WO2012117739A1 - Bone filling material - Google Patents

Bone filling material Download PDF

Info

Publication number
WO2012117739A1
WO2012117739A1 PCT/JP2012/001441 JP2012001441W WO2012117739A1 WO 2012117739 A1 WO2012117739 A1 WO 2012117739A1 JP 2012001441 W JP2012001441 W JP 2012001441W WO 2012117739 A1 WO2012117739 A1 WO 2012117739A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
fiber
grafting material
bone grafting
shape
Prior art date
Application number
PCT/JP2012/001441
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 仁
茂夫 藤井
Original Assignee
株式会社リメディオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リメディオ filed Critical 株式会社リメディオ
Publication of WO2012117739A1 publication Critical patent/WO2012117739A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2803Bones for mandibular reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • A61C8/0006Periodontal tissue or bone regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a bone grafting material that promotes bone regeneration.
  • Bone regeneration material for bone regeneration is a medical material used by being embedded in the mucous membrane of a bone defect.
  • the bone filling material implanted under the mucous membrane is itself degraded by phagocytosis of macrophages, osteoclasts, fibroblasts, etc., and promotes the growth of osteoblasts to regenerate bone tissue.
  • Patent Document 1 describes a bone grafting material made of a porous material.
  • This porous body has hollow particles made of calcium phosphate ceramics such as hydroxyapatite or glass as a shell-like skeleton, and has open pores that communicate with the entire porous body and closed pores formed inside the particles. ing.
  • This document describes that a bone prosthetic material having high connectivity and high porosity can be produced by having a porous body having both open pores and closed pores.
  • Patent Document 2 describes that a nonwoven fabric formed by spinning a calcium phosphate such as hydroxyapatite by solution spinning is used as an implant material.
  • the bone grafting material described in Patent Document 1 is a hollow particle having closed pores, the inside thereof is a closed dead end (closed end). For this reason, there is a problem in that the contact with blood is poor inside the hollow particles and the progress of phagocytosis of macrophages is delayed. For this reason, there is a possibility that the growth rate of osteoblasts may become uneven, or cause local infection or mucosal inflammation.
  • the implant material described in Patent Document 2 is a cotton-like non-woven fabric, there is a problem that the melting rate is high when it is embedded in a body tissue, and the regeneration of the tissue is not sufficient.
  • the present invention has been made in view of the above-mentioned problems, and provides a bone grafting material that can be used safely by sufficiently promoting the uniform and rapid growth of osteoblasts.
  • the bone prosthetic material of the present invention includes a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape.
  • the fiber entangled body since the calcium phosphate is formed into a fiber shape, the fiber entangled body has a large surface area and no dead end occurs. For this reason, blood makes good contact with the entire bone filling material inside the embedded mucous membrane. As a result, the growth of osteoblasts is improved, and local infection and inflammation in the mucous membrane are suppressed. Further, since the fiber entangled body is formed into a plate shape or a block shape instead of a sheet shape or cotton shape, it takes a predetermined time for blood to reach the inside of the bone grafting material embedded in the body tissue. For this reason, a time difference will arise in the timing which contacts the blood between the surface and the inside of a bone grafting material.
  • a predetermined period for example, several weeks to several months
  • a predetermined period for example, several weeks to several months
  • the fiber entangled body remains in the bone prosthetic material and can continue to exert the effect of promoting bone regeneration.
  • the bone grafting material of the present invention as a more specific embodiment, at least a part of the outer surface of the fiber entangled body may be smoothed.
  • This bone prosthetic material may be formed by folding or winding a calcium phosphate long fiber nonwoven fabric into a plate shape or block shape.
  • This bone prosthetic material may be formed into a plate shape in which a plurality of through holes are formed.
  • This bone grafting material includes a surface layer portion and a core portion covered with the surface layer portion, and the density of calcium phosphate in the surface layer portion may be different from the density of calcium phosphate in the core portion.
  • the bone grafting material includes a base portion and a curved surface portion protruding above the base portion, and the density of calcium phosphate in the curved surface portion may be larger than the density of calcium phosphate in the base portion.
  • the bone prosthetic material may have an outer shell shape having a hollow portion that communicates with the outside.
  • the fiber entangled body may be impregnated with the growth factor component, or the surface of the fiber entangled body may be coated.
  • the growth factor component may be a hydrophobic polysaccharide or aggregated fine particles.
  • This bone prosthetic material may be formed into a disk shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm.
  • This bone prosthetic material may have an annular shape with through holes formed in the thickness direction, and growth factor components may be adhered to the outer peripheral surface and the inner peripheral surface.
  • the bone filling material may have a porosity of 0.1% to 78%.
  • the fiber diameter of the fiber entangled body may be not less than 0.5 ⁇ m and not more than 100 ⁇ m.
  • the calcium phosphate fiber may have a streak-like recess formed along the fiber direction.
  • a bone grafting material that can be used safely by sufficiently promoting uniform and rapid growth of osteoblasts.
  • FIG. 1A is a perspective view showing a bone grafting material according to a first embodiment of the present invention.
  • 1B is a cross-sectional view taken along the line BB of FIG. 1A.
  • FIG. 1C is an electron micrograph of a cross section of the bone grafting material.
  • FIG. 2A is a perspective view showing a bone grafting material of the second embodiment.
  • FIG. 2B is a schematic diagram showing a use state of the bone grafting material.
  • 3A to 3E are schematic views of bone prosthetic materials according to third to seventh embodiments, respectively.
  • FIG. 4A to FIG. 4D are schematic views for explaining the usage state of the bone grafting material of the fifth embodiment.
  • FIGS. 7A to 7C are electron micrographs showing the state of the apatite fibers according to Examples 1 to 3 before firing.
  • 8A and 8B are enlarged views of an apatite fiber before firing according to Example 3.
  • FIG. 9A to 9D are electron micrographs of fired sheet-like fiber entangled bodies according to Reference Examples 1 to 4, respectively.
  • 10A is an enlarged view of a sheet-like fiber entangled body after firing according to Reference Example 3.
  • FIG. 10B is an enlarged view of the surface of the bone prosthetic material of the block-shaped embodiment 1 after firing.
  • FIG. 1A is a perspective view showing a bone grafting material 10 according to a first embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A
  • FIG. 1C is an electron micrograph in which the cross section of the bone grafting material 10 is magnified 3000 times.
  • the bone grafting material 10 of the present embodiment includes a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape.
  • the bone filling material 10 is used by being embedded in a mucous membrane such as a bone defect part or an extraction fossa of an alveolar ridge.
  • the bone filling material 10 is a material that is decomposed into macrophages or osteoclasts under the mucosa or submucosa periosteum, and is absorbed and replaced by bone tissue.
  • the bone grafting material 10 includes a fiber entangled body containing one or more calcium phosphates as a main component.
  • the fiber entangled body may contain subcomponents other than calcium phosphate such as hydrocarbons and inorganic antibacterial agents.
  • the bone grafting material 10 may include both a plate-like or block-like three-dimensional portion and a flexible portion such as cotton or sheet.
  • the bone prosthetic material 10 may include an encapsulated drug or a packaging agent such as an oblate as an element other than the fiber entangled body.
  • the calcium phosphate used in the present embodiment is selected from the group consisting of apatite typified by hydroxyapatite, ⁇ -tricalcium phosphate ( ⁇ -TCP), ⁇ -tricalcium phosphate ( ⁇ -TCP), and tetracalcium phosphate (TTCP). At least one selected.
  • Hydroxyapatite (HAp) is a calcium phosphate biomaterial, and its chemical formula is represented by Ca 10 (PO 4 ) 6 (OH) 2 .
  • Biomaterial means a material intended to be transplanted into a human body in the medical field.
  • An example of a method for forming calcium phosphate into a fiber includes a melt blow (melt spinning) method in which a slurry in which calcium phosphate is dispersed in a solvent is sprayed from a die and formed into a fiber.
  • a melt blow (melt spinning) method in which a slurry in which calcium phosphate is dispersed in a solvent is sprayed from a die and formed into a fiber.
  • a binder component made of a hydrocarbon material By blending a binder component made of a hydrocarbon material into the slurry, the calcium phosphate in the molded fiber is stabilized, and the binder component can be removed by a firing step.
  • the binder component edible water-soluble polysaccharides are preferable, and pullulan is particularly preferable.
  • examples of polysaccharides used in the present embodiment include agar, carrageenan, alginic acid, alginates, xanthan gum, dextran, guar gum, pectin, glucomannan, starch, gelatin, karaya gum, chitin, chitosan, methylcellulose, tamarind gum, Men can mention gum arabic.
  • the fiber length and fiber diameter in the fiber entangled body after firing can be variably adjusted by adjusting the amount of the binder component to be blended in the slurry and the injection speed.
  • the mass ratio of calcium phosphate to the mass of the solvent is preferably 0.2 or more and 0.4 or less. Further, the mass ratio of the binder component to the mass of the solvent is preferably 0.1 or more and 0.4 or less.
  • the viscosity of the slurry is preferably 10,000 poise or more and 100,000 poise or less, that is, 1 ⁇ 10 3 pascal second or more and 1 ⁇ 10 4 pascal second or less.
  • An aqueous dispersant may be added to the slurry.
  • a polycarboxylic acid dispersant a polysulfonic acid dispersant, a polyphosphoric acid dispersant, an anionic dispersant, and the like can be used.
  • the fiber diameter of the fiber entangled body can be 0.5 ⁇ m or more and 100 ⁇ m or less, and preferably 10 ⁇ m or less. Within this range, the speed at which the bone grafting material 10 embedded in the mucous membrane is absorbed by the body tissue and the speed at which osteoblasts grow are balanced, so that good bone regeneration is performed. A more preferable fiber diameter is 0.5 ⁇ m or more and 6 ⁇ m or less. By setting it as this range, the fiber diameter becomes a scale equivalent to the phagocytosis of macrophages, and therefore the osteoinductivity by the bone grafting material 10 is particularly suitable.
  • the fiber diameter can be obtained by image processing of an electron micrograph of the cross section of the bone grafting material 10. As an example, the fiber diameter of the fiber entangled body can be obtained by measuring the fiber diameters at a plurality of locations (for example, 10 locations) in the electron micrograph illustrated in FIG. 1C and taking the average.
  • the shape of the fiber entangled body constituting the bone grafting material 10 is a plate shape or a block shape, and specifically, various shapes can be taken.
  • that the fiber entangled body is plate-shaped or block-shaped means that the fiber entangled body has a predetermined thickness and shape retention (morphological stability) that does not deform during a medical procedure.
  • the main surface shape of the plate-shaped bone grafting material 10 is not particularly limited, such as a rectangular shape, a circular shape, or an ellipse diameter. Regarding the plate thickness, it may be uniform as a whole or may have a region where the plate thickness changes continuously or discontinuously.
  • the specific shape of the block-shaped bone filling material 10 is not particularly limited. Examples include rectangular parallelepiped (including cube) shapes, columnar shapes such as cylinders and prisms, tablet shapes such as disk shapes and spindle shapes, spherical shapes, dome shapes (prone shape), and frustum shapes. Can do.
  • the block shape in the present invention is not limited to a three-dimensional shape composed of only a flat surface, but includes a curved solid body having a curved surface. Among these, the bone grafting material 10 of this embodiment is formed in a disk shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm as an example of a block shape.
  • the bone grafting material 10 of this embodiment includes a surface layer portion 11 and a core portion 12 covered with the surface layer portion 11.
  • the thickness of the surface layer portion 11 is preferably 0.5 mm or more and 2 mm or less.
  • FIG. 1C is an electron micrograph of the core portion 12.
  • the porosity (porosity) of the bone grafting material 10 can be 0.1% or more and 78% or less.
  • the porosity of the bone grafting material 10 can be 0.5% or more, preferably 20% or more, and preferably 50% or less.
  • the porosity of the bone grafting material 10 may be selected according to the affected area where the bone grafting material 10 is used.
  • the porosity can be obtained by the following formula (1).
  • Porosity (%) [1 ⁇ (volume of calcium phosphate in bone substitute) / (apparent volume of bone substitute)] ⁇ 100 (1)
  • the bone grafting material 10 of the present embodiment is substantially composed only of calcium phosphate
  • the (volume of calcium phosphate in the bone grafting material) in the formula (1) can be obtained by the mass of the bone grafting material / specific gravity of calcium phosphate.
  • the surface layer portion 11 is a dense structure that is harder and smoother than the core portion 12, and has a structure that approximates cortical bone.
  • the density of calcium phosphate in the surface layer portion 11 is larger than the density of calcium phosphate in the core portion 12.
  • the core portion 12 is porous like cancellous bone and is softer than the surface layer portion 11.
  • the bone filling material 10 of this embodiment is embedded under the mucosa or the mucosa periosteum with the core portion 12 facing the inner side of the mucous membrane and the surface layer portion 11 facing the surface side of the mucosa.
  • the fiber entangled body is formed in a block shape, and at least a part (surface layer portion 11) of the outer surface is smoothed. Thereby, the surface side of the bone grafting material 10 is protected by the hard surface layer part 11. On the other hand, the core portion 12 comes into contact with blood in the mucous membrane and is smoothly absorbed into the body tissue.
  • the bone grafting material 10 of the present embodiment is a material in which long fibers substantially consisting of only calcium phosphate (hydroxyapatite) are entangled two-dimensionally (planarly) or three-dimensionally (three-dimensionally), and optionally an antibacterial agent Or a growth factor component (Growth Factor) may be supplementarily added.
  • Growth factor components include fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), bone morphogenetic protein (rBMP), beta-type mutant growth Examples include one or more selected from a factor (TGF- ⁇ : transforming factor-beta), an epidermal growth factor (rEGF), or a statin.
  • a hydrophobic polymer obtained by introducing a hydrophobic molecule into a water-soluble polymer may be added to the bone grafting material 10.
  • the hydrophobized polymer is dissolved in an aqueous solvent such as blood or physiological saline, and self-organized a large number of associated fine particles (nano-aggregate fine particles, nanoparticle associated with a predetermined diameter of 1 ⁇ m or less, preferably 100 nm or less).
  • an aqueous solvent such as blood or physiological saline
  • the fiber entangled body When the bone grafting material 10 to which the hydrophobized polymer is added is placed inside the mucous membrane, the fiber entangled body is absorbed into the body tissue in a state where the fiber entangled body is decomposed into fine particles having the above particle diameter by the hydrophobized polymer. For this reason, the growth of fibroblasts and osteoblasts is promoted.
  • a polymer that dissolves in water to form a nanogel hereinafter referred to as a polymer gel
  • a nanogel such as a nanogel and the above-described hydrophobic polymer
  • the polymer gel examples include hydrophobized polysaccharides, specifically, hydrophobized pullulans such as cholesterol-substituted pullulan (Cholesterol-bearing pullulan). That is, the bone grafting material 10 may be added with hydrophobic polysaccharides or aggregated fine particles as a growth factor component.
  • the average particle diameter of the nanogel can be determined as an average value of the long diameters of a plurality of nanogels included in the enlarged image of the bone grafting material 10, and is preferably 1 ⁇ m or less.
  • the bone grafting material 10 of the present embodiment can be produced by three-dimensionally entanglement of calcium phosphate fibers and then press molding as necessary.
  • the bone grafting material 10 can also be produced by folding or winding a calcium phosphate sheet-like long fiber nonwoven fabric into a plate shape or a block shape. More specifically, the sheet-like long-fiber nonwoven fabric is folded once or a plurality of times, or wound into a roll shape, and formed into a three-dimensional three-dimensional fiber entangled body having a desired thickness. Thereafter, the fiber entangled body is press-molded into a plate shape or a block shape.
  • a sheet-like long fiber nonwoven fabric is folded or wound to first form a plate-like fiber entangled body, which is then cut into a desired shape to form a block shape. Good.
  • the fiber of calcium phosphate constituting the bone grafting material 10 may be long fiber or short fiber, but long fiber is preferable.
  • long fibers By using long fibers, the bone filling material 10 is prevented from being broken into a large number of pieces until the bone filling material 10 is absorbed into the body, and displacement under the submucosa or submucosa periosteum hardly occurs.
  • the long fiber means a fiber having a fiber length to fiber diameter ratio of 100 times or more
  • the short fiber means a fiber having the ratio of less than 100 times.
  • the surface layer portion 11 and the core portion 12 may be integrally formed with a common long fiber, or may be formed by joining and integrating each portion separately with separate fiber entanglements.
  • one or more long fibers may be included across the surface layer portion 11 and the core portion 12, or the separation interface of the fiber entangled body exists between the surface layer portion 11 and the core portion 12. May be.
  • the fibrous calcium phosphate located on the surface of the core portion 12 is dispersed with a solvent to obtain a denser structure.
  • the surface layer portion 11 can be formed.
  • FIG. 2A is a perspective view showing the bone grafting material 10 of the second embodiment.
  • FIG. 2B is a schematic diagram showing a usage state of the bone grafting material 10.
  • the upper side of FIG. 2A corresponds to the upper surface side of the bone grafting material 10.
  • a surface layer portion 11 is formed on the upper surface side of the bone grafting material 10, and a core portion 12 is formed on the lower surface side.
  • the surface layer part 11 is harder and denser than the core part 12.
  • the bone grafting material 10 of the present embodiment has an annular shape with through-holes formed in the thickness direction.
  • Bone-forming protein (BMP: bone morphogenetic protein) or fibroblasts (not shown) are formed on the outer peripheral surface 14 and the inner peripheral surface 18.
  • Growth factor components such as cell growth factor and polymer gel are applied. Growth factor components may also be applied to the front and back surfaces of the bone grafting material 10.
  • the growth factor component may be impregnated in the fiber entangled body of the bone grafting material 10, or may be formed on the surface (front and back surfaces) of the fiber entangled body.
  • Bone morphogenetic protein is a growth factor for osteoblasts.
  • osteoblasts include bone cells, osteoprogenitor cells, and osteoblast stem cells.
  • the through-hole 15 for inserting the bolt 20 into one or a plurality of locations around the inner peripheral surface 18 is formed in the annular bone filling material 10 of the present embodiment.
  • a counterbore 16 that accommodates the bolt head of the bolt 20 is formed on the upper surface side of the through hole 15.
  • the bone grafting material 10 of this embodiment shown in each drawing of FIG. 2 has a pair of through holes 15 at positions facing each other at 180 degrees around the inner peripheral surface 18.
  • the bolt 20 is preferably made of a biodegradable material such as polylactic acid.
  • the bone grafting material 10 is an auxiliary agent for regenerating an intervertebral disc (cartilage) that is used by being sandwiched between vertebrae 110 adjacent to each other.
  • An intervertebral disc 112 exists between normal vertebrae 110, but when this is lost, by filling the bone filling material 10 of this embodiment, chondroblasts grow and the intervertebral disc is regenerated.
  • growth factor components such as bone morphogenetic protein and fibroblast growth factor
  • the bone filling material 10 is fixed to one of the vertebrae 110 by bolts 20.
  • a spacer 100 made of a metal material such as titanium or a titanium alloy may be inserted between the vertebrae 110.
  • the spacer 100 has a thickness dimension substantially equal to that of the bone grafting material 10.
  • the spacer 100 is inserted into the vertebra 110 on the outer peripheral side (the body surface side in FIG. 2B) from the mounting position of the bone grafting material 10.
  • 3A to 3E are schematic views of the bone grafting material 10 according to the third to seventh embodiments.
  • the bone filling material 10 of the third embodiment shown in FIG. 3A is formed by winding a nonwoven fabric sheet 22 in which long fibers of calcium phosphate are two-dimensionally entangled in a roll shape.
  • the bone grafting material 10 according to the present embodiment is formed by cutting a long roll of a nonwoven fabric sheet 22 along cutting lines C arranged at a predetermined width interval W.
  • the cut bone substitute material 10 has a disk shape with a thickness W.
  • the bone grafting material 10 of this embodiment is formed by spirally winding a strip-shaped nonwoven fabric sheet 22 having a width W.
  • the long fiber longer than the outer diameter of the bone grafting material 10 is extended in the circumferential direction of the bone grafting material 10 by winding the nonwoven fabric sheet 22 of the long fiber in a roll shape. It becomes.
  • the bone filling material 10 containing long fibers maintains morphological stability when it is decomposed and absorbed by the mucosa, so that it does not collapse or shift its position under the mucosa or the mucosa periosteum.
  • the bone grafting material 10 of 4th embodiment shown to FIG. 3B is provided with the surface layer part 11 and the core part 12 covered with this surface layer part 11.
  • FIG. The density of the calcium phosphate in the surface layer portion 11 and the density of the calcium phosphate in the core portion 12 are different. More specifically, the core portion 12 of the bone grafting material 10 of the present embodiment has a lower calcium phosphate density than the surface layer portion 11.
  • the core part 12 may be completely embedded in the surface layer part 11 or a part of the core part 12 may be exposed from the surface layer part 11.
  • the fiber diameter of the surface layer portion 11 of this embodiment is larger than the fiber diameter of the core portion 12.
  • the fiber density of the surface layer part 11 is higher than the fiber density of the core part 12.
  • the fiber density refers to the number of fibers per unit volume.
  • the bone filling material 10 of the present embodiment is decomposed over a predetermined time by macrophages in the blood that have permeated the core portion 12 from the surface layer portion 11 inside the mucous membrane.
  • the core portion 12 having a low fiber density is rapidly decomposed to grow fibroblasts.
  • the surface layer portion 11 having a high fiber density and a slow degradation rate can remain under the mucosa or the mucosal periosteum for a predetermined period as a scaffold for regeneration of the hard tissue (osteoblasts).
  • the surface layer portion 11 corresponding to the side of the living tissue such as mucous membrane or mucosal periosteum remains for a long period of time, the positional stability of the bone grafting material 10 in the affected area is good.
  • the surface layer portion 11 is first decomposed using the inner core portion 12 as a scaffold.
  • the density of the calcium phosphate in the core part 12 may be made larger than the density of the calcium phosphate in the surface layer part 11. That is, the fiber diameter of the core portion 12 may be larger than the fiber diameter of the surface layer portion 11, and the fiber density of the core portion 12 may be higher than the fiber density of the surface layer portion 11.
  • the outer surface layer part 11 having a low fiber density is well decomposed to grow fibroblasts, and the core
  • the part 12 can be used as a scaffold to prevent the displacement of the bone grafting material 10.
  • the bone grafting material 10 according to the fifth embodiment shown in FIG. 3C includes a base portion 30 and a curved surface portion 32 protruding above the base portion 30.
  • the density of calcium phosphate in the curved surface portion 32 is greater than the density of calcium phosphate in the base portion 30.
  • the curved surface portion 32 has a mountain shape that is curved in a dome shape, and the upper surface of the base portion 30 bulges upward corresponding to the curved surface portion 32.
  • the bone grafting material 10 of the present embodiment is also formed by cutting a fiber entangled body formed in a long rod shape by a cutting line C having a predetermined width into a block shape.
  • the bone filling material 10 of the sixth embodiment shown in FIG. 3D is composed of a curved plate-like main body 34.
  • a through hole 36 may be optionally formed in the plate-like main body 34.
  • the bone grafting material 10 of the present embodiment is composed of a plate-like main body 34 in which a plurality of through holes 36 are formed to penetrate in the plate thickness direction.
  • the bone prosthetic material 10 (plate body 34) of the present embodiment has an outer shell shape having a hollow portion (curved concave portion 40) communicating with the outside.
  • the term “hollow portion communicates with the outside” means that the hollow portion has an opening rather than a sealed independent hole.
  • the curved recess 40 opens downward. Further, the curved recess 40 communicates with the outside through the through hole 36.
  • the through-hole 36 has a sufficient diameter that can be clearly distinguished from pores in a fiber entangled body (porous) of calcium phosphate long fibers.
  • the specific dimension and shape of the through-hole 36 are not specifically limited, As an example, it may be a circular hole having a diameter of 0.5 to 10 mm, preferably a diameter of 2 to 5 mm.
  • the arrangement of the through holes 36 is not particularly limited.
  • the through holes 36 can be arranged in a lattice pattern, a staggered pattern, or randomly.
  • the diameters of the individual through holes 36 may be different from each other, or all the through holes 36 may have the same diameter.
  • the distance between the centers of the through holes 36 and the distance between adjacent edges of the adjacent through holes 36 are not particularly limited, but from the viewpoint of ensuring blood circulation of the mucosal periosteal valve 124 (see FIG. 5) described later, the through holes 36.
  • the distance between adjacent edges is preferably smaller than the diameter of the through hole 36.
  • the plate thickness of the plate-like main body 34 may be uniform, or the plate thickness of the curved top portion 38 may be different from the plate thickness of the side edge portion 39. Specifically, the plate thickness of the top portion 38 may be larger than the plate thickness of the side edge portion 39.
  • FIG. 3D illustrates a plate-like main body 34 having a partially cylindrical shape (half-cylindrical shape) and an arc-shaped cross section. Although the central angle of the arc-shaped cross section is not particularly limited, FIG. 3D illustrates a case where the central angle is 180 degrees.
  • the curved shape of the plate-like main body 34 may be a dome shape (prone shape).
  • Another fiber entanglement body of calcium phosphate can be fitted into the curved concave portion 40 corresponding to the inside of the curved plate-shaped main body 34 and used. That is, the bone grafting material 10 of this embodiment may be used alone or in combination with other fiber entangled bodies.
  • the dome-shaped base 30 in the fifth embodiment (FIG. 3C) may be fitted and used. This use state will be described later with reference to FIG.
  • the plate-like main body 34 may be produced by stacking a plurality of long-fiber nonwoven fabric sheets 22 and press-molding them with a pair of male and female ridges.
  • the bone prosthetic material 10 preformed in a cylindrical block shape may be cut and cut to be processed into a curved plate shape.
  • the bone prosthetic material 10 of the seventh embodiment shown in FIG. 3E has a shallow bottomed tubular shape (a petri dish shape).
  • the bone grafting material 10 which consists of the cylindrical surrounding wall part 42 which equips the inside with the recessed part 41, and the disk-shaped bottom part 43 is illustrated.
  • the bone grafting material 10 of the present embodiment is a molded container in which calcium phosphate long fibers are molded into a block shape, and can be embedded in a living body such as a temporomandibular joint in a state in which, for example, a cartilage culture is accommodated in the recess 41. is there.
  • Cartilage tissue is a tissue that is difficult to heal spontaneously because it has no blood vessels, and its regeneration requires culture of chondrocytes.
  • the bone filling material 10 that is provided with the concave portion 41 for accommodating the cartilage culture and is decomposed over a predetermined period in the living body holds the cartilage culture in the cartilage defect in the living body for a long period of time. This makes it possible to culture cartilage in vivo. That is, during the first half of the culture period, the cartilage culture is stored and held in the vicinity of the cartilage defect by the bone grafting material 10 of this embodiment so that the cartilage culture does not dissipate in vivo.
  • cartilage culture In the second half of the culture period, the cartilage culture is fixed to the cartilage defect and the chondrocytes proliferate, and the bone filling material 10 is degraded in vivo and naturally disappears.
  • cartilage culture using the bone grafting material 10 of the present embodiment is less invasive than surgery (autologous cartilage transplantation) in which autologous cultured cartilage is transplanted in vivo.
  • FIG. 4A to FIG. 4D are schematic views for explaining the usage state of the bone grafting material 10 of the fifth embodiment (see FIG. 3C).
  • the bone filling material 10 of this embodiment is used to regenerate the alveolar bone 126 for implant treatment.
  • FIG. 4A shows a state in which the root portion 122 of the tooth 120 is covered with the mucosal periosteal valve 124 and grows on the alveolar bone 126.
  • FIG. 4B shows a state where the tooth 120 is missing and the alveolar bone 126 is retracted. In this state, an incision 128 is formed in the mucosal periosteal valve 124 to expose the alveolar bone 126, and the bone prosthetic material 10 is attached to the upper portion of the alveolar bone 126.
  • FIG. 4A shows a state in which the root portion 122 of the tooth 120 is covered with the mucosal periosteal valve 124 and grows on the alveolar bone 126.
  • FIG. 4B shows a state where the tooth 120 is missing and the alveolar bone 126 is retracted. In this state, an incision 128 is formed in the mucosal periosteal valve 124 to expose the alveolar bone 126, and the bone prosthetic material 10 is attached to
  • FIG. 4C shows a state in which the mucosal periosteal valve 124 is stretched, and the bone filling material 10 attached to the alveolar bone 126 is covered with the mucosal periosteal valve 124 and sutured with the suture thread 129.
  • the base 30 of the bone grafting material 10 is cut in advance according to the uneven shape of the upper surface of the alveolar bone 126.
  • the curved surface portion 32 of the bone grafting material 10 is in close contact with and covered with the mucosal periosteal valve 124.
  • the curved surface portion 32 of the present embodiment protrudes upward, and the mucosal periosteal valve 124 is sewn into a natural convex shape by closely contacting the mucosal periosteal valve 124 along the curved surface portion 32.
  • the bottom surface of the base 30 is formed in a concavo-convex shape and is in close contact with the top surface of the alveolar bone 126.
  • a plate-shaped main body 34 (see FIG. 3D) having an outer shell shape having a hollow portion (curved concave portion 40) communicating with the outside is mounted on the upper surface of the alveolar bone 126. You may use it.
  • the plate-like main body 34 is placed on the upper surface of the alveolar bone 126, and the mucosal periosteal valve 124 is sutured in a state where the hollow portion (curved concave portion 40) is held inside the bone filling material 10, so that the bone filling material 10 is mucous.
  • the hollow part inside the bone filling material 10 having the plate-shaped main body 34 as an outer shell is filled with blood.
  • the inner surface of the plate-like main body 34 is gradually decomposed and absorbed by the living body, and the alveolar bone 126 grows.
  • the mucosal periosteal valve 124 is sutured in a state where the hollow portion (curved concave portion 40) is filled with a powdery or granular bone filling material (not shown), and the bone filling material 10 is buried under the mucous membrane. Also good.
  • the lower surface of the base 30 of the bone grafting material 10 is formed flat or convex, and a powdery or granular bone grafting material is filled between the alveolar bone 126 and the base 30. Also good. In other words, a powder or granular bone filling material may be filled between the mucosal periosteal valve 124 and the alveolar bone 126, and the bone filling material 10 may be placed thereon.
  • the soft base portion 30 of the bone grafting material 10 is disassembled and replaced with the alveolar bone 126.
  • the curved surface portion 32 contacts the mucosal periosteal valve 124, which has a larger blood volume than the alveolar bone 126.
  • the curved surface portion 32 is configured to be harder and denser than the base portion 30.
  • the time difference between the speed (required time) at which the curved surface portion 32 is decomposed and absorbed into the mucosal periosteal valve 124 and the speed (required time) at which the base 30 is decomposed and absorbed into the alveolar bone 126 is small.
  • the bone filling material 10 of this embodiment is appropriately decomposed inside the mucosal periosteal valve 124, and fibroblasts and osteoblasts grow.
  • the alveolar bone 126 which has been retracted as shown in FIG. 4B is regenerated, and the implant treatment can be performed satisfactorily.
  • the curved surface portion 32 and the base portion 30 are preferably decomposed in 4 to 8 months.
  • Drawing 4D is a figure explaining the modification of the use state of bone grafting material 10 of this embodiment. Specifically, a state in which the bone grafting material 10 is embedded around the root portion 122 is shown. The bone grafting material 10 is also used for an affected part in which the tooth 120 is not missing, and the tooth root part 122 can be grown to increase the diameter by promoting the growth of osteoblasts. In the case of such a modification, it is preferable that the lower end side of the bone grafting material 10 is tapered and narrow so that the whole is a wedge shape. Thereby, the operation
  • the bone grafting material 10 includes a base portion 30 on the lower end side having a sharp tip portion and a low fiber density, and a plate-like curved surface portion 32 attached to the upper end side and having a high fiber density.
  • the formation of the curved surface portion 32 is optional, and the entire wedge-shaped bone grafting material 10 may be formed by the base 30 instead of the present embodiment.
  • the bone grafting material 10 of the sixth and seventh embodiments is between the mucosal periosteal valve 124 and the alveolar bone 126 or the root portion. It can be used by being embedded around 122.
  • FIG. 5A to FIG. 5E are schematic diagrams for explaining the usage state of the bone grafting material 10 of the sixth embodiment shown in FIG. 3D.
  • the case of regenerating the alveolar bone 126 for implant treatment will also be described as an example for the bone grafting material 10 of the present embodiment.
  • FIG. 5A shows a state in which the root portion 122 of the tooth 120 is covered with the mucosal periosteal valve 124 and grows on the alveolar bone 126, and is the same as FIG. 4A.
  • 5B and 5C show a state where the tooth 120 is missing and the alveolar bone 126 is absorbed and retracted.
  • FIG. 5B shows a state of moderate absorption
  • FIG. 5C shows a state of high absorption.
  • the trace of the root portion 122 remains in the alveolar bone 126 as a U-shaped recess, but in the case of high absorption, the trace disappears and the alveolar bone 126 becomes convex upward.
  • the bone grafting material 10 of this embodiment is a combination of a base 30 having a low calcium phosphate density and a plate-like main body 34 having a higher calcium phosphate density than the base 30.
  • the base 30 made in accordance with the shape of the upper surface of the alveolar bone 126 is mounted on the alveolar bone 126, and the plate-shaped main body 34 is mounted by fitting the upper surface of the base 30 into the curved recess 40 (see FIGS. 5D and 5E). reference).
  • the base 30 is formed as a block made of a calcium phosphate fiber entangled body formed into a cubic shape, a cylindrical shape, or the like, and this is used by cutting according to the shape of the upper surface of the alveolar bone 126.
  • the plate-shaped main body 34 has a curved plate shape in which a large number of through holes 36 are formed, and is used by cutting according to the shape and dimensions of the base 30. As shown in FIG. 5E, the plate-like main body 34 may be used by being bent at a bent portion 37. Accordingly, the plate-like main body 34 can be embedded under the mucosa or the mucosal periosteum according to the shape of the alveolar bone 126 regardless of the initial curved shape and curvature of the plate-like main body 34.
  • the mucosal periosteal valve 124 is extended, and the bone filling material 10 (plate-like main body 34) attached to the alveolar bone 126 is covered with the mucosal periosteal valve 124 and sutured with a suture thread 129. .
  • the base 30 is disassembled and replaced with the alveolar bone 126 while being held on the upper surface of the alveolar bone 126 by the plate-shaped main body 34.
  • the plate-like main body 34 is disassembled inside the mucosal periosteal valve 124.
  • the mucosa Dehiscence due to necrosis of the periosteal valve 124 can be prevented.
  • bone grafting material 10 of the fifth and seventh embodiments as shown in FIGS. 5A to 5E, between the mucosal periosteal valve 124 and the alveolar bone 126 or the root portion It can be used by being embedded around 122.
  • FIG. 6 is a schematic diagram showing a manufacturing apparatus 200 for the bone grafting material 10.
  • the manufacturing apparatus 200 is an apparatus that forms a long fiber by a melt blow method and entangles them with each other to manufacture a nonwoven fabric sheet 22, and further shapes and fires the nonwoven fabric sheet 22 to obtain the bone grafting material 10.
  • the nonwoven fabric sheet 22 is wound into a roll and then fired to form the bone grafting material 10.
  • the manufacturing apparatus 200 includes a hopper 202, a die 204, a drum roll 206, a heating unit 208, a take-up unit 210, a roll forming unit 220, and a firing unit 230.
  • the hopper 202 is a container for storing a polymer raw material (slurry) in which a polysaccharide such as pullulan and calcium phosphate such as hydroxyapatite are dispersed in a solvent such as water. A polysaccharide having solvent solubility is used.
  • the polymer raw material may contain an antibacterial agent having a predetermined concentration.
  • the die 204 includes a large number of minute nozzles (not shown), and a blower 214 is provided on the upstream side of the die 204.
  • the opening of the die 204 is preferably circular with a diameter of 0.05 mm to 1.0 mm.
  • the polymer raw material supplied from the hopper 202 is ejected from the die 204 at a high speed to become a fiber. By dissolving the polysaccharide in the solvent, the high-viscosity polymer raw material is formed into a fiber shape, and calcium phosphate is dispersed in the fiber.
  • a drum roll 206 is disposed in front of the injection direction from the die 204.
  • the long fibers 24 sprayed onto the surface of the drum roll 206 are entangled with each other to form the nonwoven fabric sheet 22.
  • the long fibers 24 ejected from the die 204 are heated inside the cylindrical casing 216 to remove the solvent.
  • the heating unit 208 of the present embodiment is a ceramic heater, and is arranged in a plurality of stages in the injection direction from the die 204 (vertical direction in FIG. 6).
  • the heating unit 208 irradiates the long fibers 24 with infrared rays (including far-infrared rays) to radiatively dry the long fibers 24.
  • the long fibers 24 are made of a mixed material of polysaccharide (pullulan) and calcium phosphate (hydroxyapatite).
  • a blower 209 is provided behind the heating unit 208.
  • the blower 209 blows cold air (including normal temperature) from the side against the long fibers 24 ejected from the die 204. Thereby, the solvent removed from the long fibers 24 is excluded from the housing 216, and drying of the long fibers 24 is promoted.
  • a guide 218 having a tapered shape from the die 204 toward the drum roll 206 is provided inside the housing 216 so as to be opposed thereto.
  • the guide 218 is made of a porous material such as a metal mesh, and allows both infrared rays radiated from the heating unit 208 and cold air from the blower unit 209 to pass therethrough.
  • the long fibers 24 ejected from the die 204 converge in a bundle along the guide 218, interlaced with each other, and reach the surface of the drum roll 206.
  • the long fiber 24 converges suitably because the ventilation part 209 blows a cold wind from the side with respect to the long fiber 24.
  • the drum roll 206 is rotated about its axis by a rotation mechanism (not shown), and the formed nonwoven fabric sheet 22 is sent to the take-up unit 210.
  • the rotational speed of the drum roll 206 can be variably adjusted, and the basis weight of the nonwoven fabric sheet 22 can be changed by the adjustment.
  • the nonwoven fabric sheet 22 composed of the long fibers 24 is taken up at a predetermined speed by the take-up section 210 and formed into a predetermined thickness.
  • the roll forming unit 220 is a device that winds the nonwoven fabric sheet 22 into a roll having a predetermined diameter.
  • the roll forming unit 220 may be wound into a roll shape after cutting the nonwoven fabric sheet 22 in advance.
  • the roll forming unit 220 includes a restraining portion 221 that restrains the leading end of the nonwoven fabric sheet 22 in the feeding direction, and a blade portion 222 that cuts the nonwoven fabric sheet 22.
  • the restraining part 221 and the blade part 222 can be moved up and down with respect to the take-up part 210.
  • the non-woven fabric sheet 22 is wound by the conveying force of the take-up section 210 by the restraining portion 221 restraining the tip of the non-woven fabric sheet 22.
  • the blade portion 222 is lowered and cut. Since the nonwoven fabric sheet 22 contains polysaccharide (pullulan) and has adhesiveness, the wound nonwoven fabric sheet 22 is integrally fixed.
  • the nonwoven fabric sheet 22 wound and cut into a roll shape is baked by a baking unit 230 including a heater 231 and further cut and cut as necessary to become the bone grafting material 10.
  • a baking unit 230 including a heater 231 By firing the nonwoven fabric sheet 22, the polysaccharide contained in the long fibers 24 is thermally decomposed and disappears, and only calcium phosphate (hydroxyapatite) remains while maintaining the fiber shape.
  • the winding diameter (roll diameter) and the fiber diameter of the nonwoven fabric sheet 22 both decrease by the disappearance of the polysaccharide, and the calcium phosphate aggregates.
  • the bone filling material 10 after firing becomes a fiber entangled body of long fibers in which calcium phosphate is densely aggregated.
  • the manufacturing method of the bone grafting material 10 of this embodiment is as follows.
  • a fiberizing step in which a mixture of an aqueous solvent, a water-soluble edible polysaccharide, and calcium phosphate is sprayed from a die to form long fibers;
  • a drying process in which the long fibers are entangled with each other while removing the aqueous solvent by heating the sprayed long fibers, and a fiber entangled body is obtained.
  • a firing step of firing the fiber entangled body to remove the polysaccharide Note that some or all of the steps (1) to (3) may be performed at the same timing.
  • a forming step of forming the fiber entangled body into a plate shape or a block shape is further performed.
  • the sheet-like long-fiber nonwoven fabric is folded or wound to form a plate or block having a predetermined thickness.
  • a growth factor component such as bone morphogenetic protein, fibroblast growth factor or polymer gel is added to the plate-like or block-like fiber entangled body after firing.
  • the fiber entangled body may be impregnated with the growth factor component by immersing the fiber entangled body in an aqueous solvent in which the growth factor component is dispersed for a short time.
  • an aqueous solvent in which the growth factor component is dispersed may be spray-coated on the surface of the fiber entangled body. In this manner, the bone grafting material 10 in which the growth factor component is impregnated or coated on the fiber entangled body can be produced.
  • HAp hydroxyapatite
  • pullulan was sufficiently dispersed in water (solvent) to prepare a slurry.
  • the slurry was prepared at room temperature by changing the mass ratio of HAp: water: pullulan into three types as shown in Table 1 below (Examples 1 to 3 respectively).
  • a small amount of an aqueous dispersant was added to the slurry.
  • FIG. 7A to FIG. 7C are electron micrographs showing the state before the three-dimensional molding (that is, before firing) of the nonwoven sheet made of apatite fibers according to Examples 1 to 3, respectively.
  • the enlargement ratio is 75 times in FIGS. 7A and 7B and 35 times in FIG. 7C.
  • 8A and 8B are enlarged views of the apatite fiber before firing according to Example 3 shown in FIG. 7C, and the enlargement ratios are 1000 times and 5000 times, respectively.
  • 9A to 9D are electron micrographs of fiber entangled bodies obtained by firing the nonwoven fabric sheets according to Examples 1 to 4 under the following conditions without three-dimensional molding.
  • 9A to 9D are electron micrographs of the fiber entangled bodies according to Reference Example 1 to Reference Example 4 fired into a sheet shape under the following conditions.
  • 9A and 9B are 75 times
  • FIG. 9C is 100 times
  • FIG. 9D is 200 times.
  • Examples 1 to 4 after the sheet-like fiber entangled body was laminated in multiple layers and press-molded with a roll compressor (calender device) to form a three-dimensional disk, the following conditions were satisfied. Baked in.
  • the firing step of the present example includes the first firing step of heating while raising the temperature from 200 ° C. to 500 ° C. with the normal temperature as the initial temperature, and then further 800 ° C. to 1400 ° C. And a second baking step of heating while raising the temperature to within a temperature range.
  • first firing step residual moisture of the apatite fibers is removed, and the intramolecular and intermolecular bonds of the binder made of a hydrocarbon material (in this embodiment, pullulan) are broken.
  • the binder is decomposed into carbon dioxide and water and removed from the apatite fibers.
  • the fiber diameter gradually decreases while the HAp maintains the fiber shape.
  • the fiber entangled body after firing is sintered in a fiber shape, so that a porous body having a large specific surface area is produced. .
  • the property of the fiber entangled body after baking can be adjusted as desired by changing the ratio of HAp in the slurry.
  • Example 1 whose HAp mass ratio is less than 10%
  • Example 2 and Example 3 show that the apatite fibers are in close contact with each other in the fiber width direction as shown in FIGS. 9B and 9C. Without crossing, it was found that they crossed and bound into a mesh. That is, in Example 2 and Example 3, it can be said that the occurrence of dead ends in the fiber entangled body is more suitably suppressed and the specific surface area is larger than that in Example 1. The same tendency was confirmed in Examples 4 to 6.
  • FIG. 10A is an enlarged view of the apatite fiber after firing according to Reference Example 3 shown in FIG. 9C, and the enlargement ratio is 5000 times. Comparing FIG. 8B and FIG. 10A, the surface of the apatite fiber before firing is flat (see FIG. 8B), whereas the surface of the apatite fiber after firing is scale-like (see FIG. 10A). I understand.
  • the apatite fiber after firing in this example has a streak-like recess formed along the fiber direction.
  • the cross-sectional shape of the apatite fiber before firing is a substantially circular shape, but after firing, the apatite fiber has a bowl shape (violin shape, figure 8 shape or dumbbell shape) crushed from opposite sides, and each fiber Have two streak-like recesses extending in the fiber direction at opposite positions of approximately 180 degrees.
  • the mechanism by which such a streak-like recess is formed is not necessarily clear, but in the process where the pullulan disappears from the apatite fiber and the HAp shrinks, the HAp enters the pulling vane voids to form a circular shape.
  • the apatite fiber after firing is substantially sintered only of HAp fine particles, and its cross-sectional shape is smooth and sharp as a whole, including a narrow concave portion and a wide bulge portion in a bowl shape. There is no edge.
  • the cross-sectional shape of the apatite fiber after firing is a blunt shape that is smoothly curved (see FIGS. 9D and 10A).
  • the apatite fiber before firing is formed into a predetermined shape by fiberizing a slurry in which calcium phosphate (HAp) is dispersed together with a hydrocarbon binder component (pullulan) as in this embodiment,
  • the porosity in the fiber entangled body is not lost. This is because, since the binder component has a predetermined occupied volume in the fiber before firing, even if, for example, a high press pressure is applied to form a fiber entangled body into a block shape (fiber block), calcium phosphate is dispersed in the fiber. This is to maintain the state.
  • the binder component by using the binder component, it is possible to form the apatite fiber before firing into a fiber block having a desired shape while maintaining the state in which the calcium phosphate is dispersed in the fiber.
  • the yarn stringiness of the slurry can be increased or decreased by changing the component and concentration of the binder.
  • it is possible to adjust the fiber diameter of the apatite fiber by adjusting the opening diameter of the die and the blow speed. Thereby, it is possible to make the calcium-phosphate density of the surface layer part 11 and the core part 12 (refer FIG. 1B) in the bone grafting material 10 after baking differ.
  • FIG. 10B is an enlarged view of the surface of the bone prosthetic material after firing in Example 1 formed into a disk shape (block shape) as shown in FIG. 1A.
  • the enlargement ratio is 3000 times.
  • the electron micrograph shown in FIG. 1C corresponds to a cross-sectional photograph of the bone grafting material according to this example.
  • the bone prosthetic material of this example has one main surface (upper end surface) corresponding to at least a part of the outer surface smoothed.
  • the bone prosthetic material of this example is a two-dimensional entangled body of apatite fibers blow-molded into a long fiber shape, subjected to a surface smoothing treatment in a state of being pressed into a disk shape and formed into a fiber block, It is fired after that.
  • a solvent for example, water
  • the binder pullulan
  • the binder on the surface of the fiber block is locally dissolved in the solvent, and the HAp in that portion is smoothed like a scale.
  • Such a small amount of solvent may be sprayed on the surface of the fiber block by, for example, spraying.
  • spraying the solvent after the fiber block is heated to room temperature or higher the solvent in contact with the fiber block volatilizes in a short time, so that the HAp smoothing treatment is restricted from extending to the inside of the fiber block. The Thereby, only the partial thickness on the surface side of the fiber block is smoothed.
  • the bone grafting material shown in the first embodiment including a hard and dense surface layer portion and a core portion having a higher porosity is produced.
  • a bone prosthetic material comprising a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape.
  • the bone grafting material according to (1) wherein at least a part of the outer surface of the fiber entangled body is smoothed.
  • the bone grafting material according to the above (1) or (2) which is formed by folding or winding a calcium phosphate long fiber nonwoven fabric into a plate shape or a block shape.

Abstract

The bone filling material (10) comprises a fiber web wherein fibrous calcium phosphate has been molded into a disc or block form. The bone filling material (10) is used by imbedding same under the mucosa or under the mucoperiosteum of a bone defect, alveolar ridge extraction socket, etc. A surface layer (11) that is on at least a portion of the outer surface of the fiber web is smooth. The front face of the bone filling material (10) is protected by the hard surface layer (11). The core (12) contacts the blood in the mucosa and is smoothly absorbed into the somatic tissue.

Description

骨補填材Bone filling material
 本発明は、骨再生を促進する骨補填材に関する。 The present invention relates to a bone grafting material that promotes bone regeneration.
 骨再生用の骨補填材は、骨欠損部の粘膜に埋入して用いられる医療用材料である。粘膜下に埋入された骨補填材は、マクロファージ、破骨細胞および線維芽細胞等の食作用によりそれ自体が分解されるとともに、骨芽細胞の成長を促して骨組織を再生させる。 Bone regeneration material for bone regeneration is a medical material used by being embedded in the mucous membrane of a bone defect. The bone filling material implanted under the mucous membrane is itself degraded by phagocytosis of macrophages, osteoclasts, fibroblasts, etc., and promotes the growth of osteoblasts to regenerate bone tissue.
 この種の技術に関し、特許文献1には、多孔体からなる骨補填材が記載されている。この多孔体は、ハイドロキシアパタイトなどのリン酸カルシウム系セラミックスやガラスなどからなる中空粒子を殻状の骨格とし、多孔体の全体にわたって連通した開気孔と、粒子内部に形成された閉気孔と、を有している。同文献には、多孔体が開気孔と閉気孔を併せもつことにより、連通性と気孔率が高い骨補填材が作製されると記載されている。 Regarding this type of technology, Patent Document 1 describes a bone grafting material made of a porous material. This porous body has hollow particles made of calcium phosphate ceramics such as hydroxyapatite or glass as a shell-like skeleton, and has open pores that communicate with the entire porous body and closed pores formed inside the particles. ing. This document describes that a bone prosthetic material having high connectivity and high porosity can be produced by having a porous body having both open pores and closed pores.
 特許文献2には、ハイドロキシアパタイトなどのリン酸カルシウムを溶液紡糸して綿状に成形された不織布をインプラント材料に用いることが記載されている。 Patent Document 2 describes that a nonwoven fabric formed by spinning a calcium phosphate such as hydroxyapatite by solution spinning is used as an implant material.
特開2008-195595号公報JP 2008-195595 A 特開昭61-174460号公報JP 61-174460 A
 しかしながら、特許文献1に記載の骨補填材は、閉気孔をもつ中空粒子であるため、その内部は閉塞したデッドエンド(閉塞端)である。このため、中空粒子の内部では血液との接触が不良となってマクロファージの食作用の進行が遅くなるという問題がある。このため、骨芽細胞の成長速度が不均一となったり、局所の感染や粘膜の炎症の原因となったりする虞がある。また、特許文献2に記載のインプラント材料は綿状の不織布であるため体組織に埋設された場合の溶融速度が速く、組織の再生が十分でないという課題がある。 However, since the bone grafting material described in Patent Document 1 is a hollow particle having closed pores, the inside thereof is a closed dead end (closed end). For this reason, there is a problem in that the contact with blood is poor inside the hollow particles and the progress of phagocytosis of macrophages is delayed. For this reason, there is a possibility that the growth rate of osteoblasts may become uneven, or cause local infection or mucosal inflammation. Moreover, since the implant material described in Patent Document 2 is a cotton-like non-woven fabric, there is a problem that the melting rate is high when it is embedded in a body tissue, and the regeneration of the tissue is not sufficient.
 本発明は上述のような課題に鑑みてなされたものであり、骨芽細胞の均一かつ迅速な成長を十分に促して安全に使用することができる骨補填材を提供するものである。 The present invention has been made in view of the above-mentioned problems, and provides a bone grafting material that can be used safely by sufficiently promoting the uniform and rapid growth of osteoblasts.
 本発明の骨補填材は、繊維状のリン酸カルシウムを板状またはブロック状に成形した繊維交絡体を含む。 The bone prosthetic material of the present invention includes a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape.
 上記発明によれば、リン酸カルシウムが繊維状に成形されているため、その繊維交絡体は表面積が大きく、かつデッドエンドが生じることがない。このため、埋入された粘膜の内部で血液が骨補填材の全体に対して良好に接触する。これにより、骨芽細胞の成長が良好となり、局所感染や粘膜に炎症が生じることが抑制される。また、繊維交絡体がシート状や綿状ではなく板状やブロック状に成形されていることで、体組織に埋設された骨補填材の内部まで血液が到達するのに所定の時間を要する。このため、骨補填材の表面と内部とでは、血液と接触するタイミングに時間差が生じることとなる。よって、骨補填材の表面がマクロファージや線維芽細胞の食作用により分解されて骨芽細胞の成長が開始してから、骨組織が十分に再生されるまでの所定期間(例えば数週間から数ヶ月、好ましくは4ヶ月から8ヶ月)に亘って、骨補填材の内部には繊維交絡体が残存して骨再生の促進効果を発揮しつづけることができる。 According to the above invention, since the calcium phosphate is formed into a fiber shape, the fiber entangled body has a large surface area and no dead end occurs. For this reason, blood makes good contact with the entire bone filling material inside the embedded mucous membrane. As a result, the growth of osteoblasts is improved, and local infection and inflammation in the mucous membrane are suppressed. Further, since the fiber entangled body is formed into a plate shape or a block shape instead of a sheet shape or cotton shape, it takes a predetermined time for blood to reach the inside of the bone grafting material embedded in the body tissue. For this reason, a time difference will arise in the timing which contacts the blood between the surface and the inside of a bone grafting material. Therefore, a predetermined period (for example, several weeks to several months) from when the surface of the bone grafting material is decomposed by the phagocytosis of macrophages or fibroblasts and osteoblast growth starts until bone tissue is fully regenerated. (Preferably 4 to 8 months), the fiber entangled body remains in the bone prosthetic material and can continue to exert the effect of promoting bone regeneration.
 また本発明の骨補填材においては、より具体的な実施の態様として、繊維交絡体の外表面の少なくとも一部が平滑化されていてもよい。
 この骨補填材は、リン酸カルシウムの長繊維不織布を折り重ね、または巻回して板状またはブロック状に成形してなるものでもよい。
 この骨補填材は、複数の貫通孔が形成された板状に成形してなるものでもよい。
 この骨補填材は、表層部と、表層部に覆われたコア部と、を備え、表層部におけるリン酸カルシウムの密度と、コア部におけるリン酸カルシウムの密度とが異なってもよい。
 この骨補填材は、基部と、基部の上方に突出した湾曲表面部と、を備え、基部におけるリン酸カルシウムの密度よりも、湾曲表面部におけるリン酸カルシウムの密度の方が大きくてもよい。
 この骨補填材は、外部連通した中空部を有する外殻状をなしていてもよい。
 この骨補填材は、成長因子成分が繊維交絡体に含浸しているかまたは繊維交絡体の表面に塗工形成されていてもよい。
 この骨補填材は、成長因子成分が疎水化多糖類または会合体微粒子であってもよい。
 この骨補填材は、厚さ1.5mm以上6mm以下かつ外径10mm以上40mm以下の円板状に成形されていてもよい。
 この骨補填材は、厚さ方向に貫通孔が形成された円環状をなし、外周面および内周面に成長因子成分が被着されていてもよい。
 この骨補填材は、気孔率が0.1%以上78%以下であってもよい。
 この骨補填材は、繊維交絡体の繊維径が0.5μm以上100μm以下であってもよい。
 この骨補填材は、リン酸カルシウムの繊維が、繊維方向に沿って形成された筋状の凹部を有していてもよい。
In the bone grafting material of the present invention, as a more specific embodiment, at least a part of the outer surface of the fiber entangled body may be smoothed.
This bone prosthetic material may be formed by folding or winding a calcium phosphate long fiber nonwoven fabric into a plate shape or block shape.
This bone prosthetic material may be formed into a plate shape in which a plurality of through holes are formed.
This bone grafting material includes a surface layer portion and a core portion covered with the surface layer portion, and the density of calcium phosphate in the surface layer portion may be different from the density of calcium phosphate in the core portion.
The bone grafting material includes a base portion and a curved surface portion protruding above the base portion, and the density of calcium phosphate in the curved surface portion may be larger than the density of calcium phosphate in the base portion.
The bone prosthetic material may have an outer shell shape having a hollow portion that communicates with the outside.
In this bone grafting material, the fiber entangled body may be impregnated with the growth factor component, or the surface of the fiber entangled body may be coated.
In this bone grafting material, the growth factor component may be a hydrophobic polysaccharide or aggregated fine particles.
This bone prosthetic material may be formed into a disk shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm.
This bone prosthetic material may have an annular shape with through holes formed in the thickness direction, and growth factor components may be adhered to the outer peripheral surface and the inner peripheral surface.
The bone filling material may have a porosity of 0.1% to 78%.
In the bone filling material, the fiber diameter of the fiber entangled body may be not less than 0.5 μm and not more than 100 μm.
In the bone filling material, the calcium phosphate fiber may have a streak-like recess formed along the fiber direction.
 本発明によれば、骨芽細胞の均一かつ迅速な成長を十分に促して安全に使用することができる骨補填材が提供される。 According to the present invention, there is provided a bone grafting material that can be used safely by sufficiently promoting uniform and rapid growth of osteoblasts.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
図1Aは本発明の第一実施形態にかかる骨補填材を示す斜視図である。図1Bは図1AのB-B断面図である。図1Cは骨補填材の断面の電子顕微鏡写真である。FIG. 1A is a perspective view showing a bone grafting material according to a first embodiment of the present invention. 1B is a cross-sectional view taken along the line BB of FIG. 1A. FIG. 1C is an electron micrograph of a cross section of the bone grafting material. 図2Aは第二実施形態の骨補填材を示す斜視図である。図2Bは骨補填材の使用状態を示す模式図である。FIG. 2A is a perspective view showing a bone grafting material of the second embodiment. FIG. 2B is a schematic diagram showing a use state of the bone grafting material. 図3Aから図3Eは、それぞれ第三から第七実施形態にかかる骨補填材の模式図である。3A to 3E are schematic views of bone prosthetic materials according to third to seventh embodiments, respectively. 図4Aから図4Dは、第五実施形態の骨補填材の使用状態を説明する模式図である。FIG. 4A to FIG. 4D are schematic views for explaining the usage state of the bone grafting material of the fifth embodiment. 図5Aから図5Eは、第六実施形態の骨補填材の使用状態を説明する模式図である。FIG. 5A to FIG. 5E are schematic views for explaining the usage state of the bone grafting material of the sixth embodiment. 骨補填材の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of a bone grafting material. 図7Aから図7Cは、それぞれ実施例1~実施例3にかかるアパタイト繊維の焼成前の状態を示す電子顕微鏡写真である。FIGS. 7A to 7C are electron micrographs showing the state of the apatite fibers according to Examples 1 to 3 before firing. 図8Aおよび図8Bは、実施例3にかかる焼成前のアパタイト繊維の拡大図である。8A and 8B are enlarged views of an apatite fiber before firing according to Example 3. FIG. 図9Aから図9Dは、それぞれ参考例1~参考例4にかかる焼成後のシート状の繊維交絡体の電子顕微鏡写真である。9A to 9D are electron micrographs of fired sheet-like fiber entangled bodies according to Reference Examples 1 to 4, respectively. 図10Aは参考例3にかかる焼成後のシート状の繊維交絡体の拡大図である。図10Bは焼成後のブロック状の実施例1の骨補填材の表面の拡大図である。10A is an enlarged view of a sheet-like fiber entangled body after firing according to Reference Example 3. FIG. FIG. 10B is an enlarged view of the surface of the bone prosthetic material of the block-shaped embodiment 1 after firing.
 以下、本発明の実施形態を図面に基づいて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1Aは本発明の第一実施形態にかかる骨補填材10を示す斜視図であり、図1Bは図1AのB-B断面図である。図1Cは、骨補填材10の断面を3000倍に拡大した電子顕微鏡写真である。 FIG. 1A is a perspective view showing a bone grafting material 10 according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A. FIG. 1C is an electron micrograph in which the cross section of the bone grafting material 10 is magnified 3000 times.
 本実施形態の骨補填材10は、繊維状のリン酸カルシウムを板状またはブロック状に成形した繊維交絡体を含む。骨補填材10は、骨欠損部や歯槽堤の抜歯窩などの粘膜に埋入して用いられる。骨補填材10は粘膜下または粘膜骨膜下でマクロファージまたは破骨細胞に分解されて骨組織に吸収および置換される材料である。骨補填材10は一種または二種以上のリン酸カルシウムを主成分として含む繊維交絡体を含む。繊維交絡体は、炭化水素や無機抗菌剤などリン酸カルシウム以外の副成分を含んでもよい。骨補填材10は板状またはブロック状の立体部分と、綿状やシート状などの柔軟部分とを両方とも備えてもよい。骨補填材10は繊維交絡体以外の要素として、内包された薬剤や、オブラートなどの包装剤を備えてもよい。 The bone grafting material 10 of the present embodiment includes a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape. The bone filling material 10 is used by being embedded in a mucous membrane such as a bone defect part or an extraction fossa of an alveolar ridge. The bone filling material 10 is a material that is decomposed into macrophages or osteoclasts under the mucosa or submucosa periosteum, and is absorbed and replaced by bone tissue. The bone grafting material 10 includes a fiber entangled body containing one or more calcium phosphates as a main component. The fiber entangled body may contain subcomponents other than calcium phosphate such as hydrocarbons and inorganic antibacterial agents. The bone grafting material 10 may include both a plate-like or block-like three-dimensional portion and a flexible portion such as cotton or sheet. The bone prosthetic material 10 may include an encapsulated drug or a packaging agent such as an oblate as an element other than the fiber entangled body.
 本実施形態に用いられるリン酸カルシウムは、ハイドロキシアパタイトに代表されるアパタイト、α-第3リン酸カルシウム(α-TCP)、β-第3リン酸カルシウム(β-TCP)、リン酸4カルシウム(TTCP)からなる群から選択される少なくとも1種である。ハイドロキシアパタイト(HAp:Hydroxy Apatite)はリン酸カルシウム系のバイオマテリアルであり、化学式はCa10(PO46(OH)2で表される。バイオマテリアルとは医療分野においてヒトの生体に移植することを目的とした材料をいう。 The calcium phosphate used in the present embodiment is selected from the group consisting of apatite typified by hydroxyapatite, α-tricalcium phosphate (α-TCP), β-tricalcium phosphate (β-TCP), and tetracalcium phosphate (TTCP). At least one selected. Hydroxyapatite (HAp) is a calcium phosphate biomaterial, and its chemical formula is represented by Ca 10 (PO 4 ) 6 (OH) 2 . Biomaterial means a material intended to be transplanted into a human body in the medical field.
 リン酸カルシウムを繊維状に成形する方法の一例として、リン酸カルシウムを溶媒に分散させたスラリーをダイから噴射して繊維状に成形するメルトブロー(溶融紡糸)法が挙げられる。炭化水素材料からなるバインダー成分をスラリーに配合することで、成形された繊維におけるリン酸カルシウムが安定するとともに、焼成工程によってバインダー成分を除去することが可能である。バインダー成分としては、可食性の水溶性多糖類が好ましく、特にプルランが好ましい。このほか、本実施形態に用いられる多糖類の例として、寒天、カラギナン、アルギン酸、アルギン酸塩類、キサンタンガム、デキストラン、グアーガム、ペクチン、グルコマンナン、デンプン、ゼラチン、カラヤガム、キチン、キトサン、メチルセルロース、タマリンドガム、アラビアガムを挙げることができる。 An example of a method for forming calcium phosphate into a fiber includes a melt blow (melt spinning) method in which a slurry in which calcium phosphate is dispersed in a solvent is sprayed from a die and formed into a fiber. By blending a binder component made of a hydrocarbon material into the slurry, the calcium phosphate in the molded fiber is stabilized, and the binder component can be removed by a firing step. As the binder component, edible water-soluble polysaccharides are preferable, and pullulan is particularly preferable. In addition, examples of polysaccharides used in the present embodiment include agar, carrageenan, alginic acid, alginates, xanthan gum, dextran, guar gum, pectin, glucomannan, starch, gelatin, karaya gum, chitin, chitosan, methylcellulose, tamarind gum, Men can mention gum arabic.
 スラリーに配合するバインダー成分の量および噴射速度を調整することで、焼成後の繊維交絡体における繊維長と繊維径を可変に調整することができる。
 溶媒の質量に対するリン酸カルシウムの質量比は0.2以上かつ0.4以下が好ましい。また、溶媒の質量に対するバインダー成分の質量比は0.1以上かつ0.4以下が好ましい。スラリーの粘度は1万ポアズ以上かつ10万ポアズ以下、すなわち1×103パスカル秒以上かつ1×104パスカル秒以下が好ましい。
The fiber length and fiber diameter in the fiber entangled body after firing can be variably adjusted by adjusting the amount of the binder component to be blended in the slurry and the injection speed.
The mass ratio of calcium phosphate to the mass of the solvent is preferably 0.2 or more and 0.4 or less. Further, the mass ratio of the binder component to the mass of the solvent is preferably 0.1 or more and 0.4 or less. The viscosity of the slurry is preferably 10,000 poise or more and 100,000 poise or less, that is, 1 × 10 3 pascal second or more and 1 × 10 4 pascal second or less.
 スラリーには、水系分散剤を添加してもよい。水系分散剤としては、ポリカルボン酸系分散剤、ポリスルホン酸系分散剤、ポリリン酸系分散剤、アニオン系分散剤などを用いることができる。 An aqueous dispersant may be added to the slurry. As the aqueous dispersant, a polycarboxylic acid dispersant, a polysulfonic acid dispersant, a polyphosphoric acid dispersant, an anionic dispersant, and the like can be used.
 繊維交絡体の繊維径は、0.5μm以上かつ100μm以下とすることができ、10μm以下が好ましい。この範囲であると、粘膜中に埋入された骨補填材10が体組織に吸収される速度と骨芽細胞が成長する速度とがバランスするため、良好な骨再生が行われる。より好ましい繊維径は0.5μm以上かつ6μm以下である。この範囲とすることで、繊維径がマクロファージの食作用と同等のスケールとなるため、骨補填材10による骨誘導性が特に好適である。繊維径は、骨補填材10の断面の電子顕微鏡写真の画像処理により求めることができる。一例として、図1Cに例示される電子顕微鏡写真において複数箇所(例えば10箇所)の繊維径を測定してその平均をとることにより、繊維交絡体の繊維径を求めることができる。 The fiber diameter of the fiber entangled body can be 0.5 μm or more and 100 μm or less, and preferably 10 μm or less. Within this range, the speed at which the bone grafting material 10 embedded in the mucous membrane is absorbed by the body tissue and the speed at which osteoblasts grow are balanced, so that good bone regeneration is performed. A more preferable fiber diameter is 0.5 μm or more and 6 μm or less. By setting it as this range, the fiber diameter becomes a scale equivalent to the phagocytosis of macrophages, and therefore the osteoinductivity by the bone grafting material 10 is particularly suitable. The fiber diameter can be obtained by image processing of an electron micrograph of the cross section of the bone grafting material 10. As an example, the fiber diameter of the fiber entangled body can be obtained by measuring the fiber diameters at a plurality of locations (for example, 10 locations) in the electron micrograph illustrated in FIG. 1C and taking the average.
 骨補填材10を構成する繊維交絡体の形状は板状またはブロック状であり、具体的には種々の形状をとることができる。ここで、繊維交絡体が板状またはブロック状であるとは、繊維交絡体が所定の厚みと医療手技中に変形しない程度の保形性(形態安定性)とを有することをいう。 The shape of the fiber entangled body constituting the bone grafting material 10 is a plate shape or a block shape, and specifically, various shapes can be taken. Here, that the fiber entangled body is plate-shaped or block-shaped means that the fiber entangled body has a predetermined thickness and shape retention (morphological stability) that does not deform during a medical procedure.
 板状の骨補填材10の主面形状は、矩形状や円形、長円径など特に限定されない。板厚に関しても、全体的に均一とするほか、連続的または不連続的に板厚が変化する領域を有してもよい。
 ブロック状の骨補填材10の具体的な形状は特に限定されない。一例として、直方体(立方体を含む)形状のほか、円柱状や角柱状などの柱状、円板状や紡錘状などのタブレット形状、球状、ドーム状(伏椀状)、錐台状などを挙げることができる。本発明におけるブロック状とは、平面のみで構成された立体形状に限らず、曲面を有する曲面立体を含む。このうち本実施形態の骨補填材10は、ブロック状の一例として、厚さ1.5mm以上6mm以下、かつ外径10mm以上40mm以下の円板状に成形されている。
The main surface shape of the plate-shaped bone grafting material 10 is not particularly limited, such as a rectangular shape, a circular shape, or an ellipse diameter. Regarding the plate thickness, it may be uniform as a whole or may have a region where the plate thickness changes continuously or discontinuously.
The specific shape of the block-shaped bone filling material 10 is not particularly limited. Examples include rectangular parallelepiped (including cube) shapes, columnar shapes such as cylinders and prisms, tablet shapes such as disk shapes and spindle shapes, spherical shapes, dome shapes (prone shape), and frustum shapes. Can do. The block shape in the present invention is not limited to a three-dimensional shape composed of only a flat surface, but includes a curved solid body having a curved surface. Among these, the bone grafting material 10 of this embodiment is formed in a disk shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm as an example of a block shape.
 図1Bに示すように、本実施形態の骨補填材10は、表層部11と、この表層部11に覆われたコア部12と、を備えている。表層部11の厚さは0.5mm以上かつ2mm以下とするとよい。図1Cはコア部12の電子顕微鏡写真である。 As shown in FIG. 1B, the bone grafting material 10 of this embodiment includes a surface layer portion 11 and a core portion 12 covered with the surface layer portion 11. The thickness of the surface layer portion 11 is preferably 0.5 mm or more and 2 mm or less. FIG. 1C is an electron micrograph of the core portion 12.
 骨補填材10の気孔率(多孔率)は0.1%以上かつ78%以下とすることができる。骨補填材10の気孔率は0.5%以上、好ましくは20%以上とすることができ、50%以下が好ましい。骨補填材10の気孔率は、骨補填材10を使用する患部に応じて選択するとよい。気孔率は下式(1)で求めることができる。 The porosity (porosity) of the bone grafting material 10 can be 0.1% or more and 78% or less. The porosity of the bone grafting material 10 can be 0.5% or more, preferably 20% or more, and preferably 50% or less. The porosity of the bone grafting material 10 may be selected according to the affected area where the bone grafting material 10 is used. The porosity can be obtained by the following formula (1).
 気孔率(%)=[1-(骨補填材中のリン酸カルシウムの体積)/(骨補填材の見かけ体積)]×100   (1) Porosity (%) = [1− (volume of calcium phosphate in bone substitute) / (apparent volume of bone substitute)] × 100 (1)
 本実施形態の骨補填材10は実質的にリン酸カルシウムのみからなるため、式(1)における(骨補填材中のリン酸カルシウムの体積)は、骨補填材の質量/リン酸カルシウムの比重によって求めることができる。 Since the bone grafting material 10 of the present embodiment is substantially composed only of calcium phosphate, the (volume of calcium phosphate in the bone grafting material) in the formula (1) can be obtained by the mass of the bone grafting material / specific gravity of calcium phosphate.
 表層部11は、コア部12よりも高硬度かつ平滑な緻密組織であり、皮質骨に近似した構造を有している。表層部11におけるリン酸カルシウムの密度は、コア部12におけるリン酸カルシウムの密度よりも大きい。コア部12は、海綿骨のような多孔質であり、表層部11よりも軟質である。本実施形態の骨補填材10は、コア部12を粘膜の内部側に向け、表層部11を粘膜の表面側に向けて粘膜下または粘膜骨膜下に埋入される。 The surface layer portion 11 is a dense structure that is harder and smoother than the core portion 12, and has a structure that approximates cortical bone. The density of calcium phosphate in the surface layer portion 11 is larger than the density of calcium phosphate in the core portion 12. The core portion 12 is porous like cancellous bone and is softer than the surface layer portion 11. The bone filling material 10 of this embodiment is embedded under the mucosa or the mucosa periosteum with the core portion 12 facing the inner side of the mucous membrane and the surface layer portion 11 facing the surface side of the mucosa.
 本実施形態の骨補填材10においては、繊維交絡体はブロック状に成形されているとともに、外表面の少なくとも一部(表層部11)が平滑化されている。これにより、骨補填材10の表面側は硬質の表層部11によって保護される。一方、コア部12は粘膜内の血液と接触して体組織にスムーズに吸収される。 In the bone grafting material 10 of the present embodiment, the fiber entangled body is formed in a block shape, and at least a part (surface layer portion 11) of the outer surface is smoothed. Thereby, the surface side of the bone grafting material 10 is protected by the hard surface layer part 11. On the other hand, the core portion 12 comes into contact with blood in the mucous membrane and is smoothly absorbed into the body tissue.
 表層部11とコア部12は、いずれも繊維交絡体からなる。本実施形態の骨補填材10は、実質的にリン酸カルシウム(ハイドロキシアパタイト)のみからなる長繊維が二次元(平面)的に、または三次元(立体)的に交絡したものであり、任意で抗菌剤や成長因子成分(Growth Factor)などを補助的に添加してもよい。成長因子成分としては、線維芽細胞増殖因子(FGF:fibroblast growth factor)、血小板由来増殖因子(PDGF:platelet-derived growth factor)、骨形成蛋白質(rBMP:recombinant-bone morphogenetic protein)、ベータ型変異増殖因子(TGF-β:transforming growth factor-beta)、表皮増殖因子(rEGF:recombinant-epidermal growth factor)またはスタチンより選択される一種以上が例示される。 Both the surface layer portion 11 and the core portion 12 are made of a fiber entangled body. The bone grafting material 10 of the present embodiment is a material in which long fibers substantially consisting of only calcium phosphate (hydroxyapatite) are entangled two-dimensionally (planarly) or three-dimensionally (three-dimensionally), and optionally an antibacterial agent Or a growth factor component (Growth Factor) may be supplementarily added. Growth factor components include fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), bone morphogenetic protein (rBMP), beta-type mutant growth Examples include one or more selected from a factor (TGF-β: transforming factor-beta), an epidermal growth factor (rEGF), or a statin.
 このほか、骨補填材10には、水溶性高分子に疎水化分子を導入してなる疎水化高分子を添加してもよい。疎水化高分子は血液や生理食塩水などの水性溶媒に溶解して、自己組織的に粒径1μm以下好ましくは100nm以下の所定径にサイズが揃った多数の会合体微粒子(ナノ会合体微粒子、以下「ナノゲル」という)を形成する。疎水化高分子が添加された骨補填材10が粘膜の内部に留置されると、疎水化高分子によって繊維交絡体が上記粒径の微粒子に分解された状態で体組織に吸収されていく。このため、線維芽細胞や骨芽細胞の成長が促進される。本明細書ではナノゲルおよび上記の疎水化高分子のように水に溶解してナノゲルを形成する高分子(以下、高分子ゲル)を、成長因子成分に含めるものとする。高分子ゲルとしては、疎水化多糖類、具体的にはコレステロール置換型プルラン(Cholesterol-bearing pullulan)などの疎水化プルランを例示することができる。すなわち、骨補填材10には、成長因子成分として疎水化多糖類または会合体微粒子を添加してもよい。ナノゲルの平均粒子径は骨補填材10の拡大画像に含まれる複数のナノゲルの長径の平均値として求めることができ、1μm以下が好ましい。 In addition, a hydrophobic polymer obtained by introducing a hydrophobic molecule into a water-soluble polymer may be added to the bone grafting material 10. The hydrophobized polymer is dissolved in an aqueous solvent such as blood or physiological saline, and self-organized a large number of associated fine particles (nano-aggregate fine particles, nanoparticle associated with a predetermined diameter of 1 μm or less, preferably 100 nm or less). Hereinafter referred to as “nanogel”). When the bone grafting material 10 to which the hydrophobized polymer is added is placed inside the mucous membrane, the fiber entangled body is absorbed into the body tissue in a state where the fiber entangled body is decomposed into fine particles having the above particle diameter by the hydrophobized polymer. For this reason, the growth of fibroblasts and osteoblasts is promoted. In this specification, a polymer that dissolves in water to form a nanogel (hereinafter referred to as a polymer gel), such as a nanogel and the above-described hydrophobic polymer, is included in the growth factor component. Examples of the polymer gel include hydrophobized polysaccharides, specifically, hydrophobized pullulans such as cholesterol-substituted pullulan (Cholesterol-bearing pullulan). That is, the bone grafting material 10 may be added with hydrophobic polysaccharides or aggregated fine particles as a growth factor component. The average particle diameter of the nanogel can be determined as an average value of the long diameters of a plurality of nanogels included in the enlarged image of the bone grafting material 10, and is preferably 1 μm or less.
 本実施形態の骨補填材10は、リン酸カルシウムの繊維を三次元交絡させたのちに必要に応じてプレス成形して作製することができる。このほか、骨補填材10は、リン酸カルシウムのシート状の長繊維不織布を折り重ね、または巻回して板状またはブロック状に成形して作製することも可能である。より具体的には、シート状の長繊維不織布を一回または複数回折り重ねて、またはロール状に巻回して、所望の厚みをもつ三次元的な立体形状の繊維交絡体に成形する。その後、繊維交絡体をプレス成形して板状またはブロック状とする。
 ブロック状の骨補填材10を作製する場合は、シート状の長繊維不織布を折り重ね、または巻回して板状の繊維交絡体をまず成形し、これを所望形状に切断してブロック状としてもよい。
The bone grafting material 10 of the present embodiment can be produced by three-dimensionally entanglement of calcium phosphate fibers and then press molding as necessary. In addition, the bone grafting material 10 can also be produced by folding or winding a calcium phosphate sheet-like long fiber nonwoven fabric into a plate shape or a block shape. More specifically, the sheet-like long-fiber nonwoven fabric is folded once or a plurality of times, or wound into a roll shape, and formed into a three-dimensional three-dimensional fiber entangled body having a desired thickness. Thereafter, the fiber entangled body is press-molded into a plate shape or a block shape.
When the block-shaped bone grafting material 10 is produced, a sheet-like long fiber nonwoven fabric is folded or wound to first form a plate-like fiber entangled body, which is then cut into a desired shape to form a block shape. Good.
 骨補填材10を構成するリン酸カルシウムの繊維は、長繊維でも短繊維でもよいが、長繊維が好ましい。長繊維を用いることで、骨補填材10が体内に吸収されるまでの間、骨補填材10が多数個に崩壊することが抑制され、粘膜下または粘膜骨膜下における位置ずれが生じにくい。ここで長繊維とは繊維径に対する繊維長の比が100倍以上である繊維をいい、短繊維とは当該比が100倍未満である繊維をいう。 The fiber of calcium phosphate constituting the bone grafting material 10 may be long fiber or short fiber, but long fiber is preferable. By using long fibers, the bone filling material 10 is prevented from being broken into a large number of pieces until the bone filling material 10 is absorbed into the body, and displacement under the submucosa or submucosa periosteum hardly occurs. Here, the long fiber means a fiber having a fiber length to fiber diameter ratio of 100 times or more, and the short fiber means a fiber having the ratio of less than 100 times.
 表層部11とコア部12とは、共通の長繊維によって一体成形されていてもよく、または各部を別々の繊維交絡体により個別に成形したうえで互いに接合一体化してなるものでもよい。言い換えると、一本以上の長繊維が表層部11とコア部12とに亘って含まれていてもよく、または繊維交絡体の分離界面が表層部11とコア部12との間に存在していてもよい。 The surface layer portion 11 and the core portion 12 may be integrally formed with a common long fiber, or may be formed by joining and integrating each portion separately with separate fiber entanglements. In other words, one or more long fibers may be included across the surface layer portion 11 and the core portion 12, or the separation interface of the fiber entangled body exists between the surface layer portion 11 and the core portion 12. May be.
 共通の長繊維により表層部11とコア部12とを一体成形する場合は、実施例にて後述するように、コア部12の表面に位置する繊維状のリン酸カルシウムを溶媒で分散させることにより緻密な表層部11を形成することができる。 When the surface layer portion 11 and the core portion 12 are integrally formed with a common long fiber, as will be described later in the examples, the fibrous calcium phosphate located on the surface of the core portion 12 is dispersed with a solvent to obtain a denser structure. The surface layer portion 11 can be formed.
 図2Aは第二実施形態の骨補填材10を示す斜視図である。図2Bは骨補填材10の使用状態を示す模式図である。図2Aの上側が骨補填材10の上面側にあたる。骨補填材10の上面側に表層部11が形成され、下面側にコア部12が形成されている。表層部11はコア部12よりも硬質かつ緻密に形成されている。 FIG. 2A is a perspective view showing the bone grafting material 10 of the second embodiment. FIG. 2B is a schematic diagram showing a usage state of the bone grafting material 10. The upper side of FIG. 2A corresponds to the upper surface side of the bone grafting material 10. A surface layer portion 11 is formed on the upper surface side of the bone grafting material 10, and a core portion 12 is formed on the lower surface side. The surface layer part 11 is harder and denser than the core part 12.
 本実施形態の骨補填材10は、厚さ方向に貫通孔が形成された円環状をなし、外周面14および内周面18に、図示しない骨形成蛋白質(BMP:bone morphogenetic protein)や線維芽細胞増殖因子、高分子ゲルなどの成長因子成分が被着されている。骨補填材10の表裏面にも成長因子成分を被着してもよい。成長因子成分は、骨補填材10の繊維交絡体に含浸しているか、または繊維交絡体の表面(表裏面)に塗工形成されていてもよい。 The bone grafting material 10 of the present embodiment has an annular shape with through-holes formed in the thickness direction. Bone-forming protein (BMP: bone morphogenetic protein) or fibroblasts (not shown) are formed on the outer peripheral surface 14 and the inner peripheral surface 18. Growth factor components such as cell growth factor and polymer gel are applied. Growth factor components may also be applied to the front and back surfaces of the bone grafting material 10. The growth factor component may be impregnated in the fiber entangled body of the bone grafting material 10, or may be formed on the surface (front and back surfaces) of the fiber entangled body.
 骨形成蛋白質は骨芽細胞の増殖因子である。ここでいう骨芽細胞には、骨細胞、骨前駆細胞および骨芽幹細胞を含む。 Bone morphogenetic protein is a growth factor for osteoblasts. As used herein, osteoblasts include bone cells, osteoprogenitor cells, and osteoblast stem cells.
 本実施形態の円環状の骨補填材10には、内周面18の周囲の一箇所または複数箇所にボルト20を挿通するための貫通孔15が形成されている。貫通孔15の上面側には、ボルト20のボルト頭部を収容する座ぐり部16が形成されている。図2各図に示す本実施形態の骨補填材10は、内周面18の周囲の180度対向位置に一対の貫通孔15を有している。ボルト20は、ポリ乳酸などの生分解性材料からなるものを用いることが好ましい。 The through-hole 15 for inserting the bolt 20 into one or a plurality of locations around the inner peripheral surface 18 is formed in the annular bone filling material 10 of the present embodiment. A counterbore 16 that accommodates the bolt head of the bolt 20 is formed on the upper surface side of the through hole 15. The bone grafting material 10 of this embodiment shown in each drawing of FIG. 2 has a pair of through holes 15 at positions facing each other at 180 degrees around the inner peripheral surface 18. The bolt 20 is preferably made of a biodegradable material such as polylactic acid.
 図2Bに示すように、骨補填材10は、人間の隣接する椎骨110の間に挟んで用いられる、椎間板(軟骨)を再生するための助剤である。正常な椎骨110同士の間には椎間板112が存在するが、これが欠損した場合に、本実施形態の骨補填材10を充填することで、軟骨芽細胞が成長して椎間板が再生される。骨補填材10の外周面14および内周面18に骨形成蛋白質や線維芽細胞増殖因子などの成長因子成分を設けることで軟骨芽細胞の成長が促進される。 As shown in FIG. 2B, the bone grafting material 10 is an auxiliary agent for regenerating an intervertebral disc (cartilage) that is used by being sandwiched between vertebrae 110 adjacent to each other. An intervertebral disc 112 exists between normal vertebrae 110, but when this is lost, by filling the bone filling material 10 of this embodiment, chondroblasts grow and the intervertebral disc is regenerated. By providing growth factor components such as bone morphogenetic protein and fibroblast growth factor on the outer peripheral surface 14 and the inner peripheral surface 18 of the bone grafting material 10, the growth of chondroblasts is promoted.
 骨補填材10は、ボルト20によって椎骨110の一つに固定される。骨補填材10の圧潰を防止するため、チタンまたはチタン合金などの金属材料からなるスペーサ100を椎骨110同士の間に介挿するとよい。スペーサ100は骨補填材10と略同等の厚さ寸法を有している。スペーサ100は、椎骨110に対して、骨補填材10の装着位置よりも外周側(図2Bでは体表側)に介挿する。 The bone filling material 10 is fixed to one of the vertebrae 110 by bolts 20. In order to prevent the bone filling material 10 from being crushed, a spacer 100 made of a metal material such as titanium or a titanium alloy may be inserted between the vertebrae 110. The spacer 100 has a thickness dimension substantially equal to that of the bone grafting material 10. The spacer 100 is inserted into the vertebra 110 on the outer peripheral side (the body surface side in FIG. 2B) from the mounting position of the bone grafting material 10.
 図3Aから図3Eは、第三から第七実施形態にかかる骨補填材10の模式図である。 3A to 3E are schematic views of the bone grafting material 10 according to the third to seventh embodiments.
 図3Aに示す第三実施形態の骨補填材10は、リン酸カルシウムの長繊維を二次元交絡させた不織布シート22をロール状に巻回してなる。本実施形態の骨補填材10は、長尺に形成された不織布シート22のロールを、所定の幅間隔Wで配置された切断線Cで切り出してなる。切り出された骨補填材10は厚さWの円板状をなしている。言い換えると、本実施形態の骨補填材10は、幅Wの帯状の不織布シート22を螺旋巻回してなる。 The bone filling material 10 of the third embodiment shown in FIG. 3A is formed by winding a nonwoven fabric sheet 22 in which long fibers of calcium phosphate are two-dimensionally entangled in a roll shape. The bone grafting material 10 according to the present embodiment is formed by cutting a long roll of a nonwoven fabric sheet 22 along cutting lines C arranged at a predetermined width interval W. The cut bone substitute material 10 has a disk shape with a thickness W. In other words, the bone grafting material 10 of this embodiment is formed by spirally winding a strip-shaped nonwoven fabric sheet 22 having a width W.
 本実施形態のように、長繊維の不織布シート22をロール状に巻回することで、骨補填材10の外径よりも長い長繊維が骨補填材10の周方向に繋がって延在することとなる。このように長い繊維を含む骨補填材10は、分解されて粘膜に吸収される際に形態安定性を維持するため、粘膜下または粘膜骨膜下で崩壊したり位置がずれたりすることがない。 Like this embodiment, the long fiber longer than the outer diameter of the bone grafting material 10 is extended in the circumferential direction of the bone grafting material 10 by winding the nonwoven fabric sheet 22 of the long fiber in a roll shape. It becomes. In this way, the bone filling material 10 containing long fibers maintains morphological stability when it is decomposed and absorbed by the mucosa, so that it does not collapse or shift its position under the mucosa or the mucosa periosteum.
 図3Bに示す第四実施形態の骨補填材10は、表層部11と、この表層部11に覆われたコア部12と、を備えている。表層部11におけるリン酸カルシウムの密度と、コア部12におけるリン酸カルシウムの密度とは異なっている。より具体的には、本実施形態の骨補填材10のコア部12は、表層部11よりもリン酸カルシウムの密度が小さい。 The bone grafting material 10 of 4th embodiment shown to FIG. 3B is provided with the surface layer part 11 and the core part 12 covered with this surface layer part 11. FIG. The density of the calcium phosphate in the surface layer portion 11 and the density of the calcium phosphate in the core portion 12 are different. More specifically, the core portion 12 of the bone grafting material 10 of the present embodiment has a lower calcium phosphate density than the surface layer portion 11.
 コア部12は表層部11の内部に完全に包埋されていてもよく、またはコア部12の一部が表層部11から露出していてもよい。 The core part 12 may be completely embedded in the surface layer part 11 or a part of the core part 12 may be exposed from the surface layer part 11.
 本実施形態の表層部11の繊維径はコア部12の繊維径よりも太い。表層部11の繊維密度はコア部12の繊維密度よりも高い。繊維密度とは単位体積あたりの繊維の本数をいう。 The fiber diameter of the surface layer portion 11 of this embodiment is larger than the fiber diameter of the core portion 12. The fiber density of the surface layer part 11 is higher than the fiber density of the core part 12. The fiber density refers to the number of fibers per unit volume.
 本実施形態の骨補填材10は、粘膜の内部において、表層部11からコア部12に浸透した血液中のマクロファージによって所定の時間をかけて分解されていく。繊維密度が低いコア部12は迅速に分解されて線維芽細胞を成長させる。この間、繊維密度が高く分解速度が遅い表層部11は、硬組織(骨芽細胞)の再生のための足場として所定期間に亘って粘膜下または粘膜骨膜下に残留することができる。このとき、粘膜や粘膜骨膜などの生体組織に接触する側にあたる表層部11が長期間に亘って残留するため、患部における骨補填材10の位置安定性が良好である。 The bone filling material 10 of the present embodiment is decomposed over a predetermined time by macrophages in the blood that have permeated the core portion 12 from the surface layer portion 11 inside the mucous membrane. The core portion 12 having a low fiber density is rapidly decomposed to grow fibroblasts. During this time, the surface layer portion 11 having a high fiber density and a slow degradation rate can remain under the mucosa or the mucosal periosteum for a predetermined period as a scaffold for regeneration of the hard tissue (osteoblasts). At this time, since the surface layer portion 11 corresponding to the side of the living tissue such as mucous membrane or mucosal periosteum remains for a long period of time, the positional stability of the bone grafting material 10 in the affected area is good.
 ただし、骨補填材10を使用する部位によっては、内部のコア部12を足場として表層部11が先に分解されることが好ましい場合がある。この場合には、本実施形態に代えて、コア部12におけるリン酸カルシウムの密度を、表層部11におけるリン酸カルシウムの密度の方よりも大きくしてもよい。すなわち、コア部12の繊維径を表層部11の繊維径よりも太くし、またコア部12の繊維密度を表層部11の繊維密度よりも高くしてもよい。これにより、たとえば血液量が少ない患部に用いるなど、骨補填材10の分解速度が低い場合にも、外側の繊維密度の低い表層部11が良好に分解されて線維芽細胞を成長させ、かつコア部12が足場となって骨補填材10の位置ずれを防止することができる。 However, depending on the site where the bone grafting material 10 is used, it may be preferable that the surface layer portion 11 is first decomposed using the inner core portion 12 as a scaffold. In this case, it may replace with this embodiment and the density of the calcium phosphate in the core part 12 may be made larger than the density of the calcium phosphate in the surface layer part 11. That is, the fiber diameter of the core portion 12 may be larger than the fiber diameter of the surface layer portion 11, and the fiber density of the core portion 12 may be higher than the fiber density of the surface layer portion 11. Thereby, even when the degradation rate of the bone grafting material 10 is low, such as when used for an affected part with a small amount of blood, the outer surface layer part 11 having a low fiber density is well decomposed to grow fibroblasts, and the core The part 12 can be used as a scaffold to prevent the displacement of the bone grafting material 10.
 図3Cに示す第五実施形態の骨補填材10は、基部30と、この基部30の上方に突出した湾曲表面部32と、を備えている。本実施形態においては、基部30におけるリン酸カルシウムの密度よりも、湾曲表面部32におけるリン酸カルシウムの密度の方が大きい。 The bone grafting material 10 according to the fifth embodiment shown in FIG. 3C includes a base portion 30 and a curved surface portion 32 protruding above the base portion 30. In the present embodiment, the density of calcium phosphate in the curved surface portion 32 is greater than the density of calcium phosphate in the base portion 30.
 湾曲表面部32はドーム型に湾曲した山型形状をなしており、基部30の上面は湾曲表面部32に対応して上に凸に膨出している。第三実施形態と同様に、本実施形態の骨補填材10もまた、長尺の棒状に形成した繊維交絡体を所定幅の切断線Cで切断してブロック状に切り出してなる。 The curved surface portion 32 has a mountain shape that is curved in a dome shape, and the upper surface of the base portion 30 bulges upward corresponding to the curved surface portion 32. Similarly to the third embodiment, the bone grafting material 10 of the present embodiment is also formed by cutting a fiber entangled body formed in a long rod shape by a cutting line C having a predetermined width into a block shape.
 図3Dに示す第六実施形態の骨補填材10は、湾曲した板状本体34からなる。板状本体34には貫通孔36を任意で形成してもよい。本実施形態の骨補填材10は、複数の貫通孔36が板厚方向に貫通して形成された板状本体34で構成されている。 The bone filling material 10 of the sixth embodiment shown in FIG. 3D is composed of a curved plate-like main body 34. A through hole 36 may be optionally formed in the plate-like main body 34. The bone grafting material 10 of the present embodiment is composed of a plate-like main body 34 in which a plurality of through holes 36 are formed to penetrate in the plate thickness direction.
 本実施形態の骨補填材10(板状本体34)は、外部連通した中空部(湾曲凹部40)を有する外殻状をなしている。中空部が外部連通しているとは、中空部が密閉された独立空孔ではなく開口を有していることをいう。湾曲凹部40は下方開口している。また湾曲凹部40は貫通孔36を通じて外部連通している。 The bone prosthetic material 10 (plate body 34) of the present embodiment has an outer shell shape having a hollow portion (curved concave portion 40) communicating with the outside. The term “hollow portion communicates with the outside” means that the hollow portion has an opening rather than a sealed independent hole. The curved recess 40 opens downward. Further, the curved recess 40 communicates with the outside through the through hole 36.
 貫通孔36は、リン酸カルシウムの長繊維の繊維交絡体(多孔質)における空孔とは明確に区別できる十分な直径を有している。貫通孔36の具体的な寸法および形状は特に限定されないが、一例として、直径0.5から10mm、好ましくは直径2から5mmの円形孔とすることができる。 The through-hole 36 has a sufficient diameter that can be clearly distinguished from pores in a fiber entangled body (porous) of calcium phosphate long fibers. Although the specific dimension and shape of the through-hole 36 are not specifically limited, As an example, it may be a circular hole having a diameter of 0.5 to 10 mm, preferably a diameter of 2 to 5 mm.
 貫通孔36の配置は特に限定されず、たとえば格子状、千鳥状またはランダムに配置することができる。または個々の貫通孔36の直径は、互いに相違してもよく、またはすべての貫通孔36が同径でもよい。
 貫通孔36同士の中心間距離、および隣接する貫通孔36同士の近接縁間距離も特に限定されないが、後述する粘膜骨膜弁124(図5を参照)の血行を確保する観点から、貫通孔36同士の近接縁間距離は、貫通孔36の直径よりも小さいことが好ましい。
 板状本体34の板厚は、均一でもよく、または湾曲した頂部38の板厚を、側縁部39の板厚と相違させてもよい。具体的には、頂部38の板厚を、側縁部39の板厚よりも大きくしてもよい。これにより、骨補填材10(板状本体34)を骨欠損部の粘膜下に埋設した場合に、板状本体34の頂部38が割れることが防止される。
The arrangement of the through holes 36 is not particularly limited. For example, the through holes 36 can be arranged in a lattice pattern, a staggered pattern, or randomly. Alternatively, the diameters of the individual through holes 36 may be different from each other, or all the through holes 36 may have the same diameter.
The distance between the centers of the through holes 36 and the distance between adjacent edges of the adjacent through holes 36 are not particularly limited, but from the viewpoint of ensuring blood circulation of the mucosal periosteal valve 124 (see FIG. 5) described later, the through holes 36. The distance between adjacent edges is preferably smaller than the diameter of the through hole 36.
The plate thickness of the plate-like main body 34 may be uniform, or the plate thickness of the curved top portion 38 may be different from the plate thickness of the side edge portion 39. Specifically, the plate thickness of the top portion 38 may be larger than the plate thickness of the side edge portion 39. Thereby, when the bone grafting material 10 (plate-shaped main body 34) is embedded under the mucous membrane of the bone defect portion, the top portion 38 of the plate-shaped main body 34 is prevented from being broken.
 本実施形態の外殻状の板状本体34の具体的な湾曲形状は特に限定されない。図3Dでは、部分円筒形状(半割円筒状)をなし円弧状断面をもつ板状本体34を例示する。円弧状断面の中心角は特に限定されないが、図3Dでは中心角が180度の場合を例示している。このほか板状本体34の湾曲形状としてはドーム状(伏椀状)としてもよい。湾曲した板状本体34の内側にあたる湾曲凹部40には、リン酸カルシウムの他の繊維交絡体を嵌め込んで用いることができる。すなわち、本実施形態の骨補填材10は、それ単体で用いてもよく、または他の繊維交絡体と組み合わせて用いてもよい。たとえば、第五実施形態(図3C)におけるドーム型の基部30を嵌め込んで用いるとよい。かかる使用状態に関しては図5を用いて後述する。 The specific curved shape of the outer shell-like plate body 34 of the present embodiment is not particularly limited. FIG. 3D illustrates a plate-like main body 34 having a partially cylindrical shape (half-cylindrical shape) and an arc-shaped cross section. Although the central angle of the arc-shaped cross section is not particularly limited, FIG. 3D illustrates a case where the central angle is 180 degrees. In addition, the curved shape of the plate-like main body 34 may be a dome shape (prone shape). Another fiber entanglement body of calcium phosphate can be fitted into the curved concave portion 40 corresponding to the inside of the curved plate-shaped main body 34 and used. That is, the bone grafting material 10 of this embodiment may be used alone or in combination with other fiber entangled bodies. For example, the dome-shaped base 30 in the fifth embodiment (FIG. 3C) may be fitted and used. This use state will be described later with reference to FIG.
 板状本体34は、長繊維の不織布シート22を複数枚重ね合わせて、これを山型の一対の雄型および雌型でプレス成形して作製してもよい。または、円柱形状のブロック状に予備成形された骨補填材10を切削および切断して湾曲板状に加工して作製してもよい。 The plate-like main body 34 may be produced by stacking a plurality of long-fiber nonwoven fabric sheets 22 and press-molding them with a pair of male and female ridges. Alternatively, the bone prosthetic material 10 preformed in a cylindrical block shape may be cut and cut to be processed into a curved plate shape.
 図3Eに示す第七実施形態の骨補填材10は、浅底の有底筒状(シャーレ状)をなしている。図3Eには、凹部41を内部に備える円筒状の周壁部42と、円板状の底部43とからなる骨補填材10を例示している。本実施形態の骨補填材10は、リン酸カルシウムの長繊維をブロック状に成形した成形容器であり、凹部41にたとえば軟骨培養物を収容した状態で顎関節などの生体に埋入することが可能である。 The bone prosthetic material 10 of the seventh embodiment shown in FIG. 3E has a shallow bottomed tubular shape (a petri dish shape). In FIG. 3E, the bone grafting material 10 which consists of the cylindrical surrounding wall part 42 which equips the inside with the recessed part 41, and the disk-shaped bottom part 43 is illustrated. The bone grafting material 10 of the present embodiment is a molded container in which calcium phosphate long fibers are molded into a block shape, and can be embedded in a living body such as a temporomandibular joint in a state in which, for example, a cartilage culture is accommodated in the recess 41. is there.
 軟骨組織は血管をもたないため自然治癒が困難な組織であり、その再生には軟骨細胞の培養が必要である。本実施形態のように、軟骨培養物を収容する凹部41を備えつつも生体内で所定期間をかけて分解される骨補填材10は、生体内の軟骨欠損部に軟骨培養物を長期間保持しておくことができるため、生体内での軟骨培養を可能とする。すなわち、培養期間の前半は、生体内で軟骨培養物が散逸しないよう、本実施形態の骨補填材10により軟骨欠損部の近傍にて軟骨培養物を収容および保持しておく。培養期間の後半には、軟骨培養物が軟骨欠損部に固定されて軟骨細胞が増殖するとともに、骨補填材10は生体内で分解されて自然に消失していく。これにより、本実施形態の骨補填材10を用いた生体内での軟骨培養は、体外培養した自家培養軟骨を生体内に移植する手術(自家培養軟骨移植術)に比べて低侵襲である。 Cartilage tissue is a tissue that is difficult to heal spontaneously because it has no blood vessels, and its regeneration requires culture of chondrocytes. As in the present embodiment, the bone filling material 10 that is provided with the concave portion 41 for accommodating the cartilage culture and is decomposed over a predetermined period in the living body holds the cartilage culture in the cartilage defect in the living body for a long period of time. This makes it possible to culture cartilage in vivo. That is, during the first half of the culture period, the cartilage culture is stored and held in the vicinity of the cartilage defect by the bone grafting material 10 of this embodiment so that the cartilage culture does not dissipate in vivo. In the second half of the culture period, the cartilage culture is fixed to the cartilage defect and the chondrocytes proliferate, and the bone filling material 10 is degraded in vivo and naturally disappears. Thus, in vivo cartilage culture using the bone grafting material 10 of the present embodiment is less invasive than surgery (autologous cartilage transplantation) in which autologous cultured cartilage is transplanted in vivo.
 図4Aから図4Dは、第五実施形態(図3Cを参照)の骨補填材10の使用状態を説明する模式図である。本実施形態の骨補填材10は、インプラント治療のために歯槽骨126を再生させるために用いられる。 FIG. 4A to FIG. 4D are schematic views for explaining the usage state of the bone grafting material 10 of the fifth embodiment (see FIG. 3C). The bone filling material 10 of this embodiment is used to regenerate the alveolar bone 126 for implant treatment.
 図4Aは、歯120の歯根部122が粘膜骨膜弁124に覆われて歯槽骨126に生えている状態を示している。図4Bは、歯120が欠損して歯槽骨126が後退した状態を示している。この状態で、粘膜骨膜弁124に切開創128を形成して歯槽骨126を露出させ、歯槽骨126の上部に骨補填材10を装着する。図4Cは、粘膜骨膜弁124を引き延ばし、歯槽骨126に装着された骨補填材10を粘膜骨膜弁124で覆って縫合糸129で縫合した状態を示している。 FIG. 4A shows a state in which the root portion 122 of the tooth 120 is covered with the mucosal periosteal valve 124 and grows on the alveolar bone 126. FIG. 4B shows a state where the tooth 120 is missing and the alveolar bone 126 is retracted. In this state, an incision 128 is formed in the mucosal periosteal valve 124 to expose the alveolar bone 126, and the bone prosthetic material 10 is attached to the upper portion of the alveolar bone 126. FIG. 4C shows a state in which the mucosal periosteal valve 124 is stretched, and the bone filling material 10 attached to the alveolar bone 126 is covered with the mucosal periosteal valve 124 and sutured with the suture thread 129.
 骨補填材10の基部30は、歯槽骨126の上面の凹凸形状にあわせて予め切削加工されている。骨補填材10の湾曲表面部32は粘膜骨膜弁124に密着して覆われることとなる。本実施形態の湾曲表面部32は上方に突出しており、粘膜骨膜弁124を湾曲表面部32に沿って密着させることで、粘膜骨膜弁124は自然な凸形状となって縫合される。 The base 30 of the bone grafting material 10 is cut in advance according to the uneven shape of the upper surface of the alveolar bone 126. The curved surface portion 32 of the bone grafting material 10 is in close contact with and covered with the mucosal periosteal valve 124. The curved surface portion 32 of the present embodiment protrudes upward, and the mucosal periosteal valve 124 is sewn into a natural convex shape by closely contacting the mucosal periosteal valve 124 along the curved surface portion 32.
 本実施形態では、基部30の下面を凹凸形状に形成して歯槽骨126の上面に密着させることを例示した。本実施形態に代えて、第六実施形態のように、外部連通した中空部(湾曲凹部40)を有する外殻状をなす板状本体34(図3Dを参照)を歯槽骨126の上面に載置して使用してもよい。歯槽骨126の上面に板状本体34を載置して、骨補填材10の内側に中空部(湾曲凹部40)を保持した状態で、粘膜骨膜弁124を縫合して骨補填材10を粘膜下に埋設してもよい。板状本体34を外殻とする骨補填材10の内側の中空部は血液で満たされることとなる。この中空部で板状本体34の内側面が徐々に分解されて生体に吸収されるとともに、歯槽骨126が成長していく。なお、この中空部(湾曲凹部40)に粉末状または顆粒状の骨補填材(図示せず)を充填した状態で粘膜骨膜弁124を縫合して、骨補填材10を粘膜下に埋設してもよい。また、本実施形態に代えて、骨補填材10の基部30の下面を平坦または凸状に形成し、歯槽骨126と基部30との間に粉末状または顆粒状の骨補填材を充填してもよい。言い換えると、粘膜骨膜弁124と歯槽骨126との間に粉末状または顆粒状の骨補填材を充填し、その上に骨補填材10を留置してもよい。 In the present embodiment, the bottom surface of the base 30 is formed in a concavo-convex shape and is in close contact with the top surface of the alveolar bone 126. Instead of the present embodiment, as in the sixth embodiment, a plate-shaped main body 34 (see FIG. 3D) having an outer shell shape having a hollow portion (curved concave portion 40) communicating with the outside is mounted on the upper surface of the alveolar bone 126. You may use it. The plate-like main body 34 is placed on the upper surface of the alveolar bone 126, and the mucosal periosteal valve 124 is sutured in a state where the hollow portion (curved concave portion 40) is held inside the bone filling material 10, so that the bone filling material 10 is mucous. It may be buried underneath. The hollow part inside the bone filling material 10 having the plate-shaped main body 34 as an outer shell is filled with blood. In the hollow portion, the inner surface of the plate-like main body 34 is gradually decomposed and absorbed by the living body, and the alveolar bone 126 grows. The mucosal periosteal valve 124 is sutured in a state where the hollow portion (curved concave portion 40) is filled with a powdery or granular bone filling material (not shown), and the bone filling material 10 is buried under the mucous membrane. Also good. Further, instead of this embodiment, the lower surface of the base 30 of the bone grafting material 10 is formed flat or convex, and a powdery or granular bone grafting material is filled between the alveolar bone 126 and the base 30. Also good. In other words, a powder or granular bone filling material may be filled between the mucosal periosteal valve 124 and the alveolar bone 126, and the bone filling material 10 may be placed thereon.
 かかる状態で所定期間(例えば数週間から数ヶ月)が経過することにより、骨補填材10の軟質な基部30は分解されて歯槽骨126に置換されていく。一方、湾曲表面部32は歯槽骨126よりも血液量が多い粘膜骨膜弁124に接触する。ここで、本実施形態の骨補填材10において、湾曲表面部32は基部30よりも硬質かつ緻密に構成されている。このため、湾曲表面部32が粘膜骨膜弁124に分解および吸収される速度(所要時間)と、基部30が歯槽骨126に分解および吸収される速度(所要時間)との時間差は小さい。このため、本実施形態の骨補填材10は粘膜骨膜弁124の内部で適切に分解されて線維芽細胞および骨芽細胞が成長する。これにより、図4Bに示したように後退していた歯槽骨126が再生され、インプラント治療が良好に施術可能となる。人間の歯槽骨126を再生させる場合、湾曲表面部32および基部30は4ヶ月から8ヶ月で分解されることが好ましい。 In this state, when a predetermined period (for example, several weeks to several months) elapses, the soft base portion 30 of the bone grafting material 10 is disassembled and replaced with the alveolar bone 126. On the other hand, the curved surface portion 32 contacts the mucosal periosteal valve 124, which has a larger blood volume than the alveolar bone 126. Here, in the bone grafting material 10 of the present embodiment, the curved surface portion 32 is configured to be harder and denser than the base portion 30. Therefore, the time difference between the speed (required time) at which the curved surface portion 32 is decomposed and absorbed into the mucosal periosteal valve 124 and the speed (required time) at which the base 30 is decomposed and absorbed into the alveolar bone 126 is small. For this reason, the bone filling material 10 of this embodiment is appropriately decomposed inside the mucosal periosteal valve 124, and fibroblasts and osteoblasts grow. As a result, the alveolar bone 126 which has been retracted as shown in FIG. 4B is regenerated, and the implant treatment can be performed satisfactorily. When the human alveolar bone 126 is regenerated, the curved surface portion 32 and the base portion 30 are preferably decomposed in 4 to 8 months.
 図4Dは、本実施形態の骨補填材10の使用状態の変形例を説明する図である。具体的には、歯根部122の周囲に骨補填材10を埋め込んだ状態を示している。骨補填材10は、歯120が欠損していない患部に対しても用いられ、骨芽細胞の成長の促進により歯根部122を成長させて太径化することができる。かかる変形例の場合、骨補填材10の下端側をテーパー状に細幅にして、全体に楔形状とすることが好ましい。これにより、粘膜骨膜弁124の切開創128に骨補填材10を挿入する作業が容易である。
 すなわち、この骨補填材10は、尖鋭な先端部をもち繊維密度が低い下端側の基部30と、その上端側に被着された繊維密度が高い板状の湾曲表面部32と、からなる。ただし湾曲表面部32を形成することは任意であり、本実施形態に代えて、楔形状の骨補填材10の全体を基部30で形成してもよい。
Drawing 4D is a figure explaining the modification of the use state of bone grafting material 10 of this embodiment. Specifically, a state in which the bone grafting material 10 is embedded around the root portion 122 is shown. The bone grafting material 10 is also used for an affected part in which the tooth 120 is not missing, and the tooth root part 122 can be grown to increase the diameter by promoting the growth of osteoblasts. In the case of such a modification, it is preferable that the lower end side of the bone grafting material 10 is tapered and narrow so that the whole is a wedge shape. Thereby, the operation | work which inserts the bone grafting material 10 in the incision 128 of the mucosal periosteal valve 124 is easy.
That is, the bone grafting material 10 includes a base portion 30 on the lower end side having a sharp tip portion and a low fiber density, and a plate-like curved surface portion 32 attached to the upper end side and having a high fiber density. However, the formation of the curved surface portion 32 is optional, and the entire wedge-shaped bone grafting material 10 may be formed by the base 30 instead of the present embodiment.
 なお、第六および第七実施形態(図3Dおよび図3Eを参照)の骨補填材10に関しても、図4Aから図4Dに示したように粘膜骨膜弁124と歯槽骨126との間または歯根部122の周囲に埋め込んで用いることができる。 In addition, regarding the bone grafting material 10 of the sixth and seventh embodiments (see FIGS. 3D and 3E), as shown in FIGS. 4A to 4D, it is between the mucosal periosteal valve 124 and the alveolar bone 126 or the root portion. It can be used by being embedded around 122.
 図5Aから図5Eは、図3Dに示した第六実施形態の骨補填材10の使用状態を説明する模式図である。本実施形態の骨補填材10に関しても、インプラント治療のために歯槽骨126を再生させる場合を例に説明する。 FIG. 5A to FIG. 5E are schematic diagrams for explaining the usage state of the bone grafting material 10 of the sixth embodiment shown in FIG. 3D. The case of regenerating the alveolar bone 126 for implant treatment will also be described as an example for the bone grafting material 10 of the present embodiment.
 図5Aは歯120の歯根部122が粘膜骨膜弁124に覆われて歯槽骨126に生えている状態を示しており、図4Aと共通である。図5Bおよび図5Cは、歯120が欠損し、歯槽骨126が吸収されて後退した状態を示している。図5Bは中等度吸収の状態を示し、図5Cは高度吸収の状態を示している。中等度吸収の場合は、歯根部122の痕跡がU字状の凹部として歯槽骨126に残るが、高度吸収の場合は、その痕跡は消失して歯槽骨126は上に凸形状となる。 FIG. 5A shows a state in which the root portion 122 of the tooth 120 is covered with the mucosal periosteal valve 124 and grows on the alveolar bone 126, and is the same as FIG. 4A. 5B and 5C show a state where the tooth 120 is missing and the alveolar bone 126 is absorbed and retracted. FIG. 5B shows a state of moderate absorption, and FIG. 5C shows a state of high absorption. In the case of moderate absorption, the trace of the root portion 122 remains in the alveolar bone 126 as a U-shaped recess, but in the case of high absorption, the trace disappears and the alveolar bone 126 becomes convex upward.
 図5Bまたは図5Cの状態で、粘膜骨膜弁124に切開創128を形成して歯槽骨126を露出させ、歯槽骨126の上部に骨補填材10を装着する。本実施形態の骨補填材10は、リン酸カルシウムの密度が低い基部30と、基部30よりもリン酸カルシウムの密度が高い板状本体34とを組み合わせたものである。歯槽骨126の上面形状にあわせて作製された基部30を歯槽骨126に装着し、さらに基部30の上面を湾曲凹部40に嵌め込むことにより板状本体34を装着する(図5Dおよび図5Eを参照)。 5B or 5C, an incision 128 is formed in the mucosal periosteal valve 124 to expose the alveolar bone 126, and the bone grafting material 10 is attached to the upper portion of the alveolar bone 126. The bone grafting material 10 of this embodiment is a combination of a base 30 having a low calcium phosphate density and a plate-like main body 34 having a higher calcium phosphate density than the base 30. The base 30 made in accordance with the shape of the upper surface of the alveolar bone 126 is mounted on the alveolar bone 126, and the plate-shaped main body 34 is mounted by fitting the upper surface of the base 30 into the curved recess 40 (see FIGS. 5D and 5E). reference).
 基部30は立方体状や円柱状などに成形されたリン酸カルシウムの繊維交絡体からなるブロックとして成形されており、これを歯槽骨126の上面形状にあわせて切削して用いられる。板状本体34は、貫通孔36が多数形成された湾曲板状をなし、基部30の形状および寸法にあわせて切断して用いられる。図5Eに示すように、板状本体34を折曲部37で折り曲げて用いてもよい。これにより、板状本体34の初期の湾曲形状や曲率によらず、歯槽骨126の形状に応じて板状本体34を粘膜下または粘膜骨膜下に埋設することができる。 The base 30 is formed as a block made of a calcium phosphate fiber entangled body formed into a cubic shape, a cylindrical shape, or the like, and this is used by cutting according to the shape of the upper surface of the alveolar bone 126. The plate-shaped main body 34 has a curved plate shape in which a large number of through holes 36 are formed, and is used by cutting according to the shape and dimensions of the base 30. As shown in FIG. 5E, the plate-like main body 34 may be used by being bent at a bent portion 37. Accordingly, the plate-like main body 34 can be embedded under the mucosa or the mucosal periosteum according to the shape of the alveolar bone 126 regardless of the initial curved shape and curvature of the plate-like main body 34.
 また、図5Dおよび図5Eに示すように、粘膜骨膜弁124を引き延ばし、歯槽骨126に装着された骨補填材10(板状本体34)を粘膜骨膜弁124で覆って縫合糸129で縫合する。かかる状態では、基部30は板状本体34によって歯槽骨126の上面で保持された状態で分解されて歯槽骨126に置換される。基部30から歯槽骨126への置換が開始された後に、板状本体34は粘膜骨膜弁124の内部で分解されていく。 Further, as shown in FIGS. 5D and 5E, the mucosal periosteal valve 124 is extended, and the bone filling material 10 (plate-like main body 34) attached to the alveolar bone 126 is covered with the mucosal periosteal valve 124 and sutured with a suture thread 129. . In this state, the base 30 is disassembled and replaced with the alveolar bone 126 while being held on the upper surface of the alveolar bone 126 by the plate-shaped main body 34. After the replacement of the base 30 with the alveolar bone 126 is started, the plate-like main body 34 is disassembled inside the mucosal periosteal valve 124.
 本実施形態の骨補填材10によれば、板状本体34の貫通孔36を通じて歯槽骨126の表面(骨面)の血管網から粘膜骨膜弁124への血行再開が早期に行われるため、粘膜骨膜弁124の壊死による裂開(し開:dehiscence)を防ぐことができる。 According to the bone grafting material 10 of the present embodiment, since the blood circulation from the vascular network on the surface (bone surface) of the alveolar bone 126 to the mucosal periosteal valve 124 is resumed through the through hole 36 of the plate-like main body 34, the mucosa Dehiscence due to necrosis of the periosteal valve 124 can be prevented.
 なお、第五および第七実施形態(図3Cおよび図3Eを参照)の骨補填材10に関しても、図5Aから図5Eに示したように粘膜骨膜弁124と歯槽骨126との間または歯根部122の周囲に埋め込んで用いることができる。 In addition, regarding the bone grafting material 10 of the fifth and seventh embodiments (see FIGS. 3C and 3E), as shown in FIGS. 5A to 5E, between the mucosal periosteal valve 124 and the alveolar bone 126 or the root portion It can be used by being embedded around 122.
 図6は、骨補填材10の製造装置200を示す模式図である。本実施形態の製造装置200は、メルトブロー法により長繊維を成形するとともにこれを互いに交絡させて不織布シート22を製造し、さらに不織布シート22を成形および焼成して骨補填材10を得る装置である。本実施形態では、不織布シート22をロール状に巻回したうえで焼成して骨補填材10とすることを例示する。 FIG. 6 is a schematic diagram showing a manufacturing apparatus 200 for the bone grafting material 10. The manufacturing apparatus 200 according to the present embodiment is an apparatus that forms a long fiber by a melt blow method and entangles them with each other to manufacture a nonwoven fabric sheet 22, and further shapes and fires the nonwoven fabric sheet 22 to obtain the bone grafting material 10. . In the present embodiment, the nonwoven fabric sheet 22 is wound into a roll and then fired to form the bone grafting material 10.
 製造装置200は、ホッパー202、ダイ204、ドラムロール206、加熱部208、引取部210、ロール成形部220および焼成部230を備えている。
 ホッパー202は、プルランなどの多糖類と、ハイドロキシアパタイトなどのリン酸カルシウムと、を水などの溶媒に分散させた高分子原料(スラリー)を貯留する容器である。多糖類は溶媒溶解性を有するものを使用する。高分子原料には、所定濃度の抗菌剤が含有されていてもよい。
The manufacturing apparatus 200 includes a hopper 202, a die 204, a drum roll 206, a heating unit 208, a take-up unit 210, a roll forming unit 220, and a firing unit 230.
The hopper 202 is a container for storing a polymer raw material (slurry) in which a polysaccharide such as pullulan and calcium phosphate such as hydroxyapatite are dispersed in a solvent such as water. A polysaccharide having solvent solubility is used. The polymer raw material may contain an antibacterial agent having a predetermined concentration.
 ダイ204は多数の微小なノズル(図示せず)を備え、またダイ204の上流側にはブロア214が設けられている。ダイ204の開口は、直径0.05mmから1.0mmの円形とするとよい。ホッパー202から供給された高分子原料は、ダイ204から高速で噴射されて繊維状となる。溶媒に多糖類を溶解させることで、高粘度の高分子原料が繊維状に成形されるとともに、この繊維内にリン酸カルシウムが分散して存在することとなる。 The die 204 includes a large number of minute nozzles (not shown), and a blower 214 is provided on the upstream side of the die 204. The opening of the die 204 is preferably circular with a diameter of 0.05 mm to 1.0 mm. The polymer raw material supplied from the hopper 202 is ejected from the die 204 at a high speed to become a fiber. By dissolving the polysaccharide in the solvent, the high-viscosity polymer raw material is formed into a fiber shape, and calcium phosphate is dispersed in the fiber.
 ダイ204からの噴射方向の前方にはドラムロール206が配置されている。ドラムロール206の表面に噴射された長繊維24は互いに交絡して不織布シート22となる。 A drum roll 206 is disposed in front of the injection direction from the die 204. The long fibers 24 sprayed onto the surface of the drum roll 206 are entangled with each other to form the nonwoven fabric sheet 22.
 ダイ204より噴射される長繊維24は、筒状の筐体216の内部で加熱されて溶媒が除去される。本実施形態の加熱部208はセラミックヒータであり、ダイ204からの噴射方向(図6の上下方向)に複数段に並設されている。加熱部208は赤外線(遠赤外線を含む)を長繊維24に照射して、長繊維24を輻射乾燥させる。この長繊維24は、多糖類(プルラン)とリン酸カルシウム(ハイドロキシアパタイト)との混合材料からなる。 The long fibers 24 ejected from the die 204 are heated inside the cylindrical casing 216 to remove the solvent. The heating unit 208 of the present embodiment is a ceramic heater, and is arranged in a plurality of stages in the injection direction from the die 204 (vertical direction in FIG. 6). The heating unit 208 irradiates the long fibers 24 with infrared rays (including far-infrared rays) to radiatively dry the long fibers 24. The long fibers 24 are made of a mixed material of polysaccharide (pullulan) and calcium phosphate (hydroxyapatite).
 加熱部208の背後には送風部209が設けられている。送風部209は、ダイ204から噴射された長繊維24に対して側方から冷風(常温を含む)を吹き付ける。これにより、長繊維24から除去された溶媒を筐体216から排除し、長繊維24の乾燥を促進する。また、筐体216の内部には、ダイ204からドラムロール206に向かって先細形状となるガイド218が対向して設けられている。ガイド218は金属メッシュなどの多孔材料からなり、加熱部208が放射した赤外線と送風部209からの冷風を、ともに通過させる。そして、ダイ204から噴射された長繊維24は、ガイド218に沿って束状に収束し、互いに交絡してドラムロール206の表面に至る。ここで、長繊維24に対して送風部209が側方から冷風を吹き付けることで、長繊維24は好適に収束する。 A blower 209 is provided behind the heating unit 208. The blower 209 blows cold air (including normal temperature) from the side against the long fibers 24 ejected from the die 204. Thereby, the solvent removed from the long fibers 24 is excluded from the housing 216, and drying of the long fibers 24 is promoted. In addition, a guide 218 having a tapered shape from the die 204 toward the drum roll 206 is provided inside the housing 216 so as to be opposed thereto. The guide 218 is made of a porous material such as a metal mesh, and allows both infrared rays radiated from the heating unit 208 and cold air from the blower unit 209 to pass therethrough. The long fibers 24 ejected from the die 204 converge in a bundle along the guide 218, interlaced with each other, and reach the surface of the drum roll 206. Here, the long fiber 24 converges suitably because the ventilation part 209 blows a cold wind from the side with respect to the long fiber 24. FIG.
 ドラムロール206は回転機構(図示せず)によって軸回転し、成形された不織布シート22を引取部210に送る。ドラムロール206の回転速度は可変に調整可能であり、その調整により不織布シート22の目付を変化させることができる。長繊維24からなる不織布シート22は、引取部210により所定の速度で引き取られて所定の厚さに成形される。 The drum roll 206 is rotated about its axis by a rotation mechanism (not shown), and the formed nonwoven fabric sheet 22 is sent to the take-up unit 210. The rotational speed of the drum roll 206 can be variably adjusted, and the basis weight of the nonwoven fabric sheet 22 can be changed by the adjustment. The nonwoven fabric sheet 22 composed of the long fibers 24 is taken up at a predetermined speed by the take-up section 210 and formed into a predetermined thickness.
 ロール成形部220は、不織布シート22を所定径のロール状に巻回する装置である。ロール成形部220は、不織布シート22を予め切断してからロール状に巻回してもよい。ロール成形部220は、不織布シート22の送り方向の先端を制止する制止部221と、不織布シート22を切断する刃部222とを備えている。制止部221と刃部222は引取部210に対して昇降自在である。制止部221が不織布シート22の先端を制止することで、引取部210の搬送力により不織布シート22は巻回されてゆく。不織布シート22が所定径に巻回されたところで刃部222が下降してこれを切断する。不織布シート22は多糖類(プルラン)を含有していて粘着性を有するため、巻回された不織布シート22は一体に固着する。 The roll forming unit 220 is a device that winds the nonwoven fabric sheet 22 into a roll having a predetermined diameter. The roll forming unit 220 may be wound into a roll shape after cutting the nonwoven fabric sheet 22 in advance. The roll forming unit 220 includes a restraining portion 221 that restrains the leading end of the nonwoven fabric sheet 22 in the feeding direction, and a blade portion 222 that cuts the nonwoven fabric sheet 22. The restraining part 221 and the blade part 222 can be moved up and down with respect to the take-up part 210. The non-woven fabric sheet 22 is wound by the conveying force of the take-up section 210 by the restraining portion 221 restraining the tip of the non-woven fabric sheet 22. When the nonwoven fabric sheet 22 is wound to a predetermined diameter, the blade portion 222 is lowered and cut. Since the nonwoven fabric sheet 22 contains polysaccharide (pullulan) and has adhesiveness, the wound nonwoven fabric sheet 22 is integrally fixed.
 巻回および切断されてロール状となった不織布シート22は、ヒーター231を備える焼成部230で焼成され、さらに必要に応じて切断および切削されて骨補填材10となる。不織布シート22を焼成することにより、長繊維24に含まれていた多糖類が熱分解されて消失し、リン酸カルシウム(ハイドロキシアパタイト)のみが繊維形状を維持したまま残留する。また、多糖類が消失することで不織布シート22の巻径(ロール径)と繊維径はともに減少し、リン酸カルシウムは凝集する。これにより、焼成後の骨補填材10は、リン酸カルシウムが緻密に凝集した長繊維の繊維交絡体となる。 The nonwoven fabric sheet 22 wound and cut into a roll shape is baked by a baking unit 230 including a heater 231 and further cut and cut as necessary to become the bone grafting material 10. By firing the nonwoven fabric sheet 22, the polysaccharide contained in the long fibers 24 is thermally decomposed and disappears, and only calcium phosphate (hydroxyapatite) remains while maintaining the fiber shape. Moreover, the winding diameter (roll diameter) and the fiber diameter of the nonwoven fabric sheet 22 both decrease by the disappearance of the polysaccharide, and the calcium phosphate aggregates. Thereby, the bone filling material 10 after firing becomes a fiber entangled body of long fibers in which calcium phosphate is densely aggregated.
 以上、本実施形態の骨補填材10の製造方法は、
(1)水性溶媒と水溶性の可食性多糖類とリン酸カルシウムとの混合物をダイスから噴射して長繊維とする繊維化工程と、
(2)噴射された長繊維を加熱して水性溶媒を除去しながら長繊維同士を互いに交絡させて繊維交絡体とする乾燥工程と、
(3)繊維交絡体を焼成して多糖類を除去する焼成工程と、を含む。
 なお、上記(1)から(3)の一部または全部の工程は、互いに重複するタイミングで行ってもよい。
As mentioned above, the manufacturing method of the bone grafting material 10 of this embodiment is as follows.
(1) A fiberizing step in which a mixture of an aqueous solvent, a water-soluble edible polysaccharide, and calcium phosphate is sprayed from a die to form long fibers;
(2) A drying process in which the long fibers are entangled with each other while removing the aqueous solvent by heating the sprayed long fibers, and a fiber entangled body is obtained.
(3) a firing step of firing the fiber entangled body to remove the polysaccharide.
Note that some or all of the steps (1) to (3) may be performed at the same timing.
 本実施形態では、上記(2)の乾燥工程によってシート状の長繊維不織布を作製した後、上記(3)の焼成工程の前に、
(4)繊維交絡体を板状またはブロック状に成形する成形工程
をさらに行う。成形工程では、シート状の長繊維不織布を折り重ね、または巻回して、所定の厚さを有する板状またはブロック状に成形する。
 以上の工程により、本実施形態の骨補填材10が作製される。
In this embodiment, after producing the sheet-like long fiber nonwoven fabric by the drying step (2) above, before the firing step (3) above,
(4) A forming step of forming the fiber entangled body into a plate shape or a block shape is further performed. In the forming step, the sheet-like long-fiber nonwoven fabric is folded or wound to form a plate or block having a predetermined thickness.
Through the above steps, the bone grafting material 10 of the present embodiment is produced.
 骨形成蛋白質、線維芽細胞増殖因子または高分子ゲルなどの成長因子成分は、焼成後の板状またはブロック状の繊維交絡体に対して添加される。具体的な添加方法は特に限定されないが、一例として、成長因子成分が分散した水性溶媒に繊維交絡体を短時間浸漬して成長因子成分を繊維交絡体に含浸させるとよい。このほか、成長因子成分が分散した水性溶媒を繊維交絡体の表面にスプレー塗布してもよい。このようにして、成長因子成分が繊維交絡体に含浸または塗工形成されている骨補填材10を作製することができる。 A growth factor component such as bone morphogenetic protein, fibroblast growth factor or polymer gel is added to the plate-like or block-like fiber entangled body after firing. Although the specific addition method is not particularly limited, as an example, the fiber entangled body may be impregnated with the growth factor component by immersing the fiber entangled body in an aqueous solvent in which the growth factor component is dispersed for a short time. In addition, an aqueous solvent in which the growth factor component is dispersed may be spray-coated on the surface of the fiber entangled body. In this manner, the bone grafting material 10 in which the growth factor component is impregnated or coated on the fiber entangled body can be produced.
(実施例)
 以下、本発明を実施例に基づいてさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
(Example)
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
 ハイドロキシアパタイト(HAp)およびプルランのそれぞれ乾燥粉末を水(溶媒)に十分に分散させてスラリーを調製した。HAp:水:プルランの質量比を以下の表1のように3種類に変えてスラリーを常温で調製した(それぞれ、実施例1~実施例3とする)。スラリーには、水系分散剤を少量添加した。 Each slurry of hydroxyapatite (HAp) and pullulan was sufficiently dispersed in water (solvent) to prepare a slurry. The slurry was prepared at room temperature by changing the mass ratio of HAp: water: pullulan into three types as shown in Table 1 below (Examples 1 to 3 respectively). A small amount of an aqueous dispersant was added to the slurry.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これらのスラリーを、図6に示したダイ204からメルトブロー法により噴射するとともに加熱部208で加熱乾燥させて水を除去して、HApおよびプルランからなる長繊維(アパタイト繊維)をそれぞれ成形した。ダイ204の開口径は0.3mmとした。 These slurries were sprayed from the die 204 shown in FIG. 6 by the melt blow method and dried by heating in the heating unit 208 to remove water, thereby forming long fibers (apatite fibers) made of HAp and pullulan. The opening diameter of the die 204 was 0.3 mm.
 図7Aから図7Cは、それぞれ実施例1~実施例3にかかるアパタイト繊維からなる不織布シートを三次元成形する前(すなわち焼成前)の状態を示す電子顕微鏡写真である。拡大率は、図7Aおよび図7Bが75倍、図7Cが35倍である。図8Aおよび図8Bは、図7Cに示した実施例3にかかる焼成前のアパタイト繊維の拡大図であり、拡大率はそれぞれ1000倍と5000倍である。 FIG. 7A to FIG. 7C are electron micrographs showing the state before the three-dimensional molding (that is, before firing) of the nonwoven sheet made of apatite fibers according to Examples 1 to 3, respectively. The enlargement ratio is 75 times in FIGS. 7A and 7B and 35 times in FIG. 7C. 8A and 8B are enlarged views of the apatite fiber before firing according to Example 3 shown in FIG. 7C, and the enlargement ratios are 1000 times and 5000 times, respectively.
 アパタイト繊維は、メルトブロー法によりいずれもプルラン中にHApが分散された状態で長繊維状に成形され、かつ繊維径(長繊維の太さ)が10μm以下であることが確認された。実施例4から実施例7も同様であった。 It was confirmed that all of the apatite fibers were formed into a long fiber shape with HAp dispersed in the pullulan by a melt blow method, and the fiber diameter (long fiber thickness) was 10 μm or less. Examples 4 to 7 were the same.
 図9Aから図9Dは、それぞれ実施例1~実施例4にかかる不織布シートを、三次元成形せずに下記の条件で焼成した繊維交絡体の電子顕微鏡写真である。すなわち、図9Aから図9Dは、下記の条件でシート状に焼成した、参考例1~参考例4にかかる繊維交絡体の電子顕微鏡写真である。拡大率は、図9Aおよび図9Bが75倍、図9Cが100倍、図9Dが200倍である。一方、実施例1~実施例4として、シート状の繊維交絡体を多層に積層した状態でロール圧縮機(カレンダー装置)にてプレス成形して円板状に三次元成形した後に、下記の条件で焼成した。 9A to 9D are electron micrographs of fiber entangled bodies obtained by firing the nonwoven fabric sheets according to Examples 1 to 4 under the following conditions without three-dimensional molding. 9A to 9D are electron micrographs of the fiber entangled bodies according to Reference Example 1 to Reference Example 4 fired into a sheet shape under the following conditions. 9A and 9B are 75 times, FIG. 9C is 100 times, and FIG. 9D is 200 times. On the other hand, as Examples 1 to 4, after the sheet-like fiber entangled body was laminated in multiple layers and press-molded with a roll compressor (calender device) to form a three-dimensional disk, the following conditions were satisfied. Baked in.
 焼成条件としては、常温から320℃まで昇温速度13.3℃/時間で昇温しながら24時間に亘って加熱し、続けて320℃で1時間保持した。その後、320℃から1100℃まで昇温速度50.0℃/時間でさらに昇温しながら17.6時間に亘って加熱し、続けて1200℃に昇温して2時間焼成した。 As baking conditions, it heated for 24 hours, heating up from normal temperature to 320 degreeC with the temperature increase rate of 13.3 degrees C / hour, and kept at 320 degreeC for 1 hour continuously. Thereafter, the mixture was further heated from 320 ° C. to 1100 ° C. at a heating rate of 50.0 ° C./hour for 17.6 hours, then heated to 1200 ° C. and fired for 2 hours.
 このように、本実施例の焼成工程は、常温を初期温度として200℃から500℃の温度範囲内に至るまで昇温しながら加熱する第一焼成工程と、その後、さらに800℃から1400℃の温度範囲内に至るまで昇温しながら加熱する第二焼成工程と、を含む。
 第一焼成工程では、アパタイト繊維の残留水分を除去するとともに、炭化水素材料からなるバインダー(本実施例ではプルラン)の分子内および分子間結合を切断する。
 第一焼成工程よりも高温でアパタイト繊維を焼成する第二焼成工程では、バインダーを二酸化炭素および水に分解してアパタイト繊維から除去する。かかる第二焼成工程を昇温しながら行うことで、HApが繊維形状を保ったまま繊維径が徐々に小さくなっていく。言い換えると、本実施例のような第一焼成工程および第二焼成工程をとることで、焼成後の繊維交絡体はHApが繊維形状のまま焼き締まるため、比表面積が大きな多孔体が作製される。
As described above, the firing step of the present example includes the first firing step of heating while raising the temperature from 200 ° C. to 500 ° C. with the normal temperature as the initial temperature, and then further 800 ° C. to 1400 ° C. And a second baking step of heating while raising the temperature to within a temperature range.
In the first firing step, residual moisture of the apatite fibers is removed, and the intramolecular and intermolecular bonds of the binder made of a hydrocarbon material (in this embodiment, pullulan) are broken.
In the second firing step in which the apatite fibers are fired at a higher temperature than the first firing step, the binder is decomposed into carbon dioxide and water and removed from the apatite fibers. By performing the second firing step while increasing the temperature, the fiber diameter gradually decreases while the HAp maintains the fiber shape. In other words, by taking the first firing step and the second firing step as in the present embodiment, the fiber entangled body after firing is sintered in a fiber shape, so that a porous body having a large specific surface area is produced. .
 図9各図に示したように、スラリー中のHApの比率を変えることで焼成後の繊維交絡体の性状を所望に調節することができる。
 具体的には、プルランを除くスラリー質量に占めるHApの質量の比率(以下、HAp質量比という)は、実施例1が7.4%(=8.0g/(8.0g+100g))、実施例2が12.9%(=14.8g/(14.8g+100g))、実施例3が14.4%(=16.8g/(16.8g+100g))である。なお、実施例4のHAp質量比は19.4%(=24.0g/(24.0g+100g))であり、実施例5のHAp質量比は44.4%(=80.0g/(80.0g+100g))であり、実施例6のHAp質量比は30.5%(=43.8g/(43.8g+100g))であり、実施例7のHAp質量比は44.4%(=80.0g/(80.0g+100g))である。
 そして、HAp質量比が10%未満である実施例1の焼成後の性状は、図9Aに示したようにアパタイト繊維同士が繊維幅方向に密着して海面状となることがわかった。一方、HAp質量比が10%以上、好ましくは12%以上である実施例2と実施例3の焼成後の性状は、図9Bおよび図9Cに示したようにアパタイト繊維同士が繊維幅方向に密着せず、もっぱら交差してメッシュ状に結着することがわかった。すなわち、実施例2および実施例3は、実施例1に比べて、繊維交絡体におけるデッドエンドの発生がより好適に抑えられ、また比表面積が大きいといえる。実施例4から実施例6も同様の傾向が確認された。
As shown in each figure of FIG. 9, the property of the fiber entangled body after baking can be adjusted as desired by changing the ratio of HAp in the slurry.
Specifically, the ratio of the mass of HAp to the mass of the slurry excluding pullulan (hereinafter referred to as HAp mass ratio) is 7.4% in Example 1 (= 8.0 g / (8.0 g + 100 g)). 2 is 12.9% (= 14.8 g / (14.8 g + 100 g)) and Example 3 is 14.4% (= 16.8 g / (16.8 g + 100 g)). The HAp mass ratio of Example 4 is 19.4% (= 24.0 g / (24.0 g + 100 g)), and the HAp mass ratio of Example 5 is 44.4% (= 80.0 g / (80. 0g + 100 g)), the HAp mass ratio of Example 6 is 30.5% (= 43.8 g / (43.8 g + 100 g)), and the HAp mass ratio of Example 7 is 44.4% (= 80.0 g). /(80.0 g + 100 g)).
And as for the property after baking of Example 1 whose HAp mass ratio is less than 10%, as shown to FIG. 9A, it turned out that apatite fibers contact | adhere in the fiber width direction and it becomes a sea surface shape. On the other hand, the properties after firing of Example 2 and Example 3 in which the HAp mass ratio is 10% or more, preferably 12% or more, show that the apatite fibers are in close contact with each other in the fiber width direction as shown in FIGS. 9B and 9C. Without crossing, it was found that they crossed and bound into a mesh. That is, in Example 2 and Example 3, it can be said that the occurrence of dead ends in the fiber entangled body is more suitably suppressed and the specific surface area is larger than that in Example 1. The same tendency was confirmed in Examples 4 to 6.
 図10Aは、図9Cに示した参考例3にかかる焼成後のアパタイト繊維の拡大図であり、拡大率は5000倍である。
 図8Bと図10Aとを対比すると、焼成前のアパタイト繊維は表面が平坦である(図8Bを参照)のに対し、焼成後のアパタイト繊維は表面が鱗状になった(図10Aを参照)ことが分かる。
FIG. 10A is an enlarged view of the apatite fiber after firing according to Reference Example 3 shown in FIG. 9C, and the enlargement ratio is 5000 times.
Comparing FIG. 8B and FIG. 10A, the surface of the apatite fiber before firing is flat (see FIG. 8B), whereas the surface of the apatite fiber after firing is scale-like (see FIG. 10A). I understand.
 また、本実施例の焼成後のアパタイト繊維は、繊維方向に沿って形成された筋状の凹部を有している。言い換えると、焼成前のアパタイト繊維の断面形状は略円形であるのに対し、焼成後は円形を対向両側から押し潰した瓢箪状(バイオリン状、8の字状または亜鈴状)であり、各繊維には略180度の対向位置に二本の筋状の凹部が繊維方向に延在して形成されている。かかる筋状の凹部が形成されるメカニズムは必ずしも明らかではないが、アパタイト繊維からプルランが消失してHApが焼き締まっていく過程で、プルランの消失空隙に向かってHApが入り込んでゆくことにより、円形断面であったアパタイト繊維が、瓢箪形状の断面に落ち窪んだものと予想される。焼成後のアパタイト繊維は実質的にHApの微粒子のみを焼結したものであり、その断面形状は、瓢箪状における細幅の凹部および太幅の膨出部を含めて全体に滑らかであって鋭縁は存在していない。言い換えると、焼成後のアパタイト繊維の断面形状は滑らかに湾曲した鈍頭形状である(図9Dおよび図10Aを参照)。 Moreover, the apatite fiber after firing in this example has a streak-like recess formed along the fiber direction. In other words, the cross-sectional shape of the apatite fiber before firing is a substantially circular shape, but after firing, the apatite fiber has a bowl shape (violin shape, figure 8 shape or dumbbell shape) crushed from opposite sides, and each fiber Have two streak-like recesses extending in the fiber direction at opposite positions of approximately 180 degrees. The mechanism by which such a streak-like recess is formed is not necessarily clear, but in the process where the pullulan disappears from the apatite fiber and the HAp shrinks, the HAp enters the pulling vane voids to form a circular shape. It is expected that the apatite fiber, which had a cross-section, fell into a wrinkle-shaped cross-section. The apatite fiber after firing is substantially sintered only of HAp fine particles, and its cross-sectional shape is smooth and sharp as a whole, including a narrow concave portion and a wide bulge portion in a bowl shape. There is no edge. In other words, the cross-sectional shape of the apatite fiber after firing is a blunt shape that is smoothly curved (see FIGS. 9D and 10A).
 そして、本実施例のようにリン酸カルシウム(HAp)を炭化水素系のバインダー成分(プルラン)とともに分散させたスラリーを繊維化することで、焼成前のアパタイト繊維を所定形状に成形しても、焼成後の繊維交絡体における多孔性が失われない。なぜならば、焼成前の繊維においてバインダー成分が所定の占有体積を持つため、たとえば高圧のプレス圧を与えて繊維交絡体をブロック状(繊維ブロック)に成形したとしても、リン酸カルシウムが繊維内で分散された状態を維持するためである。言い換えると、バインダー成分を用いることにより、リン酸カルシウムが繊維内に分散した状態を維持したまま、焼成前のアパタイト繊維を所望形状の繊維ブロックに成形することが可能である。また、バインダーの成分および濃度を変更することでスラリーの糸曳性が増減調整される。さらに、ダイの開口径およびブロー速度を調整することにより、アパタイト繊維の繊維径を調整することが可能である。これにより、焼成後の骨補填材10における表層部11とコア部12(図1Bを参照)とのリン酸カルシウム密度を相違させることが可能である。 And, even if the apatite fiber before firing is formed into a predetermined shape by fiberizing a slurry in which calcium phosphate (HAp) is dispersed together with a hydrocarbon binder component (pullulan) as in this embodiment, The porosity in the fiber entangled body is not lost. This is because, since the binder component has a predetermined occupied volume in the fiber before firing, even if, for example, a high press pressure is applied to form a fiber entangled body into a block shape (fiber block), calcium phosphate is dispersed in the fiber. This is to maintain the state. In other words, by using the binder component, it is possible to form the apatite fiber before firing into a fiber block having a desired shape while maintaining the state in which the calcium phosphate is dispersed in the fiber. In addition, the yarn stringiness of the slurry can be increased or decreased by changing the component and concentration of the binder. Furthermore, it is possible to adjust the fiber diameter of the apatite fiber by adjusting the opening diameter of the die and the blow speed. Thereby, it is possible to make the calcium-phosphate density of the surface layer part 11 and the core part 12 (refer FIG. 1B) in the bone grafting material 10 after baking differ.
 図10Bは、図1Aのように円板状(ブロック状)に成形された実施例1の焼成後の骨補填材の表面の拡大図である。拡大率は3000倍である。図1Cで示した電子顕微鏡写真は、本実施例にかかる骨補填材の断面写真にあたる。図1Cと図10Bとを対比して分かるように、本実施例の骨補填材は、外表面の少なくとも一部にあたる一方の主面(上端面)が平滑化されている。 FIG. 10B is an enlarged view of the surface of the bone prosthetic material after firing in Example 1 formed into a disk shape (block shape) as shown in FIG. 1A. The enlargement ratio is 3000 times. The electron micrograph shown in FIG. 1C corresponds to a cross-sectional photograph of the bone grafting material according to this example. As can be seen by comparing FIG. 1C and FIG. 10B, the bone prosthetic material of this example has one main surface (upper end surface) corresponding to at least a part of the outer surface smoothed.
 本実施例の骨補填材は、長繊維状にブロー成形されたアパタイト繊維の二次元交絡体を、プレス成形により円板状に押し固めて繊維ブロックとした状態で表面の平滑化処理を施し、その後に焼成したものである。平滑化処理としては、バインダー(プルラン)を溶解させる溶媒(例えば、水)を繊維ブロックの表面に少量かつ短時間だけ接触させるとよい。これにより、繊維ブロックの表面のバインダーが局所的に溶媒に溶解して、その部分のHApが鱗状に平滑化する。かかる少量の溶媒(水)は、たとえば霧吹きなどで繊維ブロックの表面に噴霧するとよい。繊維ブロックを常温以上の加熱状態にしたうえで溶媒を噴霧することで、繊維ブロックに接触した溶媒が短時間で揮発するため、HApの平滑化処理が繊維ブロックの内部まで伸展することが規制される。これにより、繊維ブロックの表面側の一部厚さのみが平滑化される。かかる繊維ブロックを焼成することで、硬質かつ緻密な表層部と、これよりも空孔率が高いコア部と、を備える第一実施形態で示した骨補填材が作製される。 The bone prosthetic material of this example is a two-dimensional entangled body of apatite fibers blow-molded into a long fiber shape, subjected to a surface smoothing treatment in a state of being pressed into a disk shape and formed into a fiber block, It is fired after that. As the smoothing treatment, a solvent (for example, water) for dissolving the binder (pullulan) is preferably brought into contact with the surface of the fiber block in a small amount for a short time. Thereby, the binder on the surface of the fiber block is locally dissolved in the solvent, and the HAp in that portion is smoothed like a scale. Such a small amount of solvent (water) may be sprayed on the surface of the fiber block by, for example, spraying. By spraying the solvent after the fiber block is heated to room temperature or higher, the solvent in contact with the fiber block volatilizes in a short time, so that the HAp smoothing treatment is restricted from extending to the inside of the fiber block. The Thereby, only the partial thickness on the surface side of the fiber block is smoothed. By firing such a fiber block, the bone grafting material shown in the first embodiment including a hard and dense surface layer portion and a core portion having a higher porosity is produced.
 上記実施形態および実施例は、以下の技術的思想を包含する。
(1)繊維状のリン酸カルシウムを板状またはブロック状に成形した繊維交絡体を含む骨補填材。
(2)前記繊維交絡体の外表面の少なくとも一部が平滑化されていることを特徴とする上記(1)に記載の骨補填材。
(3)リン酸カルシウムの長繊維不織布を折り重ね、または巻回して板状またはブロック状に成形してなる上記(1)または(2)に記載の骨補填材。
(4)複数の貫通孔が形成された板状に成形してなる上記(1)から(3)のいずれかに記載の骨補填材。
(5)表層部と、前記表層部に覆われたコア部と、を備え、前記表層部における前記リン酸カルシウムの密度と、前記コア部における前記リン酸カルシウムの密度とが異なることを特徴とする上記(1)から(4)のいずれかに記載の骨補填材。
(6)基部と、前記基部の上方に突出した湾曲表面部と、を備え、前記基部における前記リン酸カルシウムの密度よりも、前記湾曲表面部における前記リン酸カルシウムの密度の方が大きいことを特徴とする上記(1)から(4)のいずれかに記載の骨補填材。
(7)厚さ1.5mm以上6mm以下かつ外径10mm以上40mm以下の円板状に成形されている上記(1)から(4)のいずれかに記載の骨補填材。
(8)厚さ方向に貫通孔が形成された円環状をなし、外周面および内周面に成長因子成分が被着されている上記(7)に記載の骨補填材。
(9)気孔率が10%以上かつ78%以下である上記(1)から(8)のいずれかに記載の骨補填材。
(10)前記繊維交絡体の繊維径が0.5μm以上かつ10μm以下である上記(1)から(9)のいずれかに記載の骨補填材。
(11)前記リン酸カルシウムの繊維が、繊維方向に沿って形成された筋状の凹部を有している上記(1)から(10)のいずれかに記載の骨補填材。
The above embodiments and examples include the following technical ideas.
(1) A bone prosthetic material comprising a fiber entangled body obtained by forming fibrous calcium phosphate into a plate shape or a block shape.
(2) The bone grafting material according to (1), wherein at least a part of the outer surface of the fiber entangled body is smoothed.
(3) The bone grafting material according to the above (1) or (2), which is formed by folding or winding a calcium phosphate long fiber nonwoven fabric into a plate shape or a block shape.
(4) The bone grafting material according to any one of (1) to (3), wherein the bone grafting material is formed into a plate shape having a plurality of through holes.
(5) A surface layer portion and a core portion covered with the surface layer portion, wherein the density of the calcium phosphate in the surface layer portion is different from the density of the calcium phosphate in the core portion (1) ) To (4).
(6) A base portion and a curved surface portion protruding above the base portion, wherein the density of the calcium phosphate in the curved surface portion is larger than the density of the calcium phosphate in the base portion. The bone grafting material according to any one of (1) to (4).
(7) The bone grafting material according to any one of (1) to (4), wherein the bone grafting material is formed into a disk shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm.
(8) The bone grafting material according to (7), wherein the bone grafting material has an annular shape with through holes formed in the thickness direction, and a growth factor component is deposited on the outer peripheral surface and the inner peripheral surface.
(9) The bone grafting material according to any one of (1) to (8), wherein the porosity is 10% or more and 78% or less.
(10) The bone grafting material according to any one of (1) to (9), wherein the fiber entangled body has a fiber diameter of 0.5 μm or more and 10 μm or less.
(11) The bone grafting material according to any one of (1) to (10), wherein the calcium phosphate fiber has a streak-like recess formed along the fiber direction.
 この出願は、2011年3月2日に出願された日本出願特願2011-044720号を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-044720 filed on Mar. 2, 2011, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  繊維状のリン酸カルシウムを板状またはブロック状に成形した繊維交絡体を含む骨補填材。 Bone prosthesis material containing a fiber entangled body formed by molding fibrous calcium phosphate into a plate or block shape.
  2.  前記繊維交絡体の外表面の少なくとも一部が平滑化されていることを特徴とする請求項1に記載の骨補填材。 The bone grafting material according to claim 1, wherein at least a part of the outer surface of the fiber entangled body is smoothed.
  3.  リン酸カルシウムの長繊維不織布を折り重ね、または巻回して板状またはブロック状に成形してなる請求項1または2に記載の骨補填材。 The bone grafting material according to claim 1 or 2, which is formed by folding or winding a calcium phosphate long fiber nonwoven fabric into a plate shape or a block shape.
  4.  複数の貫通孔が形成された板状に成形してなる請求項1から3のいずれか一項に記載の骨補填材。 The bone grafting material according to any one of claims 1 to 3, wherein the bone grafting material is formed into a plate shape in which a plurality of through holes are formed.
  5.  表層部と、前記表層部に覆われたコア部と、を備え、
     前記表層部における前記リン酸カルシウムの密度と、前記コア部における前記リン酸カルシウムの密度とが異なることを特徴とする請求項1から4のいずれか一項に記載の骨補填材。
    A surface layer part, and a core part covered with the surface layer part,
    The bone grafting material according to any one of claims 1 to 4, wherein a density of the calcium phosphate in the surface layer portion is different from a density of the calcium phosphate in the core portion.
  6.  基部と、前記基部の上方に突出した湾曲表面部と、を備え、前記基部における前記リン酸カルシウムの密度よりも、前記湾曲表面部における前記リン酸カルシウムの密度の方が大きいことを特徴とする請求項1から4のいずれか一項に記載の骨補填材。 The base portion and a curved surface portion protruding above the base portion, wherein the density of the calcium phosphate in the curved surface portion is larger than the density of the calcium phosphate in the base portion. 5. The bone filling material according to any one of 4 above.
  7.  外部連通した中空部を有する外殻状をなしている請求項1から4のいずれか一項に記載の骨補填材。 The bone prosthetic material according to any one of claims 1 to 4, wherein the bone prosthetic material has an outer shell shape having a hollow portion communicated with the outside.
  8.  成長因子成分が前記繊維交絡体に含浸しているかまたは前記繊維交絡体の表面に塗工形成されている請求項1から7のいずれか一項に記載の骨補填材。 The bone prosthetic material according to any one of claims 1 to 7, wherein a growth factor component is impregnated in the fiber entangled body or is coated on the surface of the fiber entangled body.
  9.  前記成長因子成分が疎水化多糖類または会合体微粒子である請求項8に記載の骨補填材。 The bone grafting material according to claim 8, wherein the growth factor component is a hydrophobized polysaccharide or aggregated fine particles.
  10.  厚さ1.5mm以上6mm以下かつ外径10mm以上40mm以下の円板状に成形されている請求項1から4のいずれか一項に記載の骨補填材。 The bone grafting material according to any one of claims 1 to 4, wherein the bone grafting material is formed into a disc shape having a thickness of 1.5 mm to 6 mm and an outer diameter of 10 mm to 40 mm.
  11.  厚さ方向に貫通孔が形成された円環状をなし、外周面および内周面に成長因子成分が被着されている請求項10に記載の骨補填材。 The bone prosthetic material according to claim 10, wherein the bone prosthetic material has an annular shape with through holes formed in the thickness direction, and a growth factor component is adhered to the outer peripheral surface and the inner peripheral surface.
  12.  気孔率が0.1%以上78%以下である請求項1から11のいずれか一項に記載の骨補填材。 The bone grafting material according to any one of claims 1 to 11, which has a porosity of 0.1% to 78%.
  13.  前記繊維交絡体の繊維径が0.5μm以上かつ100μm以下である請求項1から12のいずれか一項に記載の骨補填材。 The bone grafting material according to any one of claims 1 to 12, wherein a fiber diameter of the fiber entangled body is 0.5 µm or more and 100 µm or less.
  14.  前記リン酸カルシウムの繊維が、繊維方向に沿って形成された筋状の凹部を有している請求項1から13のいずれか一項に記載の骨補填材。 The bone grafting material according to any one of claims 1 to 13, wherein the calcium phosphate fiber has a streak-like recess formed along a fiber direction.
PCT/JP2012/001441 2011-03-02 2012-03-02 Bone filling material WO2012117739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011044720A JP2014100151A (en) 2011-03-02 2011-03-02 Bone prosthetic material
JP2011-044720 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012117739A1 true WO2012117739A1 (en) 2012-09-07

Family

ID=46757681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001441 WO2012117739A1 (en) 2011-03-02 2012-03-02 Bone filling material

Country Status (2)

Country Link
JP (1) JP2014100151A (en)
WO (1) WO2012117739A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099940A1 (en) * 2011-12-28 2013-07-04 株式会社リメディオ Calcium phosphate molded article, bone prosthetic material, and method for producing calcium phosphate molded article
CN109289092A (en) * 2018-10-22 2019-02-01 郑州合撷亨商贸有限公司 A kind of preparation method of medical alveolus bone-regeneration material
CN110585487A (en) * 2019-09-23 2019-12-20 湖南大学 Medical periosteum scaffold loaded with ions and geometric pattern signals and construction method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174460A (en) * 1984-09-11 1986-08-06 東燃料株式会社 Apatite nonwoven fabric
JPS62221358A (en) * 1986-03-20 1987-09-29 東燃株式会社 Bone lack part and gap part filling material
JPH06339522A (en) * 1993-06-01 1994-12-13 Takiron Co Ltd Implant material
JPH07498A (en) * 1993-06-02 1995-01-06 Uchida Yasunari Bone inducing material
JPH07187623A (en) * 1993-12-24 1995-07-25 Pola Chem Ind Inc Production of apatite fibrous body
JP2003260123A (en) * 2002-02-21 2003-09-16 Ed Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix for reconstruction of bone
WO2004103422A1 (en) * 2003-05-26 2004-12-02 Pentax Corporation Porous composite containing calcium phosphate and process for producing the same
WO2007083643A1 (en) * 2006-01-18 2007-07-26 National University Corporation Tokyo Medical And Dental University Biomaterial for osteogenesis containing osteogenesis promoter and nanogel
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174460A (en) * 1984-09-11 1986-08-06 東燃料株式会社 Apatite nonwoven fabric
JPS62221358A (en) * 1986-03-20 1987-09-29 東燃株式会社 Bone lack part and gap part filling material
JPH06339522A (en) * 1993-06-01 1994-12-13 Takiron Co Ltd Implant material
JPH07498A (en) * 1993-06-02 1995-01-06 Uchida Yasunari Bone inducing material
JPH07187623A (en) * 1993-12-24 1995-07-25 Pola Chem Ind Inc Production of apatite fibrous body
JP2003260123A (en) * 2002-02-21 2003-09-16 Ed Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix for reconstruction of bone
WO2004103422A1 (en) * 2003-05-26 2004-12-02 Pentax Corporation Porous composite containing calcium phosphate and process for producing the same
WO2007083643A1 (en) * 2006-01-18 2007-07-26 National University Corporation Tokyo Medical And Dental University Biomaterial for osteogenesis containing osteogenesis promoter and nanogel
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099940A1 (en) * 2011-12-28 2013-07-04 株式会社リメディオ Calcium phosphate molded article, bone prosthetic material, and method for producing calcium phosphate molded article
CN109289092A (en) * 2018-10-22 2019-02-01 郑州合撷亨商贸有限公司 A kind of preparation method of medical alveolus bone-regeneration material
CN110585487A (en) * 2019-09-23 2019-12-20 湖南大学 Medical periosteum scaffold loaded with ions and geometric pattern signals and construction method thereof

Also Published As

Publication number Publication date
JP2014100151A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP3676374B2 (en) Biodegradable shielding film for transplantation and production method
CA2667213C (en) Fibrous pharmaceutical and implant materials
DE60219646T2 (en) POROUS CERAMIC COMPOSITE BONE IMPLANTS
CA2965384C (en) Bi-layered bone-like scaffolds
CN102596271A (en) Dynamic bioactive bone graft material having an engineered porosity
CN102596102A (en) Bone graft material
US20070254007A1 (en) Chitosan/nanocrystalline hydroxyapatite composite microsphere-based scaffolds
KR20090035649A (en) Implant material and process for producing the same
WO2012174837A1 (en) Bionic bone repairing scaffold of layered structure and manufacturing method thereof
KR101427305B1 (en) Bone grafting material and method thereof
US20190000603A1 (en) Scaffold with cortical wall
CN101757684A (en) Preparation and application of rod-like nanometer hydroxyapatite bone material
WO2012117739A1 (en) Bone filling material
US8475821B2 (en) Bone prosthetic material and method of manufacturing the same
CN110087699A (en) Bone graft substitute
Baino et al. Ceramics for oculo-orbital surgery
JP6039406B2 (en) Calcium phosphate molded body and bone filling material
JPS61174460A (en) Apatite nonwoven fabric
JPH0585666B2 (en)
TWI252112B (en) Implant material and process for producing the same
CN116940389A (en) Composition comprising coated ceramic particles and method for preparing same
KR20120050698A (en) Porous hydroxyapatite spheres and bone graft comprising the same
KR20180135550A (en) Fixture for implant with bone granules and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP