WO2012114974A1 - Apparatus for forecasting electric power load of industrial park, system and method - Google Patents

Apparatus for forecasting electric power load of industrial park, system and method Download PDF

Info

Publication number
WO2012114974A1
WO2012114974A1 PCT/JP2012/053670 JP2012053670W WO2012114974A1 WO 2012114974 A1 WO2012114974 A1 WO 2012114974A1 JP 2012053670 W JP2012053670 W JP 2012053670W WO 2012114974 A1 WO2012114974 A1 WO 2012114974A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
prediction
industrial
industrial park
production
Prior art date
Application number
PCT/JP2012/053670
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 勝幸
正教 神永
文乃 田中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN2012800097167A priority Critical patent/CN103380557A/en
Publication of WO2012114974A1 publication Critical patent/WO2012114974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a power load predicting apparatus, system and method for an industrial park, and more particularly to a power load predicting apparatus for an industrial park which is necessary for realizing system stabilization and economical operation of private power generation facilities for industrial parks. , Systems and methods.
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 1 a diesel generator is installed in each factory and used for power supply in order to ensure high quality power necessary for factory production.
  • cooperation with the commercial system is also performed, but basically diesel generator cooperation.
  • factory production is stopped due to holidays, diesel generators are also stopped, but there are examples of power interchange to other factories using recent microgrid technology.
  • Non-Patent Document 1 shows the diesel generator cooperative control of the private power generation facility based on the prediction of the power load. Further, in Non-Patent Document 2, the operation plan for the next day is calculated using the actual power data up to the previous day.
  • the conventional power load prediction method is based on the assumption that past operation data of the factory is used.
  • the first issue is the realization of a prediction method based on the change in power load at each factory. Even if a large number of operation result data are prepared, the prediction result does not match if an operation pattern that does not exist in the past is executed.
  • the second issue is the realization of a method for estimating the power load necessary for planning an operation plan for an economical private power generation facility in order to ensure high-quality power.
  • the system instability should not be caused as a result of reducing the number of in-house power generation facilities in operation due to economic considerations.
  • the present invention aims to provide a power load prediction method that takes into account the operation pattern of each factory, and to provide means capable of predictive calculation even when there is an operation pattern that has not been operated in the past.
  • the power load predicting device of an industrial park for predicting the amount of power required in an industrial park composed of one or a plurality of establishments for a specific date in the future.
  • the production facilities are identified using the production plan on a specific date in the future, the equipment used in this production plan, and the time of use.
  • the high-quality power forecasting unit that predicts the daily power consumption for each time, and for non-production facilities, it accumulates the past power consumption transitions of the non-production facilities, and based on past results, Equipped with a low-quality power forecasting unit that predicts the amount of electricity for each time, and for the amount of electricity obtained for each time, finds the sum for each time and is required in the industrial park on a specific date in the future The amount of power.
  • the high-quality power prediction unit includes a production facility power characteristic database that stores the equipment used here and the rated power amount for each production plan, and the low-quality power prediction unit stores the non-production facility in the past. It has a power load record database that stores changes in power consumption.
  • the industrial park is composed of a plurality of business establishments, and the high-quality power prediction unit and the low-quality power prediction unit are provided for each business establishment in the industrial park and perform prediction of electric energy.
  • the industrial park is composed of a plurality of business establishments, and the high-quality power forecasting unit is provided for each business establishment in the industrial park to perform power forecasting, and the low-quality power forecasting unit is installed in the industrial park. Predicts the amount of power that is commonly provided at multiple offices.
  • an industrial park composed of one or a plurality of business establishments connected by a power transmission line, a private power generation power source that supplies power to the business establishment
  • the power load prediction device is a non-production device that is not involved in production and a production facility that is involved in production at an office.
  • a high-quality power prediction unit that predicts changes in the amount of power for each specific day by using the production plan for a specific date in the future, the equipment used in this production plan, and its usage time
  • a low-quality power forecasting unit that accumulates the transition of power consumption of non-production facilities in the past and predicts the transition of power consumption for each specific day in the future based on past results. For example, the transition of each time power amount calculated respectively, and the amount of power needed in the industrial in certain date in the future to seek the sum of each same time.
  • the power generation amount of the private power generation power source is controlled on a specific date in the future based on the transition of the power amount predicted by the power load prediction device.
  • an industrial park power load prediction method for predicting the amount of power required in an industrial park composed of one or more offices for a specific date in the future Classify the electric power facilities of the office into production facilities that are involved in production and non-production facilities that are not involved in production, and for production facilities, the production plan on a specific date in the future, the equipment used in this production plan, and the time of use Is used to predict changes in the amount of electricity on a specific day for each time, and for non-production facilities, the past changes in the amount of non-production equipment in the past are accumulated. Predict the transition of each time.
  • the sum for each hour is obtained to obtain the electric energy required in the industrial park on a specific date in the future.
  • the power load predicting apparatus, system and method of the industrial park of the present invention it is possible to estimate a power load change even when there is no past operation pattern, and stable operation of private power generation such as a diesel generator is possible.
  • the figure which shows the electric power load prediction system of this invention The figure which shows the structural example of the industrial complex to which this invention is applied.
  • an industrial park 100 to which the present invention is applied will be described with reference to FIG.
  • a plurality of offices 10 three units 10A, 10B, and 10C
  • the plurality of business establishments 10 are connected to the power source 20 via the power transmission line 40 and are supplied with power.
  • the power supply 20 may be installed outside the site of the industrial park 100, it is often a private power generation facility that supplies power exclusively to establishments in the industrial park, and is composed of a plurality of diesel generators with good responsiveness. Is good.
  • the plurality of business establishments 10 can be connected to an external commercial power supply 30 and receive power as necessary as a countermeasure when power supply from the power supply 20 is insufficient.
  • Each facility 10 has various facilities as an electric power load, and these facilities are roughly classified into a production facility L1 and a non-production facility L2.
  • the production facility L1 is equipment and facilities that are directly operated and stopped according to the production plan and operation plan of the factory.
  • the non-production facility L2 is equipment in the office, lighting equipment in the office and factory, and production. Utilities for facilities are included. However, utilities for production facilities may be classified into production facilities L1.
  • the power supplied to the production facility is referred to as production facility power P1, and the power supplied to the non-production facility is referred to as non-production facility power P2.
  • the production facility power P1 is sometimes referred to as high-quality power.
  • the non-production facility power P2 is referred to as low-quality power.
  • the power load prediction device 50 of the present invention is installed, and the power demand prediction of the industrial park on a specific date in the future (hereinafter referred to as X day) is executed.
  • the past load value of the power P2 for non-production facilities measured at each business office 10 is captured and accumulated in the power load prediction device 50.
  • a production plan S for a specific date in the future (X days) of each office is given.
  • the power load prediction device 50 obtains a power load prediction value Y (X) for a specific date in the future.
  • the predicted power load value Y (X) may be given as reference information for the manager 60 who manages the private power generation power source 20, or may be a direct control signal for the diesel generator DEG that constitutes the power source 20.
  • the power load prediction apparatus 50 of the present invention is configured as shown in FIG.
  • 50A is a power load predicting apparatus (hereinafter referred to as a partial power load predicting apparatus) for the office 10A, and this partial power load predicting apparatus is provided for each office in the industrial park.
  • 50B and 50C are partial power load prediction apparatuses for the offices 10B and 10C, respectively, and have the same configuration as 50A.
  • these partial power load prediction apparatuses are different in data to be held, but the basic processing contents are the same, the following description will be made with an example of the partial power load prediction apparatus 50A for the office 10A.
  • the power load prediction value Y (X) of the future specific day of this industrial park is finally obtained.
  • the predicted power load value Y (X) is a time-series total power load amount of the industrial park.
  • the partial power load prediction apparatus 50A includes a power load prediction unit 1 for production facilities (hereinafter referred to as a high quality power load prediction unit) and a power load prediction unit 2 for non-production facilities (hereinafter referred to as a low quality power load prediction unit). ), And the respective predicted values YA1 (X) and YA2 (X) are added together to obtain the partial power load predicted value YA (X) of the office 10A.
  • the power load prediction value YA1 (X) for production facilities and the power load prediction value YA2 (X) for non-production facilities are derived by the best method suitable for each. To do.
  • the high-quality power load prediction unit 1 determines the date and time of the future specific date X in the prediction date and time setting unit 13, and sets the production plan SA on the date and time of the specific date X obtained from the office 10A as the production plan setting unit. 16 is held.
  • the amount of power required for each production facility is stored in the production facility power characteristic database 11.
  • This office 10A is a factory that manufactures resin compounds, for example, and basically operates from 8:00 to 18:00 on weekdays and stops at night and on weekends.
  • the material kneading process Pr1 the material kneading process Pr1, the granulation process Pr2, the cooling process Pr3, and the cutter / metering process Pr4 are executed.
  • Each process Pr and its execution time are given in advance as a production plan.
  • FIG. 3 an example is shown in which all the processes Pr are executed simultaneously from 8:00 to 18:00.
  • the production facility power characteristic database 11 stores the production facility for executing each process and its power load capacity (rated power consumption), and a specific example is shown in FIG.
  • the power load capacity of these power devices is the device number M11. 200 kW, device number M12 is 1000 kW, and the like.
  • the power consumption (1000 kW) of the extruder (equipment number M12) used in the material kneading process Pr1 is large, which is considered to be a main factor of power fluctuation.
  • the production facility power characteristic database 11 stores the relationship between the equipment to be used and the amount of power for the other processes Pr2-Pr4.
  • the production facility power characteristic data includes the rated power value based on the facility capacity unique to the manufacturing facility and the time variation of the operating load. Specifically, the operation time from the start to the end of the operation of the equipment and the corresponding power load change.
  • the power characteristic in the operating time range may be a constant value equal to the equipment capacity.
  • FIG. 5 shows the relationship between specific manufacturing equipment operating time and power transition in the material kneading process Pr1.
  • the manufacturing equipment operating time indicates the manufacturing equipment operation plan, that is, the manufacturing equipment operation stop schedule associated with the production plan.
  • the manufacturing equipment operating time may be associated with the process and stored in the production plan 16, or if the process is determined, the equipment to be used and its operating time are uniquely determined. It may be stored in the facility power characteristic 11.
  • the device M11 operates during the entire period of the process Pr1, and the device M12 that is the largest power load operates from 9:00 to 11:00.
  • the device M13 operates from 11:00 to 16:00, and the operating device M14 operates from 16:00 to 18:00.
  • the operation scheduled facility search unit 12 in FIG. 1 obtains the process name to be executed at each time of X days from the production plan setting unit 16, and uses (operates) the production facility to be used with the obtained process name and its power load capacity. Is obtained from the production facility power characteristic database 11.
  • the time / power combining unit 14 continuously obtains the power load capacity at each time on the X day, and calculates the transition of the power load capacity at 24 hours on the X day. That is, a device that is operating at each time is extracted, and the power load amount is added to obtain a power transition for 24 hours on the X day.
  • This example is shown as a power load at the bottom of FIG.
  • the apparatus M11 is used from 8:00 to 9:00, and the power load at this time is 200 kW.
  • the devices M11 and M12 are used from 9:00 to 11:00, and the power load at this time is 1200 kW.
  • the transition and detailed explanation are omitted, but the transition is made to 400 kW and 300 kW, and the operation of this day is stopped.
  • FIG. 5 shows an example of obtaining the power transition for 24 hours on the X day in the case of the material kneading process Pr1, but the power transition for 24 hours on the X day is similarly calculated for other processes. After that, the power transition for 24 hours in total X days of each process is obtained.
  • the power load amount transition pattern shown in the lower part of FIG. 5 is the predicted value of the high-quality power load prediction unit 1 in order to simplify the description. A description will be given assuming that YA1 (X).
  • the transition of the power load capacity in 24 hours on the X day thus obtained is output from the high quality power predicted value output unit 15 as the predicted value YA1 (X).
  • the prediction date setting unit 22 determines the future specific date X, includes the operation calendar 24, and the non-production facility power P2 measured in the office 10A. Past performance values are taken in and stored in the power load performance database 21.
  • low-quality power refers to equipment that is not directly related to manufacturing, such as office lighting and air-conditioning power, as described above. This is called low quality power because it does not affect product quality. In many cases, it may be considered that there are characteristics that are influenced by weather factors such as temperature and humidity in addition to calendar information such as date and time.
  • the daily power load record stored in the power load record database 21 indicates, for example, fluctuations in the power load within 24 hours as shown in FIG. Since this power load record is a past record value of the non-production facility power P2, the power load such as lighting and cooling / heating is mainly used, and it increases in the daytime when people are in the office as a whole, and decreases at nighttime. Furthermore, there are different tendencies between the operating days and the non-operating days, and there are also day and seasonal fluctuations. In addition, the weather of the day will also have an effect.
  • the power load record database 21 stores past record values of non-production facility power P2 measured under these various conditions.
  • the upper part of Fig. 6 shows the standard pattern of power load for office lighting and air conditioning in the factory. As a characteristic of the factory, it is assumed that the low-quality power is equal to or less than the power load of the manufacturing process.
  • the operation time zone is a maximum of 500 kW load, and the other time zone is approximately 200 kW load.
  • the previous day actual value or the power load actual on the same day of the previous week is referred to.
  • the previous day's actual values in the middle of Fig. 6 have data with a maximum 500 kW power load, as in the upper standard pattern, but with sudden changes in the morning load.
  • the result of predicting a low-quality power load with reference to these standard patterns and the previous day actual values is shown in the lower part of FIG.
  • There are various methods for obtaining the predicted value from the standard pattern and the previous day actual value but generally a weighted weighted average value is obtained for each time and used as the predicted value. As a result, the result of the lower solid line can be obtained.
  • the similar load search unit 25 of the low quality power load prediction unit 2 obtains the past actual value of the power P2 for non-production equipment that matches the condition of the specific date X in the future from the power load result database 21.
  • the past performance value obtained here may be obtained as an average value of several similar pieces of data that match the conditions, as well as extracting one piece of data.
  • the similar load search of the low-quality power load prediction unit 2 may be executed based on the above-mentioned several ideas, and a typical example is introduced in FIG.
  • the standard pattern in FIG. 6 is obtained from the past results as an average value of several pieces of similar data that meet the conditions.
  • the amount of power in the daytime when people are present increases and decreases relatively slowly, and peaks around noon.
  • the data of the most recent previous day in FIG. 6
  • the final power forecast reflects the tendency of the previous day's performance at the time of going to and from work, and the solid line at the bottom of Fig.
  • the low quality power load prediction unit 2 in the power load prediction device 50A in FIG. 1 has been described to predict the low quality power load of the office 10A, this predicts the low quality power load for each office.
  • the system can be configured more simply than the case where the low quality power load prediction is performed for each business establishment by collectively predicting the low quality power load as the entire industrial park. That is, the low quality power load prediction unit 2 is installed only in 50A to collectively predict the low quality power load as the entire industrial park, and the low quality power load prediction unit 2 is not provided in the other prediction units 50B and 50C. It is good to have a configuration.
  • FIG. 7 shows the high-quality power transition YA1 (X) and the low-quality power YA2 (when the establishment 10A in FIG. 2 operates on a specific date X in the future based on the production plan (processes Pr1 to Pr4 are operated in the daytime). This is a result of predicting X) along the time direction.
  • the pattern of the prediction result of process Pr1 in FIG. 5 (bottom of FIG. 5) is the total high-quality power prediction result including other processes. The same pattern is shown in FIG.
  • high quality power is obtained for each of the other processes P2, P3, and P4 in the same manner as in FIG. 5, and cumulatively added. You can get it.
  • the total power load predicted value YA (X) of the factory is obtained in the same manner for the other offices 10B and 10C in the industrial park. This method of obtaining is basically easy to understand from the above description, so only an example will be described here.
  • the office 10B is assumed to be an assembly factory such as an automobile or an air conditioner as a case of full production for 24 hours.
  • FIG. 8 shows a production plan in the case of full production for 24 hours.
  • the processes Pr5 to Pr8 are continuously operated.
  • FIG. 9 is a diagram showing 11 examples of the production facility power characteristic database in the continuous operation example, and particularly shows the relationship between the manufacturing equipment and the rated power consumption in the process Pr5.
  • devices M51, M52, and M53 and their rated power consumption W51, W52, and W53 are described for the process Pr5.
  • the other processes Pr6 to Pr8 are similarly set.
  • FIG. 10 shows the production equipment operation stop schedule in the process Pr5 in the continuous operation example in the middle.
  • the devices M51 and M52 are in a full operation state day and night, and the M53 operates from 2 o'clock to 10 o'clock.
  • the corresponding power load predicted value is shown in the lower part of FIG. 10, and a power load of 950 kW or 1000 kW is obtained as the predicted value through 24 hours. From 21:00 to 23:00, the power load drops to 930 kW, which is due to a decrease in the nighttime production load.
  • FIG. 9 when the partial load operation data of the manufacturing equipment is not described, it is estimated to be 950 kW. There is no problem.
  • FIG. 11 shows an example in which the high quality power prediction value YB1 (X) and the low quality power prediction value YB2 (X) as prediction results are written in the time direction.
  • the prediction result waveform of the process Pr5 in FIG. 10 is marked as a final high-quality power prediction value YB1 (X) that also includes calculation results in other processes.
  • the office 10C in FIG. 2 is an example of full operation day and night, but as shown in FIG. 12, in addition to the 24-hour operation process Pr9, it is a night-dominated type that includes night operation processes Pr10, Pr11, and Pr12. It takes the form of operation.
  • the process Pr10 since the next day after 23:00 is the next day's data, the process Pr10 is shown from 0 o'clock to 6 o'clock, but the actual operation is a process that runs at 20 o'clock and stops at 6 o'clock the next day. .
  • FIG. 13 is a data table of rated power consumption corresponding to the manufacturing equipment number of the process 10.
  • the equipment activation time is shown in parentheses.
  • the device M102 has a large rated power capacity, such as an induction heating furnace, and requires a long time for startup, and it is necessary to add a power consumption increase pattern for each time.
  • FIG. 14 is a diagram showing the manufacturing equipment operation stop schedule in the middle in the process Pr10.
  • the devices M101 and M102 are activated at 20:00 at night, the M102 is deactivated at 4am the following day, the device M103 is activated instead, and the device is deactivated at 6am.
  • the predicted power load value corresponding to this is shown in the lower part of FIG. Since the startup time of 1.5 hours is required for M102 among the facilities operating at 20:00 at night, a prediction result of reaching the rated power consumption at time 21:30 is obtained. After that, in the next day predicted value calculation, a result that the power consumption predicted value decreases from 1100 kW to 250 kW at 4 o'clock is output.
  • FIG. 15 is an example in the process Pr10 showing the high-quality power predicted value in the middle and the low-quality power predicted value in the lower level in the time direction.
  • the low quality power prediction value is obtained in the same manner as in FIG.
  • the predicted power load value for the entire factory is obtained by cumulatively adding the process Pr9 operating for 24 hours and the other processes Pr11, Pr12, and Pr13.
  • the factory holiday can be dealt with by using the low quality power prediction value shown in FIG. .
  • the high quality power load prediction and the low quality power load prediction are executed, and the prediction values from these are added to obtain the final power load prediction value.
  • the former is a power load prediction based on a future production plan, and the latter is a power load prediction based on past performance.
  • the high quality power prediction value YA1 (X) and the low quality power prediction value YA2 (X) of the office 10A are added at the same time in the adding means 3, and as a result, the power load prediction value 4 (YA ( X)).
  • the predicted load values YB (X) and YC (X) of the other factories 50B and 50C are received as notifications, and added by the adding means 5, whereby the total power load predicted total value Y (X )
  • the prediction result is automatically reflected in the direct control of the plurality of diesel generators DEG in the private power generation power source 20, or in the manual setting based on the judgment of the administrator.
  • the high-quality power obtained in this way is directly connected to the diesel generator group DEG, which is a private power generation facility, and even when the external system power supply is unstable, stable high-quality power can be obtained. Is possible.
  • low-quality power is allowed to change in voltage and the like, and is configured to be directly connected to an external power supply.
  • the diesel generator and the external system can be connected, and low-quality power can be supplied by the diesel generator.
  • the power load prediction method of the present invention enables accurate load prediction for a power load that requires high quality such as voltage stability based on a production facility operation plan. Moreover, since the load prediction value is obtained separately from the prediction of low quality power such as miscellaneous power, it is possible to consider a load change with periodicity.

Abstract

In the present invention, a scheme is constructed for forecasting an electric power load taking into consideration the operation patterns of each factory, and a means is provided in which it is possible to make forecasting calculations even if there are operation patterns for which there are no past operation records. An apparatus for forecasting the electric power load of an industrial park is designed to forecast the amount of electric power required on a specific day in the future by an industrial park composed of one or a plurality of plants. In plants there is production equipment contributing to production and non-production equipment not contributing to production. Regarding the production equipment, a high-quality electric power forecasting unit is provided for forecasting the progress of the amount of electric power at each time of a specific day using a production plan for a specific day in the future and a device and the usage time of the device used in the production plan. Regarding the non-production equipment, a low-quality electric power forecasting unit is provided for accumulating the progress of the amount of electric power of the non-production equipment in the past and forecasting the progress of the amount of electric power at each time of a specific day in the future. Regarding the progress of the amount of electric power at each time of a specific day calculated by each unit, calculating the sum of each unit for the same time of day gives the amount of electric power required by the industrial park on the specific day in the future.

Description

工業団地の電力負荷予測装置、システム及び方法Industrial estate power load prediction apparatus, system and method
 本発明は、工業団地の電力負荷予測装置、システム及び方法に係り、特に工業団地を対象とした系統安定化と自家発電設備の経済的な運用の実現に必要となる工業団地の電力負荷予測装置、システム及び方法に関する。 The present invention relates to a power load predicting apparatus, system and method for an industrial park, and more particularly to a power load predicting apparatus for an industrial park which is necessary for realizing system stabilization and economical operation of private power generation facilities for industrial parks. , Systems and methods.
 近年、低炭素化と経済的電力運用実現を目的とし、情報通信技術をとりいれたスマートグリッドやマイクログリッドの研究開発が盛んである。その一方で、国や地域によっては、商用系統電力が脆弱かつ不安定なため、日常生活のみならず工場の生産活動にも支障を来たす事例が増加している。日本国内から生産拠点を海外に移す場合、いかに高品質な電力を確保するかが大きな問題となっている。この点に関して、各企業では、非特許文献1、非特許文献2に示すような取り組みが進められている。 In recent years, research and development of smart grids and microgrids that incorporate information and communication technologies has been active for the purpose of realizing low-carbon and economical power operation. On the other hand, in some countries and regions, commercial grid power is fragile and unstable, increasing the number of cases that interfere not only with daily life but also with factory production activities. When moving production bases from Japan to overseas, how to secure high-quality power is a big problem. In this regard, each company is making efforts as shown in Non-Patent Document 1 and Non-Patent Document 2.
 例えば非特許文献1では、工場生産に必要な高品質電力を確保するため、ディーゼル発電機を工場ごとに設置し、電力供給に用いる。生産負荷が高い場合は、商用系統との連携も行うが、基本的にはディーゼル発電機連携である。休日などで工場生産が停止している場合は、ディーゼル発電機も停止するが、近年のマイクログリッド技術を用いて、他工場への電力融通を行う事例が示されている。 For example, in Non-Patent Document 1, a diesel generator is installed in each factory and used for power supply in order to ensure high quality power necessary for factory production. When the production load is high, cooperation with the commercial system is also performed, but basically diesel generator cooperation. When factory production is stopped due to holidays, diesel generators are also stopped, but there are examples of power interchange to other factories using recent microgrid technology.
 この場合、ディーゼル発電機を経済的に運用することが必要となるが、例えばディーゼル燃料の消費量最小化を目的関数とした、ディーゼル発電機最適運転計画問題を解くことで可能である。 In this case, it is necessary to operate the diesel generator economically. For example, it is possible to solve the diesel generator optimum operation planning problem with the objective function of minimizing the consumption of diesel fuel.
 自家発電設備の最適運転計画実現にあたり、非特許文献1では電力負荷予測を踏まえ、自家発電設備のディーゼル発電機協調制御を示している。また、非特許文献2では、前日までの電力実績データを用いて、翌日の運転計画を算出している。 In realizing the optimum operation plan of the private power generation facility, Non-Patent Document 1 shows the diesel generator cooperative control of the private power generation facility based on the prediction of the power load. Further, in Non-Patent Document 2, the operation plan for the next day is calculated using the actual power data up to the previous day.
 これら既に提案されている電力負荷予測方式では、過去の運転実績を用い、類似と推定したデータを抽出して大まかな負荷変化を予測する。しかる後、当日の計測値が入手できたら、予測誤差を考慮した補正を行う。 In these already proposed power load prediction methods, past operation results are used to extract data estimated to be similar to predict rough load changes. After that, when the measurement value for the day is available, correction is performed in consideration of the prediction error.
 このように、従来の電力負荷予測方式では、過去における当該工場の運転実績データを用いることを前提としていた。 As described above, the conventional power load prediction method is based on the assumption that past operation data of the factory is used.
 しかし、工業団地のようなマイクログリッドを対象とした場合、各工場の運転実績データが一元管理されている場合は少ない。また電力負荷変化の傾向もまちまちである場合が多い。すなわち、組み立てラインや、搬送電力のような間欠的に負荷変化が生じる場合と、化学プロセスのように電力負荷が長時間継続する場合など、まちまちである。前述の文献では、このような課題の解決方法は明示されていない。 However, when microgrids such as industrial parks are targeted, there are few cases where the operation result data of each factory is centrally managed. In addition, the tendency of power load changes often varies. That is, there are various cases such as an assembly line, a case where an intermittent load change occurs such as carrier power, and a case where a power load continues for a long time like a chemical process. In the above-mentioned document, a solution for such a problem is not clearly described.
 以上により、解決するべき課題が2つあると考えられる。第一の課題として、工場ごとの電力負荷変化を踏まえた予測方式の実現である。運転実績データを多数用意したとしても、過去にない操業パタンを実行した場合は、予測結果はマッチしない。 From the above, it is considered that there are two issues to be solved. The first issue is the realization of a prediction method based on the change in power load at each factory. Even if a large number of operation result data are prepared, the prediction result does not match if an operation pattern that does not exist in the past is executed.
 第二の課題として、高品質な電力を確保するため、経済的な自家発電設備の運用計画立案に必要な、電力負荷を推定する方式の実現である。経済性を考慮するあまり、自家発電設備の稼動台数を減らした結果、系統不安定を引き起こしてはならない。 The second issue is the realization of a method for estimating the power load necessary for planning an operation plan for an economical private power generation facility in order to ensure high-quality power. The system instability should not be caused as a result of reducing the number of in-house power generation facilities in operation due to economic considerations.
 本発明は、前記課題を達成するため、各工場の操業パタンを考慮した電力負荷予測方式を構築し、過去に運転実績がない操業パタンがあっても予測演算可能な手段を提供することを目的とする。 In order to achieve the above object, the present invention aims to provide a power load prediction method that takes into account the operation pattern of each factory, and to provide means capable of predictive calculation even when there is an operation pattern that has not been operated in the past. And
 上記目的の達成のために本発明においては、1つまたは複数の事業所で構成される工業団地で必要とする電力量を、将来の特定日について予測する為の工業団地の電力負荷予測装置において、事業所における生産に関与する生産設備と生産に関与しない非生産設備のうち、生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、特定日の電力量の時刻ごとの推移を予測する高品質電力予測部と、非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測する低品質電力予測部を備え、それぞれで求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とする。 In order to achieve the above object, in the present invention, in the power load predicting device of an industrial park for predicting the amount of power required in an industrial park composed of one or a plurality of establishments for a specific date in the future. Among the production facilities that are involved in production at the office and non-production facilities that are not involved in production, the production facilities are identified using the production plan on a specific date in the future, the equipment used in this production plan, and the time of use. For the high-quality power forecasting unit that predicts the daily power consumption for each time, and for non-production facilities, it accumulates the past power consumption transitions of the non-production facilities, and based on past results, Equipped with a low-quality power forecasting unit that predicts the amount of electricity for each time, and for the amount of electricity obtained for each time, finds the sum for each time and is required in the industrial park on a specific date in the future The amount of power.
 また、高品質電力予測部は、生産計画ごとに、ここで使用する機器とその定格電力量を記憶しておく生産設備電力特性データベースを備え、低品質電力予測部は過去における当該非生産設備の電力量の推移を蓄積しておく電力負荷実績データベースを備えている。 The high-quality power prediction unit includes a production facility power characteristic database that stores the equipment used here and the rated power amount for each production plan, and the low-quality power prediction unit stores the non-production facility in the past. It has a power load record database that stores changes in power consumption.
 また、工業団地が複数の事業所で構成され、高品質電力予測部と低品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行する。 In addition, the industrial park is composed of a plurality of business establishments, and the high-quality power prediction unit and the low-quality power prediction unit are provided for each business establishment in the industrial park and perform prediction of electric energy.
 また、工業団地が複数の事業所で構成され、高品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行し、低品質電力予測部は、工業団地内の複数の事業所に共通に備えられて電力量の予測を実行する。 In addition, the industrial park is composed of a plurality of business establishments, and the high-quality power forecasting unit is provided for each business establishment in the industrial park to perform power forecasting, and the low-quality power forecasting unit is installed in the industrial park. Predicts the amount of power that is commonly provided at multiple offices.
 上記目的の達成のために本発明においては、送電線で接続された1つまたは複数の事業所で構成される工業団地、事業所に給電する自家発電電源、工業団地で必要とする電力量を、将来の特定日について予測する為の電力負荷予測装置とから構成される工業団地の電力負荷予測システムにおいて、電力負荷予測装置は、事業所における生産に関与する生産設備と生産に関与しない非生産設備のうち、生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、特定日の電力量の時刻ごとの推移を予測する高品質電力予測部と、非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測する低品質電力予測部を備え、それぞれで求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とする。 In order to achieve the above object, in the present invention, an industrial park composed of one or a plurality of business establishments connected by a power transmission line, a private power generation power source that supplies power to the business establishment, In a power load prediction system for an industrial park that is composed of a power load prediction device for predicting a specific date in the future, the power load prediction device is a non-production device that is not involved in production and a production facility that is involved in production at an office. Among the facilities, a high-quality power prediction unit that predicts changes in the amount of power for each specific day by using the production plan for a specific date in the future, the equipment used in this production plan, and its usage time For non-production facilities, a low-quality power forecasting unit that accumulates the transition of power consumption of non-production facilities in the past and predicts the transition of power consumption for each specific day in the future based on past results. For example, the transition of each time power amount calculated respectively, and the amount of power needed in the industrial in certain date in the future to seek the sum of each same time.
 また、電力負荷予測装置により予測した電力量の推移に基づき、将来の特定日に前記自家発電電源の発電量を制御する。 In addition, the power generation amount of the private power generation power source is controlled on a specific date in the future based on the transition of the power amount predicted by the power load prediction device.
 上記目的の達成のために本発明においては、1つまたは複数の事業所で構成される工業団地で必要とする電力量を、将来の特定日について予測する為の工業団地の電力負荷予測方法において、事業所の電力設備を、生産に関与する生産設備と生産に関与しない非生産設備に分類し、生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、特定日の電力量の時刻ごとの推移を予測し、非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測する。 In order to achieve the above object, in the present invention, in an industrial park power load prediction method for predicting the amount of power required in an industrial park composed of one or more offices for a specific date in the future. , Classify the electric power facilities of the office into production facilities that are involved in production and non-production facilities that are not involved in production, and for production facilities, the production plan on a specific date in the future, the equipment used in this production plan, and the time of use Is used to predict changes in the amount of electricity on a specific day for each time, and for non-production facilities, the past changes in the amount of non-production equipment in the past are accumulated. Predict the transition of each time.
 また、それぞれ求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とする。 In addition, regarding the transition of the obtained electric energy for each time, the sum for each hour is obtained to obtain the electric energy required in the industrial park on a specific date in the future.
 本発明の工業団地の電力負荷予測装置、システム及び方法により、過去操業パタンがない場合でも、電力負荷変化を推定可能となり、ディーゼル発電機など自家発電の安定した運用が可能となる。また、事務所空調や照明など、前日などの過去実績データを推定計算に適用可能な電力を加算することで、電力負荷ピークを高精度に推定することが可能となり、結果としてディーゼル発電機の安定した運用計画を実行することが可能となる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the power load predicting apparatus, system and method of the industrial park of the present invention, it is possible to estimate a power load change even when there is no past operation pattern, and stable operation of private power generation such as a diesel generator is possible. In addition, it is possible to estimate the power load peak with high accuracy by adding past applicable data such as office air conditioning and lighting to the estimation calculation, and as a result, it is possible to stabilize the diesel generator. It becomes possible to execute the operation plan.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
本発明の電力負荷予測システムを示す図。The figure which shows the electric power load prediction system of this invention. 本発明が適用される工業団地の構成例を示す図。The figure which shows the structural example of the industrial complex to which this invention is applied. 生産計画の一例として日中稼動する例を示す図。The figure which shows the example which operates during the day as an example of a production plan. 日中稼動例での生産設備電力特性データベースの一例を示す図。The figure which shows an example of the production facility electric power characteristic database in the daytime operation example. 日中稼動例での製造機器稼働時間と電力推移の関係を示した図。The figure which showed the relationship between manufacturing equipment operating time and electric power transition in the daytime operation example. 低品質電力予測の考え方を示す図。The figure which shows the view of low quality electric power prediction. 日中稼動例での高品質と低品質の電力負荷予測結果を示す図。The figure which shows the electric power load prediction result of the high quality and the low quality in the daytime operation example. 生産計画の一例として連続稼動する例を示す図。The figure which shows the example which operates continuously as an example of a production plan. 連続稼動例での生産設備電力特性データベースの一例を示す図。The figure which shows an example of the production facility electric power characteristic database in the example of continuous operation. 連続稼動例での製造機器稼働時間と電力推移の関係を示した図。The figure which showed the relationship between the manufacture apparatus operating time and power transition in the example of continuous operation. 連続稼動例での高品質と低品質の電力負荷予測結果を示す図。The figure which shows the electric power load prediction result of the high quality and the low quality in the continuous operation example. 生産計画の一例として主に夜間稼動する例を示す図。The figure which shows the example which mainly operates at night as an example of a production plan. 夜間稼動例での生産設備電力特性データベースの一例を示す図。The figure which shows an example of the production facility electric power characteristic database in the example of night operation. 夜間稼動例での製造機器稼働時間と電力推移の関係を示した図。The figure which showed the relationship between manufacturing equipment operating time and electric power transition in the example of nighttime operation. 日中稼動例での高品質と低品質の電力負荷予測結果を示す図。The figure which shows the electric power load prediction result of the high quality and the low quality in the daytime operation example.
 本発明の電力負荷予測装置及びシステムの一実施例を、図を用いて以下に説明する。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
An embodiment of a power load prediction apparatus and system according to the present invention will be described below with reference to the drawings.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 まず、本発明が適用される工業団地100の構成について図2を用いて説明する。この工業団地100には、複数の事業所10(10A、10B、10Cの3台とする)と電源20が設置されている。複数の事業所10は、送電線40を介して電源20に接続され、電力を供給されている。電源20は、工業団地100の敷地外に設置されていてもよいが、工業団地内事業所専用に給電する自家発電設備とされることが多く、応答性のよい複数のディーゼル発電機で構成するのが良い。また、複数の事業所10は、電源20からの給電に不足を生じた場合の対策として、必要に応じて外部の商用電源30に接続されて受電することもできる。 First, the configuration of an industrial park 100 to which the present invention is applied will be described with reference to FIG. In this industrial park 100, a plurality of offices 10 (three units 10A, 10B, and 10C) and a power source 20 are installed. The plurality of business establishments 10 are connected to the power source 20 via the power transmission line 40 and are supplied with power. Although the power supply 20 may be installed outside the site of the industrial park 100, it is often a private power generation facility that supplies power exclusively to establishments in the industrial park, and is composed of a plurality of diesel generators with good responsiveness. Is good. In addition, the plurality of business establishments 10 can be connected to an external commercial power supply 30 and receive power as necessary as a countermeasure when power supply from the power supply 20 is insufficient.
 各事業所10内には、電力負荷としての各種の設備が存在するが、これら設備は生産設備L1と、非生産設備L2に大別される。生産設備L1とは、工場の生産計画、操業計画に応じて直接稼動、停止される機器や設備であり、非生産設備L2には、事務所内の機器、事務所や工場内の照明機器、生産設備用のユーティリティなどが含まれる。ただし、生産設備用のユーティリティは、生産設備L1に分類することにしてもよい。 Each facility 10 has various facilities as an electric power load, and these facilities are roughly classified into a production facility L1 and a non-production facility L2. The production facility L1 is equipment and facilities that are directly operated and stopped according to the production plan and operation plan of the factory. The non-production facility L2 is equipment in the office, lighting equipment in the office and factory, and production. Utilities for facilities are included. However, utilities for production facilities may be classified into production facilities L1.
 なお、生産設備に供給される電力を生産設備用電力P1と称し、非生産設備に供給される電力を非生産設備用電力P2と称する。また、一般に生産設備用電力P1のことを高品質電力ということがあるので、本発明ではこれに対応して非生産設備用電力P2のことを低品質電力ということにする。 The power supplied to the production facility is referred to as production facility power P1, and the power supplied to the non-production facility is referred to as non-production facility power P2. In general, the production facility power P1 is sometimes referred to as high-quality power. Accordingly, in the present invention, the non-production facility power P2 is referred to as low-quality power.
 図2の工業団地100内外のいずれであってもよいが、本発明の電力負荷予測装置50が設置され、将来の特定日(以下X日という)における当該工業団地の電力需要予測を実行する。 Although it may be inside or outside the industrial park 100 in FIG. 2, the power load prediction device 50 of the present invention is installed, and the power demand prediction of the industrial park on a specific date in the future (hereinafter referred to as X day) is executed.
 このために、電力負荷予測装置50には、各事業所10において計測した非生産設備用電力P2の過去実績値が取り込まれ、蓄積されている。また、各事業所の将来の特定日(X日)の生産計画Sが与えられている。この結果として、電力負荷予測装置50からは、将来の特定日の電力負荷予測値Y(X)が得られる。電力負荷予測値Y(X)は、自家発電電源20を管理する管理者60に対する参考情報として与えてもよく、また電源20を構成するディーゼル発電機DEGに対する、直接制御信号としてもよい。 For this reason, the past load value of the power P2 for non-production facilities measured at each business office 10 is captured and accumulated in the power load prediction device 50. In addition, a production plan S for a specific date in the future (X days) of each office is given. As a result, the power load prediction device 50 obtains a power load prediction value Y (X) for a specific date in the future. The predicted power load value Y (X) may be given as reference information for the manager 60 who manages the private power generation power source 20, or may be a direct control signal for the diesel generator DEG that constitutes the power source 20.
 本発明の電力負荷予測装置50は、図1のように構成される。この図において、50Aは事業所10Aの為の電力負荷予測装置(以下部分電力負荷予測装置と呼ぶ)であり、この部分電力負荷予測装置は、工業団地内の事業所ごとに設けられる。50B、50Cはそれぞれ事業所10B、10Cの為の部分電力負荷予測装置であり、50Aと同じ構成とされている。これらの部分電力負荷予測装置は、保持するデータなどが相違するが基本的処理内容は同じであるので、以降の説明は事業所10Aの為の部分電力負荷予測装置50Aの例で説明する。なお、図1の電力負荷予測装置50からは、最終的にこの工業団地の将来の特定日の電力負荷予測値Y(X)が得られる。電力負荷予測値Y(X)は、当該工業団地の時系列的な総合電力負荷量である。 The power load prediction apparatus 50 of the present invention is configured as shown in FIG. In this figure, 50A is a power load predicting apparatus (hereinafter referred to as a partial power load predicting apparatus) for the office 10A, and this partial power load predicting apparatus is provided for each office in the industrial park. 50B and 50C are partial power load prediction apparatuses for the offices 10B and 10C, respectively, and have the same configuration as 50A. Although these partial power load prediction apparatuses are different in data to be held, but the basic processing contents are the same, the following description will be made with an example of the partial power load prediction apparatus 50A for the office 10A. In addition, from the power load prediction apparatus 50 of FIG. 1, the power load prediction value Y (X) of the future specific day of this industrial park is finally obtained. The predicted power load value Y (X) is a time-series total power load amount of the industrial park.
 部分電力負荷予測装置50Aは、生産設備用の電力負荷の予測部1(以下高品質電力負荷予測部という)と、非生産設備用の電力負荷の予測部2(以下低品質電力負荷予測部という)から構成され、それぞれの予測値YA1(X)、YA2(X)を合算して事業所10Aの部分電力負荷予測値YA(X)を得る。本発明の部分電力負荷予測装置50Aにおいては、生産設備用の電力負荷予測値YA1(X)と、非生産設備用の電力負荷予測値YA2(X)を、それぞれに適した最良の方法で導出する。 The partial power load prediction apparatus 50A includes a power load prediction unit 1 for production facilities (hereinafter referred to as a high quality power load prediction unit) and a power load prediction unit 2 for non-production facilities (hereinafter referred to as a low quality power load prediction unit). ), And the respective predicted values YA1 (X) and YA2 (X) are added together to obtain the partial power load predicted value YA (X) of the office 10A. In the partial power load prediction apparatus 50A of the present invention, the power load prediction value YA1 (X) for production facilities and the power load prediction value YA2 (X) for non-production facilities are derived by the best method suitable for each. To do.
 このために、高品質電力負荷予測部1では、予測日時設定部13において将来の特定日Xの日時を定め、事業所10Aから得られた特定日Xの日時の生産計画SAを生産計画設定部16に保持している。また、生産設備ごとに必要とする電力量を、生産設備電力特性データベース11に記憶している。 For this purpose, the high-quality power load prediction unit 1 determines the date and time of the future specific date X in the prediction date and time setting unit 13, and sets the production plan SA on the date and time of the specific date X obtained from the office 10A as the production plan setting unit. 16 is held. In addition, the amount of power required for each production facility is stored in the production facility power characteristic database 11.
 日中稼動する生産計画SAの一例を、図3を用いて説明する。この事業所10Aは、例えば樹脂コンパウンドを製造する工場であり、基本的には平日昼間の8時から18時まで操業し、夜間と週末には操業停止するものとする。また、樹脂コンパウンド製造では、材料の混練プロセスPr1、造粒プロセスPr2、冷却プロセスPr3、カッター・計量プロセスPr4の各プロセスを実行する。この各プロセスPrと、その実行時間が生産計画として予め与えられている。図3の例では、全てのプロセスPrが8時から18時まで、同時に実行される例を示している。 An example of the production plan SA that operates during the day will be described with reference to FIG. This office 10A is a factory that manufactures resin compounds, for example, and basically operates from 8:00 to 18:00 on weekdays and stops at night and on weekends. In the resin compound production, the material kneading process Pr1, the granulation process Pr2, the cooling process Pr3, and the cutter / metering process Pr4 are executed. Each process Pr and its execution time are given in advance as a production plan. In the example of FIG. 3, an example is shown in which all the processes Pr are executed simultaneously from 8:00 to 18:00.
 各プロセスを実行するための生産設備と、その電力負荷容量(定格消費電力)を記憶したのが生産設備電力特性データベース11であり、図4にその具体的な一例を示す。この図で、例えば材料の混練プロセスPr1のためには生産設備として、機器番号がM11からM14までの電力機器を稼動させる必要があり、かつこれらの電力機器の電力負荷容量は、機器番号M11が200kW、機器番号M12が1000kWなどである。この例では、材料の混練プロセスPr1で用いる押出機(機器番号M12)の消費電力(1000kW)が大きく、電力変動の主な要因になると考えられる。生産設備電力特性データベース11には、他のプロセスPr2-Pr4についても同様に、使用する機器とその電力量の関係が記憶されている。 The production facility power characteristic database 11 stores the production facility for executing each process and its power load capacity (rated power consumption), and a specific example is shown in FIG. In this figure, for example, for the material kneading process Pr1, it is necessary to operate power devices having device numbers M11 to M14 as production facilities, and the power load capacity of these power devices is the device number M11. 200 kW, device number M12 is 1000 kW, and the like. In this example, the power consumption (1000 kW) of the extruder (equipment number M12) used in the material kneading process Pr1 is large, which is considered to be a main factor of power fluctuation. Similarly, the production facility power characteristic database 11 stores the relationship between the equipment to be used and the amount of power for the other processes Pr2-Pr4.
 なお、生産設備電力特性データは、製造設備固有の設備容量に基づく定格電力値と、稼動時負荷の時間変化を有する。具体的には、設備稼働時の開始から終了までの稼動時間と、対応する電力負荷変化である。本発明では、電力負荷のピーク値を確認することが目的であるので、稼働時間範囲での電力特性は、設備容量に等しい一定値であっても良い。 The production facility power characteristic data includes the rated power value based on the facility capacity unique to the manufacturing facility and the time variation of the operating load. Specifically, the operation time from the start to the end of the operation of the equipment and the corresponding power load change. In the present invention, since the purpose is to confirm the peak value of the power load, the power characteristic in the operating time range may be a constant value equal to the equipment capacity.
 図5は、材料の混練プロセスPr1における具体的な製造機器稼働時間と電力推移の関係を示したものである。製造機器稼働時間は、製造機器の稼動計画、すなわち生産計画と紐づいた製造機器の運転停止スケジュールを示したものである。製造機器稼働時間は、プロセスに関連して生産計画16の中に紐付けられて記憶されていてもよいし、プロセスが決定すれば使用する機器とその稼働時間が一義的に定められることから生産設備電力特性11の中に記憶されていてもよい。 FIG. 5 shows the relationship between specific manufacturing equipment operating time and power transition in the material kneading process Pr1. The manufacturing equipment operating time indicates the manufacturing equipment operation plan, that is, the manufacturing equipment operation stop schedule associated with the production plan. The manufacturing equipment operating time may be associated with the process and stored in the production plan 16, or if the process is determined, the equipment to be used and its operating time are uniquely determined. It may be stored in the facility power characteristic 11.
 図5の例では、図5中段に示すように、機器M11はプロセスPr1の全期間で稼動し、最も大きな電力負荷である機器M12は、9時から11時まで稼動する。機器M13は、11時から16時まで、稼動機器M14は、16時から18時まで稼動するものとする。 In the example of FIG. 5, as shown in the middle part of FIG. 5, the device M11 operates during the entire period of the process Pr1, and the device M12 that is the largest power load operates from 9:00 to 11:00. The device M13 operates from 11:00 to 16:00, and the operating device M14 operates from 16:00 to 18:00.
 図1の稼動予定設備探索部12では、X日の各時刻に実行されるプロセス名を生産計画設定部16から求め、また求めたプロセス名で使用する(稼動させる)生産設備とその電力負荷容量を生産設備電力特性データベース11から求める。 The operation scheduled facility search unit 12 in FIG. 1 obtains the process name to be executed at each time of X days from the production plan setting unit 16, and uses (operates) the production facility to be used with the obtained process name and its power load capacity. Is obtained from the production facility power characteristic database 11.
 時間・電力合成部14では、X日の各時刻における電力負荷容量を連続して求め、X日の24時間における電力負荷容量の推移を算出する。つまり、時刻ごとに稼動している機器を抽出し、その電力負荷量を加算し、X日の24時間の電力推移を求める。 The time / power combining unit 14 continuously obtains the power load capacity at each time on the X day, and calculates the transition of the power load capacity at 24 hours on the X day. That is, a device that is operating at each time is extracted, and the power load amount is added to obtain a power transition for 24 hours on the X day.
 この事例を、図5の下部に電力負荷として示す。この材料の混練プロセスPr1の事例では、8時から9時までは機器M11を使用しこのときの電力負荷は200kWとなる。9時から11時までは機器M11、M12を使用し、このときの電力負荷は1200kWとなる。移行、詳細説明を省くが、400kW、300kWに推移し、この日の操業を停止する。 This example is shown as a power load at the bottom of FIG. In the case of this material kneading process Pr1, the apparatus M11 is used from 8:00 to 9:00, and the power load at this time is 200 kW. The devices M11 and M12 are used from 9:00 to 11:00, and the power load at this time is 1200 kW. The transition and detailed explanation are omitted, but the transition is made to 400 kW and 300 kW, and the operation of this day is stopped.
 図5では、材料の混練プロセスPr1の事例で、X日の24時間の電力推移を求める例を示したが、同様に他のプロセスに対してもX日の24時間の電力推移を算出する。そのうえで、各プロセスの合計のX日の24時間の電力推移を求める。この合計電力量推移を図示していないが、以下の説明においては、説明を簡便にするために、図5下に示した電力負荷量の推移パタンが、高品質電力負荷予測部1の予測値YA1(X)であるとして説明する。このようにして求められたX日の24時間における電力負荷容量の推移は、高品質電力予測値出力部15から、予測値YA1(X)として出力される。 FIG. 5 shows an example of obtaining the power transition for 24 hours on the X day in the case of the material kneading process Pr1, but the power transition for 24 hours on the X day is similarly calculated for other processes. After that, the power transition for 24 hours in total X days of each process is obtained. Although the total power amount transition is not illustrated, in the following description, the power load amount transition pattern shown in the lower part of FIG. 5 is the predicted value of the high-quality power load prediction unit 1 in order to simplify the description. A description will be given assuming that YA1 (X). The transition of the power load capacity in 24 hours on the X day thus obtained is output from the high quality power predicted value output unit 15 as the predicted value YA1 (X).
 次に、図1の低品質電力負荷予測部2では、予測月日設定部22において将来の特定日Xを定め、操業カレンダー24を備え、また事業所10Aにおいて計測した非生産設備用電力P2の過去実績値を取り込み、電力負荷実績データベース21に蓄積している。 Next, in the low quality power load prediction unit 2 of FIG. 1, the prediction date setting unit 22 determines the future specific date X, includes the operation calendar 24, and the non-production facility power P2 measured in the office 10A. Past performance values are taken in and stored in the power load performance database 21.
 ここで、低品質電力(製造機器との接続関係にない電力負荷)とは、前述のとおり、事務所照明や空調電力など、製造に直接係わらない設備を対象としており、電圧や周波数特性が即、製品品質に影響しないことから、低品質電力と呼称している。多くの場合、日時などカレンダー情報の他、気温や湿度など気象要因に影響を受ける特性があると考えてよい。 Here, low-quality power (power load not connected to manufacturing equipment) refers to equipment that is not directly related to manufacturing, such as office lighting and air-conditioning power, as described above. This is called low quality power because it does not affect product quality. In many cases, it may be considered that there are characteristics that are influenced by weather factors such as temperature and humidity in addition to calendar information such as date and time.
 図6により、低品質電力予測の考え方を説明する。電力負荷実績データベース21に蓄積された日単位での電力負荷実績は、例えば図6のように24時間内での電力負荷の変動を示したものである。この電力負荷実績は、非生産設備用電力P2の過去実績値なので、照明、冷暖房などの電力負荷が主体であり、全体には事務所に人がいる昼間に大きくなり、夜間に少なくなる。更に、操業日と非操業日では異なる傾向を示し、また曜日、季節的変動もある。さらには、当日の天候なども影響する。電力負荷実績データベース21には、これらの各種の条件下で計測された非生産設備用電力P2の過去実績値が記憶されている。 Figure 6 explains the concept of low-quality power prediction. The daily power load record stored in the power load record database 21 indicates, for example, fluctuations in the power load within 24 hours as shown in FIG. Since this power load record is a past record value of the non-production facility power P2, the power load such as lighting and cooling / heating is mainly used, and it increases in the daytime when people are in the office as a whole, and decreases at nighttime. Furthermore, there are different tendencies between the operating days and the non-operating days, and there are also day and seasonal fluctuations. In addition, the weather of the day will also have an effect. The power load record database 21 stores past record values of non-production facility power P2 measured under these various conditions.
 図6上段は、当該工場における事務所照明・空調の電力負荷の標準パタンを示すものである。工場の特徴として、製造プロセスの電力負荷に比べて低品質電力は同等かそれ以下の負荷であるとする。図6上段の標準パタンでは、操業時間帯は最大500kW負荷、それ以外の時間帯では概ね200kW負荷とした。低品質電力予測では、この標準パタンに加えて、前日実績値もしくは前週の同じ曜日の電力負荷実績を参照する。 The upper part of Fig. 6 shows the standard pattern of power load for office lighting and air conditioning in the factory. As a characteristic of the factory, it is assumed that the low-quality power is equal to or less than the power load of the manufacturing process. In the standard pattern in the upper part of FIG. 6, the operation time zone is a maximum of 500 kW load, and the other time zone is approximately 200 kW load. In the low quality power prediction, in addition to the standard pattern, the previous day actual value or the power load actual on the same day of the previous week is referred to.
 図6中段の前日実績値では、上段の標準パタンと同様、最大500kWの電力負荷をもつが、朝の負荷立ち上がりが急変したデータとなっている。これら標準パタンと前日実績値を参照し、低品質電力負荷を予測した結果を図6下段に示す。標準パタンと前日実績値から予測値を求める方法は様々あるが、一般的に重みつき加重平均値を時刻毎に求め、予測値とする。その結果、下段実線の結果を得ることができる。 The previous day's actual values in the middle of Fig. 6 have data with a maximum 500 kW power load, as in the upper standard pattern, but with sudden changes in the morning load. The result of predicting a low-quality power load with reference to these standard patterns and the previous day actual values is shown in the lower part of FIG. There are various methods for obtaining the predicted value from the standard pattern and the previous day actual value, but generally a weighted weighted average value is obtained for each time and used as the predicted value. As a result, the result of the lower solid line can be obtained.
 低品質電力負荷予測部2の類似負荷探索部25では、将来の特定日Xの条件に合致する非生産設備用電力P2の過去実績値を電力負荷実績データベース21から求める。なお、ここで求める過去実績値は、1つのデータを抽出するだけでなく、条件に合致する類似の幾つかのデータの平均的な値として求めてもよい。 The similar load search unit 25 of the low quality power load prediction unit 2 obtains the past actual value of the power P2 for non-production equipment that matches the condition of the specific date X in the future from the power load result database 21. Note that the past performance value obtained here may be obtained as an average value of several similar pieces of data that match the conditions, as well as extracting one piece of data.
 低品質電力負荷予測部2の類似負荷探索は、上記した幾つかの考え方に基づいて実行されればよいが、その典型的な一例を図6で紹介する。この場合、過去実績から、条件に合致する類似の幾つかのデータの平均的な値として図6上の標準パタンを求めておく。このパタンでは、人がいる昼間の電力量が比較的緩やかに増減し、正午頃にピークとなる。これに対し、直近の前日のデータ(図6中)では、始業前から急速に電力量が増加し、退勤と共に急激に電力減少する傾向が顕著に現れている。これらの2つのパタンを勘案して、最終的な電力予測としては出退勤時刻に前日実績の傾向を反映させ、正午頃に電力量がピークになる標準パタンの特徴を生かした図6下の太実線の電力予測を得る。このようにして求められたX日の24時間における電力負荷容量の推移は、低品質電力予測値出力部23から、予測値YA2(X)として出力される。 The similar load search of the low-quality power load prediction unit 2 may be executed based on the above-mentioned several ideas, and a typical example is introduced in FIG. In this case, the standard pattern in FIG. 6 is obtained from the past results as an average value of several pieces of similar data that meet the conditions. In this pattern, the amount of power in the daytime when people are present increases and decreases relatively slowly, and peaks around noon. On the other hand, in the data of the most recent previous day (in FIG. 6), there is a noticeable tendency that the amount of power increases rapidly from before the start of work and decreases rapidly with retirement. Taking these two patterns into consideration, the final power forecast reflects the tendency of the previous day's performance at the time of going to and from work, and the solid line at the bottom of Fig. 6 takes advantage of the characteristics of the standard pattern in which the amount of power peaks around noon. Get power predictions for The transition of the power load capacity in 24 hours on the X day obtained in this way is output from the low quality power predicted value output unit 23 as the predicted value YA2 (X).
 なお、図1の電力負荷予測装置50A内の低品質電力負荷予測部2において、事業所10Aの低品質電力負荷を予測することを説明したが、これは事業所ごとに低品質電力負荷を予測するのではなく、工業団地全体として低品質電力負荷を一括予測することで、低品質電力負荷予測を事業所個別に行う場合よりもシステムを簡便に構成できる。つまり、低品質電力負荷予測部2を50A内にのみ設置して工業団地全体としての低品質電力負荷を一括予測し、他の予測部50B、50Cには低品質電力負荷予測部2を設けない構成とするのがよい。 In addition, although the low quality power load prediction unit 2 in the power load prediction device 50A in FIG. 1 has been described to predict the low quality power load of the office 10A, this predicts the low quality power load for each office. Instead, the system can be configured more simply than the case where the low quality power load prediction is performed for each business establishment by collectively predicting the low quality power load as the entire industrial park. That is, the low quality power load prediction unit 2 is installed only in 50A to collectively predict the low quality power load as the entire industrial park, and the low quality power load prediction unit 2 is not provided in the other prediction units 50B and 50C. It is good to have a configuration.
 図7は、図2の事業所10Aが将来の特定日Xに生産計画(プロセスPr1からPr4を昼間操業)に基づいて操業したときの、高品質電力推移YA1(X)と低品質電力YA2(X)を時間方向に沿って予測した結果である。但し、この図では、説明の都合上先にも述べたように、図5のプロセスPr1の予測結果(図5下)のパタンが、他のプロセスも含めた合計の高品質電力の予測結果と同じパタンであるとして図7に表記している。なお、実際に最終の当該工場の総合電力負荷予測値YA(X)を求めるには、この他のプロセスP2、P3、P4についても高品質電力を図5と同様にして各々求め、累積加算することで得ればよい。 FIG. 7 shows the high-quality power transition YA1 (X) and the low-quality power YA2 (when the establishment 10A in FIG. 2 operates on a specific date X in the future based on the production plan (processes Pr1 to Pr4 are operated in the daytime). This is a result of predicting X) along the time direction. However, in this figure, as described above for convenience of explanation, the pattern of the prediction result of process Pr1 in FIG. 5 (bottom of FIG. 5) is the total high-quality power prediction result including other processes. The same pattern is shown in FIG. In addition, in order to actually obtain the final integrated power load predicted value YA (X) of the factory concerned, high quality power is obtained for each of the other processes P2, P3, and P4 in the same manner as in FIG. 5, and cumulatively added. You can get it.
 図1に戻り、この工業団地内の他の事業所10B、10Cについても同様にして当該工場の総合電力負荷予測値YA(X)を求める。この求め方は、基本的に上記説明から容易に理解しえることなので、ここでは簡単に一例を説明するにとどめる。 Referring back to FIG. 1, the total power load predicted value YA (X) of the factory is obtained in the same manner for the other offices 10B and 10C in the industrial park. This method of obtaining is basically easy to understand from the above description, so only an example will be described here.
 事業所10Bは、24時間フル生産の場合として、例えば自動車やエアコンのような組み立て工場であるとする。図8は、24時間フル生産の場合の生産計画を示している。ここでは、プロセスPr5からPr8を連続操業する。 The office 10B is assumed to be an assembly factory such as an automobile or an air conditioner as a case of full production for 24 hours. FIG. 8 shows a production plan in the case of full production for 24 hours. Here, the processes Pr5 to Pr8 are continuously operated.
 図9は、連続稼動例での生産設備電力特性データベースの11一例を示す図であり、特にプロセスPr5における製造機器と定格消費電力の関係を示している。このテーブルには、プロセスPr5について機器M51、M52、およびM53とその定格消費電力W51、W52、W53が記述されている。他のプロセスPr6からPr8も同様に設定されている。 FIG. 9 is a diagram showing 11 examples of the production facility power characteristic database in the continuous operation example, and particularly shows the relationship between the manufacturing equipment and the rated power consumption in the process Pr5. In this table, devices M51, M52, and M53 and their rated power consumption W51, W52, and W53 are described for the process Pr5. The other processes Pr6 to Pr8 are similarly set.
 図10は、連続稼動例でのプロセスPr5における製造機器の運転停止スケジュールを中段に示したものである。プロセスPr5では、機器M51、M52が昼夜フル稼働状態であり、M53が2時から10時に稼動する。図10下段に、対応する電力負荷予測値を示すが、24時間通して、950kWか1000kWの電力負荷が予測値として得られる。21時から23時において、電力負荷が930kWに下がるが、これは夜間生産負荷が低下したことによるものであり、図9において、製造機器の部分負荷運転データが記載ない場合は、950kWと予測しても問題ない。 FIG. 10 shows the production equipment operation stop schedule in the process Pr5 in the continuous operation example in the middle. In the process Pr5, the devices M51 and M52 are in a full operation state day and night, and the M53 operates from 2 o'clock to 10 o'clock. The corresponding power load predicted value is shown in the lower part of FIG. 10, and a power load of 950 kW or 1000 kW is obtained as the predicted value through 24 hours. From 21:00 to 23:00, the power load drops to 930 kW, which is due to a decrease in the nighttime production load. In FIG. 9, when the partial load operation data of the manufacturing equipment is not described, it is estimated to be 950 kW. There is no problem.
 図11は、予測結果としての高品質電力予測値YB1(X)と、低品質電力予測値YB2(X)を時間方向に記した例である。なお、図示説明では、図10のプロセスPr5の予測結果波形を、他のプロセスでの演算結果も加味した最終の高品質電力予測値YB1(X)として標記している。 FIG. 11 shows an example in which the high quality power prediction value YB1 (X) and the low quality power prediction value YB2 (X) as prediction results are written in the time direction. In the illustrated explanation, the prediction result waveform of the process Pr5 in FIG. 10 is marked as a final high-quality power prediction value YB1 (X) that also includes calculation results in other processes.
 また、低品質予測値については、前期日中稼動の実施例と同様、製造機器の稼動スケジュールと関係なく変化することから、ここでは前記図6の工業団地一括で求めた予測値を用いた。 Moreover, since the low quality prediction value changes regardless of the operation schedule of the manufacturing equipment as in the case of the daytime operation in the previous period, the prediction value obtained for the industrial park collectively in FIG. 6 was used here.
 図2の事業所10Cは、昼夜フル操業の例であるが、図12に示すように、24時間操業のプロセスPr9に加えて、夜間操業のプロセスPr10、Pr11、Pr12が入った夜間主体型の操業形態をとっている。図12では、時刻23時の次は翌日のデータとなるため、プロセスPr10は0時から6時に示されているが、実稼動としては、20時に稼動し翌日6時に停止するプロセスとなっている。 The office 10C in FIG. 2 is an example of full operation day and night, but as shown in FIG. 12, in addition to the 24-hour operation process Pr9, it is a night-dominated type that includes night operation processes Pr10, Pr11, and Pr12. It takes the form of operation. In FIG. 12, since the next day after 23:00 is the next day's data, the process Pr10 is shown from 0 o'clock to 6 o'clock, but the actual operation is a process that runs at 20 o'clock and stops at 6 o'clock the next day. .
 図13はプロセス10の製造機器番号と対応する定格消費電力のデータテーブルである。ここで機器M102については、設備起動時間を括弧内に付記した。機器M102は、例えば誘導加熱炉のように、定格電力容量が大きく、かつ起動に多大の時間を要するものであり、時刻ごとの消費電力増加パタンを付記する必要がある。 FIG. 13 is a data table of rated power consumption corresponding to the manufacturing equipment number of the process 10. Here, for the device M102, the equipment activation time is shown in parentheses. The device M102 has a large rated power capacity, such as an induction heating furnace, and requires a long time for startup, and it is necessary to add a power consumption increase pattern for each time.
 図14は、プロセスPr10において、製造機器運転停止スケジュールを中段に示した図である。夜間20時に機器M101、102を起動し、翌日4時にM102を停止、かわって機器M103を起動し、6時に停止するというスケジュールである。これに対応する電力負荷予測値を図14下段に示す。夜間20時に稼動した設備のうちM102については起動時間1.5hrを要するので、時刻21:30に定格消費電力に到達する予測結果を得る。その後、翌日予測値計算において、4時に消費電力予測値が1100kWから250kWに減少する結果を出力する。 FIG. 14 is a diagram showing the manufacturing equipment operation stop schedule in the middle in the process Pr10. In this schedule, the devices M101 and M102 are activated at 20:00 at night, the M102 is deactivated at 4am the following day, the device M103 is activated instead, and the device is deactivated at 6am. The predicted power load value corresponding to this is shown in the lower part of FIG. Since the startup time of 1.5 hours is required for M102 among the facilities operating at 20:00 at night, a prediction result of reaching the rated power consumption at time 21:30 is obtained. After that, in the next day predicted value calculation, a result that the power consumption predicted value decreases from 1100 kW to 250 kW at 4 o'clock is output.
 図15は、プロセスPr10において、中段に高品質電力予測値、下段に低品質電力予測値を時間方向に示した例である。低品質電力予測値については、前記図6の場合と同様に得るものとする。工場全体の電力負荷予測値は、24時間稼動中のプロセスPr9と、その他、プロセスPr11、Pr12、Pr13を累積加算することで得る。 FIG. 15 is an example in the process Pr10 showing the high-quality power predicted value in the middle and the low-quality power predicted value in the lower level in the time direction. The low quality power prediction value is obtained in the same manner as in FIG. The predicted power load value for the entire factory is obtained by cumulatively adding the process Pr9 operating for 24 hours and the other processes Pr11, Pr12, and Pr13.
 以上、工場が日中稼動、24時間フル生産、および夜間操業の場合での電力負荷予測を示したが、工場休日については、図6に示した低品質電力予測値を用いることで、対応できる。ただし、標準パタンについては、工場休日の場合を準備する必要がある。 As described above, the power load prediction in the case where the factory is operated during the daytime, full production for 24 hours, and night operation has been shown. However, the factory holiday can be dealt with by using the low quality power prediction value shown in FIG. . However, it is necessary to prepare a standard pattern for a factory holiday.
 以上詳細に説明したように、本発明の電力負荷予測においては、高品質電力負荷予測と低品質電力負荷予測をそれぞれ実行し、これらからの予測値を加算して最終の電力負荷予測値を得る。前者は、将来の生産計画に基づいて行う電力負荷予測であり、後者は過去の実績に基づく電力負荷予測である。 As described above in detail, in the power load prediction according to the present invention, the high quality power load prediction and the low quality power load prediction are executed, and the prediction values from these are added to obtain the final power load prediction value. . The former is a power load prediction based on a future production plan, and the latter is a power load prediction based on past performance.
 図1において、事業所10Aの高品質電力予測値YA1(X)と低品質電力予測値YA2(X)は、加算手段3において同じ時刻どうしで加算し、結果として電力負荷予測値4(YA(X))を得る。 In FIG. 1, the high quality power prediction value YA1 (X) and the low quality power prediction value YA2 (X) of the office 10A are added at the same time in the adding means 3, and as a result, the power load prediction value 4 (YA ( X)).
 本発明では、さらに他の工場50B、50Cの負荷予測値YB(X)、YC(X)を、通告分として受取り、加算手段5にて加算することで、全電力負荷予測合計値Y(X)を得る。 In the present invention, the predicted load values YB (X) and YC (X) of the other factories 50B and 50C are received as notifications, and added by the adding means 5, whereby the total power load predicted total value Y (X )
 先にも述べたように、予測の結果は自動的に自家発電電源20内の複数のディーゼル発電機DEGの直接制御に反映され、あるいは管理者の判断による手動設定に反映される。 As described above, the prediction result is automatically reflected in the direct control of the plurality of diesel generators DEG in the private power generation power source 20, or in the manual setting based on the judgment of the administrator.
 このようにして得られた高品質電力は、自家発電設備であるディーゼル発電機群DEGと直結した関係となっており、外部系統電源が不安定な場合でも、安定した高品質電力を得ることが可能である。一方、低品質電力は電圧変動などを許容するものとし、外部系統電源と直結する構成をとる。ただし、ディーゼル発電機、外部系統間も接続可能とし、低品質電力もディーゼル発電機が電力を供給することも可能とする。 The high-quality power obtained in this way is directly connected to the diesel generator group DEG, which is a private power generation facility, and even when the external system power supply is unstable, stable high-quality power can be obtained. Is possible. On the other hand, low-quality power is allowed to change in voltage and the like, and is configured to be directly connected to an external power supply. However, the diesel generator and the external system can be connected, and low-quality power can be supplied by the diesel generator.
 以上により、本発明の電力負荷予測方式は、生産設備稼働計画に基づき、電圧安定など高い品質が要求される電力負荷に対して、精度良い負荷予測が可能となる。また雑電力のような低品質電力の予測と分離し、負荷予測値を得るので、周期性のある負荷変化も考慮可能である。 As described above, the power load prediction method of the present invention enables accurate load prediction for a power load that requires high quality such as voltage stability based on a production facility operation plan. Moreover, since the load prediction value is obtained separately from the prediction of low quality power such as miscellaneous power, it is possible to consider a load change with periodicity.
 1 生産設備用の電力負荷の予測部
 2 非生産設備用の電力負荷の予測部
 5 電力負荷予測装置
 10A、10B、10C 複数の事業所
 11 生産設備電力特性データベース
 13 予測日時設定部
 14 時間・電力合成部
 16 生産計画設定部
 20 電源
 21 電力負荷実績データベース
 24 操業カレンダー
 25 類似負荷探索部
 30 商用電源
 40 送電線
 50A 事業所10Aの為の電力負荷予測装置
 50B、50C 事業所10B、10Cの為の部分電力負荷予測装置
 100 工業団地
 L1 生産設備
 L2 非生産設備
 P1 生産設備用電力
 P2 非生産設備用電力
 DEG ディーゼル発電機
 M 機器
DESCRIPTION OF SYMBOLS 1 Power load prediction part for production facilities 2 Power load prediction part for non-production facilities 5 Power load prediction devices 10A, 10B, 10C Multiple establishments 11 Production facility power characteristic database 13 Prediction date setting part 14 Time / power Combining unit 16 Production plan setting unit 20 Power supply 21 Power load record database 24 Operation calendar 25 Similar load search unit 30 Commercial power supply 40 Transmission line 50A Power load prediction device 50B, 50C For business sites 10B, 10C Partial power load prediction device 100 Industrial park L1 Production facilities L2 Non-production facilities P1 Power for production facilities P2 Power for non-production facilities DEG Diesel generator M Equipment

Claims (15)

  1.  1つまたは複数の事業所で構成される工業団地で必要とする電力量を、将来の特定日について予測する為の工業団地の電力負荷予測装置において、
     前記の事業所における生産に関与する生産設備と生産に関与しない非生産設備のうち、前記生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、前記特定日の電力量の時刻ごとの推移を予測する高品質電力予測部と、
     前記非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測する低品質電力予測部を備え、それぞれで求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とすることを特徴とする工業団地の電力負荷予測装置。
    In an industrial park power load forecasting device for forecasting the amount of power required in an industrial park composed of one or more establishments for a specific date in the future,
    Of the production facilities involved in production at the office and non-production facilities not involved in production, for the production facilities, the production plan for a specific date in the future, the equipment used in this production plan, and its use time , A high-quality power prediction unit that predicts the transition of the power amount of the specific day for each time, and
    For the non-production facility, the transition of the power amount of the non-production facility in the past is accumulated, and a low-quality power prediction unit that predicts the transition of the power amount for each specific time in the future based on past results, respectively, A power load predicting device for an industrial park characterized in that, with respect to the transition of the power amount obtained in step 1, the sum at each time is obtained to obtain the amount of power required in the industrial park on a specific date in the future.
  2.  請求項1に記載の工業団地の電力負荷予測装置において、
     前記高品質電力予測部は、生産計画ごとに、ここで使用する機器とその定格電力量を記憶しておく生産設備電力特性データベースを備え、前記低品質電力予測部は過去における当該非生産設備の電力量の推移を蓄積しておく電力負荷実績データベースを備えていることを特徴とする工業団地の電力負荷予測装置。
    In the electric load prediction apparatus of the industrial park of Claim 1,
    The high-quality power prediction unit includes a production facility power characteristic database for storing the equipment used here and the rated power amount for each production plan, and the low-quality power prediction unit A power load prediction device for an industrial park, comprising a power load record database for accumulating changes in power consumption.
  3.  工業団地が複数の事業所で構成された請求項1に記載の工業団地の電力負荷予測装置において、
     前記高品質電力予測部と低品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測装置。
    In the industrial area electric power load prediction device according to claim 1, wherein the industrial area is composed of a plurality of establishments.
    The high-quality electric power prediction unit and the low-quality electric power prediction unit are provided for each business establishment in the industrial park and execute the prediction of the amount of electric power.
  4.  工業団地が複数の事業所で構成された請求項1に記載の工業団地の電力負荷予測装置において、
     前記高品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行し、
     前記低品質電力予測部は、工業団地内の複数の事業所に共通に備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測装置。
    In the industrial area electric power load prediction device according to claim 1, wherein the industrial area is composed of a plurality of establishments.
    The high-quality power prediction unit is provided for each business establishment in the industrial park, and performs prediction of electric energy,
    The low-quality power prediction unit is provided in common to a plurality of business establishments in an industrial park and executes a power amount prediction.
  5.  送電線で接続された1つまたは複数の事業所で構成される工業団地、事業所に給電する自家発電電源、前記工業団地で必要とする電力量を、将来の特定日について予測する為の電力負荷予測装置とから構成される工業団地の電力負荷予測システムにおいて、
     前記電力負荷予測装置は、前記の事業所における生産に関与する生産設備と生産に関与しない非生産設備のうち、前記生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、前記特定日の電力量の時刻ごとの推移を予測する高品質電力予測部と、前記非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測する低品質電力予測部を備え、それぞれで求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とすることを特徴とする工業団地の電力負荷予測システム。
    Industrial parks composed of one or more establishments connected by power transmission lines, private power generation power to supply the establishments, and electricity to predict the amount of power required in the industrial estate for a specific date in the future In an industrial park power load prediction system consisting of a load prediction device,
    The power load prediction device includes a production plan for a specific date in the future, and a device used in the production plan for the production facility among production facilities involved in production at the office and non-production facilities not involved in production. And the high-quality power prediction unit that predicts the transition of the power amount of the specific day for each time using the time of use, and the non-production facility, accumulates the transition of the power amount of the non-production facility in the past, Equipped with a low-quality power forecasting unit that predicts the transition of the amount of power for a specific day in the future based on past results. A power load prediction system for an industrial park, characterized in that the amount of power required in the industrial park on a specific date of the industrial park.
  6.  請求項5に記載の工業団地の電力負荷予測システムにおいて、
     前記高品質電力予測部は、生産計画ごとに、ここで使用する機器とその定格電力量を記憶しておく生産設備電力特性データベースを備え、前記低品質電力予測部は過去における当該非生産設備の電力量の推移を蓄積しておく電力負荷実績データベースを備えていることを特徴とする工業団地の電力負荷予測システム。
    In the industrial area electric power load prediction system according to claim 5,
    The high-quality power prediction unit includes a production facility power characteristic database for storing the equipment used here and the rated power amount for each production plan, and the low-quality power prediction unit A power load forecasting system for an industrial park, characterized by having a power load record database for accumulating changes in power consumption.
  7.  工業団地が複数の事業所で構成された請求項5に記載の工業団地の電力負荷予測システムにおいて、
     前記高品質電力予測部と低品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測システム。
    In the industrial estate power load prediction system according to claim 5, wherein the industrial estate is composed of a plurality of establishments.
    The high-quality power prediction unit and the low-quality power prediction unit are provided for each business office in the industrial park, and execute a power amount prediction.
  8.  工業団地が複数の事業所で構成された請求項5に記載の工業団地の電力負荷予測システムにおいて、
     前記高品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行し、
     前記低品質電力予測部は、工業団地内の複数の事業所に共通に備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測システム。
    In the industrial estate power load prediction system according to claim 5, wherein the industrial estate is composed of a plurality of establishments.
    The high-quality power prediction unit is provided for each business establishment in the industrial park, and performs prediction of electric energy,
    The low-quality power prediction unit is provided in common to a plurality of business establishments in an industrial park and executes a power amount prediction.
  9.  請求項5に記載の工業団地の電力負荷予測システムにおいて、
     電力負荷予測装置により予測した電力量の推移に基づき、前記将来の特定日に前記自家発電電源の発電量を制御することを特徴とする工業団地の電力負荷予測システム。
    In the industrial area electric power load prediction system according to claim 5,
    A power load prediction system for an industrial park, wherein the power generation amount of the private power generation power source is controlled on the specific date in the future based on the transition of the power amount predicted by the power load prediction device.
  10.  1つまたは複数の事業所で構成される工業団地で必要とする電力量を、将来の特定日について予測する為の工業団地の電力負荷予測方法において、
     前記の事業所の電力設備を、生産に関与する生産設備と生産に関与しない非生産設備に分類し、前記生産設備について、将来の特定日の生産計画と、この生産計画で使用する機器とその使用時刻を用いて、前記特定日の電力量の時刻ごとの推移を予測し、前記非生産設備について、過去における当該非生産設備の電力量の推移を蓄積し、過去実績に基づいて将来の特定日の電力量の時刻ごとの推移を予測することを特徴とする工業団地の電力負荷予測方法。
    In the method of predicting the power load of an industrial park for predicting the amount of power required in an industrial park composed of one or more establishments for a specific date in the future,
    The electric power facilities of the business office are classified into production facilities that are involved in production and non-production facilities that are not involved in production. Using the time of use, predict the transition of the amount of power on the specific day for each time, accumulate the transition of the power amount of the non-production facility in the past for the non-production facility, and identify the future based on the past performance A method for predicting the power load of an industrial park, wherein the transition of the daily power consumption at each time is predicted.
  11.  請求項10に記載の工業団地の電力負荷予測方法において、
     それぞれ求めた電力量の時刻ごとの推移について、同時刻ごとの和を求めて将来の特定日における当該工業団地で必要とする電力量とすることを特徴とする工業団地の電力負荷予測方法。
    In the electric load prediction method of the industrial estate of Claim 10,
    A method for predicting an electric load of an industrial park, characterized in that, for each transition of electric power obtained for each time, a sum for each time is obtained and used as an electric energy required for the industrial park on a specific day in the future.
  12.  工業団地が複数の事業所で構成された請求項2に記載の工業団地の電力負荷予測装置において、
     前記高品質電力予測部と低品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測装置。
    In the industrial park electric power load prediction apparatus according to claim 2, wherein the industrial park is composed of a plurality of establishments.
    The high-quality electric power prediction unit and the low-quality electric power prediction unit are provided for each business establishment in the industrial park and execute the prediction of the amount of electric power.
  13.  工業団地が複数の事業所で構成された請求項2に記載の工業団地の電力負荷予測装置において、
     前記高品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行し、
     前記低品質電力予測部は、工業団地内の複数の事業所に共通に備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測装置。
    In the industrial park electric power load prediction apparatus according to claim 2, wherein the industrial park is composed of a plurality of establishments.
    The high-quality power prediction unit is provided for each business establishment in the industrial park, and performs prediction of electric energy,
    The low-quality power prediction unit is provided in common to a plurality of business establishments in an industrial park and executes a power amount prediction.
  14.  工業団地が複数の事業所で構成された請求項6に記載の工業団地の電力負荷予測システムにおいて、
     前記高品質電力予測部と低品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測システム。
    In the industrial estate power load prediction system according to claim 6, wherein the industrial estate is composed of a plurality of establishments.
    The high-quality power prediction unit and the low-quality power prediction unit are provided for each business office in the industrial park, and execute a power amount prediction.
  15.  工業団地が複数の事業所で構成された請求項6に記載の工業団地の電力負荷予測システムにおいて、
     前記高品質電力予測部は、工業団地内の事業所ごとに備えられて電力量の予測を実行し、
     前記低品質電力予測部は、工業団地内の複数の事業所に共通に備えられて電力量の予測を実行することを特徴とする工業団地の電力負荷予測システム。
    In the industrial estate power load prediction system according to claim 6, wherein the industrial estate is composed of a plurality of establishments.
    The high-quality power prediction unit is provided for each business establishment in the industrial park, and performs prediction of electric energy,
    The low-quality power prediction unit is provided in common to a plurality of business establishments in an industrial park and executes a power amount prediction.
PCT/JP2012/053670 2011-02-23 2012-02-16 Apparatus for forecasting electric power load of industrial park, system and method WO2012114974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800097167A CN103380557A (en) 2011-02-23 2012-02-16 Apparatus for forecasting electric power load of industrial park, system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-036768 2011-02-23
JP2011036768A JP2012175847A (en) 2011-02-23 2011-02-23 Electric power load prediction device, system, and method for industrial park

Publications (1)

Publication Number Publication Date
WO2012114974A1 true WO2012114974A1 (en) 2012-08-30

Family

ID=46720755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053670 WO2012114974A1 (en) 2011-02-23 2012-02-16 Apparatus for forecasting electric power load of industrial park, system and method

Country Status (3)

Country Link
JP (1) JP2012175847A (en)
CN (1) CN103380557A (en)
WO (1) WO2012114974A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544362A (en) * 2013-11-04 2014-01-29 国网上海市电力公司 Harmonic medium and long term prediction method based on two-dimensional curve prediction
CN112713616A (en) * 2020-12-31 2021-04-27 南方电网科学研究院有限责任公司 Control method, device, equipment and medium for generating side unit of power system
CN112803492A (en) * 2020-12-31 2021-05-14 南方电网科学研究院有限责任公司 Control method, device, equipment and medium for generating side unit of power system
CN117477564A (en) * 2023-12-28 2024-01-30 南京迅集科技有限公司 Power grid load optimization method and system based on industrial park

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761616B (en) * 2014-01-22 2017-02-15 东华大学 Method for distributing product power consumption based on device power and operation time
CN110334739A (en) * 2019-06-05 2019-10-15 深圳供电局有限公司 A kind of two-part component load forecasting method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522157B2 (en) * 1985-03-22 1993-03-26 Kawasaki Seitetsu Kk
JP2004129322A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Predictive control system for power demand

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257276A (en) * 2003-02-25 2004-09-16 Osaka Gas Co Ltd Cogeneration system
JP2005032235A (en) * 2003-06-20 2005-02-03 Matsushita Electric Ind Co Ltd Energy management system, energy management method, and energy saving recommendation device information providing apparatus
CN100454317C (en) * 2007-08-23 2009-01-21 上海交通大学 Electrified wire netting layout computer auxiliary decision-making support system
CN101330211B (en) * 2008-07-16 2011-02-09 沈阳西东控制技术有限公司 Micro-electric network system capable of generating and using electricity using renewable energy resources comprehensively
CN101640417B (en) * 2008-07-29 2012-07-04 西门子公司 Load management method and device
CN101630840B (en) * 2009-08-12 2011-06-08 电子科技大学 Intelligent control system for microgrid energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522157B2 (en) * 1985-03-22 1993-03-26 Kawasaki Seitetsu Kk
JP2004129322A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Predictive control system for power demand

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544362A (en) * 2013-11-04 2014-01-29 国网上海市电力公司 Harmonic medium and long term prediction method based on two-dimensional curve prediction
CN103544362B (en) * 2013-11-04 2016-08-17 国网上海市电力公司 A kind of harmonic wave medium-and long-term forecasting method based on two-dimensional curve prediction
CN112713616A (en) * 2020-12-31 2021-04-27 南方电网科学研究院有限责任公司 Control method, device, equipment and medium for generating side unit of power system
CN112803492A (en) * 2020-12-31 2021-05-14 南方电网科学研究院有限责任公司 Control method, device, equipment and medium for generating side unit of power system
CN112713616B (en) * 2020-12-31 2022-10-28 南方电网科学研究院有限责任公司 Control method, device, equipment and medium for generating side unit of power system
CN117477564A (en) * 2023-12-28 2024-01-30 南京迅集科技有限公司 Power grid load optimization method and system based on industrial park
CN117477564B (en) * 2023-12-28 2024-03-08 南京迅集科技有限公司 Power grid load optimization method and system based on industrial park

Also Published As

Publication number Publication date
JP2012175847A (en) 2012-09-10
CN103380557A (en) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012114974A1 (en) Apparatus for forecasting electric power load of industrial park, system and method
Zheng et al. Distributed model predictive control for on-connected microgrid power management
US9564757B2 (en) Method and apparatus for optimizing a hybrid power system with respect to long-term characteristics by online optimization, and real-time forecasts, prediction or processing
Gong et al. An energy-cost-aware scheduling methodology for sustainable manufacturing
US8886362B2 (en) Integrated distribution system optimization
JP6298465B2 (en) Power management apparatus, power management system, server, power management method, program
Beier Simulation approach towards energy flexible manufacturing systems
US20150378381A1 (en) Systems and methods for energy cost optimization
Hajimiragha et al. Research and development of a microgrid control and monitoring system for the remote community of Bella Coola: Challenges, solutions, achievements and lessons learned
JP2007129873A (en) Device and method for managing energy demand
WO2011016273A1 (en) Energy system
JP6541672B2 (en) System and method for error monitoring and handling in a control system
US20140067151A1 (en) Method and apparatus for automatically reconfiguring multi-phased networked energy storage devices at a site
de Salis et al. Energy storage control for peak shaving in a single building
US10484947B2 (en) Wireless communication device and wireless communication system
Zhang et al. Microgrid cooperative distributed energy scheduling (CoDES) considering battery degradation cost
Zavala et al. Proactive energy management for next-generation building systems
JP2010279238A (en) Control system for system monitor
US9842372B2 (en) Systems and methods for controlling assets using energy information determined with an organizational model of an industrial automation system
JP2017055629A (en) Peak power estimation device, power management system, and peak power estimation method
CN104049595A (en) System and method for determining energy information using an organizational model of an industrial automation system
FI128279B (en) A method and a system for dynamic aggregation of a fleet of power units to provide frequency regulation of a power system
CN103400217A (en) Wind power compatibility network safety analysis method for coordinated dispatching of wind power and conventional energy sources
JP2006109621A (en) Operation method for electric power storage system and control program for charging/discharging of electric power storage system
Eladl et al. Energy management system for smart microgrids considering energy theft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749331

Country of ref document: EP

Kind code of ref document: A1