WO2012117649A1 - Automatic engine stopping/starting device and automatic engine stopping/starting control method - Google Patents

Automatic engine stopping/starting device and automatic engine stopping/starting control method Download PDF

Info

Publication number
WO2012117649A1
WO2012117649A1 PCT/JP2011/080012 JP2011080012W WO2012117649A1 WO 2012117649 A1 WO2012117649 A1 WO 2012117649A1 JP 2011080012 W JP2011080012 W JP 2011080012W WO 2012117649 A1 WO2012117649 A1 WO 2012117649A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
pinion gear
automatic stop
control
energization
Prior art date
Application number
PCT/JP2011/080012
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 北野
水野 大輔
亀井 光一郎
小田原 一浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013502159A priority Critical patent/JP5644935B2/en
Publication of WO2012117649A1 publication Critical patent/WO2012117649A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine automatic stop start device and an engine automatic stop start control method for automatically stopping an engine when an automatic stop condition is satisfied and restarting the engine when a restart condition is satisfied.
  • an automatic idle stop system for the purpose of improving the fuel consumption of automobiles and reducing the environmental load, an automatic idle stop system has been developed that automatically performs an idle stop when a predetermined condition is satisfied.
  • the automatic idle stop system using a starter is low in cost because there are few vehicle system changes.
  • Patent Document 1 meshing is performed by an electromagnetic drive mechanism after the engine is stopped or immediately before the engine is stopped.
  • the determination of meshing completion is performed by a meshing sensor. For this reason, there exists a subject that a structure will become complicated and cost will also become high. Further, there is no description in Patent Document 1 until the idea of energizing the electromagnetic drive mechanism again when the engine is restarted when the restart condition is satisfied.
  • Patent Document 2 energization of the electromagnetic solenoid is stopped after the engine is stopped.
  • the meshing sensor since the meshing sensor is not used, it cannot be said that the meshing is surely performed until the restart condition is satisfied, and the meshing may be released due to vibration of the vehicle body or the like. Therefore, at the time of restart, the electromagnetic drive mechanism must be energized again.
  • the present invention has been made to solve the above-described problems, and suppresses unnecessary power consumption and noise during automatic engine stop and automatic start, as well as speeding up the automatic start. It is another object of the present invention to provide an engine automatic stop / start device and an engine automatic stop / start control method that can improve meshing.
  • An engine automatic stop / start device is a starter motor that rotates a pinion gear by energization in an engine automatic stop / start device that automatically stops the engine when the automatic stop condition is satisfied and restarts the engine when the restart condition is satisfied.
  • a ring gear that meshes with the pinion gear and transmits the driving force to the engine, a pinion gear moving means that moves the pinion gear by energization and meshes with the ring gear, and an engine of the automatic stop condition
  • Starter control means for executing meshing control based on the number of revolutions of the engine during inertial rotation and restarting the engine when the restart condition is satisfied, and the meshing control in the starter control means is At least at the same time or when the engine stops Is intended to stop the energization of the pinion gear moving means previously.
  • An engine automatic stop start control method is an engine automatic stop start control method in which an engine is automatically stopped when an automatic stop condition is satisfied, and the engine is restarted when a restart condition is satisfied.
  • the pinion gear moving means by energizing the pinion gear moving means based on the engine speed, the pinion gear meshes with the ring gear, and at the same time or at least before the engine stops, the pinion An engagement control step for stopping energization of the gear moving means, and an engine restart for restarting the engine by energizing the pinion gear moving means and the starter motor when the restart condition is satisfied after completion of the engagement control step Control step, and when performing the meshing control step,
  • the restart condition before the control step is completed fit is established, it is to shift to the execution of the engine restart control step without waiting for the completion of the engagement control step.
  • the engine starts inertial rotation when the automatic stop condition is satisfied, and the meshing is performed by energizing the solenoid when the meshing rotation speed is reached. If the restart condition is satisfied before the engagement control is completed, the engine restart control is executed without waiting for the completion of the engagement control. It is possible to obtain an engine automatic stop / start device and an engine automatic stop / start control method that suppress unnecessary power consumption and noise, and wear of parts, as well as speeding up the automatic start and improving the meshing property.
  • FIG. 1 It is a block diagram which shows schematic structure of the engine automatic stop start apparatus by Embodiment 1 of this invention. It is a figure which shows schematic structure of the chamfering part of the pinion gear by Embodiment 1 of this invention. It is an image figure which shows the engine stop characteristic by Embodiment 1 of this invention. It is a flowchart which shows the flow of the engine automatic stop and automatic start by Embodiment 1 of this invention. It is a flowchart which shows the flow of the meshing control at the time of the engine automatic stop by Embodiment 1 of this invention.
  • it is a schematic diagram showing a state of meshing between a pinion gear and a ring gear as viewed from the radial direction of the gear when the engine rotates in reverse. It is an image figure which shows the engine stop characteristic change by the meshing control at the time of the engine automatic stop by Embodiment 1 of this invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10 according to Embodiment 1 of the present invention.
  • the engine automatic stop / start device 10 according to the first embodiment shown in FIG. 1 includes a starter control means 11, a ring gear 12, a crank angle sensor 13, a starter motor 14, a one-way clutch 15, a pinion gear 16, and a pinion gear moving means.
  • the pinion gear moving means 17 includes a solenoid 18 and a plunger 19.
  • the starter control means 11 controls energization to the starter motor 14 and the solenoid 18.
  • the ring gear 12 meshes with the pinion gear 16 and transmits driving force to the engine.
  • the crank angle sensor 13 detects the crank angle of the engine.
  • the starter motor 14 rotates the pinion gear 16 when energized.
  • the one-way clutch 15 is connected to the output shaft of the starter motor 14 and rotates idly when torque is input from the ring gear 12. Further, the pinion gear moving means 17 attracts the plunger 19 by energizing the solenoid 18 and moves the pinion gear 16 via a lever (not shown), thereby meshing the pinion gear 16 with the ring gear 12.
  • FIG. 2 is a diagram showing a schematic configuration of the chamfered portion of the pinion gear according to the first embodiment of the present invention. As shown in FIG. 2, the pinion gear 16 is chamfered at the edge portion between the non-torque transmission surface and the gear end surface of the gear.
  • the starter control means 11 can calculate the engine speed from the cycle of the crankshaft rotation pulse output from the crank angle sensor 13. Further, a relay may be provided between the starter control means 11 and the solenoid 18 or the starter motor 14, and energization may be controlled by driving the relay according to a command from the starter control means 11.
  • FIG. 3 is an image diagram showing engine stop characteristics according to the first embodiment of the present invention.
  • the starter control unit 11 stops the fuel supply to the engine and rotates the inertia.
  • torque fluctuation occurs due to the compression / expansion cycle of the piston of the engine, and the engine speed decreases while causing pulsation.
  • the engine starts to rotate in reverse due to the reaction force from the piston in the compression stroke. After that, the engine rotates for a while, and this time, the engine starts to rotate forward by the reaction force from the piston in the expansion stroke. As described above, the forward rotation and the reverse rotation are repeated, and finally the engine is stopped when the rotational friction of the engine becomes larger than the reaction force from the piston.
  • FIG. 4 is a flowchart showing a flow of engine automatic stop and automatic start according to Embodiment 1 of the present invention.
  • the starter control means 11 determines whether or not an automatic stop condition is satisfied. If it is determined in step S110 that the automatic stop condition is not satisfied, the starter control unit 11 ends the series of processes and proceeds to the next control cycle.
  • step S110 determines whether the automatic stop condition is satisfied. If it is determined in step S110 that the automatic stop condition is satisfied, the process proceeds to step S120, and the starter control means 11 performs engine stop control. Specifically, the starter control means 11 stops the fuel supply to the engine and reduces the rotational speed by inertial rotation. Note that the starter control means 11 may perform intake air control in order to suppress vibration during inertial rotation.
  • step S130 the starter control means 11 determines whether or not the engine speed has become a predetermined value or less. Specifically, if the starter control means 11 determines that the engine speed has decreased due to inertial rotation and the ring gear 12 and the pinion gear 16 have reached a meshing speed difference, the next step S140 is performed. Proceed to
  • step S140 the starter control means 11 starts the meshing control and meshes the ring gear 12 and the pinion gear 16. Details of the operation in step S140 will be described later with reference to FIG.
  • step S150 the starter control means 11 determines whether or not a restart condition is satisfied. If it is determined in step S150 that the restart condition is satisfied, the starter control unit 11 performs engine restart control in step S160 to restart the engine. Details of the operation in step S160 will be described later with reference to FIG.
  • FIG. 5 is a flowchart showing a flow of meshing control when the engine is automatically stopped according to the first embodiment of the present invention.
  • step S130 in FIG. 4 determines in step S130 in FIG. 4 that the engine speed has become a meshing speed (for example, 100 rpm or less).
  • a meshing speed for example, 100 rpm or less
  • step S141 the starter control means 11 starts energizing the solenoid 18 to move the pinion gear 16 and mesh with the ring gear 12.
  • FIG. 6 shows a state where the pinion gear 16 is engaged with the ring gear 12 when the engine is reversely rotated (during reverse rotation of the ring gear) in the engine automatic stop / start device according to Embodiment 1 of the present invention.
  • FIG. FIG. 7 is a schematic diagram showing the meshing state of the pinion gear 16 and the ring gear 12 as viewed from the radial direction of the gear when the engine rotates in the reverse direction in the engine automatic stop / start device according to Embodiment 1 of the present invention.
  • the upper stage (a) indicates when the gear is in contact
  • the middle stage (b) is in the middle of meshing
  • the lower stage (c) indicates when the meshing is completed.
  • the starter control means 11 moves the pinion gear 16 to the ring gear 12 by energizing the solenoid 18 as described above. At this time, when the pinion gear 16 and the ring gear 12 mesh with each other without colliding at the gear end face, the meshing is completed smoothly.
  • FIG. 8 is an image diagram showing a change in engine stop characteristic by the meshing control at the time of automatic engine stop according to Embodiment 1 of the present invention.
  • the solid line in FIG. 8 corresponds to FIG. 3 above, and shows a normal engine rotation behavior in which the meshing control is not performed when the engine is automatically stopped.
  • the broken line in FIG. 8 indicates the engine rotation behavior when the meshing control at the time of automatic engine stop is performed by performing a series of processing from step S141 to step S143 as shown in the flowchart of FIG.
  • the starter control means 11 sufficiently sets the rotational speed at the time of reverse rotation indicated by the broken line in FIG. 8 after the energization of the solenoid 18 and the pinion gear 16 meshes with the ring gear 12 in step S142 in FIG. It is determined whether or not a first predetermined time (for example, 100 mS) that can be reduced to a minimum has elapsed. If it is determined in step S142 that the first predetermined time has elapsed, the process proceeds to step S143, where the starter control means 11 stops energization of the solenoid 18 and ends the series of meshing control.
  • a first predetermined time for example, 100 mS
  • energization to the solenoid 18 can be stopped at least at the same time as or before the engine stops.
  • energization of the solenoid 18 can be stopped at an early stage, power consumption can be suppressed, and the life and fuel consumption of the parts can be improved.
  • the engine can be restarted without waiting for a complete stop of the engine, and an engine automatic stop / start device that can perform the engine restart quietly and quickly can be obtained.
  • FIG. 9 is a flowchart showing a flow of engine restart control during automatic engine start according to Embodiment 1 of the present invention.
  • step S150 in FIG. 4 If it is determined in step S150 in FIG. 4 that the restart condition is satisfied, the starter control means 11 performs engine restart control by a series of processes in steps S161 to S163 shown in FIG. It becomes.
  • step S161 the starter control means 11 starts energizing the solenoid 18 to move the pinion gear 16 and mesh with the ring gear 12.
  • step S162 the starter control means 11 determines whether or not a second predetermined time (for example, 30 mS) until the pinion gear 16 comes into contact with the ring gear 12 after the energization of the solenoid 18 has elapsed. to decide. If it is determined in step S162 that the second predetermined time has elapsed, the process proceeds to step S163, where the starter control means 11 starts energizing the starter motor 14 and restarts the engine by cranking.
  • a second predetermined time for example, 30 mS
  • the engine automatic stop / start device is engaged with the pinion gear, the ring gear that transmits the driving force to the engine, the crank angle sensor that detects the crank angle of the engine, and the pinion gear that is energized.
  • the starter motor that rotates and the plunger is attracted by energizing the solenoid, the pinion gear is moved through the lever, and the pinion gear moving means for meshing with the ring gear is connected to the output shaft of the starter motor.
  • a one-way clutch that rotates idly when torque is input from the gear, and a starter control means that controls energization to the starter motor and the solenoid.
  • the solenoid When the engine starts inertial rotation due to the establishment of the automatic stop condition, the solenoid is energized when the meshing rotational speed is reached, and after the pinion gear and the ring gear are meshed, the rotational speed of the reverse rotation is sufficiently small. At that point, stop energizing the solenoid.
  • the solenoid is energized again. After the time until the pinion gear comes into contact with the ring gear, the starter motor is energized, the engine is restarted by cranking, and the solenoid is restarted after the engine is restarted. Also stop energizing the starter motor.
  • the energization to the solenoid can be stopped early, the power consumption can be reduced, the life of the parts and the fuel consumption can be improved, and the temperature rise suppression of the solenoid can be achieved. it can.
  • the reverse rotation speed is sufficiently small, the engine can be smoothly meshed and restarted even when the restart condition is satisfied before stopping the engine after stopping energization of the solenoid. it can.
  • FIG. FIG. 10 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10a according to Embodiment 2 of the present invention.
  • the configuration of FIG. 10 in the second embodiment is different from the configuration of FIG. 1 in the first embodiment only in that a reverse rotation detection crank angle sensor 13a is provided instead of the crank angle sensor 13. ing. Therefore, the following description will be made focusing on the reverse rotation detection crank angle sensor 13a which is a difference.
  • the reverse rotation detection crank angle sensor 13a is a sensor that can detect the reverse rotation of the engine. Therefore, the starter control means 11 does not determine the elapse of the first predetermined time in step S142 of FIG. 5, but based on the output of the reverse rotation detection crank angle sensor 13a, The energization may be stopped.
  • engine reverse rotation detection means such as the reverse rotation detection crank angle sensor 13a
  • the starter control means 11 can stop energization of the solenoid 18.
  • the pinion gear 16 and the one-way clutch 15 are integrally formed and are splined to the output shaft of the starter motor 14.
  • the spline fitting is configured so that the forward movement is generated when the rotation speed of the pinion gear 16 is lower than the rotation speed of the output shaft of the starter motor 14 and the backward movement is performed when the rotation speed is high because the one-way clutch 15 is provided.
  • the pinion gear 16 rotates in the normal rotation direction of the engine, that is, the ring gear 12 is normal. It is necessary to roll. Therefore, during reverse rotation, even if the energization to the solenoid 18 is stopped, the pinion gear 16 is not pulled back and remains in a meshed state.
  • the starter control means 11 can engage the pinion gear 16 with the ring gear 12 when the restart condition is satisfied, energize the starter motor 14, and restart the engine.
  • the engine reverse rotation detection means by using the engine reverse rotation detection means, it is possible to detect the forward rotation and reverse rotation states of the engine more precisely than the reverse rotation determination after the first predetermined time has elapsed. Can do. As a result, improvement in control accuracy can be realized.
  • Embodiment 3 FIG.
  • the meshing control is performed in step S140, and then the restart condition is satisfied in step S150, the engine restart control is performed in step S160.
  • the third embodiment a case will be described in which establishment of the engine restart condition is considered even during the meshing control in step S140.
  • FIG. 11 is a flowchart showing a flow of meshing control at the time of engine automatic stop according to Embodiment 3 of the present invention.
  • the starter control means 11 performs control in consideration of the case where the restart condition is satisfied after the solenoid 18 is energized and before the solenoid 18 is deenergized.
  • steps S141 to S143 in FIG. 11 are the same as steps S141 to S143 in FIG. 5 described in the first embodiment.
  • Steps S144 to S146 in FIG. 11 are newly added steps in the third embodiment, and the following description will be focused on the processing of these additional steps.
  • step S130 in FIG. 4 when the engine speed decreases due to the inertial rotation due to the automatic stop of the engine and becomes a meshing speed (that is, YES is determined in step S130 in FIG. 4).
  • the meshing control is performed by a series of processes in steps S141 to S146 shown in FIG.
  • step S141 the starter control means 11 moves the pinion gear 16 by energizing the solenoid 18 and meshes with the ring gear 12.
  • step S144 the starter control means 11 judges whether restart conditions are satisfied. That is, in the flowchart of FIG. 11 in the third embodiment, the starter control means 11 determines whether or not the restart condition is satisfied after the solenoid 18 is energized and before the solenoid 18 is energized. Yes.
  • step S144 if the restart condition is not satisfied, the process proceeds to step S142.
  • the starter control unit 11 determines that the restart condition is not satisfied until the energization of the solenoid 18 is stopped (first predetermined time elapses) in step S142. Proceeding to step S143, the energization of the solenoid 18 is stopped, and the series of processes is terminated.
  • step S150 when the meshing control is completed without the restart condition being satisfied, the series described in steps S150 and S160 in FIG. 4 and steps S161 to S163 in FIG. 9 in the first embodiment. Will be controlled. Specifically, after the meshing control is completed, when the restart condition is satisfied (step S150), the solenoid 18 is energized again (step S161), and the starter motor 14 is energized after a predetermined time (step S161). S162, S163).
  • step S144 the starter control means 11 energizes the solenoid 18 and the starter motor 14 simultaneously, or energizes the starter motor 14. Later, the solenoid 18 is energized.
  • step S146 progresses to step S146 and the starter control means 11 restarts an engine by cranking.
  • step S145 and step S146 are executed, the series of processing ends without performing steps S150 and S160 in FIG.
  • the starter motor 14 can be energized without stopping the energization of the solenoid 18. For this reason, the engine can be restarted more quickly.
  • the energization to the solenoid is stopped without stopping the energization to the solenoid as in the first embodiment. It can be energized. As a result, compared to the first embodiment, the engine can be restarted more quickly when the engine restart condition is satisfied during the meshing control.
  • Embodiment 4 further includes a mesh determination unit that can determine whether or not the mesh between the pinion gear 16 and the ring gear 12 is established, and performs engine restart control based on the output of the mesh determination unit. A description will be given of a case where the engine restart is speeded up.
  • FIG. 12 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10b according to Embodiment 4 of the present invention.
  • the configuration of FIG. 12 in the fourth embodiment is different from the configuration of FIG. 1 in the first embodiment in that it further includes a meshing determination means 20. Therefore, the following description will be made focusing on the meshing discrimination means 20 which is a difference.
  • the engine is inertially rotated by the establishment of the automatic stop condition.
  • the solenoid 18 is energized, and the pinion gear 16 is connected to the ring gear 12.
  • Engage (corresponding to steps S110 to S140 in FIG. 1).
  • FIG. 13 is a flowchart showing a flow of engine restart control during automatic engine start according to Embodiment 4 of the present invention.
  • step S150 in FIG. 4 If it is determined in step S150 in FIG. 4 that the restart condition is satisfied, the starter control means 11 performs engine restart control by a series of processes in steps S161 to S164 shown in FIG. It becomes.
  • steps S161 to S163 in FIG. 13 are the same as steps S161 to S163 in FIG. 9 described in the first embodiment.
  • Step S164 in FIG. 13 is a step newly added in the fourth embodiment, and the following description will be focused on the processing of this addition step.
  • step S164 the starter control unit 11 determines whether or not the engagement of the pinion gear 16 and the ring gear 12 is continued based on the output of the engagement determination unit 20.
  • step S163 the starter control means 11 energizes the solenoid 18 and the starter motor 14 simultaneously or energizes the starter motor 14. Later, the solenoid 18 is energized.
  • step S164 if it is determined in step S164 that the pinion gear 16 and the ring gear 12 are not engaged, the process proceeds to step S161. Then, similarly to the flow of FIG. 9 in the first embodiment, the starter control means 11 energizes the solenoid 18 (step S161), and after the second predetermined time has elapsed (step S162), the starter motor 14 Is energized (step S163).
  • the starter motor 14 can be energized without waiting for the elapse of a predetermined time after energizing the solenoid 18. As a result, the engine can be restarted more quickly.
  • the fourth embodiment it is possible to determine whether or not the engagement between the pinion gear and the ring gear is continued when the restart condition is satisfied by further including the engagement determining unit. .
  • the engine can be restarted more quickly when the meshing between the pinion gear and the ring gear is continued as compared with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Useless power consumption and sound noise during automatic engine stopping and starting can be suppressed, and automatic start can be speeded up and engagement property can be improved. An automatic engine stopping/starting device comprises: a starter motor (14); a ring gear (12); a pinion gear moving means (17); and a starter control means (11) for, while an engine inertially rotates upon satisfaction of an automatic stop condition, executing an engagement control on the basis of the number of rotations of the engine and for executing an engine restart control for restarting the engine upon satisfaction of a restart condition. In the engagement control by the starter control means, the application of current to the pinion gear moving means is stopped at least simultaneously when or before the rotation of the engine stops.

Description

エンジン自動停止始動装置およびエンジン自動停止始動制御方法Engine automatic stop start device and engine automatic stop start control method
 本発明は、自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動装置およびエンジン自動停止始動制御方法に関するものである。 The present invention relates to an engine automatic stop start device and an engine automatic stop start control method for automatically stopping an engine when an automatic stop condition is satisfied and restarting the engine when a restart condition is satisfied.
 従来、自動車の燃費改善・環境負荷低減等を目的として、所定の条件が満たされると自動でアイドルストップを行う自動アイドルストップシステムが開発されてきた。その中でも、スタータによる自動アイドルストップシステムは、車両のシステム変更が少なく、低コストである。しかしながら、その反面、エンジンが完全に停止するまで噛み合うことができないという課題があった。 Conventionally, for the purpose of improving the fuel consumption of automobiles and reducing the environmental load, an automatic idle stop system has been developed that automatically performs an idle stop when a predetermined condition is satisfied. Among them, the automatic idle stop system using a starter is low in cost because there are few vehicle system changes. On the other hand, however, there is a problem that the engine cannot be engaged until the engine is completely stopped.
 この課題に対し、エンジンの停止前もしくは停止後に、電磁駆動機構によりピニオンギアをリングギアに噛み合わせ、電磁駆動機構への通電を停止した後も、ヘリカルスプライン係合部により噛み合いを維持しているものがある(例えば、特許文献1参照)。 For this problem, before or after the engine is stopped, the pinion gear is engaged with the ring gear by the electromagnetic drive mechanism, and the engagement is maintained by the helical spline engaging portion even after the energization to the electromagnetic drive mechanism is stopped. There are some (see, for example, Patent Document 1).
 また、エンジン自動停止によるリングギアの惰性回転中に電磁ソレノイドに通電して、ピニオンギアとリングギアを噛み合わせ、エンジン停止後に電磁ソレノイドへの通電を停止しているものがある(例えば、特許文献2参照)。 In addition, there is a type in which the electromagnetic solenoid is energized during inertial rotation of the ring gear by automatic engine stop, the pinion gear and the ring gear are meshed, and the energization to the electromagnetic solenoid is stopped after the engine stops (for example, Patent Documents). 2).
特開2008-163818号公報JP 2008-163818 A 特開2010-242555号公報JP 2010-242555 A
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1においては、エンジン停止後もしくはエンジン停止直前に、電磁駆動機構により噛み合わせを行っている。ここで、噛み合い完了の判定は、噛み合いセンサにより行っている。このため、構成が複雑となり、コストも高くなってしまうという課題がある。また、再始動条件の成立によりエンジンを再始動させる際に、再度、電磁駆動機構へ通電するという発想までは、この特許文献1には何ら記載されていない。
However, the prior art has the following problems.
In Patent Document 1, meshing is performed by an electromagnetic drive mechanism after the engine is stopped or immediately before the engine is stopped. Here, the determination of meshing completion is performed by a meshing sensor. For this reason, there exists a subject that a structure will become complicated and cost will also become high. Further, there is no description in Patent Document 1 until the idea of energizing the electromagnetic drive mechanism again when the engine is restarted when the restart condition is satisfied.
 また、特許文献2においては、エンジンが停止した後に、電磁ソレノイドへの通電を停止している。ここで、特許文献2では、噛み合いセンサを用いていないため、再始動条件成立時まで確実に噛み合っているとは言えず、車体の振動などにより、噛み合いが解除される可能性がある。そのため、再始動時に、再度、電磁駆動機構に通電しなければならない。 In Patent Document 2, energization of the electromagnetic solenoid is stopped after the engine is stopped. Here, in Patent Document 2, since the meshing sensor is not used, it cannot be said that the meshing is surely performed until the restart condition is satisfied, and the meshing may be released due to vibration of the vehicle body or the like. Therefore, at the time of restart, the electromagnetic drive mechanism must be energized again.
 しかしながら、再度通電するため、その時点での噛み合いを維持しておく必要性はなく、エンジンが停止するまで電磁駆動機構に通電し続けることにより無駄な電力を消費するおそれがある。また、ギア噛み合い後、エンジンが停止するまでに、再始動条件が成立した場合に関しては、この特許文献2には特に記載はなかった。 However, since energization is performed again, there is no need to maintain the meshing at that time, and unnecessary power may be consumed by energizing the electromagnetic drive mechanism until the engine stops. Further, there is no particular description in Patent Document 2 regarding the case where the restart condition is satisfied before the engine stops after the gear meshing.
 本発明は、前記のような課題を解決するためになされたものであり、エンジン自動停止および自動始動時における無駄な電力消費や騒音、さらには部品の摩耗を抑制するとともに、自動始動の迅速化および噛み合い性の向上を実現するエンジン自動停止始動装置およびエンジン自動停止始動制御方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and suppresses unnecessary power consumption and noise during automatic engine stop and automatic start, as well as speeding up the automatic start. It is another object of the present invention to provide an engine automatic stop / start device and an engine automatic stop / start control method that can improve meshing.
 本発明に係るエンジン自動停止始動装置は、自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動装置において、通電によりピニオンギアを回転させるスタータモータと、ピニオンギアと噛み合い、駆動力をエンジンに伝達するリングギアと、通電によりピニオンギアを移動させて、リングギアとの噛み合わせを行わせるピニオンギア移動手段と、自動停止条件の成立によるエンジンの慣性回転中に、エンジンの回転数に基づいて噛み合い制御を実行し、再始動条件の成立によりエンジンを再始動させるエンジン再始動制御を実行するスタータ制御手段とを備え、スタータ制御手段における噛み合い制御は、少なくともエンジンの回転が停止したと同時もしくは停止する以前にピニオンギア移動手段への通電を停止するものである。 An engine automatic stop / start device according to the present invention is a starter motor that rotates a pinion gear by energization in an engine automatic stop / start device that automatically stops the engine when the automatic stop condition is satisfied and restarts the engine when the restart condition is satisfied. A ring gear that meshes with the pinion gear and transmits the driving force to the engine, a pinion gear moving means that moves the pinion gear by energization and meshes with the ring gear, and an engine of the automatic stop condition Starter control means for executing meshing control based on the number of revolutions of the engine during inertial rotation and restarting the engine when the restart condition is satisfied, and the meshing control in the starter control means is At least at the same time or when the engine stops Is intended to stop the energization of the pinion gear moving means previously.
 本発明に係るエンジン自動停止始動制御方法は、自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動制御方法であって、自動停止条件の成立によるエンジンの慣性回転中に、エンジンの回転数に基づいてピニオンギア移動手段への通電を行うことでピニオンギアをリングギアと噛み合わせ、少なくともエンジンの回転が停止したと同時もしくは停止する以前にピニオンギア移動手段への通電を停止する噛み合い制御ステップと、噛み合い制御ステップが完了した後、再始動条件の成立によりピニオンギア移動手段およびスタータモータへの通電を行うことでエンジンを再始動させるエンジン再始動制御ステップとを備え、噛み合い制御ステップの実行時において、噛み合い制御ステップが完了する前に再始動条件が成立した場合には、噛み合い制御ステップの完了を待たずにエンジン再始動制御ステップの実行に移行するものである。 An engine automatic stop start control method according to the present invention is an engine automatic stop start control method in which an engine is automatically stopped when an automatic stop condition is satisfied, and the engine is restarted when a restart condition is satisfied. During the inertial rotation of the engine, by energizing the pinion gear moving means based on the engine speed, the pinion gear meshes with the ring gear, and at the same time or at least before the engine stops, the pinion An engagement control step for stopping energization of the gear moving means, and an engine restart for restarting the engine by energizing the pinion gear moving means and the starter motor when the restart condition is satisfied after completion of the engagement control step Control step, and when performing the meshing control step, When the restart condition before the control step is completed fit is established, it is to shift to the execution of the engine restart control step without waiting for the completion of the engagement control step.
 本発明に係るエンジン自動停止始動装置およびエンジン自動停止始動制御方法によれば、自動停止条件の成立によりエンジンが慣性回転を開始し、噛み合い可能な回転数となった時にソレノイドへ通電することで噛み合い制御を実行し、噛み合い制御が完了する前に再始動条件が成立した場合には、噛み合い制御の完了を待たずにエンジン再始動制御の実行に移行することにより、エンジン自動停止および自動始動時における無駄な電力消費や騒音、さらには部品の摩耗を抑制するとともに、自動始動の迅速化および噛み合い性の向上を実現するエンジン自動停止始動装置およびエンジン自動停止始動制御方法を得ることができる。 According to the engine automatic stop start device and the engine automatic stop start control method according to the present invention, the engine starts inertial rotation when the automatic stop condition is satisfied, and the meshing is performed by energizing the solenoid when the meshing rotation speed is reached. If the restart condition is satisfied before the engagement control is completed, the engine restart control is executed without waiting for the completion of the engagement control. It is possible to obtain an engine automatic stop / start device and an engine automatic stop / start control method that suppress unnecessary power consumption and noise, and wear of parts, as well as speeding up the automatic start and improving the meshing property.
本発明の実施の形態1によるエンジン自動停止始動装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the engine automatic stop start apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるピニオンギアの面取り部の概略構成を示す図である。It is a figure which shows schematic structure of the chamfering part of the pinion gear by Embodiment 1 of this invention. 本発明の実施の形態1によるエンジン停止特性を示すイメージ図である。It is an image figure which shows the engine stop characteristic by Embodiment 1 of this invention. 本発明の実施の形態1によるエンジン自動停止および自動始動の流れを示すフローチャートである。It is a flowchart which shows the flow of the engine automatic stop and automatic start by Embodiment 1 of this invention. 本発明の実施の形態1によるエンジン自動停止時の噛み合い制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the meshing control at the time of the engine automatic stop by Embodiment 1 of this invention. 本発明の実施の形態1によるエンジン自動停止始動装置において、エンジンが逆回転時(リングギア逆回転時)にピニオンギアがリングギアへと噛み合う途中の状態を駆動軸方向から表した模式図である。In the engine automatic stop / start device according to Embodiment 1 of the present invention, a schematic diagram showing from the drive shaft direction a state in which the pinion gear is engaged with the ring gear when the engine is reversely rotated (during reverse rotation of the ring gear). . 本発明の実施の形態1によるエンジン自動停止始動装置において、エンジンが逆回転時にギアの半径方向から見たピニオンギアとリングギアとの噛み合いの状態を表した模式図である。In the engine automatic stop / start device according to Embodiment 1 of the present invention, it is a schematic diagram showing a state of meshing between a pinion gear and a ring gear as viewed from the radial direction of the gear when the engine rotates in reverse. 本発明の実施の形態1によるエンジン自動停止時の噛み合い制御によるエンジン停止特性変化を示すイメージ図である。It is an image figure which shows the engine stop characteristic change by the meshing control at the time of the engine automatic stop by Embodiment 1 of this invention. 本発明の実施の形態1によるエンジン自動始動時のエンジン再始動制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the engine restart control at the time of the engine automatic start by Embodiment 1 of this invention. 本発明の実施の形態2によるエンジン自動停止始動装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the engine automatic stop start apparatus by Embodiment 2 of this invention. 本発明の実施の形態3によるエンジン自動停止時の噛み合い制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the meshing control at the time of the engine automatic stop by Embodiment 3 of this invention. 本発明の実施の形態4によるエンジン自動停止始動装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the engine automatic stop start apparatus by Embodiment 4 of this invention. 本発明の実施の形態4によるエンジン自動始動時のエンジン再始動制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the engine restart control at the time of the engine automatic start by Embodiment 4 of this invention.
 以下、本発明によるエンジン自動停止始動装置およびエンジン自動停止始動制御方法を各実施の形態に従って図を用いて説明する。 Hereinafter, an engine automatic stop / start device and an engine automatic stop / start control method according to the present invention will be described with reference to the drawings according to each embodiment.
 実施の形態1.
 図1は、本発明の実施の形態1によるエンジン自動停止始動装置10の概略構成を示すブロック図である。図1に示した本実施の形態1におけるエンジン自動停止始動装置10は、スタータ制御手段11、リングギア12、クランク角センサ13、スタータモータ14、ワンウェイクラッチ15、ピニオンギア16、およびピニオンギア移動手段17を備えて構成されている。さらに、ピニオンギア移動手段17は、ソレノイド18及びプランジャ19を備えて構成されている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10 according to Embodiment 1 of the present invention. The engine automatic stop / start device 10 according to the first embodiment shown in FIG. 1 includes a starter control means 11, a ring gear 12, a crank angle sensor 13, a starter motor 14, a one-way clutch 15, a pinion gear 16, and a pinion gear moving means. 17. Further, the pinion gear moving means 17 includes a solenoid 18 and a plunger 19.
 スタータ制御手段11は、スタータモータ14およびソレノイド18への通電を制御する。また、リングギア12は、ピニオンギア16と噛み合い、駆動力をエンジンに伝達する。また、クランク角センサ13は、エンジンのクランク角を検出する。また、スタータモータ14は、通電によりピニオンギア16を回転させる。 The starter control means 11 controls energization to the starter motor 14 and the solenoid 18. The ring gear 12 meshes with the pinion gear 16 and transmits driving force to the engine. The crank angle sensor 13 detects the crank angle of the engine. The starter motor 14 rotates the pinion gear 16 when energized.
 また、ワンウェイクラッチ15は、スタータモータ14の出力軸に連結され、リングギア12からトルクが入力された場合には空転する。さらに、ピニオンギア移動手段17は、ソレノイド18への通電により、プランジャ19を吸引し、レバー(図示省略)を介してピニオンギア16を移動させることで、ピニオンギア16をリングギア12と噛み合わせる。 Also, the one-way clutch 15 is connected to the output shaft of the starter motor 14 and rotates idly when torque is input from the ring gear 12. Further, the pinion gear moving means 17 attracts the plunger 19 by energizing the solenoid 18 and moves the pinion gear 16 via a lever (not shown), thereby meshing the pinion gear 16 with the ring gear 12.
 図2は、本発明の実施の形態1によるピニオンギアの面取り部の概略構成を示す図である。図2に示すように、ピニオンギア16は、ギアの非トルク伝達面とギア端面とのエッジ部分に、面取りが設けられている。 FIG. 2 is a diagram showing a schematic configuration of the chamfered portion of the pinion gear according to the first embodiment of the present invention. As shown in FIG. 2, the pinion gear 16 is chamfered at the edge portion between the non-torque transmission surface and the gear end surface of the gear.
 スタータ制御手段11は、クランク角センサ13から出力されるクランク軸の回転パルスの周期から、エンジン回転数を算出することが可能である。また、スタータ制御手段11とソレノイド18あるいはスタータモータ14との間にリレーを設け、スタータ制御手段11の指令により、リレーを駆動して通電を制御してもよい。 The starter control means 11 can calculate the engine speed from the cycle of the crankshaft rotation pulse output from the crank angle sensor 13. Further, a relay may be provided between the starter control means 11 and the solenoid 18 or the starter motor 14, and energization may be controlled by driving the relay according to a command from the starter control means 11.
 次に、図1の構成を備えた本実施の形態1のエンジン自動停止始動装置における、自動停止条件成立時のエンジン慣性回転挙動に関して説明する。
 車両の走行中に自動停止条件(例えば、車速15km/h以下かつドライバがブレーキを踏んでいる等)が成立した場合には、エンジンへの燃料供給を停止し、慣性回転させる。
Next, the engine inertia rotation behavior when the automatic stop condition is satisfied in the engine automatic stop / start apparatus according to the first embodiment having the configuration shown in FIG. 1 will be described.
When an automatic stop condition (for example, the vehicle speed is 15 km / h or less and the driver is stepping on the brake) is satisfied while the vehicle is running, the fuel supply to the engine is stopped and the inertia is rotated.
 図3は、本発明の実施の形態1によるエンジン停止特性を示すイメージ図である。自動停止条件が成立したことで、スタータ制御手段11は、エンジンへの燃料供給を停止し、慣性回転させる。この結果、図3に示すように、エンジンのピストンにおける圧縮・膨張サイクルによりトルク変動が発生し、エンジン回転数が脈動を起こしながら低下していく。 FIG. 3 is an image diagram showing engine stop characteristics according to the first embodiment of the present invention. When the automatic stop condition is satisfied, the starter control unit 11 stops the fuel supply to the engine and rotates the inertia. As a result, as shown in FIG. 3, torque fluctuation occurs due to the compression / expansion cycle of the piston of the engine, and the engine speed decreases while causing pulsation.
 そして、回転数が0になると、圧縮行程にあるピストンからの反力により、エンジンが逆回転し始める。その後しばらく回転し、今度は膨張行程にあるピストンからの反力により、エンジンが正転し始める。このように、正転と逆転を繰り返し、最終的には、エンジンの回転摩擦がピストンからの反力より大きくなった時にエンジンが静止する。 And when the rotation speed becomes 0, the engine starts to rotate in reverse due to the reaction force from the piston in the compression stroke. After that, the engine rotates for a while, and this time, the engine starts to rotate forward by the reaction force from the piston in the expansion stroke. As described above, the forward rotation and the reverse rotation are repeated, and finally the engine is stopped when the rotational friction of the engine becomes larger than the reaction force from the piston.
 次に、本実施の形態1におけるエンジン自動停止始動装置の具体的な動作について、図4~図6を用いて詳細に説明する。 Next, a specific operation of the engine automatic stop / start apparatus according to the first embodiment will be described in detail with reference to FIGS.
 図4は、本発明の実施の形態1によるエンジン自動停止および自動始動の流れを示すフローチャートである。まず始めに、ステップS110において、スタータ制御手段11は、自動停止条件が成立しているか否かを判定する。そして、このステップS110において、自動停止条件が成立していないと判定した場合には、スタータ制御手段11は、一連の処理を終了し、次の制御周期へと進む。 FIG. 4 is a flowchart showing a flow of engine automatic stop and automatic start according to Embodiment 1 of the present invention. First, in step S110, the starter control means 11 determines whether or not an automatic stop condition is satisfied. If it is determined in step S110 that the automatic stop condition is not satisfied, the starter control unit 11 ends the series of processes and proceeds to the next control cycle.
 一方、ステップS110において、自動停止条件が成立していると判断した場合には、ステップS120に進み、スタータ制御手段11は、エンジン停止制御を行う。具体的には、スタータ制御手段11は、エンジンへの燃料供給を停止し、慣性回転により回転数を低下させる。なお、慣性回転中の振動を抑制するために、スタータ制御手段11は、吸気制御を行ってもよい。 On the other hand, if it is determined in step S110 that the automatic stop condition is satisfied, the process proceeds to step S120, and the starter control means 11 performs engine stop control. Specifically, the starter control means 11 stops the fuel supply to the engine and reduces the rotational speed by inertial rotation. Note that the starter control means 11 may perform intake air control in order to suppress vibration during inertial rotation.
 次に、ステップS130において、スタータ制御手段11は、エンジン回転数が所定値以下になったか否かを判断する。具体的には、スタータ制御手段11は、慣性回転によりエンジン回転数が低下していき、リングギア12とピニオンギア16が噛み合い可能な回転数差になったと判断した場合には、次のステップS140へと進む。 Next, in step S130, the starter control means 11 determines whether or not the engine speed has become a predetermined value or less. Specifically, if the starter control means 11 determines that the engine speed has decreased due to inertial rotation and the ring gear 12 and the pinion gear 16 have reached a meshing speed difference, the next step S140 is performed. Proceed to
 そして、ステップS140において、スタータ制御手段11は、噛み合い制御を開始し、リングギア12とピニオンギア16とを噛み合わせる。なお、このステップS140の動作の詳細に関しては、図5を用いて後述する。 In step S140, the starter control means 11 starts the meshing control and meshes the ring gear 12 and the pinion gear 16. Details of the operation in step S140 will be described later with reference to FIG.
 その後、ステップS150において、スタータ制御手段11は、再始動条件が成立したか否かを判定する。そして、ステップS150において、再始動条件が成立したと判断した場合には、スタータ制御手段11は、ステップS160において、エンジン再始動制御を行い、エンジンを再始動させる。なお、このステップS160の動作の詳細に関しては、図9を用いて後述する。 Thereafter, in step S150, the starter control means 11 determines whether or not a restart condition is satisfied. If it is determined in step S150 that the restart condition is satisfied, the starter control unit 11 performs engine restart control in step S160 to restart the engine. Details of the operation in step S160 will be described later with reference to FIG.
 次に、先の図4におけるステップS140の噛み合い制御動作の詳細に関して、図5を用いて説明する。図5は、本発明の実施の形態1によるエンジン自動停止時の噛み合い制御の流れを示すフローチャートである。 Next, details of the meshing control operation in step S140 in FIG. 4 will be described with reference to FIG. FIG. 5 is a flowchart showing a flow of meshing control when the engine is automatically stopped according to the first embodiment of the present invention.
 先の図4におけるステップS130において、スタータ制御手段11は、エンジン回転数が噛み合い可能な回転数(例えば、100rpm以下)になったと判定した場合には、この図5に示すステップS141~ステップS143の一連処理により、噛み合い制御を行うこととなる。 When the starter control means 11 determines in step S130 in FIG. 4 that the engine speed has become a meshing speed (for example, 100 rpm or less), the process proceeds from step S141 to step S143 shown in FIG. The meshing control is performed by a series of processes.
 まず始めに、ステップS141において、スタータ制御手段11は、ソレノイド18への通電を開始することで、ピニオンギア16を移動させ、リングギア12へと噛み合わせる。 First, in step S141, the starter control means 11 starts energizing the solenoid 18 to move the pinion gear 16 and mesh with the ring gear 12.
 ここで、ソレノイド18への通電を開始してから、ピニオンギア16が移動し、リングギア12へと当接するまでには、数十mSの移動時間が発生し、その間もエンジン回転数は低下することとなる。そこで、ピニオンギア16がリングギア12へと当接する際に、エンジンが逆回転になっていた場合の動作を、図6、図7を用いて説明する。 Here, since the energization of the solenoid 18 is started and the pinion gear 16 moves and comes into contact with the ring gear 12, a movement time of several tens of mS occurs, and the engine speed decreases during that time. It will be. Therefore, the operation in the case where the engine is reversely rotated when the pinion gear 16 contacts the ring gear 12 will be described with reference to FIGS. 6 and 7.
 図6は、本発明の実施の形態1によるエンジン自動停止始動装置において、エンジンが逆回転時(リングギア逆回転時)にピニオンギア16がリングギア12へと噛み合う途中の状態を駆動軸方向から表した模式図である。また、図7は、本発明の実施の形態1によるエンジン自動停止始動装置において、エンジンが逆回転時にギアの半径方向から見たピニオンギア16とリングギア12との噛み合いの状態を表した模式図であり、上段(a)がギア当接時、中段(b)が噛み合い途中、下段(c)が噛み合い完了時を表している。 FIG. 6 shows a state where the pinion gear 16 is engaged with the ring gear 12 when the engine is reversely rotated (during reverse rotation of the ring gear) in the engine automatic stop / start device according to Embodiment 1 of the present invention. FIG. FIG. 7 is a schematic diagram showing the meshing state of the pinion gear 16 and the ring gear 12 as viewed from the radial direction of the gear when the engine rotates in the reverse direction in the engine automatic stop / start device according to Embodiment 1 of the present invention. The upper stage (a) indicates when the gear is in contact, the middle stage (b) is in the middle of meshing, and the lower stage (c) indicates when the meshing is completed.
 ピニオンギア16がリングギア12へと噛み合う際に、スタータ制御手段11は、前述したように、ソレノイド18への通電を行うことにより、ピニオンギア16をリングギア12へと移動させる。この時、ピニオンギア16とリングギア12とがギア端面で衝突せずに噛み合った場合には、スムーズに噛み合いが完了する。 When the pinion gear 16 meshes with the ring gear 12, the starter control means 11 moves the pinion gear 16 to the ring gear 12 by energizing the solenoid 18 as described above. At this time, when the pinion gear 16 and the ring gear 12 mesh with each other without colliding at the gear end face, the meshing is completed smoothly.
 しかしながら、図7(a)に示すように、ギア端面同士で衝突した場合には、ギア端面で摩擦しながら、もしくは小さくバウンドしながらリングギア12が移動し、図6および図7(b)に示すような噛み合い途中の状態を経て、図7(c)に示すような噛み合い完了状態へと移行する。 However, as shown in FIG. 7 (a), when the gear end faces collide with each other, the ring gear 12 moves while rubbing on the gear end faces or bounces smallly, as shown in FIGS. 6 and 7 (b). After a state in the middle of meshing as shown, the state shifts to a meshing complete state as shown in FIG.
 なお、この図7(a)のような状態が発生した場合にも、先の図2に示したように、ピニオンギア16に面取りがあることで、ピニオンギア16のリングギア12への噛み合い始めが、面取りがない場合に比して早くなる。この結果、図7(c)に示すような噛み合い完了状態となった時に、ピニオンギア16がリングギア12へ、より深く噛み込み、噛み合いをより確実なものとすることができる。 Even when the state shown in FIG. 7A occurs, as shown in FIG. 2, the pinion gear 16 is chamfered so that the pinion gear 16 starts to mesh with the ring gear 12. However, it is faster than when there is no chamfering. As a result, when the meshing completion state as shown in FIG. 7 (c) is reached, the pinion gear 16 meshes deeper into the ring gear 12 and the meshing can be made more reliable.
 上記のように、ピニオンギア16をリングギア12へと噛み合わせた後には、スタータの慣性および摩擦が回転系に加わることとなる。図8は、本発明の実施の形態1によるエンジン自動停止時の噛み合い制御によるエンジン停止特性変化を示すイメージ図である。ここで、図8における実線は、先の図3に相当し、エンジン自動停止時の噛み合い制御を行わない通常のエンジン回転挙動を示している。 As described above, after the pinion gear 16 is engaged with the ring gear 12, the inertia and friction of the starter are applied to the rotating system. FIG. 8 is an image diagram showing a change in engine stop characteristic by the meshing control at the time of automatic engine stop according to Embodiment 1 of the present invention. Here, the solid line in FIG. 8 corresponds to FIG. 3 above, and shows a normal engine rotation behavior in which the meshing control is not performed when the engine is automatically stopped.
 一方、図8における破線は、図5のフローチャートに示すようなステップS141~ステップS143の一連処理を行うことで、エンジン自動停止時の噛み合い制御を実施した場合のエンジン回転挙動を示している。 On the other hand, the broken line in FIG. 8 indicates the engine rotation behavior when the meshing control at the time of automatic engine stop is performed by performing a series of processing from step S141 to step S143 as shown in the flowchart of FIG.
 図8に示すように、噛み合い制御を実施せずにいた場合に比べて、噛み合い制御を実施した場合には、エンジンが停止するまでに要する時間が短くなり、また逆回転時の回転数も小さくなることがわかる。 As shown in FIG. 8, when meshing control is performed, the time required for the engine to stop is shortened and the number of revolutions during reverse rotation is also small compared to when meshing control is not performed. I understand that
 具体的には、スタータ制御手段11は、図5のステップS142において、ソレノイド18への通電後、ピニオンギア16がリングギア12と噛み合い、図8の破線で示した逆回転時の回転数を十分に小さくできるだけの第1の所定時間(例えば、100mS)が経過したか否かを判断する。そして、ステップS142において第1の所定時間が経過したと判断した場合には、ステップS143に進み、スタータ制御手段11は、ソレノイド18への通電を停止し、一連の噛み合い制御を終了する。 Specifically, the starter control means 11 sufficiently sets the rotational speed at the time of reverse rotation indicated by the broken line in FIG. 8 after the energization of the solenoid 18 and the pinion gear 16 meshes with the ring gear 12 in step S142 in FIG. It is determined whether or not a first predetermined time (for example, 100 mS) that can be reduced to a minimum has elapsed. If it is determined in step S142 that the first predetermined time has elapsed, the process proceeds to step S143, where the starter control means 11 stops energization of the solenoid 18 and ends the series of meshing control.
 このように制御することで、少なくともエンジンの回転が停止したと同時、もしくは停止する以前に、ソレノイド18への通電を停止することができる。これにより、早期にソレノイド18への通電を停止することができ、電力消費を抑え、部品の寿命および燃費を改善することが可能となる。 By controlling in this way, energization to the solenoid 18 can be stopped at least at the same time as or before the engine stops. As a result, energization of the solenoid 18 can be stopped at an early stage, power consumption can be suppressed, and the life and fuel consumption of the parts can be improved.
 また、一度噛み合わせることで、逆回転時の回転数を十分小さくしている。このため、エンジン停止前に再始動条件が成立した場合にも、回転数が小さくなっているため、スムーズにギアを噛み合わせて、エンジンを再始動させることが可能となる。 In addition, once engaged, the number of rotations during reverse rotation is made sufficiently small. For this reason, even when the restart condition is satisfied before the engine is stopped, since the rotational speed is small, it is possible to smoothly engage the gears and restart the engine.
 これらの結果、エンジンの完全停止を待たずに再始動が可能となり、エンジン再始動を静粛かつ迅速に行うことができるエンジン自動停止始動装置を得ることができる。 As a result, the engine can be restarted without waiting for a complete stop of the engine, and an engine automatic stop / start device that can perform the engine restart quietly and quickly can be obtained.
 次に、先の図4におけるステップS160のエンジン再始動制御動作の詳細に関して、図9を用いて説明する。図9は、本発明の実施の形態1によるエンジン自動始動時のエンジン再始動制御の流れを示すフローチャートである。 Next, details of the engine restart control operation in step S160 in FIG. 4 will be described with reference to FIG. FIG. 9 is a flowchart showing a flow of engine restart control during automatic engine start according to Embodiment 1 of the present invention.
 先の図4におけるステップS150において、スタータ制御手段11は、再始動条件が成立したと判定した場合には、この図9に示すステップS161~ステップS163の一連処理により、エンジン再始動制御を行うこととなる。 If it is determined in step S150 in FIG. 4 that the restart condition is satisfied, the starter control means 11 performs engine restart control by a series of processes in steps S161 to S163 shown in FIG. It becomes.
 まず始めに、ステップS161において、スタータ制御手段11は、ソレノイド18への通電を開始することでピニオンギア16を移動させ、リングギア12へと噛み合わせる。 First, in step S161, the starter control means 11 starts energizing the solenoid 18 to move the pinion gear 16 and mesh with the ring gear 12.
 次に、ステップS162において、スタータ制御手段11は、ソレノイド18への通電後、ピニオンギア16がリングギア12へと当接するまでの第2の所定時間(例えば、30mS)が経過したか否かを判断する。そして、ステップS162において第2の所定時間が経過したと判断した場合には、ステップS163に進み、スタータ制御手段11は、スタータモータ14への通電を開始し、クランキングによりエンジンを再始動する。 Next, in step S162, the starter control means 11 determines whether or not a second predetermined time (for example, 30 mS) until the pinion gear 16 comes into contact with the ring gear 12 after the energization of the solenoid 18 has elapsed. to decide. If it is determined in step S162 that the second predetermined time has elapsed, the process proceeds to step S163, where the starter control means 11 starts energizing the starter motor 14 and restarts the engine by cranking.
 以上のように、実施の形態1に係るエンジン自動停止始動装置は、ピニオンギアと噛み合い、駆動力をエンジンに伝達するリングギアと、エンジンのクランク角を検出するクランク角センサと、通電によりピニオンギアを回転させるスタータモータと、ソレノイドへの通電により、プランジャが吸引され、レバーを介してピニオンギアを移動させ、リングギアへと噛み合わせるピニオンギア移動手段と、スタータモータの出力軸に連結され、リングギアからトルクが入力された場合には空転するワンウェイクラッチと、スタータモータおよびソレノイドへの通電を制御するスタータ制御手段とを備えている。 As described above, the engine automatic stop / start device according to Embodiment 1 is engaged with the pinion gear, the ring gear that transmits the driving force to the engine, the crank angle sensor that detects the crank angle of the engine, and the pinion gear that is energized. The starter motor that rotates and the plunger is attracted by energizing the solenoid, the pinion gear is moved through the lever, and the pinion gear moving means for meshing with the ring gear is connected to the output shaft of the starter motor. A one-way clutch that rotates idly when torque is input from the gear, and a starter control means that controls energization to the starter motor and the solenoid.
 そして、自動停止条件の成立によりエンジンが慣性回転を開始し、噛み合い可能な回転数となった時にソレノイドへ通電し、ピニオンギアとリングギアとを噛み合わせた後、逆回転の回転数が十分小さくなった時点でソレノイドへの通電を停止する。 When the engine starts inertial rotation due to the establishment of the automatic stop condition, the solenoid is energized when the meshing rotational speed is reached, and after the pinion gear and the ring gear are meshed, the rotational speed of the reverse rotation is sufficiently small. At that point, stop energizing the solenoid.
 その後、再始動条件の成立により、ソレノイドへ再度通電し、ピニオンギアがリングギアに当接するまでの時間経過後、スタータモータへと通電し、クランキングによりエンジンを再始動させ、エンジン再始動後にソレノイドおよびスタータモータへの通電を停止する。 After that, when the restart condition is satisfied, the solenoid is energized again. After the time until the pinion gear comes into contact with the ring gear, the starter motor is energized, the engine is restarted by cranking, and the solenoid is restarted after the engine is restarted. Also stop energizing the starter motor.
 このような一連動作を行うことにより、早期にソレノイドへの通電を停止でき、電力消費を抑えて部品の寿命や燃費の改善を図ることができるとともに、ソレノイドの温度上昇抑制等を達成することができる。さらに、逆回転の回転数が十分小さくなっているため、ソレノイドへの通電停止後、エンジン停止前に再始動条件が成立した場合にも、スムーズにギアを噛み合わせてエンジンを再始動することができる。 By performing such a series of operations, the energization to the solenoid can be stopped early, the power consumption can be reduced, the life of the parts and the fuel consumption can be improved, and the temperature rise suppression of the solenoid can be achieved. it can. In addition, since the reverse rotation speed is sufficiently small, the engine can be smoothly meshed and restarted even when the restart condition is satisfied before stopping the engine after stopping energization of the solenoid. it can.
 さらに、再始動条件成立時にソレノイドへの通電後、ピニオンギアがリングギアに当接するまでの所定時間経過後、スタータモータへと通電することにより、より確実な噛み合いを実現することができる。 Furthermore, after energizing the solenoid when the restart condition is established, energizing the starter motor after a predetermined time until the pinion gear comes into contact with the ring gear makes it possible to realize more reliable meshing.
 実施の形態2.
 図10は、本発明の実施の形態2によるエンジン自動停止始動装置10aの概略構成を示すブロック図である。本実施の形態2における図10の構成は、先の実施の形態1における図1の構成と比較すると、クランク角センサ13の代わりに、逆回転検知クランク角センサ13aを備えている点のみが異なっている。そこで、相違点であるこの逆回転検知クランク角センサ13aを中心に、以下に説明する。
Embodiment 2. FIG.
FIG. 10 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10a according to Embodiment 2 of the present invention. The configuration of FIG. 10 in the second embodiment is different from the configuration of FIG. 1 in the first embodiment only in that a reverse rotation detection crank angle sensor 13a is provided instead of the crank angle sensor 13. ing. Therefore, the following description will be made focusing on the reverse rotation detection crank angle sensor 13a which is a difference.
 逆回転検知クランク角センサ13aは、エンジンの逆回転を検出することのできるセンサである。従って、スタータ制御手段11は、先の図5のステップS142における第1の所定時間の経過を判断する代わりに、この逆回転検知クランク角センサ13aの出力に基づいて、噛み合い後のソレノイド18への通電を停止してもよい。 The reverse rotation detection crank angle sensor 13a is a sensor that can detect the reverse rotation of the engine. Therefore, the starter control means 11 does not determine the elapse of the first predetermined time in step S142 of FIG. 5, but based on the output of the reverse rotation detection crank angle sensor 13a, The energization may be stopped.
 なお、エンジンの逆回転が検出可能であれば、逆回転検知クランク角センサ13aに限らず、他の手段を用いてもよい。 In addition, as long as the reverse rotation of the engine can be detected, not only the reverse rotation detection crank angle sensor 13a but also other means may be used.
 このように、逆回転検知クランク角センサ13aのようなエンジン逆回転検出手段を用いることにより、現在エンジンが正転中か逆回転中かを検出することが可能となる。この結果、例えば、慣性回転によりエンジン回転数が低下し、正転中に噛み合い後、逆回転を開始した時に、スタータ制御手段11は、ソレノイド18への通電を停止することができる。 Thus, by using engine reverse rotation detection means such as the reverse rotation detection crank angle sensor 13a, it is possible to detect whether the engine is currently rotating forward or reverse. As a result, for example, when the engine speed decreases due to inertial rotation and meshes during forward rotation and then reverse rotation is started, the starter control means 11 can stop energization of the solenoid 18.
 一般に、ピニオンギア16とワンウェイクラッチ15とは一体に構成され、スタータモータ14の出力軸にスプライン嵌合されている。このスプライン嵌合は、ワンウェイクラッチ15があるために、ピニオンギア16の回転数がスタータモータ14の出力軸回転数に比して低いと前進、高いと後退するように構成されている。 Generally, the pinion gear 16 and the one-way clutch 15 are integrally formed and are splined to the output shaft of the starter motor 14. The spline fitting is configured so that the forward movement is generated when the rotation speed of the pinion gear 16 is lower than the rotation speed of the output shaft of the starter motor 14 and the backward movement is performed when the rotation speed is high because the one-way clutch 15 is provided.
 そのため、スタータモータを回転させていない状態で、ピニオンギア16とリングギア12との噛み合いが解除されるためには、ピニオンギア16がエンジンの正転方向に回転する、つまり、リングギア12が正転する必要がある。よって、逆回転中は、ソレノイド18への通電を停止したとしても、ピニオンギア16が引き戻されることはなく、噛み合いを維持した状態のままとなる。 Therefore, in order to release the meshing between the pinion gear 16 and the ring gear 12 in a state where the starter motor is not rotated, the pinion gear 16 rotates in the normal rotation direction of the engine, that is, the ring gear 12 is normal. It is necessary to roll. Therefore, during reverse rotation, even if the energization to the solenoid 18 is stopped, the pinion gear 16 is not pulled back and remains in a meshed state.
 そして、次にエンジンが正転する際には、噛み合いが解除されるが、その時点では、エンジンの回転数は、噛み合い可能な回転数範囲内になっている。従って、スタータ制御手段11は、再始動条件が成立した時点でピニオンギア16をリングギア12に噛み合わせて、スタータモータ14へと通電し、エンジンを再始動させることができる。 Then, the next time the engine rotates forward, the meshing is released. At that time, the engine speed is within the meshing speed range. Therefore, the starter control means 11 can engage the pinion gear 16 with the ring gear 12 when the restart condition is satisfied, energize the starter motor 14, and restart the engine.
 以上のように、実施の形態2によれば、エンジン逆回転検出手段を用いることにより、第1の所定時間経過による逆転判定よりも、より精密にエンジンの正転、逆転の状態を検出することができる。この結果、制御精度の向上を実現することができる。 As described above, according to the second embodiment, by using the engine reverse rotation detection means, it is possible to detect the forward rotation and reverse rotation states of the engine more precisely than the reverse rotation determination after the first predetermined time has elapsed. Can do. As a result, improvement in control accuracy can be realized.
 実施の形態3.
 先の実施の形態1では、図4に示したように、ステップS140で噛み合い制御を行い、その後、ステップS150で再始動条件が成立した場合には、ステップS160でエンジン再始動制御を行う場合について説明した。これに対して、本実施の形態3では、ステップS140の噛み合い制御中にも、エンジン再始動条件の成立を考慮する場合について説明する。
Embodiment 3 FIG.
In the first embodiment, as shown in FIG. 4, when the meshing control is performed in step S140, and then the restart condition is satisfied in step S150, the engine restart control is performed in step S160. explained. On the other hand, in the third embodiment, a case will be described in which establishment of the engine restart condition is considered even during the meshing control in step S140.
 図11は、本発明の実施の形態3によるエンジン自動停止時の噛み合い制御の流れを示すフローチャートである。本実施の形態3において、スタータ制御手段11は、ソレノイド18へ通電後、ソレノイド18への通電を停止する前に再始動条件が成立した場合を考慮した制御を行っている。 FIG. 11 is a flowchart showing a flow of meshing control at the time of engine automatic stop according to Embodiment 3 of the present invention. In the third embodiment, the starter control means 11 performs control in consideration of the case where the restart condition is satisfied after the solenoid 18 is energized and before the solenoid 18 is deenergized.
 なお、図11におけるステップS141~ステップS143は、先の実施の形態1で説明した図5におけるステップS141~ステップS143と同様である。そして、図11におけるステップS144~ステップS146が、本実施の形態3で新たに追加されたステップであり、これらの追加ステップの処理を中心に、以下に説明する。 Note that steps S141 to S143 in FIG. 11 are the same as steps S141 to S143 in FIG. 5 described in the first embodiment. Steps S144 to S146 in FIG. 11 are newly added steps in the third embodiment, and the following description will be focused on the processing of these additional steps.
 先の実施の形態1と同様に、エンジンの自動停止による慣性回転により、エンジン回転数が低下し、噛み合い可能な回転数になった時(すなわち、先の図4におけるステップS130で、YESと判定された場合)に、この図11に示すステップS141~ステップS146の一連処理により、噛み合い制御を行うこととなる。 As in the first embodiment, when the engine speed decreases due to the inertial rotation due to the automatic stop of the engine and becomes a meshing speed (that is, YES is determined in step S130 in FIG. 4). In this case, the meshing control is performed by a series of processes in steps S141 to S146 shown in FIG.
 まず始めに、ステップS141において、スタータ制御手段11は、ソレノイド18へと通電することでピニオンギア16を移動させ、リングギア12へと噛み合わせる。 First, in step S141, the starter control means 11 moves the pinion gear 16 by energizing the solenoid 18 and meshes with the ring gear 12.
 そして、ステップS144へと進み、スタータ制御手段11は、再始動条件が成立しているか否かを判断する。すなわち、本実施の形態3における図11のフローチャートでは、スタータ制御手段11は、ソレノイド18へ通電後、ソレノイド18への通電を停止する前に再始動条件が成立したか否かの判断を行っている。 And it progresses to step S144 and the starter control means 11 judges whether restart conditions are satisfied. That is, in the flowchart of FIG. 11 in the third embodiment, the starter control means 11 determines whether or not the restart condition is satisfied after the solenoid 18 is energized and before the solenoid 18 is energized. Yes.
 ステップS144において、再始動条件が成立していない場合には、ステップS142に進む。そして、先の実施の形態1で説明したように、スタータ制御手段11は、ステップS142において、ソレノイド18への通電を停止する(第1の所定時間経過)まで再始動条件が成立しなければ、ステップS143に進み、ソレノイド18への通電を停止し、一連の処理を終了する。 In step S144, if the restart condition is not satisfied, the process proceeds to step S142. As described in the first embodiment, the starter control unit 11 determines that the restart condition is not satisfied until the energization of the solenoid 18 is stopped (first predetermined time elapses) in step S142. Proceeding to step S143, the energization of the solenoid 18 is stopped, and the series of processes is terminated.
 このように、再始動条件が成立しないまま、噛み合い制御が完了した場合には、先の実施の形態1における図4のステップS150、ステップS160、および図9のステップS161~ステップS163で説明した一連の制御を行うこととなる。具体的には、噛み合い制御が完了した後に、再始動条件が成立(ステップS150)したことで、再度ソレノイド18へ通電し(ステップS161)、所定時間経過後スタータモータ14へと通電を行う(ステップS162、S163)。 As described above, when the meshing control is completed without the restart condition being satisfied, the series described in steps S150 and S160 in FIG. 4 and steps S161 to S163 in FIG. 9 in the first embodiment. Will be controlled. Specifically, after the meshing control is completed, when the restart condition is satisfied (step S150), the solenoid 18 is energized again (step S161), and the starter motor 14 is energized after a predetermined time (step S161). S162, S163).
 しかしながら、ソレノイド18への通電を停止する前、もしくはピニオンギア16とリングギア12との噛み合いが解除される前に、再始動条件が成立した場合には、図11に示すように、所定時間の経過を待つ必要はない。従って、先のステップS144において、再始動条件が成立した場合には、ステップS145に進み、スタータ制御手段11は、ソレノイド18とスタータモータ14への通電を同時に行うか、もしくはスタータモータ14への通電後にソレノイド18へと通電を行う。 However, when the restart condition is satisfied before the energization of the solenoid 18 is stopped or before the engagement of the pinion gear 16 and the ring gear 12 is released, as shown in FIG. There is no need to wait for progress. Accordingly, if the restart condition is satisfied in the previous step S144, the process proceeds to step S145, where the starter control means 11 energizes the solenoid 18 and the starter motor 14 simultaneously, or energizes the starter motor 14. Later, the solenoid 18 is energized.
 さらに、ステップS146に進み、スタータ制御手段11は、クランキングによりエンジンを再始動させる。なお、図示していないが、ステップS145、ステップS146を実行した後は、先の図4におけるステップS150、ステップS160を行うことなく、一連の処理を終了することとなる。 Furthermore, it progresses to step S146 and the starter control means 11 restarts an engine by cranking. Although not shown, after step S145 and step S146 are executed, the series of processing ends without performing steps S150 and S160 in FIG.
 これにより、ピニオンギア16がリングギア12へ噛み合い後、すぐに再始動条件が成立した場合には、ソレノイド18への通電を停止することなく、スタータモータ14へ通電することができる。このため、エンジンの再始動をより迅速に行うことができる。 Thus, when the restart condition is satisfied immediately after the pinion gear 16 meshes with the ring gear 12, the starter motor 14 can be energized without stopping the energization of the solenoid 18. For this reason, the engine can be restarted more quickly.
 以上のように、実施の形態3によれば、噛み合い制御中にエンジン再始動条件が成立した場合には、先の実施の形態1のようにソレノイドへの通電を停止することなく、スタータモータへ通電することができる。この結果、先の実施の形態1と比較して、噛み合い制御中にエンジン再始動条件が成立した場合のエンジンの再始動を、より迅速に行うことが可能となる。 As described above, according to the third embodiment, when the engine restart condition is satisfied during the engagement control, the energization to the solenoid is stopped without stopping the energization to the solenoid as in the first embodiment. It can be energized. As a result, compared to the first embodiment, the engine can be restarted more quickly when the engine restart condition is satisfied during the meshing control.
 実施の形態4.
 本実施の形態4では、ピニオンギア16とリングギア12との噛み合いが成立しているか否かを判別することのできる噛み合い判別手段をさらに備え、噛み合い判別手段の出力に基づいてエンジン再始動制御を行うことで、エンジン再始動の迅速化を図る場合について説明する。
Embodiment 4 FIG.
The fourth embodiment further includes a mesh determination unit that can determine whether or not the mesh between the pinion gear 16 and the ring gear 12 is established, and performs engine restart control based on the output of the mesh determination unit. A description will be given of a case where the engine restart is speeded up.
 図12は、本発明の実施の形態4によるエンジン自動停止始動装置10bの概略構成を示すブロック図である。本実施の形態4における図12の構成は、先の実施の形態1における図1の構成と比較すると、噛み合い判別手段20をさらに備えている点が異なっている。そこで、相違点であるこの噛み合い判別手段20を中心に、以下に説明する。 FIG. 12 is a block diagram showing a schematic configuration of an engine automatic stop / start device 10b according to Embodiment 4 of the present invention. The configuration of FIG. 12 in the fourth embodiment is different from the configuration of FIG. 1 in the first embodiment in that it further includes a meshing determination means 20. Therefore, the following description will be made focusing on the meshing discrimination means 20 which is a difference.
 本実施の形態4では、先の実施の形態1と同様に、自動停止条件の成立によりエンジンを慣性回転させ、エンジン回転数が低下した時にソレノイド18へ通電し、ピニオンギア16をリングギア12と噛み合わせる(先の図1におけるステップS110~ステップS140に相当)。 In the fourth embodiment, as in the first embodiment, the engine is inertially rotated by the establishment of the automatic stop condition. When the engine speed decreases, the solenoid 18 is energized, and the pinion gear 16 is connected to the ring gear 12. Engage (corresponding to steps S110 to S140 in FIG. 1).
 その後、再始動条件が成立した(先の図1におけるステップS150に相当)以降のステップS160のエンジン再始動制御の処理が、先の実施の形態1とは異なっており、図13を用いて詳細に説明する。図13は、本発明の実施の形態4によるエンジン自動始動時のエンジン再始動制御の流れを示すフローチャートである。 Thereafter, the engine restart control process in step S160 after the restart condition is satisfied (corresponding to step S150 in the previous FIG. 1) is different from that in the first embodiment, and will be described in detail with reference to FIG. Explained. FIG. 13 is a flowchart showing a flow of engine restart control during automatic engine start according to Embodiment 4 of the present invention.
 先の図4におけるステップS150において、スタータ制御手段11は、再始動条件が成立したと判定した場合には、この図13に示すステップS161~ステップS164の一連処理により、エンジン再始動制御を行うこととなる。 If it is determined in step S150 in FIG. 4 that the restart condition is satisfied, the starter control means 11 performs engine restart control by a series of processes in steps S161 to S164 shown in FIG. It becomes.
 なお、図13におけるステップS161~ステップS163は、先の実施の形態1で説明した図9におけるステップS161~ステップS163と同様である。そして、図13におけるステップS164が、本実施の形態4で新たに追加されたステップであり、この追加ステップの処理を中心に、以下に説明する。 Note that steps S161 to S163 in FIG. 13 are the same as steps S161 to S163 in FIG. 9 described in the first embodiment. Step S164 in FIG. 13 is a step newly added in the fourth embodiment, and the following description will be focused on the processing of this addition step.
 まず始めに、ステップS164において、スタータ制御手段11は、噛み合い判別手段20の出力に基づき、ピニオンギア16とリングギア12との噛み合いが継続しているか否かを判別する。 First, in step S164, the starter control unit 11 determines whether or not the engagement of the pinion gear 16 and the ring gear 12 is continued based on the output of the engagement determination unit 20.
 そして、ピニオンギア16とリングギア12が噛み合っていると判別した場合には、ステップS163に進み、スタータ制御手段11は、ソレノイド18とスタータモータ14への通電を同時、もしくはスタータモータ14への通電後にソレノイド18へと通電を行う。 If it is determined that the pinion gear 16 and the ring gear 12 are engaged, the process proceeds to step S163 where the starter control means 11 energizes the solenoid 18 and the starter motor 14 simultaneously or energizes the starter motor 14. Later, the solenoid 18 is energized.
 一方、再始動条件が成立した時に、ステップS164において、ピニオンギア16とリングギア12とが噛み合っていないと判別した場合には、ステップS161へ進む。そして、スタータ制御手段11は、先の実施の形態1における図9の流れと同様に、ソレノイド18へと通電を行い(ステップS161)、第2の所定時間経過後に(ステップS162)、スタータモータ14への通電を行う(ステップS163)。 On the other hand, when the restart condition is satisfied, if it is determined in step S164 that the pinion gear 16 and the ring gear 12 are not engaged, the process proceeds to step S161. Then, similarly to the flow of FIG. 9 in the first embodiment, the starter control means 11 energizes the solenoid 18 (step S161), and after the second predetermined time has elapsed (step S162), the starter motor 14 Is energized (step S163).
 このように、本実施の形態4では、噛み合い判別手段20をさらに備えることで、再始動条件成立時において、ピニオンギア16とリングギア12との噛み合いが継続しているか否かを判別可能となる。このため、噛み合いが継続している場合には、ソレノイド18への通電後、所定時間の経過を待つことなく、スタータモータ14へと通電することができる。この結果、エンジンの再始動をより迅速に行うことが可能となる。 As described above, in the fourth embodiment, it is possible to determine whether or not the engagement between the pinion gear 16 and the ring gear 12 is continued when the restart condition is satisfied by further including the engagement determining unit 20. . For this reason, when the meshing continues, the starter motor 14 can be energized without waiting for the elapse of a predetermined time after energizing the solenoid 18. As a result, the engine can be restarted more quickly.
 以上のように、実施の形態4によれば、噛み合い判別手段をさらに備えることで、再始動条件成立時において、ピニオンギアとリングギアとの噛み合いが継続しているか否かを判別することができる。この結果、先の実施の形態1と比較して、ピニオンギアとリングギアとの噛み合いが継続している場合のエンジンの再始動を、より迅速に行うことが可能となる。 As described above, according to the fourth embodiment, it is possible to determine whether or not the engagement between the pinion gear and the ring gear is continued when the restart condition is satisfied by further including the engagement determining unit. . As a result, the engine can be restarted more quickly when the meshing between the pinion gear and the ring gear is continued as compared with the first embodiment.
 なお、上述した実施の形態3、4では、実施の形態1の構成をもとに、エンジン再始動の迅速化を図る場合について説明した。しかしながら、この実施の形態3、4に係る発明は、これに限定されるものではなく、実施の形態2の構成に対しても、同様に適用可能であり、同様の効果を得ることができる。 In the third and fourth embodiments described above, the case where the engine restart is accelerated based on the configuration of the first embodiment has been described. However, the invention according to the third and fourth embodiments is not limited to this, and can be similarly applied to the configuration of the second embodiment, and the same effects can be obtained.

Claims (8)

  1.  自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動装置において、
     通電によりピニオンギアを回転させるスタータモータと、
     前記ピニオンギアと噛み合い、駆動力を前記エンジンに伝達するリングギアと、
     通電により前記ピニオンギアを移動させて、前記リングギアとの噛み合わせを行わせるピニオンギア移動手段と、
     前記自動停止条件の成立によるエンジンの慣性回転中に、前記エンジンの回転数に基づいて噛み合い制御を実行し、再始動条件の成立によりエンジンを再始動させるエンジン再始動制御を実行するスタータ制御手段と
     を備え、
     前記スタータ制御手段における前記噛み合い制御は、少なくともエンジンの回転が停止したと同時もしくは停止する以前に前記ピニオンギア移動手段への通電を停止する
     ことを特徴とするエンジン自動停止始動装置。
    In the engine automatic stop start device that automatically stops the engine when the automatic stop condition is satisfied and restarts the engine when the restart condition is satisfied,
    A starter motor that rotates the pinion gear by energization;
    A ring gear meshing with the pinion gear and transmitting a driving force to the engine;
    A pinion gear moving means for moving the pinion gear by energization to engage with the ring gear;
    Starter control means for executing meshing control based on the number of revolutions of the engine during inertial rotation of the engine due to establishment of the automatic stop condition, and executing engine restart control for restarting the engine when the restart condition is satisfied; With
    The engine automatic stop and start device characterized in that the meshing control in the starter control means stops energization to the pinion gear moving means at least at the same time as or before the rotation of the engine stops.
  2.  請求項1に記載のエンジン自動停止始動装置において、
     前記スタータ制御手段における前記噛み合い制御は、前記ピニオンギア移動手段への通電を行ってから第1の所定時間が経過後に前記ピニオンギア移動手段への通電を停止する
     ことを特徴とするエンジン自動停止始動装置。
    The engine automatic stop and start device according to claim 1,
    The meshing control in the starter control means is characterized in that the energization to the pinion gear moving means is stopped after a first predetermined time has elapsed since the energization to the pinion gear moving means is performed. apparatus.
  3.  請求項1または2に記載のエンジン自動停止始動装置において、
     エンジンのクランク軸の逆回転を検出する逆回転検出手段をさらに備え、
     前記スタータ制御手段における前記噛み合い制御は、前記ピニオンギア移動手段への通電を行った後、前記逆回転検出手段により前記クランク軸の逆回転が検出されたことで前記ピニオンギア移動手段への通電を停止する
     ことを特徴とするエンジン自動停止始動装置。
    The engine automatic stop and start device according to claim 1 or 2,
    Further comprising reverse rotation detection means for detecting reverse rotation of the crankshaft of the engine,
    In the meshing control in the starter control means, after the energization to the pinion gear moving means, the energization to the pinion gear moving means is performed by detecting the reverse rotation of the crankshaft by the reverse rotation detecting means. An engine automatic stop and start device characterized by stopping.
  4.  請求項1ないし3のいずれか1項に記載のエンジン自動停止始動装置において、
     前記スタータ制御手段は、前記スタータモータと前記ピニオンギア移動手段とを独立して通電制御可能であり、前記エンジン再始動制御は、前記ピニオンギア移動手段への通電を行った後、第2の所定時間経過後に前記スタータモータへの通電を行う
     ことを特徴とするエンジン自動停止始動装置。
    The engine automatic stop and start device according to any one of claims 1 to 3,
    The starter control means can independently control the energization of the starter motor and the pinion gear moving means, and the engine restart control performs a second predetermined operation after energizing the pinion gear moving means. An engine automatic stop and start device characterized by energizing the starter motor after a lapse of time.
  5.  請求項4に記載のエンジン自動停止始動装置において、
     前記ピニオンギアと前記リングギアとの噛み合いが成立しているか否かを判別する噛み合い判別手段をさらに備え、
     前記エンジン再始動制御の実行を開始する際に、前記噛み合い判別手段により噛み合いが成立していると判別された場合には、前記スタータモータへの通電を行うとともに、前記スタータモータへの通電と同時もしくは通電した後に前記ピニオンギア移動手段への通電を行い、前記噛み合い判別手段により噛み合いが成立していないと判別された場合には、前記ピニオンギア移動手段への通電を行った後、前記第2の所定時間経過後に前記スタータモータへの通電を行う
     ことを特徴とするエンジン自動停止始動装置。
    The engine automatic stop / start device according to claim 4,
    A mesh determining means for determining whether or not the mesh between the pinion gear and the ring gear is established;
    When starting the execution of the engine restart control, if it is determined by the engagement determining means that engagement is established, the starter motor is energized and simultaneously with the energization of the starter motor. Alternatively, after the energization is performed, the pinion gear moving unit is energized, and when the meshing determination unit determines that the meshing is not established, the pinion gear moving unit is energized, and then the second pinion gear moving unit is energized. The starter motor is energized after the elapse of a predetermined time. An automatic engine stop / start device.
  6.  請求項1ないし5のいずれか1項に記載のエンジン自動停止始動装置において、
     前記ピニオンギアの非トルク伝達面とギア端面とのエッジに面取りが設けられている
     ことを特徴とするエンジン自動停止始動装置。
    The engine automatic stop and start device according to any one of claims 1 to 5,
    A chamfering is provided at an edge between the non-torque transmission surface and the gear end surface of the pinion gear.
  7.  自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動装置において、
     通電によりピニオンギアを回転させるスタータモータと、
     前記ピニオンギアと噛み合い、駆動力を前記エンジンに伝達するリングギアと、
     通電により前記ピニオンギアを移動させて、前記リングギアとの噛み合わせを行わせるピニオンギア移動手段と、
     前記自動停止条件の成立によるエンジンの慣性回転中に、前記エンジンの回転数に基づいて前記ピニオンギア移動手段へ通電を行い、前記ピニオンギアと前記リングギアとを噛み合わせ、少なくともエンジンの回転が停止したと同時もしくは停止する以前に前記ピニオンギア移動手段への通電を停止する噛み合い制御を実行し、再始動条件の成立によりエンジンを再始動させるエンジン再始動制御を実行するスタータ制御手段と
     を備え、
     前記スタータ制御手段は、前記噛み合い制御を実行および完了した後に前記再始動条件が成立した場合には、前記ピニオンギア移動手段への通電を行った後、前記第2の所定時間経過後に前記スタータモータへの通電を行い、前記噛み合い制御を実行した後、前記ピニオンギア移動手段への通電中に前記再始動条件が成立した場合には、前記ピニオンギア移動手段への通電を停止せずに、前記スタータモータへの通電を行う
     ことを特徴とするエンジン自動停止始動装置。
    In the engine automatic stop start device that automatically stops the engine when the automatic stop condition is satisfied and restarts the engine when the restart condition is satisfied,
    A starter motor that rotates the pinion gear by energization;
    A ring gear meshing with the pinion gear and transmitting a driving force to the engine;
    A pinion gear moving means for moving the pinion gear by energization to engage with the ring gear;
    During the inertial rotation of the engine due to the establishment of the automatic stop condition, the pinion gear moving means is energized based on the engine speed, and the pinion gear and the ring gear are meshed, and at least the engine rotation is stopped. Starter control means for executing meshing control for stopping energization of the pinion gear moving means at the same time or before stopping, and executing engine restart control for restarting the engine when a restart condition is satisfied, and
    When the restart condition is satisfied after the execution and completion of the meshing control, the starter control means energizes the pinion gear moving means and then the starter motor after the second predetermined time has elapsed. When the restart condition is satisfied during energization of the pinion gear moving means after performing energization to the pinion gear moving means, the energization to the pinion gear moving means is not stopped, An engine automatic stop and start device characterized by energizing a starter motor.
  8.  自動停止条件の成立によりエンジンを自動停止させ、再始動条件の成立によりエンジンを再始動させるエンジン自動停止始動制御方法であって、
     前記自動停止条件の成立によるエンジンの慣性回転中に、前記エンジンの回転数に基づいてピニオンギア移動手段への通電を行うことでピニオンギアをリングギアと噛み合わせ、少なくともエンジンの回転が停止したと同時もしくは停止する以前に前記ピニオンギア移動手段への通電を停止する噛み合い制御ステップと、
     前記噛み合い制御ステップが完了した後、前記再始動条件の成立により前記ピニオンギア移動手段およびスタータモータへの通電を行うことで前記エンジンを再始動させるエンジン再始動制御ステップと
     を備え、
     前記噛み合い制御ステップの実行時において、前記噛み合い制御ステップが完了する前に前記再始動条件が成立した場合には、前記噛み合い制御ステップの完了を待たずに前記エンジン再始動制御ステップの実行に移行する
     ことを特徴とするエンジン自動停止始動制御方法。
    An engine automatic stop start control method for automatically stopping the engine when the automatic stop condition is satisfied and restarting the engine when the restart condition is satisfied,
    During the inertial rotation of the engine due to the establishment of the automatic stop condition, the pinion gear meshes with the ring gear by energizing the pinion gear moving means based on the engine speed, and at least the engine rotation is stopped. A meshing control step for stopping energization of the pinion gear moving means simultaneously or before stopping;
    An engine restart control step for restarting the engine by energizing the pinion gear moving means and the starter motor when the restart condition is satisfied after the meshing control step is completed;
    When the meshing control step is executed, if the restart condition is satisfied before the meshing control step is completed, the process proceeds to the engine restart control step without waiting for the meshing control step to be completed. An engine automatic stop / start control method.
PCT/JP2011/080012 2011-02-28 2011-12-26 Automatic engine stopping/starting device and automatic engine stopping/starting control method WO2012117649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013502159A JP5644935B2 (en) 2011-02-28 2011-12-26 Engine automatic stop start device and engine automatic stop start control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011041720 2011-02-28
JP2011-041720 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117649A1 true WO2012117649A1 (en) 2012-09-07

Family

ID=46757596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080012 WO2012117649A1 (en) 2011-02-28 2011-12-26 Automatic engine stopping/starting device and automatic engine stopping/starting control method

Country Status (2)

Country Link
JP (1) JP5644935B2 (en)
WO (1) WO2012117649A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118890A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Engine starting device, and engine starting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070699A (en) * 2000-08-23 2002-03-08 Toyota Motor Corp Fuel consumption saving type automobile
JP2007107527A (en) * 2005-10-13 2007-04-26 Robert Bosch Gmbh Method to engage starter pinion of starter with ring gear of internal combustion engine during inertia rotation of internal combustion engine and starter control device for internal combustion engine
JP2010144554A (en) * 2008-12-17 2010-07-01 Denso Corp Starter
JP2010236533A (en) * 2008-09-02 2010-10-21 Denso Corp Automatic stop/start control device for engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153567A (en) * 1985-12-26 1987-07-08 Nippon Denso Co Ltd Starter device
JP2003003938A (en) * 2001-06-25 2003-01-08 Hitachi Ltd Engine automatic stop/start system and starting method
JP3749461B2 (en) * 2001-09-10 2006-03-01 三菱電機株式会社 Engine starter
JP2003328912A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Starter
JP5369843B2 (en) * 2009-04-02 2013-12-18 株式会社デンソー Engine starter
JP5251687B2 (en) * 2009-04-02 2013-07-31 株式会社デンソー Starter
JP5001993B2 (en) * 2009-10-28 2012-08-15 三菱電機株式会社 Engine starter
JP2011127504A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Automatic starting device for engine
JP5353721B2 (en) * 2010-01-14 2013-11-27 株式会社デンソー Engine stop / start control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070699A (en) * 2000-08-23 2002-03-08 Toyota Motor Corp Fuel consumption saving type automobile
JP2007107527A (en) * 2005-10-13 2007-04-26 Robert Bosch Gmbh Method to engage starter pinion of starter with ring gear of internal combustion engine during inertia rotation of internal combustion engine and starter control device for internal combustion engine
JP2010236533A (en) * 2008-09-02 2010-10-21 Denso Corp Automatic stop/start control device for engine
JP2010144554A (en) * 2008-12-17 2010-07-01 Denso Corp Starter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118890A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Engine starting device, and engine starting method

Also Published As

Publication number Publication date
JP5644935B2 (en) 2014-12-24
JPWO2012117649A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5007839B2 (en) Engine automatic stop / start control device
JP4835774B2 (en) Engine stop / start control device
JP4214401B2 (en) Engine automatic stop / restart device
JP5656013B2 (en) Engine automatic stop / start control device
JP5566530B2 (en) Engine starting device and engine starting method
JP5316715B2 (en) Starter control device, starter control method, and engine starter
JP2012241555A (en) Automatic engine stopping and restarting apparatus
JP5392280B2 (en) Engine automatic stop / start control device
JP5224005B2 (en) Starter control device, starter control method, and engine starter
EP2895733B1 (en) Control device of vehicle and control method of vehicle
WO2013021812A1 (en) Engine starting device and engine starting method
JP5496412B2 (en) Engine automatic stop start device and engine automatic stop start control method
JP6076485B2 (en) Engine automatic stop / restart device
JP5644935B2 (en) Engine automatic stop start device and engine automatic stop start control method
US20130019711A1 (en) Engine control device and control method, engine starting device, and vehicle
JP5001993B2 (en) Engine starter
JP5075226B2 (en) Engine starter
JP2013221417A (en) Engine starting device and engine starting method
WO2017130995A1 (en) Engine starting device
JP5623363B2 (en) Engine starting device and engine starting method
WO2012131845A1 (en) Starter control apparatus and method, and vehicle
JP5554436B1 (en) Engine starter
JP2012021499A (en) Starter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859797

Country of ref document: EP

Kind code of ref document: A1