WO2012114632A1 - Spectrometer module - Google Patents

Spectrometer module Download PDF

Info

Publication number
WO2012114632A1
WO2012114632A1 PCT/JP2011/079541 JP2011079541W WO2012114632A1 WO 2012114632 A1 WO2012114632 A1 WO 2012114632A1 JP 2011079541 W JP2011079541 W JP 2011079541W WO 2012114632 A1 WO2012114632 A1 WO 2012114632A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cavity
spectroscopic
grating element
light incident
Prior art date
Application number
PCT/JP2011/079541
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 能野
柴山 勝己
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2012114632A1 publication Critical patent/WO2012114632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Definitions

  • the present invention relates to a spectroscopic module.
  • a package provided with a light incident portion, a reflective grating provided on a curved surface which is a predetermined inner surface of the package, and attached to the package so as to face the reflective grating A device including a light detection element is known (see, for example, Patent Documents 1 to 3).
  • the light that has entered the package via the light incident portion is split and reflected by the reflective grating, and the light is detected by the light detection element.
  • the spectroscopic characteristics of the reflective grating greatly depend on the formation accuracy of the curved surface of the package. Therefore, if the curved surface of the package is not accurately formed with a predetermined curvature, the spectral characteristics change, and as a result, the reliability may be reduced.
  • an object of the present invention is to provide a spectroscopic module capable of preventing a decrease in reliability due to a change in spectroscopic characteristics while achieving miniaturization.
  • a spectroscopic module includes a housing member in which a cavity is formed, a light passage member that is attached to the housing member so as to face an inner surface of the cavity, and allows light to pass from the outside of the cavity into the cavity.
  • a spectroscopic unit that is supported by the member and splits light incident from outside the cavity and transmits the light to the inner surface side of the cavity; a reflecting unit that is disposed on the inner surface of the cavity and reflects the light dispersed by the spectroscopic unit; and a light passage member And a light detecting element that detects light reflected by the reflecting portion.
  • the transmissive spectroscopic unit and the light detection element are supported by a light passing member that allows light to pass from the outside of the cavity into the cavity. Therefore, it is possible to suppress the change in the spectral characteristics of the spectroscopic unit due to the state of the housing member. Furthermore, even if the spectroscopic unit, the reflection unit, and the light detection element are arranged close to each other, the light reflected from the light incident surface of the spectroscopic unit is stray light compared to the case where the transmission type spectroscopic unit is supported by the housing member. It can suppress detecting with a photon detection element. Therefore, according to this spectroscopic module, it is possible to prevent a reduction in reliability due to a change in spectroscopic characteristics while achieving miniaturization.
  • the spectroscopic unit and the light detection element are supported by the light passage member” not only means that the spectroscopic unit and the light detection element are directly supported by the light passage member, but also the spectroscopic unit and the light detection unit. This also includes the case where the element is supported indirectly by the light passage member (that is, via some member other than the housing member).
  • the light passing member or the light detection element may be provided with a light incident part so as to be positioned in front of the spectroscopic part. According to this, light can be selectively and reliably incident on a predetermined position of the spectroscopic unit.
  • the former stage means the upstream side in the light traveling direction.
  • the light passing member may be provided with a light emitting part so as to be located in the subsequent stage of the spectroscopic part and in the preceding stage of the reflecting part. According to this, only the light to be detected among the light separated by the spectroscopic unit can be passed.
  • the latter stage means the downstream side in the light traveling direction.
  • At least one of the light incident part and the light emitting part may be configured to move relative to the spectroscopic part. According to this, the wavelength range of the light to be detected can be changed.
  • the cavity may be hermetically sealed against the outside air. According to this, it is possible to prevent at least a member such as the reflection portion facing the cavity from deteriorating due to moisture or the like.
  • the reflecting portion is a mirror element disposed on the inner surface of the cavity, and the mirror element includes a base material having a concave portion formed on the surface and a molding layer disposed on the base material.
  • the first portion located in the concave portion when viewed from the depth direction of the concave portion, and the second portion located on the surface of the base material in a state of being connected to the first portion,
  • An optical function unit that is a mirror may be provided on a predetermined surface that faces the inner surface of the concave portion.
  • the first portion located in the concave portion of the base material by the second portion located on the surface of the base material The part of is pressed. Thereby, it can prevent that a molding layer peels from a base material. Furthermore, the shrinkage and expansion of the molding layer due to temperature changes during use are absorbed by the second part located on the surface of the base material, and the shrinkage of the first part located in the recess of the base material And swelling is relieved. Thereby, the deformation
  • the spectroscopic module 1 includes a package body (accommodating member) 2 having a rectangular parallelepiped box shape (for example, 35 mm in width, 30 mm in depth, and 15 mm in height) made of light-absorbing resin or ceramic. Yes.
  • the package body 2 is formed with a cavity 3 that is a concave section having a rectangular cross section that opens on one side, and wide sections 4 to 6 having a rectangular section that widen the opening 3a of the cavity 3 in stages.
  • a rectangular plate-shaped package lid (light passage member) 7 made of light-absorbing resin or ceramic is airtightly fixed to the widened portion 6 outside the package body 2 by adhesion or the like.
  • a light incident hole 8 is formed in the package lid 7, and a window member 9 is airtightly fixed to the light incident hole 8.
  • the cavity 3 is hermetically sealed against the outside air by the package body 2, the package lid 7, and the window member 9.
  • a rectangular plate-like support substrate (light passage member) 11 made of light-absorbing resin or ceramic is fixed to the widened portion 4 inside the package body 2 by adhesion or the like.
  • a light incident slit (light incident portion) 12 is formed in the support substrate 11 so as to face the light incident hole 8. The opening on the bottom surface 3b side of the light incident slit 12 is widened so as to expand toward the bottom surface 3b.
  • the package lid 7 and the support substrate 11 are attached to the package body 2 so as to face the bottom surface 3b which is a predetermined inner surface of the cavity 3.
  • the package lid 7 and the support substrate 11 allow light L to pass from outside the cavity 3 into the cavity 3 through the light incident hole 8, the window member 9, and the light incident slit 12.
  • a rectangular plate-shaped transmission grating element (spectral part) 13 made of quartz is disposed on the cavity 3 side with respect to the support substrate 11 so as to face the light incident slit 12.
  • the transmissive grating element 13 is attached to the support substrate 11 via a cylindrical light absorbing member 14. That is, the transmissive grating element 13 is indirectly supported by the support substrate 11.
  • the transmissive grating element 13 splits the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9 and the light incident slit 12 and transmits the light L to the bottom surface 3 b side of the cavity 3.
  • the light absorbing member 14 surrounds the optical path of the light L from the opening on the bottom surface 3 b side of the light incident slit 12 to the light incident surface 13 a of the transmissive grating element 13.
  • a mirror element (reflecting part) 20 is disposed on the bottom surface 3 b of the cavity 3.
  • the mirror element 20 reflects the light L dispersed by the transmissive grating element 13 toward the support substrate 11 in the optical function unit 21 that is a mirror.
  • the mirror element 20 includes a base plate 22 made of silicon, plastic, ceramic, glass, or the like (for example, an outer shape of 20 mm ⁇ 20 mm and a thickness of 2 mm).
  • a concave portion 23 having a regular quadrangular pyramid shape that is widened toward the opening 23a is formed.
  • a molding layer 24 formed by photocuring a replicating optical resin such as a photocurable epoxy resin, acrylic resin, fluorine-based resin, silicone or organic-inorganic hybrid resin is disposed on the base material 22 .
  • the outer edge 24a of the molding layer 24 surrounds the center of the bottom surface 23b of the recess 23 when viewed from the depth direction (that is, one side) of the recess 23, and at least a part of the outer edge 24a has a square shape. It passes through the outside of each side of the opening 23a.
  • the material of the molding layer 24 is not limited to the above-described photo-curing resin material, but can be variously molded and cured by a molding die, such as a thermosetting resin material, low-melting glass, or organic / inorganic hybrid glass. A suitable material (molding material) can be applied.
  • the molding layer 24 has a body portion (first portion) 25 and a ride-up portion (second portion) 26 that are integrally formed.
  • the main body 25 is located in the recess 23 when viewed from the depth direction of the recess 23.
  • the ride-up part 26 is located on the surface 22 a of the base material 22 in a state of being connected to the main body part 25.
  • the ride-up portion 26 is provided outside each side of the square-shaped opening 23a, faces the recess 23 and sandwiches the recess 23.
  • the molding layer 24 has a concave curved surface (predetermined surface) 24b facing the bottom surface 23b, which is a predetermined inner surface of the recess 23.
  • the curved surface 24 b is a curved surface that is recessed toward the center of the bottom surface 23 b of the recess 23, and extends from the main body portion 25 to each riding-up portion 26 through the midpoint of each side of the square opening 23 a.
  • a reflective film 27 that is a deposited film of Al, Au, or the like is formed on the curved surface 24 b of the molding layer 24, a reflective film 27 that is a deposited film of Al, Au, or the like is formed.
  • the reflective film 27 is formed in a predetermined region on the main body 25 on the curved surface 24b, and the surface of the reflective film 27 is the optical function unit 21 that is a mirror.
  • a light detecting element 15 having a substrate 15b made of a semiconductor or the like and a light detecting portion 15a formed on the substrate 15b is arranged.
  • a light passage hole 16 is formed in the support substrate 11 so as to face the light detection unit 15a.
  • the opening on the bottom surface 3b side of the light passage hole 16 is widened so as to expand toward the bottom surface 3b.
  • the light detection unit 15a is configured by, for example, one-dimensionally arranging photodiodes.
  • the light detection element 15 detects the light L reflected by the mirror element 20 and passed through the light passage hole 16.
  • the light detection element 15 is not limited to the photodiode array, and may be a C-MOS image sensor, a CCD image sensor, or the like.
  • the surface 11a of the support substrate 11 is provided with a wiring 17 made of a single layer film such as Al or Au, or a laminated film such as Cr—Pt—Au, Ti—Pt—Au, Ti—Ni—Au, Cr—Au. It has been.
  • Each of the plurality of external terminals of the light detection element 15 is connected to each of the plurality of wirings 17 by face-down bonding via the bumps 18. That is, the light detection element 15 is indirectly supported by the support substrate 11.
  • a plurality of leads 19 are embedded in the package body 2 such that the base end portion is exposed to the intermediate widened portion 5 and the tip end portion extends to the outside.
  • Each wiring 17 is connected to the base end portion of each lead 19 by a wire 31.
  • a light absorption layer 42 is formed on the surface 11 a of the support substrate 11. The light absorption layer 42 covers the wiring 17 except for the portion where the bumps 18 and the leads 19 are disposed.
  • the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9, and the light incident slit 12 is split by the transmissive grating element 13 and the cavity 3. Is transmitted to the bottom surface 3b side.
  • the light L dispersed by the transmissive grating element 13 is reflected by the mirror element 20 to the support substrate 11 side.
  • the light L reflected by the mirror element 20 enters the light detection unit 15 a through the light passage hole 16.
  • the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
  • the transmission grating element 13 and the light detection element 15 are formed by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the support substrate 11 of the support substrate 11. It is supported. Therefore, it is possible to suppress the spectral characteristics of the transmission type grating element 13 from being changed due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature change during use, etc.). Furthermore, even if the transmissive grating element 13, the mirror element 20, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 can be compared with the case where the transmissive grating element 13 is supported by the package body 2.
  • the spectroscopic module 1 it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
  • the structure for suppressing the light reflected by the light incident surface 13a of the transmissive grating element 13 from becoming stray light is simplified as follows. That is, the light absorption member 14 for attaching the transmissive grating element 13 to the support substrate 11 surrounds the optical path of the light L from the light incident slit 12 to the light incident surface 13a.
  • the transmissive grating element 13 is supported by the package body 2, in addition to the structure for supporting the transmissive grating element 13, the light reflected by the light incident surface 13a of the transmissive grating element 13 is prevented from becoming stray light. Therefore, the structure may be complicated, for example, a structure is required.
  • the transmissive grating element 13 is more transmissive than the case where it is supported by the package body 2. It is possible to suppress the light reflected by the light incident surface 13a of the grating element 13 from becoming stray light.
  • the transmissive grating element 13 is supported by the support substrate 11, the optical path of the light L from the mirror element 20 to the light detection element 15 can be simplified.
  • the transmission type grating element 13 is supported on the package body 2, the light L to be detected is reflected a plurality of times so that the light L to be detected is not kicked by the structure for the support.
  • the optical path of the light L from the element 20 to the light detection element 15 may be complicated.
  • light other than the light L to be detected hits the supporting structure, and stray light due to multiple reflection may occur.
  • the transmissive grating element 13 since the transmissive grating element 13 is supported by the support substrate 11, the transmissive grating element 13 can be easily and reliably fixed in a predetermined posture. For example, in order to adjust the optical path of the light L or to suppress the light reflected by the light incident surface 13a of the transmissive grating element 13 from becoming stray light, the transmissive grating element 13 may be disposed at an angle. Is possible.
  • a reflective grating is provided on a curved surface, which is a predetermined inner surface of a package, as in a conventional spectroscopic module, it is necessary to change the curvature of the curved surface of the package according to the wavelength range of light to be detected. , The sharing of the package is hindered. On the other hand, if the package is to be shared, the wavelength range of light to be detected is limited. On the other hand, in the spectroscopic module 1, if the transmission grating element 13 is changed, the wavelength range of light to be detected can be changed, so that the package body 2 can be shared.
  • the spectroscopic module 1 it is not necessary to employ a reflective grating having a spherical optical surface when miniaturized due to the adoption of the flat plate-like transmissive grating element 13, and thus the degree of freedom in optical design of the grating. Spread. Therefore, according to the spectroscopic module 1, it is possible to realize both a reduction in size and variations in various product characteristics (wavelength band and resolution).
  • the curved surface of the package is formed with a predetermined curvature with high accuracy in order to prevent changes in spectral characteristics. It is necessary to reduce the cost of the spectroscopic module.
  • the cost of the spectroscopic module 1 since it is not necessary to form such a highly accurate curved surface and to form a grating on the curved surface, the cost of the spectroscopic module 1 can be reduced.
  • the transmission grating element 13 and the light detection element 15 are attached to the support substrate 11, and the mirror element 20 is attached to the package body 2, and then the support substrate 11, the package body 2,
  • the transmission grating element 13, the mirror element 20, and the light detection element 15 can be positioned relative to each other.
  • the mirror element 20 can be easily attached to the package body 2.
  • the support substrate 11 is provided with a light incident slit 12 so as to be positioned in front of the transmissive grating element 13 (that is, upstream in the traveling direction of the light L).
  • the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
  • the cavity 3 formed in the package body 2 is hermetically sealed against the outside air by the package body 2, the package lid 7, and the window member 9. Thereby, it is possible to prevent the members facing the cavity 3 such as the transmission type grating element 13, the mirror element 20, and the light detection element 15 from being deteriorated by moisture or the like.
  • the mirror element 20 is employed as a reflecting portion that reflects the split light L.
  • the raised portion 26 positioned on the surface 22 a of the base material 22 causes the concave portion 23 of the base material 22.
  • the main body 25 positioned inside is pressed.
  • the surface 22a on which the riding-up portion 26 is located contributes to a discontinuous surface (here, a flat surface) with the side surface (inner surface) 23c of the recess 23.
  • the main body portion 25 is uniformly pressed from the periphery. Thereby, peeling of the shaping
  • the shrinkage and expansion of the molding layer 24 due to temperature change during use is absorbed by the climbing portion 26 located on the surface 22 a of the base material 22, and the concave portion 23 of the base material 22.
  • the contraction and expansion of the main body portion 25 located inside are alleviated.
  • a plurality of the ride-up portions 26 are provided so as to face each other with the recess 23 interposed therebetween and surround the recess 23, the contraction and expansion of the main body portion 25 are alleviated uniformly. Thereby, the deformation of the curved surface 24b of the main body portion 25 can be reliably prevented, and further, the deformation of the optical function portion 21 provided on the curved surface 24b can be reliably prevented.
  • the reflection film 27 having a surface that becomes the optical function unit 21 that is a mirror is formed on the curved surface 24b so as to remove the center of the curved surface 24b, the zero-order light becomes stray light. Can be suppressed. Even if the light incident slit 12 and the transmissive grating element 13 are opposed to the curved surface 24b so as to remove the center of the curved surface 24b, it is possible to suppress the 0th-order light from becoming stray light.
  • the inner surface of the recess 23 formed on the surface 22 a of the substrate 22 may be a curved surface such as a continuous curved surface.
  • the curved surface 24 b of the molding layer 24 on which the optical function unit 21 is provided does not need to reach the riding-up unit 26 from the main body 25 as long as it is formed at least on the main body 25.
  • the optical function unit 21 may reach from the main body unit 25 to the riding-up unit 26.
  • the riding-up part 26 opposes on both sides of the recessed part 23, the direction to oppose is arbitrary.
  • only one set of the riding-up portions 26 may be provided so as to face each other with the recess 23 interposed therebetween.
  • a plurality of the ride-up portions 26 may be provided so as to surround the recess 23 without being opposed to each other with the recess 23 interposed therebetween, for example, arranged every 120 °. Further, the ride-up portion 26 may be continuous on the surface 22 a of the base material 22.
  • the bottom surface 3b of the cavity 3 of the package body 2 may be formed in a curved shape, and a reflective film (reflecting portion) 32 may be formed on the bottom surface 3b instead of the mirror element 20.
  • the curvature of the curved surface of the package is changed according to the wavelength range of the light to be detected, as compared with the case where the reflection type grating is provided on the curved surface which is the predetermined inner surface of the package as in the conventional spectral module.
  • the necessity of forming the curved surface of the package with a predetermined curvature with high accuracy is reduced. Therefore, the package body 2 can be shared and the cost of the spectral module 1 can be reduced as compared with the conventional spectral module.
  • the spectral module 1 shown in FIG. 3 is mainly different from the spectral module 1 shown in FIG. 1 in that a light incident slit (light incident portion) 33 is formed in the light detection element 15.
  • a light incident slit (light incident portion) 33 is formed in the light detection element 15.
  • a light incident slit 33 is formed on the substrate 15b of the light detecting element 15 so as to be arranged in parallel with the light detecting portion 15a.
  • the light incident slit 33 is formed in the substrate 15b by etching or the like while being positioned with high accuracy with respect to the light detection unit 15a.
  • the light detection unit 15 a and the light incident slit 33 are opposed to the light passage hole 16 of the support substrate 11. Note that a plurality of the light passage holes 16 may be provided in the support substrate 11 so as to face the light detection unit 15a and the light incident slit 33, respectively.
  • the transmission type grating element 13 is arranged on the cavity 3 side with respect to the support substrate 11 so as to face the light incident slit 33 of the light detection element 15.
  • the transmissive grating element 13 is fixed to the support substrate 11 with the light incident surface 13 a facing the light passage hole 16. That is, the transmissive grating element 13 is directly supported by the support substrate 11.
  • the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9, the light incident slit 33, and the light passing hole 16 is spectrally separated by the transmissive grating element 13. And transmitted to the bottom surface 3 b side of the cavity 3.
  • the light L dispersed by the transmissive grating element 13 is reflected by the mirror element 20 to the support substrate 11 side.
  • the light L reflected by the mirror element 20 enters the light detection unit 15 a through the light passage hole 16.
  • the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
  • the transmission grating element 13 and the light detection element 15 are formed by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the support substrate 11 of the support substrate 11. It is supported. Therefore, it is possible to suppress changes in the spectral characteristics of the transmissive grating element 13 due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature changes during use, etc.). Furthermore, even if the transmissive grating element 13, the mirror element 20, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 can be compared with the case where the transmissive grating element 13 is supported by the package body 2.
  • the spectroscopic module 1 it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
  • the light detection element 15 is provided with a light incident slit 33 so as to be positioned upstream of the transmission type grating element 13 (that is, upstream in the traveling direction of the light L).
  • the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
  • the bottom surface 3 b of the cavity 3 of the package body 2 may be formed in a curved shape, and the reflective film 32 may be formed on the bottom surface 3 b instead of the mirror element 20. Also in this case, the package body 2 can be shared and the cost of the spectral module 1 can be reduced as compared with the conventional spectral module.
  • the spectral module 1 shown in FIG. 5 is different in that the transmission grating element 13 is fixed to the package lid 7 and the light emission aperture (light emission part) 34 is formed on the support substrate 11. This is mainly different from the spectroscopic module 1 shown in FIG. Hereinafter, the spectral module of the third embodiment will be described focusing on this difference.
  • a movable member 35 in which a light incident slit 12 is formed is disposed on the opposite side of the cavity 3 with respect to the package lid 7.
  • the movable member 35 is airtightly attached to the package lid 7 so that the light incident slit 12 can move within the range of the light incident holes 8 facing each other.
  • a transmissive grating element 13 is disposed on the cavity 3 side with respect to the package lid 7.
  • the transmissive grating element 13 is airtightly fixed to the package lid 7 so as to cover the light incident hole 8 with the light incident surface 13 a facing the light incident hole 8. That is, the transmissive grating element 13 is directly supported by the package lid 7.
  • the support substrate 11 is formed with a light exit aperture 34 that allows a part of the light L dispersed by the transmission type grating element 13 to pass therethrough.
  • the package lid 7 is supported on the support substrate 11 via the side wall member 36.
  • the cavity 3 is hermetically sealed against the outside air by the package body 2, the package lid 7, the transmission type grating element 13, and the side wall member 36.
  • a partition member 37 is erected between the package lid 7 and the support substrate 11. The partition member 37 separates the region where the grating element 13 is disposed from the region where the light detection element 15 is disposed.
  • the light L incident from the outside of the cavity 3 through the light incident slit 12 and the light incident hole 8 is dispersed by the transmissive grating element 13 and also on the bottom surface 3b side of the cavity 3. Permeated. Of the light L dispersed by the transmissive grating element 13, the light L that has passed through the light exit aperture 34 is reflected by the reflective film 32 toward the support substrate 11. The light L reflected by the reflective film 32 enters the light detection unit 15 a through the light passage hole 16. As a result, the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
  • the transmission type grating element 13 is supported by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the package lid 7 of the support substrate 11.
  • the photodetecting element 15 is supported by the support substrate 11 among them. Therefore, it is possible to suppress changes in the spectral characteristics of the transmissive grating element 13 due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature changes during use, etc.). Further, even if the transmissive grating element 13, the reflective film 32, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 is lighter than when the transmissive grating element 13 is supported by the package body 2.
  • the spectroscopic module 1 it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
  • the package lid 7 is provided with a light incident slit 12 so as to be positioned in front of the transmissive grating element 13 (that is, upstream in the traveling direction of the light L).
  • the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
  • the support substrate 11 is provided with a light emitting aperture 34 so as to be positioned downstream of the transmissive grating element 13 (that is, downstream of the light L in the traveling direction) and upstream of the reflective film 32. . Accordingly, it is possible to cut only the 0th-order light and unnecessary diffracted light out of the light L dispersed by the transmissive grating element 13 and pass only the light L to be detected.
  • the light incident slit 12 is configured to move relative to the transmissive grating element 13. Therefore, as shown in FIGS. 5A and 5B, if the position of the light entrance slit 12 is changed, the traveling direction of the light L that can pass through the light exit aperture 34, that is, the wavelength, is changed. The wavelength range of the light L can be changed. If at least one of the light entrance slit 12 and the light exit aperture 34 is configured to move relative to the transmissive grating element 13, the wavelength range of the light L to be detected can be changed.
  • the present invention is not limited to the above embodiments.
  • a light guide member such as an optical fiber may be connected to the position, or an optical member such as a lens may be disposed at that position.
  • the support substrate 11 may be formed of a light transmissive material. In that case, an opening corresponding to the light incident slit 12, the light passage hole 16, the light emission aperture 34, and the like may be formed by patterning the light absorption layer 42 or the like.
  • the material and shape of each component of the spectroscopic module 1 are not limited to the materials and shapes described above, and various materials and shapes can be applied.
  • SYMBOLS 1 Spectroscopic module, 2 ... Package main body (accommodating member), 3 ... Cavity, 3b ... Bottom surface (inner surface), 7 ... Package lid (light passage member), 11 ... Support substrate (light passage member), 12 ... Light entrance slit (Light incident part), 13 ... transmission grating element (spectral part), 15 ... light detection element, 20 ... mirror element (reflection part), 21 ... optical function part, 22 ... base material, 22a ... surface, 23 ... concave part 23b ... bottom surface (inner surface), 24 ... molded layer, 24b ... curved surface (predetermined surface), 25 ... main body portion (first portion), 26 ... riding portion (second portion), 32 ... reflection film ( Reflecting part), 33... Light incident slit (light incident part), 34... Light emitting aperture (light emitting part).

Abstract

A spectrometer module (1) is provided with a package body (2), a package lid (7) and a support substrate (11), a transmission grating element (13), a mirror element (20), and a photodetection element (15). A cavity (3) is formed in the body (2). The lid (7) and the substrate (11) are attached to the body (2) in such a manner as to face the bottom surface (3b) of the cavity (3), and allow light (L) to penetrate inside the cavity (3) from outside the cavity (3). The grating element (13) is supported by the substrate (11), and diffracts light (L) emitted from outside the cavity (3), and allows the light (L) to penetrate to the bottom surface (3b) side of the cavity (3). The mirror element (20) is positioned on the bottom surface (3b) of the cavity (3), and reflects the light (L) diffracted by the grating element (13). The photodetection element (15) is supported by the substrate (11), and detects the light (L) reflected by the mirror element (20).

Description

分光モジュールSpectroscopic module
 本発明は、分光モジュールに関する。 The present invention relates to a spectroscopic module.
 小型化された従来の分光モジュールとして、光入射部が設けられたパッケージと、パッケージの所定の内面である曲面に設けられた反射型グレーティングと、反射型グレーティングと対向するようにパッケージに取り付けられた光検出素子と、を備えるものが知られている(例えば特許文献1~3参照)。このような分光モジュールでは、光入射部を介してパッケージ内に入射した光が反射型グレーティングによって分光されると共に反射されて、その光が光検出素子によって検出される。 As a conventional downsized spectroscopic module, a package provided with a light incident portion, a reflective grating provided on a curved surface which is a predetermined inner surface of the package, and attached to the package so as to face the reflective grating A device including a light detection element is known (see, for example, Patent Documents 1 to 3). In such a spectroscopic module, the light that has entered the package via the light incident portion is split and reflected by the reflective grating, and the light is detected by the light detection element.
特開2004-309146号公報JP 2004-309146 A 特開2000-298066号公報JP 2000-298066 A 特開2009-535621号公報JP 2009-535621 A
 上述したような小型の分光モジュールにおいては、反射型グレーティングの分光特性がパッケージの曲面の形成精度に大きく依存する。そのため、パッケージの曲面が所定の曲率で高精度に形成されていないと、分光特性が変化して、その結果、信頼性が低下するおそれがある。 In the small spectroscopic module as described above, the spectroscopic characteristics of the reflective grating greatly depend on the formation accuracy of the curved surface of the package. Therefore, if the curved surface of the package is not accurately formed with a predetermined curvature, the spectral characteristics change, and as a result, the reliability may be reduced.
 そこで、本発明は、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することができる分光モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a spectroscopic module capable of preventing a decrease in reliability due to a change in spectroscopic characteristics while achieving miniaturization.
 本発明の一観点の分光モジュールは、空洞が形成された収容部材と、空洞の内面と対向するように収容部材に取り付けられ、空洞外から空洞内に光を通過させる光通過部材と、光通過部材によって支持され、空洞外から入射した光を分光すると共に空洞の内面側に透過させる分光部と、空洞の内面に配置され、分光部によって分光された光を反射する反射部と、光通過部材によって支持され、反射部によって反射された光を検出する光検出素子と、を備える。 A spectroscopic module according to an aspect of the present invention includes a housing member in which a cavity is formed, a light passage member that is attached to the housing member so as to face an inner surface of the cavity, and allows light to pass from the outside of the cavity into the cavity. A spectroscopic unit that is supported by the member and splits light incident from outside the cavity and transmits the light to the inner surface side of the cavity; a reflecting unit that is disposed on the inner surface of the cavity and reflects the light dispersed by the spectroscopic unit; and a light passage member And a light detecting element that detects light reflected by the reflecting portion.
 この分光モジュールでは、空洞外から空洞内に光を通過させる光通過部材によって、透過型の分光部及び光検出素子が支持されている。そのため、収容部材の状態に起因して分光部の分光特性が変化するのを抑制することができる。さらに、分光部、反射部及び光検出素子を互いに近付けて配置しても、透過型の分光部が収容部材によって支持されている場合に比べ、分光部の光入射面で反射した光が迷光として光検出素子によって検出されるのを抑制することができる。よって、この分光モジュールによれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することが可能となる。 In this spectroscopic module, the transmissive spectroscopic unit and the light detection element are supported by a light passing member that allows light to pass from the outside of the cavity into the cavity. Therefore, it is possible to suppress the change in the spectral characteristics of the spectroscopic unit due to the state of the housing member. Furthermore, even if the spectroscopic unit, the reflection unit, and the light detection element are arranged close to each other, the light reflected from the light incident surface of the spectroscopic unit is stray light compared to the case where the transmission type spectroscopic unit is supported by the housing member. It can suppress detecting with a photon detection element. Therefore, according to this spectroscopic module, it is possible to prevent a reduction in reliability due to a change in spectroscopic characteristics while achieving miniaturization.
 なお、「光通過部材によって分光部及び光検出素子が支持されている」とは、分光部及び光検出素子が光通過部材によって直接的に支持されている場合だけでなく、分光部及び光検出素子が光通過部材によって間接的に(すなわち、収容部材以外の何らかの部材を介して)支持されている場合も含む意味である。 Note that “the spectroscopic unit and the light detection element are supported by the light passage member” not only means that the spectroscopic unit and the light detection element are directly supported by the light passage member, but also the spectroscopic unit and the light detection unit. This also includes the case where the element is supported indirectly by the light passage member (that is, via some member other than the housing member).
 ここで、光通過部材又は光検出素子には、分光部の前段に位置するように光入射部が設けられていてもよい。これによれば、分光部の所定の位置に選択的にかつ確実に光を入射させることができる。なお、前段とは、光の進行方向における上流側を意味する。 Here, the light passing member or the light detection element may be provided with a light incident part so as to be positioned in front of the spectroscopic part. According to this, light can be selectively and reliably incident on a predetermined position of the spectroscopic unit. The former stage means the upstream side in the light traveling direction.
 このとき、光通過部材には、分光部の後段に位置しかつ反射部の前段に位置するように光出射部が設けられていてもよい。これによれば、分光部によって分光された光のうち検出すべき光のみを通過させることができる。なお、後段とは、光の進行方向における下流側を意味する。 At this time, the light passing member may be provided with a light emitting part so as to be located in the subsequent stage of the spectroscopic part and in the preceding stage of the reflecting part. According to this, only the light to be detected among the light separated by the spectroscopic unit can be passed. The latter stage means the downstream side in the light traveling direction.
 さらに、光入射部及び光出射部の少なくとも一方は、分光部に対して相対的に移動するように構成されていてもよい。これによれば、検出すべき光の波長範囲を変化させることができる。 Furthermore, at least one of the light incident part and the light emitting part may be configured to move relative to the spectroscopic part. According to this, the wavelength range of the light to be detected can be changed.
 また、空洞は、外気に対して気密に封止されていてもよい。これによれば、少なくとも反射部等、空洞に臨む部材が湿気等により劣化するのを防止することができる。 Further, the cavity may be hermetically sealed against the outside air. According to this, it is possible to prevent at least a member such as the reflection portion facing the cavity from deteriorating due to moisture or the like.
 また、反射部は、空洞の内面に配置されたミラー素子であり、ミラー素子は、表面に凹部が形成された基材と、基材上に配置された成形層と、を備え、成形層は、凹部の深さ方向から見た場合に凹部内に位置する第1の部分、及び第1の部分と繋がった状態で基材の表面上に位置する第2の部分を有し、第1の部分において凹部の内面と対向する所定の面には、ミラーである光学機能部が設けられていてもよい。これによれば、使用時の温度変化等によって発生する応力が基材の凹部に集中しても、基材の表面上に位置する第2の部分によって、基材の凹部内に位置する第1の部分が押え付けられる。これにより、基材から成形層が剥離するのを防止することができる。さらに、使用時の温度変化等に起因する成形層の収縮や膨張が、基材の表面上に位置する第2の部分に吸収されて、基材の凹部内に位置する第1の部分の収縮や膨張が緩和される。これにより、第1の部分の所定の面の変形を防止することができ、延いてはその所定の面に設けられた光学機能部の変形を防止することができる。 The reflecting portion is a mirror element disposed on the inner surface of the cavity, and the mirror element includes a base material having a concave portion formed on the surface and a molding layer disposed on the base material. The first portion located in the concave portion when viewed from the depth direction of the concave portion, and the second portion located on the surface of the base material in a state of being connected to the first portion, An optical function unit that is a mirror may be provided on a predetermined surface that faces the inner surface of the concave portion. According to this, even if the stress generated by the temperature change at the time of use or the like is concentrated on the concave portion of the base material, the first portion located in the concave portion of the base material by the second portion located on the surface of the base material The part of is pressed. Thereby, it can prevent that a molding layer peels from a base material. Furthermore, the shrinkage and expansion of the molding layer due to temperature changes during use are absorbed by the second part located on the surface of the base material, and the shrinkage of the first part located in the recess of the base material And swelling is relieved. Thereby, the deformation | transformation of the predetermined surface of a 1st part can be prevented, and also the deformation | transformation of the optical function part provided in the predetermined surface can be prevented.
 本発明によれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することができる。 According to the present invention, it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
本発明の第1の実施形態の分光モジュールの縦断面図である。It is a longitudinal cross-sectional view of the spectroscopy module of the 1st Embodiment of this invention. 図1の分光モジュールの変形例の縦断面図である。It is a longitudinal cross-sectional view of the modification of the spectroscopy module of FIG. 本発明の第2の実施形態の分光モジュールの縦断面図である。It is a longitudinal cross-sectional view of the spectroscopy module of the 2nd Embodiment of this invention. 図3の分光モジュールの変形例の縦断面図である。It is a longitudinal cross-sectional view of the modification of the spectroscopy module of FIG. 本発明の第3の実施形態の分光モジュールの縦断面図である。It is a longitudinal cross-sectional view of the spectroscopy module of the 3rd Embodiment of this invention.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
 図1に示されるように、分光モジュール1は、光吸収性を有する樹脂やセラミックからなる直方体箱状(例えば、幅35mm、奥行き30mm、高さ15mm)のパッケージ本体(収容部材)2を備えている。パッケージ本体2には、一方の側に開口する断面矩形状の凹部である空洞3、及び空洞3の開口3aを段階的に拡幅させる断面矩形状の拡幅部4~6が形成されている。 As shown in FIG. 1, the spectroscopic module 1 includes a package body (accommodating member) 2 having a rectangular parallelepiped box shape (for example, 35 mm in width, 30 mm in depth, and 15 mm in height) made of light-absorbing resin or ceramic. Yes. The package body 2 is formed with a cavity 3 that is a concave section having a rectangular cross section that opens on one side, and wide sections 4 to 6 having a rectangular section that widen the opening 3a of the cavity 3 in stages.
 パッケージ本体2の外側の拡幅部6には、光吸収性を有する樹脂やセラミックからなる矩形板状のパッケージ蓋(光通過部材)7が接着等により気密に固定されている。パッケージ蓋7には光入射孔8が形成されており、光入射孔8には窓部材9が気密に固定されている。空洞3は、パッケージ本体2、パッケージ蓋7及び窓部材9によって、外気に対して気密に封止されている。 A rectangular plate-shaped package lid (light passage member) 7 made of light-absorbing resin or ceramic is airtightly fixed to the widened portion 6 outside the package body 2 by adhesion or the like. A light incident hole 8 is formed in the package lid 7, and a window member 9 is airtightly fixed to the light incident hole 8. The cavity 3 is hermetically sealed against the outside air by the package body 2, the package lid 7, and the window member 9.
 パッケージ本体2の内側の拡幅部4には、光吸収性を有する樹脂やセラミックからなる矩形板状の支持基板(光通過部材)11が接着等により固定されている。支持基板11には、光入射孔8と対向するように光入射スリット(光入射部)12が形成されている。光入射スリット12の底面3b側の開口は、底面3bに向かって末広がりとなるように拡幅されている。 A rectangular plate-like support substrate (light passage member) 11 made of light-absorbing resin or ceramic is fixed to the widened portion 4 inside the package body 2 by adhesion or the like. A light incident slit (light incident portion) 12 is formed in the support substrate 11 so as to face the light incident hole 8. The opening on the bottom surface 3b side of the light incident slit 12 is widened so as to expand toward the bottom surface 3b.
 パッケージ蓋7及び支持基板11は、空洞3の所定の内面である底面3bと対向するようにパッケージ本体2に取り付けられている。パッケージ蓋7及び支持基板11は、光入射孔8、窓部材9及び光入射スリット12を介して、空洞3外から空洞3内に光Lを通過させる。 The package lid 7 and the support substrate 11 are attached to the package body 2 so as to face the bottom surface 3b which is a predetermined inner surface of the cavity 3. The package lid 7 and the support substrate 11 allow light L to pass from outside the cavity 3 into the cavity 3 through the light incident hole 8, the window member 9, and the light incident slit 12.
 支持基板11に対して空洞3側には、光入射スリット12と対向するように、石英からなる矩形板状の透過型グレーティング素子(分光部)13が配置されている。透過型グレーティング素子13は、筒状の光吸収部材14を介して支持基板11に取り付けられている。つまり、透過型グレーティング素子13は、支持基板11によって間接的に支持されている。透過型グレーティング素子13は、光入射孔8、窓部材9及び光入射スリット12を介して空洞3外から入射した光Lを分光すると共に空洞3の底面3b側に透過させる。光吸収部材14は、光入射スリット12の底面3b側の開口から透過型グレーティング素子13の光入射面13aに至る光Lの光路を包囲している。 A rectangular plate-shaped transmission grating element (spectral part) 13 made of quartz is disposed on the cavity 3 side with respect to the support substrate 11 so as to face the light incident slit 12. The transmissive grating element 13 is attached to the support substrate 11 via a cylindrical light absorbing member 14. That is, the transmissive grating element 13 is indirectly supported by the support substrate 11. The transmissive grating element 13 splits the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9 and the light incident slit 12 and transmits the light L to the bottom surface 3 b side of the cavity 3. The light absorbing member 14 surrounds the optical path of the light L from the opening on the bottom surface 3 b side of the light incident slit 12 to the light incident surface 13 a of the transmissive grating element 13.
 空洞3の底面3bには、ミラー素子(反射部)20が配置されている。ミラー素子20は、ミラーである光学機能部21において、透過型グレーティング素子13によって分光された光Lを支持基板11側に反射する。ミラー素子20は、シリコン、プラスチック、セラミック又はガラス等からなる正方形板状(例えば、外形20mm×20mm、厚さ2mm)の基材22を備えている。基材22の表面22aには、開口23aに向かって末広がりとなる正四角錐台状の凹部23が形成されている。 A mirror element (reflecting part) 20 is disposed on the bottom surface 3 b of the cavity 3. The mirror element 20 reflects the light L dispersed by the transmissive grating element 13 toward the support substrate 11 in the optical function unit 21 that is a mirror. The mirror element 20 includes a base plate 22 made of silicon, plastic, ceramic, glass, or the like (for example, an outer shape of 20 mm × 20 mm and a thickness of 2 mm). On the surface 22a of the base material 22, a concave portion 23 having a regular quadrangular pyramid shape that is widened toward the opening 23a is formed.
 基材22上には、光硬化性のエポキシ樹脂、アクリル樹脂、フッ素系樹脂、シリコーン又は有機無機ハイブリッド樹脂等のレプリカ用光学樹脂を光硬化させることによって形成された成形層24が配置されている。成形層24の外縁24aは、凹部23の深さ方向(すなわち、一方の側)から見た場合に凹部23の底面23bの中心を包囲しており、外縁24aの少なくとも一部は、正方形状の開口23aの各辺の外側を通っている。なお、成形層24の材料には、前述した光硬化性の樹脂材料に限らず、熱硬化性の樹脂材料、又は低融点ガラスや有機無機ハイブリッドガラス等、成形型による成形及び硬化が可能な様々な材料(成形材料)を適用することができる。 On the base material 22, a molding layer 24 formed by photocuring a replicating optical resin such as a photocurable epoxy resin, acrylic resin, fluorine-based resin, silicone or organic-inorganic hybrid resin is disposed. . The outer edge 24a of the molding layer 24 surrounds the center of the bottom surface 23b of the recess 23 when viewed from the depth direction (that is, one side) of the recess 23, and at least a part of the outer edge 24a has a square shape. It passes through the outside of each side of the opening 23a. The material of the molding layer 24 is not limited to the above-described photo-curing resin material, but can be variously molded and cured by a molding die, such as a thermosetting resin material, low-melting glass, or organic / inorganic hybrid glass. A suitable material (molding material) can be applied.
 成形層24は、一体的に形成された本体部(第1の部分)25及び乗上げ部(第2の部分)26を有している。本体部25は、凹部23の深さ方向から見た場合に凹部23内に位置している。乗上げ部26は、本体部25と繋がった状態で基材22の表面22a上に位置している。乗上げ部26は、正方形状の開口23aの各辺の外側に設けられており、凹部23を挟んで対向しかつ凹部23を包囲している。 The molding layer 24 has a body portion (first portion) 25 and a ride-up portion (second portion) 26 that are integrally formed. The main body 25 is located in the recess 23 when viewed from the depth direction of the recess 23. The ride-up part 26 is located on the surface 22 a of the base material 22 in a state of being connected to the main body part 25. The ride-up portion 26 is provided outside each side of the square-shaped opening 23a, faces the recess 23 and sandwiches the recess 23.
 成形層24は、凹部23の所定の内面である底面23bと対向する凹状の曲面(所定の面)24bを有している。曲面24bは、凹部23の底面23bの中心に向かって凹んだ曲面であり、正方形状の開口23aの各辺の中点を通って、本体部25から各乗上げ部26に至っている。成形層24の曲面24b上には、AlやAu等の蒸着膜である反射膜27が形成されている。反射膜27は、曲面24bにおける本体部25上の所定の領域に形成されており、反射膜27の表面が、ミラーである光学機能部21となっている。 The molding layer 24 has a concave curved surface (predetermined surface) 24b facing the bottom surface 23b, which is a predetermined inner surface of the recess 23. The curved surface 24 b is a curved surface that is recessed toward the center of the bottom surface 23 b of the recess 23, and extends from the main body portion 25 to each riding-up portion 26 through the midpoint of each side of the square opening 23 a. On the curved surface 24 b of the molding layer 24, a reflective film 27 that is a deposited film of Al, Au, or the like is formed. The reflective film 27 is formed in a predetermined region on the main body 25 on the curved surface 24b, and the surface of the reflective film 27 is the optical function unit 21 that is a mirror.
 支持基板11に対して空洞3の反対側には、半導体等からなる基板15b、及び基板15bに形成された光検出部15aを有する光検出素子15が配置されている。支持基板11には、光検出部15aと対向するように光通過孔16が形成されている。光通過孔16の底面3b側の開口は、底面3bに向かって末広がりとなるように拡幅されている。光検出部15aは、フォトダイオードが例えば1次元に配列されて構成されている。光検出素子15は、ミラー素子20によって反射されて光通過孔16を通過した光Lを検出する。なお、光検出素子15は、フォトダイオードアレイに限定されず、C-MOSイメージセンサやCCDイメージセンサ等であってもよい。 On the opposite side of the cavity 3 with respect to the support substrate 11, a light detecting element 15 having a substrate 15b made of a semiconductor or the like and a light detecting portion 15a formed on the substrate 15b is arranged. A light passage hole 16 is formed in the support substrate 11 so as to face the light detection unit 15a. The opening on the bottom surface 3b side of the light passage hole 16 is widened so as to expand toward the bottom surface 3b. The light detection unit 15a is configured by, for example, one-dimensionally arranging photodiodes. The light detection element 15 detects the light L reflected by the mirror element 20 and passed through the light passage hole 16. The light detection element 15 is not limited to the photodiode array, and may be a C-MOS image sensor, a CCD image sensor, or the like.
 支持基板11の表面11aには、AlやAu等の単層膜、或いはCr-Pt-Au、Ti-Pt-Au、Ti-Ni-Au、Cr-Au等の積層膜からなる配線17が設けられている。光検出素子15の複数の外部端子のそれぞれは、バンプ18を介したフェースダウンボンディングによって、複数の配線17のそれぞれと接続されている。つまり、光検出素子15は、支持基板11によって間接的に支持されている。パッケージ本体2には、基端部が中間の拡幅部5に露出しかつ先端部が外部に延在するように、複数のリード19が埋設されている。各配線17は、ワイヤ31によって、各リード19の基端部と接続されている。支持基板11の表面11aには、光吸収層42が形成されている。光吸収層42は、バンプ18及びリード19が配置される部分を除いて配線17を覆っている。 The surface 11a of the support substrate 11 is provided with a wiring 17 made of a single layer film such as Al or Au, or a laminated film such as Cr—Pt—Au, Ti—Pt—Au, Ti—Ni—Au, Cr—Au. It has been. Each of the plurality of external terminals of the light detection element 15 is connected to each of the plurality of wirings 17 by face-down bonding via the bumps 18. That is, the light detection element 15 is indirectly supported by the support substrate 11. A plurality of leads 19 are embedded in the package body 2 such that the base end portion is exposed to the intermediate widened portion 5 and the tip end portion extends to the outside. Each wiring 17 is connected to the base end portion of each lead 19 by a wire 31. A light absorption layer 42 is formed on the surface 11 a of the support substrate 11. The light absorption layer 42 covers the wiring 17 except for the portion where the bumps 18 and the leads 19 are disposed.
 以上のように構成された分光モジュール1では、光入射孔8、窓部材9及び光入射スリット12を介して空洞3外から入射した光Lは、透過型グレーティング素子13によって分光されると共に空洞3の底面3b側に透過させられる。透過型グレーティング素子13によって分光された光Lは、ミラー素子20によって支持基板11側に反射される。ミラー素子20によって反射された光Lは、光通過孔16を介して光検出部15aに入射する。これにより、光検出素子15から出力された電気信号は、バンプ18、配線17、ワイヤ31及びリード19を介して分光モジュール1の外部に取り出される。 In the spectroscopic module 1 configured as described above, the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9, and the light incident slit 12 is split by the transmissive grating element 13 and the cavity 3. Is transmitted to the bottom surface 3b side. The light L dispersed by the transmissive grating element 13 is reflected by the mirror element 20 to the support substrate 11 side. The light L reflected by the mirror element 20 enters the light detection unit 15 a through the light passage hole 16. As a result, the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
 以上説明したように、分光モジュール1では、空洞3外から空洞3内に光Lを通過させるパッケージ蓋7及び支持基板11のうちの支持基板11によって、透過型グレーティング素子13及び光検出素子15が支持されている。そのため、パッケージ本体2の状態(形成精度や、使用時の温度変化による収縮及び膨張等)に起因して透過型グレーティング素子13の分光特性が変化してしまうのを抑制することができる。さらに、透過型グレーティング素子13、ミラー素子20及び光検出素子15を互いに近付けて配置しても、透過型グレーティング素子13がパッケージ本体2によって支持されている場合に比べ、透過型グレーティング素子13の光入射面13aで反射した光が迷光として光検出素子15によって検出されるのを抑制することができる。よって、分光モジュール1によれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することが可能となる。 As described above, in the spectroscopic module 1, the transmission grating element 13 and the light detection element 15 are formed by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the support substrate 11 of the support substrate 11. It is supported. Therefore, it is possible to suppress the spectral characteristics of the transmission type grating element 13 from being changed due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature change during use, etc.). Furthermore, even if the transmissive grating element 13, the mirror element 20, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 can be compared with the case where the transmissive grating element 13 is supported by the package body 2. It can suppress that the light reflected by the entrance plane 13a is detected by the light detection element 15 as stray light. Therefore, according to the spectroscopic module 1, it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
 ここで、分光モジュール1においては、透過型グレーティング素子13の光入射面13aで反射した光が迷光となるのを抑制するための構造が、次のように単純化されている。すなわち、透過型グレーティング素子13を支持基板11に取り付けるための光吸収部材14に、光入射スリット12から光入射面13aに至る光Lの光路を包囲させている。これに対し、透過型グレーティング素子13をパッケージ本体2に支持させると、その支持のための構造の他に、透過型グレーティング素子13の光入射面13aで反射した光が迷光となるのを抑制するための構造が必要となるなど、構造が複雑化するおそれがある。なお、光入射スリット12から光入射面13aに至る光Lの光路を光吸収部材14に包囲させなくても、透過型グレーティング素子13がパッケージ本体2によって支持されている場合に比べれば、透過型グレーティング素子13の光入射面13aで反射した光が迷光となるのを抑制することができる。 Here, in the spectroscopic module 1, the structure for suppressing the light reflected by the light incident surface 13a of the transmissive grating element 13 from becoming stray light is simplified as follows. That is, the light absorption member 14 for attaching the transmissive grating element 13 to the support substrate 11 surrounds the optical path of the light L from the light incident slit 12 to the light incident surface 13a. On the other hand, when the transmissive grating element 13 is supported by the package body 2, in addition to the structure for supporting the transmissive grating element 13, the light reflected by the light incident surface 13a of the transmissive grating element 13 is prevented from becoming stray light. Therefore, the structure may be complicated, for example, a structure is required. Even if the light absorbing member 14 does not surround the optical path of the light L from the light incident slit 12 to the light incident surface 13a, the transmissive grating element 13 is more transmissive than the case where it is supported by the package body 2. It is possible to suppress the light reflected by the light incident surface 13a of the grating element 13 from becoming stray light.
 また、分光モジュール1では、透過型グレーティング素子13が支持基板11によって支持されているので、ミラー素子20から光検出素子15に至る光Lの光路を単純化することができる。これに対し、透過型グレーティング素子13をパッケージ本体2に支持させると、その支持のための構造によって検出すべき光Lが蹴られないように、検出すべき光Lを複数回反射させるなど、ミラー素子20から光検出素子15に至る光Lの光路が複雑化するおそれがある。さらに、その支持のための構造に、検出すべき光L以外の光が当たり、多重反射による迷光が発生するおそれもある。 In the spectroscopic module 1, since the transmissive grating element 13 is supported by the support substrate 11, the optical path of the light L from the mirror element 20 to the light detection element 15 can be simplified. On the other hand, when the transmission type grating element 13 is supported on the package body 2, the light L to be detected is reflected a plurality of times so that the light L to be detected is not kicked by the structure for the support. There is a possibility that the optical path of the light L from the element 20 to the light detection element 15 may be complicated. Furthermore, light other than the light L to be detected hits the supporting structure, and stray light due to multiple reflection may occur.
 また、分光モジュール1では、透過型グレーティング素子13が支持基板11によって支持されているので、透過型グレーティング素子13を所定の姿勢で容易にかつ確実に固定することができる。例えば、光Lの光路を調整したり、透過型グレーティング素子13の光入射面13aで反射した光が迷光となるのを抑制したりするために、透過型グレーティング素子13を傾けて配置することも可能である。 In the spectroscopic module 1, since the transmissive grating element 13 is supported by the support substrate 11, the transmissive grating element 13 can be easily and reliably fixed in a predetermined posture. For example, in order to adjust the optical path of the light L or to suppress the light reflected by the light incident surface 13a of the transmissive grating element 13 from becoming stray light, the transmissive grating element 13 may be disposed at an angle. Is possible.
 また、従来の分光モジュールのように、パッケージの所定の内面である曲面に反射型グレーティングを設ける場合には、検出すべき光の波長範囲に応じてパッケージの曲面の曲率を変化させることが必要となり、パッケージの共通化が妨げられる。一方、パッケージの共通化を図ろうとすると、検出すべき光の波長範囲が制限される。それに対し、分光モジュール1では、透過型グレーティング素子13を変更すれば、検出すべき光の波長範囲を変化させることができるので、パッケージ本体2の共通化を図ることができる。加えて、分光モジュール1では、平面板状の透過型グレーティング素子13の採用によって、小型化に際し、球面状の光学面を有する反射型グレーティングを採用する必要がないため、グレーティングの光学設計の自由度が広がる。従って、分光モジュール1によれば、小型化と様々な製品特性(波長帯域や分解能)のバリエーションとの両立を実現することが可能となる。 In addition, when a reflective grating is provided on a curved surface, which is a predetermined inner surface of a package, as in a conventional spectroscopic module, it is necessary to change the curvature of the curved surface of the package according to the wavelength range of light to be detected. , The sharing of the package is hindered. On the other hand, if the package is to be shared, the wavelength range of light to be detected is limited. On the other hand, in the spectroscopic module 1, if the transmission grating element 13 is changed, the wavelength range of light to be detected can be changed, so that the package body 2 can be shared. In addition, in the spectroscopic module 1, it is not necessary to employ a reflective grating having a spherical optical surface when miniaturized due to the adoption of the flat plate-like transmissive grating element 13, and thus the degree of freedom in optical design of the grating. Spread. Therefore, according to the spectroscopic module 1, it is possible to realize both a reduction in size and variations in various product characteristics (wavelength band and resolution).
 また、従来の分光モジュールのように、パッケージの所定の内面である曲面に反射型グレーティングを設ける場合には、分光特性の変化を防止するために、パッケージの曲面を所定の曲率で高精度に形成することが必要となり、分光モジュールのコストダウンが妨げられる。それに対し、分光モジュール1では、そのような高精度の曲面の形成や、その曲面へのグレーティングの形成が不要となるので、分光モジュール1のコストダウンを図ることができる。 In addition, when a reflective grating is provided on a curved surface, which is a predetermined inner surface of a package, as in a conventional spectral module, the curved surface of the package is formed with a predetermined curvature with high accuracy in order to prevent changes in spectral characteristics. It is necessary to reduce the cost of the spectroscopic module. On the other hand, in the spectroscopic module 1, since it is not necessary to form such a highly accurate curved surface and to form a grating on the curved surface, the cost of the spectroscopic module 1 can be reduced.
 さらに、分光モジュール1では、透過型グレーティング素子13及び光検出素子15を支持基板11に取り付けておくと共に、ミラー素子20をパッケージ本体2に取り付けておき、その後に、支持基板11とパッケージ本体2とを組み合わせれば、透過型グレーティング素子13、ミラー素子20及び光検出素子15の互いの位置決めを実現することができる。しかも、透過型グレーティング素子13をパッケージ本体2に支持させるための構造等が存在しないため、ミラー素子20をパッケージ本体2に容易に取り付けることができる。 Further, in the spectroscopic module 1, the transmission grating element 13 and the light detection element 15 are attached to the support substrate 11, and the mirror element 20 is attached to the package body 2, and then the support substrate 11, the package body 2, In combination, the transmission grating element 13, the mirror element 20, and the light detection element 15 can be positioned relative to each other. Moreover, since there is no structure for supporting the transmission type grating element 13 on the package body 2, the mirror element 20 can be easily attached to the package body 2.
 また、支持基板11には、透過型グレーティング素子13の前段(すなわち、光Lの進行方向における上流側)に位置するように光入射スリット12が設けられている。これにより、透過型グレーティング素子13の所定の位置に選択的にかつ確実に光Lを入射させることができる。 Further, the support substrate 11 is provided with a light incident slit 12 so as to be positioned in front of the transmissive grating element 13 (that is, upstream in the traveling direction of the light L). As a result, the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
 また、パッケージ本体2に形成された空洞3は、パッケージ本体2、パッケージ蓋7及び窓部材9によって、外気に対して気密に封止されている。これにより、透過型グレーティング素子13、ミラー素子20、光検出素子15等、空洞3に臨む部材が湿気等により劣化するのを防止することができる。 Further, the cavity 3 formed in the package body 2 is hermetically sealed against the outside air by the package body 2, the package lid 7, and the window member 9. Thereby, it is possible to prevent the members facing the cavity 3 such as the transmission type grating element 13, the mirror element 20, and the light detection element 15 from being deteriorated by moisture or the like.
 また、分光された光Lを反射する反射部としてミラー素子20が採用されている。ミラー素子20では、使用時の温度変化等によって発生する応力が基材22の凹部23に集中しても、基材22の表面22a上に位置する乗上げ部26によって、基材22の凹部23内に位置する本体部25が押え付けられる。この作用には、乗上げ部26が位置する表面22aが、凹部23の側面(内面)23cと不連続な面(ここでは、平坦面)となっていることが寄与している。しかも、乗上げ部26が、凹部23を挟んで対向しかつ凹部23を包囲するように複数設けられているので、本体部25が周囲から均一に押さえ付けられることになる。これにより、基材22からの成形層24の剥離を確実に防止することができる。 Further, the mirror element 20 is employed as a reflecting portion that reflects the split light L. In the mirror element 20, even if stress generated due to a temperature change or the like during use is concentrated on the concave portion 23 of the base material 22, the raised portion 26 positioned on the surface 22 a of the base material 22 causes the concave portion 23 of the base material 22. The main body 25 positioned inside is pressed. For this function, the surface 22a on which the riding-up portion 26 is located contributes to a discontinuous surface (here, a flat surface) with the side surface (inner surface) 23c of the recess 23. In addition, since a plurality of the riding-up portions 26 are provided so as to face each other with the concave portion 23 interposed therebetween and surround the concave portion 23, the main body portion 25 is uniformly pressed from the periphery. Thereby, peeling of the shaping | molding layer 24 from the base material 22 can be prevented reliably.
 さらに、ミラー素子20では、使用時の温度変化等に起因する成形層24の収縮や膨張が、基材22の表面22a上に位置する乗上げ部26に吸収されて、基材22の凹部23内に位置する本体部25の収縮や膨張が緩和される。しかも、乗上げ部26が、凹部23を挟んで対向しかつ凹部23を包囲するように複数設けられているので、本体部25の収縮や膨張が均一に緩和されることになる。これにより、本体部25の曲面24bの変形を確実に防止することができ、延いてはその曲面24bに設けられた光学機能部21の変形を確実に防止することができる。 Further, in the mirror element 20, the shrinkage and expansion of the molding layer 24 due to temperature change during use is absorbed by the climbing portion 26 located on the surface 22 a of the base material 22, and the concave portion 23 of the base material 22. The contraction and expansion of the main body portion 25 located inside are alleviated. In addition, since a plurality of the ride-up portions 26 are provided so as to face each other with the recess 23 interposed therebetween and surround the recess 23, the contraction and expansion of the main body portion 25 are alleviated uniformly. Thereby, the deformation of the curved surface 24b of the main body portion 25 can be reliably prevented, and further, the deformation of the optical function portion 21 provided on the curved surface 24b can be reliably prevented.
 また、ミラー素子20では、ミラーである光学機能部21となる表面を有する反射膜27が、曲面24bの中心を外すように曲面24b上に形成されているので、0次光が迷光となるのを抑制することができる。曲面24bの中心を外すように、光入射スリット12や透過型グレーティング素子13を曲面24bに対向させても、0次光が迷光となるのを抑制することができる。 Further, in the mirror element 20, since the reflection film 27 having a surface that becomes the optical function unit 21 that is a mirror is formed on the curved surface 24b so as to remove the center of the curved surface 24b, the zero-order light becomes stray light. Can be suppressed. Even if the light incident slit 12 and the transmissive grating element 13 are opposed to the curved surface 24b so as to remove the center of the curved surface 24b, it is possible to suppress the 0th-order light from becoming stray light.
 なお、ミラー素子20においては、基材22の表面22aに形成された凹部23の内面は、一続きの曲面等、曲面であってもよい。また、光学機能部21が設けられる成形層24の曲面24bは、少なくとも本体部25に形成されていれば、本体部25から乗上げ部26に至っていなくてもよい。逆に、光学機能部21は、本体部25から乗上げ部26に至っていてもよい。また、乗上げ部26が凹部23を挟んで対向する場合、対向する方向は任意である。また、乗上げ部26は、凹部23を挟んで対向するように一組だけ設けられていてもよい。また、乗上げ部26は、例えば120°ごとに配置されるなど、凹部23を挟んで対向せずに凹部23を包囲するように複数設けられていてもよい。また、乗上げ部26は、基材22の表面22a上において一続きになっていてもよい。 In the mirror element 20, the inner surface of the recess 23 formed on the surface 22 a of the substrate 22 may be a curved surface such as a continuous curved surface. Further, the curved surface 24 b of the molding layer 24 on which the optical function unit 21 is provided does not need to reach the riding-up unit 26 from the main body 25 as long as it is formed at least on the main body 25. Conversely, the optical function unit 21 may reach from the main body unit 25 to the riding-up unit 26. Moreover, when the riding-up part 26 opposes on both sides of the recessed part 23, the direction to oppose is arbitrary. Moreover, only one set of the riding-up portions 26 may be provided so as to face each other with the recess 23 interposed therebetween. Further, a plurality of the ride-up portions 26 may be provided so as to surround the recess 23 without being opposed to each other with the recess 23 interposed therebetween, for example, arranged every 120 °. Further, the ride-up portion 26 may be continuous on the surface 22 a of the base material 22.
 また、図2に示されるように、パッケージ本体2の空洞3の底面3bを曲面状に形成し、ミラー素子20に代えて、その底面3bに反射膜(反射部)32を形成してもよい。この場合にも、従来の分光モジュールのように、パッケージの所定の内面である曲面に反射型グレーティングを設ける場合に比べれば、検出すべき光の波長範囲に応じてパッケージの曲面の曲率を変化させることや、パッケージの曲面を所定の曲率で高精度に形成することの必要性は低くなる。よって、従来の分光モジュールに比べて、パッケージ本体2の共通化や、分光モジュール1のコストダウンを図ることができる。
[第2の実施形態]
Further, as shown in FIG. 2, the bottom surface 3b of the cavity 3 of the package body 2 may be formed in a curved shape, and a reflective film (reflecting portion) 32 may be formed on the bottom surface 3b instead of the mirror element 20. . Also in this case, the curvature of the curved surface of the package is changed according to the wavelength range of the light to be detected, as compared with the case where the reflection type grating is provided on the curved surface which is the predetermined inner surface of the package as in the conventional spectral module. In addition, the necessity of forming the curved surface of the package with a predetermined curvature with high accuracy is reduced. Therefore, the package body 2 can be shared and the cost of the spectral module 1 can be reduced as compared with the conventional spectral module.
[Second Embodiment]
 図3に示される分光モジュール1は、光検出素子15に光入射スリット(光入射部)33が形成されている点で、図1に示される分光モジュール1と主に相違している。以下、この相違点を中心に、第2の実施形態の分光モジュールについて説明する。 The spectral module 1 shown in FIG. 3 is mainly different from the spectral module 1 shown in FIG. 1 in that a light incident slit (light incident portion) 33 is formed in the light detection element 15. Hereinafter, the spectral module of the second embodiment will be described focusing on this difference.
 図3に示されるように、光検出素子15の基板15bには、光検出部15aと並設されるように光入射スリット33が形成されている。光入射スリット33は、光検出部15aに対して高精度に位置決めされた状態で、エッチング等によって基板15bに形成されている。光検出部15a及び光入射スリット33は、支持基板11の光通過孔16と対向している。なお、光通過孔16は、光検出部15a及び光入射スリット33のそれぞれと対向するように、支持基板11に複数設けられていてもよい。 As shown in FIG. 3, a light incident slit 33 is formed on the substrate 15b of the light detecting element 15 so as to be arranged in parallel with the light detecting portion 15a. The light incident slit 33 is formed in the substrate 15b by etching or the like while being positioned with high accuracy with respect to the light detection unit 15a. The light detection unit 15 a and the light incident slit 33 are opposed to the light passage hole 16 of the support substrate 11. Note that a plurality of the light passage holes 16 may be provided in the support substrate 11 so as to face the light detection unit 15a and the light incident slit 33, respectively.
 透過型グレーティング素子13は、光検出素子15の光入射スリット33と対向するように、支持基板11に対して空洞3側に配置されている。透過型グレーティング素子13は、光入射面13aが光通過孔16に臨んだ状態で支持基板11に固定されている。つまり、透過型グレーティング素子13は、支持基板11によって直接的に支持されている。 The transmission type grating element 13 is arranged on the cavity 3 side with respect to the support substrate 11 so as to face the light incident slit 33 of the light detection element 15. The transmissive grating element 13 is fixed to the support substrate 11 with the light incident surface 13 a facing the light passage hole 16. That is, the transmissive grating element 13 is directly supported by the support substrate 11.
 以上のように構成された分光モジュール1では、光入射孔8、窓部材9、光入射スリット33及び光通過孔16を介して空洞3外から入射した光Lは、透過型グレーティング素子13によって分光されると共に空洞3の底面3b側に透過させられる。透過型グレーティング素子13によって分光された光Lは、ミラー素子20によって支持基板11側に反射される。ミラー素子20によって反射された光Lは、光通過孔16を介して光検出部15aに入射する。これにより、光検出素子15から出力された電気信号は、バンプ18、配線17、ワイヤ31及びリード19を介して分光モジュール1の外部に取り出される。 In the spectroscopic module 1 configured as described above, the light L incident from the outside of the cavity 3 through the light incident hole 8, the window member 9, the light incident slit 33, and the light passing hole 16 is spectrally separated by the transmissive grating element 13. And transmitted to the bottom surface 3 b side of the cavity 3. The light L dispersed by the transmissive grating element 13 is reflected by the mirror element 20 to the support substrate 11 side. The light L reflected by the mirror element 20 enters the light detection unit 15 a through the light passage hole 16. As a result, the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
 以上説明したように、分光モジュール1では、空洞3外から空洞3内に光Lを通過させるパッケージ蓋7及び支持基板11のうちの支持基板11によって、透過型グレーティング素子13及び光検出素子15が支持されている。そのため、パッケージ本体2の状態(形成精度や、使用時の温度変化による収縮及び膨張等)に起因して透過型グレーティング素子13の分光特性が変化するのを抑制することができる。さらに、透過型グレーティング素子13、ミラー素子20及び光検出素子15を互いに近付けて配置しても、透過型グレーティング素子13がパッケージ本体2によって支持されている場合に比べ、透過型グレーティング素子13の光入射面13aで反射した光が迷光として光検出素子によって検出されるのを抑制することができる。よって、分光モジュール1によれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することが可能となる。 As described above, in the spectroscopic module 1, the transmission grating element 13 and the light detection element 15 are formed by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the support substrate 11 of the support substrate 11. It is supported. Therefore, it is possible to suppress changes in the spectral characteristics of the transmissive grating element 13 due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature changes during use, etc.). Furthermore, even if the transmissive grating element 13, the mirror element 20, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 can be compared with the case where the transmissive grating element 13 is supported by the package body 2. It is possible to suppress the light reflected by the incident surface 13a from being detected by the light detection element as stray light. Therefore, according to the spectroscopic module 1, it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
 また、光検出素子15には、透過型グレーティング素子13の前段(すなわち、光Lの進行方向における上流側)に位置するように光入射スリット33が設けられている。これにより、透過型グレーティング素子13の所定の位置に選択的にかつ確実に光Lを入射させることができる。 In addition, the light detection element 15 is provided with a light incident slit 33 so as to be positioned upstream of the transmission type grating element 13 (that is, upstream in the traveling direction of the light L). As a result, the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
 なお、図4に示されるように、パッケージ本体2の空洞3の底面3bを曲面状に形成し、ミラー素子20に代えて、その底面3bに反射膜32を形成してもよい。この場合にも、従来の分光モジュールに比べて、パッケージ本体2の共通化や、分光モジュール1のコストダウンを図ることができる。
[第3の実施形態]
As shown in FIG. 4, the bottom surface 3 b of the cavity 3 of the package body 2 may be formed in a curved shape, and the reflective film 32 may be formed on the bottom surface 3 b instead of the mirror element 20. Also in this case, the package body 2 can be shared and the cost of the spectral module 1 can be reduced as compared with the conventional spectral module.
[Third Embodiment]
 図5に示される分光モジュール1は、パッケージ蓋7に透過型グレーティング素子13が固定されている点、及び支持基板11に光出射アパーチャ(光出射部)34が形成されている点で、図2に示される分光モジュール1と主に相違している。以下、この相違点を中心に、第3の実施形態の分光モジュールについて説明する。 The spectral module 1 shown in FIG. 5 is different in that the transmission grating element 13 is fixed to the package lid 7 and the light emission aperture (light emission part) 34 is formed on the support substrate 11. This is mainly different from the spectroscopic module 1 shown in FIG. Hereinafter, the spectral module of the third embodiment will be described focusing on this difference.
 図5に示されるように、パッケージ蓋7に対して空洞3の反対側には、光入射スリット12が形成された可動部材35が配置されている。可動部材35は、対向する光入射孔8の範囲内において光入射スリット12が移動可能となるように、パッケージ蓋7に気密に取り付けられている。パッケージ蓋7に対して空洞3側には、透過型グレーティング素子13が配置されている。透過型グレーティング素子13は、光入射面13aが光入射孔8に臨んだ状態で光入射孔8を覆うようにパッケージ蓋7に気密に固定されている。つまり、透過型グレーティング素子13は、パッケージ蓋7によって直接的に支持されている。支持基板11には、透過型グレーティング素子13によって分光された光Lの一部を通過させる光出射アパーチャ34が形成されている。 As shown in FIG. 5, on the opposite side of the cavity 3 with respect to the package lid 7, a movable member 35 in which a light incident slit 12 is formed is disposed. The movable member 35 is airtightly attached to the package lid 7 so that the light incident slit 12 can move within the range of the light incident holes 8 facing each other. A transmissive grating element 13 is disposed on the cavity 3 side with respect to the package lid 7. The transmissive grating element 13 is airtightly fixed to the package lid 7 so as to cover the light incident hole 8 with the light incident surface 13 a facing the light incident hole 8. That is, the transmissive grating element 13 is directly supported by the package lid 7. The support substrate 11 is formed with a light exit aperture 34 that allows a part of the light L dispersed by the transmission type grating element 13 to pass therethrough.
 パッケージ蓋7は、側壁部材36を介して支持基板11上に支持されている。空洞3は、パッケージ本体2、パッケージ蓋7、透過型グレーティング素子13及び側壁部材36によって、外気に対して気密に封止されている。パッケージ蓋7と支持基板11との間には、仕切り部材37が立設されている。仕切り部材37は、グレーティング素子13が配置された領域と、光検出素子15が配置された領域とを隔てる。 The package lid 7 is supported on the support substrate 11 via the side wall member 36. The cavity 3 is hermetically sealed against the outside air by the package body 2, the package lid 7, the transmission type grating element 13, and the side wall member 36. A partition member 37 is erected between the package lid 7 and the support substrate 11. The partition member 37 separates the region where the grating element 13 is disposed from the region where the light detection element 15 is disposed.
 以上のように構成された分光モジュール1では、光入射スリット12及び光入射孔8を介して空洞3外から入射した光Lは、透過型グレーティング素子13によって分光されると共に空洞3の底面3b側に透過させられる。透過型グレーティング素子13によって分光された光Lのうち光出射アパーチャ34を通過した光Lは、反射膜32によって支持基板11側に反射される。反射膜32によって反射された光Lは、光通過孔16を介して光検出部15aに入射する。これにより、光検出素子15から出力された電気信号は、バンプ18、配線17、ワイヤ31及びリード19を介して分光モジュール1の外部に取り出される。 In the spectroscopic module 1 configured as described above, the light L incident from the outside of the cavity 3 through the light incident slit 12 and the light incident hole 8 is dispersed by the transmissive grating element 13 and also on the bottom surface 3b side of the cavity 3. Permeated. Of the light L dispersed by the transmissive grating element 13, the light L that has passed through the light exit aperture 34 is reflected by the reflective film 32 toward the support substrate 11. The light L reflected by the reflective film 32 enters the light detection unit 15 a through the light passage hole 16. As a result, the electrical signal output from the light detection element 15 is taken out of the spectroscopic module 1 via the bump 18, the wiring 17, the wire 31 and the lead 19.
 以上説明したように、分光モジュール1では、空洞3外から空洞3内に光Lを通過させるパッケージ蓋7及び支持基板11のうちのパッケージ蓋7によって、透過型グレーティング素子13が支持されており、それらのうちの支持基板11によって光検出素子15が支持されている。そのため、パッケージ本体2の状態(形成精度や、使用時の温度変化による収縮及び膨張等)に起因して透過型グレーティング素子13の分光特性が変化するのを抑制することができる。さらに、透過型グレーティング素子13、反射膜32及び光検出素子15を互いに近付けて配置しても、透過型グレーティング素子13がパッケージ本体2によって支持されている場合に比べ、透過型グレーティング素子13の光入射面13aで反射した光が迷光として光検出素子によって検出されるのを抑制することができる。よって、分光モジュール1によれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することが可能となる。 As described above, in the spectroscopic module 1, the transmission type grating element 13 is supported by the package lid 7 that allows the light L to pass from the outside of the cavity 3 into the cavity 3 and the package lid 7 of the support substrate 11. The photodetecting element 15 is supported by the support substrate 11 among them. Therefore, it is possible to suppress changes in the spectral characteristics of the transmissive grating element 13 due to the state of the package body 2 (formation accuracy, shrinkage and expansion due to temperature changes during use, etc.). Further, even if the transmissive grating element 13, the reflective film 32, and the light detecting element 15 are arranged close to each other, the light of the transmissive grating element 13 is lighter than when the transmissive grating element 13 is supported by the package body 2. It is possible to suppress the light reflected by the incident surface 13a from being detected by the light detection element as stray light. Therefore, according to the spectroscopic module 1, it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
 また、パッケージ蓋7には、透過型グレーティング素子13の前段(すなわち、光Lの進行方向における上流側)に位置するように光入射スリット12が設けられている。これにより、透過型グレーティング素子13の所定の位置に選択的にかつ確実に光Lを入射させることができる。 Further, the package lid 7 is provided with a light incident slit 12 so as to be positioned in front of the transmissive grating element 13 (that is, upstream in the traveling direction of the light L). As a result, the light L can be selectively and reliably incident on a predetermined position of the transmissive grating element 13.
 また、支持基板11には、透過型グレーティング素子13の後段(すなわち、光Lの進行方向における下流側)に位置しかつ反射膜32の前段に位置するように光出射アパーチャ34が設けられている。これにより、透過型グレーティング素子13によって分光された光Lのうち、0次光や不要な回折光をカットして、検出すべき光Lのみを通過させることができる。 Further, the support substrate 11 is provided with a light emitting aperture 34 so as to be positioned downstream of the transmissive grating element 13 (that is, downstream of the light L in the traveling direction) and upstream of the reflective film 32. . Accordingly, it is possible to cut only the 0th-order light and unnecessary diffracted light out of the light L dispersed by the transmissive grating element 13 and pass only the light L to be detected.
 さらに、光入射スリット12は、透過型グレーティング素子13に対して相対的に移動するように構成されている。そのため、図5(a),(b)に示されるように、光入射スリット12の位置を変えれば、光出射アパーチャ34を通過し得る光Lの進行方向、すなわち波長が変わるので、検出すべき光Lの波長範囲を変化させることができる。なお、光入射スリット12及び光出射アパーチャ34の少なくとも一方を、透過型グレーティング素子13に対して相対的に移動するように構成すれば、検出すべき光Lの波長範囲を変化させることができる。 Furthermore, the light incident slit 12 is configured to move relative to the transmissive grating element 13. Therefore, as shown in FIGS. 5A and 5B, if the position of the light entrance slit 12 is changed, the traveling direction of the light L that can pass through the light exit aperture 34, that is, the wavelength, is changed. The wavelength range of the light L can be changed. If at least one of the light entrance slit 12 and the light exit aperture 34 is configured to move relative to the transmissive grating element 13, the wavelength range of the light L to be detected can be changed.
 以上、本発明の第1~3の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、光入射スリット12に代えて、その位置に、光ファイバ等の導光部材を接続したり、レンズ等の光学部材を配置したりしてもよい。また、支持基板11を光透過性の材料により形成してもよい。その場合には、光吸収層42のパターニング等によって、光入射スリット12、光通過孔16及び光出射アパーチャ34等に対応する開口を形成すればよい。また、分光モジュール1の各構成部材の材料及び形状には、前述した材料及び形状に限らず、様々な材料及び形状を適用することができる。 Although the first to third embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, instead of the light incident slit 12, a light guide member such as an optical fiber may be connected to the position, or an optical member such as a lens may be disposed at that position. Further, the support substrate 11 may be formed of a light transmissive material. In that case, an opening corresponding to the light incident slit 12, the light passage hole 16, the light emission aperture 34, and the like may be formed by patterning the light absorption layer 42 or the like. The material and shape of each component of the spectroscopic module 1 are not limited to the materials and shapes described above, and various materials and shapes can be applied.
 本発明によれば、小型化を図りつつ、分光特性の変化による信頼性の低下を防止することができる。 According to the present invention, it is possible to prevent a decrease in reliability due to a change in spectral characteristics while achieving miniaturization.
 1…分光モジュール、2…パッケージ本体(収容部材)、3…空洞、3b…底面(内面)、7…パッケージ蓋(光通過部材)、11…支持基板(光通過部材)、12…光入射スリット(光入射部)、13…透過型グレーティング素子(分光部)、15…光検出素子、20…ミラー素子(反射部)、21…光学機能部、22…基材、22a…表面、23…凹部、23b…底面(内面)、24…成形層、24b…曲面(所定の面)、25…本体部(第1の部分)、26…乗上げ部(第2の部分)、32…反射膜(反射部)、33…光入射スリット(光入射部)、34…光出射アパーチャ(光出射部)。 DESCRIPTION OF SYMBOLS 1 ... Spectroscopic module, 2 ... Package main body (accommodating member), 3 ... Cavity, 3b ... Bottom surface (inner surface), 7 ... Package lid (light passage member), 11 ... Support substrate (light passage member), 12 ... Light entrance slit (Light incident part), 13 ... transmission grating element (spectral part), 15 ... light detection element, 20 ... mirror element (reflection part), 21 ... optical function part, 22 ... base material, 22a ... surface, 23 ... concave part 23b ... bottom surface (inner surface), 24 ... molded layer, 24b ... curved surface (predetermined surface), 25 ... main body portion (first portion), 26 ... riding portion (second portion), 32 ... reflection film ( Reflecting part), 33... Light incident slit (light incident part), 34... Light emitting aperture (light emitting part).

Claims (6)

  1.  空洞が形成された収容部材と、
     前記空洞の内面と対向するように前記収容部材に取り付けられ、前記空洞外から前記空洞内に光を通過させる光通過部材と、
     前記光通過部材によって支持され、前記空洞外から入射した光を分光すると共に前記空洞の前記内面側に透過させる分光部と、
     前記空洞の前記内面に配置され、前記分光部によって分光された光を反射する反射部と、
     前記光通過部材によって支持され、前記反射部によって反射された光を検出する光検出素子と、を備える、分光モジュール。
    A housing member formed with a cavity;
    A light-passing member attached to the housing member so as to face the inner surface of the cavity and allowing light to pass from the outside of the cavity into the cavity;
    A spectroscopic unit that is supported by the light passing member and that splits light incident from outside the cavity and transmits the light to the inner surface side of the cavity;
    A reflective part that is disposed on the inner surface of the cavity and reflects light dispersed by the spectroscopic part;
    A spectroscopic module comprising: a light detecting element that is supported by the light passing member and detects light reflected by the reflecting portion.
  2.  前記光通過部材又は前記光検出素子には、前記分光部の前段に位置するように光入射部が設けられている、請求項1記載の分光モジュール。 The spectroscopic module according to claim 1, wherein the light passing member or the light detection element is provided with a light incident portion so as to be positioned in front of the spectroscopic portion.
  3.  前記光通過部材には、前記分光部の後段に位置しかつ前記反射部の前段に位置するように光出射部が設けられている、請求項2記載の分光モジュール。 3. The spectroscopic module according to claim 2, wherein the light passing member is provided with a light emitting part so as to be located at a subsequent stage of the spectroscopic part and at a preceding stage of the reflecting part.
  4.  前記光入射部及び前記光出射部の少なくとも一方は、前記分光部に対して相対的に移動するように構成されている、請求項3記載の分光モジュール。 4. The spectroscopic module according to claim 3, wherein at least one of the light incident part and the light emitting part is configured to move relative to the spectroscopic part.
  5.  前記空洞は、外気に対して気密に封止されている、請求項1~4のいずれか一項記載の分光モジュール。 The spectroscopic module according to any one of claims 1 to 4, wherein the cavity is hermetically sealed against outside air.
  6.  前記反射部は、前記空洞の前記内面に配置されたミラー素子であり、
     前記ミラー素子は、
     表面に凹部が形成された基材と、
     前記基材上に配置された成形層と、を備え、
     前記成形層は、前記凹部の深さ方向から見た場合に前記凹部内に位置する第1の部分、及び前記第1の部分と繋がった状態で前記基材の前記表面上に位置する第2の部分を有し、
     前記第1の部分において前記凹部の内面と対向する所定の面には、ミラーである光学機能部が設けられている、請求項1~5のいずれか一項記載の分光モジュール。
    The reflecting portion is a mirror element disposed on the inner surface of the cavity;
    The mirror element is
    A base material having a recess formed on the surface;
    A molding layer disposed on the substrate,
    The molding layer is a first part located in the concave part when viewed from the depth direction of the concave part, and a second part located on the surface of the base material in a state of being connected to the first part. The part of
    The spectroscopic module according to any one of claims 1 to 5, wherein an optical function portion that is a mirror is provided on a predetermined surface of the first portion that faces the inner surface of the recess.
PCT/JP2011/079541 2011-02-23 2011-12-20 Spectrometer module WO2012114632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011037247A JP5718091B2 (en) 2011-02-23 2011-02-23 Spectroscopic module
JP2011-037247 2011-02-23

Publications (1)

Publication Number Publication Date
WO2012114632A1 true WO2012114632A1 (en) 2012-08-30

Family

ID=46720432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079541 WO2012114632A1 (en) 2011-02-23 2011-12-20 Spectrometer module

Country Status (2)

Country Link
JP (1) JP5718091B2 (en)
WO (1) WO2012114632A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541138A (en) * 2012-08-06 2015-04-22 浜松光子学株式会社 Spectrometer
CN107850489A (en) * 2015-08-04 2018-03-27 浜松光子学株式会社 The manufacture method of optical splitter and optical splitter
TWI704332B (en) * 2014-02-05 2020-09-11 日商濱松赫德尼古斯股份有限公司 Splitter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182170A (en) 2013-03-18 2014-09-29 Seiko Epson Corp Sealing structure, interference filter, optical module, and electronic apparatus
JP6325268B2 (en) * 2014-02-05 2018-05-16 浜松ホトニクス株式会社 Spectrometer and method of manufacturing the spectrometer
JP6177153B2 (en) * 2014-02-05 2017-08-09 浜松ホトニクス株式会社 Spectrometer
CH714565B8 (en) 2015-08-04 2019-09-30 Hamamatsu Photonics Kk Spectrometer.
TWI612281B (en) 2016-09-26 2018-01-21 財團法人工業技術研究院 Interference splitter package device
JP6353999B1 (en) * 2018-04-12 2018-07-04 浜松ホトニクス株式会社 Spectrometer
JP6383126B1 (en) * 2018-04-17 2018-08-29 浜松ホトニクス株式会社 Spectrometer
JP6411693B1 (en) * 2018-08-02 2018-10-24 浜松ホトニクス株式会社 Spectrometer
JP2019002941A (en) * 2018-09-26 2019-01-10 浜松ホトニクス株式会社 Spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717015A1 (en) * 1997-04-23 1998-10-29 Inst Mikrotechnik Mainz Gmbh Miniaturized optical component and method for its production
JP2003139611A (en) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd Spectrophotometer
JP2005037872A (en) * 2003-01-28 2005-02-10 Nippon Sheet Glass Co Ltd Optical element, and optical circuit and optical demultiplexer having same
JP2005338689A (en) * 2004-05-31 2005-12-08 Nippon Seiki Co Ltd Reflecting mirror and reflecting mirror device equipped with the reflecting mirror
JP2009300420A (en) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk Spectroscope manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717015A1 (en) * 1997-04-23 1998-10-29 Inst Mikrotechnik Mainz Gmbh Miniaturized optical component and method for its production
JP2003139611A (en) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd Spectrophotometer
JP2005037872A (en) * 2003-01-28 2005-02-10 Nippon Sheet Glass Co Ltd Optical element, and optical circuit and optical demultiplexer having same
JP2005338689A (en) * 2004-05-31 2005-12-08 Nippon Seiki Co Ltd Reflecting mirror and reflecting mirror device equipped with the reflecting mirror
JP2009300420A (en) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk Spectroscope manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541138A (en) * 2012-08-06 2015-04-22 浜松光子学株式会社 Spectrometer
TWI704332B (en) * 2014-02-05 2020-09-11 日商濱松赫德尼古斯股份有限公司 Splitter
US10883877B2 (en) 2014-02-05 2021-01-05 Hamamatsu Photonics K.K. Spectroscope
US11262240B2 (en) 2014-02-05 2022-03-01 Hamamatsu Photonics K.K. Spectroscope
CN107850489A (en) * 2015-08-04 2018-03-27 浜松光子学株式会社 The manufacture method of optical splitter and optical splitter
US10408677B2 (en) 2015-08-04 2019-09-10 Hamamatsu Photonics K.K. Spectroscope, and spectroscope production method
CN107850489B (en) * 2015-08-04 2019-12-20 浜松光子学株式会社 Optical splitter and method for manufacturing optical splitter

Also Published As

Publication number Publication date
JP5718091B2 (en) 2015-05-13
JP2012173208A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5718091B2 (en) Spectroscopic module
JP5207938B2 (en) Spectroscopic module and method for manufacturing spectral module
KR101563009B1 (en) Spectroscope
JP5767883B2 (en) Spectrometer
JP5335729B2 (en) Spectroscopic module
JP5205239B2 (en) Spectrometer
JP5767882B2 (en) Spectrometer
JP5512961B2 (en) Spectroscopic module and manufacturing method thereof
TWI655414B (en) Beamsplitters and methods for manufacturing the same
KR102506746B1 (en) Spectrometer, and spectrometer production method
JP6877198B2 (en) Spectrometer
KR102641685B1 (en) Spectrometer, and method of manufacturing the spectrometer
JP6061542B2 (en) Spectrometer
CN108731804B (en) Light splitter
JP2009069017A (en) Spectroscopic module
JP5162049B2 (en) Spectroscopic module and method for manufacturing spectral module
CN110462353B (en) Optical detection device
JP5113947B2 (en) Spectroscopic module
JP2009069012A (en) Spectral module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859121

Country of ref document: EP

Kind code of ref document: A1