WO2012117437A1 - Touch panel device - Google Patents

Touch panel device Download PDF

Info

Publication number
WO2012117437A1
WO2012117437A1 PCT/JP2011/001153 JP2011001153W WO2012117437A1 WO 2012117437 A1 WO2012117437 A1 WO 2012117437A1 JP 2011001153 W JP2011001153 W JP 2011001153W WO 2012117437 A1 WO2012117437 A1 WO 2012117437A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touch panel
electrode
scanning
unit
Prior art date
Application number
PCT/JP2011/001153
Other languages
French (fr)
Japanese (ja)
Inventor
景泰 宮原
昇吾 米山
祐一 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/001153 priority Critical patent/WO2012117437A1/en
Publication of WO2012117437A1 publication Critical patent/WO2012117437A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention relates to a touch panel device that obtains a position where an object such as a finger or a pen approaches or comes into contact.
  • a touch panel device including a tablet
  • Japanese Patent Application Laid-Open No. H10-228707 discloses a technique for speeding up the calculation of position coordinates.
  • a full scan is performed with a part of the electrode thinned out to predict the approximate position of the electrode line where the pen exists (the electrode line with the highest signal level).
  • the entire touch position detection time is shortened by performing detailed scanning (partial scanning) only in the vicinity of the predicted position.
  • a touch state (whether there are a plurality of touch locations or a moving speed of a touched pen or the like) is taken into consideration at the time of position prediction or partial scanning. Therefore, in the multi-touch state where there are a plurality of touch locations, there is a problem that a position that is not actually touched is erroneously detected as a touch position. In addition, when the moving speed of the touch pen or the like becomes very fast, there is a problem that the predicted position jumps out and leads to a prediction error.
  • the present invention has been made to solve the above-described problems, and does not cause false detection even in a multi-touch state, and does not cause a prediction error even when a finger moves at high speed.
  • An object of the present invention is to obtain a touch panel device capable of obtaining position coordinates at high speed and with high accuracy.
  • a touch panel device includes a touch panel unit in which a plurality of electrodes are arranged, a scan electrode determining unit that determines a scan electrode from the plurality of electrodes of the touch panel unit, and the scan electrode The touch panel unit is scanned with respect to the scanning electrode determined by the determining unit to acquire a measurement value reflecting a change in capacitance of each electrode, and the touch panel unit is touched based on the acquired measurement value.
  • Touch detection means for detecting the presence or absence of touch, and multi-touch for determining whether or not there are a plurality of touch points detected by the touch detection means as being touched to the touch panel unit, that is, whether or not there is a multi-touch state. Determining means, wherein the scanning electrode determining means is based on the detection result of the touch detecting means and the determination result of the multi-touch determining means. And determining the scanning electrodes of the touch panel portion.
  • the touch panel device is determined by a touch panel unit in which a plurality of electrodes are arranged, a scan electrode determining unit that determines a scan electrode from the plurality of electrodes of the touch panel unit, and the scan electrode determining unit.
  • the touch panel unit is scanned with respect to the scan electrode to obtain a measurement value reflecting the change in capacitance of each electrode, and the presence or absence of touch on the touch panel unit is detected based on the obtained measurement value.
  • the scanning electrode of the touch panel unit is determined based on the result.
  • the scan electrode determining unit is configured to detect the scan electrode of the touch panel unit based on the detection result of the touch detection unit and the determination result of the multi-touch determination unit or based on the tracking result of the tracking unit. Therefore, it is possible to obtain the touch position coordinates quickly and accurately without causing misdetection due to multi-touch state or misprediction due to high-speed movement of the touch point, while speeding up position coordinate detection by partial scanning. be able to.
  • FIG. 1 is a diagram showing a schematic configuration of a touch panel device 100 according to Embodiment 1 of the present invention.
  • the touch panel device 100 includes a touch panel unit 1 in which a plurality of electrodes are arranged, a scan electrode determination unit 2 that determines a scan electrode from the plurality of electrodes of the touch panel unit 1, and a scan electrode that is determined by the scan electrode determination unit 2.
  • the touch panel unit 1 is scanned to obtain a measurement value (output value from each electrode) reflecting the change in capacitance of each electrode, and the touch panel unit 1 is touched based on the acquired measurement value.
  • Touch detection means 3 for detecting the presence or absence of touch, and a multi-function for determining whether or not there are a plurality of touch points detected by the touch detection means 3 as having touch on the touch panel unit 1, that is, whether or not a multi-touch state is present.
  • Touch determination means 4 for determining whether or not there are a plurality of touch points detected by the touch detection means 3 as having touch on the touch panel unit 1, that is, whether or not a multi-touch state is present.
  • the scanning electrodes determined by the scanning electrode determination means 2 are set on the entire surface of the touch panel unit 1 in the initial stage, but thereafter, based on the detection result of the touch detection means 3 and the determination result of the multi-touch determination means 4. It is determined.
  • the touch panel unit 1 “entire surface” is set as a scan electrode (in the case of full scan)
  • the touch panel is scanned once every several electrodes or every several electrodes at once.
  • a rough touch position is detected while shortening the time.
  • the scanning range is “limited” (in the case of partial scanning)
  • a more detailed touch position is detected by scanning in detail with a predetermined number of electrodes centered on a certain electrode.
  • FIG. 2 is a diagram showing a processing flow of touch panel device 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining a measurement value (output value from each electrode) in which a change in capacitance of each electrode with or without touching the touch panel device 100 is reflected.
  • An object such as a finger that touches the touch panel unit 1, 7 is a plurality of X electrodes for obtaining detection positions in the horizontal (X) direction, 8 is a plurality of Y electrodes for obtaining detection positions in the vertical (Y) direction, 9 Is the measured value of the X electrode, and 10 is the measured value of the Y electrode.
  • FIG. 1 An object such as a finger that touches the touch panel unit 1, 7 is a plurality of X electrodes for obtaining detection positions in the horizontal (X) direction, 8 is a plurality of Y electrodes for obtaining detection positions in the vertical (Y) direction, 9 Is the measured value of the X electrode, and 10 is the measured value of the Y
  • FIG. 4 is a diagram for explaining a multi-touch determination method when the entire touch panel unit 1 is scanned.
  • reference numeral 11 denotes a threshold level applied to the measurement value of each electrode for multi-touch determination.
  • FIG. 5 is a diagram for explaining a multi-touch determination method in a case where partial scanning is performed with a part of the electrodes of the touch panel unit 1 being limited.
  • reference numeral 12 denotes a scanning range corresponding to partial scanning.
  • FIG. 6 is a diagram illustrating another example of multi-touch determination, in which 13 and 14 are touch positions on the touch panel unit 1, 15 is a scan range of the X electrode, 16 is a scan range of the Y electrode, and 17 is a scan range. The measured value of the X electrode, 18 is the width of the measured value 17 at the threshold 11, 19 is the measured value of the Y electrode, and 20 is the width of the measured value 19 at the threshold 11.
  • the measured value 10 of the Y electrode is a line graph representing the plurality of values.
  • the vertical axis corresponds to the magnitude of the measured value
  • the horizontal axis corresponds to each electrode.
  • the measured value means a value obtained by scanning individual electrodes.
  • another method may be used such that a value obtained by performing some calculation or conversion on the measurement value is used as an output value from each electrode. In this case, it goes without saying that the threshold value also becomes a value corresponding thereto.
  • the scan electrode determining means 2 sets an electrode scan range over the entire surface of the touch panel unit 1 as an initial stage (step ST1).
  • the touch detection means 3 scans the scan electrodes set by the scan electrode determination means 2 (in the initial stage, the entire surface of the touch panel unit 1) (step ST2), and the measurement values of the respective electrodes are acquired (step ST2). Step ST3).
  • touch detection is performed by determining that the measured value is greater than or equal to a predetermined threshold value (not shown) and that the touch value is less than the predetermined threshold value (step ST4). ).
  • the measurement value of the electrode at the position when an object such as a finger touches the touch panel unit 1 and the measurement value when the object is not touched are measured in advance.
  • An appropriate value that can detect the presence or absence of a touch may be set. If it is determined in step ST4 that there is no touch (NO in step ST5), the scanning electrode determining means 2 sets the electrode scanning range over the entire touch panel unit 1 (step ST6), and the scanning operation in step ST2 Return to.
  • step ST4 when it is determined in step ST4 that there is a touch (YES in step ST5), the multi-touch determination unit 4 further performs multi-touch determination (step ST7).
  • step ST7 a method of multi-touch determination will be described.
  • the multi-touch state is determined.
  • the multi-touch state is set.
  • FIG. 6 shows an example in which the number of peaks and the width of the peaks are used as determination conditions.
  • the touch position 13 is in a one-point touch state, and the partial scans for the scan ranges 15 and 16 are repeated based on that position.
  • the horizontal position of the touch position 14 is close to the touch position 13, so the X electrode measurement value 17 can have only one wide mountain, while the vertical position is vertical. Since the direction position is outside the scanning range of the Y electrode, the measured value of the Y electrode can have only one peak, and it cannot be determined correctly only by the number of peaks.
  • the width 18 of the threshold 11 of the peak of the X electrode is longer than the one-point touch state (for example, the width 20 of the peak corresponding to one point of the Y electrode). It is possible to determine whether or not the multi-touch state is correct by setting an appropriate determination threshold for the width of the mountain in advance and comparing it. Further, another multi-touch determination method may be used, and the determination method and the threshold value may be switched between full scan and partial scan.
  • step ST8 If it is determined that the multi-touch state is not set as a result of the multi-touch determination in step ST7 (NO in step ST8), it is determined that there is only one touch point, and the scanning range must be the entire surface. If it is a detailed partial scan, the touch detection means 3 obtains the final position coordinates of the touch point (steps ST9 and ST10). This final position coordinate is determined as touch point information, and is information to be output to the outside as necessary. Further, for the next partial scan, a range limited to a predetermined number of electrodes centered on the electrode at the touch point is set as an electrode scan range (step ST11), and the processing from step ST2 is repeated.
  • the scanning electrode determining means 2 sets the electrode scanning range over the entire touch panel unit 1 (step ST6), and the scanning operation in step ST2 Return to. Thereby, the problem that the partial scanning is continued while erroneously detecting the touch position in the multi-touch state and the correct touch position cannot be obtained is solved.
  • FIG. 7 is a diagram for explaining the ghost problem in the multi-touch state.
  • high-speed partial scanning is used, while erroneous detection that is likely to occur in a multi-touch state during partial scanning can be suppressed.
  • FIG. A second embodiment of the present invention will be described with reference to FIGS.
  • the schematic configuration diagram of the touch panel device is the same as that of the first embodiment (FIG. 1).
  • FIG. 8 is a diagram showing a processing flow of the touch panel device 100 according to the second embodiment.
  • FIG. 9 is a diagram for explaining multi-touch determination scanning and multi-touch re-determination after partial scanning, in which 21 and 22 are touch positions on the touch panel unit 1, 23 is an X electrode scanning range, and 24 is a Y electrode.
  • 25 is a measured value of the X electrode corresponding to the scanning range 23
  • 26 is a width of the measured value 25 at the threshold 11
  • 27 is a measured value of the Y electrode corresponding to the scanning range 24
  • 28 is a measured value at the threshold 11.
  • the width 27 and 29 are measured values of the Y electrode with the entire touch panel 1 obtained by scanning for multi-touch determination as a scanning target.
  • Steps ST21 to ST26 in the processing flow (FIG. 8) in the second embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed.
  • the entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST21), the electrode scanning by the touch detecting means 3 (step ST22), the measurement value acquisition of each electrode (step ST23), and touch detection (step ST24) are performed. If it is determined in ST24 that there is no touch (NO in step ST25), the scanning electrode determining unit 2 sets the electrode scanning range on the entire surface of the touch panel unit 1 (step ST26), and returns to the scanning operation in step ST22.
  • the multi-touch determination unit 4 When it is determined that there is a touch by touch detection in step ST24 (in the case of YES in step ST25), the multi-touch determination unit 4 further performs multi-touch determination (step ST27). As a result of the multi-touch determination in step ST27, “determined with multi-touch”, “determined without multi-touch”, “undetermined (a state that cannot be determined from the measurement value obtained by scanning in step ST22, ie, It is assumed that any one of the three types of “a state in which it is not possible to determine whether or not it is a multi-touch state” is output.
  • two threshold values (THW1 and THW2; THW1 ⁇ THW2) to be applied to the width of the measured value are prepared, and if the width of the peak is less than THW1, “determined without multi-touch”, THW1 ⁇ If it is THW2 (THW1 or more, THW2 or less), “unconfirmed”, and if it exceeds THW2, “confirmed with multi-touch”.
  • the number of peaks if it is 2 or more, “determined with multi-touch” is set, and if not, it follows the determination result of the peak width. In the state of FIG. 9 in which the horizontal distance between the two touch points is shorter than in the state of FIG.
  • the multi-touch determination unit 4 determines that “unconfirmed”.
  • step ST27 If it is determined in step ST27 that “determined with multi-touch” (in the case of YES in step ST28), the scanning electrode determining means 2 sets the electrode scanning range on the entire surface of the touch panel unit 1 (step ST26). Return to scanning operation. In addition, when it is determined that “determined without multi-touch” (NO in step ST28 and YES in step ST29), the position of the touch point is obtained unless the scanning range is the entire surface (steps ST34 and ST35). ), Scanning electrode determining means 2 limits the electrode scanning range to a part of touch panel unit 1 for partial scanning (step ST36), and returns to the scanning operation of step ST22.
  • step ST30 sets electrodes for multi-touch determination (step ST30), and the touch detection means 3 performs multi-touch determination scanning for the set electrodes (step ST31).
  • step ST30 for example, all electrodes having a shorter peak width of the X electrode and the Y electrode as the electrodes having a high possibility that the touch point is located outside the partial scanning range, that is, in the case of FIG.
  • step ST31 all the electrodes of the Y electrode set as the electrodes for multi-touch determination in step ST30 are scanned to obtain a measurement value 29.
  • the multi-touch determination scan is performed by scanning all the electrodes having the shorter peak width among the X electrode and the Y electrode. Another scanning method may be used, such as due to the gentleness of the image.
  • the multi-touch determination means 4 performs multi-touch re-determination from the measurement value obtained by the multi-touch determination scanning in step ST31 (step ST32). In this multi-touch re-determination in step ST32, it is determined whether or not it is in a multi-touch state as in the multi-touch determination (step ST7) in the first embodiment. In the case of FIG. 9, since there are two peaks in the measurement value 29 obtained by the scan for multi-touch determination in step ST31, it can be correctly determined that the state is the multi-touch state. With this operation, it is possible to determine whether or not the multi-touch state is achieved with a smaller processing amount than the entire scanning of both the X electrodes and the Y electrodes performed in steps ST21 and ST22.
  • the scan electrode determining unit 2 sets the electrode.
  • the scanning range is set on the entire surface of the touch panel unit 1 (step ST26), and the process returns to the scanning operation of step ST22. If it is determined that the multi-touch state is not established (NO in step ST33), the position of the touch point is obtained if the scanning range is not the entire surface (steps ST34 and ST35).
  • the electrode scanning range is limited and set (step ST36), and the processing from step ST22 is repeated.
  • FIG. Embodiment 3 of the present invention will be described with reference to FIG.
  • the schematic configuration diagram of the touch panel device is the same as that of the first embodiment (FIG. 1).
  • FIG. 10 is a diagram showing a processing flow of the touch panel device 100 according to the third embodiment.
  • Steps ST41 to ST46 in the processing flow (FIG. 10) in the third embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed.
  • the entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST41), the electrode scanning by the touch detecting means 3 (step ST42), the measurement value acquisition of each electrode (step ST43), and touch detection (step ST44) are performed. If it is determined in ST24 that there is no touch (NO in step ST45), the scan electrode determining means 2 sets the electrode scan range over the entire surface of the touch panel unit 1 (step ST46), and returns to the scan operation in step ST42.
  • the scan electrode determining means 2 sets an electrode dedicated for multi-touch determination (step ST47). Specifically, for example, when there are 20 X electrodes X0 to X19, and electrodes X4 to 11 are set as electrodes for touch detection to be scanned in step ST42, they are not included in the scanning range. One electrode is skipped, that is, the electrodes X0, X2, X13, X15, X17, and X19 are set as scanning electrodes dedicated to multi-touch determination.
  • the touch detection means 3 performs multi-touch determination scanning for the set electrodes (step ST48), and the multi-touch determination means 4 is based on the scanning results of both the scanning of step ST42 and the scanning of step ST48. Then, it is determined whether or not the multi-touch state is set (step ST49).
  • the multi-touch determination determination 1 is performed on the scanning result in step ST42 in the same procedure as in the first embodiment, and the result of the multi-touch determination scanning in step ST48 is included.
  • determination 2 it is determined whether there is a measurement value that can be regarded as a touch (whether there is a touch outside the partial scanning area), and it is determined that the multi-touch state is determined in determination 1, or that there is a touch outside the partial scanning area in determination 2. If it is determined, the multi-touch state is assumed. As a result, it is possible to obtain a multi-touch determination accuracy close to that of the full scan with a smaller processing amount than the full scan. In addition, for example, in the methods of the first and second embodiments, it may not be determined that the multi-touch state is present depending on the positional relationship between the two touch points (for example, when they are completely aligned horizontally and vertically). In the method shown in the third embodiment, multi-touch determination can be performed regardless of the positional relationship between two touch points.
  • step ST48 another method may be used for the scan for multi-touch determination in step ST48.
  • electrodes that are not included in the partial scanning range in step ST42 may be combined and scanned, and in the determination 2 of the multi-touch determination, the presence / absence of touch may be determined based on this one value.
  • the presence / absence of touch may be determined based on this one value.
  • step ST50 when it is determined that the touch panel is in the multi-touch state (in the case of YES in step ST50), the scan electrode determining unit 2 sets the electrode scan range over the entire touch panel unit 1 (step ST46), the process returns to the scanning operation of step ST42.
  • the position of the touch point is obtained if the scanning range is not the entire surface (steps ST51 and ST52). The scanning range is limited and set (step ST53), and the processing from step ST42 is repeated.
  • highly accurate multi-touch determination can be performed with a relatively small amount of processing and not depending on the touch position.
  • FIG. 11 is a diagram showing a schematic configuration of a touch panel device 200 according to Embodiment 4 of the present invention.
  • the touch panel device 200 includes a touch panel unit 1 in which a plurality of electrodes are arranged, a scan electrode determination unit 2 that determines a scan electrode from the plurality of electrodes of the touch panel unit 1, and a scan electrode that is determined by the scan electrode determination unit 2.
  • the touch panel unit 1 is scanned to obtain a measurement value (output value from each electrode) reflecting the change in capacitance of each electrode, and the touch panel unit 1 is touched based on the acquired measurement value.
  • Touch detection means 3 for detecting the presence or absence of touch
  • tracking means 30 for tracking the touch points detected by the touch detection means 3 as having touched the touch panel unit 1 in association with past touch detection results. .
  • FIG. 12 is a diagram showing a processing flow of the touch panel device 200.
  • FIG. 13 is a diagram for explaining a method of determining the partial scanning electrode, in which 31 is a touch point on the touch panel unit 1, 32 is a horizontal position of the touch point 31, 33 is a vertical position of the touch point 31, and 34 is A movement vector obtained from the position of the past touch point and the position of the current touch point (the direction of the arrow indicates the movement direction and the length indicates the movement speed), 35 is a horizontal component of the movement vector 34, and 36 is the movement vector 34.
  • the vertical component, 37 is an X electrode range to be partially scanned, and 38 is a Y electrode range to be partially scanned.
  • Steps ST61 to ST66 in the processing flow (FIG. 12) in the fourth embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed.
  • the entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST61), the electrode scanning is performed by the touch detecting means 3 (step ST62), the measured value of each electrode is obtained (step ST63), and touch detection (step ST64) is performed. If it is determined in ST64 that there is no touch (NO in step ST65), scanning electrode determining means 2 sets the electrode scanning range over the entire surface of touch panel unit 1 (step ST66), and returns to the scanning operation in step ST62.
  • step ST65 If it is determined that the touch is detected by the touch detection in step ST64 (YES in step ST65), the position of the touch point is obtained if the scanning range is not the entire surface (steps ST67 and ST68), and the tracking unit 30 detects the touch point. Is tracked (step ST69). In this step ST69, the moving speed and moving direction of the touch point are obtained from the latest touch point coordinates obtained in step ST64 and the past touch point coordinates obtained in the previous touch detection. Thereafter, the scan electrode determining means 2 sets an electrode scan range using the moving speed and moving direction of the touch point (step ST70). Thereafter, as in the first embodiment, the processing from step ST62 is repeated.
  • step ST70 will be described with reference to FIG. 13.
  • the horizontal component 35 and the vertical component 36 are obtained from the movement vector 34 corresponding to the movement speed and movement direction obtained in step ST69, and the direction of the horizontal component 35 is determined.
  • the X-direction electrode scanning range 37 is determined from the size and the size
  • the Y-direction electrode scanning range 38 is determined from the direction and size of the vertical component 36.
  • FIG. Embodiment 5 of the present invention will be described with reference to FIG.
  • the schematic configuration diagram of the touch panel device is the same as that of the fourth embodiment (FIG. 11).
  • FIG. 14 is a diagram showing a processing flow of the touch panel device 200 according to the fifth embodiment.
  • the fifth embodiment instead of the full-surface scanning described in the first to fourth embodiments (thinning-out scanning such as scanning every few electrodes on the entire surface of the touch panel unit 1), all the electrodes on the entire surface are scanned. An example of performing scanning will be described.
  • the scan electrode determining means 2 sets the electrode scan range to all the electrodes of the touch panel unit 1 as an initial stage (step ST81). Subsequent steps ST82 to ST84 in the processing flow (FIG. 14) in the fifth embodiment are the same as steps ST2 to ST4 in the processing flow (FIG. 2) in the first embodiment, and the electrodes by the touch detection means 3 are used. Scanning (step ST82), measurement value acquisition of each electrode (step ST83), and touch detection (step ST84) are performed. If it is determined in step ST84 that there is no touch (NO in step ST85), the scanning electrode determining means 2 sets the electrode scanning range to all the electrodes of the touch panel unit 1 (step ST86), and in step ST82. Return to scanning operation.
  • step ST84 When it is determined that there is a touch by the touch detection in step ST84 (YES in step ST85), the touch detection means 3 obtains the position of the touch point as in step ST10 of the first embodiment (step ST87), and thereafter The tracking unit 30 tracks the touch point in the same procedure as in the fourth embodiment (step ST88). Further, it is confirmed whether or not the moving speed is equal to or higher than a predetermined threshold value. When the moving speed is equal to or higher than the threshold value (in the case of YES in step ST89), the scan electrode determining means 2 determines the limited scanning range for partial scanning. Is set (step ST90). Thereafter, as in the first embodiment, the processing from step ST82 is repeated.
  • step ST86 a scanning range for all electrode scanning is set (step ST86). Due to this processing operation, only when the touch point is moving at high speed, the shift to the partial scan is performed. Although partial scanning is performed at high speed, only partial electrode information is acquired, and thus erroneous detection tends to occur when multi-touch occurs. On the other hand, when the touch point has not moved or moved slowly, high-speed scanning is not necessary, and all-electrode scanning is often sufficient. For this reason, the operation of shifting to partial scanning only when truly high-speed scanning is required is effective in preventing erroneous detection.
  • the multi-touch determination threshold value 11 is a single value for X and Y. However, this may be a different value, or a separate threshold value may be set for each electrode. May be.
  • the operation to be detected is expressed by the expression touch, there is a touch panel that can detect a nearby finger (not physically touching the touch panel) by increasing sensitivity. The term means proximity and contact.
  • the touch panel device according to the present invention is also suitable for use when there is a multi-touch state that is difficult to detect by the conventional method.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a touch panel device whereby it is possible to rapidly carry out coordinate detection of a touch location, as well as avoid detection errors even in a multi-touch state involving a plurality of touch points, and avoid prediction errors even when a finger moves rapidly. A touch panel device comprises: a touch panel unit whereupon a plurality of electrodes are positioned; a scan electrode determination means for determining scan electrodes from among the plurality of electrodes; a touch detection means for scanning the determined scan electrodes, acquiring measurement values whereby a change in the static electric capacity of each electrode is reflected, and detecting whether a touch has occurred on the basis of the acquired measurement values; and a multi-touch assessment means for assessing whether a multi-touch state of a plurality of touch points is present. The scan electrode determination means determines the touch panel unit scan electrodes on the basis of the detection result of the touch detection means and the assessment result of the multi-touch assessment means.

Description

タッチパネル装置Touch panel device
 この発明は、指やペン等の物体が近接または接触した位置を求めるタッチパネル装置に関するものである。 The present invention relates to a touch panel device that obtains a position where an object such as a finger or a pen approaches or comes into contact.
 複数の電極を配置したタッチパネル装置(ここではタブレットを含めてタッチパネル装置と呼ぶ)において、指やペン等の物体がタッチ(近接または接触)した位置を求める際に、走査する電極を限定することにより位置座標算出の高速化を図ったものとしては、例えば、特許文献1に記載のものがある。この特許文献1では、ペンの接触を検知する際に、まず電極の一部を間引いた全面走査を行ってペンが存在する電極線(信号レベルが最も大きい電極線)の大まかな位置を予測し、次にその予測位置周辺に限定して詳細に走査(部分走査)を行うことにより、全体のタッチ位置検出時間を短縮している。 By limiting the electrodes to be scanned when determining the position where an object such as a finger or pen touches (approaching or touching) in a touch panel device (herein referred to as a touch panel device including a tablet) in which a plurality of electrodes are arranged. For example, Japanese Patent Application Laid-Open No. H10-228707 discloses a technique for speeding up the calculation of position coordinates. In this patent document 1, when detecting the contact of a pen, first, a full scan is performed with a part of the electrode thinned out to predict the approximate position of the electrode line where the pen exists (the electrode line with the highest signal level). Next, the entire touch position detection time is shortened by performing detailed scanning (partial scanning) only in the vicinity of the predicted position.
特開平7-129308号公報JP 7-129308 A
 しかしながら、特許文献1に示すような従来のタッチパネル装置では、位置予測や部分走査の際、タッチ状態(タッチ箇所が複数あるか否か、または、タッチするペン等の移動速度など)を考慮していないため、タッチ箇所が複数あるマルチタッチ状態においては、実際にはタッチされていない位置をタッチ位置として誤検出してしまうという課題があった。また、タッチするペン等の移動速度が非常に速くなった場合、予測位置を飛び出して予測ミスにつながるという課題もあった。 However, in the conventional touch panel device as shown in Patent Document 1, a touch state (whether there are a plurality of touch locations or a moving speed of a touched pen or the like) is taken into consideration at the time of position prediction or partial scanning. Therefore, in the multi-touch state where there are a plurality of touch locations, there is a problem that a position that is not actually touched is erroneously detected as a touch position. In addition, when the moving speed of the touch pen or the like becomes very fast, there is a problem that the predicted position jumps out and leads to a prediction error.
 この発明は、上記のような課題を解決するためになされたものであり、マルチタッチ状態でも誤検出を起こすことなく、また、指が高速に移動しても予測ミスを起こすことがなく、タッチ位置座標を高速に精度良く求めることができるタッチパネル装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and does not cause false detection even in a multi-touch state, and does not cause a prediction error even when a finger moves at high speed. An object of the present invention is to obtain a touch panel device capable of obtaining position coordinates at high speed and with high accuracy.
 上記目的を達成するため、この発明に係るタッチパネル装置は、複数の電極が配置されたタッチパネル部と、前記タッチパネル部の複数の電極の中から走査電極を決定する走査電極決定手段と、前記走査電極決定手段により決定された走査電極に対して前記タッチパネル部を走査して各電極の静電容量の変化が反映された計測値を取得し、当該取得した計測値に基づいて前記タッチパネル部へのタッチの有無を検出するタッチ検出手段と、前記タッチ検出手段により前記タッチパネル部へのタッチ有と検出されたタッチ点が複数あるか否か、すなわち、マルチタッチ状態であるか否かを判定するマルチタッチ判定手段とを備え、前記走査電極決定手段は、前記タッチ検出手段の検出結果と前記マルチタッチ判定手段の判定結果に基づいて前記タッチパネル部の走査電極を決定することを特徴とする。 In order to achieve the above object, a touch panel device according to the present invention includes a touch panel unit in which a plurality of electrodes are arranged, a scan electrode determining unit that determines a scan electrode from the plurality of electrodes of the touch panel unit, and the scan electrode The touch panel unit is scanned with respect to the scanning electrode determined by the determining unit to acquire a measurement value reflecting a change in capacitance of each electrode, and the touch panel unit is touched based on the acquired measurement value. Touch detection means for detecting the presence or absence of touch, and multi-touch for determining whether or not there are a plurality of touch points detected by the touch detection means as being touched to the touch panel unit, that is, whether or not there is a multi-touch state. Determining means, wherein the scanning electrode determining means is based on the detection result of the touch detecting means and the determination result of the multi-touch determining means. And determining the scanning electrodes of the touch panel portion.
 また、この発明に係るタッチパネル装置は、複数の電極が配置されたタッチパネル部と、前記タッチパネル部の複数の電極の中から走査電極を決定する走査電極決定手段と、前記走査電極決定手段により決定された走査電極に対して前記タッチパネル部を走査して各電極の静電容量の変化が反映された計測値を取得し、当該取得した計測値に基づいて前記タッチパネル部へのタッチの有無を検出するタッチ検出手段と、前記タッチ検出手段により前記タッチパネル部へのタッチ有と検出されたタッチ点の移動速度及び移動方向を追跡する追跡手段とを備え、前記走査電極決定手段は、前記追跡手段の追跡結果に基づいて前記タッチパネル部の走査電極を決定することを特徴とする。 The touch panel device according to the present invention is determined by a touch panel unit in which a plurality of electrodes are arranged, a scan electrode determining unit that determines a scan electrode from the plurality of electrodes of the touch panel unit, and the scan electrode determining unit. The touch panel unit is scanned with respect to the scan electrode to obtain a measurement value reflecting the change in capacitance of each electrode, and the presence or absence of touch on the touch panel unit is detected based on the obtained measurement value. Touch detecting means; and tracking means for tracking the moving speed and moving direction of the touch point detected as having touched the touch panel by the touch detecting means, and the scan electrode determining means tracking the tracking means. The scanning electrode of the touch panel unit is determined based on the result.
 この発明に係るタッチパネル装置によれば、走査電極決定手段が、タッチ検出手段の検出結果とマルチタッチ判定手段の判定結果に基づいて、または、追跡手段の追跡結果に基づいて、タッチパネル部の走査電極を決定するので、部分走査による位置座標検出の高速化をはかりつつ、マルチタッチ状態による誤検出や、タッチ点の高速な移動による予測ミスを起こすことがなく、タッチ位置座標を高速に精度良く求めることができる。 According to the touch panel device according to the present invention, the scan electrode determining unit is configured to detect the scan electrode of the touch panel unit based on the detection result of the touch detection unit and the determination result of the multi-touch determination unit or based on the tracking result of the tracking unit. Therefore, it is possible to obtain the touch position coordinates quickly and accurately without causing misdetection due to multi-touch state or misprediction due to high-speed movement of the touch point, while speeding up position coordinate detection by partial scanning. be able to.
この発明の実施の形態1に係るタッチパネル装置の概略構成を示す図である。It is a figure which shows schematic structure of the touchscreen apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るタッチパネル装置の処理フローを示す図である。It is a figure which shows the processing flow of the touchscreen apparatus which concerns on Embodiment 1 of this invention. タッチパネル装置へのタッチの有無に伴う各電極からの出力値についての説明図である。It is explanatory drawing about the output value from each electrode with the presence or absence of the touch to a touchscreen apparatus. タッチパネル部1を全面走査した場合のマルチタッチ判定方法を示す説明図である。It is explanatory drawing which shows the multitouch determination method at the time of scanning the whole surface of the touch panel part. タッチパネル部1を部分走査した場合のマルチタッチ判定方法を示す説明図である。It is explanatory drawing which shows the multi-touch determination method at the time of partially scanning the touch panel part. タッチパネル部1を部分走査した場合のマルチタッチ判定方法の別の例を示す図である。It is a figure which shows another example of the multi-touch determination method at the time of partially scanning the touch panel part. マルチタッチ状態におけるゴースト問題を説明する図である。It is a figure explaining the ghost problem in a multi-touch state. この発明の実施の形態2に係るタッチパネル装置の処理フローを示す図である。It is a figure which shows the processing flow of the touchscreen apparatus which concerns on Embodiment 2 of this invention. 部分走査後のマルチタッチ判定用走査とマルチタッチ再判定を説明する図である。It is a figure explaining the scan for multi-touch determination after a partial scan, and multi-touch re-determination. この発明の実施の形態3に係るタッチパネル装置の処理フローを示す図である。It is a figure which shows the processing flow of the touchscreen apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るタッチパネル装置の概略構成を示す図である。It is a figure which shows schematic structure of the touchscreen apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係るタッチパネル装置の処理フローを示す図である。It is a figure which shows the processing flow of the touchscreen apparatus which concerns on Embodiment 4 of this invention. 部分走査用電極の決定方法を示す説明図である。It is explanatory drawing which shows the determination method of the electrode for partial scanning. この発明の実施の形態5に係るタッチパネル装置の処理フローを示す図である。It is a figure which shows the processing flow of the touchscreen apparatus which concerns on Embodiment 5 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るタッチパネル装置100の概略構成を示す図である。このタッチパネル装置100は、複数の電極を配置したタッチパネル部1と、タッチパネル部1の複数の電極の中から走査電極を決定する走査電極決定手段2と、走査電極決定手段2により決定された走査電極に対してタッチパネル部1を走査して各電極の静電容量の変化が反映された計測値(各電極からの出力値)を取得し、その取得した計測値に基づいてタッチパネル部1へのタッチの有無を検出するタッチ検出手段3と、タッチ検出手段3によりタッチパネル部1へのタッチ有と検出されたタッチ点が複数あるか否か、すなわち、マルチタッチ状態であるか否かを判定するマルチタッチ判定手段4とを備えている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a diagram showing a schematic configuration of a touch panel device 100 according to Embodiment 1 of the present invention. The touch panel device 100 includes a touch panel unit 1 in which a plurality of electrodes are arranged, a scan electrode determination unit 2 that determines a scan electrode from the plurality of electrodes of the touch panel unit 1, and a scan electrode that is determined by the scan electrode determination unit 2. The touch panel unit 1 is scanned to obtain a measurement value (output value from each electrode) reflecting the change in capacitance of each electrode, and the touch panel unit 1 is touched based on the acquired measurement value. Touch detection means 3 for detecting the presence or absence of touch, and a multi-function for determining whether or not there are a plurality of touch points detected by the touch detection means 3 as having touch on the touch panel unit 1, that is, whether or not a multi-touch state is present. Touch determination means 4.
 また、走査電極決定手段2により決定される走査電極は、初期段階ではタッチパネル部1全面が設定されているが、その後はタッチ検出手段3の検出結果とマルチタッチ判定手段4の判定結果に基づいて決定される。なお、走査電極としてタッチパネル部1「全面」が設定されている場合(全面走査の場合)には、全面の電極を数本置きに、または、数本毎にまとめて1回走査する等、タッチパネル部1全面の電極の一部を間引いて走査することにより、時間の短縮をはかりつつ、大まかなタッチ位置を検出する。また、走査範囲を「限定」した場合(部分走査の場合)には、ある電極を中心とした所定数の電極に限定して詳細に走査することにより、より詳細なタッチ位置を検出する。 Further, the scanning electrodes determined by the scanning electrode determination means 2 are set on the entire surface of the touch panel unit 1 in the initial stage, but thereafter, based on the detection result of the touch detection means 3 and the determination result of the multi-touch determination means 4. It is determined. When the touch panel unit 1 “entire surface” is set as a scan electrode (in the case of full scan), the touch panel is scanned once every several electrodes or every several electrodes at once. By scanning a part of the electrode on the entire surface of the part 1 while thinning it, a rough touch position is detected while shortening the time. In addition, when the scanning range is “limited” (in the case of partial scanning), a more detailed touch position is detected by scanning in detail with a predetermined number of electrodes centered on a certain electrode.
 次に、タッチパネル装置100の動作について、図2~図6を用いて説明する。図2は、この発明の実施の形態1に係るタッチパネル装置100の処理フローを示す図である。図3はタッチパネル装置100へのタッチの有無に伴う各電極の静電容量の変化が反映された計測値(各電極からの出力値)を説明するための図であり、図中5と6はタッチパネル部1をタッチする指等の物体、7は横(X)方向の検出位置を求めるための複数のX電極、8は縦(Y)方向の検出位置を求めるための複数のY電極、9はX電極の計測値、10はY電極の計測値である。図4はタッチパネル部1を全面走査した場合のマルチタッチ判定方法を説明するための図であり、図中11はマルチタッチ判定のために各電極の計測値に適用する閾値レベルである。図5はタッチパネル部1の電極の一部を限定して部分走査した場合のマルチタッチ判定方法を説明するための図であり、図中12は部分走査に対応した走査範囲である。また、図6は、マルチタッチ判定の別の例を示す図であり、図中13と14はタッチパネル部1におけるタッチ位置、15はX電極の走査範囲、16はY電極の走査範囲、17はX電極の計測値、18は閾値11における計測値17の幅、19はY電極の計測値、20は閾値11における計測値19の幅である。 Next, the operation of the touch panel device 100 will be described with reference to FIGS. FIG. 2 is a diagram showing a processing flow of touch panel device 100 according to Embodiment 1 of the present invention. FIG. 3 is a diagram for explaining a measurement value (output value from each electrode) in which a change in capacitance of each electrode with or without touching the touch panel device 100 is reflected. An object such as a finger that touches the touch panel unit 1, 7 is a plurality of X electrodes for obtaining detection positions in the horizontal (X) direction, 8 is a plurality of Y electrodes for obtaining detection positions in the vertical (Y) direction, 9 Is the measured value of the X electrode, and 10 is the measured value of the Y electrode. FIG. 4 is a diagram for explaining a multi-touch determination method when the entire touch panel unit 1 is scanned. In FIG. 4, reference numeral 11 denotes a threshold level applied to the measurement value of each electrode for multi-touch determination. FIG. 5 is a diagram for explaining a multi-touch determination method in a case where partial scanning is performed with a part of the electrodes of the touch panel unit 1 being limited. In the figure, reference numeral 12 denotes a scanning range corresponding to partial scanning. FIG. 6 is a diagram illustrating another example of multi-touch determination, in which 13 and 14 are touch positions on the touch panel unit 1, 15 is a scan range of the X electrode, 16 is a scan range of the Y electrode, and 17 is a scan range. The measured value of the X electrode, 18 is the width of the measured value 17 at the threshold 11, 19 is the measured value of the Y electrode, and 20 is the width of the measured value 19 at the threshold 11.
 ここで、計測値は一つの電極からそれぞれ一つ求められるが、X電極とY電極は共に複数あるため、計測値はX電極とY電極それぞれ複数得られ、図3におけるX電極の計測値9とY電極の計測値10は、この複数の値を折れ線グラフで表現したものである。本グラフで、縦軸が計測値の大きさに、横軸が個々の電極に対応する。なお、計測値とは、個々の電極を走査して得られる値を意味する。また、ここでは計測値をそのまま用いる例で説明しているが、計測値に何等かの計算や変換を加えた値を各電極からの出力値として用いる等、別の方法を用いてもよい。この場合、閾値などもそれに対応した値になることは言うまでもない。 Here, one measurement value is obtained from each electrode, but since there are a plurality of X electrodes and Y electrodes, a plurality of measurement values are obtained for each of the X electrode and the Y electrode. The measured value 10 of the Y electrode is a line graph representing the plurality of values. In this graph, the vertical axis corresponds to the magnitude of the measured value, and the horizontal axis corresponds to each electrode. The measured value means a value obtained by scanning individual electrodes. In addition, although an example in which the measurement value is used as it is is described here, another method may be used such that a value obtained by performing some calculation or conversion on the measurement value is used as an output value from each electrode. In this case, it goes without saying that the threshold value also becomes a value corresponding thereto.
 図2にしたがって、この実施の形態1に係るタッチパネル装置100の処理フローを説明する。まず、走査電極決定手段2が、初期段階として電極走査範囲をタッチパネル部1全面に設定する(ステップST1)。次に、タッチ検出手段3が走査電極決定手段2により設定された走査電極(初期段階では、タッチパネル部1全面)に対して走査を行って(ステップST2)、各電極の計測値を取得する(ステップST3)。そして、その計測値の中で予め定めた所定の閾値(図示せず)以上のものはタッチ有と判断し、当該閾値より小さいものはタッチ無と判断することにより、タッチ検出を行う(ステップST4)。このタッチ検出のための閾値については、例えば、予め指等の物体をタッチパネル部1にタッチした場合のその位置における電極の計測値及びタッチしていない場合の計測値を測定しておき、確実にタッチの有無を検出できるような適切な値を設定しておけばよい。そして、ステップST4でタッチ無と判定された場合(ステップST5のNOの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST6)、ステップST2の走査動作へ戻る。 A processing flow of the touch panel device 100 according to the first embodiment will be described with reference to FIG. First, the scan electrode determining means 2 sets an electrode scan range over the entire surface of the touch panel unit 1 as an initial stage (step ST1). Next, the touch detection means 3 scans the scan electrodes set by the scan electrode determination means 2 (in the initial stage, the entire surface of the touch panel unit 1) (step ST2), and the measurement values of the respective electrodes are acquired (step ST2). Step ST3). Then, touch detection is performed by determining that the measured value is greater than or equal to a predetermined threshold value (not shown) and that the touch value is less than the predetermined threshold value (step ST4). ). Regarding the threshold for touch detection, for example, the measurement value of the electrode at the position when an object such as a finger touches the touch panel unit 1 and the measurement value when the object is not touched are measured in advance. An appropriate value that can detect the presence or absence of a touch may be set. If it is determined in step ST4 that there is no touch (NO in step ST5), the scanning electrode determining means 2 sets the electrode scanning range over the entire touch panel unit 1 (step ST6), and the scanning operation in step ST2 Return to.
 一方、ステップST4でタッチ有と判定された場合(ステップST5のYESの場合)は、さらにマルチタッチ判定手段4がマルチタッチ判定を行う(ステップST7)。
 ここで、マルチタッチ判定の方法について説明する。タッチ箇所が複数ある場合、すなわち、マルチタッチ状態である場合、図3の例のように、指5,6の位置に応じてX電極の計測値9またはY電極の計測値10の中に、複数の山ができる。したがって、XまたはYの計測値の中に、所定の閾値以上のピークを持つ山が複数存在することをもって、マルチタッチ状態であると判定できる。例えば、図4の全面走査の例では、マルチタッチ判定用の閾値レベル11を超える山が2箇所あるため、マルチタッチ状態であると判断する。また、図5の部分走査の例でも、走査範囲12の中に閾値レベル11を超える山が2箇所あるため、マルチタッチ状態であると判断する。
On the other hand, when it is determined in step ST4 that there is a touch (YES in step ST5), the multi-touch determination unit 4 further performs multi-touch determination (step ST7).
Here, a method of multi-touch determination will be described. When there are a plurality of touch locations, that is, in a multi-touch state, as shown in the example of FIG. 3, according to the positions of the fingers 5 and 6, the X electrode measurement value 9 or the Y electrode measurement value 10 There are several mountains. Therefore, when there are a plurality of peaks having a peak equal to or greater than a predetermined threshold in the measured values of X or Y, it can be determined that the state is a multi-touch state. For example, in the example of full scan in FIG. 4, since there are two peaks that exceed the threshold level 11 for multi-touch determination, the multi-touch state is determined. In the example of partial scanning in FIG. 5, since there are two peaks in the scanning range 12 exceeding the threshold level 11, it is determined that the multi-touch state is set.
 あるいは、別のマルチタッチ判定方法を実施してもよく、山の数と山の幅を判定条件とした例を図6に示す。例えば、当初はタッチ位置13だけの1点タッチ状態であり、その位置を基準に走査範囲15と16を対象とした部分走査が繰り返されているものとする。ある時点で位置14に新たなタッチが発生した場合、タッチ位置14の水平方向位置はタッチ位置13に近いため、X電極の計測値17には幅広の山が1個できるだけであり、一方、垂直方向位置はY電極の走査範囲外であるため、Y電極の計測値にも山が1個しかできず、山の数だけでは正しく判定できない。しかし、山の幅が所定値以上であることをマルチタッチ状態であると判断する条件に加えると、正しくマルチタッチ状態であるか否かが判断できる。図6の例では、X電極の山の閾値11における幅18が1点タッチ状態(例えば、Y電極における1点に対応した山の幅20)よりも長いことがわかる。この山の幅についての適切な判定閾値を予め定めておき、これと比較することで、正しくマルチタッチ状態であるか否かが判定できる。
 なお、さらに別のマルチタッチ判定方法を用いてもよく、また、全面走査時と部分走査時とで判定方法や閾値を切り替えるようにしてもよい。
Alternatively, another multi-touch determination method may be implemented, and FIG. 6 shows an example in which the number of peaks and the width of the peaks are used as determination conditions. For example, it is initially assumed that only the touch position 13 is in a one-point touch state, and the partial scans for the scan ranges 15 and 16 are repeated based on that position. When a new touch occurs at a position 14 at a certain point in time, the horizontal position of the touch position 14 is close to the touch position 13, so the X electrode measurement value 17 can have only one wide mountain, while the vertical position is vertical. Since the direction position is outside the scanning range of the Y electrode, the measured value of the Y electrode can have only one peak, and it cannot be determined correctly only by the number of peaks. However, if it is added to the condition for determining that it is in the multi-touch state that the width of the mountain is a predetermined value or more, it can be determined whether or not the multi-touch state is correct. In the example of FIG. 6, it can be seen that the width 18 of the threshold 11 of the peak of the X electrode is longer than the one-point touch state (for example, the width 20 of the peak corresponding to one point of the Y electrode). It is possible to determine whether or not the multi-touch state is correct by setting an appropriate determination threshold for the width of the mountain in advance and comparing it.
Further, another multi-touch determination method may be used, and the determination method and the threshold value may be switched between full scan and partial scan.
 そして、ステップST7のマルチタッチ判定の結果、マルチタッチ状態ではないと判定された場合(ステップST8のNOの場合)には、タッチ点は1箇所のみであると判断し、走査範囲が全面でなければ(詳細な部分走査であれば)タッチ検出手段3は当該タッチ点の最終的な位置座標を求める(ステップST9,ST10)。この最終的な位置座標は、タッチ点情報として確定されたものであり、必要に応じて、外部出力する情報である。さらに、次回の部分走査のために、タッチ点の電極を中心とした所定数の電極に限定した範囲を電極走査範囲として設定し(ステップST11)、ステップST2からの処理を繰り返す。 If it is determined that the multi-touch state is not set as a result of the multi-touch determination in step ST7 (NO in step ST8), it is determined that there is only one touch point, and the scanning range must be the entire surface. If it is a detailed partial scan, the touch detection means 3 obtains the final position coordinates of the touch point (steps ST9 and ST10). This final position coordinate is determined as touch point information, and is information to be output to the outside as necessary. Further, for the next partial scan, a range limited to a predetermined number of electrodes centered on the electrode at the touch point is set as an electrode scan range (step ST11), and the processing from step ST2 is repeated.
 一方、マルチタッチ状態であると判定された場合(ステップST8のYESの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST6)、ステップST2の走査動作へ戻る。これにより、マルチタッチ状態でタッチ位置を誤検出したまま部分走査をし続けてしまい、正しいタッチ位置を得ることができない、という問題が解消される。 On the other hand, when it is determined that the touch panel is in the multi-touch state (YES in step ST8), the scanning electrode determining means 2 sets the electrode scanning range over the entire touch panel unit 1 (step ST6), and the scanning operation in step ST2 Return to. Thereby, the problem that the partial scanning is continued while erroneously detecting the touch position in the multi-touch state and the correct touch position cannot be obtained is solved.
 ここで、マルチタッチ判定手段4による効果について説明する。図7は、マルチタッチ状態におけるゴースト問題を説明する図である。上記のように、マルチタッチ状態であるか否かを判断しない場合には、例えば図7のようにタッチ位置が2箇所あった場合に、真のタッチ位置が(X,Y)=(A,B)及び(C,D)であるにもかかわらず、X電極の計測値が所定の閾値より大きかったのがX=A,C、Y電極についてはY=B,Dであることにより、そのまま走査範囲を限定して部分走査を行っていくと、位置(X,Y)=(A,D)または(C,B)という実際にはタッチされていない箇所がタッチ位置として誤検出されてしまい、使用者の意図しない誤動作につながるおそれがある。すなわち、マルチタッチ判定を行うことにより、このような誤検出を抑制することができるという効果がある。 Here, the effect of the multi-touch determination means 4 will be described. FIG. 7 is a diagram for explaining the ghost problem in the multi-touch state. As described above, when it is not determined whether or not the touch state is the multi-touch state, when there are two touch positions as shown in FIG. 7, for example, the true touch position is (X, Y) = (A, In spite of B) and (C, D), the measured value of the X electrode is larger than the predetermined threshold value because X = A, C, Y electrode is Y = B, D. When partial scanning is performed with the scanning range limited, a position that is not actually touched, such as position (X, Y) = (A, D) or (C, B), is erroneously detected as a touch position. There is a risk of malfunctions not intended by the user. That is, by performing multi-touch determination, there is an effect that such erroneous detection can be suppressed.
 以上のように、この実施の形態1によれば、高速な部分走査を利用する一方、部分走査時にマルチタッチ状態で発生しやすい誤検出を抑制することができる。 As described above, according to the first embodiment, high-speed partial scanning is used, while erroneous detection that is likely to occur in a multi-touch state during partial scanning can be suppressed.
実施の形態2.
 この発明の実施の形態2について、図8及び図9を使用して説明する。タッチパネル装置の概略構成図は実施の形態1と同じ(図1)である。図8は、この実施の形態2におけるタッチパネル装置100の処理フローを示す図である。図9は、部分走査後におけるマルチタッチ判定用走査とマルチタッチ再判定を説明するための図であり、21と22はタッチパネル部1におけるタッチ位置、23はX電極の走査範囲、24はY電極の走査範囲、25は走査範囲23に対応したX電極の計測値、26は閾値11における計測値25の幅、27は走査範囲24に対応したY電極の計測値、28は閾値11における計測値27の幅、29はマルチタッチ判定用走査で得たタッチパネル部1全面を走査対象としたY電極の計測値である。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIGS. The schematic configuration diagram of the touch panel device is the same as that of the first embodiment (FIG. 1). FIG. 8 is a diagram showing a processing flow of the touch panel device 100 according to the second embodiment. FIG. 9 is a diagram for explaining multi-touch determination scanning and multi-touch re-determination after partial scanning, in which 21 and 22 are touch positions on the touch panel unit 1, 23 is an X electrode scanning range, and 24 is a Y electrode. , 25 is a measured value of the X electrode corresponding to the scanning range 23, 26 is a width of the measured value 25 at the threshold 11, 27 is a measured value of the Y electrode corresponding to the scanning range 24, and 28 is a measured value at the threshold 11. The width 27 and 29 are measured values of the Y electrode with the entire touch panel 1 obtained by scanning for multi-touch determination as a scanning target.
 この実施の形態2における処理フロー(図8)のステップST21~ST26は、実施の形態1の処理フロー(図2)のステップST1~ST6と同じであり、実施の形態1と同様の手順で、走査電極決定手段2による電極走査範囲の全面設定(ステップST21)、タッチ検出手段3による電極走査(ステップST22)、各電極の計測値取得(ステップST23)、タッチ検出(ステップST24)を行い、ステップST24でタッチ無と判定された場合(ステップST25のNOの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST26)、ステップST22の走査動作へ戻る。 Steps ST21 to ST26 in the processing flow (FIG. 8) in the second embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed. The entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST21), the electrode scanning by the touch detecting means 3 (step ST22), the measurement value acquisition of each electrode (step ST23), and touch detection (step ST24) are performed. If it is determined in ST24 that there is no touch (NO in step ST25), the scanning electrode determining unit 2 sets the electrode scanning range on the entire surface of the touch panel unit 1 (step ST26), and returns to the scanning operation in step ST22.
 ステップST24のタッチ検出によりタッチ有と判定された場合(ステップST25のYESの場合)には、さらにマルチタッチ判定手段4がマルチタッチ判定を行う(ステップST27)が、この実施の形態2においては、このステップST27のマルチタッチ判定の結果として、“マルチタッチ有で確定”、“マルチタッチ無で確定”、“未確定(ステップST22の走査で得た計測値からは判断しきれない状態、すなわち、マルチタッチ状態であるか否かを判定できない状態)”の3種類のうちのいずれかを出力するものとする。例えば、計測値の山の幅に適用する閾値を2つ(THW1とTHW2。ただし、THW1<THW2)用意しておき、山の幅がTHW1未満であれば“マルチタッチ無で確定”、THW1~THW2(THW1以上、THW2以下)であれば“未確定”、THW2を超えていれば“マルチタッチ有で確定”とする。また、山の数については、2個以上あれば“マルチタッチ有で確定”とし、なければ前記山の幅の判定結果に従うものとする。図6の状態よりもタッチ2点間の水平距離が短くなった図9の状態では、X電極の計測値25とY電極の計測値27では部分走査範囲中には共に山が一つしかなく、山の幅もX電極側の幅26が通常の1点タッチ状態よりも若干長い程度であり、この山の幅26が前記THW1とTHW2の間の値であるとする(Y電極の山の幅28はTHW1未満とする)。この場合、マルチタッチ判定手段4は、“未確定”であると判断する。 When it is determined that there is a touch by touch detection in step ST24 (in the case of YES in step ST25), the multi-touch determination unit 4 further performs multi-touch determination (step ST27). As a result of the multi-touch determination in step ST27, “determined with multi-touch”, “determined without multi-touch”, “undetermined (a state that cannot be determined from the measurement value obtained by scanning in step ST22, ie, It is assumed that any one of the three types of “a state in which it is not possible to determine whether or not it is a multi-touch state” is output. For example, two threshold values (THW1 and THW2; THW1 <THW2) to be applied to the width of the measured value are prepared, and if the width of the peak is less than THW1, “determined without multi-touch”, THW1˜ If it is THW2 (THW1 or more, THW2 or less), “unconfirmed”, and if it exceeds THW2, “confirmed with multi-touch”. As for the number of peaks, if it is 2 or more, “determined with multi-touch” is set, and if not, it follows the determination result of the peak width. In the state of FIG. 9 in which the horizontal distance between the two touch points is shorter than in the state of FIG. 6, there is only one mountain in the partial scanning range in the measured value 25 of the X electrode and the measured value 27 of the Y electrode. , And the width 26 of the X electrode is slightly longer than the normal one-point touch state, and the width 26 of the peak is a value between THW1 and THW2 (the peak of the Y electrode The width 28 is less than THW1). In this case, the multi-touch determination unit 4 determines that “unconfirmed”.
 ステップST27において“マルチタッチ有で確定”と判定した場合(ステップST28のYESの場合)は、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定して(ステップST26)、ステップST22の走査動作へ戻る。また、“マルチタッチ無で確定”と判定した場合(ステップST28のNOの場合、かつ、ステップST29のYESの場合)は、走査範囲が全面でなければタッチ点の位置を求め(ステップST34,ST35)、走査電極決定手段2が部分走査用に電極走査範囲をタッチパネル部1の一部に限定して(ステップST36)、ステップST22の走査動作へ戻る。 If it is determined in step ST27 that “determined with multi-touch” (in the case of YES in step ST28), the scanning electrode determining means 2 sets the electrode scanning range on the entire surface of the touch panel unit 1 (step ST26). Return to scanning operation. In addition, when it is determined that “determined without multi-touch” (NO in step ST28 and YES in step ST29), the position of the touch point is obtained unless the scanning range is the entire surface (steps ST34 and ST35). ), Scanning electrode determining means 2 limits the electrode scanning range to a part of touch panel unit 1 for partial scanning (step ST36), and returns to the scanning operation of step ST22.
 さらに図9のような場合、すなわち、ステップST27において“未確定(マルチタッチ状態であるか否かを判定できない状態)”と判定した場合(ステップST28のNO、かつ、ステップST29のNOの場合)には、走査電極決定手段2がマルチタッチ判定用の電極を設定し(ステップST30)、その設定された電極に対してタッチ検出手段3がマルチタッチ判定用走査を行う(ステップST31)。ここで、ステップST30では、例えば、部分走査範囲外にタッチ点が位置する可能性の高い電極として、X電極とY電極のうちで山の幅が短い方の全電極、すなわち、図9の場合であれば、Y電極の山の幅が短いため、Y電極の全電極を、マルチタッチ判定用の電極として設定する。この際、X電極は走査しない。そして、ステップST31では、ステップST30でマルチタッチ判定用の電極として設定された、Y電極の全電極について走査して、計測値29を得る。なお、この実施の形態2では、マルチタッチ判定用走査を、X電極とY電極のうちで山の幅が短い方の全電極を走査することとしたが、山の幅ではなく山の頂点近辺のなだらかさによるなど、別の走査方法をとってもよい。 Further, in the case as shown in FIG. 9, that is, in the case where it is determined in step ST27 that it is “indeterminate (a state in which it is not possible to determine whether it is a multi-touch state)” (NO in step ST28 and NO in step ST29) For this, the scanning electrode determining means 2 sets electrodes for multi-touch determination (step ST30), and the touch detection means 3 performs multi-touch determination scanning for the set electrodes (step ST31). Here, in step ST30, for example, all electrodes having a shorter peak width of the X electrode and the Y electrode as the electrodes having a high possibility that the touch point is located outside the partial scanning range, that is, in the case of FIG. If so, since the width of the peak of the Y electrode is short, all the electrodes of the Y electrode are set as the electrodes for multi-touch determination. At this time, the X electrode is not scanned. In step ST31, all the electrodes of the Y electrode set as the electrodes for multi-touch determination in step ST30 are scanned to obtain a measurement value 29. In the second embodiment, the multi-touch determination scan is performed by scanning all the electrodes having the shorter peak width among the X electrode and the Y electrode. Another scanning method may be used, such as due to the gentleness of the image.
 このステップST31のマルチタッチ判定用走査で得た計測値からマルチタッチ判定手段4がマルチタッチ再判定を行う(ステップST32)。この、ステップST32のマルチタッチ再判定では、実施の形態1のマルチタッチ判定(ステップST7)と同様に、マルチタッチ状態であるか否かの判定を行うものとする。図9の場合は、ステップST31のマルチタッチ判定用走査で得た計測値29に山が2つあるため、マルチタッチ状態であると正しく判定できる。この動作により、ステップST21,ST22で実施されているX電極・Y電極両方の全面走査よりも少ない処理量で、マルチタッチ状態であるか否かを判定できる。 The multi-touch determination means 4 performs multi-touch re-determination from the measurement value obtained by the multi-touch determination scanning in step ST31 (step ST32). In this multi-touch re-determination in step ST32, it is determined whether or not it is in a multi-touch state as in the multi-touch determination (step ST7) in the first embodiment. In the case of FIG. 9, since there are two peaks in the measurement value 29 obtained by the scan for multi-touch determination in step ST31, it can be correctly determined that the state is the multi-touch state. With this operation, it is possible to determine whether or not the multi-touch state is achieved with a smaller processing amount than the entire scanning of both the X electrodes and the Y electrodes performed in steps ST21 and ST22.
 その後は、実施の形態1と同様に、ステップST32でのマルチタッチ再判定の結果、マルチタッチ状態であると判定された場合(ステップST33のYESの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST26)、ステップST22の走査動作へ戻る。また、マルチタッチ状態でないと判定された場合(ステップST33のNOの場合)には、走査範囲が全面でなければタッチ点の位置を求め(ステップST34,ST35)、その後、走査電極決定手段2は電極走査範囲を限定して設定して(ステップST36)、ステップST22からの処理を繰り返す。 After that, as in the first embodiment, when it is determined that the multi-touch state is obtained as a result of the multi-touch re-determination in step ST32 (in the case of YES in step ST33), the scan electrode determining unit 2 sets the electrode. The scanning range is set on the entire surface of the touch panel unit 1 (step ST26), and the process returns to the scanning operation of step ST22. If it is determined that the multi-touch state is not established (NO in step ST33), the position of the touch point is obtained if the scanning range is not the entire surface (steps ST34 and ST35). The electrode scanning range is limited and set (step ST36), and the processing from step ST22 is repeated.
 以上のように、この実施の形態2によれば、部分走査中でマルチタッチ状態であるか否かの判断が難しい場合でも、効率よくマルチタッチ状態であるか否かを判定できる。 As described above, according to the second embodiment, even when it is difficult to determine whether or not a multi-touch state is being performed during partial scanning, it is possible to efficiently determine whether or not a multi-touch state is present.
実施の形態3.
 この発明の実施の形態3について、図10を使用して説明する。タッチパネル装置の概略構成図は実施の形態1と同じ(図1)である。図10は、この実施の形態3におけるタッチパネル装置100の処理フローを示す図である。
Embodiment 3 FIG.
Embodiment 3 of the present invention will be described with reference to FIG. The schematic configuration diagram of the touch panel device is the same as that of the first embodiment (FIG. 1). FIG. 10 is a diagram showing a processing flow of the touch panel device 100 according to the third embodiment.
 この実施の形態3における処理フロー(図10)のステップST41~ST46は、実施の形態1の処理フロー(図2)のステップST1~ST6と同じであり、実施の形態1と同様の手順で、走査電極決定手段2による電極走査範囲の全面設定(ステップST41)、タッチ検出手段3による電極走査(ステップST42)、各電極の計測値取得(ステップST43)、タッチ検出(ステップST44)を行い、ステップST24でタッチ無と判定された場合(ステップST45のNOの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST46)、ステップST42の走査動作へ戻る。 Steps ST41 to ST46 in the processing flow (FIG. 10) in the third embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed. The entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST41), the electrode scanning by the touch detecting means 3 (step ST42), the measurement value acquisition of each electrode (step ST43), and touch detection (step ST44) are performed. If it is determined in ST24 that there is no touch (NO in step ST45), the scan electrode determining means 2 sets the electrode scan range over the entire surface of the touch panel unit 1 (step ST46), and returns to the scan operation in step ST42.
 ステップST44のタッチ検出によりタッチ有と判定された場合(ステップST45のYESの場合)には、走査電極決定手段2がマルチタッチ判定専用の電極を設定する(ステップST47)。具体的には、例えば、X電極がX0~X19の20個あり、このうちステップST42で走査するタッチ検出のための電極として電極X4~11が設定されていた場合、その走査範囲に含まれなかった電極を一つ飛ばしで、すなわち、電極X0、X2、X13、X15、X17、X19を、マルチタッチ判定専用の走査電極として設定する。そして、その設定された電極に対してタッチ検出手段3がマルチタッチ判定用走査を行い(ステップST48)、マルチタッチ判定手段4は、ステップST42の走査とステップST48の走査の両方の走査結果に基づいて、マルチタッチ状態であるか否かの判定を行う(ステップST49)。ここで、ステップST49のマルチタッチ判定では、ステップST42の走査結果について実施の形態1と同様の手順でマルチタッチ判定(判定1)を行うと共に、ステップST48のマルチタッチ判定用走査の結果の中にタッチとみなせる計測値があるか(部分走査領域外にタッチがあったか)の判定(判定2)を行い、判定1でマルチタッチ状態であると判定するか、判定2で部分走査領域外タッチありと判定した場合に、マルチタッチ状態であるとする。この結果、全面走査よりも少ない処理量で、全面走査時に近いマルチタッチ判定精度を得ることができる。また、例えば、実施の形態1や2の方法では、2つのタッチ点の位置関係によってはマルチタッチ状態であると判定できない場合もあるが(完全に水平・垂直に並んでいる場合など)、この実施の形態3で示した方法では、2つのタッチ点の位置関係によらず、マルチタッチ判定ができる。 If it is determined that there is a touch by the touch detection in step ST44 (YES in step ST45), the scan electrode determining means 2 sets an electrode dedicated for multi-touch determination (step ST47). Specifically, for example, when there are 20 X electrodes X0 to X19, and electrodes X4 to 11 are set as electrodes for touch detection to be scanned in step ST42, they are not included in the scanning range. One electrode is skipped, that is, the electrodes X0, X2, X13, X15, X17, and X19 are set as scanning electrodes dedicated to multi-touch determination. Then, the touch detection means 3 performs multi-touch determination scanning for the set electrodes (step ST48), and the multi-touch determination means 4 is based on the scanning results of both the scanning of step ST42 and the scanning of step ST48. Then, it is determined whether or not the multi-touch state is set (step ST49). Here, in the multi-touch determination in step ST49, the multi-touch determination (determination 1) is performed on the scanning result in step ST42 in the same procedure as in the first embodiment, and the result of the multi-touch determination scanning in step ST48 is included. It is determined (determination 2) whether there is a measurement value that can be regarded as a touch (whether there is a touch outside the partial scanning area), and it is determined that the multi-touch state is determined in determination 1, or that there is a touch outside the partial scanning area in determination 2. If it is determined, the multi-touch state is assumed. As a result, it is possible to obtain a multi-touch determination accuracy close to that of the full scan with a smaller processing amount than the full scan. In addition, for example, in the methods of the first and second embodiments, it may not be determined that the multi-touch state is present depending on the positional relationship between the two touch points (for example, when they are completely aligned horizontally and vertically). In the method shown in the third embodiment, multi-touch determination can be performed regardless of the positional relationship between two touch points.
 なお、ステップST48のマルチタッチ判定用走査は、別の方法を用いてもよい。例えば、ステップST42の部分走査範囲に含まれなかった電極を一つに結合して走査し、前記マルチタッチ判定の判定2では、この一つの値でタッチ有無を判定するようにしてもよい。このように、複数の電極を結合すると一つの大きな電極として扱うことができるため、1回の走査だけで部分走査範囲外のタッチ有無が判断でき、さらに少ない処理量でマルチタッチ状態であるか否かを判定できる。 Note that another method may be used for the scan for multi-touch determination in step ST48. For example, electrodes that are not included in the partial scanning range in step ST42 may be combined and scanned, and in the determination 2 of the multi-touch determination, the presence / absence of touch may be determined based on this one value. In this way, since a plurality of electrodes can be combined and handled as one large electrode, it is possible to determine whether or not there is a touch outside the partial scan range with only one scan, and whether or not the touch is in a multi-touch state with a smaller amount of processing. Can be determined.
 その後は、実施の形態1と同様に、マルチタッチ状態であると判定された場合(ステップST50のYESの場合)は、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST46)、ステップST42の走査動作へ戻る。また、マルチタッチ状態でないと判定された場合(ステップST50のNOの場合)は、走査範囲が全面でなければタッチ点の位置を求め(ステップST51,ST52)、その後、走査電極決定手段2は電極走査範囲を限定して設定して(ステップST53)、ステップST42からの処理を繰り返す。 Thereafter, similarly to the first embodiment, when it is determined that the touch panel is in the multi-touch state (in the case of YES in step ST50), the scan electrode determining unit 2 sets the electrode scan range over the entire touch panel unit 1 (step ST46), the process returns to the scanning operation of step ST42. On the other hand, if it is determined that the touch state is not the multi-touch state (NO in step ST50), the position of the touch point is obtained if the scanning range is not the entire surface (steps ST51 and ST52). The scanning range is limited and set (step ST53), and the processing from step ST42 is repeated.
 以上のように、この実施の形態3によれば、比較的少ない処理量で、タッチ位置に依存しない、高精度なマルチタッチ判定を行うことができる。 As described above, according to the third embodiment, highly accurate multi-touch determination can be performed with a relatively small amount of processing and not depending on the touch position.
実施の形態4.
 この発明の実施の形態4について、図11~図13を使用して説明する。図11は、この発明の実施の形態4に係るタッチパネル装置200の概略構成を示す図である。このタッチパネル装置200は、複数の電極を配置したタッチパネル部1と、タッチパネル部1の複数の電極の中から走査電極を決定する走査電極決定手段2と、走査電極決定手段2により決定された走査電極に対してタッチパネル部1を走査して各電極の静電容量の変化が反映された計測値(各電極からの出力値)を取得し、その取得した計測値に基づいてタッチパネル部1へのタッチの有無を検出するタッチ検出手段3と、タッチ検出手段3によりタッチパネル部1へのタッチ有と検出されたタッチ点を過去のタッチ検出結果と対応付けて追跡を行う追跡手段30とを備えている。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a diagram showing a schematic configuration of a touch panel device 200 according to Embodiment 4 of the present invention. The touch panel device 200 includes a touch panel unit 1 in which a plurality of electrodes are arranged, a scan electrode determination unit 2 that determines a scan electrode from the plurality of electrodes of the touch panel unit 1, and a scan electrode that is determined by the scan electrode determination unit 2. The touch panel unit 1 is scanned to obtain a measurement value (output value from each electrode) reflecting the change in capacitance of each electrode, and the touch panel unit 1 is touched based on the acquired measurement value. Touch detection means 3 for detecting the presence or absence of touch, and tracking means 30 for tracking the touch points detected by the touch detection means 3 as having touched the touch panel unit 1 in association with past touch detection results. .
 図12は、タッチパネル装置200の処理フローを示す図である。また、図13は部分走査用電極の決定方法を説明するための図であり、31はタッチパネル部1におけるタッチ点、32はタッチ点31の水平位置、33はタッチ点31の垂直位置、34は過去のタッチ点の位置と現在のタッチ点の位置から求めた移動ベクトル(矢印の向きが移動方向、長さが移動速度を示す)、35は移動ベクトル34の水平成分、36は移動ベクトル34の垂直成分、37は部分走査対象のX電極範囲、38は部分走査対象のY電極範囲である。 FIG. 12 is a diagram showing a processing flow of the touch panel device 200. FIG. 13 is a diagram for explaining a method of determining the partial scanning electrode, in which 31 is a touch point on the touch panel unit 1, 32 is a horizontal position of the touch point 31, 33 is a vertical position of the touch point 31, and 34 is A movement vector obtained from the position of the past touch point and the position of the current touch point (the direction of the arrow indicates the movement direction and the length indicates the movement speed), 35 is a horizontal component of the movement vector 34, and 36 is the movement vector 34. The vertical component, 37 is an X electrode range to be partially scanned, and 38 is a Y electrode range to be partially scanned.
 この実施の形態4における処理フロー(図12)のステップST61~ST66は、実施の形態1の処理フロー(図2)のステップST1~ST6と同じであり、実施の形態1と同様の手順で、走査電極決定手段2による電極走査範囲の全面設定(ステップST61)、タッチ検出手段3による電極走査(ステップST62)、各電極の計測値取得(ステップST63)、タッチ検出(ステップST64)を行い、ステップST64でタッチ無と判定された場合(ステップST65のNOの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1全面に設定し(ステップST66)、ステップST62の走査動作へ戻る。 Steps ST61 to ST66 in the processing flow (FIG. 12) in the fourth embodiment are the same as steps ST1 to ST6 in the processing flow (FIG. 2) in the first embodiment, and the same procedure as in the first embodiment is performed. The entire surface of the electrode scanning range is set by the scanning electrode determining means 2 (step ST61), the electrode scanning is performed by the touch detecting means 3 (step ST62), the measured value of each electrode is obtained (step ST63), and touch detection (step ST64) is performed. If it is determined in ST64 that there is no touch (NO in step ST65), scanning electrode determining means 2 sets the electrode scanning range over the entire surface of touch panel unit 1 (step ST66), and returns to the scanning operation in step ST62.
 ステップST64のタッチ検出によりタッチ有と判定された場合(ステップST65のYESの場合)には、走査範囲が全面でなければタッチ点の位置を求め(ステップST67,ST68)、追跡手段30がタッチ点の追跡を行う(ステップST69)。このステップST69では、ステップST64で得た最新のタッチ点座標と、前回のタッチ検出で得た過去のタッチ点座標から、タッチ点の移動速度及び移動方向を求める。その後、走査電極決定手段2が、前記タッチ点の移動速度及び移動方向を用いて電極走査範囲を設定する(ステップST70)。その後は、実施の形態1と同様に、ステップST62からの処理を繰り返す。ここで、ステップST70の動作について、図13を用いて説明すると、ステップST69で得た移動速度及び移動方向に対応した移動ベクトル34から、水平成分35と垂直成分36を求め、水平成分35の向きと大きさからX方向電極の走査範囲37を、垂直成分36の向きと大きさからY方向電極の走査範囲38を決定する。この際、各成分の向いている側を広く、また、各成分の大きさが大きいほど広く設定することで、タッチ点31が高速に移動している状況でもタッチ点が範囲外に出ないように走査範囲を設定でき、予測ミスを防止できる。 If it is determined that the touch is detected by the touch detection in step ST64 (YES in step ST65), the position of the touch point is obtained if the scanning range is not the entire surface (steps ST67 and ST68), and the tracking unit 30 detects the touch point. Is tracked (step ST69). In this step ST69, the moving speed and moving direction of the touch point are obtained from the latest touch point coordinates obtained in step ST64 and the past touch point coordinates obtained in the previous touch detection. Thereafter, the scan electrode determining means 2 sets an electrode scan range using the moving speed and moving direction of the touch point (step ST70). Thereafter, as in the first embodiment, the processing from step ST62 is repeated. Here, the operation of step ST70 will be described with reference to FIG. 13. The horizontal component 35 and the vertical component 36 are obtained from the movement vector 34 corresponding to the movement speed and movement direction obtained in step ST69, and the direction of the horizontal component 35 is determined. The X-direction electrode scanning range 37 is determined from the size and the size, and the Y-direction electrode scanning range 38 is determined from the direction and size of the vertical component 36. At this time, by setting a wider side to which each component is directed and a larger size as each component is larger, the touch point does not go out of range even when the touch point 31 is moving at high speed. Therefore, it is possible to set a scanning range and prevent a prediction error.
 以上のように、この実施の形態4によれば、部分走査中でも予測ミスを起こさず、効率よくタッチ走査を処理することができる。 As described above, according to the fourth embodiment, it is possible to efficiently process touch scanning without causing a prediction error even during partial scanning.
実施の形態5.
 この発明の実施の形態5について、図14を使用して説明する。タッチパネル装置の概略構成図は実施の形態4と同じ(図11)である。図14は、この実施の形態5におけるタッチパネル装置200の処理フローを示す図である。なお、この実施の形態5では、実施の形態1~4で説明した全面走査(タッチパネル部1の全面の電極を数本置きに走査する等の間引き走査)の代わりに、全面の全電極での走査を行う例を説明する。
Embodiment 5. FIG.
Embodiment 5 of the present invention will be described with reference to FIG. The schematic configuration diagram of the touch panel device is the same as that of the fourth embodiment (FIG. 11). FIG. 14 is a diagram showing a processing flow of the touch panel device 200 according to the fifth embodiment. In the fifth embodiment, instead of the full-surface scanning described in the first to fourth embodiments (thinning-out scanning such as scanning every few electrodes on the entire surface of the touch panel unit 1), all the electrodes on the entire surface are scanned. An example of performing scanning will be described.
 まず、走査電極決定手段2が、初期段階として電極走査範囲をタッチパネル部1全電極に設定する(ステップST81)。以降の、この実施の形態5における処理フロー(図14)のステップST82~ST84は、実施の形態1の処理フロー(図2)のステップST2~ST4と同様の手順で、タッチ検出手段3による電極走査(ステップST82)、各電極の計測値取得(ステップST83)、タッチ検出(ステップST84)を行う。そして、ステップST84でタッチ無と判定された場合(ステップST85のNOの場合)には、走査電極決定手段2が電極走査範囲をタッチパネル部1の全電極に設定し(ステップST86)、ステップST82の走査動作へ戻る。 First, the scan electrode determining means 2 sets the electrode scan range to all the electrodes of the touch panel unit 1 as an initial stage (step ST81). Subsequent steps ST82 to ST84 in the processing flow (FIG. 14) in the fifth embodiment are the same as steps ST2 to ST4 in the processing flow (FIG. 2) in the first embodiment, and the electrodes by the touch detection means 3 are used. Scanning (step ST82), measurement value acquisition of each electrode (step ST83), and touch detection (step ST84) are performed. If it is determined in step ST84 that there is no touch (NO in step ST85), the scanning electrode determining means 2 sets the electrode scanning range to all the electrodes of the touch panel unit 1 (step ST86), and in step ST82. Return to scanning operation.
 ステップST84のタッチ検出によりタッチ有と判定された場合(ステップST85のYESの場合)は、実施の形態1のステップST10と同様にタッチ検出手段3がタッチ点の位置を求め(ステップST87)、その後、実施の形態4と同様の手順で、追跡手段30がタッチ点の追跡を行う(ステップST88)。さらに、移動速度が予め定めた閾値以上であるか否かを確認し、その閾値以上である場合(ステップST89のYESの場合)は、走査電極決定手段2は、部分走査用の限定した走査範囲を設定する(ステップST90)。その後は、実施の形態1と同様に、ステップST82からの処理を繰り返す。一方、移動速度が遅い場合(ステップST89のNOの場合)は、全電極走査用の走査範囲を設定する(ステップST86)。この処理動作により、タッチ点が高速に移動している場合にのみ、部分走査へ移行することになる。部分走査は、高速ではあるが、一部の電極の情報しか取得しないため、マルチタッチ発生時など、誤検出が起こりがちである。一方、タッチ点が移動していない、あるいはゆっくり移動している場合には、高速な走査は必要なく、全電極走査で十分な場合も多い。このため、真に高速走査が必要な場合にのみ部分走査へ移行するという動作は、誤検出の防止に有効である。 When it is determined that there is a touch by the touch detection in step ST84 (YES in step ST85), the touch detection means 3 obtains the position of the touch point as in step ST10 of the first embodiment (step ST87), and thereafter The tracking unit 30 tracks the touch point in the same procedure as in the fourth embodiment (step ST88). Further, it is confirmed whether or not the moving speed is equal to or higher than a predetermined threshold value. When the moving speed is equal to or higher than the threshold value (in the case of YES in step ST89), the scan electrode determining means 2 determines the limited scanning range for partial scanning. Is set (step ST90). Thereafter, as in the first embodiment, the processing from step ST82 is repeated. On the other hand, when the moving speed is slow (NO in step ST89), a scanning range for all electrode scanning is set (step ST86). Due to this processing operation, only when the touch point is moving at high speed, the shift to the partial scan is performed. Although partial scanning is performed at high speed, only partial electrode information is acquired, and thus erroneous detection tends to occur when multi-touch occurs. On the other hand, when the touch point has not moved or moved slowly, high-speed scanning is not necessary, and all-electrode scanning is often sufficient. For this reason, the operation of shifting to partial scanning only when truly high-speed scanning is required is effective in preventing erroneous detection.
 以上のように、この実施の形態5によれば、部分走査で発生可能性の高まる誤操作の発生頻度を低減させることができる。 As described above, according to the fifth embodiment, it is possible to reduce the frequency of occurrence of erroneous operations that increase the possibility of occurrence in partial scanning.
 なお、実施の形態1~3では、マルチタッチ判定用閾値11はXとYで一つの値を用いたが、これはそれぞれ別の値にしてもよく、あるいは、電極毎に個別の閾値を設定してもよい。また、タッチという表現で検出対象の操作を表現したが、感度を高めることで近接した指(物理的にタッチパネルには接触していない)を検出可能なタッチパネルも存在しており、本願発明におけるタッチという用語は、近接及び接触を意味するものである。 In the first to third embodiments, the multi-touch determination threshold value 11 is a single value for X and Y. However, this may be a different value, or a separate threshold value may be set for each electrode. May be. In addition, although the operation to be detected is expressed by the expression touch, there is a touch panel that can detect a nearby finger (not physically touching the touch panel) by increasing sensitivity. The term means proximity and contact.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 以上のように、この発明に係るタッチパネル装置は、従来方法では検出することが困難であったマルチタッチ状態が存在する場合の使用にも適している。 As described above, the touch panel device according to the present invention is also suitable for use when there is a multi-touch state that is difficult to detect by the conventional method.
 1 タッチパネル部、2 走査電極決定手段、3 タッチ検出手段、4 マルチタッチ判定手段、5,6 指等の物体、7 X電極、8 Y電極、9,17,25 X電極7の計測値、10,19,27,29 Y電極8の計測値、11 マルチタッチ判定のための閾値、12 部分走査に対応した走査範囲、13,14,21,22 タッチパネル部1におけるタッチ位置、15,23 X電極7の走査範囲、16,24 Y電極8の走査範囲、18,26 閾値11における計測値17,25の幅、20,28 閾値11における計測値19,27の幅、30 追跡手段、31 タッチパネル部1におけるタッチ点、32 タッチ点31の水平位置、33 タッチ点31の垂直位置、34 タッチ点の移動ベクトル、35 移動ベクトル34の水平成分、36 移動ベクトル34の垂直成分、37 部分走査対象のX電極範囲、38 部分走査対象のY電極範囲、100,200 タッチパネル装置。 1 Touch panel unit, 2 Scan electrode determination means, 3 Touch detection means, 4 Multi-touch determination means, 5 and 6 objects such as fingers, 7 X electrodes, 8 Y electrodes, 9, 17, 25 X electrode 7 measurement values, 10 , 19, 27, 29 Measured value of Y electrode 8, 11 Threshold value for multi-touch judgment, 12 Scanning range corresponding to partial scan, 13, 14, 21, 22 Touch position on touch panel unit 1, 15, 23 X electrode 7, 24, Y electrode 8 scanning range, 18, 26 Width of measured values 17, 25 at threshold 11, Width of measured values 19, 27 at 20, 28 threshold 11, 30 tracking means, 31 touch panel 1 touch point, 32 horizontal position of touch point 31, 33 vertical position of touch point 31, 34 movement vector of touch point, 35 movement vector The horizontal component of the 34, 36 the vertical component of the motion vector 34, 37 partial scanning X electrodes range of interest, 38 parts scanned Y electrodes ranges, 100, 200 touch panel device.

Claims (8)

  1.  複数の電極が配置されたタッチパネル部と、
     前記タッチパネル部の複数の電極の中から走査電極を決定する走査電極決定手段と、
     前記走査電極決定手段により決定された走査電極に対して前記タッチパネル部を走査して各電極の静電容量の変化が反映された計測値を取得し、当該取得した計測値に基づいて前記タッチパネル部へのタッチの有無を検出するタッチ検出手段と、
     前記タッチ検出手段により前記タッチパネル部へのタッチ有と検出されたタッチ点が複数あるか否か、すなわち、マルチタッチ状態であるか否かを判定するマルチタッチ判定手段と
     を備え、
     前記走査電極決定手段は、前記タッチ検出手段の検出結果と前記マルチタッチ判定手段の判定結果に基づいて前記タッチパネル部の走査電極を決定する
     ことを特徴とするタッチパネル装置。
    A touch panel portion on which a plurality of electrodes are disposed;
    Scan electrode determining means for determining a scan electrode from a plurality of electrodes of the touch panel unit;
    The touch panel unit is scanned with respect to the scan electrode determined by the scan electrode determining unit to acquire a measurement value reflecting a change in capacitance of each electrode, and the touch panel unit is based on the acquired measurement value Touch detection means for detecting presence or absence of touch to
    A multi-touch determination unit that determines whether or not there are a plurality of touch points detected by the touch detection unit as being touched to the touch panel unit, that is, whether or not the touch panel unit is in a multi-touch state.
    The touch panel device, wherein the scan electrode determining unit determines the scan electrode of the touch panel unit based on a detection result of the touch detection unit and a determination result of the multi-touch determination unit.
  2.  前記走査電極決定手段は、前記マルチタッチ判定手段がマルチタッチ状態であると判定した場合には、前記タッチパネル部全面を走査電極として決定することを特徴とする請求項1記載のタッチパネル装置。 The touch panel device according to claim 1, wherein the scan electrode determining means determines the entire touch panel portion as a scan electrode when the multi-touch determining means determines that the touch panel is in a multi-touch state.
  3.  前記マルチタッチ判定手段は、所定の距離以上離れた複数電極でタッチ有と検出された場合、または、タッチ有と検出された電極数が所定数以上ある場合に、マルチタッチ状態であると判定することを特徴とする請求項1記載のタッチパネル装置。 The multi-touch determination unit determines that the touch state is in a multi-touch state when a plurality of electrodes separated by a predetermined distance or more are detected as having a touch, or when the number of electrodes detected as having a touch is greater than or equal to a predetermined number. The touch panel device according to claim 1.
  4.  前記走査電極決定手段は、前記マルチタッチ判定手段がマルチタッチ状態であるか否かを判定できない状態の場合には、マルチタッチ判定用の電極を走査電極として決定することを特徴とする請求項1記載のタッチパネル装置。 The scanning electrode determining means determines an electrode for multi-touch determination as a scanning electrode when the multi-touch determining means cannot determine whether the multi-touch state is in a multi-touch state. The touch panel device described.
  5.  前記走査電極決定手段は、タッチ検出のための電極とは別に、マルチタッチ判定専用の電極を走査電極として決定することを特徴とする請求項1記載のタッチパネル装置。 The touch panel device according to claim 1, wherein the scanning electrode determining means determines, as a scanning electrode, an electrode dedicated for multi-touch determination separately from an electrode for touch detection.
  6.  前記タッチ検出手段は、前記マルチタッチ判定専用の電極を一つに結合して走査を行うことを特徴とする請求項5記載のタッチパネル装置。 The touch panel device according to claim 5, wherein the touch detection unit performs scanning by combining the electrodes dedicated for multi-touch determination into one.
  7.  複数の電極が配置されたタッチパネル部と、
     前記タッチパネル部の複数の電極の中から走査電極を決定する走査電極決定手段と、
     前記走査電極決定手段により決定された走査電極に対して前記タッチパネル部を走査して各電極の静電容量の変化が反映された計測値を取得し、当該取得した計測値に基づいて前記タッチパネル部へのタッチの有無を検出するタッチ検出手段と、
     前記タッチ検出手段によりタッチパネル部へのタッチ有と検出されたタッチ点の移動速度及び移動方向を追跡する追跡手段と
     を備え、
     前記走査電極決定手段は、前記追跡手段の追跡結果に基づいて前記タッチパネル部の走査電極を決定する
     ことを特徴とするタッチパネル装置。
    A touch panel portion on which a plurality of electrodes are disposed;
    Scan electrode determining means for determining a scan electrode from a plurality of electrodes of the touch panel unit;
    The touch panel unit is scanned with respect to the scan electrode determined by the scan electrode determining unit to acquire a measurement value reflecting a change in capacitance of each electrode, and the touch panel unit is based on the acquired measurement value Touch detection means for detecting presence or absence of touch to
    Tracking means for tracking the moving speed and moving direction of the touch point detected as having touched the touch panel by the touch detecting means,
    The touch panel device, wherein the scan electrode determining means determines a scan electrode of the touch panel unit based on a tracking result of the tracking means.
  8.  前記走査電極決定手段は、前記追跡手段が求めたタッチ点の移動速度が予め定めた所定の速度以上になった場合に、前記タッチパネル部の走査電極を当該タッチ点周辺の一部に限定することを特徴とする請求項7記載のタッチパネル装置。 The scanning electrode determining unit limits the scanning electrode of the touch panel unit to a part around the touch point when the moving speed of the touch point obtained by the tracking unit is equal to or higher than a predetermined speed. The touch panel device according to claim 7.
PCT/JP2011/001153 2011-02-28 2011-02-28 Touch panel device WO2012117437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001153 WO2012117437A1 (en) 2011-02-28 2011-02-28 Touch panel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001153 WO2012117437A1 (en) 2011-02-28 2011-02-28 Touch panel device

Publications (1)

Publication Number Publication Date
WO2012117437A1 true WO2012117437A1 (en) 2012-09-07

Family

ID=46757413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001153 WO2012117437A1 (en) 2011-02-28 2011-02-28 Touch panel device

Country Status (1)

Country Link
WO (1) WO2012117437A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171177A1 (en) * 2013-04-19 2014-10-23 シャープ株式会社 Touch-panel device, display device with touch panel, and program
JP2015132906A (en) * 2014-01-10 2015-07-23 アルパイン株式会社 Input device, input detection method of multi-touch operation and input detection program thereof
EP3032389A1 (en) 2014-11-26 2016-06-15 Alps Electric Co., Ltd. Input device, and control method and program therefor
EP3115874A1 (en) 2015-07-09 2017-01-11 Alps Electric Co., Ltd. Input device, method for controlling them and program, that adapt the filtering process according to the number of touches
EP3136207A1 (en) 2015-08-31 2017-03-01 Alps Electric Co., Ltd. Input device, method of controlling the same, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124161A (en) * 1992-10-09 1994-05-06 Graphtec Corp Digitizer
JP2009181453A (en) * 2008-01-31 2009-08-13 Shotatsu Kagi Kofun Yugenkoshi Method of detecting and measuring multiple finger touches on touch pad
JP2009258903A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Touch panel device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124161A (en) * 1992-10-09 1994-05-06 Graphtec Corp Digitizer
JP2009181453A (en) * 2008-01-31 2009-08-13 Shotatsu Kagi Kofun Yugenkoshi Method of detecting and measuring multiple finger touches on touch pad
JP2009258903A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Touch panel device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171177A1 (en) * 2013-04-19 2014-10-23 シャープ株式会社 Touch-panel device, display device with touch panel, and program
JP2015132906A (en) * 2014-01-10 2015-07-23 アルパイン株式会社 Input device, input detection method of multi-touch operation and input detection program thereof
EP3032389A1 (en) 2014-11-26 2016-06-15 Alps Electric Co., Ltd. Input device, and control method and program therefor
EP3115874A1 (en) 2015-07-09 2017-01-11 Alps Electric Co., Ltd. Input device, method for controlling them and program, that adapt the filtering process according to the number of touches
EP3141990A1 (en) 2015-07-09 2017-03-15 Alps Electric Co., Ltd. Threshold apadtation for a multi-touch input device
US9836175B2 (en) 2015-07-09 2017-12-05 Alps Electric Co., Ltd. Input device, method of controlling the same, and program
EP3136207A1 (en) 2015-08-31 2017-03-01 Alps Electric Co., Ltd. Input device, method of controlling the same, and program
US9990088B2 (en) 2015-08-31 2018-06-05 Alps Electric Co., Ltd. Input device, method of controlling the same, and program

Similar Documents

Publication Publication Date Title
US10379727B2 (en) Moving an object by drag operation on a touch panel
JP5613248B2 (en) Dual differential sensing device and method
JP6261875B2 (en) How to distinguish between edge swipe gestures entering the touch sensor from edge swipe actions and from other similar but non-edge swipe actions
WO2012117437A1 (en) Touch panel device
KR101852276B1 (en) Touch control responding method and device
TWI380204B (en) Multipoint tracking method and related device
TWI400645B (en) Touch determining method and touch gesture determining method thereof
EP2538310A1 (en) Mobile terminal and control method thereof
TWI398807B (en) Posistion apparatus for touch device and posistion method thereof
US8624861B2 (en) Method for determining touch point
JP2011134111A (en) Touch panel device, touch panel control method, program, and storage medium
KR102310903B1 (en) Touch detection method and computer readable storage medium
TWI581171B (en) Method and device for identifying multipoint gestures
CN102508615A (en) Touch screen picture control method
JP5614173B2 (en) Information processing apparatus, information processing method, and program
KR20150091365A (en) Multi-touch symbol recognition
CN102004592A (en) Capacitive touch screen scanning method
US9753637B2 (en) Information processing apparatus, information processing method, and program
TWI428809B (en) Two - dimensional structure of the capacitive touchpad positioning method
KR20140105362A (en) Device of recognizing proximity motion using sensors and method thereof
CN107168630B (en) Terminal device, page control device and page control method
CN104679312A (en) Electronic device as well as touch system and touch method of electronic device
US20130127746A1 (en) Method for controlling touch panel
JP2008269642A (en) Article detection method for electrostatic capacitance type touch panel
JP2007025804A (en) Method for detecting multiple articles by electrostatic capacity type touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP