WO2012117985A1 - Polyethylene-based resin composition for blow molding and blow molded body - Google Patents

Polyethylene-based resin composition for blow molding and blow molded body Download PDF

Info

Publication number
WO2012117985A1
WO2012117985A1 PCT/JP2012/054688 JP2012054688W WO2012117985A1 WO 2012117985 A1 WO2012117985 A1 WO 2012117985A1 JP 2012054688 W JP2012054688 W JP 2012054688W WO 2012117985 A1 WO2012117985 A1 WO 2012117985A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
component
ethylene
resin composition
polymerization
Prior art date
Application number
PCT/JP2012/054688
Other languages
French (fr)
Japanese (ja)
Inventor
晋 江尻
淳麿 野村
佳伸 野末
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012117985A1 publication Critical patent/WO2012117985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2039/00Use of polymers with unsaturated aliphatic radicals and with a nitrogen or a heterocyclic ring containing nitrogen in a side chain or derivatives thereof as moulding material

Definitions

  • the present invention relates to a polyethylene resin composition for hollow molding and a hollow molded body.
  • a molded article made of a resin composition containing polyethylene and a plant-derived resin such as polylactic acid or poly-3-hydroxybutyrate is more than a molded article made of a resin composition containing polyethylene and no plant-derived resin. It is known that the disposal process is easy.
  • resin compositions described in JP 2008-38142 A and WO 09/078376 are known.
  • Patent Document 1 discloses a resin composition comprising 10 to 70 parts by mass of a polylactic acid resin, 90 to 30 parts by mass of a polyethylene resin, and 5 to 10 parts by mass of a compatibilizer.
  • a polyolefin polymer (A), an aliphatic polyester polymer (B), and a melt flow rate (MFR) measured at 190 ° C. under a load of 21 N are 0.5 to 3.0 g / 10.
  • the resin composition containing the elastomer (C) which is a part, and the polyolefin-type polymer (D) which has an epoxy group is disclosed.
  • an object of the present invention is to provide a hollow molded article having excellent buckling strength and impact strength.
  • the present invention relates to a hollow molding polyethylene resin containing 5-49% by mass of an aliphatic polyester (A), 50-94% by mass of the following component (B), and 1-15% by mass of a compatibilizer (C).
  • a composition (provided that the total amount of the aliphatic polyester (A), the component (B) and the component (C) is 100% by mass) is provided.
  • This invention is a polyethylene resin composition for hollow molding containing said aliphatic polyester (A), a component (B), and a component (C).
  • the “hollow molding polyethylene resin composition” may be simply referred to as “resin composition”.
  • Resin composition ⁇ Component (A): Aliphatic polyester>
  • the aliphatic polyester (A) in the present invention is a homopolymer or copolymer having a linear or branched alkylene structure bonded by an ester structure as a repeating unit.
  • Examples of the aliphatic polyester (A) include polyesters obtained by polymerizing hydroxycarboxylic acids and polyesters obtained by copolymerizing diols and dicarboxylic acids.
  • the aliphatic polyester (A) is sometimes referred to as component (A).
  • the polyester obtained by polymerizing hydroxycarboxylic acid include a polymer having a repeating unit derived from 3-hydroxyalkanoate represented by the formula (1).
  • R 1 Is a hydrogen atom or an alkyl group having 1 to 15 carbon atoms
  • R 2 Is a single bond or an alkylene group having 1 to 4 carbon atoms
  • the polymer having a repeating unit represented by the formula (1) may be a homopolymer or a multi-component copolymer containing two or more of the above repeating units.
  • the multi-component copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, a graft copolymer, and the like.
  • the homopolymer include lactic acid homopolymer, polycaprolactone, poly (3-hydroxybutyrate), poly (4-hydroxybutyrate), poly (3-hydroxypropionate), and the like.
  • Multi-component copolymers include 3-hydroxybutyrate-3-hydroxypropionate copolymer, 3-hydroxybutyrate-4-hydroxybutyrate copolymer, 3-hydroxybutyrate-3-hydroxyvalerate copolymer.
  • Polymer 3-hydroxybutyrate-3-hydroxyhexanoate copolymer, 3-hydroxybutyrate-3-hydroxyoctanoate copolymer, 3-hydroxybutyrate-3-hydroxyvalerate-3-hydroxy
  • Examples include hexanoate-4-hydroxybutyrate copolymer and 3-hydroxybutyrate-lactic acid copolymer.
  • Aliphatic polyesters obtained by copolymerizing diols and dicarboxylic acids include polyethylene succinate, polybutylene succinate, polyethylene adipate, polybutylene adipate, butylene succinate-butylene adipate copolymer, butylene succinate-butylene terephthalate copolymer. Examples thereof include a polymer, butylene adipate-butylene terephthalate copolymer, and ethylene succinate-ethylene terephthalate copolymer. It is preferable to use polylactic acid as the aliphatic polyester (A).
  • the polylactic acid in the present invention is a polymer consisting only of repeating units derived from L-lactic acid and / or D-lactic acid, a repeating unit derived from L-lactic acid and / or D-lactic acid, L-lactic acid and D-lactic acid.
  • a copolymer comprising repeating units derived from monomers other than lactic acid, or a mixture of the polymer and the copolymer.
  • monomers other than the L-lactic acid and D-lactic acid include hydroxycarboxylic acids such as glycolic acid, aliphatic polyhydric alcohols such as butanediol, and aliphatic polycarboxylic acids such as succinic acid.
  • the content of the repeating unit derived from L lactic acid or D lactic acid in the polylactic acid is preferably 80 mol% or more, more preferably 90 mol% or more, from the viewpoint of enhancing the heat resistance of the obtained molded article. Preferably it is 95 mol% or more.
  • the melt flow rate (MFR) of the polylactic acid is preferably 1 g / 10 minutes or more, more preferably 2 g / 10 minutes or more, further preferably 3 g / 10 minutes or more from the viewpoint of the fluidity of the resin composition. Yes, even more preferably 5 g / 10 min or more, most preferably 10 g / 10 min or more.
  • MFR is measured by method A under the conditions of a load of 21.18 N and a temperature of 190 ° C. in the method specified in JIS K7210-1995.
  • Component (B) in the present invention is an ethylene- ⁇ -olefin copolymer in which the content of repeating units derived from ethylene is 50% by mass or more and less than 100% by mass (provided that ethylene- ⁇ -olefin copolymer is used). The total mass is 100% by mass).
  • the copolymer (B) is obtained by copolymerizing ethylene and one or more ⁇ -olefins having 3 to 12 carbon atoms.
  • Examples of the ⁇ -olefin having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 4-methylpentene-1, 1-hexene, 1-octene and 1-decene. Among these, it is preferable to use propylene, 1-butene, 1-hexene, and 1-octene, and it is more preferable to use 1-butene and 1-hexene.
  • Examples of the copolymer (B) include an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-4-methylpentene-1 copolymer, an ethylene-1-hexene copolymer, and an ethylene- Examples thereof include 1-octene copolymer and ethylene-propylene-1-butene copolymer.
  • an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, or an ethylene-1-octene copolymer is preferable, and an ethylene-1-butene copolymer, ethylene A -1-hexene copolymer or an ethylene-1-butene-1-hexene copolymer is more preferable.
  • the component (B) used by this invention is a repeating unit derived from another monomer in the range which does not impair the effect of this invention in addition to the repeating unit derived from ethylene and the repeating unit derived from alpha-olefin. You may have a unit.
  • Examples of the other monomer include conjugated dienes (for example, butadiene and isoprene), non-conjugated dienes (for example, 1,4-pentadiene), and cyclic olefins (for example, norbornadiene).
  • the density of the copolymer (B) is 880 to 965 kg / m. 3 It is. Since a hollow molded article having a high impact strength is obtained, the density is preferably 950 kg / m. 3 Or less, more preferably 935 kg / m 3 It is as follows. Since a hollow molded body with high buckling strength can be obtained, the density is preferably 900 kg / m.
  • the density of a component (B) is measured in accordance with the method prescribed
  • the melt flow rate (MFR) of the copolymer (B) is 0.01 to 5 g / 10 min. From the viewpoint of reducing the extrusion load during the molding process, it is preferably 0.05 g / 10 min or more, more preferably 0.1 g / 10 min or more.
  • the MFR is preferably 2 g / 10 min or less, more preferably 1 g / 10 min or less.
  • the melt flow rate here is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995.
  • the melt flow rate of the copolymer (B) can be changed by, for example, the hydrogen concentration or the polymerization temperature in the method for producing the copolymer (B) described later. When the hydrogen concentration or the polymerization temperature is increased, a copolymer (B) having a high melt flow rate is obtained.
  • the melt flow rate ratio of the copolymer (B) (hereinafter sometimes referred to as “MFRR”) is preferably 30 or more, more preferably from the viewpoint of further reducing the extrusion load during hollow molding. 50 or more, more preferably 70 or more. Since a hollow molded article having high impact strength is obtained, the MFRR is preferably 200 or less, more preferably 150 or less.
  • the MFRR is a method defined in JIS K7210-1995, wherein a melt flow rate measured under conditions of a load of 211.82 N and a temperature of 190 ° C. It is the value divided by the melt flow rate measured under the condition of 190 ° C.
  • MFRR can be changed by, for example, the hydrogen concentration in the method for producing a copolymer (B) described later.
  • the melt tension at 190 ° C. of the copolymer (B) (hereinafter sometimes referred to as “MT190”) is 2 to 30 cN or more.
  • MT190 melt tension at 190 ° C. of the copolymer (B)
  • the melt tension is preferably 4 cN or more, more preferably 6 cN or more.
  • the melt tension is preferably 30 cN or less, more preferably 25 cN or less, and even more preferably 20 cN or less from the viewpoint of enhancing the take-up property of the parison during hollow molding.
  • the melt tension in the present invention refers to the extrusion of the molten copolymer (B) through an orifice having a diameter of 2.095 mm and a length of 8 mm at an extrusion speed of 0.32 g / min at 190 ° C. In the tension when the copolymer (B) is drawn into a filament at a take-up rate of 6.3 (m / min) / min, from the start of take-up until the filament-shaped copolymer (B) is cut. The maximum tension between.
  • Melt tension can be adjusted with the pressure of the ethylene in superposition
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn is more preferably 7 or more, and still more preferably 8 or more.
  • Mw / Mn is more preferably 20 or less, and even more preferably 15 or less.
  • Mw / Mn is a value obtained by measuring Mw and Mn of the copolymer (B) by gel permeation chromatography (GPC) method and dividing Mw by Mn. As measurement conditions in the GPC method, for example, the following conditions can be given.
  • Ea is preferably 55 kJ / mol or more, and more Preferably it is 65 kJ / mol or more. Further, from the viewpoint of enhancing the take-up property at the time of hollow molding, Ea is more preferably 120 kJ / mol or less, further preferably 100 kJ / mol or less, still more preferably 95 kJ / mol or less, most preferably 80 kJ. / Mol or less.
  • Ea is a shift factor (a for creating a master curve indicating the dependence of the melt complex viscosity (unit: Pa ⁇ sec) at 190 ° C. on the angular frequency (unit: rad / sec).
  • T A numerical value calculated by the Arrhenius type equation and obtained by the method shown below. That is, the melt complex viscosity-angular frequency curve of the copolymer (B) at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (unit: ° C.) is calculated based on the temperature-time superposition principle.
  • the logarithmic curve of melt complex viscosity-angular frequency at each temperature shows the angular frequency as a T Double the melt complex viscosity to 1 / a T Move twice.
  • pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.
  • the melt complex viscosity-angular frequency curve is preferably measured using a viscoelasticity measuring device (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics).
  • the zero shear viscosity ( ⁇ of the copolymer (B) at 190 ° C. 0 ) Is preferably 10 to 300 kPa ⁇ sec or more.
  • Examples of the method for producing the copolymer (B) include a solid particulate promoter component in which a promoter component such as an organoaluminum compound, an organoaluminum oxy compound, a boron compound, and an organozinc compound is supported on a particulate carrier.
  • a promoter component such as an organoaluminum compound, an organoaluminum oxy compound, a boron compound, and an organozinc compound is supported on a particulate carrier.
  • the method of copolymerizing is mentioned.
  • the polymerization method is preferably a continuous polymerization method involving the formation of ethylene- ⁇ -olefin copolymer particles, for example, continuous gas phase polymerization, continuous slurry polymerization, continuous bulk polymerization, preferably continuous gas phase Polymerization.
  • the gas phase polymerization reaction apparatus is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion.
  • a stirring blade may be installed in the reaction vessel.
  • As a method of supplying each component of the polymerization catalyst used for the production of the copolymer (B) to the reaction vessel it is usually in an inert gas such as nitrogen and argon, hydrogen, ethylene, etc., in a state free from moisture.
  • a supplying method and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state are used.
  • Each component of the polymerization catalyst may be supplied individually, or arbitrary components may be supplied in contact in advance in any order.
  • prepolymerization before carrying out the main polymerization and to use the prepolymerized prepolymerized catalyst component as a catalyst component or catalyst for the main polymerization.
  • Different ⁇ -olefins may be used in the main polymerization and the prepolymerization, and it is preferable to prepolymerize an ⁇ -olefin having 4 to 12 carbon atoms and ethylene, and an ⁇ -olefin having 6 to 8 carbon atoms and ethylene. Is more preferably prepolymerized.
  • the polymerization temperature is usually lower than the temperature at which the copolymer (B) melts, preferably 0 to 150 ° C, more preferably 30 to 100 ° C, and further preferably 50 to 90 ° C. In order to obtain a copolymer (B) having a wide molecular weight distribution, a higher polymerization temperature is preferred.
  • the polymerization time (average residence time in the case of continuous polymerization reaction) is usually 1 to 20 hours. In order to obtain a copolymer (B) having a wide molecular weight distribution, a longer polymerization time (average residence time) is preferable.
  • hydrogen may be added to the polymerization reaction gas as a molecular weight regulator, or an inert gas may be allowed to coexist in the polymerization reaction gas.
  • the molar concentration of hydrogen in the polymerization reaction gas with respect to the molar concentration of ethylene in the polymerization reaction gas is usually 0.1 to 3 mol%, assuming that the molar concentration of ethylene in the polymerization reaction gas is 100 mol%.
  • it is preferable that the molar concentration of hydrogen in the polymerization reaction gas is high.
  • the component (C) is a compatibilizing agent capable of compatibilizing the component (A) and the component (B).
  • the compatibilizer include a polymer having an epoxy group, a styrene-based thermoplastic elastomer, an ethylene-vinyl acetate copolymer, and an ethylene- (meth) acrylate copolymer.
  • the component (C) is preferably a polymer having an epoxy group. Whether a certain compound corresponds to the component (C) in the present invention is determined by the following method. Hereinafter, a certain compound is referred to as component (X).
  • a resin composition (1) is obtained by melt-kneading a mixture (1) obtained by mixing a predetermined amount of component (A), component (B) and component (X). Using this resin composition (1), a molded body (1) having a predetermined size is produced. Next, a molded body (2) having the same size as the molded body (1) is manufactured using the component (B) under the same conditions as the conditions for manufacturing the molded body (1). The impact strength of the molded body (1) and the impact strength of the molded body (2) are measured. When the impact strength of the molded body (1) exceeds 20% of the impact strength of the molded body (2), the component (X) is the component (C) of the present invention, that is, the component (A) and the component (B). It is a compatibilizer.
  • Examples of the polymer having an epoxy group include a copolymer having a repeating unit derived from ethylene and a repeating unit derived from a monomer having an epoxy group.
  • Examples of the monomer having an epoxy group include ⁇ , ⁇ -unsaturated glycidyl ethers such as ⁇ , ⁇ -unsaturated glycidyl esters such as glycidyl methacrylate and glycidyl acrylate, allyl glycidyl ether, and 2-methylallyl glycidyl ether.
  • it is glycidyl methacrylate.
  • Examples of the polymer having an epoxy group include glycidyl methacrylate-ethylene copolymer (for example, trade name Bond First manufactured by Sumitomo Chemical Co., Ltd.), glycidyl methacrylate-styrene copolymer, glycidyl methacrylate-acrylonitrile-styrene copolymer, and glycidyl. And methacrylate-propylene copolymer.
  • glycidyl methacrylate-ethylene copolymer for example, trade name Bond First manufactured by Sumitomo Chemical Co., Ltd.
  • glycidyl methacrylate-styrene copolymer for example, trade name Bond First manufactured by Sumitomo Chemical Co., Ltd.
  • methacrylate-propylene copolymer for example, trade name Bond First manufactured by Sumitomo Chemical Co., Ltd.
  • a monomer having an epoxy group was graft-polymerized by solution or melt-kneading to polyethylene, polypropylene, polystyrene, ethylene- ⁇ -olefin copolymer, hydrogenated and non-hydrogenated styrene-conjugated diene systems, and the like.
  • a polymer may be used.
  • the content of the repeating unit derived from the monomer having an epoxy group is 0.01% by mass to 30% by mass, preferably 0.1% by mass to 20% by mass.
  • content of the repeating unit derived from the monomer which has an epoxy group is measured by the infrared method. Specifically, first, a polymer having an epoxy group is pressed to prepare a sheet. Next, the infrared absorption spectrum of the sheet is measured. The absorbance of the characteristic absorption of the infrared absorption spectrum is corrected by the thickness of the sheet, and the content is obtained by a calibration curve method. As glycidyl methacrylate characteristic absorption, 910cm -1 The peak of is used.
  • the melt flow rate (MFR) of the polymer having an epoxy group is 1 g / 10 min to 15 g / 10 min. From the viewpoint of workability, the MFR is preferably 1.5 g / 10 min or more, more preferably 2 g / 10 min or more. From the viewpoint of easy reaction between the polymer having an epoxy group and other components, the MFR is preferably 8 g / 10 min or less, more preferably 7 g / 10 min or less, and further preferably 5 g / 10 min. Min or less, and even more preferably 4 g / 10 min or less.
  • the melt flow rate here is a value measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C.
  • Examples of the method for producing a polymer having an epoxy group include a method of copolymerizing a monomer having an epoxy group with another monomer by a high-pressure radical polymerization method, a solution polymerization method, an emulsion polymerization method, and the like. Examples thereof include a method in which a monomer having an epoxy group is graft polymerized to a resin based resin.
  • the polymer having an epoxy group may have a repeating unit derived from another monomer.
  • repeating units examples include unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and butyl acrylate, and unsaturated vinyl esters such as vinyl acetate and vinyl propionate.
  • component (C) a styrenic thermoplastic elastomer can also be used.
  • styrene-based thermoplastic elastomer examples include styrene-butadiene rubber (SBR) or a hydrogenated product thereof (H-SBR), a styrene-butadiene block copolymer (SBS) or a hydrogenated product thereof (SEBS), styrene- Isoprene block copolymer (SIS) or its hydrogenated product (SEPS, HV-SIS), styrene- (butadiene / isoprene) block copolymer, styrene- (butadiene / isoprene) random copolymer, and the like.
  • SBR styrene-butadiene rubber
  • H-SBR hydrogenated product thereof
  • SBS styrene-butadiene block copolymer
  • SEBS hydrogenated product thereof
  • SEBS hydrogenated product thereof
  • SIS styrene- Isoprene block copolymer
  • An ethylene-vinyl acetate copolymer can also be used as the component (C).
  • ethylene-vinyl acetate copolymer products include Mitsui DuPont Polychemical's "Evaflex”, LANXESS's “Revaprene”, Sumitomo Chemical's “Evaate”, Tosoh “Ultrasen”, Nippon Polyethylene “Novatec” Nippon Unicar “NUC EVA copolymer” and the like can be mentioned.
  • An ethylene- (meth) acrylic acid ester copolymer can also be used as the component (C).
  • ethylene- (meth) acrylic acid ester copolymers examples include “Lotril” manufactured by Arkema, “Evaflex EEA” manufactured by Mitsui DuPont Polychemical, “Aklift” manufactured by Sumitomo Chemical, and “UNUC EEA Copolymer” manufactured by Nihon Unicar. Etc.
  • the content of each component in the resin composition of the present invention is such that the total amount of the components (A), (B) and (C) contained in the resin composition is 100% by mass, and the content of the component (A) is The content of component (B) is 50 to 94% by mass, and the content of component (C) is 1 to 15% by mass.
  • the content of component (A) is 10 to 45% by mass
  • the content of component (B) is 53 to 88% by mass
  • the content of component (C) is 2 to 12% by mass. More preferably, the content of the component (A) is 20 to 42% by mass, the content of the component (B) is 55 to 77% by mass, and the content of the component (C) is 3 to 10% by mass. It is.
  • the blending ratio of each component in the above range it is possible to obtain a hollow molded body having high buckling strength and high impact strength.
  • the value obtained by dividing the mass of the component (A) in the resin composition by the mass of the component (C) is preferably less than 10, and is 8 or less. More preferably, it is more preferably 6 or less, still more preferably 5 or less, and most preferably 4 or less.
  • an antioxidant, a neutralizing agent, a lubricant, an antistatic agent, a nucleating agent, an ultraviolet ray preventing agent, a plasticizer, a dispersing agent, an antifogging agent, an antibacterial agent, and an organic porous powder It is possible to add additives such as pigments.
  • Various resin components may be added to the resin composition as long as the effects of the present invention are not impaired.
  • the various resin components include ethylene- ⁇ -olefin copolymers that do not fall under the component (B) of the present invention, HDPE, high-pressure low-density polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66, Nylon 11, Nylon 12, Nylon 6, 66, Styrenic thermoplastic elastomer, olefinic thermoplastic elastomer, polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer not applicable as component (C) Etc.
  • the manufacturing method of a resin composition is not specifically limited, A well-known blend method can be used.
  • known blending methods include a method of dry blending or melt blending the components (A) to (C) and other components such as additives as necessary.
  • dry blending method include a method using various blenders such as a Henschel mixer and a tumbler mixer.
  • melt blending method include a single screw extruder, a twin screw extruder, a Banbury mixer, a hot roll, and the like. The method of using various mixers is mentioned.
  • the hollow molding method include an extrusion method, an accumulator method, a hot parison method, a cold parison method, and an injection method.
  • the hollow molded body of the present invention is obtained by extruding a molten resin composition from an extruder to obtain a molten parison, setting the parison in a mold having a desired shape of the hollow molding machine, and then compressing the compressed gas. Is blown to the inner wall of the mold and then cooled.
  • the molding mechanism of the molding machine include a shuttle type, a rotary type, and a satellite type
  • examples of the mold clamping method include a hydraulic type, an electric type, and a toggle type. You may extend
  • the hollow molded body thus obtained is used for tubes, bottles, tanks and the like.
  • the hollow molded article is suitably used for food containers, industrial use, medical use, daily necessities and the like.
  • the resin composition of the present invention may be used when producing a single-layer hollow molded article, and when producing a multilayer hollow molded article, it is used for forming one layer contained in the multilayer hollow molded article. Also good.
  • a layer other than the layer made of the resin fat composition of the present invention contained in the multilayer hollow molded body a layer having excellent slipperiness, a barrier layer of gas such as oxygen or water vapor, a light shielding layer, an oxygen absorbing layer, an adhesive layer , A colored layer, a conductive layer, a recycled resin-containing layer, and the like.
  • Examples of the resin constituting the layer other than the layer using the resin composition of the present invention include, for example, high density polyethylene, low density polyethylene, very low density polyethylene, ultra low density polyethylene, polypropylene, and ethylene-vinyl acetate copolymer.
  • Ethylene-acrylic acid copolymer ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer Saponified product, ethylene-styrene copolymer, ethylene-vinylcyclohexane copolymer, ethylene-norbornene copolymer, polyolefin rubber, styrene-butadiene rubber, styrene-butadiene-styrene block copolymer, isoprene rubber, styrene-isoprene rubber , Isobutylene rubber Acid modified products or hydrogenated products thereof and the like resins and.
  • melt flow rate ratio (MFRR)
  • H-MFR melt flow rate measured under the conditions of a test load of 211.82 N and a measurement temperature of 190 ° C. in the method specified in JIS K7210 (1995).
  • MFR melt flow rate measured under conditions of a load of 21.18 N and a temperature of 190 ° C. was measured, and a value obtained by dividing H-MFR by MFR was used.
  • the molecular weight distribution of the component (B) is determined using the gel permeation chromatograph (GPC) method under the following conditions (1) to (8): weight average molecular weight (Mw) and number average molecular weight (Mn) was measured and determined.
  • the baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
  • Apparatus Waters 150C manufactured by Waters (2) Separation column: TOSOH TSKgelGMH6-HT (3) Measurement temperature: 140 ° C (4) Carrier: Orthodichlorobenzene (5) Flow rate: 1.0 mL / min (6) Injection volume: 500 ⁇ L (7) Detector: differential refractometer (8) Molecular weight standard: Standard polystyrene (5) Flow activation energy (Ea, unit: kJ / mol) Ea of component (B) is dynamic viscoelasticity data at each temperature T (K) measured under the following conditions (a) to (d) using a strain-controlled rotary viscometer (rheometer).
  • the polymer (B) was taken up into a filament shape by a take-up roll at a take-up rate of 6.3 (m / min) / min, and the tension during take-up was measured. The maximum tension from the start of take-up until the filamentous copolymer (B) was cut was defined as the melt tension.
  • Hollow molding The resin compositions produced in Examples and Comparative Examples were hollow molded with a Tahara MSE-55E / 54M-A (E1) hollow molding machine to produce a 500 ml cylindrical bottle.
  • the cylindrical bottle was dropped (vertically dropped) at a room temperature from a height of 1 m with the cap portion facing up.
  • the cylindrical bottle was dropped (laterally dropped) with the cap portion turned sideways.
  • the vertical drop and the horizontal drop are alternately repeated up to 10 times each (20 times in total for the vertical drop and the horizontal drop) until the cylindrical bottle is subjected to a drop test.
  • n-1 the number of drops until pinholes or cracks occur in the cylindrical bottle.
  • buckling strength: ⁇ when 50 or more and less than 70, “buckling strength ⁇ ”, and when 70 or more and less than 90, “buckling strength: ⁇ ”. , 90 or more was defined as "buckling strength: A”.
  • Each component used in the examples of the present invention is as follows.
  • ⁇ Component (A): Polylactic acid> Unitika Co., Ltd., trade name “Terramac TE-2000C”, MFR (190 ° C.) 12 g / 10 min, lactic acid homopolymer ⁇ component (B): ethylene- ⁇ -olefin copolymer> [Polymerization Example 1: (B-1) Production of ethylene-1-hexene copolymer] (1) Preparation of catalyst solid component (a) Silica heated by a reactor equipped with a nitrogen-replaced stirrer at 300 ° C.
  • the obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to the washed solid product to form a slurry, and the slurry was allowed to stand overnight.
  • To the slurry obtained above 1.73 kg of diethylzinc in hexane (diethylzinc concentration: 50 mass%) and 1.02 kg of hexane were added and stirred. Then, after cooling the mixture to 5 ° C., a mixed solution of 0.78 kg of 3,4,5-trifluorophenol and 1.44 kg of toluene was added dropwise over 60 minutes while keeping the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C.
  • ethylene was charged so that the ethylene partial pressure in the autoclave was 0.03 MPa, and the solid component for catalyst (a) 0. 7 kg was charged, and then 140 mmol of triisobutylaluminum was charged to initiate polymerization.
  • the autoclave was heated to 50 ° C., and ethylene and hydrogen were 3.5 kg / Hr and 10.2 L (room temperature and normal pressure volume) / Hr, respectively. For a total of 4 hours of prepolymerization.
  • the polymerization temperature was 80 ° C.
  • the polymerization pressure was 2 MPa
  • the hydrogen molar ratio to ethylene was 1.6%
  • the 1-hexene molar ratio to ethylene was 0.9%.
  • ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant.
  • the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder mass of 80 kg in the fluidized bed was kept constant.
  • the average polymerization time was 4 hours.
  • the obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.2 MPa, and a resin temperature of 200 to 230.
  • An ethylene-1-hexene copolymer was obtained by granulation under the condition of ° C. Table 1 shows the results of the physical property evaluation of the obtained copolymer.
  • the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 3 hours.
  • a powder of ethylene-1-hexene copolymer was obtained with a production efficiency of 21 kg / hr.
  • the obtained ethylene-1-hexene copolymer powder was fed with a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 4.2 mm, and a suction pressure of 0.2 MPa using an LCM50 extruder manufactured by Kobe Steel.
  • ethylene was charged so that the ethylene partial pressure in the autoclave was 0.03 MPa, and after the system was stabilized, 350 mmol of triisobutylaluminum and 88 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added for polymerization. Started. While raising the temperature of the autoclave to 50 ° C. and supplying ethylene and hydrogen continuously, prepolymerization was carried out at 50 ° C. for a total of 6 hours.
  • the polymerization conditions were a temperature of 86 ° C., a total pressure of 2 MPa, a gas linear velocity of 0.3 m / s, a hydrogen molar ratio to ethylene of 0.9%, and a 1-hexene molar ratio to ethylene of 1.1%.
  • ethylene, hexene-1, and hydrogen were continuously supplied.
  • the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 5.5 hr.
  • a powder of an ethylene-1-hexene copolymer was obtained with a production efficiency of 15 kg / hr.
  • the obtained ethylene-1-hexene copolymer powder was fed with a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 4.2 mm, and a suction pressure of 0.2 MPa using an LCM50 extruder manufactured by Kobe Steel.
  • an ethylene-1-hexene copolymer was obtained by granulating at a resin temperature of 200 to 230 ° C.
  • Table 1 shows the results of the physical property evaluation of the obtained copolymer.
  • Example 5 Comparative Example 5 and Comparative Example 6, the following polyethylene was used as component (B).
  • B-4) Metallocene catalyst-based linear low-density polyethylene (trade name Sumikasen E FV102 manufactured by Sumitomo Chemical Co., Ltd., physical properties are as shown in Table 1)
  • B-5) Metallocene catalyst-based linear low-density polyethylene (trade name Sumikasen E FV205 manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as PE-5.
  • the mixture was melt-kneaded at 200 ° C. using a single screw extruder to obtain a resin composition.
  • the resin composition was hollow molded to obtain a 500 ml cylindrical bottle.
  • the physical properties of the obtained hollow molded body are shown in Tables 4 and 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

A polyethylene-based resin composition for blow molding containing 5 to 49% by mass of an aliphatic polyester (A), 50 to 94% by mass of a following component (B), and 1 to 15% by mass of a compatibilizing agent (C) (provided that the total amount of the aliphatic polyester (A), the component (B), and the component (C) is 100% by mass).

Description

中空成形用ポリエチレン系樹脂組成物及び中空成形体Polyethylene resin composition for hollow molding and hollow molded body
 本発明は、中空成形用ポリエチレン系樹脂組成物及び中空成形体に関する。 The present invention relates to a polyethylene resin composition for hollow molding and a hollow molded body.
 ポリエチレンと、ポリ乳酸やポリ−3−ヒドロキシ酪酸エステル等の植物由来の樹脂とを含む樹脂組成物からなる成形体は、ポリエチレンを含み植物由来の樹脂を含まない樹脂組成物からなる成形体よりも、廃棄処理が容易であることが知られている。
 ポリエチレンと植物由来の樹脂とを含む樹脂組成物として、特開2008—38142号公報やWO09/078376号公報に記載された樹脂組成物が知られている。特許文献1には、ポリ乳酸系樹脂10~70質量部と、ポリエチレン樹脂90~30質量部と、相容化剤5~10質量部からなる樹脂組成物が開示されている。特許文献2には、ポリオレフィン系重合体(A)と、脂肪族ポリエステル系重合体(B)と、190℃、荷重21Nで測定したメルトフローレート(MFR)が0.5~3.0g/10分であるエラストマー類(C)と、エポキシ基を有するポリオレフィン系重合体(D)とを含む樹脂組成物が開示されている。
A molded article made of a resin composition containing polyethylene and a plant-derived resin such as polylactic acid or poly-3-hydroxybutyrate is more than a molded article made of a resin composition containing polyethylene and no plant-derived resin. It is known that the disposal process is easy.
As a resin composition containing polyethylene and a plant-derived resin, resin compositions described in JP 2008-38142 A and WO 09/078376 are known. Patent Document 1 discloses a resin composition comprising 10 to 70 parts by mass of a polylactic acid resin, 90 to 30 parts by mass of a polyethylene resin, and 5 to 10 parts by mass of a compatibilizer. In Patent Document 2, a polyolefin polymer (A), an aliphatic polyester polymer (B), and a melt flow rate (MFR) measured at 190 ° C. under a load of 21 N are 0.5 to 3.0 g / 10. The resin composition containing the elastomer (C) which is a part, and the polyolefin-type polymer (D) which has an epoxy group is disclosed.
 しかしながら、特開2008—38142号公報やWO09/078376号公報に記載の樹脂組成物を中空成形して得られた中空成形体の座屈強度や衝撃強度は十分なものではなく、これら物性の更なる改善が求められていた。
 以上の課題に鑑み、本発明は座屈強度及び衝撃強度に優れる中空成形体を提供することを目的とする。
 本発明は、脂肪族ポリエステル(A)5~49質量%、下記の成分(B)50~94質量%、及び相容化剤(C)1~15質量%を含有する中空成形用ポリエチレン系樹脂組成物(但し、脂肪族ポリエステル(A)、成分(B)及び成分(C)の合計量を100質量%とする)を提供するものである。
成分(B):密度が880~965kg/mであり、メルトフローレートが0.01~5g/10分であり、190℃における溶融張力が2~30cNであるエチレン−α−オレフィン共重合体
However, the buckling strength and impact strength of hollow molded articles obtained by hollow molding of the resin compositions described in JP-A-2008-38142 and WO09 / 078376 are not sufficient, and these physical properties are further improved. There was a need for improvement.
In view of the above problems, an object of the present invention is to provide a hollow molded article having excellent buckling strength and impact strength.
The present invention relates to a hollow molding polyethylene resin containing 5-49% by mass of an aliphatic polyester (A), 50-94% by mass of the following component (B), and 1-15% by mass of a compatibilizer (C). A composition (provided that the total amount of the aliphatic polyester (A), the component (B) and the component (C) is 100% by mass) is provided.
Component (B): an ethylene-α-olefin copolymer having a density of 880 to 965 kg / m 3 , a melt flow rate of 0.01 to 5 g / 10 min, and a melt tension at 190 ° C. of 2 to 30 cN
 本発明は、上記の脂肪族ポリエステル(A)、成分(B)及び成分(C)を含有する中空成形用ポリエチレン系樹脂組成物である。
 なお、本発明において、「中空成形用ポリエチレン系樹脂組成物」を単に「樹脂組成物」と称することがある。
[樹脂組成物]
<成分(A):脂肪族ポリエステル>
 本発明における脂肪族ポリエステル(A)とは、エステル構造で結合された直鎖状または分岐状のアルキレン構造を繰り返し単位としてもつ単独重合体あるいは共重合体である。脂肪族ポリエステル(A)としては、ヒドロキシカルボン酸を重合して得られるポリエステルや、ジオールとジカルボン酸を共重合して得られるポリエステルが挙げられる。これらは単独又は2種以上併用して用いてもよい。
 本明細書では、脂肪族ポリエステル(A)を成分(A)と称することもある。
 ヒドロキシカルボン酸を重合して得られるポリエステルとしては、式(1)で示される3−ヒドロキシアルカノエートに由来する繰り返し単位を有する重合体が挙げられる。
Figure JPOXMLDOC01-appb-I000001
〔式中、Rは水素原子又は炭素原子数1~15のアルキル基であり、Rは単結合、又は炭素数1~4のアルキレン基である〕
 式(1)で示される繰り返し単位を有する重合体は、単独重合体であってもよく、上記繰り返し単位を二種以上含有する多元共重合体であってもよい。多元共重合体は、ランダム共重合体、交替共重合体、ブロック共重合体、グラフト共重合体等のいずれであってもよい。
 上記単独重合体としては乳酸の単独重合体、ポリカプロラクトン、ポリ(3−ヒドロキシ酪酸エステル)、ポリ(4−ヒドロキシブチレート)、ポリ(3−ヒドロキシプロピオネート)等が挙げられる。多元共重合体としては、3−ヒドロキシブチレート−3−ヒドロキシプロピオネート共重合体、3−ヒドロキシブチレート−4−ヒドロキシブチレート共重合体、3−ヒドロキシブチレート−3−ヒドロキシバリレート共重合体、3−ヒドロキシブチレート−3−ヒドロキシヘキサノエート共重合体、3−ヒドロキシブチレート−3−ヒドロキシオクタノエート共重合体、3−ヒドロキシブチレート−3−ヒドロキシバリレート−3−ヒドロキシヘキサノエート−4−ヒドロキシブチレート共重合体、3−ヒドロキシブチレート−乳酸共重合体等が挙げられる。このうち、ポリ乳酸、ポリ−3−ヒドロキシ酪酸エステル又はこれらの混合物を用いることが好ましい。
 ジオールとジカルボン酸を共重合して得られる脂肪族ポリエステルとしては、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ブチレンサクシネート−ブチレンアジペート共重合体、ブチレンサクシネート−ブチレンテレフタレート共重合体、ブチレンアジペート−ブチレンテレフタレート共重合体、エチレンサクシネート−エチレンテレフタレート共重合体等が挙げられる。
 脂肪族ポリエステル(A)として、ポリ乳酸を用いることが好ましい。本発明におけるポリ乳酸とは、L−乳酸及び/又はD−乳酸に由来する繰り返し単位のみからなる重合体、L−乳酸及び/又はD−乳酸に由来する繰り返し単位と、L−乳酸及びD−乳酸以外のモノマーに由来する繰り返し単位と、からなる共重合体、または、前記重合体と前記共重合体の混合物、である。上記L−乳酸及びD−乳酸以外のモノマーとしては、グリコール酸等のヒドロキシカルボン酸、ブタンジオール等の脂肪族多価アルコール及びコハク酸等の脂肪族多価カルボン酸が挙げられる。
 ポリ乳酸におけるL乳酸又はD乳酸に由来する繰り返し単位の含有量は、得られる成形体の耐熱性を高める観点から、好ましくは80モル%以上であり、より好ましくは90モル%以上であり、さらに好ましくは95モル%以上である。ポリ乳酸のメルトフローレート(MFR)は、樹脂組成物の流動性の観点から好ましくは1g/10分以上であり、より好ましくは2g/10分以上であり、更に好ましくは3g/10分以上であり、更により好ましくは5g/10分以上であり、最も好ましくは10g/10分以上である。また、成形体の強度の観点から、20g/10分以下であり、より好ましくは18g/10分以下であり、更に好ましくは15g/10分以下である。MFRは、JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定する。
<成分(B):エチレン−α−オレフィン共重合体>
 本発明における成分(B)は、エチレンに由来する繰り返し単位の含有量が50質量%以上100質量%未満であるエチレン−α−オレフィン共重合体である(但し、エチレン−α−オレフィン共重合体全体の質量を100質量%とする)。以下、成分(B)または共重合体(B)と称することもある。
 共重合体(B)は、エチレンと1種類以上の炭素数3~12のα−オレフィンとを共重合して得られる。炭素数3~12のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、4−メチルペンテン−1、1−ヘキセン、1−オクテン、1−デセンが挙げられる。このうち、プロピレン、1−ブテン、1−ヘキセン、1−オクテンを用いることが好ましく、1−ブテン、1−ヘキセンを用いることがより好ましい。
 共重合体(B)としては、例えば、エチレン−プロピレン共重合体、エチレン−1−ブテン共重合体、エチレン−4−メチルペンテン−1共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−プロピレン−1−ブテン共重合体等が挙げられる。このうち、エチレン−プロピレン共重合体、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、またはエチレン−1−オクテン共重合体が好ましく、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、またはエチレン−1−ブテン−1−ヘキセン共重合体がより好ましい。
 なお、本発明で用いられる成分(B)は、エチレンに由来する繰り返し単位及びα−オレフィンに由来する繰り返し単位に加え、本発明の効果を損なわない範囲において、他の単量体に由来する繰り返し単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、環状オレフィン(例えばノルボルナジエン)、が挙げられる。
 共重合体(B)の密度は、880~965kg/mである。衝撃強度の高い中空成形体が得られるため、密度は好ましくは950kg/m以下であり、より好ましくは935kg/m以下である。座屈強度の高い中空成形体が得られるため、密度は好ましくは900kg/m以上であり、より好ましくは910kg/m以上である。成分(B)の密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。また、共重合体(B)の密度は、共重合体(B)中のエチレンに基づく単量体単位の含有量により変更することができる。
 共重合体(B)のメルトフローレート(MFR)は、0.01~5g/10分である。成形加工時の押出負荷を低減する観点から、好ましくは0.05g/10分以上であり、より好ましくは0.1g/10分以上である。衝撃強度の高い中空成形体が得られるため、MFRは好ましくは2g/10分以下であり、より好ましくは1g/10分以下である。なお、ここでいうメルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。
 共重合体(B)のメルトフローレートは、後述する共重合体(B)の製造方法において、例えば、水素濃度又は重合温度により変更することができる。水素濃度又は重合温度を高くすると、メルトフローレートの大きい共重合体(B)が得られる。
 共重合体(B)のメルトフローレート比(以下、「MFRR」と記載することがある。)は、中空成形時の押出負荷をより低減する観点から、好ましくは30以上であり、より好ましくは50以上であり、更に好ましくは70以上である。衝撃強度の高い中空成形体が得られるため、MFRRは好ましくは200以下であり、より好ましくは150以下である。MFRRは、JIS K7210−1995に規定された方法において、荷重211.82N、温度190℃の条件で測定されるメルトフローレートを、JIS K7210−1995に規定された方法において、荷重21.18N及び温度190℃の条件で測定されるメルトフローレートで除した値である。
 MFRRは、後述する共重合体(B)の製造方法において、例えば、水素濃度により変更することができる。水素濃度を高くすると、MFRRが小さい共重合体(B)が得られる。
 共重合体(B)の190℃における溶融張力(以下、「MT190」と記載することがある。)は、2~30cN以上である。溶融張力が1cN未満であると、中空成形時にパリソンの形状保持性が低下するため成形品の厚み分布が大きくなり、厚みの薄い部分の剛性が低下するため座屈強度が低下することがある。溶融張力は、好ましくは4cN以上であり、より好ましくは6cN以上である。溶融張力は、中空成形時のパリソンの引取性を高める観点からは、好ましくは30cN以下であり、より好ましくは25cN以下であり、さらに好ましくは20cN以下である。
 本発明における溶融張力とは、190℃のもと、0.32g/分の押出速度で、直径2.095mm、長さ8mmのオリフィスから溶融状の共重合体(B)を押出し、押出された共重合体(B)を6.3(m/分)/分の引取上昇速度でフィラメント状に引取る際の張力において、引取開始からフィラメント状の共重合体(B)が切断されるまでの間の最大張力のことをいう。
 溶融張力は、後述する共重合体(B)の製造方法において、重合中のエチレンの圧力により調整することができる。重合中のエチレンの圧力を低くすると、溶融張力の高い共重合体(B)が得られる。また、適切な条件下で予備重合を実施することでも、溶融張力の高い共重合体(B)を得ることができる。
 共重合体(B)の数平均分子量(以下、「Mn」と記載することがある。)に対する重量平均分子量(以下、「Mw」と記載することがある。)の比(以下、「Mw/Mn」と記載することがある。)は、好ましくは5~25である。Mw/Mnが小さすぎると、成形加工時の樹脂圧力や樹脂温度が高くなることがある。Mw/Mnは、より好ましくは7以上であり、さらに好ましくは8以上である。Mw/Mnは、より好ましくは20以下であり、さらに好ましくは15以下である。
 Mw/Mnは、ゲル・パーミエイション・クロマトグラフ(GPC)法により、共重合体(B)のMwとMnを測定し、MwをMnで除した値である。GPC法での測定条件としては、例えば、次の条件をあげることができる。
 (1)装置:Waters製Waters150C
 (2)分離カラム:TOSOH TSKgelGMH6−HT
 (3)測定温度:140℃
 (4)キャリア:オルトジクロロベンゼン
 (5)流量:1.0mL/分
 (6)注入量:500μL
 (7)検出器:示差屈折計
 (8)分子量標準物質:標準ポリスチレン
 共重合体(B)の流動の活性化エネルギー(Ea)は、45~150kJ/molであることが好ましい。共重合体(B)の溶融張力を増加させる観点、中空成形体の座屈強度を向上させる観点ならびに成形加工時の押出負荷を低減する観点から、Eaは好ましくは55kJ/mol以上であり、より好ましくは65kJ/mol以上である。また、中空成形時の引取性を高める観点から、Eaはより好ましくは120kJ/mol以下であり、さらに好ましくは100kJ/mol以下であり、より更に好ましくは95kJ/mol以下であり、最も好ましくは80kJ/mol以下である。
 Eaは、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(a)から、アレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。
 すなわち、130℃、150℃、170℃及び190℃夫々の温度(単位:℃)における共重合体(B)の溶融複素粘度−角周波数曲線を、温度−時間重ね合わせ原理に基づいて、190℃でのオレフィン重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度でのシフトファクター(a)を求める。夫々の温度と、各温度でのシフトファクターとから、最小自乗法により[ln(a)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
 ln(a)=m(1/(T+273.16))+n・・・(I)
 Ea=|0.008314×m|・・・・・・・・・・・・・・(II)
  a:シフトファクター
  Ea:流動の活性化エネルギー(単位:kJ/mol)
  T :温度(単位:℃)
 上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4等が挙げられる。
 なお、シフトファクターは、夫々の温度における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量である。この重ね合わせでは、夫々の温度における溶融複素粘度−角周波数の両対数曲線は、曲線ごとに、角周波数をa倍に、溶融複素粘度を1/a倍に移動させる。また、130℃、150℃、170℃及び190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
 溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて測定することが好ましい。
 共重合体(B)の190℃でのゼロせん断粘度(η)は、好ましくは10~300kPa・sec以上である。ηは、衝撃強度を高める観点から、より好ましくは30kPa・sec以上であり、さらに好ましくは50kPa・sec以上である。成形加工時の押出負荷を低減する観点から、ηはより好ましくは200Pa・sec以下であり、さらに好ましくは100Pa・sec以下である。
 ηは、前述のEaを算出した際に得られた複素せん断粘度(η)と角周波数(ω)のマスターカーブを、下記のクロスの近似式で近似して求められる。
クロスの近似式・・・η=η÷[1+(τ×ω)
〔式中、η、τ及びnはそれぞれ、ゼロせん断粘度、特性緩和時間、非ニュートン指数であり、測定に用いる共重合体(B)ごとに求められる定数である。〕
 共重合体(B)の製造方法としては、例えば、有機アルミニウム化合物、有機アルミニウムオキシ化合物、ホウ素化合物、有機亜鉛化合物等の助触媒成分を粒子状担体に担持させた固体粒子状の助触媒成分と、アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン錯体と、からなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法が挙げられる。
 重合方法として、好ましくは、エチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合方法であり、例えば、連続気相重合、連続スラリー重合、連続バルク重合であり、好ましくは、連続気相重合である。気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。
反応槽内に攪拌翼が設置されていてもよい。
 共重合体(B)の製造に用いられる重合触媒の各成分を反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解又は希釈して、溶液又はスラリー状態で供給する方法が用いられる。重合触媒の各成分は個別に供給してもよく、任意の成分を任意の順序にあらかじめ接触させて供給してもよい。
 また、本重合を実施する前に、予備重合を実施し、予備重合された予備重合触媒成分を本重合の触媒成分又は触媒として使用することが好ましい。本重合と予備重合では異なるα−オレフィンを用いてもよく、炭素数が4~12のα−オレフィンとエチレンとを予備重合することが好ましく、炭素数が6~8のα−オレフィンとエチレンとを予備重合することがより好ましい。
 重合温度としては、通常、共重合体(B)が溶融する温度よりも低く、好ましくは0~150℃であり、より好ましくは30~100℃であり、さらに好ましくは50~90℃である。分子量分布の広い共重合体(B)を得るためには、重合温度は高い方が好ましい。
 重合時間(連続重合反応である場合は平均滞留時間)は、通常1~20時間である。分子量分布の広い共重合体(B)を得るためには、重合時間(平均滞留時間)は長い方が好ましい。
 共重合体(B)のメルトフローレートを調節する目的で、重合反応ガスに水素を分子量調節剤として添加してもよく、重合反応ガス中に不活性ガスを共存させてもよい。重合反応ガス中のエチレンのモル濃度に対する重合反応ガス中の水素のモル濃度は、重合反応ガス中のエチレンのモル濃度100モル%として、通常、0.1~3モル%である。分子量分布の広い共重合体(B)を得るためには、該重合反応ガス中の水素のモル濃度は、高い方が好ましい。
<成分(C):相容化剤>
 本発明において成分(C)とは、成分(A)と成分(B)とを相容化することができる相容化剤である。相容化剤としては、エポキシ基を有する重合体、スチレン系熱可塑性エラストマー、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体が挙げられる。成分(C)として好ましくは、エポキシ基を有する重合体が挙げられる。
 ある化合物が本発明における成分(C)に該当するかどうかは、次の方法で判定する。以下、ある化合物を成分(X)と称する。
 まず、成分(A)、成分(B)及び成分(X)を、所定の量混合した混合物(1)を、溶融混練して樹脂組成物(1)を得る。この樹脂組成物(1)を用いて、所定の大きさの成形体(1)を製造する。
 次に、成形体(1)を製造した条件と同じ条件で、成分(B)を用いて成形体(1)と同じ大きさの成形体(2)を製造する。
 成形体(1)の衝撃強度と成形体(2)の衝撃強度を測定する。成形体(1)の衝撃強度が、成形体(2)の衝撃強度の20%を超えている場合、成分(X)は本発明の成分(C)、すなわち成分(A)と成分(B)の相容化剤である。
 エポキシ基を有する重合体としては、エチレンに由来する繰り返し単位と、エポキシ基を有する単量体に由来する繰り返し単位とを有する共重合体が挙げられる。エポキシ基を有する単量体としては、例えば、グリシジルメタアクリレート、グリシジルアクリレート等のα,β−不飽和グリシジルエステル、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル等のα,β−不飽和グリシジルエーテルを挙げることができ、好ましくはグリシジルメタアクリレートである。
 エポキシ基を有する重合体としては、グリシジルメタアクリレート−エチレン共重合体(例えば、住友化学製 商品名ボンドファースト)、グリシジルメタアクリレート−スチレン共重合体やグリシジルメタアクリレート−アクリロニトリル−スチレン共重合体、グリシジルメタアクリルレート−プロピレン共重合体等が挙げられる。また、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン−α−オレフィン共重合体、水添及び非水添のスチレン−共役ジエン系等に、エポキシ基を有する単量体を、溶液若しくは溶融混練でグラフト重合させた重合体を用いてもよい。
 エポキシ基を有する重合体において、エポキシ基を有する単量体に由来する繰り返し単位の含有量は、0.01質量%~30質量%であり、好ましくは0.1質量%~20質量%であり、より好ましくは5質量%~15質量%であり、更に好ましくは8質量%~15質量%であり、更により好ましくは10質量%~20質量%である(ただし、エポキシ基を有する重合体を100質量%とする)。なお、エポキシ基を有する単量体に由来する繰り返し単位の含有量は、赤外法により測定される。具体的には、まず、エポキシ基を有する重合体をプレスしてシートを作成する。次にシートの赤外吸収スペクトルを測定する。赤外吸収スペクトルの特性吸収の吸光度をシートの厚さで補正して、検量線法により含有量を求める。グリシジルメタアクリレート特性吸収としては、910cm−1のピークを用いる。
 エポキシ基を有する重合体のメルトフローレート(MFR)は、1g/10分~15g/10分である。加工性の観点から、MFRは好ましくは1.5g/10分以上、より好ましくは2g/10分以上である。エポキシ基を有する重合体と他の成分との反応のしやすさの観点から、MFRは好ましくは8g/10分以下であり、より好ましくは7g/10分以下であり、更に好ましくは5g/10分以下であり、更により好ましくは4g/10分以下である。ここでいうメルトフローレートとは、JIS K 7210(1995)に規定された方法によって、試験荷重21.18N、試験温度190℃の条件で測定した値である。
 エポキシ基を有する重合体の製造方法としては、例えば、高圧ラジカル重合法、溶液重合法、乳化重合法等により、エポキシ基を有する単量体と他の単量体とを共重合する方法、エチレン系樹脂等にエポキシ基を有する単量体をグラフト重合させる方法等を挙げることができる。
 エポキシ基を有する重合体は、他の単量体に由来する繰り返し単位を有していてもよい。他の繰り返し単位としては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、アクリル酸ブチル等の不飽和カルボン酸エステル、酢酸ビニル、プロピオン酸ビニル等の不飽和ビニルエステル等が挙げられる。
 成分(C)として、スチレン系熱可塑性エラストマーを使用することもできる。スチレン系熱可塑性エラストマーの具体例としては、スチレン−ブタジエンゴム(SBR)又はその水素添加物(H−SBR)、スチレン−ブタジエンブロック共重合体(SBS)又はその水素添加物(SEBS)、スチレン−イソプレンブロック共重合体(SIS)又はその水素添加物(SEPS、HV−SIS)、スチレン−(ブタジエン/イソプレン)ブロック共重合体、スチレン−(ブタジエン/イソプレン)ランダム共重合体等が挙げられる。
 成分(C)として、エチレン−酢酸ビニル共重合体を使用することもできる。エチレン−酢酸ビニル共重合体の製品例としては、三井・デュポン・ポリケミカル製「エバフレックス」、ランクセス製「レバプレン」、住友化学製「エバテート」、東ソー「ウルトラセン」、日本ポリエチレン「ノバテック」、日本ユニカー「NUC EVAコポリマー」等を挙げることができる。
 成分(C)として、エチレン−(メタ)アクリル酸エステル共重合体を使用することもできる。エチレン−(メタ)アクリル酸エステル共重合体の製品例としては、アルケマ製「ロトリル」、三井・デュポン・ポリケミカル製「エバフレックスEEA」、住友化学製「アクリフト」、日本ユニカー「NUC EEAコポリマー」等を挙げることができる。
 本発明の樹脂組成物中の各成分の含有量は、樹脂組成物に含まれる成分(A)、(B)及び(C)の合計量を100質量%として、成分(A)の含有量が5~49質量%であり、成分(B)の含有量が50~94質量%であり、成分(C)の含有量が1~15質量%である。好ましくは、成分(A)の含有量が10~45質量%であり、成分(B)の含有量が53~88質量%であり、成分(C)の含有量が2~12質量%であり、より好ましくは、成分(A)の含有量が20~42質量%であり、成分(B)の含有量が55~77質量%であり、成分(C)の含有量が3~10質量%である。各成分の配合割合を、上記のような範囲とすることにより、座屈強度が高く、衝撃強度が高い中空成形体を得ることが可能となる。
 中空成形時のパリソン同士の熱融着強度の観点から、樹脂組成物中の成分(A)の質量を成分(C)の質量で割った値は、10未満であることが好ましく、8以下であることがより好ましく、6以下であることがさらに好ましく、5以下であることがよりさらに好ましく、4以下であることが最も好ましい。
 樹脂組成物には、必要に応じて、酸化防止剤、中和剤、滑剤、帯電防止剤、造核剤、紫外線防止剤、可塑剤、分散剤、防曇剤、抗菌剤、有機多孔質パウダー、顔料等の添加剤を添加することが可能である。
 樹脂組成物には本発明の効果を阻害しない範囲内で、各種樹脂成分を添加しても良い。各種樹脂成分としては、例えば、本発明の成分(B)に該当しないエチレン−α−オレフィン共重合体、HDPE、高圧法低密度ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン6・66、エラストマーとして、成分(C)に該当しないスチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 樹脂組成物の製造方法は特に限定されるものではなく、公知のブレンド方法を用いることができる。公知のブレンド方法としては、例えば、成分(A)~(C)と必要に応じて添加剤等の他の成分とを、ドライブレンドやメルトブレンドする方法等が挙げられる。ドライブレンドする方法としては、例えば、ヘンシェルミキサー、タンブラーミキサー等の各種ブレンダーを用いる方法が挙げられ、メルトブレンドする方法としては、例えば、単軸押出機、二軸押出機、バンバリーミキサー、熱ロール等の各種ミキサーを用いる方法が挙げられる。
〔中空成形体の製造方法〕
 中空成形の方法としては、押出式、アキュムレーター式、ホットパリソン式、コールドパリソン式、射出式等があげられる。例えば、本発明の中空成形体は、押出機から溶融した樹脂組成物を押し出して溶融パリソンを得、該パリソンを中空成形機の所望の形状を有する金型内にセットした後、これに圧縮ガスを吹き込んで金型内面壁まで膨らませ、その後、冷却させることにより得られる。また、成形機の成形機構としては、シャトル型、ロータリー型、サテライト型等形式が挙げられ、型締め方法としては、油圧式、電動式、トグル式等があげられる。成形時に延伸を行ってもよい。
 このようにして得られる中空成形体は、チューブ、ボトル、タンク等に用いられる。中空成形体は、食品容器、工業用、医療用、日用品等に好適に用いられる。
 本発明の樹脂組成物は、単一層の中空成形体を製造するときに用いてもよく、多層の中空成形体を製造するとき、該多層中空成形体に含まれる一層を形成するために用いてもよい。多層中空成形体に含まれる、本発明の樹脂脂成物からなる層以外の層として、滑り性に優れる層や、酸素のような気体や水蒸気のバリア層、遮光層、酸素吸収層、接着層、着色層、導電性層、再生樹脂含有層等が挙げられる。
 上記本発明の樹脂組成物を用いた層以外の層を構成する樹脂としては、例えば、高密度ポリエチレン、低密度ポリエチレン、極低密度ポリエチレン、超低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、エチレン−ビニルアルコール共重合体、エチレン−酢酸ビニル共重合体鹸化物、エチレン−スチレン共重合体、エチレン−ビニルシクロヘキサン共重合体、エチレン−ノルボルネン共重合体、ポリオレフィンゴム、スチレン−ブタジエンゴム、スチレン−ブタジエン−スチレンブロック共重合体、イソプレンゴム、スチレン−イソプレンゴム、イソブチレンゴム等とこれら樹脂の酸変性体や水添物等が挙げられる。
This invention is a polyethylene resin composition for hollow molding containing said aliphatic polyester (A), a component (B), and a component (C).
In the present invention, the “hollow molding polyethylene resin composition” may be simply referred to as “resin composition”.
[Resin composition]
<Component (A): Aliphatic polyester>
The aliphatic polyester (A) in the present invention is a homopolymer or copolymer having a linear or branched alkylene structure bonded by an ester structure as a repeating unit. Examples of the aliphatic polyester (A) include polyesters obtained by polymerizing hydroxycarboxylic acids and polyesters obtained by copolymerizing diols and dicarboxylic acids. You may use these individually or in combination of 2 or more types.
In the present specification, the aliphatic polyester (A) is sometimes referred to as component (A).
Examples of the polyester obtained by polymerizing hydroxycarboxylic acid include a polymer having a repeating unit derived from 3-hydroxyalkanoate represented by the formula (1).
Figure JPOXMLDOC01-appb-I000001
[In the formula, R 1 Is a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, and R 2 Is a single bond or an alkylene group having 1 to 4 carbon atoms]
The polymer having a repeating unit represented by the formula (1) may be a homopolymer or a multi-component copolymer containing two or more of the above repeating units. The multi-component copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, a graft copolymer, and the like.
Examples of the homopolymer include lactic acid homopolymer, polycaprolactone, poly (3-hydroxybutyrate), poly (4-hydroxybutyrate), poly (3-hydroxypropionate), and the like. Multi-component copolymers include 3-hydroxybutyrate-3-hydroxypropionate copolymer, 3-hydroxybutyrate-4-hydroxybutyrate copolymer, 3-hydroxybutyrate-3-hydroxyvalerate copolymer. Polymer, 3-hydroxybutyrate-3-hydroxyhexanoate copolymer, 3-hydroxybutyrate-3-hydroxyoctanoate copolymer, 3-hydroxybutyrate-3-hydroxyvalerate-3-hydroxy Examples include hexanoate-4-hydroxybutyrate copolymer and 3-hydroxybutyrate-lactic acid copolymer. Among these, it is preferable to use polylactic acid, poly-3-hydroxybutyric acid ester, or a mixture thereof.
Aliphatic polyesters obtained by copolymerizing diols and dicarboxylic acids include polyethylene succinate, polybutylene succinate, polyethylene adipate, polybutylene adipate, butylene succinate-butylene adipate copolymer, butylene succinate-butylene terephthalate copolymer. Examples thereof include a polymer, butylene adipate-butylene terephthalate copolymer, and ethylene succinate-ethylene terephthalate copolymer.
It is preferable to use polylactic acid as the aliphatic polyester (A). The polylactic acid in the present invention is a polymer consisting only of repeating units derived from L-lactic acid and / or D-lactic acid, a repeating unit derived from L-lactic acid and / or D-lactic acid, L-lactic acid and D-lactic acid. A copolymer comprising repeating units derived from monomers other than lactic acid, or a mixture of the polymer and the copolymer. Examples of monomers other than the L-lactic acid and D-lactic acid include hydroxycarboxylic acids such as glycolic acid, aliphatic polyhydric alcohols such as butanediol, and aliphatic polycarboxylic acids such as succinic acid.
The content of the repeating unit derived from L lactic acid or D lactic acid in the polylactic acid is preferably 80 mol% or more, more preferably 90 mol% or more, from the viewpoint of enhancing the heat resistance of the obtained molded article. Preferably it is 95 mol% or more. The melt flow rate (MFR) of the polylactic acid is preferably 1 g / 10 minutes or more, more preferably 2 g / 10 minutes or more, further preferably 3 g / 10 minutes or more from the viewpoint of the fluidity of the resin composition. Yes, even more preferably 5 g / 10 min or more, most preferably 10 g / 10 min or more. Moreover, from a viewpoint of the intensity | strength of a molded object, it is 20 g / 10min or less, More preferably, it is 18 g / 10min or less, More preferably, it is 15 g / 10min or less. MFR is measured by method A under the conditions of a load of 21.18 N and a temperature of 190 ° C. in the method specified in JIS K7210-1995.
<Component (B): Ethylene-α-olefin copolymer>
Component (B) in the present invention is an ethylene-α-olefin copolymer in which the content of repeating units derived from ethylene is 50% by mass or more and less than 100% by mass (provided that ethylene-α-olefin copolymer is used). The total mass is 100% by mass). Hereinafter, it may be called a component (B) or a copolymer (B).
The copolymer (B) is obtained by copolymerizing ethylene and one or more α-olefins having 3 to 12 carbon atoms. Examples of the α-olefin having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 4-methylpentene-1, 1-hexene, 1-octene and 1-decene. Among these, it is preferable to use propylene, 1-butene, 1-hexene, and 1-octene, and it is more preferable to use 1-butene and 1-hexene.
Examples of the copolymer (B) include an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-4-methylpentene-1 copolymer, an ethylene-1-hexene copolymer, and an ethylene- Examples thereof include 1-octene copolymer and ethylene-propylene-1-butene copolymer. Among these, an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, or an ethylene-1-octene copolymer is preferable, and an ethylene-1-butene copolymer, ethylene A -1-hexene copolymer or an ethylene-1-butene-1-hexene copolymer is more preferable.
In addition, the component (B) used by this invention is a repeating unit derived from another monomer in the range which does not impair the effect of this invention in addition to the repeating unit derived from ethylene and the repeating unit derived from alpha-olefin. You may have a unit. Examples of the other monomer include conjugated dienes (for example, butadiene and isoprene), non-conjugated dienes (for example, 1,4-pentadiene), and cyclic olefins (for example, norbornadiene).
The density of the copolymer (B) is 880 to 965 kg / m. 3 It is. Since a hollow molded article having a high impact strength is obtained, the density is preferably 950 kg / m. 3 Or less, more preferably 935 kg / m 3 It is as follows. Since a hollow molded body with high buckling strength can be obtained, the density is preferably 900 kg / m. 3 Or more, more preferably 910 kg / m 3 That's it. The density of a component (B) is measured in accordance with the method prescribed | regulated to A method among JISK7112-1980, after performing annealing as described in JISK6760-1995. Moreover, the density of a copolymer (B) can be changed with content of the monomer unit based on ethylene in a copolymer (B).
The melt flow rate (MFR) of the copolymer (B) is 0.01 to 5 g / 10 min. From the viewpoint of reducing the extrusion load during the molding process, it is preferably 0.05 g / 10 min or more, more preferably 0.1 g / 10 min or more. Since a hollow molded article having high impact strength is obtained, the MFR is preferably 2 g / 10 min or less, more preferably 1 g / 10 min or less. In addition, the melt flow rate here is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995.
The melt flow rate of the copolymer (B) can be changed by, for example, the hydrogen concentration or the polymerization temperature in the method for producing the copolymer (B) described later. When the hydrogen concentration or the polymerization temperature is increased, a copolymer (B) having a high melt flow rate is obtained.
The melt flow rate ratio of the copolymer (B) (hereinafter sometimes referred to as “MFRR”) is preferably 30 or more, more preferably from the viewpoint of further reducing the extrusion load during hollow molding. 50 or more, more preferably 70 or more. Since a hollow molded article having high impact strength is obtained, the MFRR is preferably 200 or less, more preferably 150 or less. The MFRR is a method defined in JIS K7210-1995, wherein a melt flow rate measured under conditions of a load of 211.82 N and a temperature of 190 ° C. It is the value divided by the melt flow rate measured under the condition of 190 ° C.
MFRR can be changed by, for example, the hydrogen concentration in the method for producing a copolymer (B) described later. When the hydrogen concentration is increased, a copolymer (B) having a small MFRR is obtained.
The melt tension at 190 ° C. of the copolymer (B) (hereinafter sometimes referred to as “MT190”) is 2 to 30 cN or more. When the melt tension is less than 1 cN, the shape retention of the parison decreases during hollow molding, and thus the thickness distribution of the molded product increases, and the rigidity of the thin portion decreases, and the buckling strength may decrease. The melt tension is preferably 4 cN or more, more preferably 6 cN or more. The melt tension is preferably 30 cN or less, more preferably 25 cN or less, and even more preferably 20 cN or less from the viewpoint of enhancing the take-up property of the parison during hollow molding.
The melt tension in the present invention refers to the extrusion of the molten copolymer (B) through an orifice having a diameter of 2.095 mm and a length of 8 mm at an extrusion speed of 0.32 g / min at 190 ° C. In the tension when the copolymer (B) is drawn into a filament at a take-up rate of 6.3 (m / min) / min, from the start of take-up until the filament-shaped copolymer (B) is cut. The maximum tension between.
Melt tension can be adjusted with the pressure of the ethylene in superposition | polymerization in the manufacturing method of the copolymer (B) mentioned later. When the pressure of ethylene during polymerization is lowered, a copolymer (B) having a high melt tension is obtained. Moreover, a copolymer (B) with high melt tension can be obtained also by implementing prepolymerization on appropriate conditions.
Ratio of weight average molecular weight (hereinafter sometimes referred to as “Mw”) to number average molecular weight (hereinafter sometimes referred to as “Mn”) of the copolymer (B) (hereinafter referred to as “Mw / Mn ”is sometimes described as 5 to 25. If Mw / Mn is too small, the resin pressure and the resin temperature during molding may increase. Mw / Mn is more preferably 7 or more, and still more preferably 8 or more. Mw / Mn is more preferably 20 or less, and even more preferably 15 or less.
Mw / Mn is a value obtained by measuring Mw and Mn of the copolymer (B) by gel permeation chromatography (GPC) method and dividing Mw by Mn. As measurement conditions in the GPC method, for example, the following conditions can be given.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: differential refractometer
(8) Molecular weight reference material: Standard polystyrene
The flow activation energy (Ea) of the copolymer (B) is preferably 45 to 150 kJ / mol. From the viewpoint of increasing the melt tension of the copolymer (B), the viewpoint of improving the buckling strength of the hollow molded body, and the viewpoint of reducing the extrusion load during the molding process, Ea is preferably 55 kJ / mol or more, and more Preferably it is 65 kJ / mol or more. Further, from the viewpoint of enhancing the take-up property at the time of hollow molding, Ea is more preferably 120 kJ / mol or less, further preferably 100 kJ / mol or less, still more preferably 95 kJ / mol or less, most preferably 80 kJ. / Mol or less.
Ea is a shift factor (a for creating a master curve indicating the dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. on the angular frequency (unit: rad / sec). T ), A numerical value calculated by the Arrhenius type equation and obtained by the method shown below.
That is, the melt complex viscosity-angular frequency curve of the copolymer (B) at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (unit: ° C.) is calculated based on the temperature-time superposition principle. The shift factor at each temperature obtained when superposed on the melt complex viscosity-angular frequency curve of the olefin polymer at T ) From each temperature and the shift factor at each temperature, [ln (a T )] And [1 / (T + 273.16)] are calculated. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = M (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor
Ea: activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4 etc. are mentioned.
The shift factor is obtained by moving the logarithmic curve of melt complex viscosity-angular frequency at each temperature in the log (Y) =-log (X) axis direction (provided that the Y axis is the melt complex viscosity, the X axis Is an angular frequency.), And a movement amount when superimposed on a melt complex viscosity-angular frequency curve at 190 ° C. In this superposition, the logarithmic curve of melt complex viscosity-angular frequency at each temperature shows the angular frequency as a T Double the melt complex viscosity to 1 / a T Move twice. Moreover, the correlation coefficient when calculating | requiring (I) Formula by the least squares method from the value of 4 points | pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.
The melt complex viscosity-angular frequency curve is preferably measured using a viscoelasticity measuring device (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics).
The zero shear viscosity (η of the copolymer (B) at 190 ° C. 0 ) Is preferably 10 to 300 kPa · sec or more. η 0 Is preferably 30 kPa · sec or more, and more preferably 50 kPa · sec or more, from the viewpoint of increasing impact strength. From the viewpoint of reducing the extrusion load during molding, η 0 Is more preferably 200 Pa · sec or less, and still more preferably 100 Pa · sec or less.
η 0 Is obtained by approximating the master curve of the complex shear viscosity (η) and the angular frequency (ω) obtained when Ea is calculated with the following cross approximation formula.
Approximate expression of cross ... η = η 0 ÷ [1+ (τ × ω) n ]
[Where η 0 , Τ, and n are zero shear viscosity, characteristic relaxation time, and non-Newtonian index, respectively, which are constants determined for each copolymer (B) used for measurement. ]
Examples of the method for producing the copolymer (B) include a solid particulate promoter component in which a promoter component such as an organoaluminum compound, an organoaluminum oxy compound, a boron compound, and an organozinc compound is supported on a particulate carrier. A metallocene complex having a ligand having a structure in which two cyclopentadienyl type anion skeletons are bonded to each other by a bridging group such as an alkylene group or a silylene group, and ethylene and an α-olefin in the presence of a polymerization catalyst. The method of copolymerizing is mentioned.
The polymerization method is preferably a continuous polymerization method involving the formation of ethylene-α-olefin copolymer particles, for example, continuous gas phase polymerization, continuous slurry polymerization, continuous bulk polymerization, preferably continuous gas phase Polymerization. The gas phase polymerization reaction apparatus is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion.
A stirring blade may be installed in the reaction vessel.
As a method of supplying each component of the polymerization catalyst used for the production of the copolymer (B) to the reaction vessel, it is usually in an inert gas such as nitrogen and argon, hydrogen, ethylene, etc., in a state free from moisture. A supplying method and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state are used. Each component of the polymerization catalyst may be supplied individually, or arbitrary components may be supplied in contact in advance in any order.
Moreover, it is preferable to carry out prepolymerization before carrying out the main polymerization and to use the prepolymerized prepolymerized catalyst component as a catalyst component or catalyst for the main polymerization. Different α-olefins may be used in the main polymerization and the prepolymerization, and it is preferable to prepolymerize an α-olefin having 4 to 12 carbon atoms and ethylene, and an α-olefin having 6 to 8 carbon atoms and ethylene. Is more preferably prepolymerized.
The polymerization temperature is usually lower than the temperature at which the copolymer (B) melts, preferably 0 to 150 ° C, more preferably 30 to 100 ° C, and further preferably 50 to 90 ° C. In order to obtain a copolymer (B) having a wide molecular weight distribution, a higher polymerization temperature is preferred.
The polymerization time (average residence time in the case of continuous polymerization reaction) is usually 1 to 20 hours. In order to obtain a copolymer (B) having a wide molecular weight distribution, a longer polymerization time (average residence time) is preferable.
For the purpose of adjusting the melt flow rate of the copolymer (B), hydrogen may be added to the polymerization reaction gas as a molecular weight regulator, or an inert gas may be allowed to coexist in the polymerization reaction gas. The molar concentration of hydrogen in the polymerization reaction gas with respect to the molar concentration of ethylene in the polymerization reaction gas is usually 0.1 to 3 mol%, assuming that the molar concentration of ethylene in the polymerization reaction gas is 100 mol%. In order to obtain a copolymer (B) having a wide molecular weight distribution, it is preferable that the molar concentration of hydrogen in the polymerization reaction gas is high.
<Component (C): Compatibilizer>
In the present invention, the component (C) is a compatibilizing agent capable of compatibilizing the component (A) and the component (B). Examples of the compatibilizer include a polymer having an epoxy group, a styrene-based thermoplastic elastomer, an ethylene-vinyl acetate copolymer, and an ethylene- (meth) acrylate copolymer. The component (C) is preferably a polymer having an epoxy group.
Whether a certain compound corresponds to the component (C) in the present invention is determined by the following method. Hereinafter, a certain compound is referred to as component (X).
First, a resin composition (1) is obtained by melt-kneading a mixture (1) obtained by mixing a predetermined amount of component (A), component (B) and component (X). Using this resin composition (1), a molded body (1) having a predetermined size is produced.
Next, a molded body (2) having the same size as the molded body (1) is manufactured using the component (B) under the same conditions as the conditions for manufacturing the molded body (1).
The impact strength of the molded body (1) and the impact strength of the molded body (2) are measured. When the impact strength of the molded body (1) exceeds 20% of the impact strength of the molded body (2), the component (X) is the component (C) of the present invention, that is, the component (A) and the component (B). It is a compatibilizer.
Examples of the polymer having an epoxy group include a copolymer having a repeating unit derived from ethylene and a repeating unit derived from a monomer having an epoxy group. Examples of the monomer having an epoxy group include α, β-unsaturated glycidyl ethers such as α, β-unsaturated glycidyl esters such as glycidyl methacrylate and glycidyl acrylate, allyl glycidyl ether, and 2-methylallyl glycidyl ether. Preferably, it is glycidyl methacrylate.
Examples of the polymer having an epoxy group include glycidyl methacrylate-ethylene copolymer (for example, trade name Bond First manufactured by Sumitomo Chemical Co., Ltd.), glycidyl methacrylate-styrene copolymer, glycidyl methacrylate-acrylonitrile-styrene copolymer, and glycidyl. And methacrylate-propylene copolymer. Further, a monomer having an epoxy group was graft-polymerized by solution or melt-kneading to polyethylene, polypropylene, polystyrene, ethylene-α-olefin copolymer, hydrogenated and non-hydrogenated styrene-conjugated diene systems, and the like. A polymer may be used.
In the polymer having an epoxy group, the content of the repeating unit derived from the monomer having an epoxy group is 0.01% by mass to 30% by mass, preferably 0.1% by mass to 20% by mass. More preferably, it is 5% by mass to 15% by mass, further preferably 8% by mass to 15% by mass, and still more preferably 10% by mass to 20% by mass (provided that a polymer having an epoxy group is used). 100 mass%). In addition, content of the repeating unit derived from the monomer which has an epoxy group is measured by the infrared method. Specifically, first, a polymer having an epoxy group is pressed to prepare a sheet. Next, the infrared absorption spectrum of the sheet is measured. The absorbance of the characteristic absorption of the infrared absorption spectrum is corrected by the thickness of the sheet, and the content is obtained by a calibration curve method. As glycidyl methacrylate characteristic absorption, 910cm -1 The peak of is used.
The melt flow rate (MFR) of the polymer having an epoxy group is 1 g / 10 min to 15 g / 10 min. From the viewpoint of workability, the MFR is preferably 1.5 g / 10 min or more, more preferably 2 g / 10 min or more. From the viewpoint of easy reaction between the polymer having an epoxy group and other components, the MFR is preferably 8 g / 10 min or less, more preferably 7 g / 10 min or less, and further preferably 5 g / 10 min. Min or less, and even more preferably 4 g / 10 min or less. The melt flow rate here is a value measured under the conditions of a test load of 21.18 N and a test temperature of 190 ° C. by the method defined in JIS K 7210 (1995).
Examples of the method for producing a polymer having an epoxy group include a method of copolymerizing a monomer having an epoxy group with another monomer by a high-pressure radical polymerization method, a solution polymerization method, an emulsion polymerization method, and the like. Examples thereof include a method in which a monomer having an epoxy group is graft polymerized to a resin based resin.
The polymer having an epoxy group may have a repeating unit derived from another monomer. Examples of other repeating units include unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and butyl acrylate, and unsaturated vinyl esters such as vinyl acetate and vinyl propionate.
As the component (C), a styrenic thermoplastic elastomer can also be used. Specific examples of the styrene-based thermoplastic elastomer include styrene-butadiene rubber (SBR) or a hydrogenated product thereof (H-SBR), a styrene-butadiene block copolymer (SBS) or a hydrogenated product thereof (SEBS), styrene- Isoprene block copolymer (SIS) or its hydrogenated product (SEPS, HV-SIS), styrene- (butadiene / isoprene) block copolymer, styrene- (butadiene / isoprene) random copolymer, and the like.
An ethylene-vinyl acetate copolymer can also be used as the component (C). Examples of ethylene-vinyl acetate copolymer products include Mitsui DuPont Polychemical's "Evaflex", LANXESS's "Revaprene", Sumitomo Chemical's "Evaate", Tosoh "Ultrasen", Nippon Polyethylene "Novatec" Nippon Unicar “NUC EVA copolymer” and the like can be mentioned.
An ethylene- (meth) acrylic acid ester copolymer can also be used as the component (C). Examples of ethylene- (meth) acrylic acid ester copolymers include “Lotril” manufactured by Arkema, “Evaflex EEA” manufactured by Mitsui DuPont Polychemical, “Aklift” manufactured by Sumitomo Chemical, and “UNUC EEA Copolymer” manufactured by Nihon Unicar. Etc.
The content of each component in the resin composition of the present invention is such that the total amount of the components (A), (B) and (C) contained in the resin composition is 100% by mass, and the content of the component (A) is The content of component (B) is 50 to 94% by mass, and the content of component (C) is 1 to 15% by mass. Preferably, the content of component (A) is 10 to 45% by mass, the content of component (B) is 53 to 88% by mass, and the content of component (C) is 2 to 12% by mass. More preferably, the content of the component (A) is 20 to 42% by mass, the content of the component (B) is 55 to 77% by mass, and the content of the component (C) is 3 to 10% by mass. It is. By setting the blending ratio of each component in the above range, it is possible to obtain a hollow molded body having high buckling strength and high impact strength.
From the viewpoint of heat fusion strength between parisons during hollow molding, the value obtained by dividing the mass of the component (A) in the resin composition by the mass of the component (C) is preferably less than 10, and is 8 or less. More preferably, it is more preferably 6 or less, still more preferably 5 or less, and most preferably 4 or less.
For the resin composition, if necessary, an antioxidant, a neutralizing agent, a lubricant, an antistatic agent, a nucleating agent, an ultraviolet ray preventing agent, a plasticizer, a dispersing agent, an antifogging agent, an antibacterial agent, and an organic porous powder It is possible to add additives such as pigments.
Various resin components may be added to the resin composition as long as the effects of the present invention are not impaired. Examples of the various resin components include ethylene-α-olefin copolymers that do not fall under the component (B) of the present invention, HDPE, high-pressure low-density polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66, Nylon 11, Nylon 12, Nylon 6, 66, Styrenic thermoplastic elastomer, olefinic thermoplastic elastomer, polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer not applicable as component (C) Etc.
The manufacturing method of a resin composition is not specifically limited, A well-known blend method can be used. Examples of known blending methods include a method of dry blending or melt blending the components (A) to (C) and other components such as additives as necessary. Examples of the dry blending method include a method using various blenders such as a Henschel mixer and a tumbler mixer. Examples of the melt blending method include a single screw extruder, a twin screw extruder, a Banbury mixer, a hot roll, and the like. The method of using various mixers is mentioned.
[Method for producing hollow molded body]
Examples of the hollow molding method include an extrusion method, an accumulator method, a hot parison method, a cold parison method, and an injection method. For example, the hollow molded body of the present invention is obtained by extruding a molten resin composition from an extruder to obtain a molten parison, setting the parison in a mold having a desired shape of the hollow molding machine, and then compressing the compressed gas. Is blown to the inner wall of the mold and then cooled. In addition, examples of the molding mechanism of the molding machine include a shuttle type, a rotary type, and a satellite type, and examples of the mold clamping method include a hydraulic type, an electric type, and a toggle type. You may extend | stretch at the time of shaping | molding.
The hollow molded body thus obtained is used for tubes, bottles, tanks and the like. The hollow molded article is suitably used for food containers, industrial use, medical use, daily necessities and the like.
The resin composition of the present invention may be used when producing a single-layer hollow molded article, and when producing a multilayer hollow molded article, it is used for forming one layer contained in the multilayer hollow molded article. Also good. As a layer other than the layer made of the resin fat composition of the present invention contained in the multilayer hollow molded body, a layer having excellent slipperiness, a barrier layer of gas such as oxygen or water vapor, a light shielding layer, an oxygen absorbing layer, an adhesive layer , A colored layer, a conductive layer, a recycled resin-containing layer, and the like.
Examples of the resin constituting the layer other than the layer using the resin composition of the present invention include, for example, high density polyethylene, low density polyethylene, very low density polyethylene, ultra low density polyethylene, polypropylene, and ethylene-vinyl acetate copolymer. , Ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer Saponified product, ethylene-styrene copolymer, ethylene-vinylcyclohexane copolymer, ethylene-norbornene copolymer, polyolefin rubber, styrene-butadiene rubber, styrene-butadiene-styrene block copolymer, isoprene rubber, styrene-isoprene rubber , Isobutylene rubber Acid modified products or hydrogenated products thereof and the like resins and.
 以下、実施例に基づいて本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。物性の評価は、以下の方法によって行った。
(1)密度(単位:kg/m
 150℃で成分(B)をプレスして得られた厚さ1mmのシートを用い、JIS K 6760(1981)に従ってその密度を測定した。なお、測定に用いる試料には、JIS K6760−1995に記載のアニーリングを施した。
(2)メルトフローレート(MFR、単位:g/10分)
 成分(B)のメルトフローレートは、JIS K 7210(1995)に従い、試験荷重21.18N、試験温度190℃の条件で測定を行った。
(3)メルトフローレート比(MFRR)
 成分(B)のメルトフローレート比は、JIS K7210(1995)に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(H−MFR)と、JIS K7210(1995)に規定された方法において、荷重21.18N及び温度190℃の条件で測定されるメルトフローレート(MFR)とを測定し、H−MFRをMFRで除した値を用いた。
(4)分子量分布(Mw/Mn)
 成分(B)の分子量分布は、ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)~(8)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、求めた。
 クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
 (1)装置:Waters製Waters150C
 (2)分離カラム:TOSOH TSKgelGMH6−HT
 (3)測定温度:140℃
 (4)キャリア:オルトジクロロベンゼン
 (5)流量:1.0mL/分
 (6)注入量:500μL
 (7)検出器:示差屈折計
 (8)分子量標準物質:標準ポリスチレン
(5)流動の活性化エネルギー(Ea、単位:kJ/mol)
 成分(B)のEaは、歪制御型の回転式粘度計(レオメーター)を用いて、下記の条件(a)~(d)で測定される各温度T(K)における動的粘弾性データを温度−時間重ね合わせ原理に基づいてシフトする際のシフトファクター(aT)のアレニウス型方程式:log(aT)=Ea/R(1/T−1/T0)(Rは気体定数、T0は基準温度463Kである。)から算出される。Eaは成形性の指標となる。計算ソフトウェアには、Reometrics社Rhios V.4.4.4を使用し、アレニウス型プロットlog(aT)−(1/T)における直線近似時の相関係数r2が0.99以上の場合のEa値を採用した。測定は窒素下で実施した。
 条件(a)ジオメトリー:パラレルプレート、直径25mm、プレート間隔:1.5~2mm
 条件(b)ストレイン:5%
 条件(c)剪断速度:0.1~100rad/sec
 条件(d)温度:190、170、150、130℃
(6)190℃におけるゼロせん断粘度(η、単位:Pa・sec)
 前述の流動の活性化エネルギーを求めた際に得られた、190℃での溶融複素粘度−角周波数曲線のマスターカーブを、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、以下のクロスの近似式で近似し、ゼロせん断粘度(η)、特性緩和時間(τ)及び非ニュートン指数(n)を算出した。
クロスの近似式 η=η÷[1+(τ×ω)
(7)190℃溶融張力(MT、単位:cN)
 東洋精機製作所製メルトテンションテスターを用い、190℃の温度及び0.32g/分の押出速度で、直径2.095mm、長さ8mmのオリフィスから共重合体(B)を溶融押出し、押出された共重合体(B)を引取ロールにより6.3(m/分)/分の引取上昇速度でフィラメント状に引取り、引取る際の張力を測定した。引取開始からフィラメント状の共重合体(B)が切断するまでの間の最大張力をメルトテンションとした。
(8)中空成形
 タハラ製MSE−55E/54M−A(E1)中空成形機により、実施例及び比較例で製造した樹脂組成物を中空成形して、500mlの円筒瓶を製造した。16mmφの円形ダイと、コア15mmφの円形のコアを用いて、押出機のクロスヘッド温度:210℃、ダイ温度:210℃、金型温度:30℃、吐出量:8kg/hrの成形条件で、ダイコアの開度の調整を行い目付量20gの中空成形体を得た。成形プロファイルを用いたパリソンコントロールは行わなかった。
(9)落下強度
 上記(8)の方法で得られた円筒瓶に、水を満水に充填し、円筒瓶にキャップをして密閉した。この円筒瓶を、1℃の恒温槽に12時間以上入れ、状態調整をした。状態調整後、室温にて、高さ1mからキャップ部分を上にして円筒瓶を落下(縦落下)させた。円筒瓶にピンホールや割れが発生しなかった場合は、さらにキャップ部分を横向にして円筒瓶を落下(横落下)させた。円筒瓶にピンホールや割れが発生するまで、縦落下と横落下を交互に最大各10回(縦落下と横落下の合計で20回)、円筒瓶の落下試験を行ったまで。
 この落下試験により、円筒瓶にピンホールや割れが発生するまでの落下回数、すなわち、n回目で円筒瓶にピンホールや割れが発生した場合はn−1を、5本の円筒瓶について求め、5本の円筒瓶の落下回数の総数を落下強度指数として求めた。但し、20回の落下でも円筒瓶にピンホールや割れが発生しない場合は20とした。5本全てが20回の落下で割れなければ、(落下強度指数)=100であり、5本全てが1回目の落下で割れれば、(落下強度指数)=0である。落下強度指数が高いほど、耐衝撃性が高いことを示す。
 落下強度指数が、0以上33以下の場合を「落下強度:×」、34以上66以下の場合を「落下強度:△」67以上100以下の場合を「落下強度:○」と判定した。
(10)座屈強度 (単位:N)
 圧縮試験用の治具を取り付けた引張試験機を用いて試験を行った。下チャックの代わりに設置した100mmφの金属製の円盤の上に、キャップをしていない円筒瓶を置いた。上チャックの代わりに設置した60mmφの金属製の円盤を速度20mm/minで降下させ、円筒瓶を圧縮し、座屈させた。このときの最大荷重を座屈強度とした。
 座屈強度が0以上50未満の場合を「座屈強度:×」、50以上70未満の場合を「座屈強度△」、70以上の90未満の場合を「座屈強度:○」とした、90以上の場合を「座屈強度:◎」とした。
 本発明の実施例で使用した各成分は、以下の通りである。
<成分(A):ポリ乳酸>
ユニチカ株式会社製、商品名「テラマックTE−2000C」、MFR(190℃)=12g/10分、乳酸の単独重合体
<成分(B):エチレン−α−オレフィン共重合体>
[重合例1:(B−1)エチレン−1−ヘキセン共重合体の製造]
(1)触媒用固体成分(a)の調製
 窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m/g)2.8kgとトルエン24kgとを入れて、撹拌した。これを5℃まで冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を、反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、混合物を5℃で1時間撹拌した後95℃まで昇温させ、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、洗浄された固体生成物にトルエン7.1kgを加えスラリーとし、スラリーを一晩静置した。
 上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50質量%)1.73kgとヘキサン1.02kgとを投入し、撹拌した。その後、混合物を5℃に冷却した後、3,4,5−トリフルオロフェノール0.78kgとトルエン1.44kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、混合物を5℃で1時間撹拌した後40℃に昇温し、40℃で1時間撹拌した。
 その後、混合物を22℃まで冷却し、水0.11kgを、反応器の温度を22℃に保ちながら滴下した。滴下終了後、混合物を22℃に保ちながら1.5時間撹拌した。次にこれを40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。
 撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24Lで3回、洗浄を行った。その後、洗浄された固体生成物を乾燥して、触媒用固体成分(a)を得た。
(2)予備重合触媒成分の調製
 予め窒素置換した内容積210Lの撹拌機付きオートクレーブに、ブタン80Lを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド34.5mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のエチレン分圧が0.03MPaとなるように仕込み、(1)で製造した触媒用固体成分(a)0.7kgを投入し、続いてトリイソブチルアルミニウム140mmolを投入して重合を開始した。
 エチレンを0.7kg/Hrで連続供給しながら30分経過した後、オートクレーブを50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと10.2L(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガス等をパージして残った固体を室温にて真空乾燥し、触媒用固体成分(a)1g当り15gのポリエチレンが予備重合された予備重合触媒成分を得た。
(3)エチレン−1−ヘキセン共重合体の製造
 上記(2)で得た予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を80℃、重合圧力を2MPa、エチレンに対する水素モル比を1.6%、エチレンに対する1−ヘキセンモル比を0.9%とした。
 重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー質量80kgを一定に維持した。平均重合時間は4hrであった。得られた重合体パウダーを、押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.2MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体を得た。得られた共重合体の物性評価の結果を表1に示す。
[重合例2:(B−2)エチレン−1−ヘキセン共重合体の製造]
(1)予備重合触媒成分の調製
 予め窒素置換した内容積210Lの撹拌機付きオートクレーブに、上記重合例1の(1)に記載の触媒用固体成分(a)0.7kgと、ブタン80L、常温常圧の水素0.1Lを仕込んだ後、オートクレーブを30℃まで上昇させた。さらにエチレンとオートクレーブ中のエチレン分圧が0.03MPaとなるように仕込み、系内が安定した後、トリイソブチルアルミニウム140mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド88mmolを投入して重合を開始した。
 オートクレーブを50℃へ昇温するとともに、エチレンと水素を連続で供給しながら、50℃で合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガス等をパージして残った固体を室温にて真空乾燥し、触媒用固体成分(a)1g当り19gのポリエチレンが予備重合された予備重合触媒成分を得た。
(2)エチレン−1−ヘキセン共重合体の製造
 上記の予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施した。重合条件は、温度82℃、全圧2MPa、ガス線速度0.3m/s、エチレンに対する水素モル比は1.3%、エチレンに対する1−ヘキセンモル比は2.0%で、重合中はガス組成を一定に維持するためにエチレン、ヘキセン−1、水素を連続的に供給した。さらに、流動床の総パウダー重量を80kgに維持し、平均重合時間3hrとなるように、上記予備重合触媒成分と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、21kg/hrの生産効率でエチレン−1−ヘキセン共重合体のパウダーを得た。
 得られたエチレン−1−ヘキセン共重合体のパウダーを、神戸製鋼所社製LCM50押出機を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度4.2mm、サクション圧力0.2MPa、樹脂温度200~230℃条件で造粒することにより、エチレン−1−ヘキセン共重合体を得た。得られた共重合体の物性評価の結果を表1に示す。
[重合例3:(B−3)エチレン−1−ヘキセン共重合体の製造]
(1)予備重合触媒成分の調製
 予め窒素置換した内容積210Lの撹拌機付きオートクレーブに、上記重合例1の(1)に記載の触媒用固体成分(a)0.7kgと、ブタン80L、常温常圧の水素として0.1Lを仕込んだ後、オートクレーブを35℃まで上昇させた。
 さらにエチレンをオートクレーブ内のエチレン分圧が0.03MPaとなるように仕込み、系内が安定した後、トリイソブチルアルミニウム350mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド88mmolを投入して重合を開始した。オートクレーブを50℃へ昇温させるとともに、エチレンと水素を連続で供給しながら、50℃で合計6時間の予備重合を実施した。
 重合終了後、エチレン、ブタン、水素ガス等をパージして残った固体を室温にて真空乾燥し、上記触媒用固体成分(a)1g当り22gのポリエチレンが予備重合された予備重合触媒成分を得た。
(2)エチレン−1−ヘキセン共重合体の製造
 上記の予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施した。重合条件は、温度86℃、全圧2MPa、ガス線速度0.3m/s、エチレンに対する水素モル比は0.9%、エチレンに対する1−ヘキセンモル比は1.1%で、重合中はガス組成を一定に維持するためにエチレン、ヘキセン−1、水素を連続的に供給した。さらに、流動床の総パウダー重量を80kgに維持し、平均重合時間5.5hrとなるように、上記予備重合触媒成分と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、15kg/hrの生産効率でエチレン−1−ヘキセン共重合体のパウダーを得た。
 得られたエチレン−1−ヘキセン共重合体のパウダーを、神戸製鋼所社製LCM50押出機を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度4.2mm、サクション圧力0.2MPa、樹脂温度200~230℃条件で造粒することにより、エチレン−1−ヘキセン共重合体を得た。得られた共重合体の物性評価の結果を表1に示す。
 実施例5、比較例5および比較例6では、以下のポリエチレンを成分(B)として用いた。
(B−4):メタロセン触媒系直鎖状低密度ポリエチレン(住友化学(株)製 商品名スミカセンE FV102、物性は表1に示す通り。)
(B−5):メタロセン触媒系直鎖状低密度ポリエチレン(住友化学(株)製 商品名スミカセンE FV205、以下PE−5と称する。物性を表1に示した)
(B−6):高圧ラジカル重合法低密度ポリエチレン(住友化学(株)製 商品名スミカセン F102−0、物性を表1に示す通り。)
<成分(C):相容化剤>
 C−1:住友化学株式会社製、商品名「ボンドファーストE」(エチレン−グリシジルメタアクリレート共重合体、MFR(190℃)=3g/10分、グリシジルメタアクリレートに由来する繰り返し単位含有量=12質量%)
Figure JPOXMLDOC01-appb-T000002
〔実施例1~5及び比較例1~6〕
 成分(A)、成分(B)及び成分(C)を表2、3に記載の組成割合で、一括混合した。該混合物を、単軸押出機を用いて200℃で溶融混練し、樹脂組成物を得た。この樹脂組成物を中空成形して、500mlの円筒瓶を得た。得られた中空成形体の物性を表4,5に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these Examples. The physical properties were evaluated by the following methods.
(1) Density (Unit: kg / m 3 )
Using a sheet having a thickness of 1 mm obtained by pressing the component (B) at 150 ° C., the density was measured according to JIS K 6760 (1981). The sample used for the measurement was subjected to annealing described in JIS K6760-1995.
(2) Melt flow rate (MFR, unit: g / 10 minutes)
The melt flow rate of the component (B) was measured according to JIS K 7210 (1995) under conditions of a test load of 21.18 N and a test temperature of 190 ° C.
(3) Melt flow rate ratio (MFRR)
The melt flow rate ratio of component (B) is the same as the melt flow rate (H-MFR) measured under the conditions of a test load of 211.82 N and a measurement temperature of 190 ° C. in the method specified in JIS K7210 (1995). In the method defined in K7210 (1995), a melt flow rate (MFR) measured under conditions of a load of 21.18 N and a temperature of 190 ° C. was measured, and a value obtained by dividing H-MFR by MFR was used.
(4) Molecular weight distribution (Mw / Mn)
The molecular weight distribution of the component (B) is determined using the gel permeation chromatograph (GPC) method under the following conditions (1) to (8): weight average molecular weight (Mw) and number average molecular weight (Mn) Was measured and determined.
The baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene (5) Flow rate: 1.0 mL / min (6) Injection volume: 500 μL
(7) Detector: differential refractometer (8) Molecular weight standard: Standard polystyrene (5) Flow activation energy (Ea, unit: kJ / mol)
Ea of component (B) is dynamic viscoelasticity data at each temperature T (K) measured under the following conditions (a) to (d) using a strain-controlled rotary viscometer (rheometer). Arrhenius equation of shift factor (aT) when shifting based on temperature-time superposition principle: log (aT) = Ea / R (1 / T-1 / T0) (R is gas constant, T0 is reference The temperature is 463 K.). Ea is an index of formability. Calculation software includes Rohms V. from Reometrics. 4.4.4 was used, and the Ea value when the correlation coefficient r2 at the time of linear approximation in the Arrhenius type plot log (aT) − (1 / T) was 0.99 or more was adopted. The measurement was performed under nitrogen.
Condition (a) Geometry: Parallel plate, diameter 25 mm, plate interval: 1.5-2 mm
Condition (b) Strain: 5%
Condition (c) Shear rate: 0.1 to 100 rad / sec
Condition (d) Temperature: 190, 170, 150, 130 ° C
(6) Zero shear viscosity at 190 ° C. (η 0 , unit: Pa · sec)
The master curve of the melt complex viscosity-angular frequency curve at 190 ° C. obtained when the above-described flow activation energy was obtained was calculated using a calculation software Rhios V.R. manufactured by Rheometrics. Using 4.4.4, approximation was performed using the following cross approximation formula, and zero shear viscosity (η 0 ), characteristic relaxation time (τ), and non-Newtonian index (n) were calculated.
Cross approximate expression η = η 0 ÷ [1+ (τ × ω) n ]
(7) 190 ° C. melt tension (MT, unit: cN)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, the copolymer (B) was melt extruded from an orifice having a diameter of 2.095 mm and a length of 8 mm at a temperature of 190 ° C. and an extrusion speed of 0.32 g / min. The polymer (B) was taken up into a filament shape by a take-up roll at a take-up rate of 6.3 (m / min) / min, and the tension during take-up was measured. The maximum tension from the start of take-up until the filamentous copolymer (B) was cut was defined as the melt tension.
(8) Hollow molding The resin compositions produced in Examples and Comparative Examples were hollow molded with a Tahara MSE-55E / 54M-A (E1) hollow molding machine to produce a 500 ml cylindrical bottle. Using a circular die of 16 mmφ and a circular core of 15 mmφ core, the crosshead temperature of the extruder: 210 ° C., die temperature: 210 ° C., mold temperature: 30 ° C., discharge amount: 8 kg / hr, The opening degree of the die core was adjusted to obtain a hollow molded body having a basis weight of 20 g. The parison control using the molding profile was not performed.
(9) Drop strength The cylindrical bottle obtained by the method of (8) was filled with water, and the cylindrical bottle was capped and sealed. The cylindrical bottle was placed in a 1 ° C. constant temperature bath for 12 hours or more to adjust the state. After the state adjustment, the cylindrical bottle was dropped (vertically dropped) at a room temperature from a height of 1 m with the cap portion facing up. When pinholes and cracks did not occur in the cylindrical bottle, the cylindrical bottle was dropped (laterally dropped) with the cap portion turned sideways. Until a pinhole or a crack occurs in the cylindrical bottle, the vertical drop and the horizontal drop are alternately repeated up to 10 times each (20 times in total for the vertical drop and the horizontal drop) until the cylindrical bottle is subjected to a drop test.
By this drop test, the number of drops until pinholes or cracks occur in the cylindrical bottle, that is, n-1 is obtained for five cylindrical bottles when pinholes or cracks occur in the cylindrical bottle at the nth time, The total number of drops of the five cylindrical bottles was determined as a drop strength index. However, it was set to 20 when pinholes and cracks did not occur in the cylindrical bottle even after 20 drops. If all five pieces are not broken by 20 drops, (drop strength index) = 100, and if all 5 pieces are broken by the first drop, (drop strength index) = 0. The higher the drop strength index, the higher the impact resistance.
The case where the drop strength index was 0 or more and 33 or less was determined as “drop strength: x”, and the case where it was 34 or more and 66 or less was determined as “drop strength: Δ” 67 or more and 100 or less as “drop strength: ◯”.
(10) Buckling strength (Unit: N)
The test was conducted using a tensile tester equipped with a jig for compression test. A cylindrical bottle without a cap was placed on a 100 mmφ metal disk installed instead of the lower chuck. A 60 mmφ metal disc installed instead of the upper chuck was lowered at a speed of 20 mm / min, and the cylindrical bottle was compressed and buckled. The maximum load at this time was defined as the buckling strength.
When the buckling strength is 0 or more and less than 50, “buckling strength: ×”, when 50 or more and less than 70, “buckling strength Δ”, and when 70 or more and less than 90, “buckling strength: ○”. , 90 or more was defined as "buckling strength: A".
Each component used in the examples of the present invention is as follows.
<Component (A): Polylactic acid>
Unitika Co., Ltd., trade name “Terramac TE-2000C”, MFR (190 ° C.) = 12 g / 10 min, lactic acid homopolymer <component (B): ethylene-α-olefin copolymer>
[Polymerization Example 1: (B-1) Production of ethylene-1-hexene copolymer]
(1) Preparation of catalyst solid component (a) Silica heated by a reactor equipped with a nitrogen-replaced stirrer at 300 ° C. under a flow of nitrogen (Sypolol 948 manufactured by Devison; 50% volume average particle size = 55 μm; (Pore volume = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. After cooling to 5 ° C., a mixed solution of 0.9 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.4 kg of toluene was added while maintaining the reactor temperature at 5 ° C. Dropped in minutes. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to the washed solid product to form a slurry, and the slurry was allowed to stand overnight.
To the slurry obtained above, 1.73 kg of diethylzinc in hexane (diethylzinc concentration: 50 mass%) and 1.02 kg of hexane were added and stirred. Then, after cooling the mixture to 5 ° C., a mixed solution of 0.78 kg of 3,4,5-trifluorophenol and 1.44 kg of toluene was added dropwise over 60 minutes while keeping the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, heated to 40 ° C., and stirred at 40 ° C. for 1 hour.
Thereafter, the mixture was cooled to 22 ° C., and 0.11 kg of water was added dropwise while keeping the temperature of the reactor at 22 ° C. After completion of dropping, the mixture was stirred for 1.5 hours while maintaining the temperature at 22 ° C. Next, this was heated up to 40 degreeC, and it stirred at 40 degreeC for 2 hours, and also heated up at 80 degreeC, and stirred at 80 degreeC for 2 hours.
After stirring, the supernatant was withdrawn to a residual amount of 16 L at room temperature, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 L of hexane. Thereafter, the washed solid product was dried to obtain a solid component for catalyst (a).
(2) Preparation of prepolymerization catalyst component After adding 80 L of butane to an autoclave with a stirrer having an internal volume of 210 L previously purged with nitrogen, 34.5 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added, and the autoclave The mixture was heated to 50 ° C. and stirred for 2 hours. Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, ethylene was charged so that the ethylene partial pressure in the autoclave was 0.03 MPa, and the solid component for catalyst (a) 0. 7 kg was charged, and then 140 mmol of triisobutylaluminum was charged to initiate polymerization.
After 30 minutes while ethylene was continuously supplied at 0.7 kg / Hr, the autoclave was heated to 50 ° C., and ethylene and hydrogen were 3.5 kg / Hr and 10.2 L (room temperature and normal pressure volume) / Hr, respectively. For a total of 4 hours of prepolymerization. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component in which 15 g of polyethylene was prepolymerized per 1 g of the catalyst solid component (a). .
(3) Production of ethylene-1-hexene copolymer Using the prepolymerization catalyst component obtained in (2) above, copolymerization of ethylene and 1-hexene was carried out in a continuous fluidized bed gas phase polymerization apparatus, I got a powder. As polymerization conditions, the polymerization temperature was 80 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 1.6%, and the 1-hexene molar ratio to ethylene was 0.9%.
During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder mass of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.2 MPa, and a resin temperature of 200 to 230. An ethylene-1-hexene copolymer was obtained by granulation under the condition of ° C. Table 1 shows the results of the physical property evaluation of the obtained copolymer.
[Polymerization Example 2: (B-2) Production of ethylene-1-hexene copolymer]
(1) Preparation of prepolymerization catalyst component In an autoclave with a stirrer having an internal volume of 210 L, which was previously purged with nitrogen, 0.7 kg of the solid component for catalyst (a) described in (1) of Polymerization Example 1, 80 L of butane, room temperature After charging 0.1 L of atmospheric hydrogen, the autoclave was raised to 30 ° C. Furthermore, ethylene and the ethylene partial pressure in the autoclave were charged so that the system became 0.03 MPa. After the system was stabilized, 140 mmol of triisobutylaluminum and 88 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added to perform polymerization. Started.
While raising the temperature of the autoclave to 50 ° C. and continuously supplying ethylene and hydrogen, prepolymerization was carried out at 50 ° C. for a total of 6 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component in which 19 g of polyethylene was prepolymerized per 1 g of the catalyst solid component (a). .
(2) Production of ethylene-1-hexene copolymer Ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus using the above prepolymerization catalyst component. The polymerization conditions were a temperature of 82 ° C., a total pressure of 2 MPa, a gas linear velocity of 0.3 m / s, a hydrogen molar ratio to ethylene of 1.3%, and a 1-hexene molar ratio to ethylene of 2.0%. In order to maintain a constant value, ethylene, hexene-1, and hydrogen were continuously supplied. Further, the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 3 hours. By polymerization, a powder of ethylene-1-hexene copolymer was obtained with a production efficiency of 21 kg / hr.
The obtained ethylene-1-hexene copolymer powder was fed with a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 4.2 mm, and a suction pressure of 0.2 MPa using an LCM50 extruder manufactured by Kobe Steel. Then, an ethylene-1-hexene copolymer was obtained by granulating at a resin temperature of 200 to 230 ° C. Table 1 shows the results of the physical property evaluation of the obtained copolymer.
[Polymerization Example 3: (B-3) Production of ethylene-1-hexene copolymer]
(1) Preparation of prepolymerization catalyst component In an autoclave with a stirrer having an internal volume of 210 L, which was previously purged with nitrogen, 0.7 kg of the solid component for catalyst (a) described in (1) of Polymerization Example 1, 80 L of butane, room temperature After charging 0.1 L as atmospheric hydrogen, the autoclave was raised to 35 ° C.
Further, ethylene was charged so that the ethylene partial pressure in the autoclave was 0.03 MPa, and after the system was stabilized, 350 mmol of triisobutylaluminum and 88 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added for polymerization. Started. While raising the temperature of the autoclave to 50 ° C. and supplying ethylene and hydrogen continuously, prepolymerization was carried out at 50 ° C. for a total of 6 hours.
After completion of the polymerization, purging with ethylene, butane, hydrogen gas, etc., the remaining solid is vacuum dried at room temperature to obtain a prepolymerized catalyst component in which 22 g of polyethylene is prepolymerized per 1 g of the catalyst solid component (a). It was.
(2) Production of ethylene-1-hexene copolymer Ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus using the above prepolymerization catalyst component. The polymerization conditions were a temperature of 86 ° C., a total pressure of 2 MPa, a gas linear velocity of 0.3 m / s, a hydrogen molar ratio to ethylene of 0.9%, and a 1-hexene molar ratio to ethylene of 1.1%. In order to maintain a constant value, ethylene, hexene-1, and hydrogen were continuously supplied. Further, the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 5.5 hr. By polymerization, a powder of an ethylene-1-hexene copolymer was obtained with a production efficiency of 15 kg / hr.
The obtained ethylene-1-hexene copolymer powder was fed with a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 4.2 mm, and a suction pressure of 0.2 MPa using an LCM50 extruder manufactured by Kobe Steel. Then, an ethylene-1-hexene copolymer was obtained by granulating at a resin temperature of 200 to 230 ° C. Table 1 shows the results of the physical property evaluation of the obtained copolymer.
In Example 5, Comparative Example 5 and Comparative Example 6, the following polyethylene was used as component (B).
(B-4): Metallocene catalyst-based linear low-density polyethylene (trade name Sumikasen E FV102 manufactured by Sumitomo Chemical Co., Ltd., physical properties are as shown in Table 1)
(B-5): Metallocene catalyst-based linear low-density polyethylene (trade name Sumikasen E FV205 manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as PE-5. Physical properties are shown in Table 1)
(B-6): High-pressure radical polymerization low-density polyethylene (trade name Sumikasen F102-0 manufactured by Sumitomo Chemical Co., Ltd., as shown in Table 1)
<Component (C): Compatibilizer>
C-1: manufactured by Sumitomo Chemical Co., Ltd., trade name “bond first E” (ethylene-glycidyl methacrylate copolymer, MFR (190 ° C.) = 3 g / 10 min, repeating unit content derived from glycidyl methacrylate = 12 mass%)
Figure JPOXMLDOC01-appb-T000002
[Examples 1 to 5 and Comparative Examples 1 to 6]
Component (A), component (B), and component (C) were mixed together at the composition ratios shown in Tables 2 and 3. The mixture was melt-kneaded at 200 ° C. using a single screw extruder to obtain a resin composition. The resin composition was hollow molded to obtain a 500 ml cylindrical bottle. The physical properties of the obtained hollow molded body are shown in Tables 4 and 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、座屈強度及び衝撃強度に優れる中空成形体を製造するための樹脂組成物、および座屈強度及び衝撃強度に優れる中空成形体を提供することができる。 According to the present invention, it is possible to provide a resin composition for producing a hollow molded article having excellent buckling strength and impact strength, and a hollow molded article having excellent buckling strength and impact strength.

Claims (5)

  1.  脂肪族ポリエステル(A)5~49質量%、下記の成分(B)50~94質量%、及び相容化剤(C)1~15質量%を含有する中空成形用ポリエチレン系樹脂組成物(但し、脂肪族ポリエステル(A)、成分(B)及び成分(C)の合計量を100質量%とする)。
    成分(B):密度が880~965kg/mであり、メルトフローレートが0.01~5g/10分であり、190℃における溶融張力が2~30cNであるエチレン−α−オレフィン共重合体
    Polyethylene resin composition for hollow molding containing 5 to 49% by weight of aliphatic polyester (A), 50 to 94% by weight of the following component (B), and 1 to 15% by weight of compatibilizer (C) (however, , The total amount of the aliphatic polyester (A), the component (B) and the component (C) is 100% by mass).
    Component (B): an ethylene-α-olefin copolymer having a density of 880 to 965 kg / m 3 , a melt flow rate of 0.01 to 5 g / 10 min, and a melt tension at 190 ° C. of 2 to 30 cN
  2.  脂肪族ポリエステル(A)が、ポリ乳酸、ポリ(3−ヒドロキシ酪酸エステル)又はこれらの混合物である第1項に記載の中空成形用ポリエチレン系樹脂組成物。 The polyethylene resin composition for hollow molding according to item 1, wherein the aliphatic polyester (A) is polylactic acid, poly (3-hydroxybutyrate ester), or a mixture thereof.
  3.  成分(B)が、流動の活性化エネルギー(Ea)が55~100kJ/molであるエチレン−α−オレフィン共重合体である第1項又は第2項に記載の中空成形用ポリエチレン系樹脂組成物。 The polyethylene resin composition for hollow molding according to Item 1 or 2, wherein the component (B) is an ethylene-α-olefin copolymer having a flow activation energy (Ea) of 55 to 100 kJ / mol. .
  4.  成分(C)が、エポキシ基を有するエチレン系樹脂である第1項~第3項のいずれかに記載の中空成形用ポリエチレン系樹脂組成物。 The polyethylene-based resin composition for hollow molding according to any one of Items 1 to 3, wherein the component (C) is an ethylene-based resin having an epoxy group.
  5.  第1項~第4項のいずれかに記載の中空成形用ポリエチレン系樹脂組成物からなる中空成形体。 A hollow molded article comprising the polyethylene resin composition for hollow molding according to any one of Items 1 to 4.
PCT/JP2012/054688 2011-03-02 2012-02-21 Polyethylene-based resin composition for blow molding and blow molded body WO2012117985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-044920 2011-03-02
JP2011044920 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012117985A1 true WO2012117985A1 (en) 2012-09-07

Family

ID=46757919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054688 WO2012117985A1 (en) 2011-03-02 2012-02-21 Polyethylene-based resin composition for blow molding and blow molded body

Country Status (2)

Country Link
JP (1) JP2012193345A (en)
WO (1) WO2012117985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574104A (en) * 2014-08-13 2017-04-19 东洋制罐株式会社 Polylactic acid compound and stretch-molded bottle molded using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052248A (en) * 2004-08-10 2006-02-23 Sumitomo Chemical Co Ltd Polylactic acid-based composition
JP2006273404A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Hollow molded container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052248A (en) * 2004-08-10 2006-02-23 Sumitomo Chemical Co Ltd Polylactic acid-based composition
JP2006273404A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Hollow molded container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574104A (en) * 2014-08-13 2017-04-19 东洋制罐株式会社 Polylactic acid compound and stretch-molded bottle molded using same
CN106574104B (en) * 2014-08-13 2021-06-04 东洋制罐株式会社 Polylactic acid composition and stretch-formed bottle formed using same

Also Published As

Publication number Publication date
JP2012193345A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
TW584641B (en) Process of reacting a poly(sulfonyl azide) coupling agent with a starting material, composition, process of preparing shaped polymer articles, and article
US20100216947A1 (en) Ethylene based polymer composition and film
US8507608B2 (en) Propylene polymer resin composition
US8258227B2 (en) Laminating resin composition and multilayer structure
JP2009001779A (en) Ethylene polymer composition and film
CN106795237A (en) Polyethylene polymer, the film being made from it and its manufacture method
WO2012117985A1 (en) Polyethylene-based resin composition for blow molding and blow molded body
US8658739B2 (en) Polyolefin-based resin composition and molded article
JP2012153795A (en) Injection molding
JP5691572B2 (en) Olefin resin composition, sheet and thermoformed article
JP3989066B2 (en) Blow molding
JP2003509560A (en) Crosslinkable functional polyolefin powder composition
JP5741130B2 (en) Polyethylene resin composition and container
JP5374918B2 (en) Ethylene polymer composition and film
JP5244779B2 (en) Biodiesel fuel container materials and molded products
JPWO2018062389A1 (en) the film
JP5220086B2 (en) Method for producing ionomer resin composition
JP5765091B2 (en) Method for producing resin composition
JP2011162763A (en) Polyethylene resin film
JP2010150527A (en) Ethylenic resin for extrusion lamination and laminate
JP2011051301A (en) Method of manufacturing pellet
JP2010150520A (en) Ethylenic resin for thermoforming sheet and thermoforming sheet
JP2013234278A (en) Olefin resin composition, sheet, and molding
JP2012207151A (en) Polyethylene resin composition and container
JP2010046852A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752206

Country of ref document: EP

Kind code of ref document: A1