WO2012115054A1 - Fine coal powder supply system for coal gasification furnace - Google Patents

Fine coal powder supply system for coal gasification furnace Download PDF

Info

Publication number
WO2012115054A1
WO2012115054A1 PCT/JP2012/054008 JP2012054008W WO2012115054A1 WO 2012115054 A1 WO2012115054 A1 WO 2012115054A1 JP 2012054008 W JP2012054008 W JP 2012054008W WO 2012115054 A1 WO2012115054 A1 WO 2012115054A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulverized coal
hopper
inert gas
coal
coal supply
Prior art date
Application number
PCT/JP2012/054008
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 木津
斎臣 吉田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2012800064888A priority Critical patent/CN103328615A/en
Priority to US13/980,932 priority patent/US20130298465A1/en
Priority to JP2013501031A priority patent/JP5595581B2/en
Publication of WO2012115054A1 publication Critical patent/WO2012115054A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0025Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a pulverized coal supply system for a coal gasifier.
  • Patent Document 1 As a pulverized coal supply system for a coal gasification furnace, for example, one disclosed in Patent Document 1 is known.
  • the pressure in the supply hopper that is brought to the atmospheric pressure state when the pulverized coal (fuel) is replenished (supplemented) in the supply hopper is set as much as possible.
  • a two-stage pressurization method as shown in FIG. 5 has been adopted.
  • the supply of the pulverized coal held in the supply hopper is completed, the supply is performed when the pressure in the supply hopper is changed to the atmospheric pressure state in order to receive the next pulverized coal.
  • All of the inert gas (for example, N 2 ) filled in the hopper was released (discarded) into the atmosphere. For this reason, there is a problem that the consumption (use amount) of the inert gas increases, which is uneconomical.
  • This invention is made
  • the present invention employs the following means in order to solve the above problems.
  • the pulverized coal supply system for a coal gasifier includes a pulverized coal supply hopper that receives pulverized coal pulverized by a pulverized coal machine, and the pulverized coal supply hopper receives the pulverized coal.
  • a first portion of the inert gas filled in the pulverized coal supply hopper is temporarily recovered, and the recovered inert gas is supplied to the pulverized coal supply hopper having an atmospheric pressure inside.
  • the pulverized coal supply system for a coal gasification furnace when the pulverized coal supply hopper receives the pulverized coal, a part of the inert gas filled in the pulverized coal supply hopper is first.
  • the recovered inert gas is temporarily collected in one pressurized tank, and the inside of the pulverized coal supply hopper in the atmospheric pressure state is filled again. Thereby, the consumption (use amount) of an inert gas can be reduced.
  • the pulverized coal supply system for the coal gasification furnace at least two pulverized coal supply hoppers are provided, and when at least one pulverized coal supply hopper receives the pulverized coal, the other pulverized coal supply hoppers are: It is more preferable that the pulverized coal is supplied to the gasification furnace.
  • pulverized coal can be continuously and stably supplied to the gasifier.
  • the capacity of the first pressurized tank is 25% to 100% of the capacity of the pulverized coal supply hopper.
  • the capacity of the first pressurized tank is the same as the capacity of the first pressurized tank used in the conventional two-stage pressurized system, or It can be made smaller than that, and the whole pulverized coal supply system for the coal gasification furnace can be miniaturized.
  • the coal gasification combined cycle power generation facility includes any one of the above pulverized coal supply systems for a coal gasification furnace.
  • the coal gasification furnace pulverized coal supply system that can reduce the consumption (use amount) of the inert gas
  • an apparatus for producing an active gas for example, an air separation device indicated by reference numeral 11 in FIG. 1
  • the running cost can be reduced.
  • the facility can be reduced in size and initial investment can be reduced.
  • the power of the equipment can be reduced, and the running cost can be reduced.
  • the operation method of the pulverized coal supply system for a coal gasifier includes a pulverized coal supply hopper that receives pulverized coal pulverized by a pulverized coal machine, and the pulverized coal supply hopper receives the pulverized coal.
  • a first pressurized tank for temporarily collecting a part of the inert gas filled in the pulverized coal supply hopper, and an internal pressure of the pulverized coal supply hopper are increased to a predetermined pressure.
  • the pulverized coal supply hopper filled with the inert gas is filled with the pulverized coal supply hopper after filling the second tank with the inert gas filled in the second tank. .
  • the pulverized coal supply hopper receives the pulverized coal, one of the inert gases filled in the pulverized coal supply hopper.
  • the portion is temporarily recovered in the first pressurized tank, and the recovered inert gas is refilled inside the pulverized coal supply hopper. Thereby, the consumption (use amount) of an inert gas can be reduced.
  • At least two pulverized coal supply hoppers are provided, and when at least one pulverized coal supply hopper receives the pulverized coal, It is more preferable that the pulverized coal supply hopper supplies the pulverized coal to the gasification furnace.
  • pulverized coal can be continuously and stably supplied to the gasifier.
  • a pulverized coal supply system for a coal gasification furnace (a pulverized coal supply apparatus for a coal gasification furnace) according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the coal gasification combined power generation facility 50 of the embodiment shown in FIG. 1 adopts an air combustion system in which coal gas is generated in the gasification furnace 4 using air as an oxidant, and the coal gas after being purified by the gas purification device 7 is used.
  • the fuel gas is supplied to the gas turbine 8. That is, the coal gasification combined power generation facility 50 shown in FIG. 1 is an air combustion type (air-blown) coal gasification combined power generation facility (hereinafter referred to as “air-blown IGCC system”).
  • This air-blown IGCC system 50 introduces a part of exhaust gas that has been worked in a gas turbine 8 and an exhaust heat recovery boiler 9 described later as a drying gas, and the raw coal together with the drying gas is supplied to the pulverized coal machine 1.
  • Supply In the pulverized coal machine 1, the coal supplied by the drying gas is heated and pulverized into fine particles while removing moisture in the coal to produce pulverized coal.
  • the pulverized coal produced in this way is conveyed to a bag filter (cyclone) 2 by a drying gas. Inside the bag filter 2, gas components such as drying gas and pulverized coal (particle components) are separated, and the gas components are exhausted from the bag filter 2.
  • the pulverized coal of the particle component falls by gravity and is collected in a pulverized coal supply hopper (hereinafter referred to as “hopper”) 3.
  • the pulverized coal recovered in the hopper 3 is transported into the gasification furnace 4 by nitrogen gas (transport gas) introduced from the air separation device 11 to be described later for pressurized transport.
  • the gasifier 4 is supplied with pulverized coal and char which will be described later as a raw material for coal gas.
  • coal gas obtained by gasifying pulverized coal and char is produced using compressed air supplied from the compressors 12 and 13 and oxygen supplied from the air separation device 11 as an oxidizing agent.
  • the coal gas gasified in the gasification furnace 4 in this way is led from the upper part of the gasification furnace 4 to the gas cooler 5 to be cooled.
  • the coal gas is supplied to the char recovery device 6 after being cooled by the gas cooler 5.
  • the char recovery device 6 the char generated together with the coal gas obtained by gasifying pulverized coal is separated. Coal gas flows out from the upper part of the char recovery device 6 and is supplied to the gas turbine 8 through the gas purification device 7. In the gas purification device 7, the fuel gas of the gas turbine 8 is produced by refining the coal gas.
  • the fuel gas (coal gas) produced in this way is supplied to the combustor of the gas turbine 8 and burned, and high-temperature and high-pressure combustion exhaust gas is generated.
  • This combustion exhaust gas is discharged as high temperature exhaust gas after driving the turbine of the gas turbine 8.
  • the gas turbine 8 driven in this way can generate electric power by driving the generator 14 because the main shaft rotating together with the turbine is connected to the generator 14.
  • the high-temperature exhaust gas discharged from the gas turbine 8 is supplied to the exhaust heat recovery boiler 9 and used as a heat source for generating steam.
  • the exhaust gas used for steam generation in the exhaust heat recovery boiler 9 is subjected to necessary processing by a denitration device (not shown) and then exhausted to the atmosphere.
  • a part of the exhaust gas used for steam generation in the exhaust heat recovery boiler 9 is extracted as a drying gas for the pulverized coal machine 1 and supplied to the pulverized coal machine 1 through the drying gas flow path G1. Note that exhaust gas that has been subjected to treatment such as denitration is used as the drying gas.
  • the steam generated in the exhaust heat recovery boiler 9 is supplied to the steam turbine 15 for power generation and the like.
  • the char recovered by the char recovery device 6 described above falls to the char supply hopper 10 due to gravity and is recovered.
  • the char in the char supply hopper 10 uses nitrogen supplied from the air separation device 11 as a transfer gas, and is transferred to the nitrogen and returned to the gasification furnace 4.
  • the char returned to the gasification furnace 4 is used as a raw material for gasification together with pulverized coal.
  • the pulverized coal obtained by pulverizing coal is gasified in the gasification furnace 4 using air and oxygen as oxidants to generate coal gas and char.
  • One coal gas is used as a fuel gas for the gas turbine 8, and the char separated from the coal gas is supplied again to the gasification furnace 4 and gasified.
  • reference numeral 16 is a raw coal bunker
  • reference numeral 17 is a bin
  • reference numeral 18 is a cyclone constituting the char collection device 6
  • reference numeral 19 is a porous filter constituting the char collection device 6 together with the cyclone 18, and reference numeral 20 is a char bin.
  • Reference numeral 21 denotes an electric motor that drives and rotates the compressor 13
  • reference numeral 22 denotes a chimney
  • reference numeral 23 denotes a combustor
  • reference numeral 24 denotes a pulverized coal drying blower.
  • the pulverized coal supply system 30 for a coal gasifier includes at least two (two in the present embodiment) hoppers 3 and at least one (one in the present embodiment) reduced-pressure exhaust gas recovery.
  • a tank (first pressurized tank) 31 and at least one (one in this embodiment) pressurized tank (second pressurized tank) 32 are provided.
  • a fuel supply pipe 35, an atmospheric discharge pipe 36, and a decompression exhaust pipe 37 are connected to the top of each hopper 3.
  • One end (upstream end) of the fuel supply pipe 35 is connected to the bottom of the bin 17, and the other end (downstream end) of the fuel supply pipe 35 is connected to the top of the hopper 3, and pulverized coal is connected via the fuel supply pipe 35. (Fuel) is supplied to the hopper 3.
  • One end (upstream end) of the atmospheric discharge pipe 36 is connected to the top of the hopper 3, and the other end (downstream end) of the atmospheric discharge pipe 36 is open to the atmosphere.
  • Valve V1 is connected.
  • One end (upstream end) of the decompression exhaust pipe 37 is connected to the top of the hopper 3, and the other end (downstream end) of the decompression exhaust pipe 37 is connected to the upper part of the body of the decompression exhaust recovery tank 31. Is connected to a pressure reducing exhaust valve V2.
  • a first inert gas supply pipe (pressurized pipe) 41 is connected to the upper part of each hopper 3, and a second inert gas supply pipe (pressurized pipe) 42 is connected to the lower part of each hopper 3. Is connected.
  • One end (upstream end) of the first inert gas supply pipe 41 is connected to the lower part of the body of the decompression recovery tank 31, and the other end (downstream end) of the first inert gas supply pipe 41 is the body of the hopper 3.
  • the first inert gas supply valve (pressurizing valve) V ⁇ b> 3 is connected in the middle of the first inert gas supply pipe 41.
  • One end (upstream end) of the second inert gas supply pipe 42 is connected to the trunk of the pressurized tank 32, and the other end (downstream end) of the second inert gas supply pipe 42 is below the trunk of the hopper 3.
  • a second inert gas supply valve (pressurizing valve) V4 is connected in the middle of the second inert gas supply pipe 42.
  • the decompression exhaust valve V2 connected to the hopper 3 (hereinafter referred to as “the hopper 3”) required to be supplemented with pulverized coal is opened, and 5 MPa is introduced into the hopper 3 through the decompression exhaust pipe 37.
  • the inert gas that has been filled at a predetermined pressure is filled into the vacuum recovery tank 31 having an internal pressure of about 1.8 MPa ((1) in FIG. 3).
  • the decompression exhaust valve V2 When the pressure in the hopper 3 is equal to the pressure in the decompression recovery tank 31 (when the pressure is equalized (about 3.3 MPa)), the decompression exhaust valve V2 is fully closed and connected to the hopper 3 The open air release valve V1 is opened, the pressure in the hopper 3 is set to the atmospheric pressure state, and the pulverized coal supplied from the bottle 17 is received ((2) in FIG. 3).
  • the first inert gas supply valve V3 When the pressure in the hopper 3 is equal to the pressure in the reduced pressure recovery tank 31 (when the pressure is equalized (about 1.8 MPa)), the first inert gas supply valve V3 is fully closed, The second inert gas supply valve V4 connected to the hopper 3 is opened, the pressure in the hopper 3 is increased to a predetermined pressure of about 5 MPa, and pulverized coal (fuel) is replenished in the hopper 3 ( The process of replenishing is completed ((4) in FIG. 3).
  • the capacity of the hopper 3 is the same as the capacity of the vacuum recovery tank 31 (at a horizontal axis of 100% in FIG. 4)
  • about the amount of inert gas to be filled in the hopper 3. 38% can be recovered by the reduced pressure recovery tank 31, and when the capacity of the reduced pressure recovery tank 31 is half that of the hopper 3 (at a horizontal axis of 50% in FIG. 4), the inert gas to be filled in the hopper 3
  • the capacity of the reduced pressure recovery tank 31 is set to a quarter of the hopper 3 (at a horizontal axis of 25% in FIG. 4)
  • the hopper 3 is filled.
  • About 20% of the inert gas to be recovered can be recovered in the vacuum recovery tank 31.
  • the reduced pressure recovery tank 31 Even if the capacity of the reduced pressure recovery tank 31 is made larger than the capacity of the hopper 3 (even if it is located on the right side of the horizontal axis 100% in FIG. 4), the reduced pressure recovery tank 31 The amount of the inert gas that can be recovered and filled (replenished) into the hopper 3 is almost the same.
  • the pulverized coal supply system 30 for a coal gasification furnace when the hopper 3 receives pulverized coal, a part of the inert gas filled in the hopper 3 is temporarily stored in the reduced pressure recovery tank 31. The collected inert gas is refilled into the hopper 3 again. Thereby, the consumption (use amount) of an inert gas can be reduced.
  • the pulverized coal supply system 30 for a coal gasification furnace when two hoppers 3 are provided and one hopper 3 accepts the pulverized coal, the other hopper 3 is gasified.
  • the pulverized coal is supplied to the furnace 4. Thereby, pulverized coal can be continuously supplied to the gasification furnace 4 stably.
  • the capacity of the vacuum recovery tank 31 is 25% to 100% of the capacity of the hopper 3.
  • capacitance of the pressure recovery tank 31 can be made the same as the capacity
  • the entire pulverized coal supply system 30 can be downsized.
  • the coal gasification combined power generation facility 50 since the coal gasification furnace power supply system 30 that can reduce the consumption (use amount) of the inert gas is provided, In the case where an inert gas production facility (for example, an air separation device denoted by reference numeral 11 in FIG. 1) is not provided and the inert gas is purchased from other places, the running cost can be reduced. . In addition, in the case of having an facility for producing an inert gas (for example, an air separation device denoted by reference numeral 11 in FIG. 1), the facility can be reduced in size and initial investment can be reduced. In addition, the power of the equipment can be reduced, and the running cost can be reduced. Moreover, in the embodiment mentioned above, although the coal gasification combined cycle power generation equipment 50 demonstrated that it was an air blowing IGCC system, it is not limited to this, For example, it is good also as an oxygen blowing IGCC system.
  • Pulverized Coal Machine 3 Pulverized Coal Supply
  • Hopper 4 Gasification Furnace 30 Pulverized Coal Supply System 31 for Coal Gasification Furnace Pressure Reduction Recovery Tank (First Pressure Tank) 32 Pressurized tank (second pressurized tank) 50 Coal gasification combined power generation facility

Abstract

The purpose of the present invention is to provide a fine coal powder supply system for a coal gasification furnace, which enables the reduction in the amount of an inert gas consumed (used). The fine coal powder supply system comprises: a fine coal powder supply hopper (3) which receives a fine coal powder that is pulverized using a coal pulverization machine (1); a first pressurized tank (31) which temporarily collects a portion of an inert gas that is filled in the fine coal powder supply hopper (3) and supplies the collected portion of the inert gas to the fine coal powder supply hopper (3) of which the inside is put into an atmospheric state during the reception of the fine coal powder by the fine coal powder supply hopper (3); and a second pressurized tank (32) which has, filled therein, an inert gas having a pressure required for increasing the pressure of the inside of the fine coal powder supply hopper (3) to a predetermined pressure.

Description

石炭ガス化炉用微粉炭供給システムPulverized coal supply system for coal gasifier
 本発明は、石炭ガス化炉用微粉炭供給システムに関するものである。 The present invention relates to a pulverized coal supply system for a coal gasifier.
 石炭ガス化炉用微粉炭供給システムとしては、例えば、特許文献1に開示されたものが知られている。 As a pulverized coal supply system for a coal gasification furnace, for example, one disclosed in Patent Document 1 is known.
特開2000-119666号公報JP 2000-119666 A
 上記特許文献1に開示された石炭ガス化炉用微粉炭供給システムでは、供給ホッパ内に微粉炭(燃料)を補充(補給)する際に大気圧状態とされた供給ホッパ内の圧力を、できるだけ短い時間でガス化炉内の圧力よりも高い圧力にするため、図5に示すような2段加圧方式が採用されていた。
 しかしながら、図5に示すような2段加圧方式では、供給ホッパ内に保有する微粉炭供給完了後、次の微粉炭を受け入れるために供給ホッパ内の圧力を大気圧状態にする際に、供給ホッパ内に充填されていた不活性ガス(例えば、N)のすべてを大気中に放出(廃棄)するようにしていた。そのため、不活性ガスの消費量(使用量)が多くなり、不経済であるとの問題点があった。
In the pulverized coal supply system for a coal gasification furnace disclosed in Patent Document 1, the pressure in the supply hopper that is brought to the atmospheric pressure state when the pulverized coal (fuel) is replenished (supplemented) in the supply hopper is set as much as possible. In order to make the pressure higher than the pressure in the gasifier in a short time, a two-stage pressurization method as shown in FIG. 5 has been adopted.
However, in the two-stage pressurization method as shown in FIG. 5, after the supply of the pulverized coal held in the supply hopper is completed, the supply is performed when the pressure in the supply hopper is changed to the atmospheric pressure state in order to receive the next pulverized coal. All of the inert gas (for example, N 2 ) filled in the hopper was released (discarded) into the atmosphere. For this reason, there is a problem that the consumption (use amount) of the inert gas increases, which is uneconomical.
 本発明は、このような事情に鑑みてなされたものであって、不活性ガスの消費量(使用量)を削減することができる石炭ガス化炉用微粉炭供給システムを提供することを目的とする。 This invention is made | formed in view of such a situation, Comprising: It aims at providing the pulverized coal supply system for coal gasifiers which can reduce the consumption (use amount) of an inert gas. To do.
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明の第1の態様に係る石炭ガス化炉用微粉炭供給システムは、微粉炭機により粉砕された微粉炭を受け入れる微粉炭供給ホッパと、前記微粉炭供給ホッパが前記微粉炭を受け入れる際、前記微粉炭供給ホッパの内部に充填されていた不活性ガスの一部を一時的に回収し、その回収した不活性ガスを内部が大気圧状態とされた前記微粉炭供給ホッパに供給する第1加圧タンクと、前記微粉炭供給ホッパの内部圧力をガス化炉に供給するために所定の圧力まで更に上昇させるのに必要な圧力をもった不活性ガスが充填されている第2加圧タンクと、を備えている。
The present invention employs the following means in order to solve the above problems.
The pulverized coal supply system for a coal gasifier according to the first aspect of the present invention includes a pulverized coal supply hopper that receives pulverized coal pulverized by a pulverized coal machine, and the pulverized coal supply hopper receives the pulverized coal. A first portion of the inert gas filled in the pulverized coal supply hopper is temporarily recovered, and the recovered inert gas is supplied to the pulverized coal supply hopper having an atmospheric pressure inside. A pressurized tank and a second pressurized tank filled with an inert gas having a pressure required to further increase the internal pressure of the pulverized coal supply hopper to a predetermined pressure in order to supply the gasification furnace. And.
 上記第1の態様に係る石炭ガス化炉用微粉炭供給システムによれば、微粉炭供給ホッパが微粉炭を受け入れる際、微粉炭供給ホッパの内部に充填されていた不活性ガスの一部が第1加圧タンクに一時的に回収され、その回収された不活性ガスが、大気圧状態にある微粉炭供給ホッパの内部に再度充填されることになる。
 これにより、不活性ガスの消費量(使用量)を削減することができる。
According to the pulverized coal supply system for a coal gasification furnace according to the first aspect, when the pulverized coal supply hopper receives the pulverized coal, a part of the inert gas filled in the pulverized coal supply hopper is first. The recovered inert gas is temporarily collected in one pressurized tank, and the inside of the pulverized coal supply hopper in the atmospheric pressure state is filled again.
Thereby, the consumption (use amount) of an inert gas can be reduced.
 上記石炭ガス化炉用微粉炭供給システムにおいて、前記微粉炭供給ホッパを少なくとも二つ設け、そのうちの少なくとも一つの微粉炭供給ホッパが前記微粉炭を受け入れている際、その他の微粉炭供給ホッパは、ガス化炉に前記微粉炭を供給しているように構成するとさらに好適である。 In the pulverized coal supply system for the coal gasification furnace, at least two pulverized coal supply hoppers are provided, and when at least one pulverized coal supply hopper receives the pulverized coal, the other pulverized coal supply hoppers are: It is more preferable that the pulverized coal is supplied to the gasification furnace.
 このような石炭ガス化炉用微粉炭供給システムによれば、ガス化炉に微粉炭を継続して安定的に供給することができる。 According to such a pulverized coal supply system for a coal gasifier, pulverized coal can be continuously and stably supplied to the gasifier.
 上記石炭ガス化炉用微粉炭供給システムにおいて、前記第1加圧タンクの容量が、前記微粉炭供給ホッパの容量の25%から100%となるとさらに好適である。 In the pulverized coal supply system for the coal gasification furnace, it is more preferable that the capacity of the first pressurized tank is 25% to 100% of the capacity of the pulverized coal supply hopper.
 このような石炭ガス化炉用微粉炭供給システムによれば、第1加圧タンクの容量を、従来の2段加圧方式に用いられていた第1段加圧タンクの容量と同じか、あるいはそれよりも小さくすることができ、当該石炭ガス化炉用微粉炭供給システム全体の小型化を図ることができる。 According to such a pulverized coal supply system for a coal gasification furnace, the capacity of the first pressurized tank is the same as the capacity of the first pressurized tank used in the conventional two-stage pressurized system, or It can be made smaller than that, and the whole pulverized coal supply system for the coal gasification furnace can be miniaturized.
 本発明の第2の態様に係る石炭ガス化複合発電設備は、上記いずれかの石炭ガス化炉用微粉炭供給システムを具備している。 The coal gasification combined cycle power generation facility according to the second aspect of the present invention includes any one of the above pulverized coal supply systems for a coal gasification furnace.
 上記第2の態様に係る石炭ガス化複合発電設備によれば、不活性ガスの消費量(使用量)を削減することができる石炭ガス化炉用微粉炭供給システムを具備しているので、不活性ガスを製造する設備(例えば、図1に符号11で示す空気分離装置)を有しておらず、不活性ガスを余所から購入する場合には、ランニングコストの削減を図ることができる。
 また、不活性ガスを製造する設備(例えば、図1に符号11で示す空気分離装置)を有している場合には、当該設備の小型化を図ることができ、初期投資を削減することができるとともに、当該設備の動力を削減することができて、ランニングコストの削減を図ることができる。
According to the coal gasification combined cycle facility according to the second aspect, since the coal gasification furnace pulverized coal supply system that can reduce the consumption (use amount) of the inert gas is provided, In the case where an apparatus for producing an active gas (for example, an air separation device indicated by reference numeral 11 in FIG. 1) is not provided and an inert gas is purchased from another place, the running cost can be reduced.
In addition, in the case of having an facility for producing an inert gas (for example, an air separation device denoted by reference numeral 11 in FIG. 1), the facility can be reduced in size and initial investment can be reduced. In addition, the power of the equipment can be reduced, and the running cost can be reduced.
 本発明の第3の態様に係る石炭ガス化炉用微粉炭供給システムの運転方法は、微粉炭機により粉砕された微粉炭を受け入れる微粉炭供給ホッパと、前記微粉炭供給ホッパが前記微粉炭を受け入れる際、前記微粉炭供給ホッパの内部に充填されていた不活性ガスの一部を一時的に回収する第1加圧タンクと、前記微粉炭供給ホッパの内部圧力を所定の圧力まで上昇させるのに必要な圧力をもった不活性ガスが充填されている第2加圧タンクと、を備えた石炭ガス化炉用微粉炭供給システムの運転方法であって、前記第1加圧タンクに回収された不活性ガスを、内部が大気圧状態とされた前記微粉炭供給ホッパに充填し、その後、前記第2タンク充填にされている不活性ガスを、前記微粉炭供給ホッパに充填するようにした。 The operation method of the pulverized coal supply system for a coal gasifier according to the third aspect of the present invention includes a pulverized coal supply hopper that receives pulverized coal pulverized by a pulverized coal machine, and the pulverized coal supply hopper receives the pulverized coal. When receiving, a first pressurized tank for temporarily collecting a part of the inert gas filled in the pulverized coal supply hopper, and an internal pressure of the pulverized coal supply hopper are increased to a predetermined pressure. And a second pressurized tank filled with an inert gas having a pressure required for the operation of the pulverized coal supply system for a coal gasifier, which is recovered in the first pressurized tank. The pulverized coal supply hopper filled with the inert gas is filled with the pulverized coal supply hopper after filling the second tank with the inert gas filled in the second tank. .
 上記第3の態様に係る石炭ガス化炉用微粉炭供給システムの運転方法によれば、微粉炭供給ホッパが微粉炭を受け入れる際、微粉炭供給ホッパの内部に充填されていた不活性ガスの一部が第1加圧タンクに一時的に回収され、その回収された不活性ガスが、微粉炭供給ホッパの内部に再度充填されることになる。
 これにより、不活性ガスの消費量(使用量)を削減することができる。
According to the operation method of the pulverized coal supply system for the coal gasification furnace according to the third aspect, when the pulverized coal supply hopper receives the pulverized coal, one of the inert gases filled in the pulverized coal supply hopper. The portion is temporarily recovered in the first pressurized tank, and the recovered inert gas is refilled inside the pulverized coal supply hopper.
Thereby, the consumption (use amount) of an inert gas can be reduced.
 上記石炭ガス化炉用微粉炭供給システムの運転方法において、前記微粉炭供給ホッパが少なくとも二つ設けられており、そのうちの少なくとも一つの微粉炭供給ホッパが前記微粉炭を受け入れている際、その他の微粉炭供給ホッパは、ガス化炉に前記微粉炭を供給するようにするとさらに好適である。 In the operation method of the pulverized coal supply system for the coal gasification furnace, at least two pulverized coal supply hoppers are provided, and when at least one pulverized coal supply hopper receives the pulverized coal, It is more preferable that the pulverized coal supply hopper supplies the pulverized coal to the gasification furnace.
 このような石炭ガス化炉用微粉炭供給システムの運転方法によれば、ガス化炉に微粉炭を継続して安定的に供給することができる。 According to such a method for operating a pulverized coal supply system for a coal gasifier, pulverized coal can be continuously and stably supplied to the gasifier.
 本発明に係る石炭ガス化炉用微粉炭供給システムによれば、不活性ガスの消費量(使用量)を削減することができるという効果を奏する。 According to the pulverized coal supply system for a coal gasifier according to the present invention, there is an effect that the consumption (use amount) of the inert gas can be reduced.
本発明の一実施形態に係る石炭ガス化炉用微粉炭供給システムを具備した石炭ガス化複合発電設備の概略を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the outline of the coal gasification combined cycle power generation equipment which comprised the pulverized coal supply system for coal gasification furnaces concerning one Embodiment of this invention. 本発明の一実施形態に係る石炭ガス化炉用微粉炭供給システムの概略を示す構成図である。It is a lineblock diagram showing the outline of the pulverized coal supply system for coal gasifier concerning one embodiment of the present invention. 本発明の一実施形態に係る石炭ガス化炉用微粉炭供給システムの微粉炭供給ホッパ内に微粉炭(燃料)を補充(補給)する工程を説明するための図表である。It is a chart for demonstrating the process of replenishing (supplementing) pulverized coal (fuel) in the pulverized coal supply hopper of the pulverized coal supply system for coal gasifiers concerning one embodiment of the present invention. 微粉炭供給ホッパの容量に対する減圧回収タンクの容量と、減圧回収タンクで回収し得る不活性ガス量との関係を示す図表である。It is a graph which shows the relationship between the capacity | capacitance of the vacuum recovery tank with respect to the capacity | capacitance of a pulverized coal supply hopper, and the inert gas amount which can be collect | recovered with a vacuum recovery tank. 従来の石炭ガス化炉用微粉炭供給システムにおける2段加圧方式を説明するための図表である。It is a chart for demonstrating the two-stage pressurization system in the conventional pulverized coal supply system for coal gasifiers.
 以下、本発明の一実施形態に係る石炭ガス化炉用微粉炭供給システム(石炭ガス化炉用微粉炭供給装置)について、図1から図4を参照しながら説明する。 Hereinafter, a pulverized coal supply system for a coal gasification furnace (a pulverized coal supply apparatus for a coal gasification furnace) according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
 図1に示す実施形態の石炭ガス化複合発電設備50は、空気を酸化剤としてガス化炉4で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置7で精製した後の石炭ガスを燃料ガスとしてガスタービン8へ供給している。すなわち、図1に示す石炭ガス化複合発電設備50は、空気燃焼方式(空気吹き)の石炭ガス化複合発電設備(以下、「空気吹きIGCCシステム」と呼ぶ)である。 The coal gasification combined power generation facility 50 of the embodiment shown in FIG. 1 adopts an air combustion system in which coal gas is generated in the gasification furnace 4 using air as an oxidant, and the coal gas after being purified by the gas purification device 7 is used. The fuel gas is supplied to the gas turbine 8. That is, the coal gasification combined power generation facility 50 shown in FIG. 1 is an air combustion type (air-blown) coal gasification combined power generation facility (hereinafter referred to as “air-blown IGCC system”).
 この空気吹きIGCCシステム50は、後述するガスタービン8や排熱回収ボイラ9で仕事をした排ガスの一部を乾燥用ガスとして導入し、この乾燥用ガスとともに原料となる石炭を微粉炭機1に供給する。微粉炭機1では、乾燥用ガスにより供給された石炭を加熱し、石炭中の水分を除去しながら細かい粒子状に粉砕して微粉炭を製造する。
 こうして製造された微粉炭は、乾燥用ガスによりバグフィルタ(サイクロン)2へ搬送される。バグフィルタ2の内部では、乾燥用ガス等のガス成分と微粉炭(粒子成分)とが分離され、ガス成分はバグフィルタ2から排気される。一方、粒子成分の微粉炭は、重力により落下して微粉炭供給ホッパ(以下、「ホッパ」という。)3に回収される。
This air-blown IGCC system 50 introduces a part of exhaust gas that has been worked in a gas turbine 8 and an exhaust heat recovery boiler 9 described later as a drying gas, and the raw coal together with the drying gas is supplied to the pulverized coal machine 1. Supply. In the pulverized coal machine 1, the coal supplied by the drying gas is heated and pulverized into fine particles while removing moisture in the coal to produce pulverized coal.
The pulverized coal produced in this way is conveyed to a bag filter (cyclone) 2 by a drying gas. Inside the bag filter 2, gas components such as drying gas and pulverized coal (particle components) are separated, and the gas components are exhausted from the bag filter 2. On the other hand, the pulverized coal of the particle component falls by gravity and is collected in a pulverized coal supply hopper (hereinafter referred to as “hopper”) 3.
 ホッパ3内に回収された微粉炭は、後述する空気分離装置11から加圧搬送用として導入した窒素ガス(搬送用ガス)により、ガス化炉4内へ搬送される。
 ガス化炉4には、石炭ガスの原料として微粉炭および後述するチャーが供給される。ガス化炉4では、圧縮機12,13から供給される圧縮空気および空気分離装置11から供給される酸素を酸化剤として、微粉炭およびチャーをガス化した石炭ガスが製造される。
 こうしてガス化炉4でガス化された石炭ガスは、ガス化炉4の上部からガス冷却器5へ導かれて冷却される。この石炭ガスは、ガス冷却器5で冷却された後にチャー回収装置6へ供給される。
The pulverized coal recovered in the hopper 3 is transported into the gasification furnace 4 by nitrogen gas (transport gas) introduced from the air separation device 11 to be described later for pressurized transport.
The gasifier 4 is supplied with pulverized coal and char which will be described later as a raw material for coal gas. In the gasification furnace 4, coal gas obtained by gasifying pulverized coal and char is produced using compressed air supplied from the compressors 12 and 13 and oxygen supplied from the air separation device 11 as an oxidizing agent.
The coal gas gasified in the gasification furnace 4 in this way is led from the upper part of the gasification furnace 4 to the gas cooler 5 to be cooled. The coal gas is supplied to the char recovery device 6 after being cooled by the gas cooler 5.
 チャー回収装置6では、微粉炭をガス化した石炭ガスとともに生成されたチャーが分離される。石炭ガスは、チャー回収装置6の上部から流出し、ガス精製装置7を通ってガスタービン8へ供給される。
 ガス精製装置7では、石炭ガスを精製してガスタービン8の燃料ガスが製造される。
In the char recovery device 6, the char generated together with the coal gas obtained by gasifying pulverized coal is separated. Coal gas flows out from the upper part of the char recovery device 6 and is supplied to the gas turbine 8 through the gas purification device 7.
In the gas purification device 7, the fuel gas of the gas turbine 8 is produced by refining the coal gas.
 こうして製造された燃料ガス(石炭ガス)は、ガスタービン8の燃焼器に供給されて燃焼し、高温高圧の燃焼排ガスが生成される。
 この燃焼排ガスは、ガスタービン8のタービンを駆動した後、高温の排ガスとして排出される。こうして駆動されたガスタービン8は、タービンとともに回転する主軸が発電機14と連結されているので、発電機14を駆動して発電を行うことができる。
The fuel gas (coal gas) produced in this way is supplied to the combustor of the gas turbine 8 and burned, and high-temperature and high-pressure combustion exhaust gas is generated.
This combustion exhaust gas is discharged as high temperature exhaust gas after driving the turbine of the gas turbine 8. The gas turbine 8 driven in this way can generate electric power by driving the generator 14 because the main shaft rotating together with the turbine is connected to the generator 14.
 ガスタービン8から排出された高温の排ガスは、排熱回収ボイラ9に供給され、蒸気を生成する熱源として使用される。なお、排熱回収ボイラ9で蒸気生成に使用された排ガスは、図示しない脱硝装置等により必要な処理を施した後、大気へ排気される。
 また、排熱回収ボイラ9で蒸気生成に使用された排ガスは、一部が微粉炭機1の乾燥用ガスとして抽出され、乾燥用ガス流路G1を通って微粉炭機1に供給される。なお、この乾燥用ガスには、脱硝等の処理を施した排ガスが用いられる。また、排熱回収ボイラ9で生成された蒸気は、発電用の蒸気タービン15等に供給される。
The high-temperature exhaust gas discharged from the gas turbine 8 is supplied to the exhaust heat recovery boiler 9 and used as a heat source for generating steam. The exhaust gas used for steam generation in the exhaust heat recovery boiler 9 is subjected to necessary processing by a denitration device (not shown) and then exhausted to the atmosphere.
A part of the exhaust gas used for steam generation in the exhaust heat recovery boiler 9 is extracted as a drying gas for the pulverized coal machine 1 and supplied to the pulverized coal machine 1 through the drying gas flow path G1. Note that exhaust gas that has been subjected to treatment such as denitration is used as the drying gas. The steam generated in the exhaust heat recovery boiler 9 is supplied to the steam turbine 15 for power generation and the like.
 上述したチャー回収装置6で回収されたチャーは、重力によりチャー供給ホッパ10に落下して回収される。チャー供給ホッパ10内のチャーは、空気分離装置11から供給される窒素を搬送用ガスとして使用し、この窒素に搬送されてガス化炉4へ戻される。ガス化炉4に戻されたチャーは、微粉炭とともにガス化の原料として使用される。
 このように、石炭を粉砕して得られる微粉炭は、空気および酸素を酸化剤とするガス化炉4でガス化することにより石炭ガスおよびチャーが生成される。一方の石炭ガスは、ガスタービン8の燃料ガスとして使用され、石炭ガスから分離したチャーは、再度ガス化炉4に供給されてガス化される。
The char recovered by the char recovery device 6 described above falls to the char supply hopper 10 due to gravity and is recovered. The char in the char supply hopper 10 uses nitrogen supplied from the air separation device 11 as a transfer gas, and is transferred to the nitrogen and returned to the gasification furnace 4. The char returned to the gasification furnace 4 is used as a raw material for gasification together with pulverized coal.
As described above, the pulverized coal obtained by pulverizing coal is gasified in the gasification furnace 4 using air and oxygen as oxidants to generate coal gas and char. One coal gas is used as a fuel gas for the gas turbine 8, and the char separated from the coal gas is supplied again to the gasification furnace 4 and gasified.
 なお、図1中の符号16は原炭バンカ、符号17はビン、符号18はチャー回収装置6を構成するサイクロン、符号19はサイクロン18とともにチャー回収装置6を構成するポーラスフィルタ、符号20はチャービン、符号21は圧縮機13を駆動回転させる電動機モータ、符号22は煙突、符号23は燃焼器、符号24は微粉炭乾燥ブロワである。 In FIG. 1, reference numeral 16 is a raw coal bunker, reference numeral 17 is a bin, reference numeral 18 is a cyclone constituting the char collection device 6, reference numeral 19 is a porous filter constituting the char collection device 6 together with the cyclone 18, and reference numeral 20 is a char bin. Reference numeral 21 denotes an electric motor that drives and rotates the compressor 13, reference numeral 22 denotes a chimney, reference numeral 23 denotes a combustor, and reference numeral 24 denotes a pulverized coal drying blower.
 さて、本実施形態に係る石炭ガス化炉用微粉炭供給システム30は、少なくとも二つ(本実施形態では二つ)のホッパ3と、少なくとも一つ(本実施形態では一つ)の減圧排気回収タンク(第1加圧タンク)31と、少なくとも一つ(本実施形態では一つ)の加圧タンク(第2加圧タンク)32とを備えている。 The pulverized coal supply system 30 for a coal gasifier according to the present embodiment includes at least two (two in the present embodiment) hoppers 3 and at least one (one in the present embodiment) reduced-pressure exhaust gas recovery. A tank (first pressurized tank) 31 and at least one (one in this embodiment) pressurized tank (second pressurized tank) 32 are provided.
 各ホッパ3の頂部には、燃料供給管35と、大気放出管36と、減圧排気管37とが接続されている。
 燃料供給管35の一端(上流端)はビン17の底部に接続され、燃料供給管35の他端(下流端)はホッパ3の頂部に接続されており、燃料供給管35を介して微粉炭(燃料)がホッパ3に供給されるようになっている。
A fuel supply pipe 35, an atmospheric discharge pipe 36, and a decompression exhaust pipe 37 are connected to the top of each hopper 3.
One end (upstream end) of the fuel supply pipe 35 is connected to the bottom of the bin 17, and the other end (downstream end) of the fuel supply pipe 35 is connected to the top of the hopper 3, and pulverized coal is connected via the fuel supply pipe 35. (Fuel) is supplied to the hopper 3.
 大気放出管36の一端(上流端)はホッパ3の頂部に接続され、大気放出管36の他端(下流端)は大気に開放されており、各大気放出管36の途中には、大気放出弁V1が接続されている。
 減圧排気管37の一端(上流端)はホッパ3の頂部に接続され、減圧排気管37の他端(下流端)は減圧排気回収タンク31の胴部上方に接続されており、減圧排気管37の途中には、減圧排気弁V2が接続されている。
One end (upstream end) of the atmospheric discharge pipe 36 is connected to the top of the hopper 3, and the other end (downstream end) of the atmospheric discharge pipe 36 is open to the atmosphere. Valve V1 is connected.
One end (upstream end) of the decompression exhaust pipe 37 is connected to the top of the hopper 3, and the other end (downstream end) of the decompression exhaust pipe 37 is connected to the upper part of the body of the decompression exhaust recovery tank 31. Is connected to a pressure reducing exhaust valve V2.
 各ホッパ3の胴部上方には、第1の不活性ガス供給管(加圧管)41が接続され、各ホッパ3の胴部下方には、第2の不活性ガス供給管(加圧管)42が接続されている。
 第1の不活性ガス供給管41の一端(上流端)は減圧回収タンク31の胴部下方に接続され、第1の不活性ガス供給管41の他端(下流端)はホッパ3の胴部上方に接続されており、第1の不活性ガス供給管41の途中には、第1の不活性ガス供給弁(加圧弁)V3が接続されている。
 第2の不活性ガス供給管42の一端(上流端)は加圧タンク32の胴部に接続され、第2の不活性ガス供給管42の他端(下流端)はホッパ3の胴部下方に接続されており、第2の不活性ガス供給管42の途中には、第2の不活性ガス供給弁(加圧弁)V4が接続されている。
A first inert gas supply pipe (pressurized pipe) 41 is connected to the upper part of each hopper 3, and a second inert gas supply pipe (pressurized pipe) 42 is connected to the lower part of each hopper 3. Is connected.
One end (upstream end) of the first inert gas supply pipe 41 is connected to the lower part of the body of the decompression recovery tank 31, and the other end (downstream end) of the first inert gas supply pipe 41 is the body of the hopper 3. The first inert gas supply valve (pressurizing valve) V <b> 3 is connected in the middle of the first inert gas supply pipe 41.
One end (upstream end) of the second inert gas supply pipe 42 is connected to the trunk of the pressurized tank 32, and the other end (downstream end) of the second inert gas supply pipe 42 is below the trunk of the hopper 3. In the middle of the second inert gas supply pipe 42, a second inert gas supply valve (pressurizing valve) V4 is connected.
 つぎに、図3を用いて、ホッパ3内に微粉炭(燃料)を補充(補給)する工程を説明する。
 まず、微粉炭の補充が要求されるホッパ3(以下、「当該ホッパ3」という。)に接続されている減圧排気弁V2を開放し、減圧排気管37を介して、当該ホッパ3内に5MPa程度の所定圧力で充填されていた不活性ガスを、内圧が1.8MPa程度とされた減圧回収タンク31内に充填する(図3の(1))。
 当該ホッパ3内の圧力と、減圧回収タンク31内の圧力とが等しくなったら(均圧(3.3MPa程度)になったら)、減圧排気弁V2を全閉にするとともに、当該ホッパ3に接続されている大気開放弁V1を開放し、当該ホッパ3内の圧力を大気圧状態にして、ビン17から供給される微粉炭を受け入れる(図3の(2))。
Next, a process of replenishing (supplementing) pulverized coal (fuel) into the hopper 3 will be described with reference to FIG.
First, the decompression exhaust valve V2 connected to the hopper 3 (hereinafter referred to as “the hopper 3”) required to be supplemented with pulverized coal is opened, and 5 MPa is introduced into the hopper 3 through the decompression exhaust pipe 37. The inert gas that has been filled at a predetermined pressure is filled into the vacuum recovery tank 31 having an internal pressure of about 1.8 MPa ((1) in FIG. 3).
When the pressure in the hopper 3 is equal to the pressure in the decompression recovery tank 31 (when the pressure is equalized (about 3.3 MPa)), the decompression exhaust valve V2 is fully closed and connected to the hopper 3 The open air release valve V1 is opened, the pressure in the hopper 3 is set to the atmospheric pressure state, and the pulverized coal supplied from the bottle 17 is received ((2) in FIG. 3).
 当該ホッパ3内への微粉炭の補充が終了したら、大気開放弁V1を全閉にするとともに、当該ホッパ3に接続されている第1の不活性ガス供給弁V3を開放し、減圧回収タンク31内に予め充填(回収)しておいた、3.3MPa程度の圧力を有する不活性ガスを、当該ホッパ3内に充填する(図3の(3))。
 当該ホッパ3内の圧力と、減圧回収タンク31内の圧力とが等しくなったら(均圧(1.8MPa程度)になったら)、第1の不活性ガス供給弁V3を全閉にするとともに、当該ホッパ3に接続されている第2の不活性ガス供給弁V4を開放し、当該ホッパ3内の圧力を5MPa程度の所定圧力まで昇圧して、ホッパ3内に微粉炭(燃料)を補充(補給)する工程を終了する(図3の(4))。
When the replenishment of pulverized coal into the hopper 3 is completed, the atmosphere release valve V1 is fully closed, the first inert gas supply valve V3 connected to the hopper 3 is opened, and the decompression recovery tank 31 is opened. An inert gas having a pressure of about 3.3 MPa that has been filled (recovered) in advance is filled into the hopper 3 ((3) in FIG. 3).
When the pressure in the hopper 3 is equal to the pressure in the reduced pressure recovery tank 31 (when the pressure is equalized (about 1.8 MPa)), the first inert gas supply valve V3 is fully closed, The second inert gas supply valve V4 connected to the hopper 3 is opened, the pressure in the hopper 3 is increased to a predetermined pressure of about 5 MPa, and pulverized coal (fuel) is replenished in the hopper 3 ( The process of replenishing is completed ((4) in FIG. 3).
 図4に示すように、例えば、ホッパ3の容量と、減圧回収タンク31の容量とを同じ(図4において横軸100%のところ)にした場合、ホッパ3に充填すべき不活性ガスの約38%を減圧回収タンク31で回収することができ、減圧回収タンク31の容量をホッパ3の半分(図4において横軸50%のところ)にした場合、ホッパ3に充填すべき不活性ガスの約30%を減圧回収タンク31で回収することができて、減圧回収タンク31の容量をホッパ3の四分の一(図4において横軸25%のところ)にした場合、ホッパ3に充填すべき不活性ガスの約20%を減圧回収タンク31で回収することができる。 As shown in FIG. 4, for example, when the capacity of the hopper 3 is the same as the capacity of the vacuum recovery tank 31 (at a horizontal axis of 100% in FIG. 4), about the amount of inert gas to be filled in the hopper 3. 38% can be recovered by the reduced pressure recovery tank 31, and when the capacity of the reduced pressure recovery tank 31 is half that of the hopper 3 (at a horizontal axis of 50% in FIG. 4), the inert gas to be filled in the hopper 3 When about 30% can be recovered in the reduced pressure recovery tank 31 and the capacity of the reduced pressure recovery tank 31 is set to a quarter of the hopper 3 (at a horizontal axis of 25% in FIG. 4), the hopper 3 is filled. About 20% of the inert gas to be recovered can be recovered in the vacuum recovery tank 31.
 なお、図4に示すように、減圧回収タンク31の容量をホッパ3の容量よりも大きくしたとしても(図4において横軸100%よりも右側にくるようにしたとしても)、減圧回収タンク31で回収してホッパ3に充填(補充)できる不活性ガスの量はほとんど変わらない。 As shown in FIG. 4, even if the capacity of the reduced pressure recovery tank 31 is made larger than the capacity of the hopper 3 (even if it is located on the right side of the horizontal axis 100% in FIG. 4), the reduced pressure recovery tank 31 The amount of the inert gas that can be recovered and filled (replenished) into the hopper 3 is almost the same.
 本実施形態に係る石炭ガス化炉用微粉炭供給システム30によれば、ホッパ3が微粉炭を受け入れる際、ホッパ3の内部に充填されていた不活性ガスの一部が減圧回収タンク31に一時的に回収され、その回収された不活性ガスが、ホッパ3の内部に再度充填されることになる。
 これにより、不活性ガスの消費量(使用量)を削減することができる。
According to the pulverized coal supply system 30 for a coal gasification furnace according to the present embodiment, when the hopper 3 receives pulverized coal, a part of the inert gas filled in the hopper 3 is temporarily stored in the reduced pressure recovery tank 31. The collected inert gas is refilled into the hopper 3 again.
Thereby, the consumption (use amount) of an inert gas can be reduced.
 また、本実施形態に係る石炭ガス化炉用微粉炭供給システム30によれば、ホッパ3が二つ設けられ、一方のホッパ3が微粉炭を受け入れている際、他方のホッパ3は、ガス化炉4に微粉炭を供給していることになる。
 これにより、ガス化炉4に微粉炭を継続して安定的に供給することができる。
Moreover, according to the pulverized coal supply system 30 for a coal gasification furnace according to the present embodiment, when two hoppers 3 are provided and one hopper 3 accepts the pulverized coal, the other hopper 3 is gasified. The pulverized coal is supplied to the furnace 4.
Thereby, pulverized coal can be continuously supplied to the gasification furnace 4 stably.
 さらに、本実施形態に係る石炭ガス化炉用微粉炭供給システム30によれば、減圧回収タンク31の容量が、ホッパ3の容量の25%から100%とされている。
 これにより、減圧回収タンク31の容量を、従来の2段加圧方式に用いられていた第1段加圧タンクの容量と同じか、あるいはそれよりも小さくすることができ、当該石炭ガス化炉用微粉炭供給システム30全体の小型化を図ることができる。
Furthermore, according to the pulverized coal supply system 30 for a coal gasifier according to the present embodiment, the capacity of the vacuum recovery tank 31 is 25% to 100% of the capacity of the hopper 3.
Thereby, the capacity | capacitance of the pressure recovery tank 31 can be made the same as the capacity | capacitance of the 1st stage | paragraph pressurization tank used for the conventional 2 stage | paragraph pressurization system, or it can be made smaller, and the said coal gasifier The entire pulverized coal supply system 30 can be downsized.
 また、本発明に係る石炭ガス化複合発電設備50によれば、不活性ガスの消費量(使用量)を削減することができる石炭ガス化炉用微粉炭供給システム30を具備しているので、不活性ガスを製造する設備(例えば、図1に符号11で示す空気分離装置)を有しておらず、不活性ガスを余所から購入する場合には、ランニングコストの削減を図ることができる。
 また、不活性ガスを製造する設備(例えば、図1に符号11で示す空気分離装置)を有している場合には、当該設備の小型化を図ることができ、初期投資を削減することができるとともに、当該設備の動力を削減することができて、ランニングコストの削減を図ることができる。
 また、上述した実施形態において、石炭ガス化複合発電設備50は、空気吹きIGCCシステムであると説明したが、これに限定されるものではなく、例えば、酸素吹きIGCCシステムとしてもよい。
Further, according to the coal gasification combined power generation facility 50 according to the present invention, since the coal gasification furnace power supply system 30 that can reduce the consumption (use amount) of the inert gas is provided, In the case where an inert gas production facility (for example, an air separation device denoted by reference numeral 11 in FIG. 1) is not provided and the inert gas is purchased from other places, the running cost can be reduced. .
In addition, in the case of having an facility for producing an inert gas (for example, an air separation device denoted by reference numeral 11 in FIG. 1), the facility can be reduced in size and initial investment can be reduced. In addition, the power of the equipment can be reduced, and the running cost can be reduced.
Moreover, in the embodiment mentioned above, although the coal gasification combined cycle power generation equipment 50 demonstrated that it was an air blowing IGCC system, it is not limited to this, For example, it is good also as an oxygen blowing IGCC system.
 なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更実施可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be modified and changed as necessary.
 1 微粉炭機
 3 (微粉炭供給)ホッパ
 4 ガス化炉
30 石炭ガス化炉用微粉炭供給システム
31 減圧回収タンク(第1加圧タンク)
32 加圧タンク(第2加圧タンク)
50 石炭ガス化複合発電設備
1 Pulverized Coal Machine 3 (Pulverized Coal Supply) Hopper 4 Gasification Furnace 30 Pulverized Coal Supply System 31 for Coal Gasification Furnace Pressure Reduction Recovery Tank (First Pressure Tank)
32 Pressurized tank (second pressurized tank)
50 Coal gasification combined power generation facility

Claims (6)

  1.  微粉炭機により粉砕された微粉炭を受け入れる微粉炭供給ホッパと、
     前記微粉炭供給ホッパが前記微粉炭を受け入れる際、前記微粉炭供給ホッパの内部に充填されていた不活性ガスの一部を一時的に回収し、その回収した不活性ガスを内部が大気圧状態とされた前記微粉炭供給ホッパに供給する第1加圧タンクと、
     前記微粉炭供給ホッパの内部圧力を所定の圧力まで上昇させるのに必要な圧力をもった不活性ガスが充填されている第2加圧タンクと、を備えている石炭ガス化炉用微粉炭供給システム。
    A pulverized coal supply hopper for receiving pulverized coal pulverized by a pulverized coal machine;
    When the pulverized coal supply hopper accepts the pulverized coal, a part of the inert gas filled in the pulverized coal supply hopper is temporarily recovered, and the recovered inert gas is in an atmospheric pressure state. A first pressurized tank to be supplied to the pulverized coal supply hopper,
    A pulverized coal supply for a coal gasification furnace, comprising: a second pressurized tank filled with an inert gas having a pressure required to raise the internal pressure of the pulverized coal supply hopper to a predetermined pressure. system.
  2.  前記微粉炭供給ホッパが少なくとも二つ設けられており、そのうちの少なくとも一つの微粉炭供給ホッパが前記微粉炭を受け入れている際、その他の微粉炭供給ホッパは、ガス化炉に前記微粉炭を供給している請求項1に記載の石炭ガス化炉用微粉炭供給システム。 At least two pulverized coal supply hoppers are provided, and when at least one of the pulverized coal supply hoppers receives the pulverized coal, the other pulverized coal supply hoppers supply the pulverized coal to the gasification furnace. The pulverized coal supply system for a coal gasifier according to claim 1.
  3.  前記第1加圧タンクの容量が、前記微粉炭供給ホッパの容量の25%から100%となる請求項1または2に記載の石炭ガス化炉用微粉炭供給システム。 The pulverized coal supply system for a coal gasification furnace according to claim 1 or 2, wherein the capacity of the first pressurized tank is 25% to 100% of the capacity of the pulverized coal supply hopper.
  4.  請求項1から3のいずれか一項に記載の石炭ガス化炉用微粉炭供給システムを備えている石炭ガス化複合発電設備。 A coal gasification combined power generation facility comprising the pulverized coal supply system for a coal gasification furnace according to any one of claims 1 to 3.
  5.  微粉炭機により粉砕された微粉炭を受け入れる微粉炭供給ホッパと、
     前記微粉炭供給ホッパが前記微粉炭を受け入れる際、前記微粉炭供給ホッパの内部に充填されていた不活性ガスの一部を一時的に回収する第1加圧タンクと、
     前記微粉炭供給ホッパの内部圧力を所定の圧力まで上昇させるのに必要な圧力をもった不活性ガスが充填されている第2加圧タンクと、を備えた石炭ガス化炉用微粉炭供給システムの運転方法であって、
     前記第1加圧タンクに回収された不活性ガスを、内部が大気圧状態とされた前記微粉炭供給ホッパに充填し、その後、前記第2タンク充填されている不活性ガスを、前記微粉炭供給ホッパに充填するようにした石炭ガス化炉用微粉炭供給システムの運転方法。
    A pulverized coal supply hopper for receiving pulverized coal pulverized by a pulverized coal machine;
    When the pulverized coal supply hopper receives the pulverized coal, a first pressurized tank that temporarily collects a part of the inert gas filled in the pulverized coal supply hopper;
    A pulverized coal supply system for a coal gasification furnace, comprising: a second pressurized tank filled with an inert gas having a pressure necessary to raise the internal pressure of the pulverized coal supply hopper to a predetermined pressure. Driving method,
    The inert gas collected in the first pressurized tank is filled into the pulverized coal supply hopper whose inside is in an atmospheric pressure state, and then the inert gas filled in the second tank is filled with the pulverized coal. A method for operating a pulverized coal supply system for a coal gasification furnace filled in a supply hopper.
  6.  前記微粉炭供給ホッパが少なくとも二つ設けられており、そのうちの少なくとも一つの微粉炭供給ホッパが前記微粉炭を受け入れている際、その他の微粉炭供給ホッパは、ガス化炉に前記微粉炭を供給するようにした請求項5に記載の石炭ガス化炉用微粉炭供給システムの運転方法。 At least two pulverized coal supply hoppers are provided, and when at least one of the pulverized coal supply hoppers receives the pulverized coal, the other pulverized coal supply hoppers supply the pulverized coal to the gasification furnace. The operating method of the pulverized coal supply system for coal gasification furnaces of Claim 5 made to do.
PCT/JP2012/054008 2011-02-25 2012-02-20 Fine coal powder supply system for coal gasification furnace WO2012115054A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800064888A CN103328615A (en) 2011-02-25 2012-02-20 Fine coal powder supply system for coal gasification furnace
US13/980,932 US20130298465A1 (en) 2011-02-25 2012-02-20 Pulverized-coal supply system for coal gasification furnace
JP2013501031A JP5595581B2 (en) 2011-02-25 2012-02-20 Pulverized coal supply system for coal gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-040373 2011-02-25
JP2011040373 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115054A1 true WO2012115054A1 (en) 2012-08-30

Family

ID=46720831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054008 WO2012115054A1 (en) 2011-02-25 2012-02-20 Fine coal powder supply system for coal gasification furnace

Country Status (4)

Country Link
US (1) US20130298465A1 (en)
JP (1) JP5595581B2 (en)
CN (1) CN103328615A (en)
WO (1) WO2012115054A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141073A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Compression system of powder feeding hopper, gasification facility, and gasification combined power generation facility, and compression method of powder feeding hopper
WO2017199818A1 (en) * 2016-05-20 2017-11-23 三菱日立パワーシステムズ株式会社 Carbon-containing solid fuel gasification power generation facility, and method for regulating gas for drying carbon-containing solid fuel
JP2019142701A (en) * 2018-02-23 2019-08-29 三菱日立パワーシステムズ株式会社 Powder supply hopper pressure device, gasification furnace equipment and gasification combined power generation equipment, and method of controlling powder supply hopper pressure device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU92813B1 (en) * 2015-09-02 2017-03-20 Wurth Paul Sa Enhanced pressurising of bulk material in lock hoppers
CN106906005A (en) * 2017-04-17 2017-06-30 航天长征化学工程股份有限公司 Pulverized coal pressurized conveying device and method
CN109847653B (en) * 2019-01-21 2020-10-27 西安交通大学 Mixed fuel pressurization continuous feeding system and method
CN114276840B (en) * 2021-12-30 2022-09-23 苏州海陆重工股份有限公司 Coal powder gun alignment method for gasification furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273904A (en) * 1975-12-18 1977-06-21 Otto & Co Gmbh Dr C Apparatus for gasifying finely divided fuels
JPS6319553U (en) * 1986-07-24 1988-02-09
JPH1025483A (en) * 1996-07-11 1998-01-27 Babcock Hitachi Kk Lock hopper apparatus and its operating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE31572E (en) * 1971-05-06 1984-05-01 The Babcock & Wilcox Company Pulverized fuel delivery system for a blast furnace
CN101760243B (en) * 2008-12-24 2015-01-14 山东华鲁恒升化工股份有限公司 Three-phase multi-material three-dimensional pressurized clash coal gasification device and process thereof
CN201485431U (en) * 2009-05-07 2010-05-26 湖北双环科技股份有限公司 Powder coal gasification device at near normal pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273904A (en) * 1975-12-18 1977-06-21 Otto & Co Gmbh Dr C Apparatus for gasifying finely divided fuels
JPS6319553U (en) * 1986-07-24 1988-02-09
JPH1025483A (en) * 1996-07-11 1998-01-27 Babcock Hitachi Kk Lock hopper apparatus and its operating method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141073A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Compression system of powder feeding hopper, gasification facility, and gasification combined power generation facility, and compression method of powder feeding hopper
WO2017138488A1 (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Pressurization system for pulverulent body feed hopper, gasification equipment and gasification combined cycle power generation equipment, and method for pressurizing pulverulent body feed hopper
CN108602631A (en) * 2016-02-08 2018-09-28 三菱日立电力系统株式会社 Compression system, equipment for gasification and the integrated gasification combined cycle plant of powder feeding hopper and the pressure method of powder feeding hopper
US10717594B2 (en) 2016-02-08 2020-07-21 Mitsubishi Hitachi Power Systems, Ltd. Pressurizing system for powder supply hopper, gasification facility, integrated gasification combined cycle facility, and method for pressurizing powder supply hopper
CN108602631B (en) * 2016-02-08 2021-09-07 三菱动力株式会社 Pressurization system for powder supply hopper, gasification facility, gasification combined power generation facility, and pressurization method for powder supply hopper
WO2017199818A1 (en) * 2016-05-20 2017-11-23 三菱日立パワーシステムズ株式会社 Carbon-containing solid fuel gasification power generation facility, and method for regulating gas for drying carbon-containing solid fuel
JP2017206661A (en) * 2016-05-20 2017-11-24 三菱日立パワーシステムズ株式会社 Carbon-containing solid fuel gasification power generation equipment and method for adjusting gas for drying the carbon-containing solid fuel
JP2019142701A (en) * 2018-02-23 2019-08-29 三菱日立パワーシステムズ株式会社 Powder supply hopper pressure device, gasification furnace equipment and gasification combined power generation equipment, and method of controlling powder supply hopper pressure device
WO2019163664A1 (en) * 2018-02-23 2019-08-29 三菱日立パワーシステムズ株式会社 Powder supply hopper pressurization device, gasification furnace facility, gasification combined power generation facility, and control method for powder supply hopper pressurization device
JP7039795B2 (en) 2018-02-23 2022-03-23 三菱重工業株式会社 Control method of powder supply hopper pressurizer, gasification furnace equipment and gasification combined cycle equipment, and powder supply hopper pressurizer

Also Published As

Publication number Publication date
JP5595581B2 (en) 2014-09-24
CN103328615A (en) 2013-09-25
JPWO2012115054A1 (en) 2014-07-07
US20130298465A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP5595581B2 (en) Pulverized coal supply system for coal gasifier
JP4981771B2 (en) Coal gasification combined power generation facility
JP5653794B2 (en) Coal gasification combined power generation facility and coal gasification combined power generation method
JP5578907B2 (en) Coal gasification combined power plant
US7805923B2 (en) Integrated coal gasification combined cycle plant
US20090178338A1 (en) Fuel feed system for a gasifier and method of gasification system start-up
JP2012087974A (en) Coal-fired power generation system
CN108602631B (en) Pressurization system for powder supply hopper, gasification facility, gasification combined power generation facility, and pressurization method for powder supply hopper
JP6660790B2 (en) Pulverized coal supply system, operation method thereof, and coal gasification power generation equipment
WO2012073300A1 (en) Gasification device
CA2726406C (en) Method and apparatus to transport solids
JP6407618B2 (en) Operation method of fine powder supply system for carbonized fuel gasifier, carbonized fuel gasification combined power generation facility, and fine powder supply system for carbonized fuel gasifier
JP5859213B2 (en) Gasification furnace, combined gasification power generation facility, and method for recovering unburned content of gasification furnace
JP6033380B2 (en) Coal gasification combined power generation facility
JP2014101838A (en) Coal gasification combined generation facility
JP5675297B2 (en) Gasification facilities and coal gasification combined power generation facilities
JP5851883B2 (en) Non-condensable gas exhaust system and gasification combined power generation facility
JP5606045B2 (en) Gasification equipment
TWI412596B (en) Blast furnace iron production with integrated power generation
JP5920920B2 (en) Coal-fired power generation system
JP2013173900A (en) Gas purifying apparatus for gasification gas
JP2017133749A (en) Fuel supply device and gasification furnace facility with the same
JP2012172131A (en) Air separator and gasification furnace plant provided with the same
JP2014136790A (en) Gasification furnace and gasification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980932

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013501031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750278

Country of ref document: EP

Kind code of ref document: A1