JPH06339522A - Implant material - Google Patents

Implant material

Info

Publication number
JPH06339522A
JPH06339522A JP5156165A JP15616593A JPH06339522A JP H06339522 A JPH06339522 A JP H06339522A JP 5156165 A JP5156165 A JP 5156165A JP 15616593 A JP15616593 A JP 15616593A JP H06339522 A JPH06339522 A JP H06339522A
Authority
JP
Japan
Prior art keywords
implant material
material according
density polyethylene
molecular weight
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5156165A
Other languages
Japanese (ja)
Other versions
JP3094263B2 (en
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP05156165A priority Critical patent/JP3094263B2/en
Publication of JPH06339522A publication Critical patent/JPH06339522A/en
Application granted granted Critical
Publication of JP3094263B2 publication Critical patent/JP3094263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an implant material durable with higher prolonged safety by making the form or structure of the material closer to a fiber structure of an organism to be compatible with the organism vitally and dynamically with a large breaking strength. CONSTITUTION:This material comprises any of textile, knitted and net bodies produced using a yarn in which a superhigh molecular weight polyethylene fiber is covered with low density polyethylene containing a bioceramics powder and a part of the bioceramics powder is exposed except for a polyethylene thin layer on the surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体の硬組織から軟組
織に至る広い範囲の部位に使用することができるインプ
ラント部材に関する。更に詳しくは、人工靱帯、人工気
管、人工関節軟組織、人工椎間板、人工血管、人工尿
管、人工骨、経皮端子、人工顎骨、人工歯根、人工弁、
人工腱等に使用でき、また、手術用補綴材、修復材、骨
充填材、骨接合材等として使用できる屈曲性、弾力性を
備えた生体適合性および力学的適合性に優れたインプラ
ント材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an implant member which can be used in a wide range of parts of a living body from hard tissues to soft tissues. More specifically, artificial ligament, artificial trachea, artificial joint soft tissue, artificial intervertebral disc, artificial blood vessel, artificial ureter, artificial bone, percutaneous terminal, artificial jawbone, artificial tooth root, artificial valve,
The present invention relates to an implant material that can be used as an artificial tendon, etc., and can be used as a prosthesis material for surgery, a repair material, a bone filling material, a bone joint material, etc., which has flexibility, elasticity, and biocompatibility and mechanical compatibility. .

【0002】[0002]

【従来の技術】従来より、実用化に近い段階にあるか又
は実用化されているインプラント材料として、以下のよ
うな金属材料、セラミックス材料、有機材料が知られて
いる。即ち、金属材料としてはチタン及びその合金、ス
テンレス鋼、コバルト−クロム合金等が知られており、
セラミックス材料としてはアルミナ、ジルコニア、マグ
ネシア、サファイヤ、ハイドロキシアパタイト、トリカ
ルシウムフォスフェイト、アパタイト・ウォラストナイ
ト等が知られている。また、有機材料としてはポリエチ
レン、ポリプロピレン、シリコーン、ポリメチルメタク
リレート、ポリフッ化エチレン等の高分子物質が知られ
ている。
2. Description of the Related Art Conventionally, the following metal materials, ceramic materials, and organic materials have been known as implant materials that are in the stage of being practically used or are being put into practical use. That is, titanium and its alloys, stainless steel, cobalt-chromium alloys, etc. are known as metal materials,
Alumina, zirconia, magnesia, sapphire, hydroxyapatite, tricalcium phosphate, apatite wollastonite, etc. are known as ceramic materials. In addition, as organic materials, polymer substances such as polyethylene, polypropylene, silicone, polymethylmethacrylate, and polyfluoroethylene are known.

【0003】しかし、金属材料は硬組織の生体材料より
弾性率が一桁以上も高く、骨のストレス保護による再折
損などの問題があり、セラミックス材料は静的な強さが
大きいけれども、衝撃に脆く、容易に欠けたり、折損す
るという問題がある。また、ハイドロキシアパタイト、
トリカルシウムフォスフェイト、アパタイト・ウォラス
トナイトなどのバイオアクティブなセラミックス材料は
生体組織との適合性あるいは結合性が良いが、それ以外
のセラミックス材料や金属材料、有機材料は生体組織と
の適合性が欠けていたり、結合性がないという問題があ
る。
However, the elastic modulus of metal materials is higher than that of biomaterials of hard tissues by an order of magnitude or more, and there are problems such as re-damage due to stress protection of bones. It is brittle and easily broken or broken. Also, hydroxyapatite,
Bioactive ceramic materials such as tricalcium phosphate and apatite wollastonite have good compatibility or bondability with living tissues, but other ceramic materials, metal materials, and organic materials are not compatible with living tissues. There is a problem of lacking or lack of connectivity.

【0004】このため、最近では、有機高分子材料の表
面にハイドロキシアパタイト層を形成させるための種々
の方法が工夫され、生体組織との生体結合性を得たり、
力学的適合性を高めるインプラント複合材料の研究が行
われている。即ち、CaOとSiO2 を主成分とするガ
ラス粒子を擬似体液に浸漬し、その中に有機高分子を浸
漬して表面に骨類似のアパタイト層を形成させる方法で
ある。有機高分子の中ではポリエチレンテレフタレート
やポリエーテルサルフォンが特に高い接着強度を示す。
しかし、これらの場合は、基材である高分子の生体適合
性と耐久性に問題があり、その強度も十分とは言えな
い。また、アパタイト層は表層のみの薄層であり、長期
の使用によるストレス下で層間剥離による破壊、脱離の
危惧があり、長期の実用に耐えうるものでない。
Therefore, recently, various methods for forming a hydroxyapatite layer on the surface of an organic polymer material have been devised to obtain biocompatibility with living tissue,
Implant composite materials that enhance mechanical compatibility are being researched. That is, it is a method in which glass particles containing CaO and SiO 2 as main components are immersed in a simulated body fluid, and an organic polymer is immersed therein to form a bone-like apatite layer on the surface. Among the organic polymers, polyethylene terephthalate and polyether sulfone show particularly high adhesive strength.
However, in these cases, there is a problem in biocompatibility and durability of the polymer as a base material, and its strength cannot be said to be sufficient. Further, the apatite layer is a thin layer only on the surface layer, and there is a risk of breakage and detachment due to delamination under stress due to long-term use, and it cannot be used for a long term.

【0005】[0005]

【発明が解決しようとする課題】このように、上記のバ
イオアクティブなインプラント材料およびその表面にハ
イドロキシアパタイト層を形成させた複合材料は、生体
組織との結合性は良いが、生体組織との力学的適合性の
点で問題がある。また、上記の金属材料、セラミックス
材料、有機材料は生体適合性および力学的適合性の点で
問題がある。
As described above, the bioactive implant material and the composite material in which the hydroxyapatite layer is formed on the surface thereof have a good bondability with a living tissue, but have a mechanics with the living tissue. There is a problem in terms of compatibility. Further, the above metal materials, ceramic materials, and organic materials have problems in biocompatibility and mechanical compatibility.

【0006】力学的適合性とは、インプラント材料が接
合する相手の生体組織と力学的整合性をもつことを意味
し、強度よりもむしろ力学的挙動、特に変形特性が互い
に一致すること、或は、インプラント材料により生体組
織に伝達され、発生する応力が正常な生理的範囲にある
ことである。
Mechanical compatibility means that the implant material is mechanically compatible with the living tissue with which it is joined, that mechanical behavior, in particular deformation characteristics, is consistent with each other rather than strength, or That is, the stress transmitted to the living tissue by the implant material and generated is in the normal physiological range.

【0007】けれども、従来のインプラント材料と生体
組織のそれらは変形挙動がかなり異なっている。即ち、
生理的な応力レベルでは生体組織は擬弾性的であり、負
荷時と解放時の応力−歪み曲線が一致しない。つまりヒ
ステリシスロスが大きい。また、皮膚などの軟組織は線
形弾性を示さず、低応力レベルでは非常に柔らかいが、
応力が増加するにつれて剛くなる。従来のインプラント
材料の使用の失敗は、殆どが生体組織との接合部や界面
で材料あるいは生体組織が壊れている。これは両者の結
合の強さの問題よりも変形の不一致によるものである。
従って、歪みの調和、変形特性の適合を図ることが重要
であるが、生体由来の材料は低い弾性係数のわりには高
い強度を示すのに対し、従来の人工のインプラント材料
は強度を上げようとすれば弾性係数も上がるため、根本
的にインプラント材料の形態や構造を改良しない限り、
高強度、低弾性係数(高コンプライアンス)の所謂しな
やかで強い力学的適合性のある材料とはなり得ない。
However, the deformation behavior of conventional implant materials and those of living tissues are quite different. That is,
At physiological stress levels, living tissue is pseudoelastic and the stress-strain curves under load and release do not match. That is, the hysteresis loss is large. Also, soft tissues such as skin do not show linear elasticity and are very soft at low stress levels,
It becomes stiffer as the stress increases. Most of the failures in the use of conventional implant materials are that the material or living tissue is broken at the joint or interface with living tissue. This is due to the disagreement of deformation rather than the problem of the strength of the connection between the two.
Therefore, it is important to harmonize the strains and adapt the deformation characteristics, but the material derived from the living body shows high strength in spite of the low elastic modulus, whereas the conventional artificial implant material tries to increase the strength. The elastic modulus also increases, so unless the morphology and structure of the implant material is fundamentally improved,
It cannot be a so-called supple and strong mechanically compatible material with high strength and low elastic modulus (high compliance).

【0008】この問題を解決するための方策として、最
近ではアパタイト層と基材となる高分子の中で表面結合
力の強いポリエチレンテレフタレート(PET)の極細
繊維でできた布地にアパタイト層を形成する研究が試み
られている。その結果、アパタイト層が剥げ落ちること
なく折り曲げることができたとされている。しかしなが
ら、これらの高分子表面とアパタイト層の結合力は基本
的に化学的結合力よりも、高分子の表面を粗くすること
で得られるアンカー効果による物理的結合力に大きく依
存するものである。アパタイト層は数μm〜10数μm
と薄く、長期の耐久性に疑問が残るものであり、極細繊
維の表面を処理した場合、布地本来の物性とは異質の硬
いものに変わるので力学的適合性が変化するなどの不都
合な問題があった。また、繊維の強度は不慮の際の過激
な強度がかかった場合でも切断されないというほどの強
度を補償できるものでない。
As a measure for solving this problem, recently, an apatite layer is formed on a cloth made of ultrafine fibers of polyethylene terephthalate (PET) having a strong surface bonding force among the apatite layer and a polymer serving as a base material. Research is being attempted. As a result, it is said that the apatite layer could be bent without peeling off. However, the bond strength between the polymer surface and the apatite layer basically depends more largely on the physical bond strength due to the anchor effect obtained by roughening the polymer surface than on the chemical bond strength. Apatite layer is a few μm to a few μm
However, when the surface of ultrafine fibers is treated, it changes to a hard material that is different from the original physical properties of the fabric, which causes inconvenient problems such as change in mechanical compatibility. there were. Further, the strength of the fiber cannot compensate for the strength such that the fiber is not cut even if it is subjected to extreme strength in an unexpected case.

【0009】本発明は上記問題に鑑みてなされたもの
で、その目的とするところは、材料の形態ないし構造を
生体の繊維構造に近づけ、それを長期に維持できる構成
形態とし、また極めて大きい破断強度をもたせることに
よって生体組織との生体適合性と力学的適合性を付与
し、耐久性、長期安全性の高いインプラント材料を提供
することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to make a material form or structure close to a fiber structure of a living body and maintain it for a long period of time, and to make an extremely large breakage. It is to provide an implant material having high durability and long-term safety by imparting biocompatibility and mechanical compatibility with living tissue by having strength.

【0010】[0010]

【課題を解決するための手段】上記の目的は、バイオセ
ラミックスの粉末を含む低密度ポリエチレンで超高分子
量ポリエチレン繊維を被覆し、その表面のポリエチレン
薄層を除いて該バイオセラミックス粉末の一部を露出さ
せた糸を用いて造られた織物、編物、網体のいずれかよ
り成る本発明のインプラント材料によって達成される。
この織物は、使用する生体の力学的特性に応じて平織、
綾織、朱子織、搦み織等、種々の織り組織を持つものを
任意に選択すればよく、編物は長さ方向に編み込む経編
でも巾方向に編み込む緯編でもよい。また、網体は平網
でも立体網でもよく、網目の形状も方形、菱形、六角形
等、種々の形状を選択できる。
[Means for Solving the Problems] The above-mentioned object is to coat a part of the bioceramics powder by excluding the polyethylene thin layer on the surface of the ultrahigh molecular weight polyethylene fiber coated with low density polyethylene containing the bioceramics powder. This is achieved by the implant material of the present invention, which is composed of a woven fabric, a knitted fabric, or a net body made by using the exposed yarn.
This fabric is a plain weave, depending on the mechanical properties of the living body used.
A twill weave, a satin weave, a full weave, etc. may be arbitrarily selected, and the knit may be a warp knitted in the length direction or a weft knitted in the width direction. Further, the mesh may be a flat mesh or a three-dimensional mesh, and the mesh shape can be selected from various shapes such as a square, a rhombus, and a hexagon.

【0011】これらの織物、編物、網体(以下、まとめ
て織物等という)の製造に用いる糸は、1本又は2本以
上の超高分子量ポリエチレン繊維を押出機のクロスヘッ
ドダイに通しながら、バイオセラミックス粉末を含んだ
低密度ポリエチレンを同時に押出して該繊維を被覆した
ものである。この糸は100〜3000デニールの太さ
のものが適当で、この程度の太さの糸を使用すると、織
機や編機を用いて力学的適合性の良い織物等を容易に製
造することができる。
The yarn used in the production of these woven fabrics, knitted fabrics and nets (hereinafter collectively referred to as woven fabrics, etc.) has one or more ultra high molecular weight polyethylene fibers passed through a crosshead die of an extruder. A low-density polyethylene containing bioceramic powder is simultaneously extruded to coat the fibers. It is suitable that the yarn has a thickness of 100 to 3000 denier, and by using a yarn having such a thickness, a woven fabric or the like having good mechanical compatibility can be easily produced using a loom or a knitting machine. .

【0012】芯材となる超高分子量ポリエチレン繊維
は、超高分子量ポリエチレンを溶剤に溶かしてゲル化し
たものを紡糸し、溶剤を除去したものである。この超高
分子量ポリエチレン繊維は500〜1000デニール程
度の太さのものが好適である。あまり太い繊維を芯材に
すると、被覆した糸が剛直となるため、織物等をつくり
難く、また織物等の屈曲性、変形性等が低下するといっ
た不都合を生じるし、逆に、あまり細い繊維を用いる
と、もつれて取扱いが困難であり、織物等の強度が不十
分になるといった不都合を生じるからである。但し、使
用目的によっては織り組織に網目に由来する伸び縮みの
融通性の必要なものと、あまり必要でないものがあるの
で、繊維の太さ、織り組織、バイオセラミックス粉末を
含む低密度ポリエチレンの被覆量等を可変する必要があ
る。原料の超高分子量ポリエチレンとしては、分子量が
100万以上、好ましくは300万〜500万程度のも
のが使用される。
The ultra-high molecular weight polyethylene fiber used as the core material is obtained by dissolving ultra-high molecular weight polyethylene in a solvent and gelling it and spinning it to remove the solvent. The ultrahigh molecular weight polyethylene fiber preferably has a thickness of about 500 to 1000 denier. If a too thick fiber is used as the core material, the coated yarn will be rigid, making it difficult to fabricate a woven fabric, and the flexibility and deformability of the woven fabric will be reduced. If it is used, it is entangled and difficult to handle, and the strength of the woven fabric or the like becomes insufficient, which causes inconvenience. However, depending on the purpose of use, there are those that need flexibility of expansion and contraction derived from the mesh in the weave structure and those that do not need much, so coating of low density polyethylene containing fiber thickness, weave structure, bioceramic powder It is necessary to change the amount. As the ultrahigh molecular weight polyethylene as a raw material, one having a molecular weight of 1,000,000 or more, preferably about 3,000,000 to 5,000,000 is used.

【0013】超高分子量ポリエチレン繊維を被覆する低
密度ポリエチレンは、およそ0.865〜0.920の
密度を有するものが使用される。このような低密度ポリ
エチレンは、超高分子量ポリエチレンの軟化温度が14
0℃近辺であるために、それ以下の温度で被覆できるよ
うなグレードから選ばれる。殊に超低密度ポリエチレン
(Very low density PE,or Ultra low density PE)は
低融点であり、140℃以下で流動性が良いので、バイ
オセラミック粉末を均一に混合しやすく、また、被覆性
が良いためピンホール等のない被膜層を形成するので好
都合である。但し、柔らかくて強度的にはあまり強くな
い。従って、被覆後、γ線照射によって低密度ポリエチ
レンのポリマーを架橋し、被膜層の強度を向上させるこ
とが望ましい。また、γ線を照射すると、超高分子量ポ
リエチレン繊維の表面にもラジカルが発生するため、低
密度ポリエチレン被膜層と超高分子量ポリエチレン繊維
との界面で両者が化学結合して密着するので、両者の界
面で剥離、脱落することがない。この被膜は粉末濃度が
被覆外層から内層に向かって徐々に低くなるように傾斜
をもたせるように多層構造としてもよい。
As the low density polyethylene for coating the ultra high molecular weight polyethylene fiber, one having a density of approximately 0.865 to 0.920 is used. Such low-density polyethylene has a softening temperature of ultra high molecular weight polyethylene of 14
Since it is around 0 ° C., it is selected from the grades which can be coated at a temperature lower than that. In particular, ultra low density PE (Very low density PE, or Ultra low density PE) has a low melting point and has good fluidity at 140 ° C or less, so it is easy to mix bioceramic powder uniformly and has good coating properties. Therefore, it is convenient to form a film layer without pinholes. However, it is soft and not so strong in strength. Therefore, after coating, it is desirable to crosslink the polymer of low density polyethylene by γ-ray irradiation to improve the strength of the coating layer. Further, when irradiated with γ-rays, radicals are also generated on the surface of the ultra high molecular weight polyethylene fiber, so that both chemically bond and adhere at the interface between the low density polyethylene coating layer and the ultra high molecular weight polyethylene fiber. Does not peel off or fall off at the interface. This coating may have a multi-layered structure so that the powder concentration is gradually inclined from the outer layer to the inner layer.

【0014】低密度ポリエチレンに含有させるバイオセ
ラミックスの粉末としては、その表面で生体組織と反応
するアパタイト・ウォラストナイト含有結晶ガラス(以
下、AWと記す)、ハイドロキシアパタイト(以下、H
Aと記す)等の粉末や、生体組織との反応が材料内部ま
で及ぶリン酸トリカルシウム(以下、TCPと記す)等
の粉末が好適であり、これらは単独で又は二種以上混合
して使用される。その他、アパタイト含有結晶ガラスや
アパタイト・金雲母含有結晶ガラス等の粉末も使用され
る。これらのバイオセラミックス粉末は、粒度を0.1
〜30μm程度に調整すれば低密度ポリエチレンと良く
混ざり合い、均一に含有させることができる。特に、平
均粒度が10μm以下のものが好ましい。
The bioceramic powder contained in the low-density polyethylene includes apatite / wollastonite-containing crystal glass (hereinafter referred to as AW) and hydroxyapatite (hereinafter referred to as H) which react with living tissue on the surface thereof.
Powders such as A) and powders such as tricalcium phosphate (hereinafter referred to as TCP) in which a reaction with a living tissue reaches the inside of the material are preferable, and these are used alone or in combination of two or more kinds. To be done. In addition, powders of crystalline glass containing apatite and crystalline glass containing apatite / phlogopite are also used. These bioceramic powders have a particle size of 0.1.
If adjusted to about 30 μm, it can be mixed well with low density polyethylene and can be contained uniformly. Particularly, those having an average particle size of 10 μm or less are preferable.

【0015】このバイオセラミックス粉末は、殊に被覆
外層では低密度ポリエチレンの被膜層内で互いに接触す
るほど密に存在しており、また、表面にハイドロキシア
パタイトの結晶が成長してポリエチレンの全面を最終的
に覆ってしまうようになるために、被膜層表面において
該粉末が面積比で約5%以上露出していることが望まし
い。このような状態で該粉末が含有されていると、被膜
層表面や層内に浸透する体液との反応によって連続した
アパタイト層が比較的速やかに形成され、生体組織と強
く結合することも可能である。このような含有状態とす
るためにはバイオセラミックス粉末の含有率を30容量
%以上とする必要があり、これより少なくすると、連続
したアパタイト層の形成が困難になって生体組織との結
合力が低下する。一方、バイオセラミックス粉末の含有
率が70容量%を越えると、粉末過剰のため低密度ポリ
エチレンの被膜層の強度低下が大きくなる。従って、バ
イオセラミックス粉末の含有率は30〜70容量%とす
るのが望ましく、より好ましい含有率は40〜60容量
%である。また、被膜層であるバイオセラミックス粉末
含有の低密度ポリエチレン層は、該粉末の濃度が異なる
ものを内層から外層に向かって濃度が高くなるように多
層に被覆した場合には、界面での密着力や糸のしなやか
さ等が改善されるので都合がよい。また最表層の粉末の
濃度を上げることもできる。
This bioceramics powder exists so densely as to come into contact with each other in the coating layer of low-density polyethylene, especially in the coating outer layer, and hydroxyapatite crystals grow on the surface to finish the entire surface of polyethylene. It is desirable that the powder is exposed on the surface of the coating layer in an area ratio of about 5% or more so as to cover the surface of the coating layer. When the powder is contained in such a state, a continuous apatite layer is formed relatively quickly by the reaction with the body fluid that permeates into the surface of the coating layer or inside the layer, and it is also possible to strongly bond with the biological tissue. is there. In order to achieve such a content state, the content rate of the bioceramic powder needs to be 30% by volume or more, and if it is less than this, it becomes difficult to form a continuous apatite layer, and the binding force with the biological tissue is increased. descend. On the other hand, when the content rate of the bioceramics powder exceeds 70% by volume, the strength of the coating layer of the low density polyethylene is greatly reduced due to excess powder. Therefore, the content of the bioceramic powder is preferably 30 to 70% by volume, and more preferably 40 to 60% by volume. Further, the low-density polyethylene layer containing bioceramics powder, which is the coating layer, has an adhesive force at the interface when the powders having different concentrations are coated in multiple layers so that the concentration increases from the inner layer to the outer layer. It is convenient because it improves the flexibility of the yarn. It is also possible to increase the concentration of the powder in the outermost layer.

【0016】以上のような織物等よりなる本発明のイン
プラント材料は、埋入部位に応じて適当な大きさ及び形
状に切断して使用されるが、予め埋入部位に合わせた立
体形状に熱成形しておいてもよい。例えば人工気管とし
て用いる場合は、織物等を予め円筒状に熱成形してお
き、また、顎骨補綴材として用いる場合は予めU字状な
いしコ字状の湾曲した溝型に熱成形しておき、また、人
工椎間板のように厚みを必要とする場合は、織物等を折
り重ねて縫い合わせるか又は複数枚積み重ねて加熱圧縮
成形する。その後、γ線架橋して界面での密着性を上げ
ると同時に形状保型性を付与することができる。また、
最終的にγ線の照射は滅菌処理を併用するので好都合で
ある。
The implant material of the present invention comprising the above-mentioned woven fabric or the like is used by cutting it into an appropriate size and shape according to the implantation site. It may be molded. For example, when used as an artificial trachea, a woven fabric or the like is previously thermoformed into a cylindrical shape, and when used as a jaw bone prosthesis material, it is previously thermoformed into a U-shaped or U-shaped curved groove shape, When a thickness is required as in the artificial intervertebral disc, a woven fabric or the like is folded and sewn together, or a plurality of woven fabrics are stacked and heat compression molded. After that, γ-ray cross-linking can be performed to improve the adhesiveness at the interface and at the same time impart the shape-retaining property. Also,
Finally, γ-ray irradiation is convenient because sterilization is also used.

【0017】[0017]

【作用】本発明のインプラント材料は、糸表面の低密度
ポリエチレン被膜層にバイオセラミックス粉末が含まれ
るため、体内に埋入すると、該被膜層の表面や層内部に
浸透した体液と該粉末が反応して連続したアパタイト層
を形成し、生体組織と強固に結合する。特に、平均粒度
が10μm以下のAW、HA、TCPの粉末を単独で又
は二種以上混合して低密度ポリエチレンに30〜70容
量%含有させたものは、生体組織との結合力が大であ
る。そして、低密度ポリエチレンを架橋し、超高分子量
ポリエチレン繊維との界面で両者を化学結合させたもの
は、低密度ポリエチレンの被膜強度が大きく、超高分子
量ポリエチレン繊維との密着力に優れるため、被膜の破
損や剥離を生じない。
In the implant material of the present invention, since the low-density polyethylene coating layer on the surface of the yarn contains bioceramic powder, when embedded in the body, the powder reacts with the body fluid that has penetrated into the surface of the coating layer or inside the layer. To form a continuous apatite layer and firmly bond with living tissue. Particularly, AW, HA, and TCP powders having an average particle size of 10 μm or less alone or in a mixture of two or more kinds in low-density polyethylene contained in an amount of 30 to 70% by volume have a large binding force with biological tissue. . And, the one obtained by cross-linking low-density polyethylene and chemically bonding both at the interface with the ultra-high-molecular-weight polyethylene fiber has a high coating strength of the low-density polyethylene and has excellent adhesion with the ultra-high-molecular-weight polyethylene fiber. Does not cause damage or peeling.

【0018】しかも、本発明のインプラント材料は織
物、編物又は網体であるから、屈曲性、弾力性等が良好
であり、筋肉等の動きによって力が作用すると、織り組
織や編み組織が伸びて変形する。そして、糸の芯材が引
張り強度の大きい超高分子量ポリエチレンであるから、
破断するまでに強度的な余裕がある。従って、生体組織
と良く似た力学的挙動を示し、生体組織との力学的適合
性が良好であり、超高分子量ポリエチレン繊維の本数や
太さ、或は、織り組織や編組織の疎密度、編目の大きさ
等を調整することによって、生体の軟組織から硬組織ま
で適合するインプラント材料を提供することができる。
Moreover, since the implant material of the present invention is a woven fabric, a knitted fabric, or a net body, it has good flexibility, elasticity, etc., and when a force is applied by the movement of muscles, the woven structure or the knitted structure is stretched. Deform. And, since the core material of the yarn is ultra high molecular weight polyethylene having a large tensile strength,
There is strength margin before it breaks. Therefore, it exhibits mechanical behavior very similar to that of living tissue, has good mechanical compatibility with living tissue, the number and thickness of ultra high molecular weight polyethylene fibers, or the sparse density of woven or knitted tissue, By adjusting the size and the like of the stitches, it is possible to provide an implant material that is compatible with soft tissues to hard tissues of a living body.

【0019】また、本発明のインプラント材料はポリエ
チレン樹脂の糸で製した織物等であるから、ハサミ等の
切断具を用いて所望の大きさ及び形状に切断でき、熱成
形によって所望の立体形状に賦型できる利便さもある。
Further, since the implant material of the present invention is a woven fabric made of polyethylene resin thread, it can be cut into a desired size and shape by using a cutting tool such as scissors, and can be formed into a desired three-dimensional shape by thermoforming. There is also a convenience that can be shaped.

【0020】[0020]

【実施例】次に、本発明の実施例を詳述する。EXAMPLES Next, examples of the present invention will be described in detail.

【0021】[実施例1]1〜30μmの粒径をもつA
W(SiO2 −CaO−MgO−P2 5 系)の粉末を
超低密度ポリエチレン(ニポロン−LIP197Y,東
ソ株式会社製)に対して容量比で35%配合し、ロール
を用いて加熱混練した後、フレーク状に粉砕した。
[Example 1] A having a particle size of 1 to 30 μm
Powder of W (SiO 2 —CaO—MgO—P 2 O 5 series) was blended with ultra-low density polyethylene (Nipolon-LIP197Y, manufactured by Toso Co., Ltd.) in a volume ratio of 35%, and kneaded by heating using a roll. After that, it was ground into flakes.

【0022】この粉砕物を押出機に供給し、ダイの先端
温度が130℃になるように調整して押出すと共に、こ
のダイに直角にクロスしたダイの孔に、フィラメント数
10の縒をかけた100デニールの超高分子量ポリエチ
レン繊維(テクミロンNA210、三井石油化学工業株
式会社製)を通し、上記の押出した溶融物で被覆して、
フィラメント数100、1000デニールのテクミロン
に相当する大きさのモノフィラメントを作製した。但
し、被覆時に空気がフィラメントと樹脂の間に介在しな
いように、吸引下に被覆した。また、フィラメントの表
面は巻取り時に耐水研磨紙#1500にその周囲をこす
りつけて、AWが表面に現出するようにした。
This crushed material is supplied to an extruder, adjusted so that the temperature of the tip of the die becomes 130 ° C. and extruded, and a ten-filament twist is applied to the hole of the die that intersects the die at a right angle. 100 denier ultra high molecular weight polyethylene fiber (Techmilon NA210, manufactured by Mitsui Petrochemical Industry Co., Ltd.) and coated with the above extruded melt,
A monofilament having a size corresponding to Tecmirone having 100 and 1000 denier filaments was produced. However, the coating was performed under suction so that air was not present between the filament and the resin during coating. Also, the surface of the filament was rubbed around the water-resistant abrasive paper # 1500 at the time of winding so that the AW appeared on the surface.

【0023】この糸を用いて、経糸×緯糸が15/15
の平織の布地を織った。この布地は例えば100℃程度
に加熱して変形し、そのまま冷却すれば、ある種の簡単
な形状に加工することもできる。また、この布地を10
枚重ねて、重ね合わせ方向を同じフィラメントで縫い合
わせ、縦、横、高さ方向に引張っても容易に剥離破断し
ないような約8mm厚の立方体の織物よりなるインプラ
ント材料(資料1)を得た。
Using this yarn, the warp x weft is 15/15
Woven plain weave fabric. If this cloth is heated to, for example, about 100 ° C. to be deformed and then cooled, it can be processed into a certain simple shape. In addition, this cloth 10
The sheets were stacked and sewn with the same filaments in the stacking direction to obtain an implant material (Material 1) made of a cubic fabric having a thickness of about 8 mm so as not to be easily peeled and broken even if it is pulled in the length, width and height directions.

【0024】[実施例2]0.5〜10μmの粒径をも
つHA(Ca10(PO4 6 (OH)2 )の粉末を低密
度ポリエチレン(ペトロセン342、東ソ株式会社製)
に対して容量比で35%配合し、実施例1と同様にして
フレーク状物を得た。
Example 2 A powder of HA (Ca 10 (PO 4 ) 6 (OH) 2 ) having a particle size of 0.5 to 10 μm was added to low density polyethylene (Petrosene 342, manufactured by Toso Corporation).
A flake-like material was obtained in the same manner as in Example 1 by mixing 35% by volume.

【0025】このフレーク状物を押出機に供給し、実施
例1と同様にして被覆したモノフィラメントを造った。
これを用いて伸縮製のあるメリヤスを編み、この編物で
直径2cmの円筒状のインプラント材料(資料2)を作
製した。
This flaky material was fed to an extruder to prepare a coated monofilament in the same manner as in Example 1.
An elastic knitted fabric was knitted using this, and a cylindrical implant material (Document 2) having a diameter of 2 cm was produced with this knit.

【0026】[実施例3]実施例1で用いたAWの粉末
に0.5〜10μmのTCP(Ca3(PO42)を
1:1の容量比で混合し、これをニポロン−LIP19
7Yに容量比で40%配合して、実施例1と同様にフレ
ーク状物を得た。
[Example 3] The powder of AW used in Example 1 was mixed with TCP (Ca 3 (PO 4 ) 2 ) of 0.5 to 10 µm in a volume ratio of 1: 1 and this was mixed with Nipolon-LIP19.
40% by volume of 7Y was blended to obtain flakes in the same manner as in Example 1.

【0027】このフレーク状物を押出機に供給し、実施
例1と同様にしてフィラメント数150、1500デニ
ールのテクミロンに相当する太さのモノフィラメントを
造った。これを手編みして、鎖編の円筒状のインプラン
ト材料(資料3)を作製した。
This flake-like material was fed to an extruder, and a monofilament having a thickness corresponding to Tecmirone having a filament number of 150 and 1500 denier was produced in the same manner as in Example 1. This was hand-knitted to produce a chain-knit cylindrical implant material (Document 3).

【0028】[実施例4]実施例1のインプラント材料
(資料1)にγ線を2.5〜7.5Mrad照射してイ
ンプラント材料(資料4)を得た。そして、加熱トルエ
ン中でその破片を煮沸したが、ポリエチレンは膨潤し、
繊維との剥離は容易でなく、γ線を未照射の場合との差
は明らかであった。
Example 4 The implant material (Material 1) of Example 1 was irradiated with γ-rays at 2.5 to 7.5 Mrad to obtain an implant material (Material 4). Then, the fragments were boiled in heated toluene, but the polyethylene swelled,
Peeling from the fiber was not easy, and the difference from the case of non-irradiation with γ-ray was clear.

【0029】[実施例5]実施例1〜4で得られたイン
プラント材料(資料1〜4)を、NaCl,NaHCO
3 ,KCl,K2 HPO4 ,MgCl2 ・2H2 O,C
aCl2 ・2H2O,NaSO4 ,HCl,トリスハイ
ドロキシメチルアミノメタンの組成からなる37℃の擬
似体液に浸漬した。
[Embodiment 5] The implant materials (Materials 1 to 4) obtained in Embodiments 1 to 4 were treated with NaCl and NaHCO 3.
3 , KCl, K 2 HPO 4 , MgCl 2 · 2H 2 O, C
It was immersed in a simulated body fluid at 37 ° C. having a composition of aCl 2 .2H 2 O, NaSO 4 , HCl, and trishydroxymethylaminomethane.

【0030】その結果、約2日後よりHAの結晶が各々
の表面に形成し始め、1週〜3週後には、いずれの資料
表面も網目状のHAの結晶で完全に覆われた。ただし、
結晶成長の速さと密度は、資料1,資料2,資料4,資
料3の順である傾向が見られた。また、資料3の場合は
TCPの擬似体液への溶出のためか、浸漬後期にHA結
晶はTCPのぬけた孔、あるいはAWの周囲孔にまで浸
入している状態が観察された。この事実はHA孔の浸入
によるアンカー効果のために生体とのより強い力学的結
合性を生ずるものである。編、織り組織へのHA結晶の
浸入も認められたので、長期間生体に存するとこの複合
体をHAが全体に覆い、生体への強固な結合と為害性を
発現しないことが予想できる。
As a result, HA crystals began to form on each surface from about 2 days later, and after 1 to 3 weeks, the surface of each material was completely covered with the reticulated HA crystals. However,
The crystal growth speed and density tended to be in the order of Material 1, Material 2, Material 4, Material 3. In addition, in the case of Material 3, it was observed that the HA crystals had penetrated into the hollow holes of TCP or the peripheral holes of AW at the latter stage of immersion, probably because of elution of TCP into the simulated body fluid. This fact results in a stronger mechanical bond with the living body due to the anchoring effect due to the penetration of HA pores. Since infiltration of HA crystals into the knitted and woven tissues was also observed, it can be expected that HA will be covered with HA throughout the body when it is left in the living body for a long period of time, and it will not be harmful because of strong binding to the living body.

【0031】以上の結果から、本発明のインプラント材
料はHAを介して生体組織に強く結合する生体への組織
適合性を有すると同時に、破断時に高強度を有する超高
分子量ポリエチレン繊維で織・編した布地で強化された
生体への力学的適合性を備えた材料であると言えよう。
From the above results, the implant material of the present invention is woven / knitted with an ultrahigh molecular weight polyethylene fiber having a high strength at the time of breaking while having a tissue compatibility to a living body which strongly binds to a living tissue via HA. It can be said that the material has a mechanical compatibility with a living body that is reinforced with a woven fabric.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
のインプラント部材は生体組織と強固に結合し、生体組
織との力学的適合性があるので、破損したり生体組織を
傷めることなく長期にわたって体内に埋入することがで
きる。また、切断が容易で、所望の立体形状に熱成形で
きる利便さもある。
As is clear from the above description, the implant member of the present invention is firmly bonded to the living tissue and has mechanical compatibility with the living tissue, so that the implant member is not damaged or damaged for a long period of time. Can be implanted throughout the body. In addition, it is easy to cut and has the convenience of thermoforming into a desired three-dimensional shape.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】バイオセラミックスの粉末を含む低密度ポ
リエチレンで超高分子量ポリエチレン繊維を被覆し、そ
の表面のポリエチレン薄層を除いて該バイオセラミック
ス粉末の一部を露出させた糸を用いて造られた織物、編
物、網体のいずれかより成るインプラント材料。
1. A yarn prepared by coating ultra-high molecular weight polyethylene fibers with low-density polyethylene containing bioceramic powder and exposing a part of the bioceramic powder except for a thin polyethylene layer on the surface of the fiber. Implant material consisting of woven fabric, knitted fabric or mesh.
【請求項2】織物、編物、網体のいずれかを任意の立体
形状に成形した請求項1に記載のインプラント材料。
2. The implant material according to claim 1, wherein any one of a woven fabric, a knitted fabric and a net body is formed into an arbitrary three-dimensional shape.
【請求項3】バイオセラミックスがアパタイト・ウォラ
ストナイト含有結晶ガラス、リン酸トリカルシウム、ハ
イドロキシアパタイトのそれぞれ単独又は二種以上の混
合物である請求項1又は請求項2に記載のインプラント
材料。
3. The implant material according to claim 1 or 2, wherein the bioceramics are apatite / wollastonite-containing crystalline glass, tricalcium phosphate and hydroxyapatite, each alone or as a mixture of two or more kinds.
【請求項4】低密度ポリエチレンが架橋され、且つ超高
分子量ポリエチレン繊維との界面で両者が化学結合して
いる請求項1又は請求項2に記載のインプラント材料。
4. The implant material according to claim 1 or 2, wherein the low-density polyethylene is crosslinked, and both are chemically bonded at the interface with the ultrahigh molecular weight polyethylene fiber.
【請求項5】低密度ポリエチレンにバイオセラミックス
の粉末が30〜70容量%含有されている請求項1又は
請求項2に記載のインプラント材料。
5. The implant material according to claim 1, wherein the low-density polyethylene contains bioceramic powder in an amount of 30 to 70% by volume.
【請求項6】バイオセラミックスの粉末の平均粒度が1
0μm以下である請求項1又は請求項2に記載のインプ
ラント材料。
6. The average particle size of the bioceramic powder is 1.
The implant material according to claim 1 or 2, which has a diameter of 0 μm or less.
【請求項7】請求項6のインプラント材料を擬似体液に
浸漬してその表面をハイドロキシアパタイトの結晶で覆
ったインプラント材料。
7. An implant material obtained by immersing the implant material according to claim 6 in a simulated body fluid and covering the surface with hydroxyapatite crystals.
JP05156165A 1993-06-01 1993-06-01 Implant material Expired - Fee Related JP3094263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05156165A JP3094263B2 (en) 1993-06-01 1993-06-01 Implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05156165A JP3094263B2 (en) 1993-06-01 1993-06-01 Implant material

Publications (2)

Publication Number Publication Date
JPH06339522A true JPH06339522A (en) 1994-12-13
JP3094263B2 JP3094263B2 (en) 2000-10-03

Family

ID=15621777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05156165A Expired - Fee Related JP3094263B2 (en) 1993-06-01 1993-06-01 Implant material

Country Status (1)

Country Link
JP (1) JP3094263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509544A (en) * 2002-12-11 2006-03-23 デーエスエム アイピー アセッツ ベー. ヴェー. Surgical soft tissue mesh
WO2012117739A1 (en) * 2011-03-02 2012-09-07 株式会社リメディオ Bone filling material
US11400184B2 (en) 2017-10-06 2022-08-02 Dsm Ip Assets B.V. Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268459A (en) 2005-03-24 2006-10-05 Ricoh Co Ltd Nonvolatile memory card and shape conversion adapter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509544A (en) * 2002-12-11 2006-03-23 デーエスエム アイピー アセッツ ベー. ヴェー. Surgical soft tissue mesh
WO2012117739A1 (en) * 2011-03-02 2012-09-07 株式会社リメディオ Bone filling material
US11400184B2 (en) 2017-10-06 2022-08-02 Dsm Ip Assets B.V. Method of making an osteoconductive polymer article and an osteoconductive polymer article thus made

Also Published As

Publication number Publication date
JP3094263B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
EP0677297B1 (en) Implantation material
US4839215A (en) Biocompatible particles and cloth-like article made therefrom
KR101738908B1 (en) A composite and its use
US6679913B2 (en) Implantable sheet material
US7241486B2 (en) Bone grafting materials
US6398814B1 (en) Bioabsorbable two-dimensional multi-layer composite device and a method of manufacturing same
US20090216252A1 (en) A coupling device enabled by mechanical continuity of cellular scaffolding across tissue boundaries
JP7315145B2 (en) Osteoconductive fibers, medical implants containing such osteoconductive fibers, and methods of manufacture
JPS6133660A (en) Coating composition for surgical implant and fixing element
US20110282451A1 (en) Medical component
EP1357863A4 (en) Compositions and methods for biomedical applications
EP3930773B1 (en) Medical implant component comprising a composite biotextile and method of making
US10111988B2 (en) Porous three-dimensional structure of polytetrafluoroethylene (versions), dental implant, vascular implant and tissue implant for substitution plasty of soft tissues
US20140147814A1 (en) Bone graft containment devices
Shikinami et al. Potential application of a triaxial three-dimensional fabric (3-DF) as an implant
JP3094263B2 (en) Implant material
JP3054903B2 (en) Implant material
Zhang et al. Porous hydroxyapatite reinforced with collagen protein
Chłopek et al. Non-metallic composite materials for bone surgery
JPH06327757A (en) Bioimplant composite material and bioadaptable composite material
Dahham et al. Mechanical properties and morphological studies on Pu-Ha biocomposite
HUANG S. RAMAKRISHNA
NG et al. USES OF BIOMATERIALS IN ARTIFICIAL ORGANS
Lin et al. Processing technology and characteristic evaluation of polylactic acid/316L stainless steel composite braids with hydroxylapatite deposition
Fahmy et al. The Application of Composite Materials for Prosthetic Devices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees