WO2012115149A1 - Signal processing device and laser measurement device - Google Patents
Signal processing device and laser measurement device Download PDFInfo
- Publication number
- WO2012115149A1 WO2012115149A1 PCT/JP2012/054276 JP2012054276W WO2012115149A1 WO 2012115149 A1 WO2012115149 A1 WO 2012115149A1 JP 2012054276 W JP2012054276 W JP 2012054276W WO 2012115149 A1 WO2012115149 A1 WO 2012115149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- unit
- light
- frequency
- output
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 123
- 238000005259 measurement Methods 0.000 title claims abstract description 52
- 230000004044 response Effects 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 10
- 239000000284 extract Substances 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 37
- 238000001514 detection method Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical group [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000011896 sensitive detection Methods 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical group CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001285 laser absorption spectroscopy Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
Definitions
- the present invention relates to a signal processing device and a laser measuring device used for laser measurement for calculating a physical quantity of a gas to be measured by laser absorption spectroscopy.
- Patent Document 1 discloses a laser that oscillates a laser beam that is modulated by a current having a first alternating current component superimposed on a constant current and changes in wavelength according to temperature, and a laser beam that has passed through a detection atmosphere.
- Current voltage converter light intensity voltage converter
- two phase sensitive detectors for phase sensitive detection of the output voltage of the current voltage converter
- 1 obtained from one phase sensitive detector
- the gas concentration measuring apparatus is based on an amplitude ratio calculation unit that calculates an amplitude ratio between a fundamental wave component and a second harmonic component detected from laser light, and an amplitude ratio between the fundamental wave component and the second harmonic component.
- the temperature setting unit for setting the temperature of the laser element, and the amplitude ratio between the fundamental wave component and the second harmonic wave component when the wavelength modulation is performed based on the wavelength shifted from the absorption peak wavelength.
- a drive current control unit that controls the drive current.
- the physical quantity such as the concentration of the measurement target substance is obtained. It can be measured.
- the gas concentration can be measured with high responsiveness by measuring the gas concentration using laser light.
- the light receiving signal generated by the light receiving unit receiving the laser light includes various noises. Therefore, various signal processes are performed to remove noise from the received light signal and extract a necessary component (for example, a signal component corresponding to a modulation frequency for performing wavelength modulation).
- a necessary component for example, a signal component corresponding to a modulation frequency for performing wavelength modulation.
- this signal processing there is a method of extracting a specific spectrum signal by performing lock-in processing and low-pass processing with a lock-in amplifier.
- an FIR filter, a bandpass filter, etc. are provided before processing by the lock-in amplifier,
- the frequency component is extracted, that is, the frequency component other than the frequency component to be processed by the lock-in amplifier is reduced.
- the present invention has been made in view of the above, and an object of the present invention is to provide a signal processing device and a laser measurement device capable of detecting a desired signal component from a light reception signal with high accuracy.
- the present invention includes a measurement cell including an incident part and an emission part, and a laser having a wavelength region including an absorption wavelength unique to a gas to be measured.
- a light emitting unit that modulates a wavelength with a modulation frequency and outputs the light, and enters the measurement cell; and receives the laser light that is incident from the incident unit, passes through the measurement cell, and is emitted from the emission unit.
- the signal supply unit is preferably a light reception signal A / D converter that converts the light reception signal from analog to digital and supplies the converted digital signal to the digital filter.
- the signal supply unit is a signal generation unit that generates a digital signal including a set frequency component other than the designated frequency component.
- the set frequency is preferably the modulation frequency.
- the digital filter is preferably an FIR filter.
- the parameter adjusting unit processes the set frequency component included in the signal with an LMS algorithm and adjusts the parameter based on a processing result.
- a characteristic estimation unit that estimates a path characteristic from the light reception signal
- an initial parameter setting unit that calculates an initial parameter based on the path characteristic detected by the characteristic estimation unit, the parameter adjustment unit, It is preferable to adjust the parameters of the digital filter based on the initial parameters calculated by the initial parameter setting unit.
- the characteristic estimation unit estimates a path characteristic by processing a signal obtained by converting the received light signal into a digital signal.
- the present invention is a laser measurement device, wherein the signal processing device according to any one of the above, a main pipe that can be connected to a flow path for fluid, and the main pipe A measuring cell including an incident part connected to and formed with a window part through which light can pass, an emission part connected to the main pipe and formed with a window part through which light can pass; A laser beam in a wavelength region including an absorption wavelength is output while modulating the wavelength at a modulation frequency, and a light emitting unit that is incident on the incident unit, incident from the incident unit, passes through the measurement cell, and is output from the output unit A light receiving unit that receives the laser beam and outputs the received light amount as a light reception signal, a physical quantity calculation unit that calculates a physical quantity of a measurement target gas flowing through the measurement cell based on the spectrum signal, A control unit for controlling the operation; Characterized in that it has.
- the physical quantity calculated by the physical quantity calculator is preferably the concentration of the gas to be measured.
- the physical quantity calculation unit calculates the concentration of the substance to be measured based on the intensity of the laser beam output from the light emitting unit and the intensity of the laser beam received by the light receiving unit.
- FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment of a laser measuring apparatus having a signal processing apparatus of the present invention.
- FIG. 2 is a block diagram illustrating a schematic configuration of a signal processing unit of the laser measurement apparatus illustrated in FIG. 1.
- FIG. 3 is a graph showing the output distribution of the received light signal.
- FIG. 4 is an explanatory diagram for explaining the processing of the signal processing unit.
- FIG. 5 is an explanatory diagram for explaining the processing of the signal processing unit.
- FIG. 6 is an explanatory diagram for explaining processing of the signal processing unit.
- FIG. 7 is an explanatory diagram for explaining the processing of the signal processing unit.
- FIG. 8 is an explanatory diagram for explaining the processing of the signal processing unit.
- FIG. 9 is an explanatory diagram for explaining processing of the signal processing unit.
- the laser measurement device can measure physical quantities (concentrations, quantities) of substances (gases, specific components) to be measured contained in fluids such as various gases (gases) flowing through the flow path.
- the laser measuring device may be attached to a diesel engine and measure the concentration of nitrogen oxides, sulfide oxides, carbon monoxide, carbon dioxide, ammonia, etc. contained in the exhaust gas discharged from the diesel engine.
- the device for discharging (supplying) the substance (gas) to be measured is not limited to this, and can be used for various internal combustion engines such as a gasoline engine and a gas turbine.
- Examples of the device having an internal combustion engine include various devices such as vehicles, ships, and generators.
- the laser measuring device can also measure the concentration of the substance to be measured contained in the exhaust gas discharged from combustion equipment such as a garbage incinerator and boiler. In the following embodiments, the case where the concentration of the measurement substance contained in the exhaust gas flowing through the pipe is measured will be described.
- FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment of a laser measuring device having a signal processing device of the present invention.
- the laser measurement device 10 includes a measurement cell 12 and measurement means 14.
- the laser measuring device 10 is provided between the pipe 6 and the pipe 8 through which the exhaust gas A flows.
- the exhaust gas A is supplied from the upstream side of the pipe 6, passes through the pipe 6, the laser measuring device 10, and the pipe 8, and is discharged to the downstream side of the pipe 8.
- an exhaust gas A generator supply device
- supply device supply device
- the measurement cell 12 basically has a main tube 20, an incident tube 22, and an exit tube 24. Further, the incident tube 22 is provided with a window 26, and the exit tube 24 is provided with a window 28.
- the main pipe 20 is a tubular tubular member, and has one end connected to the pipe 6 and the other end connected to the pipe 8. That is, the main pipe 20 is disposed at a position that becomes a part of the flow path through which the exhaust gas A flows. Thereby, the exhaust gas A flows in the order of the pipe 6, the main pipe 20, and the pipe 8. Further, the exhaust gas A flowing through the pipe 6 basically flows through the main pipe 20.
- the incident tube 22 is a tubular member, and one end thereof is connected to the main tube 20. Further, in the main tube 20, the connection portion with the incident tube 22 is an opening having substantially the same shape as the opening (end opening) of the incident tube 22. That is, the incident tube 22 is connected to the main tube 20 in a state where air can flow.
- a window 26 is provided at the other end of the incident tube 22 and is sealed by the window 26.
- the window 26 is made of a light transmitting member such as transparent glass or resin. Thereby, the incident tube 22 is in a state where the end portion where the window 26 is provided is in a state where air is not circulated and light can pass therethrough.
- the incident tube 22 is connected to the area of the opening at the end on the window 26 side (that is, the opening closed by the window 26) and the end on the main tube 20 side (that is, connected to the main tube 20).
- the area of the opening) is substantially the same cylindrical shape.
- the shape of the incident tube 22 is not limited to a cylindrical shape, and may be any shape as long as it is a cylindrical shape that allows air and light to pass therethrough.
- the cross section may be a square, a polygon, an ellipse, or an asymmetric curved surface.
- the shape of the cross section of a cylindrical shape and the shape where a diameter changes with positions may be sufficient.
- the exit tube 24 is a tubular member having substantially the same shape as the entrance tube 22, one end is connected to the main tube 20, and the other end of the exit tube 24 is provided with a window 28.
- the exit tube 24 is also in a state where air can flow through the main tube 20, and an end portion provided with the window 28 is in a state where air does not flow and light can pass therethrough.
- the emission tube 24 is disposed at a position where the central axis is substantially the same as the central axis of the incident tube 22. That is, the entrance tube 22 and the exit tube 24 are disposed at positions facing the main tube 20.
- the exit tube 24 also has an area of an opening at the end on the window 28 side (that is, an opening closed by the window 28) and an end portion on the main tube 20 side (that is, a portion connected to the main tube 20).
- the area of the opening) is substantially the same cylindrical shape.
- the shape of the emission tube 24 is not limited to a cylindrical shape, and may be any shape as long as it has a cylindrical shape that allows air and light to pass therethrough.
- the cross section may be a square, a polygon, an ellipse, or an asymmetric curved surface.
- the shape of the cross section of a cylindrical shape and the shape from which a diameter changes with positions may be sufficient.
- the emission tube 24 also has a shape in which a purge gas described later flows stably.
- the measuring unit 14 includes a light emitting unit 40, an optical fiber 42, a light receiving unit 44, a light source driver 46, a signal processing unit (signal processing device) 47, a physical quantity calculating unit 48, a control unit 50,
- the signal processing unit 47 and the physical quantity calculation unit 48 are provided separately, but may be provided integrally (as one processing unit).
- the light source driver 46, the signal processing unit 47, the physical quantity calculation unit 48, and the control unit 50 may be provided integrally (as one processing unit).
- the light emitting unit 40 includes a light emitting element that outputs (emits) laser light having a predetermined wavelength.
- the light emitting element of the light emitting unit 40 is a light emitting element that can change the output wavelength (frequency) of the laser beam to be output with a predetermined wavelength width (frequency width).
- a tunable semiconductor laser element LD: Laser Diode
- the light emitting unit 40 outputs laser light in a wavelength region including a near infrared wavelength region that is absorbed by the substance to be measured. For example, when the measurement target is nitric oxide, the light emitting unit 40 outputs laser light in a wavelength range including a near infrared wavelength range that absorbs nitric oxide.
- the light emitting unit 40 When the measurement target is nitrogen dioxide, the light emitting unit 40 outputs laser light in a wavelength region including a near infrared wavelength region that absorbs nitrogen dioxide. When the measurement target is nitrous oxide, the light emitting unit 40 outputs laser light in a wavelength range including a near-infrared wavelength range that absorbs nitrous oxide. When the measurement target is a plurality of substances, the light emitting unit 40 may include a plurality of light emitting elements that emit light in the wavelength ranges absorbed by the respective substances, and output light in the respective wavelength ranges. . The optical fiber 42 guides the laser light output from the light emitting unit 40 and causes the laser light to enter the measurement cell 12 through the window 26.
- the light receiving unit 44 is a light receiving unit that receives the laser beam that has passed through the main tube 20 of the measurement cell 12 and that has been output from the window 28 of the emission tube 24.
- the light receiving unit 44 includes, for example, a photodetector such as a photodiode (PD), receives the laser beam by the photodetector, and detects the intensity of the light.
- the light receiving unit 44 sends the intensity (light quantity) of the received laser beam as a light reception signal to the signal processing unit 47.
- the light source driver 46 has a function of driving the light emitting unit 40 and adjusts the wavelength and intensity of the laser light output from the light emitting unit 40 by adjusting the current and voltage supplied to the light emitting unit 40.
- the light source driver 46 is an oscillator, and outputs laser light whose wavelength changes with time by supplying current and voltage to the light emitting unit 40 in a predetermined waveform.
- the light source driver 46 of the present embodiment oscillates the wavelength of the laser beam at a set modulation frequency (for example, 100 kHz, 150 kHz), and the laser beam at a sweep frequency (0.1 kHz, 1 kHz) that is lower than the modulation frequency. Sweep the wavelength.
- the vibration width of the laser light wavelength based on the modulation frequency is smaller than the change width of the laser light wavelength based on the sweep frequency.
- the laser beam output from the light emitting unit 40 becomes a laser beam in which the center of vibration oscillating at the modulation frequency changes based on the sweep frequency.
- the light source driver 46 outputs information on the intensity of the laser beam output from the light emitting unit 40 to the physical quantity calculating unit 48 via the control unit 50.
- the signal processing unit 47 processes a signal (light reception signal) generated when the light receiving unit 44 receives laser light. Specifically, the signal processing unit 47 removes a noise component included in the light reception signal, and extracts a component of the laser light output from the light emitting unit 40 and reaching the light receiving unit 44. A signal generated by extraction is hereinafter referred to as a spectrum signal. The processing of the signal processing unit 47 will be described later.
- the physical quantity calculation unit 48 calculates the concentration of the exhaust gas flowing through the measurement cell 12 based on the spectrum signal output from the signal processing unit 47.
- the physical quantity calculation unit 48 calculates the concentration of the substance to be measured based on the spectrum signal output from the signal processing unit 47 and the conditions under which the light source driver 46 is driven by the control unit 50.
- the physical quantity calculation unit 48 calculates the intensity of the laser light output from the light emitting unit 40 based on the condition that the light source driver 46 is driven by the control unit 50, and is generated by the signal processing unit 47.
- the intensity of the received laser beam is calculated based on the spectrum signal.
- the physical quantity calculator 48 compares the intensity of the emitted laser light with the intensity of the received laser light, and calculates the concentration of the substance to be measured contained in the exhaust gas A.
- the near-infrared wavelength laser beam L output from the light emitting unit 40 is a predetermined path from the optical fiber 42 to the measurement cell 12, specifically, the window 26, the incident tube 22, the main tube 20, After passing through the emission tube 24 and the window 28, the light reaches the light receiving unit 44.
- the laser light L passing through the measurement cell 12 is absorbed. Therefore, the output of the laser beam L reaching the light receiving unit 44 varies depending on the concentration of the substance to be measured in the exhaust gas A.
- the light receiving unit 44 converts the received laser light into a light reception signal.
- the received light signal generated by the light receiving unit 44 is processed by the signal processing unit 47 and input to the physical quantity calculation unit 48 as a spectrum signal.
- the control unit 50 and the light source driver 46 output the intensity of the laser light L output from the light emitting unit 40 to the physical quantity calculation unit 48.
- the physical quantity calculation unit 48 compares the intensity of the light output from the light emitting unit 40 with the intensity calculated from the spectrum signal, and calculates the concentration of the measurement target substance of the exhaust gas A flowing in the measurement cell 12 from the decrease rate. To do.
- the measuring means 14 uses the so-called TDLAS method (Tunable Diode Laser Absorption Spectroscopy) based on the intensity of the output laser light and the received light signal detected by the light receiving unit 44.
- the concentration of the substance to be measured in the exhaust gas A passing through the predetermined position in the main pipe 20, that is, the measurement position, can be calculated and / or measured.
- the measurement means 14 can calculate and / or measure the concentration of the substance to be measured continuously.
- the laser measuring device 10 may calculate the concentration of the substance to be measured included in the exhaust gas A based on only the spectrum signal, with the intensity of the laser light output from the light emitting unit 40 being constant.
- the control unit 50 has a control function for controlling the operation of each unit, and controls the operation of each unit as necessary.
- the control unit 50 controls not only the control of the measuring means 14 but also the overall operation of the laser measuring device 10. That is, the control unit 50 is a control unit that controls the operation of the laser measurement apparatus 10.
- FIG. 2 is a block diagram showing a schematic configuration of a signal processing unit of the laser measuring apparatus shown in FIG.
- the signal processing unit 47 processes the light reception signal sent from the light receiving unit 44 to generate a spectrum signal, and sends the generated spectrum signal to the physical quantity calculation unit 48.
- the signal processing unit 47 is a filter processing unit 62 that reduces the output of a set frequency that is larger than the specified frequency, and a spectrum signal that extracts a spectrum signal by performing a spectrum signal extraction process on the signal processed by the filter processing unit 62 And an extractor 64.
- the designated frequency is a frequency to be extracted by the spectrum signal extractor 64 and includes a component of an absorption spectrum that is a detection target.
- a frequency that is an integer multiple of twice or more the modulation frequency is used.
- the set frequency is a frequency whose output is larger than the specified frequency among the frequency components included in the received light signal. That is, the set frequency is a frequency component (interference wave) whose output is larger than the specified frequency when the received light signal is Fourier-transformed.
- the set frequency includes a modulation frequency.
- the filter processing unit 62 includes an A / D converter 70, an FIR filter 72, a D / A converter 74, coil couplings 76 and 78, a subtraction processing unit 80, an amplifier 82, and an A / D converter. 84, a path characteristic estimation unit 86, an initial parameter setting unit 88, and a parameter adjustment unit 90.
- the light receiving signal input from the light receiving unit 44 to the filter processing unit 62 is input to the branched A / D converter 70 and the coil coupling 76. Further, the reception signal input to the coil coupling 76 passes through the coil coupling 76 and is input to the subtraction processing unit 80.
- the A / D (analog-digital) converter 70 is a converter that converts an analog signal into a digital signal, and converts a received signal from an analog signal into a digital signal.
- the A / D converter 70 sends (that is, outputs) the converted signal to the FIR filter 72 and the path characteristic estimation unit 86.
- the FIR (Finite Impulse Response) filter 72 is a digital filter that selectively passes predetermined frequency components and removes and reduces frequency components other than the predetermined frequency.
- the FIR filter 72 is a filter capable of changing parameters (filter coefficients and the like).
- the FIR filter 72 sends the processed signal to the D / A converter 74.
- the D / A (digital analog) converter 74 is a converter that converts a digital signal into an analog signal, and converts the signal sent from the FIR filter 72 from a digital signal into an analog signal.
- the D / A converter 74 sends the converted signal to the coil coupling 78.
- the coil couplings 76 and 78 are devices that match the circuit constants of the subtraction processing unit 80 and the input unit, and are arranged in a matching unit between the subtraction processing unit 80 and other components.
- the coil coupling 76 is composed of a pair of coils, one coil is connected to the light receiving unit 44, and the other coil is connected to the subtraction processing unit 80.
- the coil coupling 76 has a pair of coils facing each other, transmits a signal sent from the light receiving unit 44 from one coil to the other coil, and sends the signal to the subtraction processing unit 80.
- the coil coupling 78 is constituted by a pair of coils, one coil is connected to the D / A converter 74 and the other coil is connected to the subtraction processing unit 80.
- the coil coupling 78 has a pair of coils facing each other, transmits a signal sent from the D / A converter 74 from one coil to the other coil, and sends it to the subtraction processing unit 80.
- the coil couplings 76 and 78 can suppress thermal noise generated in the matching portion by transmitting a signal through a pair of coils.
- the subtraction processing unit 80 receives a predetermined signal from a light reception signal sent from the light receiving unit 44 and passed through the coil coupling 76, and a signal sent from the D / A converter 74 and passed through the coil coupling 78, that is, a light reception signal. Are selectively passed through, the frequency components other than the predetermined frequency are removed, and the reduced components are subtracted. Thereby, the subtraction processing unit 80 removes and reduces a predetermined frequency component from the received light signal by the subtraction processing. The subtraction processing unit 80 removes a predetermined frequency component from the received light signal and sends the reduced signal to the amplifier 82.
- the amplifier 82 amplifies the signal (a signal obtained by removing and reducing a predetermined frequency component from the light reception signal) sent from the subtraction processing unit 80.
- the amplifier 82 sends the amplified signal to the A / D converter 84.
- the A / D converter 84 is a converter that converts an analog signal into a digital signal, and converts the signal amplified by the amplifier 82 from an analog signal into a digital signal.
- the A / D converter 84 sends the converted signal to the spectrum signal extractor 64 and the parameter adjustment unit 90.
- the path characteristic estimation unit 86 processes a signal (a signal obtained by converting a light reception signal into a digital signal) sent from the A / D converter 70, performs system identification, and estimates the path characteristic from the round transfer control.
- the route characteristic estimation unit 86 sends the estimated route characteristic to the initial parameter setting unit 88.
- the initial parameter setting unit 88 calculates an initial parameter of the FIR filter 72 based on the path characteristic estimated by the path characteristic estimation unit 86.
- the initial parameter setting unit 88 sends the calculated initial parameter to the parameter adjustment unit 90.
- the parameter adjustment unit 90 adjusts the parameters (filter coefficients, etc.) of the FIR filter 72 based on the signal sent from the A / D converter 84 and the initial parameters sent from the initial parameter setting unit 88.
- the parameter adjustment unit 90 of the present embodiment analyzes the signal sent from the A / D converter 84 using an LMS (Least Mean Squares) algorithm and updates (corrects) the parameters of the FIR filter 72.
- the parameter adjustment unit 90 adjusts the parameters such that the set frequency component included in the signal transmitted from the A / D converter 84 is minimized. That is, the parameter adjustment unit 90 adjusts the parameters so that the output obtained by subtracting the signal processed by the FIR filter 72 from the received light signal is minimized.
- the convergence coefficient ⁇ of the LMS algorithm is set to 0.1 as a standard.
- the signal processed by the FIR filter 72 is basically only the set frequency (most of the output is the output of the set frequency). Therefore, the parameter adjustment unit 90 performs processing for reducing the set frequency component included in the light reception signal by adjusting the parameter so that the output obtained by subtracting the signal processed by the FIR filter 72 from the light reception signal is minimized. It will be.
- the parameter adjustment unit 90 adjusts the parameters in consideration of the influence of signal processing in the spectrum signal extractor 64 by the initial parameters when updating the parameters.
- the LMS algorithm is an algorithm described in, for example, “Adaptive Signal Processing Algorithm” published by Yoji Iiguni in 2000.
- the parameter adjustment unit 90 executes parameter update (correction) at a predetermined time response (time interval).
- the predetermined time response can be an arbitrary time response, and can be a set time response or a time response that changes according to conditions.
- the spectrum signal extractor 64 performs, for example, a lock-in process on the received light signal, which is processed by the filter processing unit 62 and has a reduced set frequency component, using the designated frequency as a reference frequency. As a result, a spectrum signal having a designated frequency is generated from the received light signal in which the set frequency component is reduced.
- the spectrum signal extractor 64 sends the detected spectrum signal to the physical quantity calculator 48.
- the signal processing unit 47 generates and / or extracts a spectrum signal from the received light signal as described above.
- FIG. 3 is a graph showing the output distribution of the received light signal.
- FIG. 3 shows the relationship between the frequency of the received light signal and the voltage (intensity).
- the vertical axis represents voltage (intensity) [dBV]
- the horizontal axis represents frequency [MHz].
- 4 to 9 are explanatory diagrams for explaining the processing of the signal processing unit, respectively. 4 to 9 schematically show signal intensities at the respective positions. In each of FIGS. 4 to 9, the vertical axis is intensity, and the horizontal axis is time.
- the light reception signal shown in FIG. 3 is a light reception signal detected by the light receiving unit 44 when a laser beam having a modulation frequency of 100 kHz is output from the light emitting unit 40.
- the laser measuring apparatus 10 of this embodiment uses 200 kHz as the designated frequency.
- the output of the set frequency 100 kHz is -10.93 dBV
- the output of the specified frequency 200 kHz is -53.16 dBV. Therefore, the output difference is ⁇ 42.23 dBV.
- the signal processing unit 47 receives a signal shown in FIG. 4 as a light reception signal (input signal).
- An output 101 of a designated frequency that is an output of a frequency to be measured and an output 102 other than the designated frequency that is a noise component are superimposed on the received light signal.
- the output 101 is an output having a smaller intensity than the output 102. This is because the output 102 includes an output of a set frequency that is dramatically higher in intensity than other frequency components.
- the output 101 and the output 102 are shown as separate waveforms for explanation, but the actual received light signal is an output obtained by adding the output 101 and the output 102.
- the received light signal is sent to the A / D converter 70 and the subtraction processing unit 80.
- the FIR filter 72 processes the signal (digital light reception signal) digitally converted by the A / D converter 70 and extracts a set frequency component from the digital light reception signal.
- the filter characteristics of the FIR filter 72 are adjusted by the parameter adjustment unit 90.
- the FIR filter 72 extracts the set frequency component from the received light signal adjusted to the output corresponding to the set frequency component included in the received light signal processed by the subtraction processing unit 80.
- the component of the set frequency extracted from the light reception signal by the FIR filter 72 is the output 104 shown in FIG.
- the set frequency (100 kHz) of the present embodiment is a modulation frequency. Therefore, as shown in FIG. 3, the set frequency occupies most of the intensity ratio of the received light signal. For this reason, most of the noise components are output at the set frequency. For this reason, the output 102 in FIG. 4 and the output 104 obtained by extracting the component of the set frequency are substantially the same output.
- the subtraction processing unit 80 subtracts the signal of the output 104 generated by the FIR filter 72 from the light reception signal that is a signal in which the output 101 and the output 102 shown in FIG. 4 are superimposed.
- the signal generated by the subtraction processing unit 80 is a signal obtained by subtracting the output 104 from the light reception signal.
- the signal generated by the subtraction processing unit 80 includes an output 101 of a designated frequency that is an output of a frequency to be measured and an output 106 of a frequency other than the designated frequency and the set frequency. Composed.
- the output 106 is a noise component.
- the output 106 of the noise component has a small output because the component of the set frequency is removed or subtracted from the output 102, and the output difference from the output 101 is also small.
- the amplifier 82 amplifies the signal generated by the subtraction processing unit 80.
- the signal amplified by the amplifier 82 is, as shown in FIG. 7, 101a obtained by amplifying the output 101 of the designated frequency and an output 106a obtained by amplifying the output 106 of a frequency other than the designated frequency and the set frequency. Composed. Since the amplifier 82 amplifies the output at a constant rate, the relationship between the output 101 and the output 106 and the relationship between the output 101a and the output 106a are similar.
- the spectrum signal extractor 64 uses, for example, a lock-in process, which is one method of spectrum extraction, for the signal amplified by the amplifier 82 and then converted into digital data. Specifically, as shown in FIG. 8, the signal composed of the output 101a and the output 106a is multiplied by the signal of the output 108.
- the signal of the output 108 is an output of the reference frequency.
- the reference frequency is a frequency extracted by the lock-in process, and is a designated frequency in this embodiment.
- the spectrum signal extractor 64 performs a lock-in process as in this case, thereby generating a spectrum signal composed of an output 110 of a designated frequency as shown in FIG.
- the signal processing unit 47 of the laser measurement device 10 generates a signal including the set frequency by the FIR filter 72 while adjusting the parameters of the FIR filter 72 by the parameter adjustment unit 90, and uses the generated signal as a light reception signal. By subtracting, noise can be efficiently removed or reduced from the received light signal.
- the signal processing unit 47 of the laser measuring device 10 can specify the set frequency to be processed and efficiently remove noise, so that the case where an existing filter (bandpass filter, parameter fixed FIR filter) is used is used is used.
- the configuration of the filter processing unit 62 can be simplified.
- noise can be efficiently removed or reduced from the received light signal, and the difference between the output of the specified frequency component and the output of the noise component is reduced, so that the signal before noise extraction after noise removal can be further amplified.
- the output of the component of the designated frequency can be further amplified before the spectrum extraction.
- the amplifier 82 sets the amplification ratio based on the signal size when the signal is amplified to a size applicable to the detection range of the spectrum signal extractor 64. Therefore, the difference between the output of the specified frequency component and the output of the noise component is reduced, so that the output of the specified frequency component is more than the case where the output of the noise component is a certain amount larger than the output of the specified frequency component. It can be greatly amplified. That is, even if the signal is amplified further, the output can be suppressed to a size applicable to the detection range of the spectrum signal extractor 64. Thereby, the output of the component of the designated frequency can be detected with higher accuracy.
- the noise can be suitably reduced, the output 101 of the designated frequency can be suitably detected even when the detection range of the spectrum signal extractor 64 is small.
- the spectral signal extractor 64 can be made inexpensive while maintaining the performance, and the laser measuring device can also be made inexpensive.
- the filter processing unit 62 of the signal processing unit 47 uses the path characteristic estimation unit 86 and the initial parameter setting unit 88 to respond to a round-trip transmission control (specifically, a circuit on the input side from the spectrum signal extractor 64).
- a round-trip transmission control specifically, a circuit on the input side from the spectrum signal extractor 64.
- the parameter adjustment unit 90 adjusts the parameters using the LMS algorithm.
- the parameter adjustment unit 90 can also use an algorithm other than the LMS algorithm as an algorithm used for parameter adjustment.
- the parameter adjustment unit 90 can use various algorithms as algorithms for determining parameters by analyzing the signal output from the spectrum signal extractor 64.
- the algorithm may be any algorithm that sets parameters so that the set frequency component included in the signal output from the spectrum signal extractor 64 is reduced.
- the parameter adjustment unit 90 can also use an RLS (Recursive Least Square) method that solves the Yule-Walker equation indicating a minimum error state from a least squares method using simultaneous linear equations. When the RLS method is used, the response speed can be further improved although the stability is lower than when the LMS algorithm is used.
- the set frequency which is a frequency component for reducing the output by the FIR filter 72
- a modulation frequency is a signal component included in the laser light
- the signal component increases and often accounts for a large proportion of the output of the received light signal.
- the filter processing unit 62 by reducing and removing the modulation frequency component by the filter processing unit 62, the component of the designated frequency can be further amplified, and the spectrum signal can be made a more accurate signal.
- a frequency different from the modulation frequency can be used as the set frequency. In this case as well, unnecessary specific frequencies can be removed or reduced, and the component of the designated frequency can be detected more efficiently.
- the designated frequency can be various values that are integer multiples of the modulation frequency. Even when a frequency that is four times the modulation frequency is used as the designated frequency, a change in the absorption spectrum (detection target spectrum) included in the modulation frequency can be detected. If analysis is performed using a frequency that is four times the modulation frequency as the designated frequency, a fourth-order differential waveform of the spectrum is detected. By using a frequency other than twice the modulation frequency in this way, a change in the absorption spectrum (detection target spectrum) can be detected even when there is a noise component at a frequency twice the modulation frequency.
- the filter for extracting the output of the set frequency it is preferable to use the FIR filter 72 as in the present embodiment.
- the FIR filter By using the FIR filter, the set frequency component can be extracted with high accuracy.
- various digital filters whose parameters can be changed can be used as a filter for extracting the output of the set frequency.
- the FIR filter 72 processes the light reception signal to generate a signal having a set frequency component used for the subtraction processing, that is, the signal is set from the signal detected by the light receiving unit 44 and converted by the A / D converter 70.
- a configuration that generates a frequency component signal it is possible to generate a signal including a set frequency component used for the subtraction process without increasing the device configuration.
- the signal input to the FIR filter 72 is not limited to the light reception signal, and a signal having a set frequency component is also possible. That is, as the signal supply unit that inputs a signal to the FIR filter 72, various mechanisms that can supply a signal having a set frequency component can be used. For example, a signal generation unit (oscillator) may be used.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
A signal processing device and a laser measurement device that include a filter processing unit and a spectroscopic signal extraction unit. The filter processing unit has: a signal supply unit that supplies a digital signal including a set frequency component; a digital filter that extracts the set frequency component from the signal supply unit and is capable of changing filter characteristics; a D/A converter that converts a signal processed by the digital filter; a subtraction processing unit that subtracts the signal output by the D/A converter from a light reception signal and subtracts the set frequency component from the light reception signal; an A/D converter that converts the signal output by the subtraction processing unit and outputs the converted signal to the spectroscopic signal extraction unit; and a parameter adjustment unit that obtains the signal output from the A/D converter to the spectroscopic signal extraction unit and adjusts the parameters for the digital filter in a prescribed time response on the basis of the set frequency component included in said signal.
Description
本発明は、レーザ吸収分光法により測定対象のガスの物理量を算出するレーザ計測に用いる信号処理装置およびレーザ計測装置に関する。
The present invention relates to a signal processing device and a laser measuring device used for laser measurement for calculating a physical quantity of a gas to be measured by laser absorption spectroscopy.
管路内を流れるガス(気体)を分析する方法として、レーザ光を測定光として用いる方法がある。例えば、特許文献1には、一定電流に重畳された第1の交流成分を有する電流で変調され、温度に応じて波長が変化するレーザ光を発振するレーザと、検知雰囲気通過後のレーザ光の強度を電圧に変換する電流電圧変換器(光強度電圧変換器)と、該電流電圧変換器の出力電圧を位相敏感検波する2つの位相敏感検波器と、一方の位相敏感検波器から得られる1次の位相敏感検波信号と他方の位相敏感検波器から得られる2次の位相敏感検波信号とに基づいて検知雰囲気の濃度を検知するガス検知装置が記載されている。
There is a method of using laser light as measurement light as a method of analyzing gas (gas) flowing in the pipe. For example, Patent Document 1 discloses a laser that oscillates a laser beam that is modulated by a current having a first alternating current component superimposed on a constant current and changes in wavelength according to temperature, and a laser beam that has passed through a detection atmosphere. Current voltage converter (light intensity voltage converter) for converting intensity into voltage, two phase sensitive detectors for phase sensitive detection of the output voltage of the current voltage converter, and 1 obtained from one phase sensitive detector There is described a gas detection device that detects the concentration of a detection atmosphere based on a next phase sensitive detection signal and a secondary phase sensitive detection signal obtained from the other phase sensitive detector.
また、特許文献2には、レーザ光を出射するレーザ素子と、レーザ光を基本波で周波数変調する周波数変調部と、周波数変調されたレーザ光を検出する光検出部と、光検出部にて検出されたレーザ光から基本波成分を検出する基本波成分検出部と、光検出部にて検出されたレーザ光から2倍波成分を検出する2倍波成分検出部と、光検出部にて検出された基本波成分と2倍波成分との振幅比に基づいて測定対象ガスの濃度を算出するガス濃度算出部と、を有するガス濃度測定装置が記載されている。また、当該ガス濃度測定装置は、レーザ光から検出された基本波成分と2倍波成分との振幅比を算出する振幅比算出部と、基本波成分と2倍波成分との振幅比に基づいてレーザ素子の温度を設定する温度設定部と、吸収ピーク波長からシフトされた波長を基準とする波長変調を行った時の基本波成分と2倍波成分との振幅比に基づいてレーザ素子の駆動電流を制御する駆動電流制御部とを備える。
Patent Document 2 discloses a laser element that emits laser light, a frequency modulation unit that modulates the frequency of the laser light with a fundamental wave, a light detection unit that detects the frequency-modulated laser light, and a light detection unit. A fundamental wave component detection unit that detects a fundamental wave component from the detected laser beam, a second harmonic component detection unit that detects a second harmonic component from the laser beam detected by the light detection unit, and a light detection unit A gas concentration measuring device having a gas concentration calculating unit that calculates the concentration of a measurement target gas based on an amplitude ratio between a detected fundamental wave component and a second harmonic component is described. The gas concentration measuring apparatus is based on an amplitude ratio calculation unit that calculates an amplitude ratio between a fundamental wave component and a second harmonic component detected from laser light, and an amplitude ratio between the fundamental wave component and the second harmonic component. The temperature setting unit for setting the temperature of the laser element, and the amplitude ratio between the fundamental wave component and the second harmonic wave component when the wavelength modulation is performed based on the wavelength shifted from the absorption peak wavelength. A drive current control unit that controls the drive current.
特許文献1および特許文献2に記載されているように、測定光として波長変調を行いつつ出力したレーザ光を用い、当該レーザ光の吸収を計測することで、測定対象物質の濃度等の物理量を計測することができる。レーザ光を用いてガス濃度を計測することで高い応答性でガス濃度を計測することができる。
As described in Patent Document 1 and Patent Document 2, by using the laser light output while performing wavelength modulation as the measurement light, and measuring the absorption of the laser light, the physical quantity such as the concentration of the measurement target substance is obtained. It can be measured. The gas concentration can be measured with high responsiveness by measuring the gas concentration using laser light.
受光部がレーザ光を受光して生成する受光信号には、種々のノイズが含まれる。そのため、受光信号からノイズを除去し、必要な成分(例えば波長変調を行う変調周波数に対応する信号成分)を抽出するために各種信号処理を行う。この信号処理としては、ロックインアンプで、ロックイン処理およびローパス処理を行い特定のスペクトル信号を抽出する方法がある。しかしながら、検出対象の信号はノイズに対して出力が小さいため、高精度な検出を行う場合は、ロックインアンプによる処理前にFIRフィルタや、バンドパスフィルタ等を設け、ロックインアンプの処理対象の周波数成分を抽出する、つまりロックインアンプの処理対象の周波数成分以外の周波数成分を低減させる処理を行う。
The light receiving signal generated by the light receiving unit receiving the laser light includes various noises. Therefore, various signal processes are performed to remove noise from the received light signal and extract a necessary component (for example, a signal component corresponding to a modulation frequency for performing wavelength modulation). As this signal processing, there is a method of extracting a specific spectrum signal by performing lock-in processing and low-pass processing with a lock-in amplifier. However, since the signal to be detected has a small output against noise, when performing highly accurate detection, an FIR filter, a bandpass filter, etc. are provided before processing by the lock-in amplifier, The frequency component is extracted, that is, the frequency component other than the frequency component to be processed by the lock-in amplifier is reduced.
ここで、FIRフィルタやバンドパスフィルタを用いた処理では、ノイズを十分に低減できない場合があったり、ノイズを十分に低減するために多くの計算を実行する必要があったりする。
Here, in the process using the FIR filter or the band pass filter, there are cases where the noise cannot be sufficiently reduced, and it is necessary to perform many calculations in order to sufficiently reduce the noise.
本発明は、上記に鑑みてなされたものであって、受光信号から所望の信号成分を高い精度で検出することができる信号処理装置およびレーザ計測装置を提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a signal processing device and a laser measurement device capable of detecting a desired signal component from a light reception signal with high accuracy.
上述した課題を解決し、目的を達成するために、本発明は、入射部と出射部を備え、かつ、流体が流れる計測セルと、測定対象のガスに固有な吸収波長を含む波長域のレーザ光を変調周波数で波長を変調しつつ出力し、前記計測セルに入射させる発光部と、前記入射部から入射され、前記計測セルを通過し、前記出射部から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、を有し、前記受光信号に基づいて前記計測セルを流れる測定対象のガスの物理量を算出するレーザ計測装置に適用され、前記受光部が受光した前記受光信号を処理し、前記計測セルを流れる測定対象のガスの物理量の算出に用いるスペクトル信号を出力する信号処理装置であって、指定周波数よりも出力が大きい設定周波数の出力を低減するフィルタ処理部と、前記フィルタ処理部で処理された信号にスペクトル信号抽出処理を行い、前記スペクトル信号を抽出するスペクトル信号抽出器と、を含み、前記フィルタ処理部は、前記設定周波数の成分を含むデジタルの信号を供給する信号供給部と、前記信号供給部から前記設定周波数の成分を抽出するフィルタ特性を変更可能なデジタルフィルタと、前記デジタルフィルタで処理された信号をデジタルからアナログに変換するD/A変換器と、前記受光信号から、前記D/A変換器から出力された信号を減算し、前記受光信号から設定された周波数成分を減算する減算処理部と、前記減算処理部から出力された信号をアナログからデジタルに変換し、変換した信号を前記スペクトル信号抽出器に出力するA/D変換器と、前記A/D変換器から前記スペクトル信号抽出器に出力する信号を取得し、当該信号に含まれる前記設定周波数の成分に基づいて前記デジタルフィルタのパラメータを所定の時間応答で調整するパラメータ調整部と、を有することを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention includes a measurement cell including an incident part and an emission part, and a laser having a wavelength region including an absorption wavelength unique to a gas to be measured. A light emitting unit that modulates a wavelength with a modulation frequency and outputs the light, and enters the measurement cell; and receives the laser light that is incident from the incident unit, passes through the measurement cell, and is emitted from the emission unit. And a light receiving unit that outputs a received light amount as a light receiving signal, and is applied to a laser measuring device that calculates a physical quantity of a measurement target gas flowing through the measurement cell based on the light receiving signal, and the light receiving unit receives light A signal processing device that processes the received light signal and outputs a spectrum signal used to calculate a physical quantity of a gas to be measured flowing through the measurement cell, and outputs a set frequency that is greater than a specified frequency A filter processing unit for reducing, and a spectrum signal extractor for performing a spectrum signal extraction process on the signal processed by the filter processing unit and extracting the spectrum signal, wherein the filter processing unit is a component of the set frequency A signal supply unit that supplies a digital signal including a digital filter that can change a filter characteristic that extracts a component of the set frequency from the signal supply unit, and a signal that is processed by the digital filter is converted from digital to analog From the D / A converter, the subtraction processing unit that subtracts the signal output from the D / A converter from the light reception signal, and subtracts the frequency component set from the light reception signal, and the subtraction processing unit An A / D converter that converts the output signal from analog to digital and outputs the converted signal to the spectral signal extractor; A parameter adjusting unit that obtains a signal to be output from the A / D converter to the spectral signal extractor, and adjusts a parameter of the digital filter with a predetermined time response based on a component of the set frequency included in the signal; It is characterized by having.
ここで、前記信号供給部は、前記受光信号をアナログからデジタルに変換し、変換したデジタルの信号を前記デジタルフィルタに供給する受光信号A/D変換器であることが好ましい。
Here, the signal supply unit is preferably a light reception signal A / D converter that converts the light reception signal from analog to digital and supplies the converted digital signal to the digital filter.
また、前記信号供給部は、指定周波数成分以外の設定周波数の成分を含むデジタルの信号を生成する信号生成部であることが好ましい。
In addition, it is preferable that the signal supply unit is a signal generation unit that generates a digital signal including a set frequency component other than the designated frequency component.
また、前記設定周波数は、前記変調周波数であることが好ましい。
The set frequency is preferably the modulation frequency.
また、前記デジタルフィルタは、FIRフィルタであることが好ましい。
The digital filter is preferably an FIR filter.
また、前記パラメータ調整部は、当該信号に含まれる前記設定周波数の成分をLMSアルゴリズムで処理し、処理結果に基づいて前記パラメータを調整することが好ましい。
Further, it is preferable that the parameter adjusting unit processes the set frequency component included in the signal with an LMS algorithm and adjusts the parameter based on a processing result.
また、前記受光信号から経路特性を推定する特性推定部と、前記特性推定部で検出した経路特性に基づいて初期パラメータを算出する初期パラメータ設定部と、をさらに有し、前記パラメータ調整部は、前記初期パラメータ設定部で算出された初期パラメータに基づいて前記デジタルフィルタのパラメータを調整することが好ましい。
Further, a characteristic estimation unit that estimates a path characteristic from the light reception signal, and an initial parameter setting unit that calculates an initial parameter based on the path characteristic detected by the characteristic estimation unit, the parameter adjustment unit, It is preferable to adjust the parameters of the digital filter based on the initial parameters calculated by the initial parameter setting unit.
また、前記特性推定部は、前記受光信号をデジタル信号に変換した信号を処理して経路特性を推定することが好ましい。
Further, it is preferable that the characteristic estimation unit estimates a path characteristic by processing a signal obtained by converting the received light signal into a digital signal.
また、前記指定周波数は、前記変調周波数を整数倍した周波数であることが好ましい。
Further, the specified frequency is preferably a frequency obtained by multiplying the modulation frequency by an integer.
上述した課題を解決し、目的を達成するために、本発明はレーザ計測装置であって、上記のいずれかに記載の信号処理装置と、流体を流す流路と連結可能な主管、前記主管に連結し、光が通過可能な窓部が形成された入射部、前記主管に連結し光が通過可能な窓部が形成された出射部と、を含む計測セルと、測定対象のガスに固有な吸収波長を含む波長域のレーザ光を変調周波数で波長を変調しつつ出力し、前記入射部に入射させる発光部と、前記入射部から入射され、前記計測セルを通過し、前記出射部から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、前記スペクトル信号に基づいて、前記計測セルを流れる測定対象のガスの物理量を算出する物理量算出部と、各部の動作を制御する制御部と、を有することを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention is a laser measurement device, wherein the signal processing device according to any one of the above, a main pipe that can be connected to a flow path for fluid, and the main pipe A measuring cell including an incident part connected to and formed with a window part through which light can pass, an emission part connected to the main pipe and formed with a window part through which light can pass; A laser beam in a wavelength region including an absorption wavelength is output while modulating the wavelength at a modulation frequency, and a light emitting unit that is incident on the incident unit, incident from the incident unit, passes through the measurement cell, and is output from the output unit A light receiving unit that receives the laser beam and outputs the received light amount as a light reception signal, a physical quantity calculation unit that calculates a physical quantity of a measurement target gas flowing through the measurement cell based on the spectrum signal, A control unit for controlling the operation; Characterized in that it has.
また、前記物理量算出部が算出する物理量は、前記測定対象のガスの濃度であることが好ましい。
The physical quantity calculated by the physical quantity calculator is preferably the concentration of the gas to be measured.
また、前記物理量算出部は、前記発光部から出力したレーザ光の強度と、前記受光部で受光したレーザ光の強度とに基づいて、前記測定対象の物質の濃度を算出することが好ましい。
Further, it is preferable that the physical quantity calculation unit calculates the concentration of the substance to be measured based on the intensity of the laser beam output from the light emitting unit and the intensity of the laser beam received by the light receiving unit.
本発明にかかる信号処理装置およびレーザ計測装置は、受光信号から所望の信号成分を高い精度で検出することができるという効果を奏する。
The signal processing device and the laser measuring device according to the present invention have an effect that a desired signal component can be detected from the received light signal with high accuracy.
以下に、本発明にかかる信号処理装置およびレーザ計測装置の一実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。なお、レーザ計測装置は、流路を流れる種々の気体(ガス)等の流体に含まれる測定対象の物質(ガス、特定の成分)の物理量(濃度、量)を計測することができる。レーザ計測装置は、例えば、ディーゼルエンジンに取付、ディーゼルエンジンから排出される排ガスに含まれる窒素酸化物、硫化酸化物、一酸化炭素、二酸化炭素、アンモニア等の濃度等を計測してもよい。なお、測定対象の物質(ガス)を排出(供給)する装置は、これに限定されず、ガソリンエンジンや、ガスタービン等種々の内燃機関に用いることができる。また、内燃機関を有する装置としては、車両、船舶、発電機等種々の装置が例示される。さらに、レーザ計測装置は、ゴミ焼却炉、ボイラ等の燃焼機器から排出される排ガスに含まれる測定対象の物質の濃度等を計測することもできる。なお、以下の実施形態では、配管を流れる排ガスに含まれる測定物質の濃度を計測する場合として説明する。
Hereinafter, an embodiment of a signal processing device and a laser measurement device according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Note that the laser measurement device can measure physical quantities (concentrations, quantities) of substances (gases, specific components) to be measured contained in fluids such as various gases (gases) flowing through the flow path. For example, the laser measuring device may be attached to a diesel engine and measure the concentration of nitrogen oxides, sulfide oxides, carbon monoxide, carbon dioxide, ammonia, etc. contained in the exhaust gas discharged from the diesel engine. The device for discharging (supplying) the substance (gas) to be measured is not limited to this, and can be used for various internal combustion engines such as a gasoline engine and a gas turbine. Examples of the device having an internal combustion engine include various devices such as vehicles, ships, and generators. Further, the laser measuring device can also measure the concentration of the substance to be measured contained in the exhaust gas discharged from combustion equipment such as a garbage incinerator and boiler. In the following embodiments, the case where the concentration of the measurement substance contained in the exhaust gas flowing through the pipe is measured will be described.
図1は、本発明の信号処理装置を有するレーザ計測装置の一実施形態の概略構成を示す模式図である。図1に示すようにレーザ計測装置10は、計測セル12と、計測手段14と、を有する。ここで、レーザ計測装置10は、排ガスAが流れる配管6と配管8との間に設けられている。また、排ガスAは、配管6の上流側から供給され、配管6、レーザ計測装置10、配管8を通過し、配管8よりも下流側に排出される。なお、配管6の上流側には、排ガスAの発生装置(供給装置)が配置されている。
FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment of a laser measuring device having a signal processing device of the present invention. As shown in FIG. 1, the laser measurement device 10 includes a measurement cell 12 and measurement means 14. Here, the laser measuring device 10 is provided between the pipe 6 and the pipe 8 through which the exhaust gas A flows. Further, the exhaust gas A is supplied from the upstream side of the pipe 6, passes through the pipe 6, the laser measuring device 10, and the pipe 8, and is discharged to the downstream side of the pipe 8. Note that an exhaust gas A generator (supply device) is disposed upstream of the pipe 6.
計測セル12は、基本的に主管20と、入射管22と、出射管24とを有する。また、入射管22には、窓26が設けられており、出射管24には、窓28が設けられている。主管20は、筒状の管状部材であり、一方の端部が配管6と連結され、他方の端部が配管8と連結されている。つまり、主管20は、排ガスAが流れる流路の一部となる位置に配置されている。これにより、排ガスAは、配管6、主管20、配管8の順に流れる。また、配管6を流れる排ガスAは、基本的に全て主管20を流れる。
The measurement cell 12 basically has a main tube 20, an incident tube 22, and an exit tube 24. Further, the incident tube 22 is provided with a window 26, and the exit tube 24 is provided with a window 28. The main pipe 20 is a tubular tubular member, and has one end connected to the pipe 6 and the other end connected to the pipe 8. That is, the main pipe 20 is disposed at a position that becomes a part of the flow path through which the exhaust gas A flows. Thereby, the exhaust gas A flows in the order of the pipe 6, the main pipe 20, and the pipe 8. Further, the exhaust gas A flowing through the pipe 6 basically flows through the main pipe 20.
入射管22は、管状部材であり、一方の端部が主管20に連結されている。また、主管20は、入射管22との連結部が、入射管22の開口(端部の開口)と略同一形状の開口となっている。つまり、入射管22は、主管20と、空気の流通が可能な状態で連結されている。また、入射管22の他方の端部には、窓26が設けられており、窓26により封止されている。なお、窓26は、光を透過する部材、例えば、透明なガラス、樹脂等で構成されている。これにより、入射管22は、窓26が設けられている端部が、空気が流通しない状態で、かつ、光が透過できる状態となる。
The incident tube 22 is a tubular member, and one end thereof is connected to the main tube 20. Further, in the main tube 20, the connection portion with the incident tube 22 is an opening having substantially the same shape as the opening (end opening) of the incident tube 22. That is, the incident tube 22 is connected to the main tube 20 in a state where air can flow. A window 26 is provided at the other end of the incident tube 22 and is sealed by the window 26. The window 26 is made of a light transmitting member such as transparent glass or resin. Thereby, the incident tube 22 is in a state where the end portion where the window 26 is provided is in a state where air is not circulated and light can pass therethrough.
入射管22は、図1に示すように、窓26側の端部の開口(つまり、窓26により塞がれている開口)の面積と、主管20側の端部(つまり、主管20と連結している部分の開口)の面積とが実質的に同一の円筒形状である。なお、入射管22の形状は円筒形状に限定されず、空気および光を通過させる筒型の形状であればよく、種々の形状とすることができる。例えば、断面が四角、多角形、楕円、非対称曲面となる形状としてもよい。また筒形状の断面の形状、径が位置によって変化する形状でもよい。
As shown in FIG. 1, the incident tube 22 is connected to the area of the opening at the end on the window 26 side (that is, the opening closed by the window 26) and the end on the main tube 20 side (that is, connected to the main tube 20). The area of the opening) is substantially the same cylindrical shape. The shape of the incident tube 22 is not limited to a cylindrical shape, and may be any shape as long as it is a cylindrical shape that allows air and light to pass therethrough. For example, the cross section may be a square, a polygon, an ellipse, or an asymmetric curved surface. Moreover, the shape of the cross section of a cylindrical shape and the shape where a diameter changes with positions may be sufficient.
出射管24は、入射管22と略同一形状の管状部材であり、一方の端部が主管20に連結され、出射管24の他方の端部には、窓28が設けられている。出射管24も、主管20と空気が流通可能な状態で、窓28が設けられている端部が、空気が流通しない状態で、かつ、光が透過できる状態となる。また、出射管24は、中心軸が入射管22の中心軸と略同一となる位置に配置されている。つまり、入射管22と出射管24とは、主管20の対向する位置に配置されている。
The exit tube 24 is a tubular member having substantially the same shape as the entrance tube 22, one end is connected to the main tube 20, and the other end of the exit tube 24 is provided with a window 28. The exit tube 24 is also in a state where air can flow through the main tube 20, and an end portion provided with the window 28 is in a state where air does not flow and light can pass therethrough. Further, the emission tube 24 is disposed at a position where the central axis is substantially the same as the central axis of the incident tube 22. That is, the entrance tube 22 and the exit tube 24 are disposed at positions facing the main tube 20.
また、出射管24も、窓28側の端部の開口(つまり、窓28により塞がれている開口)の面積と、主管20側の端部(つまり、主管20と連結している部分の開口)の面積とが実質的に同一の円筒形状である。なお、出射管24も形状は円筒形状に限定されず、空気および光を通過させる筒型の形状であればよく、種々の形状とすることができる。例えば、断面が四角、多角形、楕円、非対称曲面となる形状としてもよい。また筒形状の断面の形状、径が位置によって変化する形状でもよい。なお、出射管24も、後述するパージガスが安定して流れる形状とすることが好ましい。
The exit tube 24 also has an area of an opening at the end on the window 28 side (that is, an opening closed by the window 28) and an end portion on the main tube 20 side (that is, a portion connected to the main tube 20). The area of the opening) is substantially the same cylindrical shape. The shape of the emission tube 24 is not limited to a cylindrical shape, and may be any shape as long as it has a cylindrical shape that allows air and light to pass therethrough. For example, the cross section may be a square, a polygon, an ellipse, or an asymmetric curved surface. Moreover, the shape of the cross section of a cylindrical shape and the shape from which a diameter changes with positions may be sufficient. In addition, it is preferable that the emission tube 24 also has a shape in which a purge gas described later flows stably.
次に、計測手段14は、発光部40と、光ファイバ42と、受光部44と、光源ドライバ46と、信号処理部(信号処理装置)47と、物理量算出部48と、制御部50と、を有する。なお、本実施形態では、信号処理部47と、物理量算出部48と、を別々に設けたが一体で(1つの処理部として)設けてもよい。また、光源ドライバ46と、信号処理部47と、物理量算出部48と、制御部50と、を一体で(1つの処理部として)設けてもよい。
Next, the measuring unit 14 includes a light emitting unit 40, an optical fiber 42, a light receiving unit 44, a light source driver 46, a signal processing unit (signal processing device) 47, a physical quantity calculating unit 48, a control unit 50, Have In the present embodiment, the signal processing unit 47 and the physical quantity calculation unit 48 are provided separately, but may be provided integrally (as one processing unit). In addition, the light source driver 46, the signal processing unit 47, the physical quantity calculation unit 48, and the control unit 50 may be provided integrally (as one processing unit).
発光部40は、所定波長のレーザ光を出力(発光)させる発光素子を有する。なお、発光部40の発光素子は、出力するレーザ光の出力波長(周波数)を所定の波長幅(周波数幅)で変化させることができる発光素子である。発光素子としては、波長可変の半導体レーザ素子(LD:Laser Diode)を用いることができる。発光部40は、測定対象の物質が吸収する近赤外波長域を含む波長域のレーザ光を出力する。例えば、計測対象が一酸化窒素の場合、発光部40は、一酸化窒素を吸収する近赤外波長域を含む波長域のレーザ光を出力する。また、計測対象が二酸化窒素の場合、発光部40は、二酸化窒素を吸収する近赤外波長域を含む波長域のレーザ光を出力する。また、計測対象が亜酸化窒素の場合、発光部40は、亜酸化窒素を吸収する近赤外波長域を含む波長域のレーザ光を出力する。なお、測定対象が複数の物質である場合、発光部40は、夫々の物質が吸収する波長域の光を発光する発光素子を複数備え、それぞれの波長域の光を出力するようにしてもよい。光ファイバ42は、発光部40から出力されたレーザ光を案内し、窓26から計測セル12内に入射させる。
The light emitting unit 40 includes a light emitting element that outputs (emits) laser light having a predetermined wavelength. The light emitting element of the light emitting unit 40 is a light emitting element that can change the output wavelength (frequency) of the laser beam to be output with a predetermined wavelength width (frequency width). As the light emitting element, a tunable semiconductor laser element (LD: Laser Diode) can be used. The light emitting unit 40 outputs laser light in a wavelength region including a near infrared wavelength region that is absorbed by the substance to be measured. For example, when the measurement target is nitric oxide, the light emitting unit 40 outputs laser light in a wavelength range including a near infrared wavelength range that absorbs nitric oxide. When the measurement target is nitrogen dioxide, the light emitting unit 40 outputs laser light in a wavelength region including a near infrared wavelength region that absorbs nitrogen dioxide. When the measurement target is nitrous oxide, the light emitting unit 40 outputs laser light in a wavelength range including a near-infrared wavelength range that absorbs nitrous oxide. When the measurement target is a plurality of substances, the light emitting unit 40 may include a plurality of light emitting elements that emit light in the wavelength ranges absorbed by the respective substances, and output light in the respective wavelength ranges. . The optical fiber 42 guides the laser light output from the light emitting unit 40 and causes the laser light to enter the measurement cell 12 through the window 26.
受光部44は、計測セル12の主管20の内部を通過し、出射管24の窓28から出力されたレーザ光を受光する受光部である。なお、受光部44は、例えば、フォトダイオード(PD、Photodiode)等の光検出器を備え、光検出器によってレーザ光を受光し、その光の強度を検出する。受光部44は、受光したレーザ光の強度(光量)を受光信号として、信号処理部47に送る。
The light receiving unit 44 is a light receiving unit that receives the laser beam that has passed through the main tube 20 of the measurement cell 12 and that has been output from the window 28 of the emission tube 24. The light receiving unit 44 includes, for example, a photodetector such as a photodiode (PD), receives the laser beam by the photodetector, and detects the intensity of the light. The light receiving unit 44 sends the intensity (light quantity) of the received laser beam as a light reception signal to the signal processing unit 47.
光源ドライバ46は、発光部40を駆動する機能を有し、発光部40に供給する電流、電圧を調整することで、発光部40から出力されるレーザ光の波長、強度を調整する。光源ドライバ46は、発振器であり、電流、電圧を所定の波形で発光部40に供給することで時間により波長が変化するレーザ光を出力させる。本実施形態の光源ドライバ46は、設定された変調周波数(例えば、100kHz、150kHz)でレーザ光の波長を振動させ、変調周波数よりも低い周波数である掃引周波数(0.1kHz、1kHz)でレーザ光の波長を掃引する。なお、変調周波数に基づいたレーザ光の波長の振動の振動幅は、掃引周波数に基づいたレーザ光の波長の変化幅よりも小さい。これにより、発光部40から出力されるレーザ光は、変調周波数で振動する振動の中心が、掃引周波数に基づいて変化するレーザ光となる。光源ドライバ46は、制御部50を介して物理量算出部48に、発光部40から出力しているレーザ光の強度の情報を出力する。
The light source driver 46 has a function of driving the light emitting unit 40 and adjusts the wavelength and intensity of the laser light output from the light emitting unit 40 by adjusting the current and voltage supplied to the light emitting unit 40. The light source driver 46 is an oscillator, and outputs laser light whose wavelength changes with time by supplying current and voltage to the light emitting unit 40 in a predetermined waveform. The light source driver 46 of the present embodiment oscillates the wavelength of the laser beam at a set modulation frequency (for example, 100 kHz, 150 kHz), and the laser beam at a sweep frequency (0.1 kHz, 1 kHz) that is lower than the modulation frequency. Sweep the wavelength. Note that the vibration width of the laser light wavelength based on the modulation frequency is smaller than the change width of the laser light wavelength based on the sweep frequency. Thereby, the laser beam output from the light emitting unit 40 becomes a laser beam in which the center of vibration oscillating at the modulation frequency changes based on the sweep frequency. The light source driver 46 outputs information on the intensity of the laser beam output from the light emitting unit 40 to the physical quantity calculating unit 48 via the control unit 50.
信号処理部47は、受光部44がレーザ光を受光することで生成した信号(受光信号)を処理する。具体的には、信号処理部47は、受光信号に含まれるノイズ成分を除去し、発光部40から出力され受光部44に到達したレーザ光の成分を抽出する。なお、抽出して生成される信号を以下スペクトル信号という。また、信号処理部47の処理については後述する。
The signal processing unit 47 processes a signal (light reception signal) generated when the light receiving unit 44 receives laser light. Specifically, the signal processing unit 47 removes a noise component included in the light reception signal, and extracts a component of the laser light output from the light emitting unit 40 and reaching the light receiving unit 44. A signal generated by extraction is hereinafter referred to as a spectrum signal. The processing of the signal processing unit 47 will be described later.
物理量算出部48は、信号処理部47から出力されたスペクトル信号に基づいて、計測セル12を流れる排ガスの濃度を算出する。物理量算出部48は、信号処理部47から出力されたスペクトル信号と、制御部50により光源ドライバ46を駆動させている条件とに基づいて、計測対象の物質の濃度を算出する。具体的には、物理量算出部48は、制御部50により光源ドライバ46を駆動させている条件に基づいて発光部40から出力されるレーザ光の強度を算出し、信号処理部47で生成されたスペクトル信号に基づいて受光したレーザ光の強度を算出する。物理量算出部48は、この発光したレーザ光の強度と受光したレーザ光の強度と比較し、排ガスAに含まれる測定対象の物質の濃度を算出する。
The physical quantity calculation unit 48 calculates the concentration of the exhaust gas flowing through the measurement cell 12 based on the spectrum signal output from the signal processing unit 47. The physical quantity calculation unit 48 calculates the concentration of the substance to be measured based on the spectrum signal output from the signal processing unit 47 and the conditions under which the light source driver 46 is driven by the control unit 50. Specifically, the physical quantity calculation unit 48 calculates the intensity of the laser light output from the light emitting unit 40 based on the condition that the light source driver 46 is driven by the control unit 50, and is generated by the signal processing unit 47. The intensity of the received laser beam is calculated based on the spectrum signal. The physical quantity calculator 48 compares the intensity of the emitted laser light with the intensity of the received laser light, and calculates the concentration of the substance to be measured contained in the exhaust gas A.
具体的には、発光部40から出力された近赤外の波長域のレーザ光Lは、光ファイバ42から計測セル12の所定経路、具体的には、窓26、入射管22、主管20、出射管24、窓28を通過した後、受光部44に到達する。このとき、計測セル12内の排ガスA中に測定対象の物質が含まれていると、計測セル12を通過するレーザ光Lが吸収される。そのため、レーザ光Lは、排ガスA中の測定対象の物質の濃度によって、受光部44に到達するレーザ光の出力が変化する。受光部44は、受光したレーザ光を受光信号に変換する。受光部44で生成された受光信号は、信号処理部47で処理されスペクトル信号として物理量算出部48に入力される。また、制御部50および光源ドライバ46は、発光部40から出力したレーザ光Lの強度を物理量算出部48に出力する。物理量算出部48は、発光部40から出力した光の強度と、スペクトル信号から算出される強度とを比較し、その減少割合から計測セル12内を流れる排ガスAの測定対象の物質の濃度を算出する。このように計測手段14は、いわゆるTDLAS方式(Tunable Diode Laser Absorption Spectroscopy:可変波長ダイオードレーザー分光法)を用いることで、出力したレーザ光の強度と、受光部44で検出した受光信号とに基づいて主管20内の所定位置、つまり、測定位置を通過する排ガスA中の測定対象の物質の濃度を、算出および/または計測することができる。また、計測手段14は、連続的に測定対象の物質の濃度を、算出および/または計測することができる。なお、レーザ計測装置10は、発光部40から出力されるレーザ光の強度を一定として、スペクトル信号のみ基づいて排ガスAに含まれる測定対象の物質の濃度を算出してもよい。
Specifically, the near-infrared wavelength laser beam L output from the light emitting unit 40 is a predetermined path from the optical fiber 42 to the measurement cell 12, specifically, the window 26, the incident tube 22, the main tube 20, After passing through the emission tube 24 and the window 28, the light reaches the light receiving unit 44. At this time, if the substance to be measured is contained in the exhaust gas A in the measurement cell 12, the laser light L passing through the measurement cell 12 is absorbed. Therefore, the output of the laser beam L reaching the light receiving unit 44 varies depending on the concentration of the substance to be measured in the exhaust gas A. The light receiving unit 44 converts the received laser light into a light reception signal. The received light signal generated by the light receiving unit 44 is processed by the signal processing unit 47 and input to the physical quantity calculation unit 48 as a spectrum signal. In addition, the control unit 50 and the light source driver 46 output the intensity of the laser light L output from the light emitting unit 40 to the physical quantity calculation unit 48. The physical quantity calculation unit 48 compares the intensity of the light output from the light emitting unit 40 with the intensity calculated from the spectrum signal, and calculates the concentration of the measurement target substance of the exhaust gas A flowing in the measurement cell 12 from the decrease rate. To do. In this way, the measuring means 14 uses the so-called TDLAS method (Tunable Diode Laser Absorption Spectroscopy) based on the intensity of the output laser light and the received light signal detected by the light receiving unit 44. The concentration of the substance to be measured in the exhaust gas A passing through the predetermined position in the main pipe 20, that is, the measurement position, can be calculated and / or measured. Moreover, the measurement means 14 can calculate and / or measure the concentration of the substance to be measured continuously. The laser measuring device 10 may calculate the concentration of the substance to be measured included in the exhaust gas A based on only the spectrum signal, with the intensity of the laser light output from the light emitting unit 40 being constant.
制御部50は、各部の動作を制御する制御機能を有し、必要に応じて、各部の動作を制御する。なお、制御部50は、計測手段14の制御のみならず、レーザ計測装置10の全体の動作を制御する。つまり、制御部50は、レーザ計測装置10の動作を制御する制御部である。
The control unit 50 has a control function for controlling the operation of each unit, and controls the operation of each unit as necessary. The control unit 50 controls not only the control of the measuring means 14 but also the overall operation of the laser measuring device 10. That is, the control unit 50 is a control unit that controls the operation of the laser measurement apparatus 10.
次に、レーザ計測装置10の信号処理部47の構成を説明し、信号処理部47による受光信号の処理について説明する。ここで、図2は、図1に示すレーザ計測装置の信号処理部の概略構成を示すブロック図である。図2に示すように、信号処理部47は、受光部44から送られた受光信号を処理してスペクトル信号を生成し、生成したスペクトル信号を物理量算出部48に送る。信号処理部47は、指定周波数よりも出力が大きい設定周波数の出力を低減するフィルタ処理部62と、フィルタ処理部62で処理された信号にスペクトル信号抽出処理を行い、スペクトル信号を抽出するスペクトル信号抽出器64と、を有する。ここで、指定周波数とは、スペクトル信号抽出器64で抽出する対象の周波数であり、検出対象である吸収スペクトルの成分を含む周波数である。なお、指定周波数としては、変調周波数の2倍以上の整数倍の周波数を用いる。また、設定周波数とは、受光信号に含まれる周波数成分のうち指定周波数よりも出力が大きい周波数である。つまり、設定周波数とは、受光信号をフーリエ変換した場合に指定周波数よりも出力が大きい周波数成分(妨害波)である。ここで、設定周波数としては、変調周波数がある。
Next, the configuration of the signal processing unit 47 of the laser measurement apparatus 10 will be described, and the processing of the received light signal by the signal processing unit 47 will be described. Here, FIG. 2 is a block diagram showing a schematic configuration of a signal processing unit of the laser measuring apparatus shown in FIG. As shown in FIG. 2, the signal processing unit 47 processes the light reception signal sent from the light receiving unit 44 to generate a spectrum signal, and sends the generated spectrum signal to the physical quantity calculation unit 48. The signal processing unit 47 is a filter processing unit 62 that reduces the output of a set frequency that is larger than the specified frequency, and a spectrum signal that extracts a spectrum signal by performing a spectrum signal extraction process on the signal processed by the filter processing unit 62 And an extractor 64. Here, the designated frequency is a frequency to be extracted by the spectrum signal extractor 64 and includes a component of an absorption spectrum that is a detection target. As the designated frequency, a frequency that is an integer multiple of twice or more the modulation frequency is used. The set frequency is a frequency whose output is larger than the specified frequency among the frequency components included in the received light signal. That is, the set frequency is a frequency component (interference wave) whose output is larger than the specified frequency when the received light signal is Fourier-transformed. Here, the set frequency includes a modulation frequency.
フィルタ処理部62は、A/D変換器70と、FIRフィルタ72と、D/A変換器74と、コイルカップリング76、78と、減算処理部80と、増幅器82と、A/D変換器84と、経路特性推定部86と、初期パラメータ設定部88と、パラメータ調整部90と、を有する。なお、受光部44からフィルタ処理部62に入力された受光信号は、分岐されたA/D変換器70、コイルカップリング76と、に入力される。また、コイルカップリング76に入力された受信信号は、コイルカップリング76を通過して減算処理部80に入力される。
The filter processing unit 62 includes an A / D converter 70, an FIR filter 72, a D / A converter 74, coil couplings 76 and 78, a subtraction processing unit 80, an amplifier 82, and an A / D converter. 84, a path characteristic estimation unit 86, an initial parameter setting unit 88, and a parameter adjustment unit 90. The light receiving signal input from the light receiving unit 44 to the filter processing unit 62 is input to the branched A / D converter 70 and the coil coupling 76. Further, the reception signal input to the coil coupling 76 passes through the coil coupling 76 and is input to the subtraction processing unit 80.
A/D(アナログデジタル)変換器70は、アナログの信号をデジタルの信号に変換する変換器であり、受信信号をアナログの信号からデジタルの信号に変換する。A/D変換器70は、変換した信号をFIRフィルタ72と経路特性推定部86とに送る(つまり出力する)。
The A / D (analog-digital) converter 70 is a converter that converts an analog signal into a digital signal, and converts a received signal from an analog signal into a digital signal. The A / D converter 70 sends (that is, outputs) the converted signal to the FIR filter 72 and the path characteristic estimation unit 86.
FIR(有限インパルス応答、Finite impulse response)フィルタ72は、デジタルフィルタ(digital filter)であり、所定の周波数成分を選択的に通過させ、所定の周波数以外の周波数成分を除去、低減する。FIRフィルタ72は、パラメータ(フィルター係数等)を変更可能なフィルタである。FIRフィルタ72は、処理した信号をD/A変換器74に送る。
The FIR (Finite Impulse Response) filter 72 is a digital filter that selectively passes predetermined frequency components and removes and reduces frequency components other than the predetermined frequency. The FIR filter 72 is a filter capable of changing parameters (filter coefficients and the like). The FIR filter 72 sends the processed signal to the D / A converter 74.
D/A(デジタルアナログ)変換器74は、デジタルの信号をアナログの信号に変換する変換器であり、FIRフィルタ72から送られた信号をデジタルの信号からアナログの信号に変換する。D/A変換器74は、変換した信号をコイルカップリング78に送る。
The D / A (digital analog) converter 74 is a converter that converts a digital signal into an analog signal, and converts the signal sent from the FIR filter 72 from a digital signal into an analog signal. The D / A converter 74 sends the converted signal to the coil coupling 78.
コイルカップリング76、78は、減算処理部80と入力部の回路定数を整合する機器であり、減算処理部80と他の部品との整合部に配置されている。コイルカップリング76は、一対のコイルで構成されており、一方のコイルが受光部44と接続し、他方のコイルが減算処理部80と接続している。コイルカップリング76は、一対のコイルが対向して配置されており、受光部44から送られてきた信号を一方のコイルから他方のコイルに伝達し、減算処理部80に送る。コイルカップリング78は、一対のコイルで構成されており、一方のコイルがD/A変換器74と接続し、他方のコイルが減算処理部80と接続している。コイルカップリング78は、一対のコイルが対向して配置されており、D/A変換器74から送られてきた信号を一方のコイルから他方のコイルに伝達し、減算処理部80に送る。コイルカップリング76、78は、一対のコイルを介して信号を伝達することで、整合部で発生する熱ノイズを抑制することができる。
The coil couplings 76 and 78 are devices that match the circuit constants of the subtraction processing unit 80 and the input unit, and are arranged in a matching unit between the subtraction processing unit 80 and other components. The coil coupling 76 is composed of a pair of coils, one coil is connected to the light receiving unit 44, and the other coil is connected to the subtraction processing unit 80. The coil coupling 76 has a pair of coils facing each other, transmits a signal sent from the light receiving unit 44 from one coil to the other coil, and sends the signal to the subtraction processing unit 80. The coil coupling 78 is constituted by a pair of coils, one coil is connected to the D / A converter 74 and the other coil is connected to the subtraction processing unit 80. The coil coupling 78 has a pair of coils facing each other, transmits a signal sent from the D / A converter 74 from one coil to the other coil, and sends it to the subtraction processing unit 80. The coil couplings 76 and 78 can suppress thermal noise generated in the matching portion by transmitting a signal through a pair of coils.
減算処理部80は、受光部44から送られてきてコイルカップリング76を通過した受光信号から、D/A変換器74から送られてきてコイルカップリング78を通過した信号、つまり受光信号から所定の周波数成分を選択的に通過させ、所定の周波数以外の周波数成分を除去、低減した成分を減算する。これにより、減算処理部80は、減算処理で受光信号から所定の周波数成分を除去、低減する。減算処理部80は、受光信号から所定の周波数成分を除去、低減した信号を増幅器82に送る。
The subtraction processing unit 80 receives a predetermined signal from a light reception signal sent from the light receiving unit 44 and passed through the coil coupling 76, and a signal sent from the D / A converter 74 and passed through the coil coupling 78, that is, a light reception signal. Are selectively passed through, the frequency components other than the predetermined frequency are removed, and the reduced components are subtracted. Thereby, the subtraction processing unit 80 removes and reduces a predetermined frequency component from the received light signal by the subtraction processing. The subtraction processing unit 80 removes a predetermined frequency component from the received light signal and sends the reduced signal to the amplifier 82.
増幅器82は、減算処理部80から送られた信号(受光信号から所定の周波数成分を除去、低減した信号)を増幅する。増幅器82は、増幅した信号をA/D変換器84に送る。
The amplifier 82 amplifies the signal (a signal obtained by removing and reducing a predetermined frequency component from the light reception signal) sent from the subtraction processing unit 80. The amplifier 82 sends the amplified signal to the A / D converter 84.
A/D変換器84は、アナログの信号をデジタルの信号に変換する変換器であり、増幅器82で増幅された信号をアナログの信号からデジタルの信号に変換する。A/D変換器84は、変換した信号をスペクトル信号抽出器64と、パラメータ調整部90に送る。
The A / D converter 84 is a converter that converts an analog signal into a digital signal, and converts the signal amplified by the amplifier 82 from an analog signal into a digital signal. The A / D converter 84 sends the converted signal to the spectrum signal extractor 64 and the parameter adjustment unit 90.
経路特性推定部86は、A/D変換器70から送られた信号(受光信号をデジタル信号に変換した信号)を処理してシステム同定を行い一巡伝達制御から経路特性を推定する。経路特性推定部86は、推定した経路特性を初期パラメータ設定部88に送る。
The path characteristic estimation unit 86 processes a signal (a signal obtained by converting a light reception signal into a digital signal) sent from the A / D converter 70, performs system identification, and estimates the path characteristic from the round transfer control. The route characteristic estimation unit 86 sends the estimated route characteristic to the initial parameter setting unit 88.
初期パラメータ設定部88は、経路特性推定部86で推定して経路特性に基づいてFIRフィルタ72の初期パラメータを算出する。初期パラメータ設定部88は、算出した初期パラメータをパラメータ調整部90に送る。
The initial parameter setting unit 88 calculates an initial parameter of the FIR filter 72 based on the path characteristic estimated by the path characteristic estimation unit 86. The initial parameter setting unit 88 sends the calculated initial parameter to the parameter adjustment unit 90.
パラメータ調整部90は、A/D変換器84から送られた信号と、初期パラメータ設定部88から送られた初期パラメータと、に基づいてFIRフィルタ72のパラメータ(フィルター係数等)を調整する。ここで、本実施形態のパラメータ調整部90は、LMS(Least mean squares)アルゴリズムを使用してA/D変換器84から送られた信号を解析しFIRフィルタ72のパラメータを更新(修正)する。具体的には、パラメータ調整部90は、A/D変換器84から送られた信号に含まれる設定周波数の成分が最小となるように、パラメータを調整する。つまり、パラメータ調整部90は、受光信号からFIRフィルタ72で処理した信号を減算した出力が最小となるようにパラメータを調整する。また、本実施形態では、LMSアルゴリズムの収束係数μを標準として0.1に設定する。ここで、FIRフィルタ72で処理した信号は、基本的に設定周波数のみ(出力の大部分が設定周波数の出力)である。したがって、パラメータ調整部90は、受光信号からFIRフィルタ72で処理した信号を減算した出力が最小となるようにパラメータを調整することで、受光信号に含まれる設定周波数成分をより小さくする処理を行うことになる。また、パラメータ調整部90は、パラメータの更新時に初期パラメータによりスペクトル信号抽出器64内での信号処理の影響を考慮し、パラメータを調整する。なお、LMSアルゴリズムは、例えば飯國洋二 著「適応信号処理アルゴリズム」培風館2000年発行に記載されているアルゴリズムである。また、パラメータ調整部90は、パラメータの更新(修正)を所定の時間応答(時間間隔)で実行する。所定の時間応答は、任意の時間応答とすることができ、設定した時間応答や、条件に応じて変化する時間応答とすることができる。
The parameter adjustment unit 90 adjusts the parameters (filter coefficients, etc.) of the FIR filter 72 based on the signal sent from the A / D converter 84 and the initial parameters sent from the initial parameter setting unit 88. Here, the parameter adjustment unit 90 of the present embodiment analyzes the signal sent from the A / D converter 84 using an LMS (Least Mean Squares) algorithm and updates (corrects) the parameters of the FIR filter 72. Specifically, the parameter adjustment unit 90 adjusts the parameters such that the set frequency component included in the signal transmitted from the A / D converter 84 is minimized. That is, the parameter adjustment unit 90 adjusts the parameters so that the output obtained by subtracting the signal processed by the FIR filter 72 from the received light signal is minimized. In this embodiment, the convergence coefficient μ of the LMS algorithm is set to 0.1 as a standard. Here, the signal processed by the FIR filter 72 is basically only the set frequency (most of the output is the output of the set frequency). Therefore, the parameter adjustment unit 90 performs processing for reducing the set frequency component included in the light reception signal by adjusting the parameter so that the output obtained by subtracting the signal processed by the FIR filter 72 from the light reception signal is minimized. It will be. In addition, the parameter adjustment unit 90 adjusts the parameters in consideration of the influence of signal processing in the spectrum signal extractor 64 by the initial parameters when updating the parameters. The LMS algorithm is an algorithm described in, for example, “Adaptive Signal Processing Algorithm” published by Yoji Iiguni in 2000. Further, the parameter adjustment unit 90 executes parameter update (correction) at a predetermined time response (time interval). The predetermined time response can be an arbitrary time response, and can be a set time response or a time response that changes according to conditions.
次に、スペクトル信号抽出器64は、フィルタ処理部62で処理され、設定周波数成分が低減された受光信号に対して、指定周波数を参照周波数として例えばロックイン処理を行う。これにより、設定周波数成分が低減された受光信号から指定周波数のスペクトル信号を生成する。スペクトル信号抽出器64は、検出したスペクトル信号を物理量算出部48に送る。信号処理部47は、以上のようにして受光信号からスペクトル信号を生成及び/または抽出する。
Next, the spectrum signal extractor 64 performs, for example, a lock-in process on the received light signal, which is processed by the filter processing unit 62 and has a reduced set frequency component, using the designated frequency as a reference frequency. As a result, a spectrum signal having a designated frequency is generated from the received light signal in which the set frequency component is reduced. The spectrum signal extractor 64 sends the detected spectrum signal to the physical quantity calculator 48. The signal processing unit 47 generates and / or extracts a spectrum signal from the received light signal as described above.
以下、図3から図9を用いて信号処理部47の処理を説明する。ここで、図3は、受光信号の出力分布を示すグラフである。図3は、受光信号の周波数と電圧(強度)との関係を示している。なお、図3は、縦軸が電圧(強度)[dBV]であり、横軸が周波数[MHz]である。また、図4から図9は、それぞれ信号処理部の処理を説明するための説明図である。なお、図4から図9は、それぞれ各位置における信号の強度を模式的に示している。なお、図4から図9は、いずれも縦軸が強度であり、横軸が時間である。
Hereinafter, the processing of the signal processing unit 47 will be described with reference to FIGS. Here, FIG. 3 is a graph showing the output distribution of the received light signal. FIG. 3 shows the relationship between the frequency of the received light signal and the voltage (intensity). In FIG. 3, the vertical axis represents voltage (intensity) [dBV], and the horizontal axis represents frequency [MHz]. 4 to 9 are explanatory diagrams for explaining the processing of the signal processing unit, respectively. 4 to 9 schematically show signal intensities at the respective positions. In each of FIGS. 4 to 9, the vertical axis is intensity, and the horizontal axis is time.
まず、以下の例では、受光信号として図3に示す信号を用い、設定周波数を100kHzとした場合として説明する。なお、図3に示す受光信号は、発光部40から変調周波数が100kHzのレーザ光を出力させた場合に受光部44が検出した受光信号である。本実施形態のレーザ計測装置10は、指定周波数として200kHzを用いる。ここで、図3では、設定周波数100kHzの出力が-10.93dBVであり、指定周波数200kHzの出力が-53.16dBVである。そのため、出力の差が-42.23dBVである。
First, in the following example, a case will be described where the signal shown in FIG. 3 is used as the light reception signal and the set frequency is 100 kHz. The light reception signal shown in FIG. 3 is a light reception signal detected by the light receiving unit 44 when a laser beam having a modulation frequency of 100 kHz is output from the light emitting unit 40. The laser measuring apparatus 10 of this embodiment uses 200 kHz as the designated frequency. Here, in FIG. 3, the output of the set frequency 100 kHz is -10.93 dBV, and the output of the specified frequency 200 kHz is -53.16 dBV. Therefore, the output difference is −42.23 dBV.
信号処理部47は、受光信号(入力信号)として、図4に示す信号が入力される。受光信号には、測定対象の周波数の出力である指定周波数の出力101と、ノイズ成分である指定周波数以外の出力102とが重畳している。また、出力101は、出力102よりも強度が小さい出力である。これは、出力102には、他の周波数成分に対して飛躍的に強度が高い設定周波数の出力を含むためである。なお、図4では、説明のため出力101と出力102とを別々の波形で示しているが、実際の受光信号は、出力101と出力102とを加算した出力となる。受光信号は、A/D変換器70、減算処理部80に送られる。
The signal processing unit 47 receives a signal shown in FIG. 4 as a light reception signal (input signal). An output 101 of a designated frequency that is an output of a frequency to be measured and an output 102 other than the designated frequency that is a noise component are superimposed on the received light signal. The output 101 is an output having a smaller intensity than the output 102. This is because the output 102 includes an output of a set frequency that is dramatically higher in intensity than other frequency components. In FIG. 4, the output 101 and the output 102 are shown as separate waveforms for explanation, but the actual received light signal is an output obtained by adding the output 101 and the output 102. The received light signal is sent to the A / D converter 70 and the subtraction processing unit 80.
FIRフィルタ72は、A/D変換器70でデジタルに変換された信号(デジタル受光信号)に処理を行い、デジタル受光信号から設定周波数の成分を抽出する。なお、この時FIRフィルタ72は、パラメータ調整部90によりフィルタ特性が調整されている。これにより、FIRフィルタ72は、減算処理部80で処理する受光信号に含まれる設定周波数の成分に対応する出力に調整された受光信号から設定周波数の成分を抽出する。ここで、FIRフィルタ72が、受光信号から抽出した設定周波数の成分は、図5に示す出力104となる。ここで、本実施形態の設定周波数(100kHz)は、変調周波数である。そのため、図3で示すように受光信号の強度割合のほとんどを設定周波数が占めている。そのため、ノイズ成分のほとんどが設定周波数の出力となる。このため、図4の出力102と、設定周波数の成分を抽出した出力104とは略同様の出力となる。
The FIR filter 72 processes the signal (digital light reception signal) digitally converted by the A / D converter 70 and extracts a set frequency component from the digital light reception signal. At this time, the filter characteristics of the FIR filter 72 are adjusted by the parameter adjustment unit 90. As a result, the FIR filter 72 extracts the set frequency component from the received light signal adjusted to the output corresponding to the set frequency component included in the received light signal processed by the subtraction processing unit 80. Here, the component of the set frequency extracted from the light reception signal by the FIR filter 72 is the output 104 shown in FIG. Here, the set frequency (100 kHz) of the present embodiment is a modulation frequency. Therefore, as shown in FIG. 3, the set frequency occupies most of the intensity ratio of the received light signal. For this reason, most of the noise components are output at the set frequency. For this reason, the output 102 in FIG. 4 and the output 104 obtained by extracting the component of the set frequency are substantially the same output.
次に、減算処理部80は、図4に示す出力101と出力102とが重畳された信号である受光信号から、FIRフィルタ72で生成された出力104の信号を減算する。これにより、減算処理部80で生成される信号は、受光信号から出力104を減算した信号となる。これにより、減算処理部80で生成された信号は、図6に示すように、測定対象の周波数の出力である指定周波数の出力101と、指定周波数及び設定周波数以外の周波数の出力106と、で構成される。なお、出力106はノイズ成分である。ここで、ノイズ成分の出力106は、出力102から設定周波数の成分が除去または減算されるため、出力が小さくなっており、出力101との出力差も小さい。
Next, the subtraction processing unit 80 subtracts the signal of the output 104 generated by the FIR filter 72 from the light reception signal that is a signal in which the output 101 and the output 102 shown in FIG. 4 are superimposed. Thereby, the signal generated by the subtraction processing unit 80 is a signal obtained by subtracting the output 104 from the light reception signal. Thereby, as shown in FIG. 6, the signal generated by the subtraction processing unit 80 includes an output 101 of a designated frequency that is an output of a frequency to be measured and an output 106 of a frequency other than the designated frequency and the set frequency. Composed. The output 106 is a noise component. Here, the output 106 of the noise component has a small output because the component of the set frequency is removed or subtracted from the output 102, and the output difference from the output 101 is also small.
次に、増幅器82は、減算処理部80で生成された信号を増幅する。これにより、増幅器82で増幅された信号は、図7に示すように指定周波数の出力101を増幅させた101aと、指定周波数及び設定周波数以外の周波数の出力106を増幅させた出力106aと、で構成される。なお、増幅器82は一定割合で出力を増幅させるため、出力101と出力106との関係と、出力101aと出力106aとの関係は相似となる。
Next, the amplifier 82 amplifies the signal generated by the subtraction processing unit 80. As a result, the signal amplified by the amplifier 82 is, as shown in FIG. 7, 101a obtained by amplifying the output 101 of the designated frequency and an output 106a obtained by amplifying the output 106 of a frequency other than the designated frequency and the set frequency. Composed. Since the amplifier 82 amplifies the output at a constant rate, the relationship between the output 101 and the output 106 and the relationship between the output 101a and the output 106a are similar.
次に、スペクトル信号抽出器64は、増幅器82で増幅されたのち、デジタルデータに変換された信号に対して、例えばスペクトル抽出の1手法であるロックイン処理を用いる。具体的には、図8に示すように、出力101aと出力106aとで構成される信号に出力108の信号を乗算する。ここで、出力108の信号は、参照周波数の出力である。参照周波数は、ロックイン処理で抽出する周波数であり、本実施形態では指定周波数となる。スペクトル信号抽出器64は、この場合のようにロックイン処理を行うことで、図9に示すように、指定周波数の出力110で構成されるスペクトル信号を生成する。
Next, the spectrum signal extractor 64 uses, for example, a lock-in process, which is one method of spectrum extraction, for the signal amplified by the amplifier 82 and then converted into digital data. Specifically, as shown in FIG. 8, the signal composed of the output 101a and the output 106a is multiplied by the signal of the output 108. Here, the signal of the output 108 is an output of the reference frequency. The reference frequency is a frequency extracted by the lock-in process, and is a designated frequency in this embodiment. The spectrum signal extractor 64 performs a lock-in process as in this case, thereby generating a spectrum signal composed of an output 110 of a designated frequency as shown in FIG.
このように、レーザ計測装置10の信号処理部47は、パラメータ調整部90でFIRフィルタ72のパラメータを調整しつつ、FIRフィルタ72で設定周波数を含む信号を生成し、その生成した信号で受光信号を減算することで、受光信号から効率よくノイズを除去または低減することができる。また、レーザ計測装置10の信号処理部47は、処理対象の設定周波数を特定し、効率よくノイズを除去できるため、既存のフィルタ(バンドパスフィルタ、パラメータ固定型FIRフィルタ)を用いる場合よりも、フィルタ処理部62の構成を簡単にすることができる。
As described above, the signal processing unit 47 of the laser measurement device 10 generates a signal including the set frequency by the FIR filter 72 while adjusting the parameters of the FIR filter 72 by the parameter adjustment unit 90, and uses the generated signal as a light reception signal. By subtracting, noise can be efficiently removed or reduced from the received light signal. In addition, the signal processing unit 47 of the laser measuring device 10 can specify the set frequency to be processed and efficiently remove noise, so that the case where an existing filter (bandpass filter, parameter fixed FIR filter) is used is used. The configuration of the filter processing unit 62 can be simplified.
また、受光信号から効率よくノイズを除去または低減し、指定周波数の成分の出力とノイズ成分の出力との差が小さくなることで、ノイズ除去後でスペクトル抽出前の信号をより大きく増幅することができ、スペクトル抽出前に指定周波数の成分の出力をより増幅することができる。ここで、増幅器82は、スペクトル信号抽出器64の検出レンジに適用可能な大きさまで増幅させる場合に信号の大きさを基準として増幅の比率を設定する。そのため、指定周波数の成分の出力とノイズ成分の出力との差が小さくなることで、ノイズ成分の出力が指定周波数の成分の出力よりも一定程度大きい場合よりも、指定周波数の成分の出力をより大きく増幅することができる。つまり、より大きく増幅しても、出力をスペクトル信号抽出器64の検出レンジに適用可能な大きさに抑えることができる。これにより、指定周波数の成分の出力をより高精度に検出することができる。
In addition, noise can be efficiently removed or reduced from the received light signal, and the difference between the output of the specified frequency component and the output of the noise component is reduced, so that the signal before noise extraction after noise removal can be further amplified. In addition, the output of the component of the designated frequency can be further amplified before the spectrum extraction. Here, the amplifier 82 sets the amplification ratio based on the signal size when the signal is amplified to a size applicable to the detection range of the spectrum signal extractor 64. Therefore, the difference between the output of the specified frequency component and the output of the noise component is reduced, so that the output of the specified frequency component is more than the case where the output of the noise component is a certain amount larger than the output of the specified frequency component. It can be greatly amplified. That is, even if the signal is amplified further, the output can be suppressed to a size applicable to the detection range of the spectrum signal extractor 64. Thereby, the output of the component of the designated frequency can be detected with higher accuracy.
さらに、ノイズを好適に小さくできることで、スペクトル信号抽出器64の検出レンジが小さい場合でも好適に指定周波数の出力101を検出することができる。これにより、性能を維持しつつ、スペクトル信号抽出器64を安価にすることができ、レーザ計測装置も安価にすることができる。
Furthermore, since the noise can be suitably reduced, the output 101 of the designated frequency can be suitably detected even when the detection range of the spectrum signal extractor 64 is small. Thereby, the spectral signal extractor 64 can be made inexpensive while maintaining the performance, and the laser measuring device can also be made inexpensive.
また、信号処理部47のフィルタ処理部62は、経路特性推定部86と初期パラメータ設定部88とを用いて、一巡伝達制御(具体的にはスペクトル信号抽出器64より入力側の回路)の応答特性(回路の誤差特性)をLMSアルゴリズムで推定することで、ノイズ成分を除去または低減するだけの作用だけでなく、より高度な性能を得ることができる。具体的には、応答特性(回路の誤差特性)から本システムの状態を把握し、計測器の自動校正やメンテナンスを行なうことでより性能を向上させることなどが挙げられる。
Further, the filter processing unit 62 of the signal processing unit 47 uses the path characteristic estimation unit 86 and the initial parameter setting unit 88 to respond to a round-trip transmission control (specifically, a circuit on the input side from the spectrum signal extractor 64). By estimating the characteristic (the error characteristic of the circuit) with the LMS algorithm, it is possible not only to remove or reduce the noise component but also to obtain higher performance. Specifically, it is possible to grasp the state of the present system from the response characteristics (circuit error characteristics) and to improve the performance by performing automatic calibration and maintenance of the measuring instrument.
また、パラメータ調整部90は、LMSアルゴリズムでパラメータを調整することが好ましい。LMSアルゴリズムを用いることで、安定して処理を行うことができる。なお、パラメータ調整部90は、パラメータの調整に用いるアルゴリズムとして、LMSアルゴリズム以外のアルゴリズムも用いることができる。パラメータ調整部90は、スペクトル信号抽出器64から出力された信号を解析してパラメータを決定するアルゴリズムとして、種々のアルゴリズムを用いることができる。なお、アルゴリズム(処理法則)は、スペクトル信号抽出器64から出力された信号に含まれる設定周波数の成分がより少なくなるようにパラメータを設定するアルゴリズムであればよい。パラメータ調整部90は、最小二乗法から誤差最小の状態を連立一次方程式で示すYule-Walker方程式を解くRLS(Recursive Least Square)法も用いることができる。RLS法を用いた場合は、LMSアルゴリズムを用いる場合より安定性は低下するが応答速度をより向上させることができる。
In addition, it is preferable that the parameter adjustment unit 90 adjusts the parameters using the LMS algorithm. By using the LMS algorithm, stable processing can be performed. The parameter adjustment unit 90 can also use an algorithm other than the LMS algorithm as an algorithm used for parameter adjustment. The parameter adjustment unit 90 can use various algorithms as algorithms for determining parameters by analyzing the signal output from the spectrum signal extractor 64. The algorithm (processing rule) may be any algorithm that sets parameters so that the set frequency component included in the signal output from the spectrum signal extractor 64 is reduced. The parameter adjustment unit 90 can also use an RLS (Recursive Least Square) method that solves the Yule-Walker equation indicating a minimum error state from a least squares method using simultaneous linear equations. When the RLS method is used, the response speed can be further improved although the stability is lower than when the LMS algorithm is used.
また、FIRフィルタ72で出力を低減する周波数成分である設定周波数としては、本実施形態のように変調周波数を用いることが好ましい。変調周波数は、レーザ光に含まれる信号成分であるため信号成分が大きくなり受光信号の出力の多くの割合を占めていることが多い。このため、フィルタ処理部62でこの変調周波数成分を低減、除去することで、指定周波数の成分をより増幅することができ、スペクトル信号をより高精度な信号とすることができる。なお、ノイズの低減量は低下するが、設定周波数として変調周波数とは異なる周波数を用いることもできる。この場合も不要な特定の周波数を除去または低減することができ、指定周波数の成分をより効率よく検出することができる。
Also, as the set frequency, which is a frequency component for reducing the output by the FIR filter 72, it is preferable to use a modulation frequency as in this embodiment. Since the modulation frequency is a signal component included in the laser light, the signal component increases and often accounts for a large proportion of the output of the received light signal. For this reason, by reducing and removing the modulation frequency component by the filter processing unit 62, the component of the designated frequency can be further amplified, and the spectrum signal can be made a more accurate signal. Although the amount of noise reduction decreases, a frequency different from the modulation frequency can be used as the set frequency. In this case as well, unnecessary specific frequencies can be removed or reduced, and the component of the designated frequency can be detected more efficiently.
また、上述したように、指定周波数は、変調周波数の整数倍の種々の値とすることができる。指定周波数として、変調周波数の4倍の周波数を用いても、変調周波数に含まれる吸収スペクトル(検出対象のスペクトル)の変化を検出することができる。なお、指定周波数として、変調周波数の4倍の周波数を用いて解析を行うとスペクトルの4次微分波形が検出される。このように変調周波数の2倍以外の周波数を用いることで、変調周波数の2倍の周波数にノイズ成分がある場合も吸収スペクトル(検出対象のスペクトル)の変化を検出することができる。
Also, as described above, the designated frequency can be various values that are integer multiples of the modulation frequency. Even when a frequency that is four times the modulation frequency is used as the designated frequency, a change in the absorption spectrum (detection target spectrum) included in the modulation frequency can be detected. If analysis is performed using a frequency that is four times the modulation frequency as the designated frequency, a fourth-order differential waveform of the spectrum is detected. By using a frequency other than twice the modulation frequency in this way, a change in the absorption spectrum (detection target spectrum) can be detected even when there is a noise component at a frequency twice the modulation frequency.
ここで、設定周波数の出力を抽出するフィルタとしては、本実施形態のようにFIRフィルタ72を用いることが好ましい。FIRフィルタを用いることで、設定周波数の成分を高い精度で抽出することができる。なお、設定周波数の出力を抽出するフィルタとしては、FIRフィルタ以外にもパラメータが変更可能な種々のデジタルフィルタを用いることができる。
Here, as the filter for extracting the output of the set frequency, it is preferable to use the FIR filter 72 as in the present embodiment. By using the FIR filter, the set frequency component can be extracted with high accuracy. In addition to the FIR filter, various digital filters whose parameters can be changed can be used as a filter for extracting the output of the set frequency.
また、FIRフィルタ72は、受光信号を処理して減算処理に用いる設定周波数の成分の信号を生成することで、つまり、受光部44で検出されA/D変換器70で変換された信号から設定周波数の成分の信号を生成する構成とすることで、装置構成を増加させることなく、減算処理に用いる設定周波数の成分を含む信号を生成することができる。なお、FIRフィルタ72に入力する信号は、受光信号に限定されず、設定周波数の成分を有する信号も可能である。つまり、FIRフィルタ72に信号を入力する信号供給部としては、設定周波数の成分を有する信号を供給可能な種々の機構を用いることができる。例えば、信号生成部(発振器)を用いてもよい。
The FIR filter 72 processes the light reception signal to generate a signal having a set frequency component used for the subtraction processing, that is, the signal is set from the signal detected by the light receiving unit 44 and converted by the A / D converter 70. By adopting a configuration that generates a frequency component signal, it is possible to generate a signal including a set frequency component used for the subtraction process without increasing the device configuration. The signal input to the FIR filter 72 is not limited to the light reception signal, and a signal having a set frequency component is also possible. That is, as the signal supply unit that inputs a signal to the FIR filter 72, various mechanisms that can supply a signal having a set frequency component can be used. For example, a signal generation unit (oscillator) may be used.
6、8 配管
10 レーザ計測装置
12 計測セル
14 計測手段
20 主管
22 入射管
24 出射管
26、28 窓
40 発光部
42 光ファイバ
44 受光部
46 光源ドライバ
47 信号処理部
48 物理量算出部
50 制御部
62 フィルタ処理部
64 スペクトル信号抽出器
70、84 A/D変換器
72 FIRフィルタ
74 D/A変換器
76、78 コイルカップリング
80 減算処理部
82 増幅器
86 経路特性推定部
88 初期パラメータ設定部
90 パラメータ調整部 6, 8Piping 10 Laser measuring device 12 Measuring cell 14 Measuring means 20 Main tube 22 Incident tube 24 Emission tube 26, 28 Window 40 Light emitting unit 42 Optical fiber 44 Light receiving unit 46 Light source driver 47 Signal processing unit 48 Physical quantity calculating unit 50 Control unit 62 Filter processing unit 64 Spectral signal extractor 70, 84 A / D converter 72 FIR filter 74 D / A converter 76, 78 Coil coupling 80 Subtraction processing unit 82 Amplifier 86 Path characteristic estimation unit 88 Initial parameter setting unit 90 Parameter adjustment Part
10 レーザ計測装置
12 計測セル
14 計測手段
20 主管
22 入射管
24 出射管
26、28 窓
40 発光部
42 光ファイバ
44 受光部
46 光源ドライバ
47 信号処理部
48 物理量算出部
50 制御部
62 フィルタ処理部
64 スペクトル信号抽出器
70、84 A/D変換器
72 FIRフィルタ
74 D/A変換器
76、78 コイルカップリング
80 減算処理部
82 増幅器
86 経路特性推定部
88 初期パラメータ設定部
90 パラメータ調整部 6, 8
Claims (12)
- 入射部と出射部を備え、かつ、流体が流れる計測セルと、測定対象のガスに固有な吸収波長を含む波長域のレーザ光を変調周波数で波長を変調しつつ出力し、前記計測セルに入射させる発光部と、前記入射部から入射され、前記計測セルを通過し、前記出射部から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、を有し、前記受光信号に基づいて前記計測セルを流れる測定対象のガスの物理量を算出するレーザ計測装置に適用され、
前記受光部が受光した受光信号を処理し、前記計測セルを流れる測定対象のガスの物理量の算出に用いるスペクトル信号を出力する信号処理装置であって、
前記指定周波数よりも出力が大きい設定周波数の出力を低減するフィルタ処理部と、前記フィルタ処理部で処理された信号にスペクトル信号抽出処理を行い、前記スペクトル信号を抽出するスペクトル信号抽出器と、を含み、
前記フィルタ処理部は、
前記設定周波数の成分を含むデジタルの信号を供給する信号供給部と、
前記信号供給部から前記設定周波数の成分を抽出するフィルタ特性を変更可能なデジタルフィルタと、
前記デジタルフィルタで処理された信号をデジタルからアナログに変換するD/A変換器と、
前記受光信号から、前記D/A変換器から出力された信号を減算し、前記受光信号から設定された周波数成分を減算する減算処理部と、
前記減算処理部から出力された信号をアナログからデジタルに変換し、変換した信号を前記スペクトル信号抽出器に出力するA/D変換器と、
前記A/D変換器から前記スペクトル信号抽出器に出力する信号を取得し、当該信号に含まれる前記設定周波数の成分に基づいて前記デジタルフィルタのパラメータを所定の時間応答で調整するパラメータ調整部と、を有することを特徴とする信号処理装置。 A measurement cell that includes an incident part and an emission part, and in which a fluid flows, and outputs laser light in a wavelength region that includes an absorption wavelength specific to the gas to be measured while modulating the wavelength with the modulation frequency, and enters the measurement cell A light emitting unit to be received, and a light receiving unit that is incident from the incident unit, passes through the measurement cell, receives the laser light emitted from the emitting unit, and outputs the received light amount as a light reception signal, Applied to a laser measuring device that calculates a physical quantity of a gas to be measured flowing through the measurement cell based on the received light signal,
A signal processing device that processes a light reception signal received by the light receiving unit and outputs a spectrum signal used to calculate a physical quantity of a gas to be measured flowing through the measurement cell;
A filter processing unit that reduces output of a set frequency whose output is greater than the specified frequency, and a spectrum signal extractor that performs spectrum signal extraction processing on the signal processed by the filter processing unit and extracts the spectrum signal. Including
The filter processing unit
A signal supply unit for supplying a digital signal including the component of the set frequency;
A digital filter capable of changing a filter characteristic for extracting a component of the set frequency from the signal supply unit;
A D / A converter for converting the signal processed by the digital filter from digital to analog;
A subtraction processing unit that subtracts a signal output from the D / A converter from the light reception signal and subtracts a frequency component set from the light reception signal;
An A / D converter that converts the signal output from the subtraction processing unit from analog to digital, and outputs the converted signal to the spectral signal extractor;
A parameter adjustment unit that obtains a signal to be output from the A / D converter to the spectral signal extractor, and adjusts a parameter of the digital filter with a predetermined time response based on a component of the set frequency included in the signal; And a signal processing device. - 前記信号供給部は、前記受光信号をアナログからデジタルに変換し、変換したデジタルの信号を前記デジタルフィルタに供給する受光信号A/D変換器であることを特徴とする請求項1に記載の信号処理装置。 2. The signal according to claim 1, wherein the signal supply unit is a light reception signal A / D converter that converts the light reception signal from analog to digital and supplies the converted digital signal to the digital filter. Processing equipment.
- 前記信号供給部は、前記指定周波数成分以外の設定周波数の成分を含むデジタルの信号を生成する信号生成部であることを特徴とする請求項1に記載の信号処理装置。 2. The signal processing apparatus according to claim 1, wherein the signal supply unit is a signal generation unit that generates a digital signal including a component of a set frequency other than the designated frequency component.
- 前記設定周波数は、前記変調周波数であることを特徴とする請求項1から3のいずれか一項に記載の信号処理装置。 4. The signal processing device according to claim 1, wherein the set frequency is the modulation frequency.
- 前記デジタルフィルタは、FIRフィルタであることを特徴とする請求項1から4のいずれか一項に記載の信号処理装置。 The signal processing apparatus according to any one of claims 1 to 4, wherein the digital filter is an FIR filter.
- 前記パラメータ調整部は、当該信号に含まれる前記設定周波数の成分をLMSアルゴリズムで処理し、処理結果に基づいて前記パラメータを調整することを特徴とする請求項1から5のいずれか一項に記載の信号処理装置。 The said parameter adjustment part processes the component of the said setting frequency contained in the said signal with a LMS algorithm, and adjusts the said parameter based on a processing result, It is any one of Claim 1 to 5 characterized by the above-mentioned. Signal processing equipment.
- 前記受光信号から経路特性を推定する特性推定部と、
前記特性推定部で検出した経路特性に基づいて初期パラメータを算出する初期パラメータ設定部と、をさらに有し、
前記パラメータ調整部は、前記初期パラメータ設定部で算出された初期パラメータに基づいて前記デジタルフィルタのパラメータを調整することを特徴とする請求項1から6のいずれか一項に記載の信号処理装置。 A characteristic estimation unit for estimating a path characteristic from the received light signal;
An initial parameter setting unit that calculates an initial parameter based on the path characteristic detected by the characteristic estimation unit;
The signal processing apparatus according to claim 1, wherein the parameter adjustment unit adjusts a parameter of the digital filter based on an initial parameter calculated by the initial parameter setting unit. - 前記特性推定部は、前記受光信号をデジタル信号に変換した信号を処理して経路特性を推定することを特徴とする請求項7に記載の信号処理装置。 The signal processing apparatus according to claim 7, wherein the characteristic estimation unit estimates a path characteristic by processing a signal obtained by converting the received light signal into a digital signal.
- 前記指定周波数は、前記変調周波数を整数倍した周波数であることを特徴とする請求項1から8のいずれか一項に記載の信号処理装置。 The signal processing apparatus according to any one of claims 1 to 8, wherein the designated frequency is a frequency obtained by multiplying the modulation frequency by an integer.
- 請求項1から9のいずれか一項に記載の信号処理装置と、
流体を流す流路と連結可能な主管、前記主管に連結し、光が通過可能な窓部が形成された入射部、前記主管に連結し光が通過可能な窓部が形成された出射部と、を含む計測セルと、
測定対象のガスに固有な吸収波長を含む波長域のレーザ光を変調周波数で波長を変調しつつ出力し、前記入射部に入射させる発光部と、
前記入射部から入射され、前記計測セルを通過し、前記出射部から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、
前記スペクトル信号に基づいて、前記計測セルを流れる測定対象のガスの物理量を算出する物理量算出部と、
各部の動作を制御する制御部と、を有することを特徴とするレーザ計測装置。 A signal processing device according to any one of claims 1 to 9,
A main pipe connectable to a flow path for fluid, an incident part connected to the main pipe and formed with a window part through which light can pass, an emission part connected to the main pipe and formed with a window part through which light can pass; A measuring cell including
A light emitting unit that outputs laser light in a wavelength region including an absorption wavelength unique to a gas to be measured while modulating the wavelength at a modulation frequency, and that is incident on the incident unit;
A light receiving portion that is incident from the incident portion, passes through the measurement cell, receives the laser light emitted from the emission portion, and outputs the received light amount as a light reception signal;
A physical quantity calculation unit that calculates a physical quantity of a gas to be measured flowing through the measurement cell based on the spectrum signal;
And a control unit that controls the operation of each unit. - 前記物理量算出部が算出する物理量は、前記測定対象のガスの濃度であることを特徴とする請求項10に記載のレーザ計測装置。 The laser measurement apparatus according to claim 10, wherein the physical quantity calculated by the physical quantity calculation unit is a concentration of the measurement target gas.
- 前記物理量算出部は、前記発光部から出力したレーザ光の強度と、前記受光部で受光したレーザ光の強度とに基づいて、前記測定対象のガスの濃度を算出することを特徴とする請求項11に記載のレーザ計測装置。 The physical quantity calculation unit calculates the concentration of the gas to be measured based on the intensity of the laser beam output from the light emitting unit and the intensity of the laser beam received by the light receiving unit. 11. The laser measuring device according to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040514A JP2012177612A (en) | 2011-02-25 | 2011-02-25 | Signal processing apparatus and laser measurement instrument |
JP2011-040514 | 2011-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012115149A1 true WO2012115149A1 (en) | 2012-08-30 |
Family
ID=46720925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054276 WO2012115149A1 (en) | 2011-02-25 | 2012-02-22 | Signal processing device and laser measurement device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012177612A (en) |
WO (1) | WO2012115149A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11131625B2 (en) | 2017-12-15 | 2021-09-28 | Neo Monitors As | Hydrogen gas sensor and method for measurement of hydrogen under ambient and elevated pressure |
WO2024204263A1 (en) * | 2023-03-31 | 2024-10-03 | 浜松ホトニクス株式会社 | Inspection device and inspection method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104215605A (en) * | 2014-02-12 | 2014-12-17 | 中科融通物联科技无锡有限公司 | Method for fast dynamic-calibration of fiber bragg grating (FBG) demodulation system |
CN105424229A (en) * | 2015-11-24 | 2016-03-23 | 中国肉类食品综合研究中心 | Pressure detection apparatus for near infrared instrument and detection method thereof |
CN106526611A (en) * | 2016-10-31 | 2017-03-22 | 鲁东大学 | Method for measuring ocean inherent optical parameter by using laser radar system |
JP6788858B2 (en) | 2017-08-30 | 2020-11-25 | パナソニックIpマネジメント株式会社 | Moisture content detector |
JP6791213B2 (en) * | 2018-07-13 | 2020-11-25 | 横河電機株式会社 | Spectral analyzer and spectroscopic analysis method |
JP2023132453A (en) | 2022-03-11 | 2023-09-22 | 富士電機株式会社 | Laser type gas analyzer |
WO2024135739A1 (en) * | 2022-12-22 | 2024-06-27 | TopoLogic株式会社 | Gas detector, gas detecting module, gas detecting device, and gas detecting method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06221913A (en) * | 1992-10-06 | 1994-08-12 | Hamamatsu Photonics Kk | Method and equipment for measuring optical information of scatterer/absorber |
JP2009534659A (en) * | 2006-04-19 | 2009-09-24 | スペクトラセンサーズ, インコーポレイテッド | Measurement of water vapor in hydrocarbons |
JP2010164413A (en) * | 2009-01-15 | 2010-07-29 | Shimadzu Corp | Gas concentration measuring instrument |
JP2010169449A (en) * | 2009-01-20 | 2010-08-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for measuring concentration |
JP2010169487A (en) * | 2009-01-21 | 2010-08-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for measuring concentration |
-
2011
- 2011-02-25 JP JP2011040514A patent/JP2012177612A/en not_active Withdrawn
-
2012
- 2012-02-22 WO PCT/JP2012/054276 patent/WO2012115149A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06221913A (en) * | 1992-10-06 | 1994-08-12 | Hamamatsu Photonics Kk | Method and equipment for measuring optical information of scatterer/absorber |
JP2009534659A (en) * | 2006-04-19 | 2009-09-24 | スペクトラセンサーズ, インコーポレイテッド | Measurement of water vapor in hydrocarbons |
JP2010164413A (en) * | 2009-01-15 | 2010-07-29 | Shimadzu Corp | Gas concentration measuring instrument |
JP2010169449A (en) * | 2009-01-20 | 2010-08-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for measuring concentration |
JP2010169487A (en) * | 2009-01-21 | 2010-08-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for measuring concentration |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11131625B2 (en) | 2017-12-15 | 2021-09-28 | Neo Monitors As | Hydrogen gas sensor and method for measurement of hydrogen under ambient and elevated pressure |
WO2024204263A1 (en) * | 2023-03-31 | 2024-10-03 | 浜松ホトニクス株式会社 | Inspection device and inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP2012177612A (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012115149A1 (en) | Signal processing device and laser measurement device | |
JP5176535B2 (en) | Laser gas analyzer | |
JP5907442B2 (en) | Laser gas analyzer | |
US7227625B2 (en) | Meteorological observation LIDAR system | |
JP6044760B2 (en) | Laser gas analyzer | |
KR100747768B1 (en) | Apparatus for measuring exhaust gas using wavelength modulation spectroscopy | |
JP2012137429A (en) | Laser measuring device | |
WO2015181956A1 (en) | Multicomponent laser gas analyzer | |
US11162896B2 (en) | Method and gas analyzer for measuring the concentration of a gas component in a measurement gas | |
US9506807B2 (en) | Optical gas temperature sensor | |
JP2013050403A (en) | Gas analyzer | |
EP2549265B1 (en) | Laser gas analysis apparatus | |
KR20130030772A (en) | Ammonia compound concentration measuring device and ammonia compound concentration measuring method | |
JP5234381B1 (en) | Laser oxygen analyzer | |
JP2016191628A (en) | Gas analysis system | |
JP7395846B2 (en) | Laser gas analyzer | |
WO2012115150A1 (en) | Signal processing device and laser measurement device | |
JP2013228296A (en) | Gas concentration measuring device | |
US20150204779A1 (en) | Method for measuring the concentration of a gas component in a measuring gas | |
JP2012173176A (en) | Signal processor and laser measurement device | |
JP2009222526A (en) | Gas concentration measuring method and apparatus | |
JP7543762B2 (en) | Laser Gas Analyzer | |
JP6028889B2 (en) | Laser gas analyzer | |
JP4906477B2 (en) | Gas analyzer and gas analysis method | |
JP2023159724A (en) | Laser type gas analysis meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749202 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12749202 Country of ref document: EP Kind code of ref document: A1 |