation). The relationship between the time (msec) and the luminance level when the (maximum gradation voltage) is applied is shown (curve indicated as “black → white” in the figure). In FIG. 20, when the highest gradation voltage is applied only to the red pixel R from the black display state, when the highest gradation voltage is applied only to the green pixel G from the black display state, the blue pixel B is changed from the black display state. The relationship between time (msec) and the luminance level is also shown when the highest gradation voltage is applied only to the pixel and when the highest gradation voltage is applied only to the yellow pixel Y from the black display state (each in the figure). "Black → red", "black → green", "black → blue", "black → yellow"). In the example shown in FIG. 20, one vertical scanning period is about 8.3 msec (that is, double speed driving).
 図20から、単色表示の場合、白表示の場合よりも応答速度が低下することがわかる。特に、緑表示の場合および黄表示の場合、応答速度の低下が顕著である。そのため、原色に近い色のスクロールで尾引きがひどく、表示品位が低下してしまう。 FIG. 20 shows that the response speed is lower in the case of monochromatic display than in the case of white display. In particular, in the case of green display and yellow display, the response speed is significantly reduced. For this reason, the trailing of the color close to the primary color is severe and the display quality is degraded.
 このように、多原色液晶表示装置に4D-RTNモードを採用すると、相対的に幅の小さい画素(図20の例では、緑画素Gおよび黄画素Y)で応答速度の低下が顕著に発生する。そのため、視認性の高い色付いた尾引きが発生し、表示品位が低下してしまう。 As described above, when the 4D-RTN mode is adopted in the multi-primary color liquid crystal display device, the response speed is remarkably reduced in pixels having relatively small widths (green pixel G and yellow pixel Y in the example of FIG. 20). . Therefore, a colored tail with high visibility occurs, and the display quality deteriorates.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、カラー表示画素を構成する複数の画素に他の画素と幅の異なる画素が含まれている多原色液晶表示装置に4D-RTNモードを採用したときの、幅の小さい画素での応答速度の低下に起因する表示品位の低下を抑制することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels. The object is to suppress a reduction in display quality caused by a reduction in response speed in a pixel having a small width when the RTN mode is employed.
 本発明による液晶表示装置は、複数の行および複数の列を有するマトリクス状に配列された複数の画素を有し、互いに異なる色を表示する4つ以上の画素がカラー表示画素を構成する液晶表示装置であって、垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板とを有する液晶パネルと、前記複数の画素のそれぞれに1垂直走査期間ごとに表示電圧を供給する駆動回路と、を備え、前記カラー表示画素を構成する前記4つ以上の画素は、行方向に沿った幅が所定の第1の幅である第1のタイプの画素と、行方向に沿った幅が前記第1の幅よりも小さい第2の幅である第2のタイプの画素とを含み、前記駆動回路は、表示階調が最低階調から最高階調へ遷移する際に、最高階調の表示を行うための表示電圧を供給する垂直走査期間よりも前の垂直走査期間において、最低階調の表示を行うための表示電圧と最高階調の表示を行うための表示電圧との間の大きさを有するアンダーシュート電圧を供給するアンダーシュート駆動を行うことができ、さらに、前記駆動回路は、前記カラー表示画素を構成する前記4つ以上の画素のすべての表示階調が最低階調から最高階調へ遷移する際には、前記アンダーシュート駆動を行なわず、前記第2のタイプの画素に行方向に沿って隣接する画素の表示階調が最低階調のままで前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際には、前記第2のタイプの画素に対して前記アンダーシュート駆動を行う。 The liquid crystal display device according to the present invention has a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, and four or more pixels displaying different colors constitute a color display pixel. A device, a liquid crystal panel having a vertical alignment type liquid crystal layer, and a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and display on each of the plurality of pixels for each vertical scanning period A drive circuit for supplying a voltage, and the four or more pixels constituting the color display pixel include a first type pixel having a predetermined first width in a row direction, and a row. And a second type pixel having a second width smaller than the first width in the direction along the direction, and the driving circuit is configured to change the display gradation from the lowest gradation to the highest gradation. Display voltage for displaying the highest gradation. An undershoot voltage having a magnitude between a display voltage for displaying the lowest gradation and a display voltage for performing the highest gradation is supplied in the vertical scanning period before the vertical scanning period. Undershoot driving can be performed, and when the display gray level of all the four or more pixels constituting the color display pixel transitions from the lowest gray level to the highest gray level, the drive circuit can perform undershoot driving. Without performing the undershoot driving, the display gradation of the pixel of the second type is the lowest gradation while the display gradation of the pixel adjacent to the second type pixel in the row direction remains the lowest gradation. When transitioning from 1 to the maximum gradation, the undershoot drive is performed on the second type pixel.
 ある好適な実施形態において、前記駆動回路は、前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際に、前記第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と、最高階調の表示を行うための表示電圧の絶対値との差が6V以上の場合にも前記第2のタイプの画素に対してアンダーシュート駆動を行う。 In a preferred embodiment, the driving circuit applies the second type pixel along the row direction when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation. Even when the difference between the absolute value of the display voltage for displaying the target gradation of the adjacent pixel and the absolute value of the display voltage for displaying the maximum gradation is 6 V or more, the second type Undershoot drive is performed on the pixel.
 ある好適な実施形態において、前記アンダーシュート電圧は、最高階調の表示を行うための表示電圧の0.5倍以上0.9倍以下である。 In a preferred embodiment, the undershoot voltage is not less than 0.5 times and not more than 0.9 times the display voltage for displaying the highest gradation.
 あるいは、本発明による液晶表示装置は、複数の行および複数の列を有するマトリクス状に配列された複数の画素を有し、互いに異なる色を表示する4つ以上の画素がカラー表示画素を構成する液晶表示装置であって、垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板とを有する液晶パネルと、前記複数の画素のそれぞれに1垂直走査期間ごとに表示電圧を供給する駆動回路と、を備え、前記カラー表示画素を構成する前記4つ以上の画素は、行方向に沿った幅が所定の第1の幅である第1のタイプの画素と、行方向に沿った幅が前記第1の幅よりも小さい第2の幅である第2のタイプの画素とを含み、前記カラー表示画素を構成する前記4つ以上の画素のすべての表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値よりも、前記第2のタイプの画素に行方向に沿って隣接する画素の表示階調が最低階調のままで前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値が小さい。 Alternatively, the liquid crystal display device according to the present invention includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, and four or more pixels displaying different colors constitute a color display pixel. A liquid crystal display device comprising: a liquid crystal panel having a vertical alignment type liquid crystal layer; a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween; and a plurality of pixels each having a vertical scanning period A drive circuit that supplies a display voltage to the four or more pixels constituting the color display pixel, the first type of pixels having a predetermined first width in the row direction; And a second type pixel having a second width smaller than the first width in the row direction, and all the display floors of the four or more pixels constituting the color display pixel Tone transition from lowest to highest Display gray level of a pixel adjacent to the second type pixel in the row direction rather than the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition Is supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the display gray level of the second type pixel transitions from the lowest gray level to the highest gray level. The absolute value of the display voltage is small.
 ある好適な実施形態において、前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値は、前記第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と最高階調の表示を行うための表示電圧の絶対値との差が6V未満の場合よりも、6V以上の場合の方が小さい。 In a preferred embodiment, the second type pixel is supplied to the second type pixel in a vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation. The absolute value of the display voltage includes the absolute value of the display voltage for displaying the target gradation of the pixel adjacent in the row direction to the second type pixel and the display voltage for displaying the maximum gradation. When the difference from the absolute value of 6V is 6V or more is smaller than when it is less than 6V.
 ある好適な実施形態において、前記カラー表示画素を構成する前記4つ以上の画素は、赤を表示する赤画素、緑を表示する緑画素および青を表示する青画素を含む。 In a preferred embodiment, the four or more pixels constituting the color display pixel include a red pixel that displays red, a green pixel that displays green, and a blue pixel that displays blue.
 ある好適な実施形態において、前記カラー表示画素を構成する前記4つ以上の画素は、黄を表示する黄画素をさらに含む。 In a preferred embodiment, the four or more pixels constituting the color display pixel further include a yellow pixel for displaying yellow.
 ある好適な実施形態において、前記赤画素および前記青画素は、それぞれ前記第1のタイプの画素であり、前記緑画素および前記黄画素の少なくとも一方は、前記第2のタイプの画素である。 In a preferred embodiment, the red pixel and the blue pixel are each the first type pixel, and at least one of the green pixel and the yellow pixel is the second type pixel.
 ある好適な実施形態において、前記カラー表示画素を構成する前記4つ以上の画素は、前記赤画素、前記緑画素、前記青画素および前記黄画素の4つの画素であり、前記緑画素および前記黄画素の両方が前記第2のタイプの画素である。 In a preferred embodiment, the four or more pixels constituting the color display pixel are four pixels of the red pixel, the green pixel, the blue pixel, and the yellow pixel, and the green pixel and the yellow pixel. Both pixels are the second type of pixel.
 ある好適な実施形態において、前記第1基板は、前記液晶層側の表面に設けられた第1配向膜を有し、前記第2基板は、前記液晶層側の表面に設けられた第2配向膜を有し、前記複数の画素のそれぞれは、前記液晶層に電圧が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向が予め決められた第1方向である第1液晶ドメインと、第2方向である第2液晶ドメインと、第3方向である第3液晶ドメインと、第4方向である第4液晶ドメインと、を有し、前記第1方向、第2方向、第3方向および第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向である。 In a preferred embodiment, the first substrate has a first alignment film provided on the surface on the liquid crystal layer side, and the second substrate is provided on the surface on the liquid crystal layer side. Each of the plurality of pixels has a predetermined tilt direction of the liquid crystal molecules in the layer surface of the liquid crystal layer and in the vicinity of the center in the thickness direction when a voltage is applied to the liquid crystal layer. A first liquid crystal domain that is a direction, a second liquid crystal domain that is a second direction, a third liquid crystal domain that is a third direction, and a fourth liquid crystal domain that is a fourth direction, and the first direction The second direction, the third direction, and the fourth direction are four directions in which the difference between any two directions is approximately equal to an integral multiple of 90 °.
 ある好適な実施形態において、前記第1液晶ドメイン、第2液晶ドメイン、第3液晶ドメインおよび第4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、2行2列のマトリクス状に配置されている。 In a preferred embodiment, the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are respectively adjacent to other liquid crystal domains and arranged in a matrix of 2 rows and 2 columns. ing.
 ある好適な実施形態において、前記第1液晶ドメイン、第2液晶ドメイン、第3液晶ドメインおよび第4液晶ドメインは、前記チルト方向が隣接する液晶ドメイン間で略90°異なるように配置されている。 In a preferred embodiment, the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged so that the tilt direction differs by approximately 90 ° between adjacent liquid crystal domains.
 ある好適な実施形態において、表示面における水平方向の方位角を0°とするとき、前記第1方向は略45°、略135°、略225°または略315°である。 In a preferred embodiment, when the horizontal azimuth angle on the display surface is 0 °, the first direction is approximately 45 °, approximately 135 °, approximately 225 °, or approximately 315 °.
 ある好適な実施形態において、前記液晶パネルは、前記液晶層を介して互いに対向し、それぞれの透過軸が互いに略直交するように配置された一対の偏光板をさらに有し、前記第1方向、第2方向、第3方向および第4方向は、前記一対の偏光板の前記透過軸と略45°の角をなす。 In a preferred embodiment, the liquid crystal panel further includes a pair of polarizing plates that are opposed to each other via the liquid crystal layer and are arranged so that their transmission axes are substantially orthogonal to each other, the first direction, The second direction, the third direction, and the fourth direction form an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
 ある好適な実施形態において、前記液晶層は、負の誘電異方性を有する液晶分子を含み、前記第1配向膜によって規定されるプレチルト方向と、前記第2配向膜によって規定されるプレチルト方向とは互いに略90°異なる。 In a preferred embodiment, the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, a pretilt direction defined by the first alignment film, and a pretilt direction defined by the second alignment film; Differ from each other by approximately 90 °.
 ある好適な実施形態において、前記第1配向膜によって規定されるプレチルト角と、前記第2配向膜によって規定されるプレチルト角とは互いに略等しい。 In a preferred embodiment, a pretilt angle defined by the first alignment film and a pretilt angle defined by the second alignment film are substantially equal to each other.
 ある好適な実施形態において、前記第1配向膜および前記第2配向膜のそれぞれは、光配向膜である。 In a preferred embodiment, each of the first alignment film and the second alignment film is a photo-alignment film.
 本発明によれば、カラー表示画素を構成する複数の画素に他の画素と幅の異なる画素が含まれている多原色液晶表示装置に4D-RTNモードを採用したときの、幅の小さい画素での応答速度の低下に起因する表示品位の低下を抑制することができる。 According to the present invention, when a 4D-RTN mode is adopted in a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels, Decrease in display quality due to a decrease in response speed can be suppressed.
4分割配向構造を有する画素の例を示す図である。It is a figure which shows the example of the pixel which has a 4-partition alignment structure. 図1に示した画素の配向分割方法を説明するための図であり、(a)はTFT基板側のプレチルト方向を示し、(b)はCF基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向および暗い領域を示している。2A and 2B are diagrams for explaining a method for dividing the alignment of the pixel shown in FIG. 1, in which FIG. 1A shows a pretilt direction on the TFT substrate side, FIG. 1B shows a pretilt direction on the CF substrate side, and FIG. A tilt direction and a dark region when a voltage is applied to the layer are shown. 画素の他の配向分割方法を説明するための図であり、(a)はTFT基板側のプレチルト方向を示し、(b)はCF基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向および暗い領域を示している。It is a figure for demonstrating the other alignment division | segmentation method of a pixel, (a) shows the pretilt direction by the side of a TFT substrate, (b) shows the pretilt direction by the side of a CF substrate, (c) is a voltage to a liquid crystal layer. A tilt direction and a dark region when is applied are shown. 画素の他の配向分割方法を説明するための図であり、(a)はTFT基板側のプレチルト方向を示し、(b)はCF基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向および暗い領域を示している。It is a figure for demonstrating the other alignment division | segmentation method of a pixel, (a) shows the pretilt direction by the side of a TFT substrate, (b) shows the pretilt direction by the side of a CF substrate, (c) is a voltage to a liquid crystal layer. A tilt direction and a dark region when is applied are shown. 画素の他の配向分割方法を説明するための図であり、(a)はTFT基板側のプレチルト方向を示し、(b)はCF基板側のプレチルト方向を示し、(c)は液晶層に電圧を印加したときのチルト方向および暗い領域を示している。It is a figure for demonstrating the other alignment division | segmentation method of a pixel, (a) shows the pretilt direction by the side of a TFT substrate, (b) shows the pretilt direction by the side of a CF substrate, (c) is a voltage to a liquid crystal layer. A tilt direction and a dark region when is applied are shown. 本発明の好適な実施形態における液晶表示装置100を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 100 in suitable embodiment of this invention. 本発明の好適な実施形態における液晶表示装置100を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 100 in suitable embodiment of this invention. 液晶表示装置100が備える液晶パネル1を模式的に示す図であり、1つのカラー表示画素(4つの画素)に対応した領域を示す平面図である。It is a figure which shows typically the liquid crystal panel 1 with which the liquid crystal display device 100 is provided, and is a top view which shows the area | region corresponding to one color display pixel (four pixels). 液晶表示装置100が備える液晶パネル1を模式的に示す図であり、図8中の9A-9A’線に沿った断面図である。FIG. 9 is a diagram schematically illustrating a liquid crystal panel 1 included in the liquid crystal display device 100, and is a cross-sectional view taken along line 9A-9A ′ in FIG. アンダーシュート駆動が行われた場合の応答速度(時間(msec)と輝度レベルとの関係)を示すグラフである。It is a graph which shows the response speed (relationship between time (msec) and a luminance level) at the time of undershoot drive. 本発明の好適な実施形態における液晶表示装置100を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 100 in suitable embodiment of this invention. 本発明の好適な実施形態における液晶表示装置200を模式的に示す図であり、1つのカラー表示画素(4つの画素)に対応した領域を示す平面図である。It is a figure which shows typically the liquid crystal display device 200 in suitable embodiment of this invention, and is a top view which shows the area | region corresponding to one color display pixel (four pixels). 本発明の好適な実施形態における液晶表示装置300を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 300 in suitable embodiment of this invention. 本発明の好適な実施形態における液晶表示装置400を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 400 in suitable embodiment of this invention. 本発明の好適な実施形態における液晶表示装置500を模式的に示す図である。It is a figure which shows typically the liquid crystal display device 500 in suitable embodiment of this invention. 従来の液晶表示装置600を模式的に示す図である。It is a figure which shows the conventional liquid crystal display device 600 typically. 従来の液晶表示装置700を模式的に示す図である。It is a figure which shows the conventional liquid crystal display device 700 typically. 従来の液晶表示装置800を模式的に示す図である。It is a figure which shows the conventional liquid crystal display device 800 typically. 従来の液晶表示装置900を模式的に示す図である。It is a figure which shows the conventional liquid crystal display device 900 typically. 図19に示す液晶表示装置900に4D-RTNモードを用いた場合の応答速度(時間(msec)と輝度レベルとの関係)を示すグラフである。20 is a graph showing a response speed (relationship between time (msec) and luminance level) when a 4D-RTN mode is used in the liquid crystal display device 900 shown in FIG.
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。本発明は、多原色液晶表示装置に4D-RTNモードを採用する場合に広く用いられる。4D-RTNモードは、既に説明したように、各画素に4分割配向構造(4D構造)が形成されるRTNモード(VATNモード)であり、4D-RTNモードを採用した液晶表示装置は、垂直配向型の液晶層を備える。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. The present invention is widely used when a 4D-RTN mode is employed in a multi-primary color liquid crystal display device. As described above, the 4D-RTN mode is an RTN mode (VATN mode) in which a four-division alignment structure (4D structure) is formed in each pixel, and a liquid crystal display device employing the 4D-RTN mode has a vertical alignment. A liquid crystal layer of the type is provided.
 本願明細書において、「垂直配向型の液晶層」とは、電圧無印加時に液晶分子が基板面(あるいは配向膜の表面)に対して略85°以上の角度で配向する液晶層を指す。垂直配向型の液晶層に含まれる液晶分子は、負の誘電異方性を有する。垂直配向型の液晶層と、液晶層を介して互いに対向するようにクロスニコルに配置された(つまりそれぞれの透過軸が互いに略直交するように配置された)一対の偏光板とを組み合わせることにより、ノーマリブラックモードの表示が行われる。 In the present specification, the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which liquid crystal molecules are aligned at an angle of about 85 ° or more with respect to the substrate surface (or the surface of the alignment film) when no voltage is applied. The liquid crystal molecules contained in the vertical alignment type liquid crystal layer have negative dielectric anisotropy. By combining a vertically aligned liquid crystal layer and a pair of polarizing plates arranged in crossed Nicols so as to face each other through the liquid crystal layer (that is, each transmission axis is arranged substantially perpendicular to each other) The normally black mode is displayed.
 また、本願明細書において、「画素」とは、表示において特定の階調を表現する最小の単位を指し、表示に用いられる原色(赤、緑、青など)のそれぞれの階調を表現する単位に対応する(「ドット」とも呼ばれる。)。複数の画素の組み合わせが、カラー表示を行うための最小単位である1つの「カラー表示画素」を構成(規定)する。また、「サブ画素」とは、1つの画素に複数個含まれ、互いに異なる輝度を表示できる単位であって、1つの画素に入力される表示電圧に対する所定の輝度(階調)を当該複数のサブ画素によって表示するものをいう。 In the specification of the present application, “pixel” refers to a minimum unit for expressing a specific gradation in display, and a unit for expressing each gradation of primary colors (red, green, blue, etc.) used for display. (Also referred to as “dots”). A combination of a plurality of pixels constitutes (defines) one “color display pixel” which is a minimum unit for performing color display. In addition, a “sub-pixel” is a unit that is included in one pixel and that can display different luminances. A predetermined luminance (gradation) with respect to a display voltage input to one pixel is expressed by the plurality of sub-pixels. A display by sub-pixels.
 「プレチルト方向」は、配向膜によって規定される液晶分子の配向方向であって、表示面内の方位角方向を指す。また、このとき液晶分子が配向膜の表面となす角を「プレチルト角」と呼ぶ。なお、配向膜に対し、所定の向きのプレチルト方向を規定する能力を発現させるための処理を行うことを、本願明細書では「配向膜にプレチルト方向を付与する」と表現し、また、配向膜によって規定されるプレチルト方向を単に「配向膜のプレチルト方向」と呼ぶこともある。 The “pretilt direction” is the alignment direction of the liquid crystal molecules defined by the alignment film, and indicates the azimuth angle direction in the display surface. Further, the angle formed by the liquid crystal molecules with the surface of the alignment film at this time is referred to as “pretilt angle”. In addition, performing the process for expressing the ability to define the pretilt direction in a predetermined direction on the alignment film is expressed as “giving a pretilt direction to the alignment film” in the present specification, and the alignment film The pretilt direction defined by is sometimes simply referred to as “the pretilt direction of the alignment film”.
 液晶層を介して対向する一対の配向膜によるプレチルト方向の組み合わせを変えることによって、4分割配向構造を形成することができる。4分割された画素は、4つの液晶ドメインを有する。 A quadrant alignment structure can be formed by changing the combination of the pretilt directions by a pair of alignment films facing each other through the liquid crystal layer. The pixel divided into four has four liquid crystal domains.
 それぞれの液晶ドメインは、液晶層に電圧が印加されたときの液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向(「基準配向方向」ということもある。)で特徴付けられ、このチルト方向(基準配向方向)が各ドメインの視角依存性に支配的な影響を与える。このチルト方向も方位角方向である。方位角方向の基準は、表示面の水平方向とし、左回りを正とする(表示面を時計の文字盤に例えると3時方向を方位角0°として、反時計回りを正とする)。4つの液晶ドメインのチルト方向が、任意の2つの方向の差が90°の整数倍に略等しい4つの方向(例えば、12時方向、9時方向、6時方向、3時方向)となるように設定することによって、視野角特性が平均化され、良好な表示を得ることができる。また、視野角特性の均一さの観点からは、4つの液晶ドメインの画素内に占める面積を互いに略等しくすることが好ましい。具体的には、4つの液晶ドメインの内の最大の液晶ドメインの面積と最小の液晶ドメインの面積との差が、最大の面積の25%以下であることが好ましい。 Each liquid crystal domain is characterized by a tilt direction (also referred to as “reference alignment direction”) of liquid crystal molecules in the layer plane of the liquid crystal layer and in the thickness direction near the center when a voltage is applied to the liquid crystal layer. The tilt direction (reference orientation direction) has a dominant influence on the viewing angle dependency of each domain. This tilt direction is also the azimuth direction. The reference of the azimuth angle direction is the horizontal direction of the display surface, and the counterclockwise direction is positive (when the display surface is compared to a clock face, the 3 o'clock direction is azimuth angle 0 ° and the counterclockwise direction is positive). The tilt directions of the four liquid crystal domains are four directions (for example, 12 o'clock direction, 9 o'clock direction, 6 o'clock direction, and 3 o'clock direction) in which the difference between any two directions is approximately equal to an integral multiple of 90 °. By setting to, the viewing angle characteristics are averaged and a good display can be obtained. Also, from the viewpoint of uniformity of viewing angle characteristics, it is preferable that the areas occupied by the four liquid crystal domains in the pixels are substantially equal to each other. Specifically, the difference between the area of the largest liquid crystal domain and the area of the smallest liquid crystal domain among the four liquid crystal domains is preferably 25% or less of the largest area.
 以下の実施形態で例示する垂直配向型の液晶層は、誘電異方性が負の液晶分子(誘電異方性が負のネマチック液晶材料)を含み、一方の配向膜によって規定されるプレチルト方向と、他方の配向膜によって規定されるプレチルト方向とは互いに略90°異なっており、これら2つのプレチルト方向の中間の方向にチルト方向(基準配向方向)が規定されている。液晶層に電圧を印加したときには、液晶分子は配向膜の配向規制力に従ってツイスト配向をとる。液晶層には、必要に応じてカイラル剤が添加されていてもよい。 A vertical alignment type liquid crystal layer exemplified in the following embodiment includes liquid crystal molecules having negative dielectric anisotropy (nematic liquid crystal material having negative dielectric anisotropy), and a pretilt direction defined by one alignment film. The pretilt direction defined by the other alignment film is substantially 90 ° different from each other, and the tilt direction (reference alignment direction) is defined in the middle of these two pretilt directions. When a voltage is applied to the liquid crystal layer, the liquid crystal molecules take a twist alignment according to the alignment regulating force of the alignment film. A chiral agent may be added to the liquid crystal layer as necessary.
 一対の配向膜のそれぞれによって規定されるプレチルト角は互いに略等しいことが好ましい。プレチルト角が略等しいことにより、表示輝度特性を向上させることができるという利点が得られる。特に、プレチルト角の差を1°以内にすることによって、液晶層の中央付近の液晶分子のチルト方向(基準配向方向)を安定に制御することが可能となり、表示輝度特性を向上させることができる。これは、上記プレチルト角の差が1°を超えると、チルト方向が液晶層内の位置によってばらつき、その結果、透過率がばらつく(すなわち所望の透過率よりも低い透過率となる領域が形成される)ためと考えられる。 The pretilt angles defined by each of the pair of alignment films are preferably substantially equal to each other. Since the pretilt angles are substantially equal, an advantage that display luminance characteristics can be improved is obtained. In particular, by making the difference in pretilt angle within 1 °, the tilt direction (reference alignment direction) of the liquid crystal molecules near the center of the liquid crystal layer can be stably controlled, and the display luminance characteristics can be improved. . This is because when the difference in the pretilt angle exceeds 1 °, the tilt direction varies depending on the position in the liquid crystal layer, and as a result, the transmittance varies (that is, a region having a transmittance lower than the desired transmittance is formed). This is probably because
 配向膜へのプレチルト方向の付与は、光配向処理によって行われる。感光性基を含む光配向膜を用いることによって、プレチルト角のばらつきを1°以下に制御することができる。感光性基としては、4-カルコン基、4’-カルコン基、クマリン基、及び、シンナモイル基からなる群より選ばれる少なくとも一つの感光性基を含むことが好ましい。 The pretilt direction is imparted to the alignment film by a photo-alignment process. By using a photo-alignment film containing a photosensitive group, the variation in the pretilt angle can be controlled to 1 ° or less. The photosensitive group preferably contains at least one photosensitive group selected from the group consisting of a 4-chalcone group, a 4'-chalcone group, a coumarin group, and a cinnamoyl group.
 (実施形態1)
 本実施形態の説明に先立ち、4D-RTNモードにおいて画素を配向分割する方法と、多原色液晶表示装置に4D-RTNモードを採用した場合の問題点(単色表示を行う際に応答速度が低下する理由)を説明する。
(Embodiment 1)
Prior to the description of the present embodiment, the method of aligning and dividing pixels in the 4D-RTN mode, and the problems when the 4D-RTN mode is adopted in the multi-primary color liquid crystal display device (the response speed decreases when performing monochromatic display) Explain why.
 図1に、4分割配向構造(4D構造)を有する画素P1を示す。なお、図1には、説明の簡単さのために、略正方形の画素電極に対応する略正方形の画素P1を示しているが、画素の形状に制限はない。例えば、画素P1は略長方形であってもよい。 FIG. 1 shows a pixel P1 having a quadrant alignment structure (4D structure). For the sake of simplicity, FIG. 1 shows a substantially square pixel P1 corresponding to a substantially square pixel electrode, but the shape of the pixel is not limited. For example, the pixel P1 may be substantially rectangular.
 画素P1は、図1に示すように、4つの液晶ドメインD1、D2、D3およびD4を有する。図1では、液晶ドメインD1、D2、D3およびD4の面積は互いに等しく、図1に示す例は、視野角特性上最も好ましい4D構造の例である。4つの液晶ドメインD1、D2、D3およびD4は、2行2列のマトリクス状に配置されている。 The pixel P1 has four liquid crystal domains D1, D2, D3, and D4 as shown in FIG. In FIG. 1, the areas of the liquid crystal domains D1, D2, D3, and D4 are equal to each other, and the example shown in FIG. 1 is an example of the most preferable 4D structure in view angle characteristics. The four liquid crystal domains D1, D2, D3 and D4 are arranged in a matrix of 2 rows and 2 columns.
 液晶ドメインD1、D2、D3およびD4のそれぞれのチルト方向(基準配向方向)をt1、t2、t3およびt4とすると、これらは、任意の2つの方向の差が90°の整数倍に略等しい4つの方向である。表示面における水平方向の方位角(3時方向)を0°とすると、液晶ドメインD1のチルト方向t1は略225°、液晶ドメインD2のチルト方向t2は略315°、液晶ドメインD3のチルト方向t3は略45°、液晶ドメインD4のチルト方向t4は略135°方向である。つまり、液晶ドメインD1、D2、D3およびD4は、それぞれのチルト方向が、隣接する液晶ドメイン間で略90°異なるように配置されている。 If the respective tilt directions (reference alignment directions) of the liquid crystal domains D1, D2, D3, and D4 are t1, t2, t3, and t4, these are the difference between any two directions is approximately equal to an integral multiple of 90 ° 4 There are two directions. When the horizontal azimuth (3 o'clock direction) on the display surface is 0 °, the tilt direction t1 of the liquid crystal domain D1 is about 225 °, the tilt direction t2 of the liquid crystal domain D2 is about 315 °, and the tilt direction t3 of the liquid crystal domain D3. Is approximately 45 °, and the tilt direction t4 of the liquid crystal domain D4 is approximately 135 °. That is, the liquid crystal domains D1, D2, D3, and D4 are arranged such that their tilt directions differ by approximately 90 ° between adjacent liquid crystal domains.
 なお、ここで、液晶層を介して互いに対向する一対の偏光板は、透過軸(偏光軸)が互いに略直交するように配置されており、より具体的には、一方の透過軸が表示面の水平方向に略平行で、他方の透過軸が表示面の垂直方向に略平行となるように配置されている。従って、チルト方向t1、t2、t3およびt4は、一対の偏光板の透過軸と略45°の角をなす。以下、特に示さない限り、偏光板の透過軸の配置は上述した配置と同じである。 Here, the pair of polarizing plates facing each other through the liquid crystal layer are arranged so that the transmission axes (polarization axes) are substantially orthogonal to each other. More specifically, one transmission axis is the display surface. Are arranged so that the other transmission axis is substantially parallel to the vertical direction of the display surface. Therefore, the tilt directions t1, t2, t3, and t4 form an angle of about 45 ° with the transmission axis of the pair of polarizing plates. Hereinafter, unless otherwise indicated, the arrangement of the transmission axes of the polarizing plates is the same as that described above.
 図1に示した画素P1の4D構造は、図2に示すようにして得ることができる。図2(a)、(b)および(c)は、図1に示した画素P1の配向分割方法を説明するための図である。図2(a)は、TFT基板(下側基板)に設けられている配向膜のプレチルト方向PA1およびPA2を示し、図2(b)は、カラーフィルタ(CF)基板(上側基板)に設けられている配向膜のプレチルト方向PB1およびPB2を示している。また、図2(c)は、液晶層に電圧を印加したときのチルト方向を示している。これらの図では、観察者側から見たときの液晶分子の配向方向を模式的に示しており、円錐状に示した液晶分子の底面側の端部が観察者に近いように、液晶分子がチルトしていることを示している。 The 4D structure of the pixel P1 shown in FIG. 1 can be obtained as shown in FIG. FIGS. 2A, 2B, and 2C are diagrams for explaining the alignment dividing method of the pixel P1 shown in FIG. 2A shows the pretilt directions PA1 and PA2 of the alignment film provided on the TFT substrate (lower substrate), and FIG. 2B is provided on the color filter (CF) substrate (upper substrate). The pretilt directions PB1 and PB2 of the alignment film are shown. FIG. 2C shows the tilt direction when a voltage is applied to the liquid crystal layer. In these figures, the orientation direction of the liquid crystal molecules as viewed from the observer side is schematically shown, and the liquid crystal molecules are aligned so that the bottom end of the liquid crystal molecules shown in a conical shape is close to the observer. Indicates that the camera is tilted.
 TFT基板側の領域(1つの画素P1に対応する領域)は、図2(a)に示すように、左右に2分割されており、それぞれの領域(左側の領域と右側の領域)の垂直配向膜に反平行なプレチルト方向PA1およびPA2が付与されるように配向処理されている。具体的には、矢印で示した方向から紫外線を斜め照射することによって光配向処理が行われている。左側の領域に光照射を行う際には、フォトマスクの遮光部によって右側の領域は遮光されており、右側の領域に光照射を行う際には、同様に左側の領域が遮光されている。 As shown in FIG. 2A, the area on the TFT substrate side (area corresponding to one pixel P1) is divided into two parts on the left and right, and the vertical alignment of each area (left area and right area). Orientation treatment is performed so that pretilt directions PA1 and PA2 antiparallel to the film are given. Specifically, photo-alignment processing is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow. When the left region is irradiated with light, the right region is shielded by the light shielding portion of the photomask, and when the right region is irradiated with light, the left region is similarly shielded.
 CF基板側の領域(1つの画素P1に対応する領域)は、図2(b)に示すように、上下に2分割されており、それぞれの領域(上側の領域と下側の領域)の垂直配向膜に反平行なプレチルト方向PB1およびPB2が付与されるように配向処理されている。具体的には、矢印で示した方向から紫外線を斜め照射することによって光配向処理が行われている。上側の領域に光照射を行う際には、フォトマスクの遮光部によって下側の領域は遮光されており、下側の領域に光照射を行う際には、同様に上側の領域が遮光されている。 As shown in FIG. 2B, the area on the CF substrate side (area corresponding to one pixel P1) is vertically divided into two areas, and each area (upper area and lower area) is perpendicular to each other. Alignment processing is performed so that pretilt directions PB1 and PB2 antiparallel to the alignment film are provided. Specifically, photo-alignment processing is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrow. When the upper region is irradiated with light, the lower region is shielded by the light shielding portion of the photomask, and when the lower region is irradiated with light, the upper region is similarly shielded. Yes.
 図2(a)および(b)に示したように配向処理がなされたTFT基板およびCF基板を貼り合わせることによって、図2(c)に示すように配向分割された画素P1を形成することができる。図2(a)、(b)および(c)からわかるように、液晶ドメインD1~D4のそれぞれについて、TFT基板の配向膜のプレチルト方向と、CF基板の配向膜のプレチルト方向とは互いに略90°異なっており、これら2つのプレチルト方向の中間の方向にチルト方向(基準配向方向)が規定されている。また、液晶ドメインD1~D4のそれぞれについて、上下の配向膜によるプレチルト方向の組み合わせが他の液晶ドメインと異なっており、そのことによって、1つの画素P1内で4つのチルト方向が実現されている。 As shown in FIGS. 2A and 2B, the alignment-divided pixel P1 can be formed as shown in FIG. 2C by bonding together the TFT substrate and the CF substrate that have been subjected to the alignment treatment. it can. As can be seen from FIGS. 2A, 2B and 2C, for each of the liquid crystal domains D1 to D4, the pretilt direction of the alignment film of the TFT substrate and the pretilt direction of the alignment film of the CF substrate are approximately 90 to each other. The tilt direction (reference orientation direction) is defined in the middle direction between these two pretilt directions. Further, for each of the liquid crystal domains D1 to D4, the combination of the pretilt directions by the upper and lower alignment films is different from that of the other liquid crystal domains, and thereby, four tilt directions are realized in one pixel P1.
 4D―RTNモードにおける画素P1内では、ある中間調(あるいは最高階調)を表示するときに、図2(c)に示すように、表示すべき階調よりも暗い領域DRが形成される。この暗い領域DRは、液晶ドメインD1、D2、D3およびD4間の境界に位置する十字状の暗線(十字状部分)CLと、画素電極のエッジ近傍においてエッジに略平行に延びる直線状の暗線(直線状部分)SLとを有し、全体として略卍状である。 In the pixel P1 in the 4D-RTN mode, when a certain halftone (or the highest gradation) is displayed, a region DR darker than the gradation to be displayed is formed as shown in FIG. The dark region DR includes a cross-shaped dark line (cross-shaped portion) CL located at the boundary between the liquid crystal domains D1, D2, D3, and D4, and a linear dark line (in the vicinity of the edge of the pixel electrode, extending substantially parallel to the edge). A straight portion) SL and is generally bowl-shaped as a whole.
 十字状の暗線CLは、液晶ドメイン間で配向が連続的になるように、液晶分子が液晶ドメイン同士の境界で偏光板の透過軸に平行または直交するように配向することによって形成される。また、エッジ近傍の直線状の暗線SLは、液晶ドメインが近接する画素電極のエッジに、それに直交し画素電極の内側に向かう方位角方向が液晶ドメインのチルト方向(基準配向方向)と90°超の角をなすエッジ部が存在すると、形成される。これは、液晶ドメインのチルト方向と画素電極のエッジに生成される斜め電界による配向規制力の方向が互いに対向する成分を有することになるために、この部分で液晶分子が偏光板の透過軸に平行または直交するように配向するためと考えられる。 The cross-shaped dark line CL is formed by aligning the liquid crystal molecules so that the alignment is continuous between the liquid crystal domains so as to be parallel or orthogonal to the transmission axis of the polarizing plate at the boundary between the liquid crystal domains. Further, the linear dark line SL near the edge indicates that the azimuth angle direction perpendicular to the edge of the pixel electrode to which the liquid crystal domain is adjacent and inward of the pixel electrode is more than 90 ° with respect to the tilt direction (reference alignment direction) of the liquid crystal domain. If there is an edge portion that forms a corner of the shape, it is formed. This is because the tilt direction of the liquid crystal domain and the direction of the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode have components opposite to each other. This is considered to be oriented in parallel or orthogonal.
 なお、1つの画素を4つの液晶ドメインD1~D4に配向分割する方法(つまり画素内での液晶ドメインD1~D4の配置)は、図1および図2の例に限定されない。 Note that the method of aligning and dividing one pixel into four liquid crystal domains D1 to D4 (that is, the arrangement of the liquid crystal domains D1 to D4 in the pixel) is not limited to the examples of FIGS.
 例えば、図3(a)および(b)に示すように配向処理がなされたTFT基板およびCF基板を貼り合わせることによって、図3(c)に示すように配向分割された画素P2を形成することができる。画素P2は、画素P1と同様、4つの液晶ドメインD1~D4を有する。液晶ドメインD1~D4のそれぞれのチルト方向は、画素P1の液晶ドメインD1~D4と同じである。 For example, the alignment-divided pixel P2 is formed as shown in FIG. 3C by bonding the TFT substrate and the CF substrate that have been subjected to the alignment treatment as shown in FIGS. 3A and 3B. Can do. The pixel P2, like the pixel P1, has four liquid crystal domains D1 to D4. The tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
 ただし、画素P1では、液晶ドメインD1~D4が左上、左下、右下、右上の順に(つまり左上から反時計回りに)配置されているのに対し、画素P2では、液晶ドメインD1~D4は、右下、右上、左上、左下の順に(つまり右下から反時計回りに)配置されている。これは、画素P1と画素P2とでは、TFT基板の左側領域および右側領域とCF基板の上側領域および下側領域のそれぞれについて、プレチルト方向が反対だからである。 However, in the pixel P1, the liquid crystal domains D1 to D4 are arranged in the order of upper left, lower left, lower right, and upper right (that is, counterclockwise from the upper left), whereas in the pixel P2, the liquid crystal domains D1 to D4 are They are arranged in the order of lower right, upper right, upper left, and lower left (that is, counterclockwise from the lower right). This is because the pretilt direction is opposite between the left and right regions of the TFT substrate and the upper and lower regions of the CF substrate in the pixel P1 and the pixel P2.
 また、図4(a)および(b)に示すように配向処理がなされたTFT基板およびCF基板を貼り合わせることによって、図4(c)に示すように配向分割された画素P3を形成することができる。画素P3は、画素P1と同様、4つの液晶ドメインD1~D4を有する。液晶ドメインD1~D4のそれぞれのチルト方向は、画素P1の液晶ドメインD1~D4と同じである。 Also, the alignment-divided pixel P3 as shown in FIG. 4 (c) is formed by bonding the TFT substrate and the CF substrate that have been subjected to the alignment treatment as shown in FIGS. 4 (a) and 4 (b). Can do. The pixel P3 has four liquid crystal domains D1 to D4 like the pixel P1. The tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
 ただし、画素P3では、液晶ドメインD1~D4は、右上、右下、左下、左上の順に(つまり右上から時計回りに)配置されている。これは、画素P1と画素P3とでは、TFT基板の左側領域および右側領域について、プレチルト方向が反対だからである。 However, in the pixel P3, the liquid crystal domains D1 to D4 are arranged in the order of upper right, lower right, lower left, and upper left (that is, clockwise from the upper right). This is because the pretilt direction is opposite between the left and right regions of the TFT substrate between the pixel P1 and the pixel P3.
 また、図5(a)および(b)に示すように配向処理がなされたTFT基板およびCF基板を貼り合わせることによって、図5(c)に示すように配向分割された画素P4を形成することができる。画素P4は、画素P1と同様、4つの液晶ドメインD1~D4を有する。液晶ドメインD1~D4のそれぞれのチルト方向は、画素P1の液晶ドメインD1~D4と同じである。 Further, by aligning the TFT substrate and the CF substrate that have been subjected to the alignment treatment as shown in FIGS. 5A and 5B, the pixel P4 that is divided in alignment as shown in FIG. 5C is formed. Can do. The pixel P4 has four liquid crystal domains D1 to D4 like the pixel P1. The tilt directions of the liquid crystal domains D1 to D4 are the same as the liquid crystal domains D1 to D4 of the pixel P1.
 ただし、画素P4では、液晶ドメインD1~D4は、左下、左上、右上、右下の順に(つまり左下から時計回りに)配置されている。これは、画素P1と画素P4とでは、CF基板の上側領域および下側領域について、プレチルト方向が反対だからである。 However, in the pixel P4, the liquid crystal domains D1 to D4 are arranged in the order of lower left, upper left, upper right, and lower right (that is, clockwise from the lower left). This is because the pretilt direction is opposite between the upper region and the lower region of the CF substrate between the pixel P1 and the pixel P4.
 上述したように、画素内における液晶ドメインD1~D4の配置としては、種々の配置を採用することができる。図2~図5に示しているように、液晶ドメインD1~D4の配置が異なると、エッジ近傍の暗線SLの発生パターンが異なり、そのため、暗い領域DRの全体形状が異なる。図2および図3に示した画素P1およびP2では、暗い領域DRが略卍状であるのに対し、図4および図5に示した画素P3およびP4では、暗い領域DRは略8の字状(垂直方向から傾斜した8の字状)である。 As described above, various arrangements can be adopted as the arrangement of the liquid crystal domains D1 to D4 in the pixel. As shown in FIGS. 2 to 5, when the arrangement of the liquid crystal domains D1 to D4 is different, the generation pattern of the dark line SL in the vicinity of the edge is different, so that the overall shape of the dark region DR is different. In the pixels P1 and P2 shown in FIGS. 2 and 3, the dark region DR has a substantially bowl shape, whereas in the pixels P3 and P4 shown in FIGS. 4 and 5, the dark region DR has an approximately 8 character shape. (Eight-letter shape inclined from the vertical direction).
 次に、4D-RTNモードを単純に採用した多原色液晶表示装置(例えば図19に示した液晶表示装置900)において、相対的に幅の小さい画素で単色表示を行う際に図20を参照しながら説明したような応答速度の低下が顕著に発生する理由を説明する。 Next, in a multi-primary color liquid crystal display device (for example, the liquid crystal display device 900 shown in FIG. 19) simply adopting the 4D-RTN mode, refer to FIG. 20 when performing monochromatic display with pixels having a relatively small width. However, the reason why the response speed is significantly reduced as described above will be described.
 応答速度の低下は、電圧印加時に発生する配向不良に起因している。画素の表示階調が最低階調から最高階調に遷移する際、つまり、液晶層への印加電圧が最低階調に対応する電圧(例えば約0V)から最高階調に対応する電圧(例えば約7V)に変化する際、一部の液晶分子は、画素電極のエッジに生成される斜め電界による配向規制力を受け、本来の配向方向(図1に示したチルト方向t1~t4)とは異なる方向に倒れる。このとき液晶分子が倒れる方向は、偏光板の透過軸に平行かまたは直交するので、そのような方向に倒れた液晶分子は、透過率の低下の原因となる。幅の小さい画素では、画素全体に対する画素電極エッジの影響が大きくなるので、透過率の低下も大きくなる。 The decrease in response speed is due to alignment failure that occurs when a voltage is applied. When the display gradation of the pixel transitions from the lowest gradation to the highest gradation, that is, the voltage applied to the liquid crystal layer is a voltage corresponding to the highest gradation (for example, about 0 V). 7V), some of the liquid crystal molecules are subjected to the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode, and are different from the original alignment directions (tilt directions t1 to t4 shown in FIG. 1). Falls in the direction. At this time, the direction in which the liquid crystal molecules are tilted is parallel to or perpendicular to the transmission axis of the polarizing plate. Therefore, the liquid crystal molecules tilted in such a direction cause a decrease in transmittance. In a pixel having a small width, the influence of the pixel electrode edge on the entire pixel becomes large, and thus a decrease in transmittance increases.
 単色表示を行った場合、図20に示したように、電圧印加直後に輝度レベルがいったんある程度増加し、その後ゆるやかに増加し続ける。このゆるやかな輝度レベルの増加は、画素電極のエッジの影響で本来の配向方向とは異なる方向に倒れた液晶分子が、液晶層面内(基板に平行な面内)でゆっくりと回転しながら、本来の配向に戻る過程を示している。 In the case of performing monochromatic display, as shown in FIG. 20, the luminance level once increases to some extent immediately after voltage application, and then gradually increases. This gradual increase in luminance level is due to the fact that liquid crystal molecules that fall in a direction different from the original orientation due to the edge of the pixel electrode rotate slowly in the liquid crystal layer plane (in the plane parallel to the substrate). The process of returning to the orientation of is shown.
 白表示の場合、すべての画素が点灯状態となるので、隣接する2つの画素同士で、液晶層への印加電圧は互いに逆極性となる(液晶表示装置では典型的にはドット反転駆動がなされる)。従って、画素電極間の等電位面(画素電極のエッジに生成される斜め電界を示している)が急峻となるので、画素電極のエッジ近傍に存在する液晶分子は、基板面に対して垂直に近い角度に配向している。そのため、液晶分子の回転に要するエネルギーが小さいので、液晶分子は速やかに本来の配向に戻る。 In the case of white display, since all the pixels are in a lighting state, voltages applied to the liquid crystal layer have opposite polarities between two adjacent pixels (typically, dot inversion driving is performed in a liquid crystal display device). ). Accordingly, since the equipotential surface between the pixel electrodes (showing an oblique electric field generated at the edge of the pixel electrode) becomes steep, the liquid crystal molecules existing near the edge of the pixel electrode are perpendicular to the substrate surface. Oriented at a close angle. Therefore, since the energy required for the rotation of the liquid crystal molecules is small, the liquid crystal molecules quickly return to the original alignment.
 単色表示の場合、ある色の画素のみが点灯状態となるので、その画素に隣接する画素は黒表示状態(例えば約0.2Vの電圧が液晶層に印加された状態)である。従って、画素電極間の等電位面はなだらかであるので、画素電極のエッジ近傍に存在する液晶分子は、基板法線方向に対して比較的大きな角度をなすように倒れている。そのため、液晶分子の回転に要するエネルギーが大きいので、液晶分子が本来の配向に戻るのに要する時間が長い。幅の小さい画素では、そのような液晶分子の存在比率が高くなるので、応答速度の低下が顕著となり、視認性の高い色の付いた尾引きが発生する。 In the case of monochromatic display, only a pixel of a certain color is in a lighting state, so that a pixel adjacent to the pixel is in a black display state (for example, a state where a voltage of about 0.2 V is applied to the liquid crystal layer). Accordingly, since the equipotential surface between the pixel electrodes is gentle, the liquid crystal molecules existing in the vicinity of the edge of the pixel electrode are tilted so as to form a relatively large angle with respect to the substrate normal direction. Therefore, since the energy required for the rotation of the liquid crystal molecules is large, the time required for the liquid crystal molecules to return to the original alignment is long. In a pixel having a small width, since the existence ratio of such liquid crystal molecules is high, a decrease in response speed becomes remarkable, and a colored tail with high visibility occurs.
 本発明による液晶表示装置では、上述したような配向不良に起因した応答速度の低下を抑制することができる。以下、本発明による液晶表示装置の具体的な実施形態を説明する。 In the liquid crystal display device according to the present invention, it is possible to suppress a decrease in response speed due to the alignment failure as described above. Hereinafter, specific embodiments of the liquid crystal display device according to the present invention will be described.
 図6に、本実施形態における液晶表示装置100を示す。液晶表示装置100は、図6に示すように、複数の行および複数の列を有するマトリクス状に配列された複数の画素を有する。複数の画素は、赤を表示する赤画素R、緑を表示する緑画素G、青を表示する青画素Bおよび黄を表示する黄画素Yを含む。互いに異なる色を表示するこれら4つの画素(赤画素R、緑画素G、青画素Bおよび黄画素Y)が、カラー表示を行う最小の単位であるカラー表示画素CPを構成(規定)する。このように、液晶表示装置100は、4つの原色(赤、緑、青および黄)を用いて表示を行う多原色液晶表示装置である。 FIG. 6 shows a liquid crystal display device 100 according to this embodiment. As shown in FIG. 6, the liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns. The plurality of pixels include a red pixel R that displays red, a green pixel G that displays green, a blue pixel B that displays blue, and a yellow pixel Y that displays yellow. These four pixels (red pixel R, green pixel G, blue pixel B, and yellow pixel Y) that display different colors constitute (specify) a color display pixel CP that is a minimum unit for performing color display. Thus, the liquid crystal display device 100 is a multi-primary color liquid crystal display device that performs display using four primary colors (red, green, blue, and yellow).
 図6に示す例では、カラー表示画素CP内で、赤画素R、緑画素G、青画素Bおよび黄画素Yは、1行4列に配置されている。また、図6に示す例では、カラー表示画素CP内で、赤画素R、緑画素G、青画素Bおよび黄画素Yは、左側から右側に向かってこの順で配置されている。 In the example shown in FIG. 6, the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are arranged in one row and four columns in the color display pixel CP. In the example shown in FIG. 6, the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are arranged in this order from the left side to the right side in the color display pixel CP.
 液晶表示装置100では、図6に示すように、赤画素Rおよび青画素Bのそれぞれの行方向に沿った幅W1よりも、緑画素Gおよび黄画素Yのそれぞれの行方向に沿った幅W2が小さい。つまり、カラー表示画素CPを構成する4つの画素は、行方向に沿った幅が所定の第1の幅(図6中の幅W1)である「第1のタイプ」の画素(赤画素Rおよび青画素B)と、行方向に沿った幅が上記第1の幅よりも小さい第2の幅(図6中の幅W2)である「第2のタイプ」の画素(緑画素Gおよび黄画素Y)とを含んでいる。図6に示した例では、第1のタイプの画素と第2のタイプの画素とは行方向に沿って互いに隣接しており、これらは行方向に沿って交互に配置されている。 In the liquid crystal display device 100, as shown in FIG. 6, the width W2 along the respective row directions of the green pixel G and the yellow pixel Y is larger than the width W1 along the respective row directions of the red pixel R and the blue pixel B. Is small. In other words, the four pixels constituting the color display pixel CP have “first type” pixels (red pixels R and R) having a predetermined first width (width W1 in FIG. 6) along the row direction. Blue pixel B) and “second type” pixels (green pixel G and yellow pixel) having a second width (width W2 in FIG. 6) smaller than the first width in the row direction. Y). In the example illustrated in FIG. 6, the first type pixel and the second type pixel are adjacent to each other along the row direction, and are alternately arranged along the row direction.
 赤画素Rおよび青画素Bの幅W1と、緑画素Gおよび黄画素Yの幅W2とが上述した関係(W1>W2)にあるので、赤画素Rおよび青画素Bのそれぞれの面積は、緑画素Gおよび黄画素Yのそれぞれの面積よりも大きい。赤画素Rの面積が黄画素Yよりも大きいと、特許文献4に開示されている液晶表示装置と同様、各画素が同じ面積を有している場合に比べ、明るい赤(明度の高い赤)を表示することができる。 Since the width W1 of the red pixel R and the blue pixel B and the width W2 of the green pixel G and the yellow pixel Y are in the above-described relationship (W1> W2), each area of the red pixel R and the blue pixel B is green. It is larger than each area of the pixel G and the yellow pixel Y. When the area of the red pixel R is larger than that of the yellow pixel Y, as in the liquid crystal display device disclosed in Patent Document 4, it is brighter red (high brightness) than when each pixel has the same area. Can be displayed.
 また、液晶表示装置100は、4D-RTNモードで表示を行う。液晶表示装置100の各画素は、例えば、図2~図5に示した画素P1~P4のいずれかと同じ4分割配向構造を有する。 In addition, the liquid crystal display device 100 performs display in the 4D-RTN mode. Each pixel of the liquid crystal display device 100 has, for example, the same quadrant alignment structure as any of the pixels P1 to P4 shown in FIGS.
 続いて、液晶表示装置100のより具体的な構成を説明する。液晶表示装置100は、図7に示すように、液晶パネル1と、駆動回路2とを備える。液晶パネル1は、既に説明した複数の画素を有する。駆動回路2は、複数の画素のそれぞれに1垂直走査期間ごとに表示電圧を供給する。典型的には、1垂直走査期間は約16.7msecである。動画のぼけやぶれを改善する目的などのため、2倍速駆動を行う場合には1垂直走査期間は約8.3msecであり、4倍速駆動を行う場合には1垂直走査期間は約4.2msecである。また、各画素に供給される表示電圧は、表示すべき階調に対応する電圧(階調電圧)に限られず、応答特性を改善するためのオーバーシュート電圧や、擬似インパルス駆動(黒挿入駆動)のための黒表示電圧など、画素に供給される全ての電圧を含む。 Subsequently, a more specific configuration of the liquid crystal display device 100 will be described. As shown in FIG. 7, the liquid crystal display device 100 includes a liquid crystal panel 1 and a drive circuit 2. The liquid crystal panel 1 has a plurality of pixels already described. The drive circuit 2 supplies a display voltage to each of the plurality of pixels every one vertical scanning period. Typically, one vertical scan period is about 16.7 msec. For the purpose of improving blurring and blurring of moving images, one vertical scanning period is approximately 8.3 msec when performing double speed driving, and one vertical scanning period is approximately 4.2 msec when performing quadruple speed driving. is there. The display voltage supplied to each pixel is not limited to the voltage (grayscale voltage) corresponding to the gradation to be displayed, but an overshoot voltage for improving response characteristics, pseudo impulse drive (black insertion drive), or the like. Including all voltages supplied to the pixel, such as a black display voltage for.
 図8および図9に、液晶パネル1の具体的な構造の例を示す。図8は、液晶パネル1の1つのカラー表示画素CP(つまり4つの画素)に対応した領域を示す平面図である。図9は、2つの画素(赤画素Rおよび緑画素G)に対応した領域を示す断面図であり、図8中の9A-9A’線に沿った断面図である。 8 and 9 show examples of the specific structure of the liquid crystal panel 1. FIG. 8 is a plan view showing a region corresponding to one color display pixel CP (that is, four pixels) of the liquid crystal panel 1. FIG. 9 is a cross-sectional view showing a region corresponding to two pixels (red pixel R and green pixel G), and is a cross-sectional view taken along line 9A-9A 'in FIG.
 液晶パネル1は、垂直配向型の液晶層30と、液晶層30を介して互いに対向するアクティブマトリクス基板(以下では「TFT基板」と呼ぶ。)10および対向基板(「カラーフィルタ基板」と呼ばれることもある。)20とを有する。 The liquid crystal panel 1 includes a vertical alignment type liquid crystal layer 30, an active matrix substrate (hereinafter referred to as “TFT substrate”) 10 and a counter substrate (hereinafter referred to as “color filter substrate”) that face each other with the liquid crystal layer 30 interposed therebetween. 20).
 液晶層30は、負の誘電異方性を有する(つまりΔε<0)液晶分子を含む。液晶層30の液晶分子は、液晶層30に電圧が印加されていないとき、基板面に対して略垂直に配向している。 The liquid crystal layer 30 includes liquid crystal molecules having negative dielectric anisotropy (that is, Δε <0). The liquid crystal molecules of the liquid crystal layer 30 are aligned substantially perpendicular to the substrate surface when no voltage is applied to the liquid crystal layer 30.
 TFT基板10は、複数の画素のそれぞれに設けられた画素電極11と、行方向に延びる複数の走査配線(ゲートバスライン)12と、列方向に延びる複数の信号配線(ソースバスライン)13とを有する。TFT基板10は、さらに、行方向に延びる複数の補助容量配線(CSバスライン)14を有する。 The TFT substrate 10 includes a pixel electrode 11 provided in each of a plurality of pixels, a plurality of scanning wirings (gate bus lines) 12 extending in the row direction, and a plurality of signal wirings (source bus lines) 13 extending in the column direction. Have The TFT substrate 10 further has a plurality of storage capacitor lines (CS bus lines) 14 extending in the row direction.
 画素電極11は、各画素に設けられたTFT(薄膜トランジスタ)15に接続されている。TFT15は、対応する走査配線12から走査信号を供給され、対応する信号配線13から表示信号(信号電圧)を供給される。 The pixel electrode 11 is connected to a TFT (Thin Film Transistor) 15 provided in each pixel. The TFT 15 is supplied with a scanning signal from the corresponding scanning wiring 12 and supplied with a display signal (signal voltage) from the corresponding signal wiring 13.
 走査配線12は、絶縁性を有する透明基板(例えばガラス基板)10a上に設けられている。また、透明基板10a上には、補助容量配線14も設けられている。ここでは、補助容量配線14は、走査配線12と同じ導電膜から形成されている。 The scanning wiring 12 is provided on an insulating transparent substrate (for example, a glass substrate) 10a. In addition, auxiliary capacitance wiring 14 is also provided on the transparent substrate 10a. Here, the auxiliary capacitance line 14 is formed of the same conductive film as the scanning line 12.
 走査配線12および補助容量配線14を覆うように、ゲート絶縁膜16が設けられている。ゲート絶縁膜16上に、信号配線13が設けられている。また、ゲート絶縁膜16上には、補助容量電極17も設けられている。ここでは、補助容量電極17は、信号配線13と同じ導電膜から形成されている。補助容量電極17は、TFT15のドレイン電極に接続電極17aを介して電気的に接続されている。 A gate insulating film 16 is provided so as to cover the scanning wiring 12 and the auxiliary capacitance wiring 14. A signal wiring 13 is provided on the gate insulating film 16. An auxiliary capacitance electrode 17 is also provided on the gate insulating film 16. Here, the auxiliary capacitance electrode 17 is formed of the same conductive film as the signal wiring 13. The auxiliary capacitance electrode 17 is electrically connected to the drain electrode of the TFT 15 via the connection electrode 17a.
 信号配線13および補助容量電極17を覆うように、層間絶縁膜18が設けられている。層間絶縁膜18上に、画素電極11が設けられている。ここでは、画素電極11は、層間絶縁膜18に形成されたコンタクトホールCHにおいて補助容量電極17と接続されており、補助容量電極17および接続電極17aを介してTFT15に電気的に接続されている。画素電極11と補助容量電極17とには、TFT15を介して同じ信号電圧が供給される。また、補助容量配線14の、補助容量電極17に対向する(ゲート絶縁膜16を介して重なる)部分は、補助容量を構成する補助容量対向電極として機能する。補助容量配線(補助容量対向電極)14には、補助容量対向電圧(CS電圧)が供給される。 An interlayer insulating film 18 is provided so as to cover the signal wiring 13 and the auxiliary capacitance electrode 17. A pixel electrode 11 is provided on the interlayer insulating film 18. Here, the pixel electrode 11 is connected to the auxiliary capacitance electrode 17 in the contact hole CH formed in the interlayer insulating film 18, and is electrically connected to the TFT 15 via the auxiliary capacitance electrode 17 and the connection electrode 17a. . The same signal voltage is supplied to the pixel electrode 11 and the auxiliary capacitance electrode 17 via the TFT 15. Further, the portion of the auxiliary capacitance line 14 facing the auxiliary capacitance electrode 17 (overlapping via the gate insulating film 16) functions as an auxiliary capacitance counter electrode constituting the auxiliary capacitance. A storage capacitor counter voltage (CS voltage) is supplied to the storage capacitor wiring (storage capacitor counter electrode) 14.
 TFT基板10の最表面(液晶層30側の表面)には、配向膜19が形成されている。配向膜19は、光配向処理によってプレチルト方向が付与されている。つまり、配向膜19は、光配向膜である。 An alignment film 19 is formed on the outermost surface of the TFT substrate 10 (the surface on the liquid crystal layer 30 side). The alignment film 19 is given a pretilt direction by a photo-alignment process. That is, the alignment film 19 is a photo-alignment film.
 対向基板20は、画素電極11に対向する対向電極21を有する。対向電極21は、絶縁性を有する透明基板(例えばガラス基板)20a上に設けられている。対向基板20の最表面(液晶層30側の表面)には、配向膜29が形成されている。配向膜29は、光配向処理によってプレチルト方向が付与されている。つまり、配向膜29は、光配向膜である。 The counter substrate 20 has a counter electrode 21 that faces the pixel electrode 11. The counter electrode 21 is provided on an insulating transparent substrate (for example, a glass substrate) 20a. An alignment film 29 is formed on the outermost surface of the counter substrate 20 (the surface on the liquid crystal layer 30 side). The alignment film 29 is given a pretilt direction by a photo-alignment process. That is, the alignment film 29 is a photo-alignment film.
 また、ここでは図示していないが、対向基板20は、カラーフィルタ層および遮光層(ブラックマトリクス)をさらに有する。カラーフィルタ層は、赤画素R、緑画素G、青画素Bおよび黄画素Yに対応するように、赤色の光を透過する赤カラーフィルタ、緑色の光を透過する緑カラーフィルタ、青色の光を透過する青カラーフィルタおよび黄色の光を透過する黄カラーフィルタを含んでいる。 Although not shown here, the counter substrate 20 further includes a color filter layer and a light shielding layer (black matrix). The color filter layer corresponds to the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y, a red color filter that transmits red light, a green color filter that transmits green light, and blue light. A blue color filter that transmits light and a yellow color filter that transmits yellow light are included.
 液晶パネル1は、さらに、一対の偏光板41および42を備える。一対の偏光板41および42は、少なくとも液晶層30を介して互いに対向し、それぞれの透過軸(偏光軸)が互いに略直交するように配置されている。各画素が有する4つの液晶ドメインD1~D4のそれぞれのチルト方向は、一対の偏光板41および42の透過軸と略45°の角をなす。 The liquid crystal panel 1 further includes a pair of polarizing plates 41 and 42. The pair of polarizing plates 41 and 42 are opposed to each other with at least the liquid crystal layer 30 therebetween, and are arranged so that their transmission axes (polarization axes) are substantially orthogonal to each other. The tilt directions of the four liquid crystal domains D1 to D4 included in each pixel form an angle of approximately 45 ° with the transmission axes of the pair of polarizing plates 41 and 42.
 上述したように、本実施形態における液晶表示装置100は、4D-RTNモードで表示を行う多原色液晶表示装置である。 As described above, the liquid crystal display device 100 according to this embodiment is a multi-primary color liquid crystal display device that performs display in the 4D-RTN mode.
 液晶表示装置100が備える駆動回路2は、表示階調が最低階調から最高階調へ遷移する際に、最高階調の表示を行うための表示電圧を供給する垂直走査期間よりも前の垂直走査期間(典型的には遷移直後の垂直走査期間)において、最低階調の表示を行うための表示電圧(最低階調電圧)と最高階調の表示を行うための表示電圧(最高階調電圧)との間の大きさを有する表示電圧を供給することができる。本願明細書では、このような表示電圧を「アンダーシュート電圧」と呼ぶ。また、過渡的にアンダーシュート電圧(本来よりも絶対値の小さな電圧)を供給する上述したような駆動を「アンダーシュート駆動」と呼ぶ。 The driving circuit 2 included in the liquid crystal display device 100 has a vertical line before a vertical scanning period for supplying a display voltage for displaying the highest gradation when the display gradation changes from the lowest gradation to the highest gradation. In the scanning period (typically, the vertical scanning period immediately after the transition), the display voltage for displaying the lowest gradation (the lowest gradation voltage) and the display voltage for performing the highest gradation display (the highest gradation voltage) ) Can be supplied. In the present specification, such a display voltage is referred to as an “undershoot voltage”. In addition, the above-described driving that transiently supplies an undershoot voltage (voltage having an absolute value smaller than the original value) is referred to as “undershoot driving”.
 駆動回路2がアンダーシュート駆動を行うことにより、表示階調の遷移直後に液晶層30に印加される電圧が本来よりも低くなる(つまり液晶分子を倒すトルクが弱くなる)ので、本来の配向方向とは異なる方向に倒れる液晶分子の数が少なくなり、配向不良の発生を抑制することができる。そのため、結果として輝度レベルを目標値に早く到達させることができる。 Since the drive circuit 2 performs undershoot driving, the voltage applied to the liquid crystal layer 30 immediately after the transition of the display gradation becomes lower than the original (that is, the torque for depressing the liquid crystal molecules becomes weak), so that the original orientation direction The number of liquid crystal molecules that fall in a different direction from that of the liquid crystal becomes smaller, and the occurrence of alignment defects can be suppressed. Therefore, as a result, the luminance level can be quickly reached the target value.
 図10に、アンダーシュート駆動を行った場合の応答速度の例を示す。図10には、黒表示状態(カラー表示画素CPを構成するすべての画素が最低階調を表示している状態)から赤画素Rのみを最高階調に遷移させる場合、緑画素Gのみを最高階調に遷移させる場合、青画素Bのみを最高階調に遷移させる場合および黄画素Yのみを最高階調に遷移させる場合について、遷移直後の垂直走査期間にアンダーシュート電圧を供給したときの時間(msec)と輝度レベルとの関係が示されている(それぞれ図中に「黒→赤」、「黒→緑」、「黒→青」、「黒→黄」と表記されている曲線)。ここでは、1垂直走査期間は約8.3msecである(つまり2倍速駆動)。また、各画素は256階調表示を行うことができ(つまり最低階調は0、最高階調は255)、アンダーシュート電圧としては240階調に対応する表示電圧を用いている。 Fig. 10 shows an example of response speed when undershoot drive is performed. FIG. 10 shows that when only the red pixel R is shifted to the highest gradation from the black display state (the state where all the pixels constituting the color display pixel CP display the lowest gradation), only the green pixel G is the highest. The time when the undershoot voltage is supplied during the vertical scanning period immediately after the transition in the case of transitioning to the gradation, the case of transitioning only the blue pixel B to the maximum gradation, and the case of transitioning only the yellow pixel Y to the maximum gradation. The relationship between (msec) and the luminance level is shown (curves indicated as “black → red”, “black → green”, “black → blue”, “black → yellow” in the figure). Here, one vertical scanning period is about 8.3 msec (that is, double speed driving). Each pixel can perform 256 gradation display (that is, the lowest gradation is 0 and the highest gradation is 255), and the display voltage corresponding to 240 gradations is used as the undershoot voltage.
 図10と図20との比較から、アンダーシュート駆動を行うことにより、赤画素R、緑画素G、青画素Bおよび黄画素Yのすべてについて、応答速度が向上していることがわかる。ただし、配向不良の発生による応答速度の低下が顕著な緑画素Gおよび黄画素Yのみについてアンダーシュート駆動を行うような駆動方法を採用すると、黒表示状態から白表示状態(カラー表示画素CPを構成するすべての画素が最高階調を表示している状態)へと表示状態を切り替えた場合に、緑画素Gおよび黄画素Yのみ応答が遅れることになるので、表示される色がマゼンタに色付いてしまう。また、赤画素R、緑画素G、青画素Bおよび黄画素Yのすべての画素についてアンダーシュート駆動を行うような駆動方法を採用すると、黒表示状態から白表示状態へと表示を切り替えた場合にすべての画素の応答速度が遅くなり(図10中に「黒→白」と表記されている曲線)、尾引きのレベルが悪化する。このように、単純にアンダーシュート駆動を用いても、高品位の表示を行うことはできない。 10 and 20, it can be seen that the response speed is improved for all of the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y by performing the undershoot drive. However, when a driving method in which undershoot driving is performed only for the green pixel G and the yellow pixel Y, in which the response speed is significantly reduced due to the occurrence of alignment failure, the white display state (the color display pixel CP is configured from the black display state). When the display state is switched to a state in which all the pixels to be displayed are in the highest gradation), the response is delayed only for the green pixel G and the yellow pixel Y, so the displayed color is colored magenta. End up. Further, when a driving method in which undershoot driving is performed for all of the red pixel R, green pixel G, blue pixel B, and yellow pixel Y is adopted, the display is switched from the black display state to the white display state. The response speed of all the pixels becomes slow (a curve expressed as “black → white” in FIG. 10), and the level of tailing deteriorates. As described above, high-quality display cannot be performed even by simply using undershoot driving.
 本実施形態における液晶表示装置100の駆動回路2は、カラー表示画素CPを構成する4つの画素のすべての表示階調が最低階調から最高階調へ遷移する際には、アンダーシュート駆動を行なわず、第2のタイプの画素(緑画素Gまたは黄画素Y)に行方向に沿って隣接する画素(ここでは第1のタイプの画素である赤画素Rまたは青画素B)の表示階調が最低階調のままで第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際には、その第2のタイプの画素に対してアンダーシュート駆動を行う。従って、液晶表示装置100では、黒表示状態から白表示状態へと表示状態が切り替えられた場合にはアンダーシュート駆動は行われず、黒表示状態から第2のタイプの画素による単色表示状態へと表示状態が切り替えられた場合には第2のタイプの画素についてアンダーシュート駆動が行われる。 The driving circuit 2 of the liquid crystal display device 100 according to the present embodiment performs undershoot driving when all the display gradations of the four pixels constituting the color display pixel CP transition from the lowest gradation to the highest gradation. First, the display gradation of the pixel (here, the red pixel R or the blue pixel B, which is the first type pixel) adjacent to the second type pixel (the green pixel G or the yellow pixel Y) in the row direction. When the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation while maintaining the lowest gradation, undershoot driving is performed on the second type pixel. Therefore, in the liquid crystal display device 100, when the display state is switched from the black display state to the white display state, the undershoot drive is not performed, and the display from the black display state to the single color display state by the second type pixel is performed. When the state is switched, undershoot driving is performed for the second type pixel.
 典型的には、アンダーシュート駆動は、表示階調の遷移直後の垂直走査期間において行われるので、本実施形態における液晶表示装置100では、カラー表示画素CPを構成する4つの画素のすべての表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において第2のタイプの画素に供給される表示電圧の絶対値よりも、第2のタイプの画素に行方向に沿って隣接する画素の表示階調が最低階調のままで第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において第2のタイプの画素に供給される表示電圧の絶対値が小さい、と言うこともできる。 Typically, undershoot driving is performed in the vertical scanning period immediately after the transition of the display gradation, in the liquid crystal display device 100 in this embodiment, all the display floors of the four pixels constituting the color display pixel CP are displayed. In the row direction of the second type pixel, the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the tone transitions from the lowest gradation to the highest gradation. In the vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation while the display gradation of the adjacent pixels remains at the lowest gradation. It can also be said that the absolute value of the display voltage supplied to the pixel of the type is small.
 上述したように、液晶表示装置100では、第2のタイプの画素(相対的に幅の小さい画素)で単色表示が行われる場合には、第2のタイプの画素についてアンダーシュート駆動が行われる。従って、第2のタイプの画素での応答速度の低下を抑制することができるので、色の付いた尾引きの発生を抑制できる。また、液晶表示装置100では、白表示を行う場合には、アンダーシュート駆動が行われない。従って、白表示を行う際の応答速度の低下が発生せず、尾引きのレベルが悪化することがない。このように、本実施形態における液晶表示装置100は、特定の画素について選択的なアンダーシュート駆動を行い、そのことによって高品位の表示が実現される。 As described above, in the liquid crystal display device 100, when monochromatic display is performed with the second type pixel (pixel having a relatively small width), undershoot driving is performed with respect to the second type pixel. Accordingly, it is possible to suppress a decrease in response speed in the second type pixel, and thus it is possible to suppress the occurrence of colored tailing. In the liquid crystal display device 100, undershoot driving is not performed when white display is performed. Therefore, the response speed at the time of white display does not decrease, and the tailing level does not deteriorate. As described above, the liquid crystal display device 100 according to this embodiment performs selective undershoot driving for a specific pixel, thereby realizing high-quality display.
 なお、第2のタイプの画素による単色表示が行われる場合だけでなく、単色表示に近い表示が行われる場合(つまり第2のタイプの画素が最高階調に遷移するとともにそれに隣接する画素が低輝度の中間調に遷移するような場合)にも、応答速度の低下が顕著となり得るので、そのような場合についても第2のタイプの画素にアンダーシュート駆動を行うことが好ましい。具体的には、駆動回路2は、第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際に、第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と、最高階調の表示を行うための表示電圧の絶対値との差が6V以上の場合にも、第2のタイプの画素に対してアンダーシュート駆動を行うことが好ましい。言い換えると、第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において第2のタイプの画素に供給される表示電圧の絶対値は、第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と最高階調の表示を行うための表示電圧の絶対値との差が6V未満の場合よりも、6V以上の場合の方が小さいことが好ましい。 It should be noted that not only when monochrome display by the second type pixel is performed but also when display close to monochrome display is performed (that is, when the second type pixel transitions to the highest gradation and the adjacent pixels are low). In such a case, it is preferable to perform undershoot driving on the second type pixel even in such a case. Specifically, when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation, the driving circuit 2 detects the pixel adjacent to the second type pixel along the row direction. Even when the difference between the absolute value of the display voltage for displaying the target gradation and the absolute value of the display voltage for displaying the maximum gradation is 6 V or more, the second type pixel is used. It is preferable to perform undershoot driving. In other words, the absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation is The difference between the absolute value of the display voltage for displaying the target gradation of the pixel adjacent to the second type pixel in the row direction and the absolute value of the display voltage for displaying the maximum gradation is It is preferable that the case of 6V or more is smaller than the case of less than 6V.
 また、上記の説明では、アンダーシュート電圧として240階調に対応する表示電圧を例示したが、アンダーシュート電圧はこれに限定されるものではない。ただし、アンダーシュート電圧が高すぎると(つまり最高階調電圧に近すぎると)、配向不良の発生を十分に抑制できないことがあり、また、アンダーシュート電圧が低すぎると、輝度レベルの立ち上がりが遅くなり、目標となる輝度レベルに到達するまでの時間が長くなることがある。そのため、アンダーシュート電圧は、配向不良の発生を十分に抑制でき、且つ、目標となる輝度レベルに速やかに到達し得るような適切なレベルに設定されることが好ましく、具体的には、最高階調の表示を行うための表示電圧の0.5倍以上0.9倍以下であることが好ましく、0.7倍以上0.8倍以下であることがより好ましい。 In the above description, the display voltage corresponding to 240 gradations is exemplified as the undershoot voltage, but the undershoot voltage is not limited to this. However, if the undershoot voltage is too high (that is, too close to the maximum gradation voltage), the occurrence of orientation failure may not be sufficiently suppressed. If the undershoot voltage is too low, the rise of the luminance level is slow. Therefore, it may take a long time to reach the target luminance level. For this reason, the undershoot voltage is preferably set to an appropriate level that can sufficiently prevent the occurrence of alignment failure and can quickly reach the target luminance level. The display voltage is preferably 0.5 to 0.9 times, more preferably 0.7 to 0.8 times the display voltage for displaying the tone.
 上述したように、液晶表示装置100では、第2のタイプの(つまり相対的に幅の小さい)画素で単色表示を行う場合の応答速度の低下を抑制することができる。 As described above, in the liquid crystal display device 100, it is possible to suppress a decrease in response speed when performing a monochrome display with a second type (that is, a relatively small width) of pixels.
 なお、これまでの説明では、第1のタイプの画素と第2のタイプの画素とが行方向に沿って交互に配置されている場合を例示したが、第1のタイプの画素および第2のタイプの画素の配置はこれに限定されるものではない。 In the above description, the case where the first type pixel and the second type pixel are alternately arranged along the row direction is illustrated, but the first type pixel and the second type pixel are illustrated as examples. The arrangement of the type pixels is not limited to this.
 図11に、第1のタイプの画素および第2のタイプの画素の配置の他の例を示す。図11に示す例では、カラー表示画素CP内で複数の画素は、左側から右側に向かって赤画素R、黄画素Y、緑画素G、青画素Bの順で配置されている。つまり、左側から右側に向かって第1のタイプの画素、第2のタイプの画素、第2のタイプ画素、第1のタイプの画素と配置されている。さらに言い換えると、カラー表示画素CP内で複数の第2のタイプの画素(緑画素Gおよび黄画素Y)が、行方向に沿って連続するように配置されている。 FIG. 11 shows another example of the arrangement of the first type pixel and the second type pixel. In the example shown in FIG. 11, a plurality of pixels in the color display pixel CP are arranged in the order of red pixel R, yellow pixel Y, green pixel G, and blue pixel B from the left side to the right side. That is, the first type pixel, the second type pixel, the second type pixel, and the first type pixel are arranged from the left side to the right side. In other words, a plurality of second type pixels (green pixel G and yellow pixel Y) are arranged in the color display pixel CP so as to be continuous in the row direction.
 (実施形態2)
 本実施形態における液晶表示装置は、マルチ画素駆動(画素分割駆動)を行うことができる。マルチ画素駆動によれば、正面方向から観測したときのγ特性(ガンマ特性)と斜め方向から観測したときのγ特性とが異なるという問題点、すなわち、γ特性の視角依存性が改善される。ここで、γ特性とは、表示輝度の階調依存性である。マルチ画素駆動では、1つの画素を互いに異なる輝度を表示できる複数のサブ画素で構成し、画素に入力される表示信号に対応した所定の輝度を表示する。つまり、マルチ画素駆動とは、複数のサブ画素の互いに異なるγ特性を合成することによって、画素のγ特性の視角依存性を改善する技術である。
(Embodiment 2)
The liquid crystal display device in this embodiment can perform multi-pixel driving (pixel division driving). According to the multi-pixel driving, the problem that the γ characteristic (gamma characteristic) observed from the front direction is different from the γ characteristic observed from the oblique direction, that is, the viewing angle dependency of the γ characteristic is improved. Here, the γ characteristic is the gradation dependency of display luminance. In multi-pixel driving, one pixel is composed of a plurality of sub-pixels that can display different luminances, and a predetermined luminance corresponding to a display signal input to the pixels is displayed. In other words, multi-pixel driving is a technique for improving the viewing angle dependency of the γ characteristics of pixels by combining different γ characteristics of a plurality of sub-pixels.
 図12に、本実施形態における液晶表示装置200を示す。図12は、液晶表示装置200の1つのカラー表示画素(赤画素R、緑画素G、青画素Bおよび黄画素Yの4つの画素)に対応した領域を示す平面図である。液晶表示装置200の各画素は、それぞれ内の液晶層に互いに異なる電圧を印加することができる複数のサブ画素sp1およびsp2を有する。複数(具体的には2つ)のサブ画素sp1およびsp2は、列方向に沿って配置されている。なお、ここでは2つのサブ画素sp1およびsp2を例示しているが、各画素が3つ以上のサブ画素を有していてもよい。 FIG. 12 shows a liquid crystal display device 200 according to this embodiment. FIG. 12 is a plan view showing a region corresponding to one color display pixel (four pixels of red pixel R, green pixel G, blue pixel B, and yellow pixel Y) of the liquid crystal display device 200. Each pixel of the liquid crystal display device 200 has a plurality of sub-pixels sp1 and sp2 that can apply different voltages to the liquid crystal layer in each pixel. A plurality (specifically two) of sub-pixels sp1 and sp2 are arranged along the column direction. Although two subpixels sp1 and sp2 are illustrated here, each pixel may have three or more subpixels.
 各画素の画素電極11は、2つのサブ画素sp1およびsp2に対応するように2つのサブ画素電極11Aおよび11Bを有する。2つのサブ画素電極11Aおよび11Bは、それぞれ対応するTFT15Aおよび15Bに接続されている。 The pixel electrode 11 of each pixel has two subpixel electrodes 11A and 11B so as to correspond to the two subpixels sp1 and sp2. The two subpixel electrodes 11A and 11B are connected to the corresponding TFTs 15A and 15B, respectively.
 2つのTFT15Aおよび15Bのゲート電極は、共通の走査配線12に接続され、同じゲート信号によってオン/オフ制御される。また、2つのTFT15Aおよび15Bのソース電極は、共通の信号配線13に接続されている。 The gate electrodes of the two TFTs 15A and 15B are connected to the common scanning wiring 12, and are on / off controlled by the same gate signal. The source electrodes of the two TFTs 15A and 15B are connected to a common signal line 13.
 2つのサブ画素sp1およびsp2のそれぞれごとに補助容量が設けられている。一方のサブ画素sp1の補助容量を構成する補助容量電極17は、TFT15Aのドレイン電極に電気的に接続されており、他方のサブ画素sp2の補助容量を構成する補助容量電極17は、TFT15Bのドレイン電極に電気的に接続されている。また、サブ画素sp1の補助容量を構成する補助容量対向電極14bは補助容量配線14Aに電気的に接続されており、サブ画素sp2の補助容量を構成する補助容量対向電極14bは、補助容量配線14Bに電気的に接続されている。従って、サブ画素sp1の補助容量対向電極14bとサブ画素sp2の補助容量対向電極14bとは互いに独立しており、それぞれ補助容量配線14Aおよび14Bから互いに異なる電圧(CS電圧)が供給される。補助容量対向電極14bに供給されるCS電圧を変化させることによって、容量分割を利用して、サブ画素sp1の液晶層30とサブ画素sp2の液晶層30とに印加される実効電圧を異ならせることができ、それによって、サブ画素sp1とサブ画素sp2とで表示輝度を異ならせることができる。 An auxiliary capacitor is provided for each of the two sub-pixels sp1 and sp2. The auxiliary capacitance electrode 17 constituting the auxiliary capacitance of one subpixel sp1 is electrically connected to the drain electrode of the TFT 15A, and the auxiliary capacitance electrode 17 constituting the auxiliary capacitance of the other subpixel sp2 is connected to the drain of the TFT 15B. It is electrically connected to the electrode. Further, the storage capacitor counter electrode 14b constituting the storage capacitor of the sub-pixel sp1 is electrically connected to the storage capacitor line 14A, and the storage capacitor counter electrode 14b forming the storage capacitor of the sub-pixel sp2 is connected to the storage capacitor line 14B. Is electrically connected. Accordingly, the storage capacitor counter electrode 14b of the subpixel sp1 and the storage capacitor counter electrode 14b of the subpixel sp2 are independent from each other, and different voltages (CS voltages) are supplied from the storage capacitor lines 14A and 14B, respectively. By changing the CS voltage supplied to the storage capacitor counter electrode 14b, the effective voltage applied to the liquid crystal layer 30 of the sub-pixel sp1 and the liquid crystal layer 30 of the sub-pixel sp2 is made different by using capacitive division. Accordingly, the display luminance can be different between the sub-pixel sp1 and the sub-pixel sp2.
 液晶表示装置200も、液晶表示装置100と同様に、4D-RTNモードで表示を行う。つまり、液晶表示装置200の各画素は、例えば図2~図5に示した画素P1~P4のいずれかと同じ4分割配向構造を有する。視野角特性の点からは、サブ画素sp1およびサブ画素sp2のそれぞれが4分割配向構造を有することがさらに好ましい。 Similarly to the liquid crystal display device 100, the liquid crystal display device 200 performs display in the 4D-RTN mode. That is, each pixel of the liquid crystal display device 200 has the same quadrant alignment structure as any of the pixels P1 to P4 shown in FIGS. From the viewpoint of viewing angle characteristics, it is more preferable that each of the sub-pixel sp1 and the sub-pixel sp2 has a quadrant alignment structure.
 また、図12に示すように、液晶表示装置200においても、赤画素Rおよび青画素Bのそれぞれの行方向に沿った幅よりも、緑画素Gおよび黄画素Yのそれぞれの行方向に沿った幅が小さい。つまり、赤画素Rおよび青画素Bが「第1のタイプ」の画素であり、緑画素Gおよび黄画素Yが「第2のタイプ」の画素である。 Also, as shown in FIG. 12, in the liquid crystal display device 200 as well, the green pixels G and the yellow pixels Y are arranged in the row directions rather than the widths of the red pixels R and the blue pixels B in the row directions. The width is small. That is, the red pixel R and the blue pixel B are “first type” pixels, and the green pixel G and the yellow pixel Y are “second type” pixels.
 さらに、本実施形態における液晶表示装置200も、実施形態1における液晶表示装置100と同様に、第2のタイプの画素について選択的なアンダーシュート駆動を行う。そのため、第2のタイプの画素で単色表示を行う場合の応答速度の低下を抑制することができるので、色の付いた尾引きの発生を抑制できる。また、白表示を行う際の応答速度の低下が発生せず、尾引きのレベルが悪化することがない。そのため、本実施形態における液晶表示装置200も、高品位の表示を行うことができる。 Furthermore, the liquid crystal display device 200 according to the present embodiment also performs selective undershoot driving for the second type of pixels, similarly to the liquid crystal display device 100 according to the first embodiment. For this reason, it is possible to suppress a decrease in response speed when performing monochrome display with the second type pixel, and thus it is possible to suppress the occurrence of colored tailing. Further, the response speed at the time of white display does not decrease, and the tailing level does not deteriorate. Therefore, the liquid crystal display device 200 in the present embodiment can also perform high-quality display.
 (その他の実施形態)
 上記の実施形態1および2では、赤画素Rおよび青画素Bが第1のタイプの画素であり、緑画素Gおよび黄画素Yが第2のタイプの画素である場合を例示したが、本発明はこれに限定されるものではない。例えば、緑画素Gおよび黄画素Yの一方のみが第2のタイプの画素であってもよい。どの画素の幅を相対的に大きく(つまりどの画素の面積を相対的に大きく)するかは、液晶表示装置の用途や仕様等に応じて適宜決定すればよい。
(Other embodiments)
In the first and second embodiments, the case where the red pixel R and the blue pixel B are the first type pixels and the green pixel G and the yellow pixel Y are the second type pixels is exemplified. Is not limited to this. For example, only one of the green pixel G and the yellow pixel Y may be the second type pixel. Which pixel has a relatively large width (that is, which pixel has a relatively large area) may be appropriately determined in accordance with the application, specifications, and the like of the liquid crystal display device.
 また、実施形態1および2では、カラー表示画素CP内で複数の画素が1行複数列に配置されている構成を例示したが、図13に示す液晶表示装置300のように、カラー表示画素CP内で複数の画素が複数行複数列に配置されていてもよい。図13に示す例では、ある画素行では第1のタイプの画素である赤画素Rと第2のタイプの画素である緑画素Gとが交互に配置されており、それに隣接する画素行では第1のタイプの画素である青画素Bと第2のタイプの画素である黄画素Yとが交互に配置されている。従って、カラー表示画素CP内で4つの画素が2行2列に配置されている。 In the first and second embodiments, a configuration in which a plurality of pixels are arranged in one row and a plurality of columns in the color display pixel CP is illustrated. However, as in the liquid crystal display device 300 illustrated in FIG. A plurality of pixels may be arranged in a plurality of rows and a plurality of columns. In the example shown in FIG. 13, a red pixel R as a first type pixel and a green pixel G as a second type pixel are alternately arranged in a certain pixel row. Blue pixels B that are one type of pixels and yellow pixels Y that are a second type of pixels are alternately arranged. Therefore, four pixels are arranged in 2 rows and 2 columns in the color display pixel CP.
 さらに、カラー表示画素CPを構成する複数の画素の個数は、4に限定されるものではない。本発明は、カラー表示画素CPが互いに異なる色を表示する4つ以上の画素によって構成される液晶表示装置に広く用いられる。例えば、カラー表示画素CPは、5つの画素によって構成されてもよいし、図14に示す液晶表示装置400のように、6つの画素によって構成されてもよい。図14に示す例では、カラー表示画素CPは、赤画素R、緑画素G、青画素Bおよび黄画素Yに加え、シアンを表示するシアン画素Cおよびマゼンタを表示するマゼンタ画素Mを含んでいる。 Furthermore, the number of the plurality of pixels constituting the color display pixel CP is not limited to four. The present invention is widely used in a liquid crystal display device in which the color display pixel CP includes four or more pixels that display different colors. For example, the color display pixel CP may be configured by five pixels, or may be configured by six pixels as in the liquid crystal display device 400 illustrated in FIG. In the example illustrated in FIG. 14, the color display pixel CP includes a cyan pixel C that displays cyan and a magenta pixel M that displays magenta in addition to the red pixel R, green pixel G, blue pixel B, and yellow pixel Y. .
 また、カラー表示画素CPを構成する画素の種類(組み合わせ)も、上述した例に限定されるものではない。例えば、カラー表示画素CPが4つの画素によって構成される場合、赤画素R、緑画素G、青画素Bおよびシアン画素Cによってカラー表示画素CPが構成されてもよいし、赤画素R、緑画素G、青画素Bおよびマゼンタ画素Mによってカラー表示画素CPが構成されてもよい。また、図15に示す液晶表示装置500のように、カラー表示画素CPが赤画素R、緑画素G、青画素Bおよび白を表示する白画素Wによって構成されてもよい。図15に示す構成を採用する場合、対向基板のカラーフィルタ層の白画素Wに対応する領域には、無色透明な(つまり白色の光を透過する)カラーフィルタが設けられる。図15の構成では、追加された原色が白であるため、色再現範囲を広くするという効果は得られないが、1つのカラー表示画素CP全体の表示輝度を向上させることができる。 Also, the type (combination) of the pixels constituting the color display pixel CP is not limited to the above example. For example, when the color display pixel CP is configured by four pixels, the color display pixel CP may be configured by the red pixel R, the green pixel G, the blue pixel B, and the cyan pixel C, or the red pixel R, the green pixel The color display pixel CP may be configured by G, the blue pixel B, and the magenta pixel M. Further, like the liquid crystal display device 500 shown in FIG. 15, the color display pixel CP may be configured by a red pixel R, a green pixel G, a blue pixel B, and a white pixel W that displays white. When the configuration shown in FIG. 15 is adopted, a color filter that is colorless and transparent (that is, transmits white light) is provided in a region corresponding to the white pixel W of the color filter layer of the counter substrate. In the configuration of FIG. 15, since the added primary color is white, the effect of widening the color reproduction range cannot be obtained, but the display luminance of one color display pixel CP can be improved.
 図13、図14および図15に示した液晶表示装置300、400および500においても、第2のタイプの画素について選択的なアンダーシュート駆動を行うことにより、実施形態1および2における液晶表示装置100および200と同様に、高品位の表示を行うことができる。 In the liquid crystal display devices 300, 400, and 500 shown in FIGS. 13, 14, and 15 as well, the liquid crystal display device 100 according to the first and second embodiments is performed by performing selective undershoot driving for the second type pixels. As with 200 and 200, high-quality display can be performed.
 また、上記の説明では、カラー表示画素CPが第1のタイプの画素と第2のタイプの画素のみを含んでいる、つまり、カラー表示画素CP内で行方向に沿った画素の幅が2種類である場合を例示したが、行方向に沿った画素の幅が3種類以上であってもよい。例えば、カラー表示画素CPが、行方向に沿った幅が所定の第1の幅である第1のタイプの画素と、行方向に沿った幅が上記第1の幅よりも小さい第2の幅である第2のタイプの画素とに加え、さらに、行方向に沿った幅が上記第1の幅よりも小さく、上記第2の幅よりも大きい「第3のタイプ」の画素を含んでいてもよい。 Further, in the above description, the color display pixel CP includes only the first type pixel and the second type pixel, that is, there are two types of pixel widths along the row direction in the color display pixel CP. However, the width of the pixel along the row direction may be three or more types. For example, the color display pixel CP includes a first type pixel whose width along the row direction is a predetermined first width, and a second width whose width along the row direction is smaller than the first width. In addition to the second type of pixels, the pixel further includes a “third type” pixel having a width along the row direction smaller than the first width and larger than the second width. Also good.
 本発明によれば、カラー表示画素を構成する複数の画素に他の画素と幅の異なる画素が含まれている多原色液晶表示装置に4D-RTNモードを採用したときの、幅の小さい画素での応答速度の低下に起因する表示品位の低下を抑制することができる。本発明による液晶表示装置は、テレビジョン受像機などの高品位の表示が求められる用途に好適に用いられる。 According to the present invention, when a 4D-RTN mode is adopted in a multi-primary color liquid crystal display device in which a plurality of pixels constituting a color display pixel include pixels having different widths from other pixels, Decrease in display quality due to a decrease in response speed can be suppressed. The liquid crystal display device according to the present invention is suitably used for applications that require high quality display such as television receivers.
 10  アクティブマトリクス基板(TFT基板)
 10a、20a  透明基板
 11  画素電極
 11A、11B  サブ画素電極
 12  走査配線
 13  信号配線
 14、14A、14B  補助容量配線
 14a 枝部
 14b  補助容量対向電極
 15、15A、15B  薄膜トランジスタ(TFT)
 16  ゲート絶縁膜
 17  補助容量電極
 18  層間絶縁膜
 19、29  配向膜
 20  対向基板(カラーフィルタ基板)
 21  対向電極
 29  配向膜
 30  液晶層
 41、42  偏光板
 100、200、300、400、500  液晶表示装置
 CP  カラー表示画素
 P1、P2、P3、P4  画素
 R  赤画素
 G  緑画素
 B  青画素
 Y  黄画素
 C  シアン画素
 M  マゼンタ画素
 W  白画素
 sp1、sp2  サブ画素
 D1~D4  液晶ドメイン
 DR  暗い領域
 SL  直線状の暗線
 CL  十字状の暗線
10 Active matrix substrate (TFT substrate)
10a, 20a Transparent substrate 11 Pixel electrode 11A, 11B Subpixel electrode 12 Scanning wiring 13 Signal wiring 14, 14A, 14B Auxiliary capacitance wiring 14a Branch portion 14b Auxiliary capacitance counter electrode 15, 15A, 15B Thin film transistor (TFT)
16 Gate insulating film 17 Auxiliary capacitor electrode 18 Interlayer insulating film 19, 29 Alignment film 20 Counter substrate (color filter substrate)
21 counter electrode 29 alignment film 30 liquid crystal layer 41, 42 polarizing plate 100, 200, 300, 400, 500 liquid crystal display device CP color display pixel P1, P2, P3, P4 pixel R red pixel G green pixel B blue pixel Y yellow pixel C Cyan pixel M Magenta pixel W White pixel sp1, sp2 Sub-pixel D1 to D4 Liquid crystal domain DR Dark region SL Linear dark line CL Cross-shaped dark line

Claims (17)

  1.  複数の行および複数の列を有するマトリクス状に配列された複数の画素を有し、互いに異なる色を表示する4つ以上の画素がカラー表示画素を構成する液晶表示装置であって、
     垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板とを有する液晶パネルと、
     前記複数の画素のそれぞれに1垂直走査期間ごとに表示電圧を供給する駆動回路と、を備え、
     前記カラー表示画素を構成する前記4つ以上の画素は、行方向に沿った幅が所定の第1の幅である第1のタイプの画素と、行方向に沿った幅が前記第1の幅よりも小さい第2の幅である第2のタイプの画素とを含み、
     前記駆動回路は、表示階調が最低階調から最高階調へ遷移する際に、最高階調の表示を行うための表示電圧を供給する垂直走査期間よりも前の垂直走査期間において、最低階調の表示を行うための表示電圧と最高階調の表示を行うための表示電圧との間の大きさを有するアンダーシュート電圧を供給するアンダーシュート駆動を行うことができ、
     さらに、前記駆動回路は、前記カラー表示画素を構成する前記4つ以上の画素のすべての表示階調が最低階調から最高階調へ遷移する際には、前記アンダーシュート駆動を行なわず、前記第2のタイプの画素に行方向に沿って隣接する画素の表示階調が最低階調のままで前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際には、前記第2のタイプの画素に対して前記アンダーシュート駆動を行う液晶表示装置。
    A liquid crystal display device having a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, wherein four or more pixels displaying different colors constitute a color display pixel,
    A liquid crystal panel having a vertically aligned liquid crystal layer and a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween;
    A drive circuit that supplies a display voltage to each of the plurality of pixels for each vertical scanning period;
    The four or more pixels constituting the color display pixel include a first type pixel whose width along the row direction is a predetermined first width, and a width along the row direction that is the first width. A second type of pixel having a second width less than
    When the display gray level transitions from the lowest gray level to the highest gray level, the driving circuit performs the lowest step in the vertical scanning period before the vertical scanning period for supplying the display voltage for performing the highest gray level display. Undershoot drive for supplying an undershoot voltage having a magnitude between a display voltage for displaying a tone and a display voltage for displaying a maximum gradation can be performed.
    Furthermore, the drive circuit does not perform the undershoot drive when all the display gradations of the four or more pixels constituting the color display pixel transition from the lowest gradation to the highest gradation. When the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation while the display gradation of the pixel adjacent to the second type pixel in the row direction remains the lowest gradation. Is a liquid crystal display device that performs the undershoot drive on the second type of pixel.
  2.  前記駆動回路は、前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際に、前記第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と、最高階調の表示を行うための表示電圧の絶対値との差が6V以上の場合にも前記第2のタイプの画素に対してアンダーシュート駆動を行う請求項1に記載の液晶表示装置。 When the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation, the drive circuit performs a target gradation of a pixel adjacent to the second type pixel in the row direction. Undershoot driving for the second type of pixel even when the difference between the absolute value of the display voltage for performing display and the absolute value of the display voltage for performing display of the highest gradation is 6 V or more The liquid crystal display device according to claim 1.
  3.  前記アンダーシュート電圧は、最高階調の表示を行うための表示電圧の0.5倍以上0.9倍以下である請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the undershoot voltage is not less than 0.5 times and not more than 0.9 times a display voltage for displaying a maximum gradation.
  4.  複数の行および複数の列を有するマトリクス状に配列された複数の画素を有し、互いに異なる色を表示する4つ以上の画素がカラー表示画素を構成する液晶表示装置であって、
     垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板とを有する液晶パネルと、
     前記複数の画素のそれぞれに1垂直走査期間ごとに表示電圧を供給する駆動回路と、を備え、
     前記カラー表示画素を構成する前記4つ以上の画素は、行方向に沿った幅が所定の第1の幅である第1のタイプの画素と、行方向に沿った幅が前記第1の幅よりも小さい第2の幅である第2のタイプの画素とを含み、
     前記カラー表示画素を構成する前記4つ以上の画素のすべての表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値よりも、前記第2のタイプの画素に行方向に沿って隣接する画素の表示階調が最低階調のままで前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値が小さい液晶表示装置。
    A liquid crystal display device having a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns, wherein four or more pixels displaying different colors constitute a color display pixel,
    A liquid crystal panel having a vertically aligned liquid crystal layer and a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween;
    A drive circuit that supplies a display voltage to each of the plurality of pixels for each vertical scanning period;
    The four or more pixels constituting the color display pixel include a first type pixel whose width along the row direction is a predetermined first width, and a width along the row direction that is the first width. A second type of pixel having a second width less than
    All the display gradations of the four or more pixels constituting the color display pixel are supplied to the second type pixel in the vertical scanning period immediately after the start of transition when transitioning from the lowest gradation to the highest gradation. The display gradation of the pixel of the second type is the lowest level while the display gradation of the pixel adjacent to the second type pixel in the row direction remains at the lowest gradation. A liquid crystal display device in which an absolute value of a display voltage supplied to the second type pixel is small in a vertical scanning period immediately after the start of transition when transitioning from a gray level to a maximum gray level.
  5.  前記第2のタイプの画素の表示階調が最低階調から最高階調へ遷移する際の遷移開始直後の垂直走査期間において前記第2のタイプの画素に供給される表示電圧の絶対値は、前記第2のタイプの画素に行方向に沿って隣接する画素の目標階調の表示を行うための表示電圧の絶対値と最高階調の表示を行うための表示電圧の絶対値との差が6V未満の場合よりも、6V以上の場合の方が小さい請求項4に記載の液晶表示装置。 The absolute value of the display voltage supplied to the second type pixel in the vertical scanning period immediately after the start of transition when the display gradation of the second type pixel transitions from the lowest gradation to the highest gradation is: The difference between the absolute value of the display voltage for displaying the target gradation of the pixel adjacent to the second type pixel in the row direction and the absolute value of the display voltage for displaying the maximum gradation is The liquid crystal display device according to claim 4, wherein the case of 6V or more is smaller than the case of less than 6V.
  6.  前記カラー表示画素を構成する前記4つ以上の画素は、赤を表示する赤画素、緑を表示する緑画素および青を表示する青画素を含む請求項1から5のいずれかに記載の液晶表示装置。 6. The liquid crystal display according to claim 1, wherein the four or more pixels constituting the color display pixel include a red pixel that displays red, a green pixel that displays green, and a blue pixel that displays blue. apparatus.
  7.  前記カラー表示画素を構成する前記4つ以上の画素は、黄を表示する黄画素をさらに含む請求項6に記載の液晶表示装置。 The liquid crystal display device according to claim 6, wherein the four or more pixels constituting the color display pixel further include a yellow pixel for displaying yellow.
  8.  前記赤画素および前記青画素は、それぞれ前記第1のタイプの画素であり、
     前記緑画素および前記黄画素の少なくとも一方は、前記第2のタイプの画素である請求項7に記載の液晶表示装置。
    The red pixel and the blue pixel are each the first type of pixel,
    The liquid crystal display device according to claim 7, wherein at least one of the green pixel and the yellow pixel is the second type pixel.
  9.  前記カラー表示画素を構成する前記4つ以上の画素は、前記赤画素、前記緑画素、前記青画素および前記黄画素の4つの画素であり、
     前記緑画素および前記黄画素の両方が前記第2のタイプの画素である請求項8に記載の液晶表示装置。
    The four or more pixels constituting the color display pixel are four pixels of the red pixel, the green pixel, the blue pixel, and the yellow pixel,
    The liquid crystal display device according to claim 8, wherein both the green pixel and the yellow pixel are the second type pixels.
  10.  前記第1基板は、前記液晶層側の表面に設けられた第1配向膜を有し、
     前記第2基板は、前記液晶層側の表面に設けられた第2配向膜を有し、
     前記複数の画素のそれぞれは、前記液晶層に電圧が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向が予め決められた第1方向である第1液晶ドメインと、第2方向である第2液晶ドメインと、第3方向である第3液晶ドメインと、第4方向である第4液晶ドメインと、を有し、前記第1方向、第2方向、第3方向および第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向である請求項1から9のいずれかに記載の液晶表示装置。
    The first substrate has a first alignment film provided on the surface on the liquid crystal layer side,
    The second substrate has a second alignment film provided on the surface on the liquid crystal layer side,
    Each of the plurality of pixels has a first direction in which a tilt direction of liquid crystal molecules in the layer surface of the liquid crystal layer and in the vicinity of the center in the thickness direction when a voltage is applied to the liquid crystal layer is a predetermined first direction. A liquid crystal domain, a second liquid crystal domain in the second direction, a third liquid crystal domain in the third direction, and a fourth liquid crystal domain in the fourth direction, wherein the first direction, the second direction, 10. The liquid crystal display device according to claim 1, wherein the third direction and the fourth direction are four directions in which a difference between any two directions is substantially equal to an integral multiple of 90 °.
  11.  前記第1液晶ドメイン、第2液晶ドメイン、第3液晶ドメインおよび第4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、2行2列のマトリクス状に配置されている請求項10に記載の液晶表示装置。 11. The first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are adjacent to other liquid crystal domains and are arranged in a matrix of 2 rows and 2 columns. Liquid crystal display device.
  12.  前記第1液晶ドメイン、第2液晶ドメイン、第3液晶ドメインおよび第4液晶ドメインは、前記チルト方向が隣接する液晶ドメイン間で略90°異なるように配置されている請求項11に記載の液晶表示装置。 12. The liquid crystal display according to claim 11, wherein the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged so that the tilt direction differs by approximately 90 ° between adjacent liquid crystal domains. apparatus.
  13.  表示面における水平方向の方位角を0°とするとき、前記第1方向は略45°、略135°、略225°または略315°である請求項12に記載の液晶表示装置。 The liquid crystal display device according to claim 12, wherein the first direction is approximately 45 °, approximately 135 °, approximately 225 °, or approximately 315 ° when the horizontal azimuth angle on the display surface is 0 °.
  14.  前記液晶パネルは、前記液晶層を介して互いに対向し、それぞれの透過軸が互いに略直交するように配置された一対の偏光板をさらに有し、
     前記第1方向、第2方向、第3方向および第4方向は、前記一対の偏光板の前記透過軸と略45°の角をなす請求項10から13のいずれかに記載の液晶表示装置。
    The liquid crystal panel further includes a pair of polarizing plates that are opposed to each other through the liquid crystal layer and are arranged so that their transmission axes are substantially orthogonal to each other,
    The liquid crystal display device according to claim 10, wherein the first direction, the second direction, the third direction, and the fourth direction form an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  15.  前記液晶層は、負の誘電異方性を有する液晶分子を含み、
     前記第1配向膜によって規定されるプレチルト方向と、前記第2配向膜によって規定されるプレチルト方向とは互いに略90°異なる請求項10から14のいずれかに記載の液晶表示装置。
    The liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy,
    The liquid crystal display device according to claim 10, wherein a pretilt direction defined by the first alignment film and a pretilt direction defined by the second alignment film differ from each other by approximately 90 °.
  16.  前記第1配向膜によって規定されるプレチルト角と、前記第2配向膜によって規定されるプレチルト角とは互いに略等しい請求項10から15のいずれかに記載の液晶表示装置。 16. The liquid crystal display device according to claim 10, wherein a pretilt angle defined by the first alignment film and a pretilt angle defined by the second alignment film are substantially equal to each other.
  17.  前記第1配向膜および前記第2配向膜のそれぞれは、光配向膜である請求項10から16のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 10, wherein each of the first alignment film and the second alignment film is a photo-alignment film.
PCT/JP2012/054903 2011-03-01 2012-02-28 Liquid crystal display device WO2012118069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011044381 2011-03-01
JP2011-044381 2011-03-01

Publications (1)

Publication Number Publication Date
WO2012118069A1 true WO2012118069A1 (en) 2012-09-07

Family

ID=46758001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054903 WO2012118069A1 (en) 2011-03-01 2012-02-28 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012118069A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107491A (en) * 2003-09-09 2005-04-21 Sharp Corp Liquid crystal display device and its driving method
WO2011013649A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Liquid crystal display device and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107491A (en) * 2003-09-09 2005-04-21 Sharp Corp Liquid crystal display device and its driving method
WO2011013649A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Liquid crystal display device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US8319926B2 (en) Liquid crystal display device
KR100546258B1 (en) Liquid crystal display panel of horizontal electronic field applying type
JP4969568B2 (en) Display device
US7982702B2 (en) Liquid crystal display device with improved viewing angle characteristics
JP5368590B2 (en) Liquid crystal display
US20120229739A1 (en) Liquid crystal display device and manufacturing method therefor
JP5179673B2 (en) Liquid crystal display
US20120194573A1 (en) Liquid crystal display device
US20120223931A1 (en) Liquid crystal display device
JP5342004B2 (en) Liquid crystal display
WO2007114471A1 (en) Liquid crystal display device
JP2007086791A (en) Liquid crystal panel, method for driving the same, and liquid crystal display apparatus using the same
US20120120346A1 (en) Liquid crystal display device and method for manufacturing same
JP2007164198A (en) Liquid crystal display device
WO2011093387A1 (en) Liquid crystal display device
JP2006184516A (en) Liquid crystal display device
WO2011078168A1 (en) Liquid crystal display device
JP5173038B2 (en) Liquid crystal display
WO2012090823A1 (en) Liquid crystal display device
US7630033B2 (en) Large pixel multi-domain vertical alignment liquid crystal display using fringe fields
JP2009080197A (en) Liquid crystal display device
WO2012093621A1 (en) Liquid-crystal display device
WO2011024966A1 (en) Liquid crystal display
US8194200B2 (en) Low cost switching element point inversion driving scheme for liquid crystal displays
WO2012093630A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP