WO2012114593A1 - Acoustic wave branching filter - Google Patents

Acoustic wave branching filter Download PDF

Info

Publication number
WO2012114593A1
WO2012114593A1 PCT/JP2011/077174 JP2011077174W WO2012114593A1 WO 2012114593 A1 WO2012114593 A1 WO 2012114593A1 JP 2011077174 W JP2011077174 W JP 2011077174W WO 2012114593 A1 WO2012114593 A1 WO 2012114593A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
signal terminal
side ground
terminal
acoustic wave
Prior art date
Application number
PCT/JP2011/077174
Other languages
French (fr)
Japanese (ja)
Inventor
高峰 裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012114593A1 publication Critical patent/WO2012114593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0071Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices

Definitions

  • the present invention relates to an elastic wave duplexer.
  • the present invention relates to an acoustic wave duplexer including a longitudinally coupled resonator type acoustic wave filter.
  • an RF (Radio Frequency) circuit is used to simultaneously transmit and receive signals.
  • a duplexer is installed.
  • the duplexer is a duplexer including a transmission filter, a reception filter, and a matching circuit.
  • FIG. 33 is a schematic circuit diagram of the elastic wave duplexer 100 described in Patent Document 1.
  • the elastic wave duplexer 100 includes an antenna terminal 101, a transmission-side signal terminal 102, and first and second reception-side signal terminals 103a and 103b.
  • a transmission filter 104 is connected between the antenna terminal 101 and the transmission-side signal terminal 102.
  • the transmission filter 104 is configured by a ladder type elastic wave filter.
  • a reception filter 105 is connected between the antenna terminal 101 and the first and second reception-side signal terminals 103a and 103b.
  • the reception filter 105 is constituted by a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. Therefore, the first and second receiving signal terminals 103a and 103b are first and second balanced signal terminals.
  • the first reception-side signal terminal 103 a and the second reception-side signal terminal 103 b are connected to the same IDT electrodes 106 and 107 of the reception filter 105.
  • the first receiving signal terminal 103a is connected to the comb-like electrodes 106a and 107a on one side of the IDT electrodes 106 and 107.
  • the second receiving side signal terminal 103b is connected to the comb-like electrodes 106b and 107b on the other side of the IDT electrodes 106 and 107. Therefore, the IDT electrodes 106 and 107 to which the first and second receiving signal terminals 103a and 103b are connected are floating electrodes (float electrodes) that are not connected to the ground.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an elastic wave demultiplexer including a longitudinally coupled resonator type elastic wave filter, which has large common mode isolation. Is to provide a vessel.
  • the first acoustic wave duplexer includes a transmission filter and a reception filter.
  • the transmission filter is constituted by an elastic wave filter.
  • the reception filter is composed of a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function.
  • a wiring board and at least one elastic wave filter chip are provided.
  • the wiring board has a die attach surface and a back surface.
  • the elastic wave filter chip is mounted on the die attach surface.
  • the acoustic wave filter chip has a piezoelectric substrate and electrodes that constitute a reception filter. The electrodes constituting the reception filter are formed on the piezoelectric substrate.
  • the electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes.
  • the unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate.
  • the plurality of IDT electrodes include an unbalanced signal terminal side IDT electrode, a first balanced signal terminal side IDT electrode, and a second balanced signal terminal side IDT electrode.
  • the unbalanced signal terminal side IDT electrode has a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal side ground terminal.
  • the first balanced signal terminal-side IDT electrode includes a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal.
  • the second balanced signal terminal-side IDT electrode has a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal.
  • the wiring board has an unbalanced signal terminal side ground electrode and a balanced signal terminal side ground electrode.
  • the unbalanced signal terminal side ground electrode is connected to the unbalanced signal terminal side ground terminal.
  • the balanced signal terminal side ground electrode is connected to the balanced signal terminal side ground terminal.
  • the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are not connected to each other on the wiring board.
  • the second acoustic wave duplexer includes a transmission filter and a reception filter.
  • the transmission filter is constituted by an elastic wave filter.
  • the reception filter is composed of a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function.
  • a wiring board and at least one elastic wave filter chip are provided.
  • the wiring board has a die attach surface and a back surface.
  • the elastic wave filter chip is mounted on the die attach surface.
  • the acoustic wave filter chip has a piezoelectric substrate and electrodes that constitute a reception filter. The electrodes constituting the reception filter are formed on the piezoelectric substrate.
  • the electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes.
  • the unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate.
  • the plurality of IDT electrodes include an unbalanced signal terminal side IDT electrode, a first balanced signal terminal side IDT electrode, and a second balanced signal terminal side IDT electrode.
  • the unbalanced signal terminal side IDT electrode has a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal side ground terminal.
  • the first balanced signal terminal-side IDT electrode includes a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal.
  • the second balanced signal terminal-side IDT electrode has a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal.
  • the wiring board has an unbalanced signal terminal side ground electrode and a balanced signal terminal side ground electrode.
  • the unbalanced signal terminal side ground electrode is connected to the unbalanced signal terminal side ground terminal.
  • the balanced signal terminal side ground electrode is connected to the balanced signal terminal side ground terminal.
  • the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are shared on the back surface of the wiring board.
  • the acoustic wave filter chip constitutes a reception-side acoustic wave filter chip having an electrode that constitutes a reception filter, and a transmission filter.
  • a transmission-side acoustic wave filter chip having an electrode to be transmitted.
  • the transmission filter is configured by a ladder type acoustic wave filter.
  • the electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator.
  • the acoustic wave resonator constituting the parallel arm resonator is composed of comb-like electrodes connected to the acoustic wave resonator constituting the series arm resonator and comb teeth connected to the transmission-side ground terminal.
  • an IDT electrode having a shape electrode.
  • the wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal. The transmission-side ground electrode and the balanced signal terminal-side ground electrode are not connected to each other on the wiring board.
  • the transmission filter is configured by a ladder-type elastic wave filter.
  • the electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator.
  • the acoustic wave resonator constituting the parallel arm resonator is composed of comb-like electrodes connected to the acoustic wave resonator constituting the series arm resonator and comb teeth connected to the transmission-side ground terminal.
  • an IDT electrode having a shape electrode.
  • the wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal.
  • the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared on the back surface of the wiring board.
  • the “elastic wave” includes a surface acoustic wave and a boundary acoustic wave.
  • an acoustic wave duplexer including a longitudinally coupled resonator type acoustic wave filter and having a large common mode isolation.
  • FIG. 1 is a schematic circuit diagram of an elastic wave duplexer according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 3 is a schematic perspective plan view of the transmission-side elastic wave filter chip in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 4 is a schematic perspective plan view of the reception-side surface acoustic wave filter chip in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 6 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 7 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 8 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 9 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention.
  • FIG. 10 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example.
  • FIG. 11 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example.
  • FIG. 12 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example.
  • FIG. 13 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first comparative example.
  • FIG. 14 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first comparative example.
  • FIG. 15 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example.
  • FIG. 16 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example.
  • FIG. 17 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example.
  • FIG. 18 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second comparative example.
  • FIG. 19 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second comparative example.
  • FIG. 20 is a graph showing common mode isolation characteristics of the elastic wave duplexer according to each of the first example and the first and second comparative examples.
  • FIG. 21 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 22 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 23 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 24 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 21 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 22 is a schematic perspective plan view of the second
  • FIG. 25 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the third comparative example.
  • FIG. 26 is a graph showing the common mode isolation characteristics of the elastic wave duplexer according to each of the first example and the third comparative example.
  • FIG. 27 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 28 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 29 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 30 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 31 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention.
  • FIG. 32 is a graph showing the common mode isolation characteristics of the elastic wave duplexer according to each of the first and second embodiments.
  • FIG. 33 is a schematic circuit diagram of the elastic wave duplexer described in Patent Document 1.
  • the elastic wave duplexer according to the present invention is not limited to the surface acoustic wave duplexer 1.
  • the elastic wave duplexer according to the present invention may be another type of elastic wave duplexer such as a triplexer.
  • the elastic wave duplexer according to the present invention may be a boundary acoustic wave duplexer using a boundary acoustic wave.
  • the surface acoustic wave duplexer 1 is mounted on an RF circuit such as a mobile phone corresponding to a CDMA system such as UMTS.
  • the surface acoustic wave duplexer 1 of the present embodiment is specifically a duplexer corresponding to UMTS-BAND2. Note that the transmission frequency band of UMTS-BAND2 is 1850 MHz to 1910 MHz. The reception frequency band of UMTS-BAND2 is 1930 MHz to 1990 MHz.
  • FIG. 1 is a schematic circuit diagram of a surface acoustic wave duplexer 1 according to this embodiment. First, the circuit configuration of the surface acoustic wave duplexer 1 will be described with reference to FIG.
  • the surface acoustic wave duplexer 1 includes an antenna Ant. Antenna terminal 21, a transmission side signal terminal 24, and first and second reception side signal terminals 22a and 22b.
  • a transmission filter 14 is connected between the antenna terminal 21 and the transmission-side signal terminal 24.
  • a reception filter 15 is connected between the antenna terminal 21 and the first and second reception-side signal terminals 22a and 22b.
  • a matching circuit made up of an inductor L1 is connected between the connection point between the antenna terminal 21 and the antenna terminal 21 and the ground.
  • the inductor L1 is constituted by a chip inductor and is mounted on the RF circuit together with the surface acoustic wave duplexer 1.
  • the surface acoustic wave duplexer 1 may include a matching circuit. In that case, the matching circuit is connected between one or both of the transmission filter 14 and the reception filter 15 and the antenna terminal 21.
  • the transmission filter 14 is a ladder type surface acoustic wave filter.
  • the transmission filter 14 has an output terminal 14a and an input terminal 14b.
  • the output terminal 14 a is connected to the antenna terminal 21.
  • the input terminal 14 b is connected to the transmission side signal terminal 24.
  • the transmission filter 14 has a serial arm 33 that connects the input terminal 14b and the output terminal 14a.
  • series arm resonators S1, S2, S3, and S4 are connected in series.
  • Each of the series arm resonators S1, S2, S3, and S4 is composed of a plurality of surface acoustic wave resonators that function as one resonator.
  • the power durability of the transmission filter 14 can be improved.
  • each of the series arm resonators S1, S2, S3, and S4 may be composed of one surface acoustic wave resonator.
  • a capacitor C is connected in parallel to the series arm resonator S2.
  • the capacitor C is composed of a pair of comb-like electrodes that are interleaved with each other.
  • the transmission filter 14 has parallel arms 37a to 37d connected between the serial arm 33 and the ground.
  • Parallel arm resonators P1, P2, P3, and P4 are provided in each of the parallel arms 37a to 37d.
  • Each of the parallel arm resonators P1, P2, P3, and P4 includes a plurality of surface acoustic wave resonators that function as a single resonator.
  • the power durability of the transmission filter 14 can be improved.
  • each of the parallel arm resonators P1, P2, P3, and P4 may be composed of one surface acoustic wave resonator.
  • the transmission filter 14 includes transmission-side ground terminals 14c and 14d.
  • the transmission side ground terminal 14c is connected to the parallel arms 37a to 37c. That is, the parallel arms 37a to 37c are connected to the ground via the transmission side ground terminal 14c.
  • the transmission side ground terminal 14d is connected to the parallel arm 37d. That is, the parallel arm 37d is connected to the ground via the transmission-side ground terminal 14d.
  • An inductor L2 is connected between the parallel arm resonators P1, P2, P3 and the ground.
  • An inductor L3 is connected between the parallel arm resonator P4 and the ground.
  • the inductor L2 is connected between the transmission-side ground terminal 14c and the ground.
  • An inductor L3 is connected between the transmission-side ground terminal 14d and the ground.
  • the surface acoustic wave resonator constituting the parallel arm resonator P1 includes a comb-like electrode connected to the surface acoustic wave resonators constituting the series arm resonators S1 and S2, and a transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode.
  • the surface acoustic wave resonator constituting the parallel arm resonator P2 includes a comb-like electrode connected to the surface acoustic wave resonators constituting the series arm resonators S2 and S3, and a transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode.
  • the surface acoustic wave resonator constituting the parallel arm resonator P3 includes comb-like electrodes connected to the surface acoustic wave resonators constituting the series arm resonators S3 and S4, and the transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode.
  • the surface acoustic wave resonator constituting the parallel arm resonator P4 is connected to the comb-like electrode connected to the surface acoustic wave resonator constituting the series arm resonator S4 and the transmission-side ground terminal 14d. And an IDT electrode having a comb-like electrode.
  • the reception filter 15 is composed of a balanced longitudinally coupled resonator type surface acoustic wave filter having a balanced-unbalanced conversion function.
  • the reception filter 15 includes an unbalanced signal terminal 15a and first and second balanced signal terminals 15b and 15c.
  • the unbalanced signal terminal 15a is connected to the antenna terminal 21.
  • the first balanced signal terminal 15b is connected to the first receiving signal terminal 22a.
  • the second balanced signal terminal 15c is connected to the second receiving signal terminal 22b.
  • the impedance of the unbalanced signal terminal 15a is 50 ⁇ .
  • the impedances of the first and second balanced signal terminals 15b and 15c are 100 ⁇ .
  • the reception filter 15 includes a first longitudinally coupled resonator type surface acoustic wave filter element 15A, a second longitudinally coupled resonator type surface acoustic wave filter element 15B, and surface acoustic wave resonators 17a to 17e.
  • the first longitudinally coupled resonator type surface acoustic wave filter element 15A is connected between the unbalanced signal terminal 15a and the first balanced signal terminal 15b.
  • the second longitudinally coupled resonator type surface acoustic wave filter element 15B is connected between the unbalanced signal terminal 15a and the second balanced signal terminal 15c.
  • the first longitudinally coupled resonator type surface acoustic wave filter element 15A is provided with IDT electrodes 15A1, 15A2, and 15A3 arranged along the surface acoustic wave propagation direction, and these three IDT electrodes 15A1, 15A2, and 15A3. And a pair of reflectors 15A4 and 15A5 disposed on both sides of the surface acoustic wave propagation direction in the region. That is, the first longitudinally coupled resonator type surface acoustic wave filter element 15A is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter element.
  • the comb-like electrodes on one side of the IDT electrodes 15A1 and 15A3 located on both sides of the surface acoustic wave propagation direction are connected to the unbalanced signal terminal 15a, and the comb-like electrode on the other side is connected to the ground. Has been.
  • the comb-like electrode on one side of the IDT electrode 15A2 located in the center of the surface acoustic wave propagation direction is connected to the ground, and the comb-like electrode on the other side is connected to the first balanced signal terminal 15b.
  • a surface acoustic wave resonator 17d is connected between the connection point between the IDT electrode 15A2 and the first balanced signal terminal 15b and the ground.
  • the surface acoustic wave resonator 17d includes one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, the surface acoustic wave resonator 17d is a 1-port surface acoustic wave resonator.
  • the second longitudinally coupled resonator type surface acoustic wave filter element 15B is provided with IDT electrodes 15B1, 15B2, and 15B3 arranged along the surface acoustic wave propagation direction, and these three IDT electrodes 15B1, 15B2, and 15B3. And a pair of reflectors 15B4 and 15B5 disposed on both sides of the surface acoustic wave propagation direction in the region. That is, the second longitudinally coupled resonator type surface acoustic wave filter element 15B is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter element.
  • the comb-like electrodes on one side of the IDT electrodes 15B1 and 15B3 located on both sides of the surface acoustic wave propagation direction are connected to the unbalanced signal terminal 15a, and the comb-like electrode on the other side is connected to the ground. Has been.
  • the comb-like electrode on one side of the IDT electrode 15B2 located in the center of the surface acoustic wave propagation direction is connected to the ground, and the comb-like electrode on the other side is connected to the second balanced signal terminal 15c.
  • a surface acoustic wave resonator 17e is connected between the connection point between the IDT electrode 15B2 and the second balanced signal terminal 15c and the ground.
  • the surface acoustic wave resonator 17e includes one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, the surface acoustic wave resonator 17e is a 1-port surface acoustic wave resonator.
  • the surface acoustic wave propagation direction of the first longitudinally coupled resonator type surface acoustic wave filter element 15A is used in order to invert the phase.
  • the IDT electrodes 15B1 and 15B3 located on both sides of the surface acoustic wave propagation direction of the second longitudinally coupled resonator type surface acoustic wave filter element 15B are inverted with respect to the IDT electrodes 15A1 and 15A3 located on both sides of Has been.
  • Other configurations are the same between the first longitudinally coupled resonator type surface acoustic wave filter element 15A and the second longitudinally coupled resonator type surface acoustic wave filter element 15B.
  • the surface acoustic wave resonators 17a to 17c are connected in series between the unbalanced signal terminal 15a and the first and second longitudinally coupled resonator type surface acoustic wave filter elements 15A and 15B.
  • Each of the surface acoustic wave resonators 17a to 17c has one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, each of the surface acoustic wave resonators 17a to 17c is a one-port surface acoustic wave resonator.
  • the surface acoustic wave resonators 17 a to 17 c are provided to adjust the phase with the transmission filter 14.
  • the surface acoustic wave resonators 17 a to 17 c have a resonance frequency located in the pass band of the reception filter 15 and an anti-resonance frequency higher than the pass band of the reception filter 15 and located outside the pass band. It is configured as follows.
  • the surface acoustic wave resonators 17 d and 17 e are provided to increase the out-of-band attenuation of the reception filter 15.
  • the surface acoustic wave resonators 17d and 17e are configured such that the resonance frequency is lower than the pass band of the reception filter 15, is located outside the pass band, and the anti-resonance frequency is located in the pass band. Yes.
  • FIG. 2 is a schematic cross-sectional view of the surface acoustic wave duplexer 1 according to the present embodiment. Next, a specific configuration of the surface acoustic wave duplexer 1 of the present embodiment will be described with reference mainly to FIG.
  • the surface acoustic wave duplexer 1 includes a wiring board 10, a transmission-side surface acoustic wave filter chip 18, and a reception-side surface acoustic wave filter chip 19.
  • the transmission-side surface acoustic wave filter chip 18 is formed with portions of the transmission filter 14 excluding the inductors L2 and L3.
  • the inductors L2 and L3 are provided on the wiring board 10.
  • a reception filter 15 is formed on the reception-side surface acoustic wave filter chip 19.
  • FIG. 3 is a schematic perspective plan view of the transmission-side surface acoustic wave filter chip 18 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 3 shows a state where the transmitting surface acoustic wave filter chip 18 is seen through from above the surface acoustic wave duplexer 1.
  • the transmission-side surface acoustic wave filter chip 18 is formed on the piezoelectric substrate 18A, the piezoelectric substrate 18A, and the IDT electrodes, reflectors, and capacitors that form the surface acoustic wave resonator.
  • On the piezoelectric substrate 18A there are an output terminal 14a to which the series arm resonator S1 is connected, an input terminal 14b to which the series arm resonator S4 and the parallel arm resonator P4 are connected, and parallel arm resonators P1 to P3.
  • a connected transmission-side ground terminal 14c and a transmission-side ground terminal 14d to which the parallel arm resonator P4 is connected are arranged.
  • the electrode 18B includes an output terminal 14a, an input terminal 14b, a transmission-side ground terminal 14c, a transmission-side ground terminal 14d, and dummy terminals 14e and 14f.
  • the dummy terminals 14e and 14f are provided to increase the bonding strength between the transmission-side surface acoustic wave filter chip 18 and the wiring board 10.
  • FIG. 4 is a schematic perspective plan view of the reception-side surface acoustic wave filter chip 19 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 4 shows a state in which the receiving surface acoustic wave filter chip 19 is seen through from above the surface acoustic wave duplexer 1.
  • the receiving surface acoustic wave filter chip 19 is formed on a piezoelectric substrate 19A and a piezoelectric substrate 19A, and the first and second longitudinally coupled resonator type surface acoustic wave filter elements 15A. 15B and IDT electrodes constituting the surface acoustic wave resonators 17a to 17e, and an electrode 19B including a reflector, wiring, and the like. That is, the electrode 19B is an electrode that constitutes the reception filter 15.
  • On the piezoelectric substrate 19A there are unbalanced signal terminal 15a, first and second balanced signal terminals 15b and 15c, unbalanced signal terminal side ground terminal 15d, and balanced signal terminal side ground terminals 15e and 15f. Has been placed.
  • the electrode 19B includes an unbalanced signal terminal 15a, first and second balanced signal terminals 15b and 15c, an unbalanced signal terminal side ground terminal 15d, and balanced signal terminal side ground terminals 15e and 15f.
  • the unbalanced signal terminal side ground terminal 15d is connected to the comb-like electrode on one side of the IDT electrodes 15A1, 15A3, 15B1, and 15B3.
  • the balanced signal terminal side ground terminal 15e is connected to the comb-like electrodes on one side of the IDT electrodes 15A2 and 15B2.
  • the balanced signal terminal side ground terminal 15f is connected to one comb-like electrode of the IDT electrode constituting the surface acoustic wave resonators 17d and 17e.
  • the IDT electrodes 15A1, 15A3, 15B1, and 15B3 are unbalanced having comb-like electrodes connected to the unbalanced signal terminal 15a and comb-like electrodes connected to the unbalanced signal terminal side ground terminal 15d. It is a balanced signal terminal side IDT electrode.
  • the IDT electrode 15A2 is a first balanced signal terminal side IDT having a comb-like electrode connected to the first balanced signal terminal 15b and a comb-like electrode connected to the balanced signal terminal side ground terminal 15e. Electrode.
  • the IDT electrodes constituting the surface acoustic wave resonator 17d are comb-like electrodes connected to the first balanced signal terminal 15b, and comb-like electrodes connected to the balanced signal terminal side ground terminal 15f.
  • the IDT electrode 15B2 is a second balanced signal terminal side IDT having a comb-like electrode connected to the second balanced signal terminal 15c and a comb-like electrode connected to the balanced signal terminal side ground terminal 15e. Electrode.
  • the IDT electrodes constituting the surface acoustic wave resonator 17e are comb-like electrodes connected to the second balanced signal terminal 15c, and comb-like electrodes connected to the balanced signal terminal side ground terminal 15f. It is the 2nd balanced signal terminal side IDT electrode which has.
  • the unbalanced signal terminal side ground terminal 15d and the balanced signal terminal side ground terminals 15e, 15f are not connected to each other on the piezoelectric substrate 19A.
  • piezoelectric substrates 18A and 19A include piezoelectric single crystal substrates such as a LiNbO 3 substrate and a LiTaO 3 substrate.
  • the electrodes 18B and 19B can be formed of a metal such as aluminum or an alloy, for example.
  • the electrodes 18B and 19B may be configured by a stacked body of a plurality of metal layers, for example.
  • the wiring board 10 has a die attach surface 10a and a back surface 10b.
  • the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19 are flip-chip mounted by bumps 26 on the die attach surface 10a.
  • a sealing resin layer 16 is formed on the die attach surface 10 a so as to cover the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19. That is, the surface acoustic wave duplexer 1 of the present embodiment is a CSP (Chip Size Package) type acoustic wave duplexer.
  • CSP Chip Size Package
  • the wiring board 10 is formed by alternately laminating dielectric layers and electrode layers.
  • the wiring substrate 10 is constituted by a laminated body of first to third dielectric layers 40 to 42 and first to fourth electrode layers 44 to 47.
  • the first electrode layer 44 is disposed on the first dielectric layer 40.
  • the second electrode layer 45 is disposed between the first dielectric layer 40 and the second dielectric layer 41.
  • the third electrode layer 46 is disposed between the second dielectric layer 41 and the third dielectric layer 42.
  • the fourth electrode layer 47 is disposed under the third dielectric layer 42.
  • Each of the first to third dielectric layers 40 to 42 can be made of, for example, a resin or ceramics such as alumina. That is, the wiring board 10 may be a printed wiring multilayer board made of resin or a ceramic multilayer board.
  • the wiring board is configured by a laminate of three dielectric layers and four electrode layers.
  • the number of dielectric layers and the number of electrode layers of the wiring board are not particularly limited.
  • FIG. 5 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 6 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 7 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 8 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 8 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment.
  • FIG. 8 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the
  • FIG. 9 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. 5 to 9 show a state in which the surface acoustic wave duplexer 1 is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • the first electrode layer 44 is a land electrode layer, and the first electrode layer 44 and the first dielectric layer 40 constitute a die attach surface 10 a of the wiring substrate 10. .
  • the first electrode layer 44 is composed of land electrodes 44a to 44l.
  • the second electrode layer 45 is composed of electrodes 45a to 45j.
  • the third electrode layer 46 is composed of electrodes 46a to 46i.
  • a resist layer 60 is formed on the back surface 10b.
  • the resist layer 60 covers a part of the fourth electrode layer 47, and includes the antenna terminal 21, the transmission side signal terminal 24, the first and second reception side signal terminals 22a and 22b, and the ground electrode 47a. Is formed.
  • the output terminal 14a of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44d shown in FIG.
  • the land electrode 44d is connected to the electrode 45d shown in FIG. 6 by a via hole electrode 51a formed in the first dielectric layer 40.
  • the unbalanced signal terminal 15a of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44g shown in FIG.
  • the land electrode 44g is connected to the electrode 45d by a via hole electrode 51b formed in the first dielectric layer 40.
  • the electrode 45d is connected to the electrode 46d shown in FIG. 7 by a via hole electrode 52a formed in the second dielectric layer 41.
  • the electrode 46d is connected to the antenna terminal 21 shown in FIGS. 1, 8, and 9 by a via-hole electrode 53a formed in the third dielectric layer.
  • the input terminal 14b of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44c shown in FIG.
  • the land electrode 44c is connected to the electrode 45c shown in FIG. 6 by a via hole electrode 51c formed in the first dielectric layer 40.
  • the electrode 45c is connected to the electrode 46c shown in FIG. 7 by a via hole electrode 52b formed in the second dielectric layer 41.
  • the electrode 46c is connected to the transmission-side signal terminal 24 shown in FIGS. 1, 8, and 9 by a via-hole electrode 53b formed in the third dielectric layer 42.
  • the transmission-side ground terminal 14c of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44b shown in FIG.
  • the land electrode 44b is connected to the electrode 45b shown in FIG. 6 by a via hole electrode 51d formed in the first dielectric layer 40.
  • the electrode 45b is connected to the electrode 46b shown in FIG. 7 by a via hole electrode 52c formed in the second dielectric layer 41.
  • An inductor L2 is constituted by the electrode 45b and the electrode 46b.
  • the electrode 46b is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a via-hole electrode 53c formed in the third dielectric layer.
  • the transmission-side ground terminal 14d of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44f shown in FIG.
  • the land electrode 44f is connected to the electrode 45f shown in FIG. 6 by a via hole electrode 51e formed in the first dielectric layer 40.
  • the electrode 45f is connected to the electrode 46e shown in FIG. 7 by a via hole electrode 52d formed in the second dielectric layer 41.
  • An inductor L3 is constituted by the electrode 45f and the electrode 46e.
  • the electrode 46e is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a via-hole electrode 53d formed in the third dielectric layer. That is, the land electrodes 44b and 44f, the electrodes 45b and 45f, the electrodes 46b and 46e, and the ground electrode 47a are transmission-side ground electrodes connected to the transmission-side ground terminals 14c and 14d.
  • the first balanced signal terminal 15b of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44i shown in FIG.
  • the land electrode 44i is connected to the electrode 45j shown in FIG. 6 by a via hole electrode 51f formed in the first dielectric layer 40.
  • the electrode 45j is connected to the electrode 46i shown in FIG. 7 by a via hole electrode 52e formed in the second dielectric layer 41.
  • the electrode 46i is connected to the first reception-side signal terminal 22a shown in FIGS. 1, 8, and 9 by a via-hole electrode 53e formed in the third dielectric layer.
  • the second balanced signal terminal 15c of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44l shown in FIG.
  • the land electrode 44l is connected to the electrode 45i shown in FIG. 6 by a via hole electrode 51g formed in the first dielectric layer 40.
  • the electrode 45i is connected to the electrode 46h shown in FIG. 7 by a via hole electrode 52f formed in the second dielectric layer 41.
  • the electrode 46h is connected to the second reception-side signal terminal 22b shown in FIGS. 1, 8, and 9 by a via-hole electrode 53f formed in the third dielectric layer 42.
  • the unbalanced signal terminal side ground terminal 15d of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44j shown in FIG.
  • the land electrode 44j is connected to the electrode 45g shown in FIG. 6 by a via hole electrode 51h formed in the first dielectric layer 40.
  • the electrode 45g is connected to the electrode 46f shown in FIG. 7 by a plurality of via hole electrodes 52g formed in the second dielectric layer 41.
  • the electrode 46f is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53g formed in the third dielectric layer 42. That is, the land electrode 44j, the electrode 45g, the electrode 46f, and the ground electrode 47a are unbalanced signal terminal side ground electrodes connected to the unbalanced signal terminal side ground terminal 15d.
  • the balanced signal terminal side ground terminal 15e of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44h shown in FIG.
  • the land electrode 44h is connected to the electrode 45h shown in FIG. 6 by a via hole electrode 51i formed in the first dielectric layer 40.
  • the electrode 45h is connected to the electrode 46g shown in FIG. 7 by a plurality of via hole electrodes 52h formed in the second dielectric layer 41.
  • the electrode 46g is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53h formed in the third dielectric layer 42.
  • the balanced signal terminal side ground terminal 15f of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44k shown in FIG.
  • the land electrode 44k is connected to the electrode 45h shown in FIG. 6 by a via hole electrode 51j formed in the first dielectric layer 40.
  • the electrode 45h is connected to the electrode 46g shown in FIG. 7 by a plurality of via hole electrodes 52h formed in the second dielectric layer 41.
  • the electrode 46g is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53h formed in the third dielectric layer 42.
  • the land electrodes 44k and 44h, the electrode 45h, the electrode 46g, and the ground electrode 47a are balanced signal terminal side ground electrodes connected to the balanced signal terminal side ground terminals 15e and 15f.
  • the dummy terminal 14e of the transmission filter 14 shown in FIG. 3 is connected to the land electrode 44a shown in FIG.
  • the land electrode 44 a is connected to the electrode 45 a shown in FIG. 6 by a via hole electrode 51 k formed in the first dielectric layer 40.
  • the electrode 45a is connected to the electrode 46a shown in FIG. 7 by a via hole electrode 52i formed in the second dielectric layer 41.
  • the electrode 46a is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53i formed in the third dielectric layer.
  • the dummy terminal 14f of the transmission filter 14 shown in FIG. 3 is connected to the land electrode 44e shown in FIG.
  • the land electrode 44e is connected to the electrode 45e shown in FIG. 6 by a via hole electrode 51l formed in the first dielectric layer 40.
  • the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are shared on the back surface of the wiring board.
  • an unbalanced signal terminal side ground electrode including a land electrode 44j, an electrode 45g, an electrode 46f, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, an electrode 46g, and a ground electrode
  • the ground signal terminal side ground electrode composed of 47 a is shared as the ground electrode 47 a on the back surface 10 b of the wiring board 10.
  • the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared on the back surface of the wiring board.
  • a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, electrodes 46b and 46e, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, and an electrode 46g
  • the balanced signal terminal side ground electrode composed of the ground electrode 47 a is shared as the ground electrode 47 a on the back surface 10 b of the wiring substrate 10.
  • the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode which are paths through which the unbalanced signal flows to the ground
  • the balanced signal terminal-side ground electrode which is the path through which the balanced signal flows to the ground
  • a surface acoustic wave duplexer having a configuration substantially similar to that of the surface acoustic wave duplexer 1 according to the first embodiment was manufactured.
  • the common mode isolation characteristics of the surface acoustic wave duplexer according to the first embodiment are shown in FIGS.
  • the surface acoustic wave duplexer according to each of the first to third comparative examples has substantially the same configuration as the surface acoustic wave duplexer according to the first embodiment except for the wiring board 10.
  • FIG. 10 to 14 show the configuration of the wiring board 10 in the first comparative example.
  • FIG. 10 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example.
  • FIG. 11 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example.
  • FIG. 12 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example.
  • FIG. 10 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example.
  • FIG. 11 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface
  • FIG. 13 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. However, in FIG. 13, drawing of the resist layer 60 is omitted.
  • FIG. 14 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. 10 to 14 show a state in which the surface acoustic wave duplexer according to the first comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • an electrode 46x is arranged instead of the electrode 46f and the electrode 46g of the surface acoustic wave duplexer according to the first embodiment.
  • the electrode 46x is connected to the ground electrode 47a shown in FIGS. 13 and 14 by a plurality of via hole electrodes 53x formed in the third dielectric layer 42. Therefore, in the first comparative example, the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. .
  • the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46x, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45h
  • the balanced signal terminal side ground electrode composed of the electrode 46x and the ground electrode 47a is shared as the electrode 46x of the third electrode layer 46 and the ground electrode 47a of the fourth electrode layer 47.
  • FIG. 20 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the first comparative example.
  • FIG. 15 to FIG. 19 show the configuration of the wiring board 10 in the second comparative example.
  • FIG. 15 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example.
  • FIG. 16 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example.
  • FIG. 17 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example.
  • FIG. 15 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example.
  • FIG. 16 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the
  • FIG. 18 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. However, in FIG. 18, the drawing of the resist layer 60 is omitted.
  • FIG. 19 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. 15 to 19 show a state in which the surface acoustic wave duplexer according to the second comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • an electrode 45x is disposed in place of the electrode 45g and the electrode 45h of the surface acoustic wave duplexer according to the first embodiment, and the electrode 46f and the electrode An electrode 46x is disposed instead of 46g.
  • the electrode 45x is connected to the electrode 46x by a plurality of via hole electrodes 52x formed in the second dielectric layer 41.
  • the electrode 46x is connected to the ground electrode 47a shown in FIGS. 18 and 19 by a plurality of via hole electrodes 53x formed in the third dielectric layer.
  • the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. .
  • the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45x, the electrode 46x, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45x
  • the balanced signal terminal side ground electrode composed of the electrode 46x and the ground electrode 47a includes the electrode 45x of the second electrode layer 45, the electrode 46x of the third electrode layer 46, and the ground electrode 47a of the fourth electrode layer 47.
  • FIG. 20 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the second comparative example.
  • FIG. 21 to 25 show the configuration of the wiring board 10 in the third comparative example.
  • FIG. 21 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example.
  • FIG. 22 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example.
  • FIG. 23 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example.
  • FIG. 21 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example.
  • FIG. 22 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface
  • FIG. 24 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. However, in FIG. 24, drawing of the resist layer 60 is omitted.
  • FIG. 25 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. 21 to 25 show a state in which the surface acoustic wave duplexer according to the third comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • an electrode 46y is used. Is arranged.
  • the electrode 46y is connected to the ground electrode 47a shown in FIGS. 24 and 25 by a plurality of via hole electrodes 53y formed in the third dielectric layer. Therefore, in the third comparative example, the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. .
  • the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46y, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45h
  • the balanced signal terminal side ground electrode composed of the electrode 46y and the ground electrode 47a is shared as the electrode 46y of the third electrode layer 46 and the ground electrode 47a of the fourth electrode layer 47.
  • the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared in the electrode layer disposed inside the wiring board, not the back surface of the wiring board.
  • a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, an electrode 46y, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, an electrode 46y, and a ground
  • the balanced signal terminal side ground electrode composed of the electrode 47 a is shared as the electrode 46 y of the third electrode layer 46 and the ground electrode 47 a of the fourth electrode layer 47.
  • FIG. 26 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the third comparative example.
  • the common mode isolation in the transmission frequency band (1850 MHz to 1910 MHz) of the surface acoustic wave duplexer according to each of the first example and the first to third comparative examples is First embodiment: 55.4 dB, First comparative example: 54.0 dB, Second comparative example: 52.6 dB, Third comparative example: 42.9 dB, Met.
  • the unbalanced signal terminal side ground electrode which is the path through which the unbalanced signal flows to the ground
  • the balanced signal terminal side ground electrode which is the path through which the balanced signal flows to the ground
  • the common mode isolation can be increased by using the back surface 10b instead of the common part.
  • the unbalanced signal terminal side ground electrode that is the path through which the unbalanced signal flows to the ground and the path through which the balanced signal flows to the ground It can be seen that it is preferable to share a certain balanced signal terminal side ground electrode on the back surface 10b of the wiring board 10 and also share a transmitting side ground electrode, which is a path through which an unbalanced signal flows to the ground, on the back surface 10b.
  • the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode which are paths through which the unbalanced signal flows to the ground
  • the balanced signal terminal-side ground electrode which is a path through which the balanced signal flows to the ground.
  • the IDT electrodes 106 and 107 to which the first and second receiving-side signal terminals 103a and 103b are connected are floating electrodes (float electrodes) that are not connected to the ground. Therefore, the common mode isolation cannot be increased because the common mode signal hardly flows from the signal line through which the balanced signal is transmitted to the ground. Since the IDT electrodes 15A2 and 15B2 to which the reception-side signal terminals 22a and 22b are connected are connected to the ground, the common-mode signal easily flows from the signal line through which the balanced signal is transmitted to the ground. Isolation can be increased.
  • FIG. 27 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • FIG. 28 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • FIG. 29 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • FIG. 30 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • FIG. 28 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • FIG. 29 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric
  • FIG. 31 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment.
  • 27 to 31 show a state in which the surface acoustic wave duplexer according to the second embodiment is seen through from the transmission surface acoustic wave filter chip 18 and the reception surface acoustic wave filter chip 19 side.
  • the surface acoustic wave duplexer of the present embodiment has substantially the same configuration as the surface acoustic wave duplexer 1 of the first embodiment except for the configuration of the wiring board 10.
  • an electrode 46z is arranged instead of the electrode 46b and the electrode 46e of the surface acoustic wave duplexer according to the first example, and the electrode 46z is replaced with the ground electrode 47a.
  • the ground electrodes 47b, 47c, 47d and the electrode 47e are disposed.
  • the ground electrode 47b is connected to the electrode 46g by a plurality of via hole electrodes 53h formed in the third dielectric layer 42.
  • the ground electrode 47c is connected to the electrode 46z by a via hole electrode 53z formed in the third dielectric layer 42.
  • the ground electrode 47d is connected to the electrode 46f by a plurality of via hole electrodes 53g formed in the third dielectric layer 42.
  • the electrode 47e is connected to the electrode 46a by a plurality of via hole electrodes 53i formed in the third dielectric layer 42.
  • the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are not connected to each other by the wiring board.
  • the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46f, and the ground electrode 47d, the land electrodes 44k and 44h, the electrode 45h, the electrode 46g, and the ground electrode
  • the balanced signal terminal-side ground electrodes formed of 47b are not connected to each other by the wiring board 10.
  • the transmission-side ground electrode and the balanced signal terminal-side ground electrode are not connected to each other on the wiring board.
  • a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, an electrode 46z, and a ground electrode 47c, land electrodes 44k and 44h, an electrode 45h, an electrode 46g, and a ground
  • the balanced signal terminal side ground electrode composed of the electrode 47 b is not connected to each other by the wiring board 10.
  • the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode which are paths through which the unbalanced signal flows to the ground
  • the balanced signal terminal-side ground electrode which is the path through which the balanced signal flows to the ground
  • FIG. 32 shows the common mode isolation characteristics of the surface acoustic wave duplexer together with the common mode isolation characteristics of the surface acoustic wave duplexer 1 of the first embodiment.
  • the common mode isolation in the transmission frequency band (1850 MHz to 1910 MHz) of the surface acoustic wave duplexer according to the second example was 55.7 dB.
  • the unbalanced signal terminal side ground electrode, which is the path through which the unbalanced signal flows to the ground, and the balanced signal terminal side ground electrode, which is the path through which the balanced signal flows to the ground are connected to each other by the wiring board 10. Even if not, the unbalanced signal terminal side ground electrode, which is a path through which the unbalanced signal flows to the ground, and the balanced signal terminal side ground electrode, which is a path through which the balanced signal flows to the ground, are portions other than the back surface 10b of the wiring board 10. It can be seen that the common mode isolation can be increased in the same manner as in the case of commoning in the back surface 10b.
  • 2nd balanced signal terminal 15d ... Unbalanced signal terminal side ground terminal 15e, 15f ... Balanced signal terminal side ground terminal 16 ... Sealing resin layers 17a-17e ... Elasticity Surface wave resonator 18... Transmission side surface acoustic wave filter chip 19... Reception side surface acoustic wave filter Tape chip 18A, 19A ... Piezoelectric substrate 18B, 19B ... Electrode 21 ... Antenna terminal 22a ... First reception side signal terminal 22b ... Second reception side signal terminal 24 ... Transmission side signal terminal 26 ... Bump 33 ... Series arms 37a-37d ... parallel arm 40 ... first dielectric layer 41 ... second dielectric layer 42 ... third dielectric layer 44 ... first electrode layers 44a to 44l ...

Abstract

Provided is an acoustic wave branching filter with high common mode isolation. The acoustic wave branching filter is provided with a transmit filter configured with an acoustic wave filter and with a receive filter configured with a balanced-type longitudinal-coupling-resonator acoustic wave filter with a balun function. A ground electrode at an unbalanced signal terminal side and a ground electrode at a balanced signal terminal side are not connected on a wiring board (10). The ground electrode at the unbalanced signal terminal side includes a land electrode (44j), electrodes (45g and 46f), and a ground electrode (47d). The ground electrode at the balanced signal terminal side includes land electrodes (44k and 44h), an electrode (45h), an electrode (46g), and a ground electrode (47b).

Description

弾性波分波器Elastic wave splitter
 本発明は、弾性波分波器に関する。特に、本発明は、縦結合共振子型弾性波フィルタを備える弾性波分波器に関する。 The present invention relates to an elastic wave duplexer. In particular, the present invention relates to an acoustic wave duplexer including a longitudinally coupled resonator type acoustic wave filter.
 例えば、UMTS(Universal Mobile Telecommunications System)のようなCDMA(Code Division Multiple Access)方式に対応する携帯電話機などの通信機では、信号の送信及び受信を同時に行うために、RF(Radio Frequency)回路に、デュプレクサが搭載されている。デュプレクサは、送信フィルタと、受信フィルタと、整合回路とを備える分波器である。 For example, in a communication device such as a mobile phone that supports a CDMA (Code Division Multiple Access) method such as UMTS (Universal Mobile Telecommunications System), an RF (Radio Frequency) circuit is used to simultaneously transmit and receive signals. A duplexer is installed. The duplexer is a duplexer including a transmission filter, a reception filter, and a matching circuit.
 従来、送信フィルタ及び受信フィルタが弾性波フィルタからなる弾性波デュプレクサが実用化されている。近年では、携帯電話機のRF回路においてバランを省略するために、デュプレクサの受信フィルタにバラン機能を持たせることが求められている。そのため、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより受信フィルタが構成されている弾性波デュプレクサが、携帯電話機のRF回路に搭載されるようになってきている。そのような弾性波デュプレクサの一例が、下記の特許文献1に示されている。 Conventionally, an elastic wave duplexer in which a transmission filter and a reception filter are elastic wave filters has been put into practical use. In recent years, in order to omit a balun in an RF circuit of a mobile phone, it is required that the reception filter of the duplexer has a balun function. For this reason, an elastic wave duplexer in which a reception filter is constituted by a balanced longitudinally coupled resonator type elastic wave filter having a balance-unbalance conversion function has been mounted on an RF circuit of a mobile phone. An example of such an elastic wave duplexer is shown in Patent Document 1 below.
 図33は、特許文献1に記載の弾性波デュプレクサ100の略図的回路図である。図33に示すように、弾性波デュプレクサ100は、アンテナ端子101と、送信側信号端子102と、第1及び第2の受信側信号端子103a,103bとを有する。アンテナ端子101と送信側信号端子102との間には、送信フィルタ104が接続されている。送信フィルタ104は、ラダー型弾性波フィルタにより構成されている。一方、アンテナ端子101と第1及び第2の受信側信号端子103a,103bとの間には、受信フィルタ105が接続されている。受信フィルタ105は、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより構成されている。よって、第1及び第2の受信側信号端子103a,103bは、第1及び第2の平衡信号端子である。 FIG. 33 is a schematic circuit diagram of the elastic wave duplexer 100 described in Patent Document 1. As shown in FIG. 33, the elastic wave duplexer 100 includes an antenna terminal 101, a transmission-side signal terminal 102, and first and second reception- side signal terminals 103a and 103b. A transmission filter 104 is connected between the antenna terminal 101 and the transmission-side signal terminal 102. The transmission filter 104 is configured by a ladder type elastic wave filter. On the other hand, a reception filter 105 is connected between the antenna terminal 101 and the first and second reception- side signal terminals 103a and 103b. The reception filter 105 is constituted by a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. Therefore, the first and second receiving signal terminals 103a and 103b are first and second balanced signal terminals.
 弾性波デュプレクサ100では、第1の受信側信号端子103aと、第2の受信側信号端子103bとは、受信フィルタ105の同じIDT電極106,107に接続されている。具体的には、第1の受信側信号端子103aは、IDT電極106,107の一方側のくし歯状電極106a,107aに接続されている。第2の受信側信号端子103bは、IDT電極106,107の他方側のくし歯状電極106b,107bに接続されている。このため、第1及び第2の受信側信号端子103a,103bが接続されているIDT電極106,107は、グラウンドに接続されていない浮き電極(フロート電極)である。 In the elastic wave duplexer 100, the first reception-side signal terminal 103 a and the second reception-side signal terminal 103 b are connected to the same IDT electrodes 106 and 107 of the reception filter 105. Specifically, the first receiving signal terminal 103a is connected to the comb- like electrodes 106a and 107a on one side of the IDT electrodes 106 and 107. The second receiving side signal terminal 103b is connected to the comb- like electrodes 106b and 107b on the other side of the IDT electrodes 106 and 107. Therefore, the IDT electrodes 106 and 107 to which the first and second receiving signal terminals 103a and 103b are connected are floating electrodes (float electrodes) that are not connected to the ground.
特開2003-249842号公報JP 2003-249842 A
 近年、弾性波デュプレクサなどの弾性波分波器においては、コモンモード(同相モード)アイソレーションを大きくすることが強く求められるようになってきている。しかしながら、上記弾性波デュプレクサ100では、コモンモードアイソレーションを大きくすることができないという問題がある。 In recent years, in an acoustic wave duplexer such as an acoustic wave duplexer, it has been strongly demanded to increase common mode (common mode) isolation. However, the elastic wave duplexer 100 has a problem that common mode isolation cannot be increased.
 本発明は、斯かる点に鑑みて成されたものであり、その目的は、縦結合共振子型弾性波フィルタを備える弾性波分波器であって、コモンモードアイソレーションが大きな弾性波分波器を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide an elastic wave demultiplexer including a longitudinally coupled resonator type elastic wave filter, which has large common mode isolation. Is to provide a vessel.
 本発明に係る第1の弾性波分波器は、送信フィルタと、受信フィルタとを備えている。送信フィルタは、弾性波フィルタにより構成されている。受信フィルタは、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより構成されている。配線基板と、少なくとも1つの弾性波フィルタチップとを備えている。配線基板は、ダイアタッチ面と裏面とを有する。弾性波フィルタチップは、ダイアタッチ面の上に実装されている。弾性波フィルタチップは、圧電基板と、受信フィルタを構成する電極とを有する。受信フィルタを構成する電極は、圧電基板の上に形成されている。受信フィルタを構成する電極は、不平衡信号端子と、第1及び第2の平衡信号端子と、不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子と、複数のIDT電極とを含む。不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子とは、圧電基板上で互いに接続されていない。複数のIDT電極は、不平衡信号端子側IDT電極と、第1の平衡信号端子側IDT電極と、第2の平衡信号端子側IDT電極とを有する。不平衡信号端子側IDT電極は、不平衡信号端子に接続されているくし歯状電極と、不平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。第1の平衡信号端子側IDT電極は、第1の平衡信号端子に接続されているくし歯状電極と、平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。第2の平衡信号端子側IDT電極は、第2の平衡信号端子に接続されているくし歯状電極と、平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。配線基板は、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とを有する。不平衡信号端子側グラウンド電極は、不平衡信号端子側グラウンド端子と接続されている。平衡信号端子側グラウンド電極は、平衡信号端子側グラウンド端子と接続されている。不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、前記配線基板で互いに接続されていない。 The first acoustic wave duplexer according to the present invention includes a transmission filter and a reception filter. The transmission filter is constituted by an elastic wave filter. The reception filter is composed of a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. A wiring board and at least one elastic wave filter chip are provided. The wiring board has a die attach surface and a back surface. The elastic wave filter chip is mounted on the die attach surface. The acoustic wave filter chip has a piezoelectric substrate and electrodes that constitute a reception filter. The electrodes constituting the reception filter are formed on the piezoelectric substrate. The electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes. The unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate. The plurality of IDT electrodes include an unbalanced signal terminal side IDT electrode, a first balanced signal terminal side IDT electrode, and a second balanced signal terminal side IDT electrode. The unbalanced signal terminal side IDT electrode has a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal side ground terminal. The first balanced signal terminal-side IDT electrode includes a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal. The second balanced signal terminal-side IDT electrode has a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal. The wiring board has an unbalanced signal terminal side ground electrode and a balanced signal terminal side ground electrode. The unbalanced signal terminal side ground electrode is connected to the unbalanced signal terminal side ground terminal. The balanced signal terminal side ground electrode is connected to the balanced signal terminal side ground terminal. The unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are not connected to each other on the wiring board.
 本発明に係る第2の弾性波分波器は、送信フィルタと、受信フィルタとを備えている。送信フィルタは、弾性波フィルタにより構成されている。受信フィルタは、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより構成されている。配線基板と、少なくとも1つの弾性波フィルタチップとを備えている。配線基板は、ダイアタッチ面と裏面とを有する。弾性波フィルタチップは、ダイアタッチ面の上に実装されている。弾性波フィルタチップは、圧電基板と、受信フィルタを構成する電極とを有する。受信フィルタを構成する電極は、圧電基板の上に形成されている。受信フィルタを構成する電極は、不平衡信号端子と、第1及び第2の平衡信号端子と、不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子と、複数のIDT電極とを含む。不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子とは、圧電基板上で互いに接続されていない。複数のIDT電極は、不平衡信号端子側IDT電極と、第1の平衡信号端子側IDT電極と、第2の平衡信号端子側IDT電極とを有する。不平衡信号端子側IDT電極は、不平衡信号端子に接続されているくし歯状電極と、不平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。第1の平衡信号端子側IDT電極は、第1の平衡信号端子に接続されているくし歯状電極と、平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。第2の平衡信号端子側IDT電極は、第2の平衡信号端子に接続されているくし歯状電極と、平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する。配線基板は、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とを有する。不平衡信号端子側グラウンド電極は、不平衡信号端子側グラウンド端子と接続されている。平衡信号端子側グラウンド電極は、平衡信号端子側グラウンド端子と接続されている。不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面において共通化されている。 The second acoustic wave duplexer according to the present invention includes a transmission filter and a reception filter. The transmission filter is constituted by an elastic wave filter. The reception filter is composed of a balanced longitudinally coupled resonator type elastic wave filter having a balanced-unbalanced conversion function. A wiring board and at least one elastic wave filter chip are provided. The wiring board has a die attach surface and a back surface. The elastic wave filter chip is mounted on the die attach surface. The acoustic wave filter chip has a piezoelectric substrate and electrodes that constitute a reception filter. The electrodes constituting the reception filter are formed on the piezoelectric substrate. The electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes. The unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate. The plurality of IDT electrodes include an unbalanced signal terminal side IDT electrode, a first balanced signal terminal side IDT electrode, and a second balanced signal terminal side IDT electrode. The unbalanced signal terminal side IDT electrode has a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal side ground terminal. The first balanced signal terminal-side IDT electrode includes a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal. The second balanced signal terminal-side IDT electrode has a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal. The wiring board has an unbalanced signal terminal side ground electrode and a balanced signal terminal side ground electrode. The unbalanced signal terminal side ground electrode is connected to the unbalanced signal terminal side ground terminal. The balanced signal terminal side ground electrode is connected to the balanced signal terminal side ground terminal. The unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are shared on the back surface of the wiring board.
 本発明に係る第1及び第2の弾性波分波器のそれぞれのある特定の局面では、弾性波フィルタチップは、受信フィルタを構成する電極を有する受信側弾性波フィルタチップと、送信フィルタを構成する電極を有する送信側弾性波フィルタチップとを含む。 In a specific aspect of each of the first and second acoustic wave duplexers according to the present invention, the acoustic wave filter chip constitutes a reception-side acoustic wave filter chip having an electrode that constitutes a reception filter, and a transmission filter. A transmission-side acoustic wave filter chip having an electrode to be transmitted.
 本発明に係る第1及び第2の弾性波分波器のそれぞれの他の特定の局面では、送信フィルタは、ラダー型弾性波フィルタにより構成されている。送信フィルタを構成する電極は、出力端子と、入力端子と、送信側グラウンド端子と、直列腕共振子及び並列腕共振子を構成している複数の弾性波共振子とを含む。並列腕共振子を構成している弾性波共振子は、直列腕共振子を構成している弾性波共振子に接続されているくし歯状電極と、送信側グラウンド端子に接続されているくし歯状電極とを有するIDT電極を有する。配線基板は、送信側グラウンド端子と接続されている送信側グラウンド電極を有する。送信側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板で互いに接続されていない。 In another specific aspect of each of the first and second acoustic wave duplexers according to the present invention, the transmission filter is configured by a ladder type acoustic wave filter. The electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator. The acoustic wave resonator constituting the parallel arm resonator is composed of comb-like electrodes connected to the acoustic wave resonator constituting the series arm resonator and comb teeth connected to the transmission-side ground terminal. And an IDT electrode having a shape electrode. The wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal. The transmission-side ground electrode and the balanced signal terminal-side ground electrode are not connected to each other on the wiring board.
 本発明に係る第1及び第2の弾性波分波器のそれぞれの別の特定の局面では、送信フィルタは、ラダー型弾性波フィルタにより構成されている。送信フィルタを構成する電極は、出力端子と、入力端子と、送信側グラウンド端子と、直列腕共振子及び並列腕共振子を構成している複数の弾性波共振子とを含む。並列腕共振子を構成している弾性波共振子は、直列腕共振子を構成している弾性波共振子に接続されているくし歯状電極と、送信側グラウンド端子に接続されているくし歯状電極とを有するIDT電極を有する。配線基板は、送信側グラウンド端子と接続されている送信側グラウンド電極を有する。送信側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面において共通化されている。 In another specific aspect of each of the first and second elastic wave duplexers according to the present invention, the transmission filter is configured by a ladder-type elastic wave filter. The electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator. The acoustic wave resonator constituting the parallel arm resonator is composed of comb-like electrodes connected to the acoustic wave resonator constituting the series arm resonator and comb teeth connected to the transmission-side ground terminal. And an IDT electrode having a shape electrode. The wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal. The transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared on the back surface of the wiring board.
 なお、本発明において、「弾性波」には、弾性表面波と弾性境界波とが含まれるものとする。 In the present invention, the “elastic wave” includes a surface acoustic wave and a boundary acoustic wave.
 本発明によれば、縦結合共振子型弾性波フィルタを備える弾性波分波器であって、コモンモードアイソレーションが大きな弾性波分波器を提供することができる。 According to the present invention, it is possible to provide an acoustic wave duplexer including a longitudinally coupled resonator type acoustic wave filter and having a large common mode isolation.
図1は、本発明の第1の実施形態に係る弾性波デュプレクサの略図的回路図である。FIG. 1 is a schematic circuit diagram of an elastic wave duplexer according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る弾性波デュプレクサの模式的断面図である。FIG. 2 is a schematic cross-sectional view of the elastic wave duplexer according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る弾性波デュプレクサにおける送信側弾性波フィルタチップの模式的透視平面図である。FIG. 3 is a schematic perspective plan view of the transmission-side elastic wave filter chip in the elastic wave duplexer according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る弾性波デュプレクサにおける受信側弾性表面波フィルタチップの模式的透視平面図である。FIG. 4 is a schematic perspective plan view of the reception-side surface acoustic wave filter chip in the elastic wave duplexer according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る弾性波デュプレクサにおける、配線基板の第1の電極層と第1の誘電体層との模式的透視平面図である。FIG. 5 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態に係る弾性波デュプレクサにおける、配線基板の第2の電極層と第2の誘電体層との模式的透視平面図である。FIG. 6 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る弾性波デュプレクサにおける、配線基板の第3の電極層と第3の誘電体層との模式的透視平面図である。FIG. 7 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 8 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention. 図9は、本発明の第1の実施形態に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 9 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first embodiment of the present invention. 図10は、第1の比較例に係る弾性波デュプレクサにおける、配線基板の第1の電極層と第1の誘電体層との模式的透視平面図である。FIG. 10 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example. 図11は、第1の比較例に係る弾性波デュプレクサにおける、配線基板の第2の電極層と第2の誘電体層との模式的透視平面図である。FIG. 11 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example. 図12は、第1の比較例に係る弾性波デュプレクサにおける、配線基板の第3の電極層と第3の誘電体層との模式的透視平面図である。FIG. 12 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the first comparative example. 図13は、第1の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 13 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first comparative example. 図14は、第1の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 14 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the first comparative example. 図15は、第2の比較例に係る弾性波デュプレクサにおける、配線基板の第1の電極層と第1の誘電体層との模式的透視平面図である。FIG. 15 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example. 図16は、第2の比較例に係る弾性波デュプレクサにおける、配線基板の第2の電極層と第2の誘電体層との模式的透視平面図である。FIG. 16 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example. 図17は、第2の比較例に係る弾性波デュプレクサにおける、配線基板の第3の電極層と第3の誘電体層との模式的透視平面図である。FIG. 17 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the second comparative example. 図18は、第2の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 18 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second comparative example. 図19は、第2の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 19 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second comparative example. 図20は、第1の実施例並びに第1及び第2の比較例のそれぞれに係る弾性波デュプレクサのコモンモードアイソレーション特性を表すグラフである。FIG. 20 is a graph showing common mode isolation characteristics of the elastic wave duplexer according to each of the first example and the first and second comparative examples. 図21は、第3の比較例に係る弾性波デュプレクサにおける、配線基板の第1の電極層と第1の誘電体層との模式的透視平面図である。FIG. 21 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example. 図22は、第3の比較例に係る弾性波デュプレクサにおける、配線基板の第2の電極層と第2の誘電体層との模式的透視平面図である。FIG. 22 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example. 図23は、第3の比較例に係る弾性波デュプレクサにおける、配線基板の第3の電極層と第3の誘電体層との模式的透視平面図である。FIG. 23 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the third comparative example. 図24は、第3の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 24 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the third comparative example. 図25は、第3の比較例に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 25 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the third comparative example. 図26は、第1の実施例及び第3の比較例のそれぞれに係る弾性波デュプレクサのコモンモードアイソレーション特性を表すグラフである。FIG. 26 is a graph showing the common mode isolation characteristics of the elastic wave duplexer according to each of the first example and the third comparative example. 図27は、本発明の第2の実施形態に係る弾性波デュプレクサにおける、配線基板の第1の電極層と第1の誘電体層との模式的透視平面図である。FIG. 27 is a schematic perspective plan view of the first electrode layer and the first dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention. 図28は、本発明の第2の実施形態に係る弾性波デュプレクサにおける、配線基板の第2の電極層と第2の誘電体層との模式的透視平面図である。FIG. 28 is a schematic perspective plan view of the second electrode layer and the second dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention. 図29は、本発明の第2の実施形態に係る弾性波デュプレクサにおける、配線基板の第3の電極層と第3の誘電体層との模式的透視平面図である。FIG. 29 is a schematic perspective plan view of the third electrode layer and the third dielectric layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention. 図30は、本発明の第2の実施形態に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 30 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention. 図31は、本発明の第2の実施形態に係る弾性波デュプレクサにおける、配線基板の第4の電極層の模式的透視平面図である。FIG. 31 is a schematic perspective plan view of the fourth electrode layer of the wiring board in the elastic wave duplexer according to the second embodiment of the present invention. 図32は、第1の実施例及び第2の実施例のそれぞれに係る弾性波デュプレクサのコモンモードアイソレーション特性を表すグラフである。FIG. 32 is a graph showing the common mode isolation characteristics of the elastic wave duplexer according to each of the first and second embodiments. 図33は、特許文献1に記載の弾性波デュプレクサの略図的回路図である。FIG. 33 is a schematic circuit diagram of the elastic wave duplexer described in Patent Document 1.
 以下、本発明を実施した好ましい形態について、弾性波分波器の一種である図1及び図2に示す弾性表面波デュプレクサ1を例に挙げて説明する。但し、弾性表面波デュプレクサ1は、単なる例示である。本発明に係る弾性波分波器は、弾性表面波デュプレクサ1に何ら限定されない。本発明に係る弾性波分波器は、例えばトリプレクサなどの、他の種類の弾性波分波器であってもよい。また、本発明に係る弾性波分波器は、弾性境界波を利用した弾性境界波分波器であってもよい。 Hereinafter, a preferred embodiment in which the present invention is implemented will be described by taking the surface acoustic wave duplexer 1 shown in FIGS. 1 and 2 which is a kind of acoustic wave duplexer as an example. However, the surface acoustic wave duplexer 1 is merely an example. The elastic wave duplexer according to the present invention is not limited to the surface acoustic wave duplexer 1. The elastic wave duplexer according to the present invention may be another type of elastic wave duplexer such as a triplexer. The elastic wave duplexer according to the present invention may be a boundary acoustic wave duplexer using a boundary acoustic wave.
 本実施形態の弾性表面波デュプレクサ1は、例えば、UMTSのようなCDMA方式に対応する携帯電話機などのRF回路に搭載されるものである。本実施形態の弾性表面波デュプレクサ1は、具体的には、UMTS-BAND2に対応するデュプレクサである。なお、UMTS-BAND2の送信周波数帯は、1850MHz~1910MHzである。UMTS-BAND2の受信周波数帯は、1930MHz~1990MHzである。 The surface acoustic wave duplexer 1 according to the present embodiment is mounted on an RF circuit such as a mobile phone corresponding to a CDMA system such as UMTS. The surface acoustic wave duplexer 1 of the present embodiment is specifically a duplexer corresponding to UMTS-BAND2. Note that the transmission frequency band of UMTS-BAND2 is 1850 MHz to 1910 MHz. The reception frequency band of UMTS-BAND2 is 1930 MHz to 1990 MHz.
 図1は、本実施形態に係る弾性表面波デュプレクサ1の略図的回路図である。まず、図1を参照しながら、弾性表面波デュプレクサ1の回路構成について説明する。 FIG. 1 is a schematic circuit diagram of a surface acoustic wave duplexer 1 according to this embodiment. First, the circuit configuration of the surface acoustic wave duplexer 1 will be described with reference to FIG.
 図1に示すように、弾性表面波デュプレクサ1は、アンテナAnt.に接続されるアンテナ端子21と、送信側信号端子24と、第1及び第2の受信側信号端子22a,22bとを有する。アンテナ端子21と送信側信号端子24との間に、送信フィルタ14が接続されている。アンテナ端子21と第1及び第2の受信側信号端子22a,22bとの間に、受信フィルタ15が接続されている。 As shown in FIG. 1, the surface acoustic wave duplexer 1 includes an antenna Ant. Antenna terminal 21, a transmission side signal terminal 24, and first and second reception side signal terminals 22a and 22b. A transmission filter 14 is connected between the antenna terminal 21 and the transmission-side signal terminal 24. A reception filter 15 is connected between the antenna terminal 21 and the first and second reception- side signal terminals 22a and 22b.
 アンテナAnt.とアンテナ端子21との間の接続点と、グラウンドとの間には、インダクタL1からなる整合回路が接続されている。本実施形態では、インダクタL1は、チップ・インダクタにより構成されており、弾性表面波デュプレクサ1と共にRF回路に搭載されるものである。なお、弾性表面波デュプレクサ1は、整合回路を含むものであってもよい。その場合、整合回路は、送信フィルタ14及び受信フィルタ15の一方または両方と、アンテナ端子21との間に接続される。 Antenna Ant. A matching circuit made up of an inductor L1 is connected between the connection point between the antenna terminal 21 and the antenna terminal 21 and the ground. In the present embodiment, the inductor L1 is constituted by a chip inductor and is mounted on the RF circuit together with the surface acoustic wave duplexer 1. The surface acoustic wave duplexer 1 may include a matching circuit. In that case, the matching circuit is connected between one or both of the transmission filter 14 and the reception filter 15 and the antenna terminal 21.
 送信フィルタ14は、ラダー型弾性表面波フィルタにより構成されている。送信フィルタ14は、出力端子14aと、入力端子14bとを有する。出力端子14aは、アンテナ端子21と接続されている。入力端子14bは、送信側信号端子24と接続されている。 The transmission filter 14 is a ladder type surface acoustic wave filter. The transmission filter 14 has an output terminal 14a and an input terminal 14b. The output terminal 14 a is connected to the antenna terminal 21. The input terminal 14 b is connected to the transmission side signal terminal 24.
 送信フィルタ14は、入力端子14bと出力端子14aとを接続している直列腕33を有する。直列腕33において、直列腕共振子S1,S2,S3,S4が直列に接続されている。直列腕共振子S1,S2,S3,S4のそれぞれは、ひとつの共振子として機能する複数の弾性表面波共振子により構成されている。このように、直列腕共振子S1,S2,S3,S4のそれぞれを、複数の弾性表面波共振子によって構成することにより、送信フィルタ14の耐電力性を向上させることができる。なお、直列腕共振子S1,S2,S3,S4のそれぞれは、1つの弾性表面波共振子により構成されていてもよい。 The transmission filter 14 has a serial arm 33 that connects the input terminal 14b and the output terminal 14a. In the series arm 33, series arm resonators S1, S2, S3, and S4 are connected in series. Each of the series arm resonators S1, S2, S3, and S4 is composed of a plurality of surface acoustic wave resonators that function as one resonator. As described above, by configuring each of the series arm resonators S1, S2, S3, and S4 with a plurality of surface acoustic wave resonators, the power durability of the transmission filter 14 can be improved. Note that each of the series arm resonators S1, S2, S3, and S4 may be composed of one surface acoustic wave resonator.
 なお、直列腕共振子S2には、キャパシタCが並列に接続されている。キャパシタCは、互いに間挿し合っている一対のくし歯状電極により構成されている。 Note that a capacitor C is connected in parallel to the series arm resonator S2. The capacitor C is composed of a pair of comb-like electrodes that are interleaved with each other.
 送信フィルタ14は、直列腕33とグラウンドとの間に接続されている並列腕37a~37dを有する。並列腕37a~37dのそれぞれには、並列腕共振子P1,P2,P3,P4が設けられている。並列腕共振子P1,P2,P3,P4のそれぞれは、ひとつの共振子として機能する複数の弾性表面波共振子により構成されている。このように、並列腕共振子P1,P2,P3,P4のそれぞれを、複数の弾性表面波共振子によって構成することにより、送信フィルタ14の耐電力性を向上させることができる。なお、並列腕共振子P1,P2,P3,P4のそれぞれは、1つの弾性表面波共振子により構成されていてもよい。 The transmission filter 14 has parallel arms 37a to 37d connected between the serial arm 33 and the ground. Parallel arm resonators P1, P2, P3, and P4 are provided in each of the parallel arms 37a to 37d. Each of the parallel arm resonators P1, P2, P3, and P4 includes a plurality of surface acoustic wave resonators that function as a single resonator. As described above, by configuring each of the parallel arm resonators P1, P2, P3, and P4 with a plurality of surface acoustic wave resonators, the power durability of the transmission filter 14 can be improved. Note that each of the parallel arm resonators P1, P2, P3, and P4 may be composed of one surface acoustic wave resonator.
 送信フィルタ14は、送信側グラウンド端子14c,14dを有する。送信側グラウンド端子14cは、並列腕37a~37cと接続されている。すなわち、並列腕37a~37cは、送信側グラウンド端子14cを介してグラウンドと接続されている。送信側グラウンド端子14dは、並列腕37dと接続されている。すなわち、並列腕37dは、送信側グラウンド端子14dを介してグラウンドと接続されている。 The transmission filter 14 includes transmission- side ground terminals 14c and 14d. The transmission side ground terminal 14c is connected to the parallel arms 37a to 37c. That is, the parallel arms 37a to 37c are connected to the ground via the transmission side ground terminal 14c. The transmission side ground terminal 14d is connected to the parallel arm 37d. That is, the parallel arm 37d is connected to the ground via the transmission-side ground terminal 14d.
 並列腕共振子P1,P2,P3とグラウンドとの間には、インダクタL2が接続されている。並列腕共振子P4とグラウンドとの間には、インダクタL3が接続されている。言い換えれば、送信側グラウンド端子14cとグラウンドとの間には、インダクタL2が接続されている。送信側グラウンド端子14dとグラウンドとの間には、インダクタL3が接続されている。 An inductor L2 is connected between the parallel arm resonators P1, P2, P3 and the ground. An inductor L3 is connected between the parallel arm resonator P4 and the ground. In other words, the inductor L2 is connected between the transmission-side ground terminal 14c and the ground. An inductor L3 is connected between the transmission-side ground terminal 14d and the ground.
 並列腕共振子P1を構成している弾性表面波共振子は、直列腕共振子S1,S2を構成している弾性表面波共振子に接続されているくし歯状電極と、送信側グラウンド端子14cに接続されているくし歯状電極とを有するIDT電極を有する。並列腕共振子P2を構成している弾性表面波共振子は、直列腕共振子S2,S3を構成している弾性表面波共振子に接続されているくし歯状電極と、送信側グラウンド端子14cに接続されているくし歯状電極とを有するIDT電極を有する。並列腕共振子P3を構成している弾性表面波共振子は、直列腕共振子S3,S4を構成している弾性表面波共振子に接続されているくし歯状電極と、送信側グラウンド端子14cに接続されているくし歯状電極とを有するIDT電極を有する。並列腕共振子P4を構成している弾性表面波共振子は、直列腕共振子S4を構成している弾性表面波共振子に接続されているくし歯状電極と、送信側グラウンド端子14dに接続されているくし歯状電極とを有するIDT電極を有する。 The surface acoustic wave resonator constituting the parallel arm resonator P1 includes a comb-like electrode connected to the surface acoustic wave resonators constituting the series arm resonators S1 and S2, and a transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode. The surface acoustic wave resonator constituting the parallel arm resonator P2 includes a comb-like electrode connected to the surface acoustic wave resonators constituting the series arm resonators S2 and S3, and a transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode. The surface acoustic wave resonator constituting the parallel arm resonator P3 includes comb-like electrodes connected to the surface acoustic wave resonators constituting the series arm resonators S3 and S4, and the transmission-side ground terminal 14c. And an IDT electrode having a comb-like electrode connected to the electrode. The surface acoustic wave resonator constituting the parallel arm resonator P4 is connected to the comb-like electrode connected to the surface acoustic wave resonator constituting the series arm resonator S4 and the transmission-side ground terminal 14d. And an IDT electrode having a comb-like electrode.
 受信フィルタ15は、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性表面波フィルタにより構成されている。受信フィルタ15は、不平衡信号端子15aと、第1及び第2の平衡信号端子15b,15cとを有する。不平衡信号端子15aは、アンテナ端子21と接続されている。第1の平衡信号端子15bは、第1の受信側信号端子22aと接続されている。第2の平衡信号端子15cは、第2の受信側信号端子22bと接続されている。なお、本実施形態において、不平衡信号端子15aのインピーダンスは50Ωである。第1及び第2の平衡信号端子15b,15cのインピーダンスは100Ωである。 The reception filter 15 is composed of a balanced longitudinally coupled resonator type surface acoustic wave filter having a balanced-unbalanced conversion function. The reception filter 15 includes an unbalanced signal terminal 15a and first and second balanced signal terminals 15b and 15c. The unbalanced signal terminal 15a is connected to the antenna terminal 21. The first balanced signal terminal 15b is connected to the first receiving signal terminal 22a. The second balanced signal terminal 15c is connected to the second receiving signal terminal 22b. In the present embodiment, the impedance of the unbalanced signal terminal 15a is 50Ω. The impedances of the first and second balanced signal terminals 15b and 15c are 100Ω.
 受信フィルタ15は、第1の縦結合共振子型弾性表面波フィルタ素子15Aと、第2の縦結合共振子型弾性表面波フィルタ素子15Bと、弾性表面波共振子17a~17eとを有する。 The reception filter 15 includes a first longitudinally coupled resonator type surface acoustic wave filter element 15A, a second longitudinally coupled resonator type surface acoustic wave filter element 15B, and surface acoustic wave resonators 17a to 17e.
 第1の縦結合共振子型弾性表面波フィルタ素子15Aは、不平衡信号端子15aと第1の平衡信号端子15bとの間に接続されている。一方、第2の縦結合共振子型弾性表面波フィルタ素子15Bは、不平衡信号端子15aと第2の平衡信号端子15cとの間に接続されている。 The first longitudinally coupled resonator type surface acoustic wave filter element 15A is connected between the unbalanced signal terminal 15a and the first balanced signal terminal 15b. On the other hand, the second longitudinally coupled resonator type surface acoustic wave filter element 15B is connected between the unbalanced signal terminal 15a and the second balanced signal terminal 15c.
 第1の縦結合共振子型弾性表面波フィルタ素子15Aは、弾性表面波伝搬方向に沿って配列されたIDT電極15A1,15A2,15A3と、それら3つのIDT電極15A1,15A2,15A3が設けられている領域の弾性表面波伝搬方向両側に配置された一対の反射器15A4,15A5とを有する。すなわち、第1の縦結合共振子型弾性表面波フィルタ素子15Aは、3IDT型の縦結合共振子型弾性表面波フィルタ素子である。 The first longitudinally coupled resonator type surface acoustic wave filter element 15A is provided with IDT electrodes 15A1, 15A2, and 15A3 arranged along the surface acoustic wave propagation direction, and these three IDT electrodes 15A1, 15A2, and 15A3. And a pair of reflectors 15A4 and 15A5 disposed on both sides of the surface acoustic wave propagation direction in the region. That is, the first longitudinally coupled resonator type surface acoustic wave filter element 15A is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter element.
 弾性表面波伝搬方向の両側に位置しているIDT電極15A1,15A3の一方側のくし歯状電極は、不平衡信号端子15aに接続されており、他方側のくし歯状電極は、グラウンドに接続されている。 The comb-like electrodes on one side of the IDT electrodes 15A1 and 15A3 located on both sides of the surface acoustic wave propagation direction are connected to the unbalanced signal terminal 15a, and the comb-like electrode on the other side is connected to the ground. Has been.
 弾性表面波伝搬方向の中央に位置しているIDT電極15A2の一方側のくし歯状電極は、グラウンドに接続されており、他方側のくし歯状電極は、第1の平衡信号端子15bに接続されている。IDT電極15A2と第1の平衡信号端子15bとの間の接続点と、グラウンドとの間には、弾性表面波共振子17dが接続されている。弾性波表面共振子17dは、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、弾性波表面共振子17dは、1ポート型弾性表面波共振子である。 The comb-like electrode on one side of the IDT electrode 15A2 located in the center of the surface acoustic wave propagation direction is connected to the ground, and the comb-like electrode on the other side is connected to the first balanced signal terminal 15b. Has been. A surface acoustic wave resonator 17d is connected between the connection point between the IDT electrode 15A2 and the first balanced signal terminal 15b and the ground. The surface acoustic wave resonator 17d includes one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, the surface acoustic wave resonator 17d is a 1-port surface acoustic wave resonator.
 第2の縦結合共振子型弾性表面波フィルタ素子15Bは、弾性表面波伝搬方向に沿って配列されたIDT電極15B1,15B2,15B3と、それら3つのIDT電極15B1,15B2,15B3が設けられている領域の弾性表面波伝搬方向両側に配置された一対の反射器15B4,15B5とを有する。すなわち、第2の縦結合共振子型弾性表面波フィルタ素子15Bは、3IDT型の縦結合共振子型弾性表面波フィルタ素子である。 The second longitudinally coupled resonator type surface acoustic wave filter element 15B is provided with IDT electrodes 15B1, 15B2, and 15B3 arranged along the surface acoustic wave propagation direction, and these three IDT electrodes 15B1, 15B2, and 15B3. And a pair of reflectors 15B4 and 15B5 disposed on both sides of the surface acoustic wave propagation direction in the region. That is, the second longitudinally coupled resonator type surface acoustic wave filter element 15B is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter element.
 弾性表面波伝搬方向の両側に位置しているIDT電極15B1,15B3の一方側のくし歯状電極は、不平衡信号端子15aに接続されており、他方側のくし歯状電極は、グラウンドに接続されている。 The comb-like electrodes on one side of the IDT electrodes 15B1 and 15B3 located on both sides of the surface acoustic wave propagation direction are connected to the unbalanced signal terminal 15a, and the comb-like electrode on the other side is connected to the ground. Has been.
 弾性表面波伝搬方向の中央に位置しているIDT電極15B2の一方側のくし歯状電極は、グラウンドに接続されており、他方側のくし歯状電極は、第2の平衡信号端子15cに接続されている。IDT電極15B2と第2の平衡信号端子15cとの間の接続点と、グラウンドとの間には、弾性表面波共振子17eが接続されている。弾性表面波共振子17eは、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、弾性波表面共振子17eは、1ポート型弾性表面波共振子である。 The comb-like electrode on one side of the IDT electrode 15B2 located in the center of the surface acoustic wave propagation direction is connected to the ground, and the comb-like electrode on the other side is connected to the second balanced signal terminal 15c. Has been. A surface acoustic wave resonator 17e is connected between the connection point between the IDT electrode 15B2 and the second balanced signal terminal 15c and the ground. The surface acoustic wave resonator 17e includes one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, the surface acoustic wave resonator 17e is a 1-port surface acoustic wave resonator.
 なお、第1及び第2の縦結合共振子型弾性表面波フィルタ素子15A,15Bでは、位相を反転するために、第1の縦結合共振子型弾性表面波フィルタ素子15Aの弾性表面波伝搬方向の両側に位置しているIDT電極15A1,15A3に対して、第2の縦結合共振子型弾性表面波フィルタ素子15Bの弾性表面波伝搬方向の両側に位置しているIDT電極15B1,15B3が反転されている。それ以外の構成は、第1の縦結合共振子型弾性表面波フィルタ素子15Aと第2の縦結合共振子型弾性表面波フィルタ素子15Bとで同じである。 In the first and second longitudinally coupled resonator type surface acoustic wave filter elements 15A and 15B, the surface acoustic wave propagation direction of the first longitudinally coupled resonator type surface acoustic wave filter element 15A is used in order to invert the phase. The IDT electrodes 15B1 and 15B3 located on both sides of the surface acoustic wave propagation direction of the second longitudinally coupled resonator type surface acoustic wave filter element 15B are inverted with respect to the IDT electrodes 15A1 and 15A3 located on both sides of Has been. Other configurations are the same between the first longitudinally coupled resonator type surface acoustic wave filter element 15A and the second longitudinally coupled resonator type surface acoustic wave filter element 15B.
 弾性表面波共振子17a~17cは、不平衡信号端子15aと第1及び第2の縦結合共振子型弾性表面波フィルタ素子15A,15Bとの間に直列に接続されている。弾性表面波共振子17a~17cのそれぞれは、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、弾性表面波共振子17a~17cのそれぞれは、1ポート型弾性表面波共振子である。 The surface acoustic wave resonators 17a to 17c are connected in series between the unbalanced signal terminal 15a and the first and second longitudinally coupled resonator type surface acoustic wave filter elements 15A and 15B. Each of the surface acoustic wave resonators 17a to 17c has one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, each of the surface acoustic wave resonators 17a to 17c is a one-port surface acoustic wave resonator.
 弾性表面波共振子17a~17cは、送信フィルタ14との位相を調整するために設けられている。弾性表面波共振子17a~17cは、共振周波数が受信フィルタ15の通過帯域内に位置し、かつ反共振周波数が受信フィルタ15の通過帯域よりも高域側であって、通過帯域外に位置するように構成されている。 The surface acoustic wave resonators 17 a to 17 c are provided to adjust the phase with the transmission filter 14. The surface acoustic wave resonators 17 a to 17 c have a resonance frequency located in the pass band of the reception filter 15 and an anti-resonance frequency higher than the pass band of the reception filter 15 and located outside the pass band. It is configured as follows.
 弾性表面波共振子17d,17eは、受信フィルタ15の帯域外減衰量を大きくするために設けられている。弾性表面波共振子17d,17eは、共振周波数が受信フィルタ15の通過帯域よりも低域側であって、通過帯域外に位置し、反共振周波数が通過帯域内に位置するように構成されている。 The surface acoustic wave resonators 17 d and 17 e are provided to increase the out-of-band attenuation of the reception filter 15. The surface acoustic wave resonators 17d and 17e are configured such that the resonance frequency is lower than the pass band of the reception filter 15, is located outside the pass band, and the anti-resonance frequency is located in the pass band. Yes.
 図2は、本実施形態に係る弾性表面波デュプレクサ1の模式的断面図である。次に、図2を主として参照しながら、本実施形態の弾性表面波デュプレクサ1の具体的構成について説明する。 FIG. 2 is a schematic cross-sectional view of the surface acoustic wave duplexer 1 according to the present embodiment. Next, a specific configuration of the surface acoustic wave duplexer 1 of the present embodiment will be described with reference mainly to FIG.
 図2に示すように、弾性表面波デュプレクサ1は、配線基板10と、送信側弾性表面波フィルタチップ18と、受信側弾性表面波フィルタチップ19とを備えている。図1に示すように、送信側弾性表面波フィルタチップ18には、送信フィルタ14のインダクタL2,L3を除く部分が形成されている。インダクタL2,L3は、配線基板10に設けられている。また、受信側弾性表面波フィルタチップ19には、受信フィルタ15が形成されている。 As shown in FIG. 2, the surface acoustic wave duplexer 1 includes a wiring board 10, a transmission-side surface acoustic wave filter chip 18, and a reception-side surface acoustic wave filter chip 19. As shown in FIG. 1, the transmission-side surface acoustic wave filter chip 18 is formed with portions of the transmission filter 14 excluding the inductors L2 and L3. The inductors L2 and L3 are provided on the wiring board 10. A reception filter 15 is formed on the reception-side surface acoustic wave filter chip 19.
 図3は、本実施形態に係る弾性表面波デュプレクサ1における送信側弾性表面波フィルタチップ18の模式的透視平面図である。図3は、弾性表面波デュプレクサ1の上方から送信側弾性表面波フィルタチップ18を透視した状態を示している。 FIG. 3 is a schematic perspective plan view of the transmission-side surface acoustic wave filter chip 18 in the surface acoustic wave duplexer 1 according to the present embodiment. FIG. 3 shows a state where the transmitting surface acoustic wave filter chip 18 is seen through from above the surface acoustic wave duplexer 1.
 図3に示すように、送信側弾性表面波フィルタチップ18は、圧電基板18Aと、圧電基板18Aの上に形成されており、弾性表面波共振子を構成しているIDT電極及び反射器、キャパシタCを構成している一対のくし歯状電極、配線などを含む電極18Bとを有する。すなわち、電極18Bは、送信フィルタ14を構成する電極である。圧電基板18Aの上には、直列腕共振子S1が接続された出力端子14aと、直列腕共振子S4及び並列腕共振子P4が接続された入力端子14bと、並列腕共振子P1~P3が接続された送信側グラウンド端子14cと、並列腕共振子P4が接続された送信側グラウンド端子14dとが配置されている。また、圧電基板18Aの上には、いずれの弾性表面波共振子とも接続されていないダミー端子14e,14fが配置されている。すなわち、電極18Bは、出力端子14aと、入力端子14bと、送信側グラウンド端子14cと、送信側グラウンド端子14dとダミー端子14e,14fとを含む。ダミー端子14e,14fは、送信側弾性表面波フィルタチップ18と配線基板10との接合強度を高めるために設けられている。 As shown in FIG. 3, the transmission-side surface acoustic wave filter chip 18 is formed on the piezoelectric substrate 18A, the piezoelectric substrate 18A, and the IDT electrodes, reflectors, and capacitors that form the surface acoustic wave resonator. A pair of comb-like electrodes constituting C, and an electrode 18B including wirings. That is, the electrode 18 </ b> B is an electrode that constitutes the transmission filter 14. On the piezoelectric substrate 18A, there are an output terminal 14a to which the series arm resonator S1 is connected, an input terminal 14b to which the series arm resonator S4 and the parallel arm resonator P4 are connected, and parallel arm resonators P1 to P3. A connected transmission-side ground terminal 14c and a transmission-side ground terminal 14d to which the parallel arm resonator P4 is connected are arranged. On the piezoelectric substrate 18A, dummy terminals 14e and 14f that are not connected to any surface acoustic wave resonator are disposed. That is, the electrode 18B includes an output terminal 14a, an input terminal 14b, a transmission-side ground terminal 14c, a transmission-side ground terminal 14d, and dummy terminals 14e and 14f. The dummy terminals 14e and 14f are provided to increase the bonding strength between the transmission-side surface acoustic wave filter chip 18 and the wiring board 10.
 図4は、本実施形態に係る弾性表面波デュプレクサ1における受信側弾性表面波フィルタチップ19の模式的透視平面図である。図4は、弾性表面波デュプレクサ1の上方から受信側弾性表面波フィルタチップ19を透視した状態を示している。 FIG. 4 is a schematic perspective plan view of the reception-side surface acoustic wave filter chip 19 in the surface acoustic wave duplexer 1 according to the present embodiment. FIG. 4 shows a state in which the receiving surface acoustic wave filter chip 19 is seen through from above the surface acoustic wave duplexer 1.
 図4に示すように、受信側弾性表面波フィルタチップ19は、圧電基板19Aと、圧電基板19Aの上に形成されており、第1及び第2の縦結合共振子型弾性表面波フィルタ素子15A,15B並びに弾性表面波共振子17a~17eを構成しているIDT電極及び反射器、配線などを含む電極19Bとを有する。すなわち、電極19Bは、受信フィルタ15を構成する電極である。圧電基板19Aの上には、不平衡信号端子15aと、第1及び第2の平衡信号端子15b,15cと、不平衡信号端子側グラウンド端子15dと、平衡信号端子側グラウンド端子15e,15fとが配置されている。すなわち、電極19Bは、不平衡信号端子15aと、第1及び第2の平衡信号端子15b,15cと、不平衡信号端子側グラウンド端子15dと、平衡信号端子側グラウンド端子15e,15fとを含む。不平衡信号端子側グラウンド端子15dは、IDT電極15A1,15A3,15B1,15B3の一方側のくし歯状電極に接続されている。平衡信号端子側グラウンド端子15eは、IDT電極15A2,15B2の一方側のくし歯状電極に接続されている。平衡信号端子側グラウンド端子15fは、弾性表面波共振子17d,17eを構成しているIDT電極の一方のくし歯状電極に接続されている。 As shown in FIG. 4, the receiving surface acoustic wave filter chip 19 is formed on a piezoelectric substrate 19A and a piezoelectric substrate 19A, and the first and second longitudinally coupled resonator type surface acoustic wave filter elements 15A. 15B and IDT electrodes constituting the surface acoustic wave resonators 17a to 17e, and an electrode 19B including a reflector, wiring, and the like. That is, the electrode 19B is an electrode that constitutes the reception filter 15. On the piezoelectric substrate 19A, there are unbalanced signal terminal 15a, first and second balanced signal terminals 15b and 15c, unbalanced signal terminal side ground terminal 15d, and balanced signal terminal side ground terminals 15e and 15f. Has been placed. That is, the electrode 19B includes an unbalanced signal terminal 15a, first and second balanced signal terminals 15b and 15c, an unbalanced signal terminal side ground terminal 15d, and balanced signal terminal side ground terminals 15e and 15f. The unbalanced signal terminal side ground terminal 15d is connected to the comb-like electrode on one side of the IDT electrodes 15A1, 15A3, 15B1, and 15B3. The balanced signal terminal side ground terminal 15e is connected to the comb-like electrodes on one side of the IDT electrodes 15A2 and 15B2. The balanced signal terminal side ground terminal 15f is connected to one comb-like electrode of the IDT electrode constituting the surface acoustic wave resonators 17d and 17e.
 よって、IDT電極15A1,15A3,15B1,15B3は、不平衡信号端子15aに接続されているくし歯状電極と、不平衡信号端子側グラウンド端子15dに接続されているくし歯状電極とを有する不平衡信号端子側IDT電極である。IDT電極15A2は、第1の平衡信号端子15bに接続されているくし歯状電極と、平衡信号端子側グラウンド端子15eに接続されているくし歯状電極とを有する第1の平衡信号端子側IDT電極である。弾性表面波共振子17dを構成しているIDT電極は、第1の平衡信号端子15bに接続されているくし歯状電極と、平衡信号端子側グラウンド端子15fに接続されているくし歯状電極とを有する第1の平衡信号端子側IDT電極である。IDT電極15B2は、第2の平衡信号端子15cに接続されているくし歯状電極と、平衡信号端子側グラウンド端子15eに接続されているくし歯状電極とを有する第2の平衡信号端子側IDT電極である。弾性表面波共振子17eを構成しているIDT電極は、第2の平衡信号端子15cに接続されているくし歯状電極と、平衡信号端子側グラウンド端子15fに接続されているくし歯状電極とを有する第2の平衡信号端子側IDT電極である。 Accordingly, the IDT electrodes 15A1, 15A3, 15B1, and 15B3 are unbalanced having comb-like electrodes connected to the unbalanced signal terminal 15a and comb-like electrodes connected to the unbalanced signal terminal side ground terminal 15d. It is a balanced signal terminal side IDT electrode. The IDT electrode 15A2 is a first balanced signal terminal side IDT having a comb-like electrode connected to the first balanced signal terminal 15b and a comb-like electrode connected to the balanced signal terminal side ground terminal 15e. Electrode. The IDT electrodes constituting the surface acoustic wave resonator 17d are comb-like electrodes connected to the first balanced signal terminal 15b, and comb-like electrodes connected to the balanced signal terminal side ground terminal 15f. It is the 1st balanced signal terminal side IDT electrode which has. The IDT electrode 15B2 is a second balanced signal terminal side IDT having a comb-like electrode connected to the second balanced signal terminal 15c and a comb-like electrode connected to the balanced signal terminal side ground terminal 15e. Electrode. The IDT electrodes constituting the surface acoustic wave resonator 17e are comb-like electrodes connected to the second balanced signal terminal 15c, and comb-like electrodes connected to the balanced signal terminal side ground terminal 15f. It is the 2nd balanced signal terminal side IDT electrode which has.
 なお、不平衡信号端子側グラウンド端子15dと、平衡信号端子側グラウンド端子15e,15fとは、圧電基板19A上で互いに接続されていない。 The unbalanced signal terminal side ground terminal 15d and the balanced signal terminal side ground terminals 15e, 15f are not connected to each other on the piezoelectric substrate 19A.
 圧電基板18A,19Aの具体例としては、例えば、LiNbO基板やLiTaO基板などの圧電単結晶基板が挙げられる。電極18B,19Bは、例えば、アルミニウムなどの金属や合金により形成することができる。電極18B,19Bは、例えば、複数の金属層の積層体によって構成されていてもよい。 Specific examples of the piezoelectric substrates 18A and 19A include piezoelectric single crystal substrates such as a LiNbO 3 substrate and a LiTaO 3 substrate. The electrodes 18B and 19B can be formed of a metal such as aluminum or an alloy, for example. The electrodes 18B and 19B may be configured by a stacked body of a plurality of metal layers, for example.
 図2に示すように、配線基板10は、ダイアタッチ面10aと、裏面10bとを有する。上記送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19は、ダイアタッチ面10aの上に、バンプ26によりフリップチップ実装されている。ダイアタッチ面10aの上には、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19を覆うように、封止樹脂層16が形成されている。すなわち、本実施形態の弾性表面波デュプレクサ1は、CSP(Chip Size Package)型の弾性波分波器である。 As shown in FIG. 2, the wiring board 10 has a die attach surface 10a and a back surface 10b. The transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19 are flip-chip mounted by bumps 26 on the die attach surface 10a. A sealing resin layer 16 is formed on the die attach surface 10 a so as to cover the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19. That is, the surface acoustic wave duplexer 1 of the present embodiment is a CSP (Chip Size Package) type acoustic wave duplexer.
 配線基板10は、誘電体層と電極層とが交互に積層されてなる。具体的には、配線基板10は、第1~第3の誘電体層40~42と第1~第4の電極層44~47との積層体により構成されている。第1の電極層44は、第1の誘電体層40の上に配置されている。第2の電極層45は、第1の誘電体層40と第2の誘電体層41の間に配置されている。第3の電極層46は、第2の誘電体層41と第3の誘電体層42の間に配置されている。第4の電極層47は、第3の誘電体層42の下に配置されている。 The wiring board 10 is formed by alternately laminating dielectric layers and electrode layers. Specifically, the wiring substrate 10 is constituted by a laminated body of first to third dielectric layers 40 to 42 and first to fourth electrode layers 44 to 47. The first electrode layer 44 is disposed on the first dielectric layer 40. The second electrode layer 45 is disposed between the first dielectric layer 40 and the second dielectric layer 41. The third electrode layer 46 is disposed between the second dielectric layer 41 and the third dielectric layer 42. The fourth electrode layer 47 is disposed under the third dielectric layer 42.
 第1~第3の誘電体層40~42のそれぞれは、例えば、樹脂や、アルミナなどのセラミックスなどにより構成することができる。すなわち、配線基板10は、樹脂からなるプリント配線多層基板や、セラミック多層基板であってもよい。 Each of the first to third dielectric layers 40 to 42 can be made of, for example, a resin or ceramics such as alumina. That is, the wiring board 10 may be a printed wiring multilayer board made of resin or a ceramic multilayer board.
 なお、本実施形態では、配線基板が3つの誘電体層と4つの電極層との積層体により構成されている例について説明する。但し、本発明において、配線基板が有する誘電体層の層数及び電極層の層数は、特に限定されない。 In the present embodiment, an example will be described in which the wiring board is configured by a laminate of three dielectric layers and four electrode layers. However, in the present invention, the number of dielectric layers and the number of electrode layers of the wiring board are not particularly limited.
 図5は、本実施形態に係る弾性表面波デュプレクサ1における、配線基板10の第1の電極層44と第1の誘電体層40との模式的透視平面図である。図6は、本実施形態に係る弾性表面波デュプレクサ1における、配線基板10の第2の電極層45と第2の誘電体層41との模式的透視平面図である。図7は、本実施形態に係る弾性表面波デュプレクサ1における、配線基板10の第3の電極層46と第3の誘電体層42との模式的透視平面図である。図8は、本実施形態に係る弾性表面波デュプレクサ1における、配線基板10の第4の電極層47の模式的透視平面図である。但し、図8においては、レジスト層60の描画を省略している。図9は、本実施形態に係る弾性表面波デュプレクサ1における、配線基板10の第4の電極層47の模式的透視平面図である。なお、図5~図9は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から弾性表面波デュプレクサ1を透視した状態を示している。 FIG. 5 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. FIG. 6 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. FIG. 7 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. FIG. 8 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. However, in FIG. 8, drawing of the resist layer 60 is omitted. FIG. 9 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer 1 according to the present embodiment. 5 to 9 show a state in which the surface acoustic wave duplexer 1 is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
 図5に示すように、第1の電極層44はランド電極層であり、第1の電極層44と第1の誘電体層40とは、配線基板10のダイアタッチ面10aを構成している。第1の電極層44は、ランド電極44a~44lにより構成されている。図6に示すように、第2の電極層45は、電極45a~45jにより構成されている。図7に示すように、第3の電極層46は、電極46a~46iにより構成されている。図9に示すように、裏面10bの上には、レジスト層60が形成されている。このレジスト層60により、第4の電極層47の一部が被覆され、アンテナ端子21と、送信側信号端子24と、第1及び第2の受信側信号端子22a,22bと、グラウンド電極47aとが形成されている。 As shown in FIG. 5, the first electrode layer 44 is a land electrode layer, and the first electrode layer 44 and the first dielectric layer 40 constitute a die attach surface 10 a of the wiring substrate 10. . The first electrode layer 44 is composed of land electrodes 44a to 44l. As shown in FIG. 6, the second electrode layer 45 is composed of electrodes 45a to 45j. As shown in FIG. 7, the third electrode layer 46 is composed of electrodes 46a to 46i. As shown in FIG. 9, a resist layer 60 is formed on the back surface 10b. The resist layer 60 covers a part of the fourth electrode layer 47, and includes the antenna terminal 21, the transmission side signal terminal 24, the first and second reception side signal terminals 22a and 22b, and the ground electrode 47a. Is formed.
 図1及び図3に示す送信フィルタ14の出力端子14aは、バンプ26により、図5に示すランド電極44dに接続されている。ランド電極44dは、第1の誘電体層40に形成されたビアホール電極51aにより、図6に示す電極45dに接続されている。また、図1及び図4に示す受信フィルタ15の不平衡信号端子15aは、バンプ26により、図5に示すランド電極44gに接続されている。ランド電極44gは、第1の誘電体層40に形成されたビアホール電極51bにより、電極45dに接続されている。電極45dは、第2の誘電体層41に形成されたビアホール電極52aにより、図7に示す電極46dに接続されている。電極46dは、第3の誘電体層42に形成されたビアホール電極53aにより、図1、図8及び図9に示すアンテナ端子21に接続されている。 The output terminal 14a of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44d shown in FIG. The land electrode 44d is connected to the electrode 45d shown in FIG. 6 by a via hole electrode 51a formed in the first dielectric layer 40. Further, the unbalanced signal terminal 15a of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44g shown in FIG. The land electrode 44g is connected to the electrode 45d by a via hole electrode 51b formed in the first dielectric layer 40. The electrode 45d is connected to the electrode 46d shown in FIG. 7 by a via hole electrode 52a formed in the second dielectric layer 41. The electrode 46d is connected to the antenna terminal 21 shown in FIGS. 1, 8, and 9 by a via-hole electrode 53a formed in the third dielectric layer.
 図1及び図3に示す送信フィルタ14の入力端子14bは、バンプ26により、図5に示すランド電極44cに接続されている。ランド電極44cは、第1の誘電体層40に形成されたビアホール電極51cにより、図6に示す電極45cに接続されている。電極45cは、第2の誘電体層41に形成されたビアホール電極52bにより、図7に示す電極46cに接続されている。電極46cは、第3の誘電体層42に形成されたビアホール電極53bにより、図1、図8及び図9に示す送信側信号端子24に接続されている。 The input terminal 14b of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44c shown in FIG. The land electrode 44c is connected to the electrode 45c shown in FIG. 6 by a via hole electrode 51c formed in the first dielectric layer 40. The electrode 45c is connected to the electrode 46c shown in FIG. 7 by a via hole electrode 52b formed in the second dielectric layer 41. The electrode 46c is connected to the transmission-side signal terminal 24 shown in FIGS. 1, 8, and 9 by a via-hole electrode 53b formed in the third dielectric layer 42.
 図1及び図3に示す送信フィルタ14の送信側グラウンド端子14cは、バンプ26により、図5に示すランド電極44bに接続されている。ランド電極44bは、第1の誘電体層40に形成されたビアホール電極51dにより、図6に示す電極45bに接続されている。電極45bは、第2の誘電体層41に形成されたビアホール電極52cにより、図7に示す電極46bに接続されている。電極45bと電極46bなどにより、インダクタL2が構成されている。電極46bは、第3の誘電体層42に形成されたビアホール電極53cにより、図8及び図9に示すグラウンド電極47aに接続されている。 The transmission-side ground terminal 14c of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44b shown in FIG. The land electrode 44b is connected to the electrode 45b shown in FIG. 6 by a via hole electrode 51d formed in the first dielectric layer 40. The electrode 45b is connected to the electrode 46b shown in FIG. 7 by a via hole electrode 52c formed in the second dielectric layer 41. An inductor L2 is constituted by the electrode 45b and the electrode 46b. The electrode 46b is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a via-hole electrode 53c formed in the third dielectric layer.
 図1及び図3に示す送信フィルタ14の送信側グラウンド端子14dは、バンプ26により、図5に示すランド電極44fに接続されている。ランド電極44fは、第1の誘電体層40に形成されたビアホール電極51eにより、図6に示す電極45fに接続されている。電極45fは、第2の誘電体層41に形成されたビアホール電極52dにより、図7に示す電極46eに接続されている。電極45fと電極46eなどによりインダクタL3が構成されている。電極46eは、第3の誘電体層42に形成されたビアホール電極53dにより、図8及び図9に示すグラウンド電極47aに接続されている。すなわち、ランド電極44b,44fと、電極45b,45fと、電極46b,46eと、グラウンド電極47aとは、送信側グラウンド端子14c,14dと接続されている送信側グラウンド電極である。 The transmission-side ground terminal 14d of the transmission filter 14 shown in FIGS. 1 and 3 is connected to the land electrode 44f shown in FIG. The land electrode 44f is connected to the electrode 45f shown in FIG. 6 by a via hole electrode 51e formed in the first dielectric layer 40. The electrode 45f is connected to the electrode 46e shown in FIG. 7 by a via hole electrode 52d formed in the second dielectric layer 41. An inductor L3 is constituted by the electrode 45f and the electrode 46e. The electrode 46e is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a via-hole electrode 53d formed in the third dielectric layer. That is, the land electrodes 44b and 44f, the electrodes 45b and 45f, the electrodes 46b and 46e, and the ground electrode 47a are transmission-side ground electrodes connected to the transmission- side ground terminals 14c and 14d.
 図1及び図4に示す受信フィルタ15の第1の平衡信号端子15bは、バンプ26により、図5に示すランド電極44iに接続されている。ランド電極44iは、第1の誘電体層40に形成されたビアホール電極51fにより、図6に示す電極45jに接続されている。電極45jは、第2の誘電体層41に形成されたビアホール電極52eにより、図7に示す電極46iに接続されている。電極46iは、第3の誘電体層42に形成されたビアホール電極53eにより、図1、図8及び図9に示す第1の受信側信号端子22aに接続されている。 The first balanced signal terminal 15b of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44i shown in FIG. The land electrode 44i is connected to the electrode 45j shown in FIG. 6 by a via hole electrode 51f formed in the first dielectric layer 40. The electrode 45j is connected to the electrode 46i shown in FIG. 7 by a via hole electrode 52e formed in the second dielectric layer 41. The electrode 46i is connected to the first reception-side signal terminal 22a shown in FIGS. 1, 8, and 9 by a via-hole electrode 53e formed in the third dielectric layer.
 図1及び図4に示す受信フィルタ15の第2の平衡信号端子15cは、バンプ26により、図5に示すランド電極44lに接続されている。ランド電極44lは、第1の誘電体層40に形成されたビアホール電極51gにより、図6に示す電極45iに接続されている。電極45iは、第2の誘電体層41に形成されたビアホール電極52fにより、図7に示す電極46hに接続されている。電極46hは、第3の誘電体層42に形成されたビアホール電極53fにより、図1、図8及び図9に示す第2の受信側信号端子22bに接続されている。 The second balanced signal terminal 15c of the reception filter 15 shown in FIGS. 1 and 4 is connected to the land electrode 44l shown in FIG. The land electrode 44l is connected to the electrode 45i shown in FIG. 6 by a via hole electrode 51g formed in the first dielectric layer 40. The electrode 45i is connected to the electrode 46h shown in FIG. 7 by a via hole electrode 52f formed in the second dielectric layer 41. The electrode 46h is connected to the second reception-side signal terminal 22b shown in FIGS. 1, 8, and 9 by a via-hole electrode 53f formed in the third dielectric layer 42.
 図4に示す受信フィルタ15の不平衡信号端子側グラウンド端子15dは、バンプ26により、図5に示すランド電極44jに接続されている。ランド電極44jは、第1の誘電体層40に形成されたビアホール電極51hにより、図6に示す電極45gに接続されている。電極45gは、第2の誘電体層41に形成された複数のビアホール電極52gにより、図7に示す電極46fに接続されている。電極46fは、第3の誘電体層42に形成された複数のビアホール電極53gにより、図8及び図9に示すグラウンド電極47aに接続されている。すなわち、ランド電極44jと、電極45gと、電極46fと、グラウンド電極47aとは、不平衡信号端子側グラウンド端子15dと接続されている不平衡信号端子側グラウンド電極である。 The unbalanced signal terminal side ground terminal 15d of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44j shown in FIG. The land electrode 44j is connected to the electrode 45g shown in FIG. 6 by a via hole electrode 51h formed in the first dielectric layer 40. The electrode 45g is connected to the electrode 46f shown in FIG. 7 by a plurality of via hole electrodes 52g formed in the second dielectric layer 41. The electrode 46f is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53g formed in the third dielectric layer 42. That is, the land electrode 44j, the electrode 45g, the electrode 46f, and the ground electrode 47a are unbalanced signal terminal side ground electrodes connected to the unbalanced signal terminal side ground terminal 15d.
 図4に示す受信フィルタ15の平衡信号端子側グラウンド端子15eは、バンプ26により、図5に示すランド電極44hに接続されている。ランド電極44hは、第1の誘電体層40に形成されたビアホール電極51iにより、図6に示す電極45hに接続されている。電極45hは、第2の誘電体層41に形成された複数のビアホール電極52hにより、図7に示す電極46gに接続されている。電極46gは、第3の誘電体層42に形成された複数のビアホール電極53hにより、図8及び図9に示すグラウンド電極47aに接続されている。 The balanced signal terminal side ground terminal 15e of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44h shown in FIG. The land electrode 44h is connected to the electrode 45h shown in FIG. 6 by a via hole electrode 51i formed in the first dielectric layer 40. The electrode 45h is connected to the electrode 46g shown in FIG. 7 by a plurality of via hole electrodes 52h formed in the second dielectric layer 41. The electrode 46g is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53h formed in the third dielectric layer 42.
 図4に示す受信フィルタ15の平衡信号端子側グラウンド端子15fは、バンプ26により、図5に示すランド電極44kに接続されている。ランド電極44kは、第1の誘電体層40に形成されたビアホール電極51jにより、図6に示す電極45hに接続されている。電極45hは、第2の誘電体層41に形成された複数のビアホール電極52hにより、図7に示す電極46gに接続されている。電極46gは、第3の誘電体層42に形成された複数のビアホール電極53hにより、図8及び図9に示すグラウンド電極47aに接続されている。 The balanced signal terminal side ground terminal 15f of the reception filter 15 shown in FIG. 4 is connected to the land electrode 44k shown in FIG. The land electrode 44k is connected to the electrode 45h shown in FIG. 6 by a via hole electrode 51j formed in the first dielectric layer 40. The electrode 45h is connected to the electrode 46g shown in FIG. 7 by a plurality of via hole electrodes 52h formed in the second dielectric layer 41. The electrode 46g is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53h formed in the third dielectric layer 42.
 すなわち、ランド電極44k,44hと、電極45hと、電極46gと、グラウンド電極47aとは、平衡信号端子側グラウンド端子15e,15fと接続されている平衡信号端子側グラウンド電極である。 That is, the land electrodes 44k and 44h, the electrode 45h, the electrode 46g, and the ground electrode 47a are balanced signal terminal side ground electrodes connected to the balanced signal terminal side ground terminals 15e and 15f.
 図3に示す送信フィルタ14のダミー端子14eは、バンプ26により、図5に示すランド電極44aに接続されている。ランド電極44aは、第1の誘電体層40に形成されたビアホール電極51kにより、図6に示す電極45aに接続されている。電極45aは、第2の誘電体層41に形成されたビアホール電極52iにより、図7に示す電極46aに接続されている。電極46aは、第3の誘電体層42に形成された複数のビアホール電極53iにより、図8及び図9に示すグラウンド電極47aに接続されている。 The dummy terminal 14e of the transmission filter 14 shown in FIG. 3 is connected to the land electrode 44a shown in FIG. The land electrode 44 a is connected to the electrode 45 a shown in FIG. 6 by a via hole electrode 51 k formed in the first dielectric layer 40. The electrode 45a is connected to the electrode 46a shown in FIG. 7 by a via hole electrode 52i formed in the second dielectric layer 41. The electrode 46a is connected to the ground electrode 47a shown in FIGS. 8 and 9 by a plurality of via hole electrodes 53i formed in the third dielectric layer.
 図3に示す送信フィルタ14のダミー端子14fは、バンプ26により、図5に示すランド電極44eに接続されている。ランド電極44eは、第1の誘電体層40に形成されたビアホール電極51lにより、図6に示す電極45eに接続されている。 The dummy terminal 14f of the transmission filter 14 shown in FIG. 3 is connected to the land electrode 44e shown in FIG. The land electrode 44e is connected to the electrode 45e shown in FIG. 6 by a via hole electrode 51l formed in the first dielectric layer 40.
 以上説明したように、本実施形態では、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面において共通化されている。具体的には、ランド電極44jと、電極45gと、電極46fと、グラウンド電極47aとからなる不平衡信号端子側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46gと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、配線基板10の裏面10bにおいて、グラウンド電極47aとして共通化されている。 As described above, in this embodiment, the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are shared on the back surface of the wiring board. Specifically, an unbalanced signal terminal side ground electrode including a land electrode 44j, an electrode 45g, an electrode 46f, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, an electrode 46g, and a ground electrode The ground signal terminal side ground electrode composed of 47 a is shared as the ground electrode 47 a on the back surface 10 b of the wiring board 10.
 また、本実施形態では、送信側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面において共通化されている。具体的には、ランド電極44b,44fと、電極45b,45fと、電極46b,46eと、グラウンド電極47aとからなる送信側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46gと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、配線基板10の裏面10bにおいて、グラウンド電極47aとして共通化されている。 In this embodiment, the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared on the back surface of the wiring board. Specifically, a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, electrodes 46b and 46e, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, and an electrode 46g The balanced signal terminal side ground electrode composed of the ground electrode 47 a is shared as the ground electrode 47 a on the back surface 10 b of the wiring substrate 10.
 本実施形態では、不平衡信号がグラウンドに流れる経路である、送信側グラウンド電極及び不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である、平衡信号端子側グラウンド電極とは、配線基板10の裏面10bのグラウンド電極47aにおいて初めて共通化されており、それまでは互いに接続されることなく設けられている。 In the present embodiment, the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode, which are paths through which the unbalanced signal flows to the ground, and the balanced signal terminal-side ground electrode, which is the path through which the balanced signal flows to the ground, are wired. It is common for the first time with the ground electrode 47a on the back surface 10b of the substrate 10, and until then, it is provided without being connected to each other.
 このため、不平衡信号がグラウンドに流れる経路を介して第1及び第2の受信側信号端子22a,22bに伝送されることを抑制することができる。従って、コモンモードアイソレーションを大きくすることができる。以下、この効果について具体例に基づいて詳細に説明する。 For this reason, it is possible to prevent the unbalanced signal from being transmitted to the first and second reception- side signal terminals 22a and 22b through the path flowing to the ground. Therefore, common mode isolation can be increased. Hereinafter, this effect will be described in detail based on specific examples.
 第1の実施例として、上記第1の実施形態に係る弾性表面波デュプレクサ1と実質的に同様の構成を有する弾性表面波デュプレクサを作製した。この第1の実施例に係る弾性表面波デュプレクサのコモンモードアイソレーション特性を図20及び図26に示す。 As a first example, a surface acoustic wave duplexer having a configuration substantially similar to that of the surface acoustic wave duplexer 1 according to the first embodiment was manufactured. The common mode isolation characteristics of the surface acoustic wave duplexer according to the first embodiment are shown in FIGS.
 上記第1の実施例に係る弾性表面波デュプレクサの比較例として、以下の第1~第3の比較例に係る弾性表面波デュプレクサを用意した。なお、第1~第3の比較例の説明について、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 As a comparative example of the surface acoustic wave duplexer according to the first example, surface acoustic wave duplexers according to the following first to third comparative examples were prepared. In the description of the first to third comparative examples, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and the description thereof is omitted.
 第1~第3の比較例のそれぞれに係る弾性表面波デュプレクサは、上記第1の実施例に係る弾性表面波デュプレクサと、配線基板10を除いては、実質的に同様の構成を有する。 The surface acoustic wave duplexer according to each of the first to third comparative examples has substantially the same configuration as the surface acoustic wave duplexer according to the first embodiment except for the wiring board 10.
 第1の比較例における配線基板10の構成を図10~図14に示す。図10は、第1の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第1の電極層44と第1の誘電体層40との模式的透視平面図である。図11は、第1の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第2の電極層45と第2の誘電体層41との模式的透視平面図である。図12は、第1の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第3の電極層46と第3の誘電体層42との模式的透視平面図である。図13は、第1の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。但し、図13においては、レジスト層60の描画を省略している。図14は、第1の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。なお、図10~図14は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第1の比較例に係る弾性表面波デュプレクサを透視した状態を示している。 10 to 14 show the configuration of the wiring board 10 in the first comparative example. FIG. 10 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. FIG. 11 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. FIG. 12 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. FIG. 13 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. However, in FIG. 13, drawing of the resist layer 60 is omitted. FIG. 14 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the first comparative example. 10 to 14 show a state in which the surface acoustic wave duplexer according to the first comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
 第1の比較例では、図12に示すように、第1の実施例に係る弾性表面波デュプレクサの電極46fと電極46gとに代えて電極46xが配置されている。電極46xは、第3の誘電体層42に形成された複数のビアホール電極53xにより、図13及び図14に示すグラウンド電極47aに接続されている。よって、第1の比較例では、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面ではなく、配線基板の内部に配置された電極層において共通化されている。具体的には、第1の比較例では、ランド電極44jと、電極45gと、電極46xと、グラウンド電極47aとからなる不平衡信号端子側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46xと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、第3の電極層46の電極46x及び第4の電極層47のグラウンド電極47aとして共通化されている。第1の比較例に係る弾性表面波デュプレクサのコモンモードアイソレーション特性を図20に示す。 In the first comparative example, as shown in FIG. 12, an electrode 46x is arranged instead of the electrode 46f and the electrode 46g of the surface acoustic wave duplexer according to the first embodiment. The electrode 46x is connected to the ground electrode 47a shown in FIGS. 13 and 14 by a plurality of via hole electrodes 53x formed in the third dielectric layer 42. Therefore, in the first comparative example, the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. . Specifically, in the first comparative example, the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46x, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45h The balanced signal terminal side ground electrode composed of the electrode 46x and the ground electrode 47a is shared as the electrode 46x of the third electrode layer 46 and the ground electrode 47a of the fourth electrode layer 47. FIG. 20 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the first comparative example.
 第2の比較例における配線基板10の構成を図15~図19に示す。図15は、第2の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第1の電極層44と第1の誘電体層40との模式的透視平面図である。図16は、第2の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第2の電極層45と第2の誘電体層41との模式的透視平面図である。図17は、第2の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第3の電極層46と第3の誘電体層42との模式的透視平面図である。図18は、第2の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。但し、図18においては、レジスト層60の描画を省略している。図19は、第2の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。なお、図15~図19は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第2の比較例に係る弾性表面波デュプレクサを透視した状態を示している。 FIG. 15 to FIG. 19 show the configuration of the wiring board 10 in the second comparative example. FIG. 15 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. FIG. 16 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. FIG. 17 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. FIG. 18 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. However, in FIG. 18, the drawing of the resist layer 60 is omitted. FIG. 19 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second comparative example. 15 to 19 show a state in which the surface acoustic wave duplexer according to the second comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
 第2の比較例では、図16及び図17に示すように、第1の実施例に係る弾性表面波デュプレクサの電極45gと電極45hとに代えて電極45xが配置されており、電極46fと電極46gとに代えて電極46xが配置されている。電極45xは、第2の誘電体層41に形成された複数のビアホール電極52xにより、電極46xに接続されている。電極46xは、第3の誘電体層42に形成された複数のビアホール電極53xにより、図18及び図19に示すグラウンド電極47aに接続されている。よって、第2の比較例では、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面ではなく、配線基板の内部に配置された電極層において共通化されている。具体的には、第2の比較例では、ランド電極44jと、電極45xと、電極46xと、グラウンド電極47aとからなる不平衡信号端子側グラウンド電極と、ランド電極44k,44hと、電極45xと、電極46xと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、第2の電極層45の電極45x、第3の電極層46の電極46x、第4の電極層47のグラウンド電極47aとして共通化されている。第2の比較例に係る弾性表面波デュプレクサのコモンモードアイソレーション特性を図20に示す。 In the second comparative example, as shown in FIGS. 16 and 17, an electrode 45x is disposed in place of the electrode 45g and the electrode 45h of the surface acoustic wave duplexer according to the first embodiment, and the electrode 46f and the electrode An electrode 46x is disposed instead of 46g. The electrode 45x is connected to the electrode 46x by a plurality of via hole electrodes 52x formed in the second dielectric layer 41. The electrode 46x is connected to the ground electrode 47a shown in FIGS. 18 and 19 by a plurality of via hole electrodes 53x formed in the third dielectric layer. Therefore, in the second comparative example, the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. . Specifically, in the second comparative example, the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45x, the electrode 46x, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45x The balanced signal terminal side ground electrode composed of the electrode 46x and the ground electrode 47a includes the electrode 45x of the second electrode layer 45, the electrode 46x of the third electrode layer 46, and the ground electrode 47a of the fourth electrode layer 47. As common. FIG. 20 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the second comparative example.
 第3の比較例における配線基板10の構成を図21~図25に示す。図21は、第3の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第1の電極層44と第1の誘電体層40との模式的透視平面図である。図22は、第3の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第2の電極層45と第2の誘電体層41との模式的透視平面図である。図23は、第3の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第3の電極層46と第3の誘電体層42との模式的透視平面図である。図24は、第3の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。但し、図24においては、レジスト層60の描画を省略している。図25は、第3の比較例に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。なお、図21~図25は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第3の比較例に係る弾性表面波デュプレクサを透視した状態を示している。 21 to 25 show the configuration of the wiring board 10 in the third comparative example. FIG. 21 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. FIG. 22 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. FIG. 23 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. FIG. 24 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. However, in FIG. 24, drawing of the resist layer 60 is omitted. FIG. 25 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the third comparative example. 21 to 25 show a state in which the surface acoustic wave duplexer according to the third comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
 第3の比較例では、図23に示すように、第1の実施例に係る弾性表面波デュプレクサの電極46aと、電極46bと、電極46eと、電極46fと、電極46gとに代えて電極46yが配置されている。電極46yは、第3の誘電体層42に形成された複数のビアホール電極53yにより、図24及び図25に示すグラウンド電極47aに接続されている。よって、第3の比較例では、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面ではなく、配線基板の内部に配置された電極層において共通化されている。具体的には、第3の比較例では、ランド電極44jと、電極45gと、電極46yと、グラウンド電極47aとからなる不平衡信号端子側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46yと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、第3の電極層46の電極46y及び第4の電極層47のグラウンド電極47aとして共通化されている。また、第3の比較例では、送信側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板の裏面ではなく、配線基板の内部に配置された電極層において共通化されている。具体的には、ランド電極44b,44fと、電極45b,45fと、電極46yと、グラウンド電極47aとからなる送信側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46yと、グラウンド電極47aとからなる平衡信号端子側グラウンド電極とは、第3の電極層46の電極46y及び第4の電極層47のグラウンド電極47aとして共通化されている。第3の比較例に係る弾性表面波デュプレクサのコモンモードアイソレーション特性を図26に示す。 In the third comparative example, as shown in FIG. 23, instead of the electrode 46a, the electrode 46b, the electrode 46e, the electrode 46f, and the electrode 46g of the surface acoustic wave duplexer according to the first example, an electrode 46y is used. Is arranged. The electrode 46y is connected to the ground electrode 47a shown in FIGS. 24 and 25 by a plurality of via hole electrodes 53y formed in the third dielectric layer. Therefore, in the third comparative example, the unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are shared by the electrode layer disposed inside the wiring board, not the back surface of the wiring board. . Specifically, in the third comparative example, the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46y, and the ground electrode 47a, the land electrodes 44k and 44h, and the electrode 45h The balanced signal terminal side ground electrode composed of the electrode 46y and the ground electrode 47a is shared as the electrode 46y of the third electrode layer 46 and the ground electrode 47a of the fourth electrode layer 47. In the third comparative example, the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared in the electrode layer disposed inside the wiring board, not the back surface of the wiring board. Specifically, a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, an electrode 46y, and a ground electrode 47a, land electrodes 44k and 44h, an electrode 45h, an electrode 46y, and a ground The balanced signal terminal side ground electrode composed of the electrode 47 a is shared as the electrode 46 y of the third electrode layer 46 and the ground electrode 47 a of the fourth electrode layer 47. FIG. 26 shows common mode isolation characteristics of the surface acoustic wave duplexer according to the third comparative example.
 なお、第1の実施例並びに第1~第3の比較例のそれぞれに係る弾性表面波デュプレクサの送信周波数帯(1850MHz~1910MHz)におけるコモンモードアイソレーションは、
 第1の実施例:55.4dB、
 第1の比較例:54.0dB、
 第2の比較例:52.6dB、
 第3の比較例:42.9dB、
であった。
The common mode isolation in the transmission frequency band (1850 MHz to 1910 MHz) of the surface acoustic wave duplexer according to each of the first example and the first to third comparative examples is
First embodiment: 55.4 dB,
First comparative example: 54.0 dB,
Second comparative example: 52.6 dB,
Third comparative example: 42.9 dB,
Met.
 これらの結果から、不平衡信号がグラウンドに流れる経路である不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である平衡信号端子側グラウンド電極とを、配線基板10の裏面10b以外の部分においては共通化せず、裏面10bにおいて共通化することにより、コモンモードアイソレーションを大きくすることができることが分かる。 From these results, the unbalanced signal terminal side ground electrode, which is the path through which the unbalanced signal flows to the ground, and the balanced signal terminal side ground electrode, which is the path through which the balanced signal flows to the ground, other than the back surface 10b of the wiring board 10 are obtained. It can be seen that the common mode isolation can be increased by using the back surface 10b instead of the common part.
 また、第3の比較例において送信周波数帯におけるコモンモードアイソレーションが最も悪かったことから、不平衡信号がグラウンドに流れる経路である不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である平衡信号端子側グラウンド電極とを、配線基板10の裏面10bにおいて共通化すると共に、不平衡信号がグラウンドに流れる経路である送信側グラウンド電極も裏面10bにおいて共通化することが好ましいことが分かる。 Further, since the common mode isolation in the transmission frequency band was the worst in the third comparative example, the unbalanced signal terminal side ground electrode that is the path through which the unbalanced signal flows to the ground and the path through which the balanced signal flows to the ground It can be seen that it is preferable to share a certain balanced signal terminal side ground electrode on the back surface 10b of the wiring board 10 and also share a transmitting side ground electrode, which is a path through which an unbalanced signal flows to the ground, on the back surface 10b.
 なお、本実施形態において、不平衡信号がグラウンドに流れる経路である、送信側グラウンド電極及び不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である、平衡信号端子側グラウンド電極とが、配線基板10の裏面10bにおいて共通化されている場合であっても、コモンモードアイソレーションを大きくすることができるのは、本実施形態に係る弾性表面波デュプレクサ1が実装されるRF回路のプリント配線基板は、非常に接地抵抗が小さいため、裏面10b上において共通化されたグラウンド電極47aに流れた不平衡信号は、第1及び第2の受信側信号端子22a,22b側には伝送されにくく、RF回路のプリント配線基板側に主として伝送されるためであると考えられる。 In this embodiment, the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode, which are paths through which the unbalanced signal flows to the ground, and the balanced signal terminal-side ground electrode, which is a path through which the balanced signal flows to the ground. Even when the wiring substrate 10 is shared on the back surface 10b, the common mode isolation can be increased because the printed circuit of the RF circuit on which the surface acoustic wave duplexer 1 according to this embodiment is mounted. Since the wiring board has a very small grounding resistance, an unbalanced signal that has flowed to the common ground electrode 47a on the back surface 10b is difficult to be transmitted to the first and second receiving signal terminals 22a and 22b. This is considered to be mainly due to transmission to the printed circuit board side of the RF circuit.
 また、図33に示す弾性波デュプレクサ100では、第1及び第2の受信側信号端子103a,103bが接続されているIDT電極106,107は、グラウンドに接続されていない浮き電極(フロート電極)であるため、同相モードの信号が、平衡信号が伝送される信号ラインからグラウンドに流れにくいため、コモンモードアイソレーションを大きくすることができないのに対して、本実施形態において、第1及び第2の受信側信号端子22a,22bが接続されているIDT電極15A2,15B2は、グラウンドに接続されているため、同相モードの信号が、平衡信号が伝送される信号ラインからグラウンドに流れやすいため、コモンモードアイソレーションを大きくすることができる。 In the elastic wave duplexer 100 shown in FIG. 33, the IDT electrodes 106 and 107 to which the first and second receiving- side signal terminals 103a and 103b are connected are floating electrodes (float electrodes) that are not connected to the ground. Therefore, the common mode isolation cannot be increased because the common mode signal hardly flows from the signal line through which the balanced signal is transmitted to the ground. Since the IDT electrodes 15A2 and 15B2 to which the reception- side signal terminals 22a and 22b are connected are connected to the ground, the common-mode signal easily flows from the signal line through which the balanced signal is transmitted to the ground. Isolation can be increased.
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の実施形態の説明において上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. In the following description of the embodiments, members having substantially the same functions as those of the first embodiment are referred to by common reference numerals, and description thereof is omitted.
 (第2の実施形態)
 図27は、第2の実施形態に係る弾性表面波デュプレクサにおける、配線基板10の第1の電極層44と第1の誘電体層40との模式的透視平面図である。図28は、第2の実施形態に係る弾性表面波デュプレクサにおける、配線基板10の第2の電極層45と第2の誘電体層41との模式的透視平面図である。図29は、第2の実施形態に係る弾性表面波デュプレクサにおける、配線基板10の第3の電極層46と第3の誘電体層42との模式的透視平面図である。図30は、第2の実施形態に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。但し、図30においては、レジスト層60の描画を省略している。図31は、第2の実施形態に係る弾性表面波デュプレクサにおける、配線基板10の第4の電極層47の模式的透視平面図である。なお、図27~図31は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第2の実施形態に係る弾性表面波デュプレクサを透視した状態を示している。
(Second Embodiment)
FIG. 27 is a schematic perspective plan view of the first electrode layer 44 and the first dielectric layer 40 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment. FIG. 28 is a schematic perspective plan view of the second electrode layer 45 and the second dielectric layer 41 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment. FIG. 29 is a schematic perspective plan view of the third electrode layer 46 and the third dielectric layer 42 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment. FIG. 30 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment. However, in FIG. 30, drawing of the resist layer 60 is omitted. FIG. 31 is a schematic perspective plan view of the fourth electrode layer 47 of the wiring board 10 in the surface acoustic wave duplexer according to the second embodiment. 27 to 31 show a state in which the surface acoustic wave duplexer according to the second embodiment is seen through from the transmission surface acoustic wave filter chip 18 and the reception surface acoustic wave filter chip 19 side.
 本実施形態の弾性表面波デュプレクサは、配線基板10の構成を除いては、上記第1の実施形態の弾性表面波デュプレクサ1と実質的に同様の構成を有する。本実施形態においては、図29及び図30に示すように、第1の実施例に係る弾性表面波デュプレクサの電極46bと電極46eとに代えて電極46zが配置されており、グラウンド電極47aに代えてグラウンド電極47b,47c,47d及び電極47eが配置されている。グラウンド電極47bは、第3の誘電体層42に形成された複数のビアホール電極53hにより、電極46gに接続されている。グラウンド電極47cは、第3の誘電体層42に形成されたビアホール電極53zにより、電極46zに接続されている。グラウンド電極47dは、第3の誘電体層42に形成された複数のビアホール電極53gにより、電極46fに接続されている。電極47eは、第3の誘電体層42に形成された複数のビアホール電極53iにより、電極46aに接続されている。 The surface acoustic wave duplexer of the present embodiment has substantially the same configuration as the surface acoustic wave duplexer 1 of the first embodiment except for the configuration of the wiring board 10. In this embodiment, as shown in FIGS. 29 and 30, an electrode 46z is arranged instead of the electrode 46b and the electrode 46e of the surface acoustic wave duplexer according to the first example, and the electrode 46z is replaced with the ground electrode 47a. The ground electrodes 47b, 47c, 47d and the electrode 47e are disposed. The ground electrode 47b is connected to the electrode 46g by a plurality of via hole electrodes 53h formed in the third dielectric layer 42. The ground electrode 47c is connected to the electrode 46z by a via hole electrode 53z formed in the third dielectric layer 42. The ground electrode 47d is connected to the electrode 46f by a plurality of via hole electrodes 53g formed in the third dielectric layer 42. The electrode 47e is connected to the electrode 46a by a plurality of via hole electrodes 53i formed in the third dielectric layer 42.
 よって、本実施形態の弾性波デュプレクサでは、不平衡信号端子側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板で互いに接続されていない。具体的には、ランド電極44jと、電極45gと、電極46fと、グラウンド電極47dとからなる不平衡信号端子側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46gと、グラウンド電極47bとからなる平衡信号端子側グラウンド電極とは、配線基板10で互いに接続されていない。 Therefore, in the elastic wave duplexer of this embodiment, the unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are not connected to each other by the wiring board. Specifically, the unbalanced signal terminal side ground electrode including the land electrode 44j, the electrode 45g, the electrode 46f, and the ground electrode 47d, the land electrodes 44k and 44h, the electrode 45h, the electrode 46g, and the ground electrode The balanced signal terminal-side ground electrodes formed of 47b are not connected to each other by the wiring board 10.
 また、本実施形態では、送信側グラウンド電極と、平衡信号端子側グラウンド電極とは、配線基板で互いに接続されていない。具体的には、ランド電極44b,44fと、電極45b,45fと、電極46zと、グラウンド電極47cとからなる送信側グラウンド電極と、ランド電極44k,44hと、電極45hと、電極46gと、グラウンド電極47bとからなる平衡信号端子側グラウンド電極とは、配線基板10で互いに接続されていない。 In this embodiment, the transmission-side ground electrode and the balanced signal terminal-side ground electrode are not connected to each other on the wiring board. Specifically, a transmission-side ground electrode including land electrodes 44b and 44f, electrodes 45b and 45f, an electrode 46z, and a ground electrode 47c, land electrodes 44k and 44h, an electrode 45h, an electrode 46g, and a ground The balanced signal terminal side ground electrode composed of the electrode 47 b is not connected to each other by the wiring board 10.
 本実施形態では、不平衡信号がグラウンドに流れる経路である、送信側グラウンド電極及び不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である、平衡信号端子側グラウンド電極とは、互いに接続されることなく設けられている。 In the present embodiment, the transmission-side ground electrode and the unbalanced signal terminal-side ground electrode, which are paths through which the unbalanced signal flows to the ground, and the balanced signal terminal-side ground electrode, which is the path through which the balanced signal flows to the ground, are mutually connected. It is provided without being connected.
 本実施形態においても、不平衡信号が第1及び第2の受信側信号端子22a,22b側に伝送されることを抑制できるため、上記第1の実施形態と同様に、コモンモードアイソレーションを大きくすることができる。 Also in the present embodiment, since unbalanced signals can be prevented from being transmitted to the first and second receiving signal terminals 22a and 22b, common mode isolation is greatly increased as in the first embodiment. can do.
 具体的に、第2の実施例として、上記第2の実施形態に係る弾性表面波デュプレクサと実質的に同様の構成を有する弾性表面波デュプレクサを作製した。その弾性表面波デュプレクサのコモンモードアイソレーション特性を、上記第1の実施形態の弾性表面波デュプレクサ1のコモンモードアイソレーション特性と合わせて図32に示す。 Specifically, as a second example, a surface acoustic wave duplexer having substantially the same configuration as the surface acoustic wave duplexer according to the second embodiment was manufactured. FIG. 32 shows the common mode isolation characteristics of the surface acoustic wave duplexer together with the common mode isolation characteristics of the surface acoustic wave duplexer 1 of the first embodiment.
 図32に示すように、第2の実施例に係る弾性表面波デュプレクサの送信周波数帯(1850MHz~1910MHz)におけるコモンモードアイソレーションは、55.7dBであった。図32に示す結果から、不平衡信号がグラウンドに流れる経路である不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である平衡信号端子側グラウンド電極とを、配線基板10で互いに接続しない場合も、不平衡信号がグラウンドに流れる経路である不平衡信号端子側グラウンド電極と、平衡信号がグラウンドに流れる経路である平衡信号端子側グラウンド電極とを、配線基板10の裏面10b以外の部分においては共通化せず、裏面10bにおいて共通化する場合と同様に、コモンモードアイソレーションを大きくすることができることが分かる。 As shown in FIG. 32, the common mode isolation in the transmission frequency band (1850 MHz to 1910 MHz) of the surface acoustic wave duplexer according to the second example was 55.7 dB. From the results shown in FIG. 32, the unbalanced signal terminal side ground electrode, which is the path through which the unbalanced signal flows to the ground, and the balanced signal terminal side ground electrode, which is the path through which the balanced signal flows to the ground, are connected to each other by the wiring board 10. Even if not, the unbalanced signal terminal side ground electrode, which is a path through which the unbalanced signal flows to the ground, and the balanced signal terminal side ground electrode, which is a path through which the balanced signal flows to the ground, are portions other than the back surface 10b of the wiring board 10. It can be seen that the common mode isolation can be increased in the same manner as in the case of commoning in the back surface 10b.
1…弾性表面波デュプレクサ
10…配線基板
10a…ダイアタッチ面
10b…裏面
14…送信フィルタ
14a…出力端子
14b…入力端子
14c,14d…送信側グラウンド端子
14e,14f…ダミー端子
15…受信フィルタ
15A…第1の縦結合共振子型弾性表面波フィルタ素子
15B…第2の縦結合共振子型弾性表面波フィルタ素子
15A1~15A3,15B1~15B3…IDT電極
15A4,15A5,15B4,15B5…反射器
15a…不平衡信号端子
15b…第1の平衡信号端子
15c…第2の平衡信号端子
15d…不平衡信号端子側グラウンド端子
15e,15f…平衡信号端子側グラウンド端子
16…封止樹脂層
17a~17e…弾性表面波共振子
18…送信側弾性表面波フィルタチップ
19…受信側弾性表面波フィルタチップ
18A,19A…圧電基板
18B,19B…電極
21…アンテナ端子
22a…第1の受信側信号端子
22b…第2の受信側信号端子
24…送信側信号端子
26…バンプ
33…直列腕
37a~37d…並列腕
40…第1の誘電体層
41…第2の誘電体層
42…第3の誘電体層
44…第1の電極層
44a~44l…ランド電極
45…第2の電極層
45a~45j,45x…電極
46…第3の電極層
46a~46i,46x~46z…電極
47…第4の電極層
47a~47d…グラウンド電極
47e…電極
51a~51l,52a~52i,52x,53a~53i,53x~53z…ビアホール電極
60…レジスト層
L1~L3…インダクタ
P1,P2,P3,P4…並列腕共振子
S1,S2,S3,S4…直列腕共振子
C…キャパシタ
DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave duplexer 10 ... Wiring board 10a ... Die attachment surface 10b ... Back surface 14 ... Transmission filter 14a ... Output terminal 14b ... Input terminal 14c, 14d ... Transmission side ground terminal 14e, 14f ... Dummy terminal 15 ... Reception filter 15A ... First longitudinally coupled resonator type surface acoustic wave filter element 15B ... Second longitudinally coupled resonator type surface acoustic wave filter elements 15A1 to 15A3, 15B1 to 15B3 ... IDT electrodes 15A4, 15A5, 15B4, 15B5 ... Reflector 15a ... Unbalanced signal terminal 15b ... 1st balanced signal terminal 15c ... 2nd balanced signal terminal 15d ... Unbalanced signal terminal side ground terminal 15e, 15f ... Balanced signal terminal side ground terminal 16 ... Sealing resin layers 17a-17e ... Elasticity Surface wave resonator 18... Transmission side surface acoustic wave filter chip 19... Reception side surface acoustic wave filter Tape chip 18A, 19A ... Piezoelectric substrate 18B, 19B ... Electrode 21 ... Antenna terminal 22a ... First reception side signal terminal 22b ... Second reception side signal terminal 24 ... Transmission side signal terminal 26 ... Bump 33 ... Series arms 37a-37d ... parallel arm 40 ... first dielectric layer 41 ... second dielectric layer 42 ... third dielectric layer 44 ... first electrode layers 44a to 44l ... land electrode 45 ... second electrode layers 45a to 45j , 45x ... electrode 46 ... third electrode layers 46a-46i, 46x-46z ... electrode 47 ... fourth electrode layers 47a-47d ... ground electrode 47e ... electrodes 51a-51l, 52a-52i, 52x, 53a-53i, 53x to 53z ... via hole electrode 60 ... resist layers L1 to L3 ... inductors P1, P2, P3, P4 ... parallel arm resonators S1, S2, S3, S4 ... series arm resonator C ... capacity

Claims (5)

  1.  弾性波フィルタにより構成されている送信フィルタと、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより構成されている受信フィルタとを備える弾性波分波器であって、
     ダイアタッチ面と裏面とを有する配線基板と、前記ダイアタッチ面の上に実装されている少なくとも1つの弾性波フィルタチップとを備え、
     前記弾性波フィルタチップは、圧電基板と、前記圧電基板の上に形成されており、前記受信フィルタを構成する電極とを有し、
     前記受信フィルタを構成する電極は、不平衡信号端子と、第1及び第2の平衡信号端子と、不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子と、複数のIDT電極とを含み、
     前記不平衡信号端子側グラウンド端子と、前記平衡信号端子側グラウンド端子とは、前記圧電基板上で互いに接続されておらず、
     前記複数のIDT電極は、
     前記不平衡信号端子に接続されているくし歯状電極と、前記不平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する不平衡信号端子側IDT電極と、
     前記第1の平衡信号端子に接続されているくし歯状電極と、前記平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する第1の平衡信号端子側IDT電極と、
     前記第2の平衡信号端子に接続されているくし歯状電極と、前記平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する第2の平衡信号端子側IDT電極と、を有し、
     前記配線基板は、前記不平衡信号端子側グラウンド端子と接続されている不平衡信号端子側グラウンド電極と、前記平衡信号端子側グラウンド端子と接続されている平衡信号端子側グラウンド電極とを有し、
     前記不平衡信号端子側グラウンド電極と、前記平衡信号端子側グラウンド電極とは、前記配線基板で互いに接続されていない、弾性波分波器。
    An acoustic wave duplexer comprising: a transmission filter constituted by an elastic wave filter; and a reception filter constituted by a balanced type longitudinally coupled resonator type elastic wave filter having a balance-unbalance conversion function,
    A wiring board having a die attach surface and a back surface; and at least one elastic wave filter chip mounted on the die attach surface;
    The acoustic wave filter chip includes a piezoelectric substrate and an electrode that is formed on the piezoelectric substrate and constitutes the reception filter,
    The electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes. ,
    The unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate,
    The plurality of IDT electrodes are:
    An unbalanced signal terminal-side IDT electrode having a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal-side ground terminal;
    A first balanced signal terminal-side IDT electrode having a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal;
    A second balanced signal terminal-side IDT electrode having a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal; And
    The wiring board has an unbalanced signal terminal side ground electrode connected to the unbalanced signal terminal side ground terminal, and a balanced signal terminal side ground electrode connected to the balanced signal terminal side ground terminal,
    The unbalanced signal terminal side ground electrode and the balanced signal terminal side ground electrode are elastic wave duplexers that are not connected to each other on the wiring board.
  2.  弾性波フィルタにより構成されている送信フィルタと、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタにより構成されている受信フィルタとを備える弾性波分波器であって、
     ダイアタッチ面と裏面とを有する配線基板と、前記ダイアタッチ面の上に実装されている少なくとも1つの弾性波フィルタチップとを備え、
     前記弾性波フィルタチップは、圧電基板と、前記圧電基板の上に形成されており、前記受信フィルタを構成する電極とを有し、
     前記受信フィルタを構成する電極は、不平衡信号端子と、第1及び第2の平衡信号端子と、不平衡信号端子側グラウンド端子と、平衡信号端子側グラウンド端子と、複数のIDT電極とを含み、
     前記不平衡信号端子側グラウンド端子と、前記平衡信号端子側グラウンド端子とは、前記圧電基板上で互いに接続されておらず、
     前記複数のIDT電極は、
     前記不平衡信号端子に接続されているくし歯状電極と、前記不平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する不平衡信号端子側IDT電極と、
     前記第1の平衡信号端子に接続されているくし歯状電極と、前記平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する第1の平衡信号端子側IDT電極と、
     前記第2の平衡信号端子に接続されているくし歯状電極と、前記平衡信号端子側グラウンド端子に接続されているくし歯状電極とを有する第2の平衡信号端子側IDT電極と、を有し、
     前記配線基板は、前記不平衡信号端子側グラウンド端子と接続されている不平衡信号端子側グラウンド電極と、前記平衡信号端子側グラウンド端子と接続されている平衡信号端子側グラウンド電極とを有し、
     前記不平衡信号端子側グラウンド電極と、前記平衡信号端子側グラウンド電極とは、前記配線基板の裏面において共通化されている、弾性波分波器。
    An acoustic wave duplexer comprising: a transmission filter constituted by an elastic wave filter; and a reception filter constituted by a balanced type longitudinally coupled resonator type elastic wave filter having a balance-unbalance conversion function,
    A wiring board having a die attach surface and a back surface; and at least one elastic wave filter chip mounted on the die attach surface;
    The acoustic wave filter chip includes a piezoelectric substrate and an electrode that is formed on the piezoelectric substrate and forms the reception filter,
    The electrodes constituting the reception filter include an unbalanced signal terminal, first and second balanced signal terminals, an unbalanced signal terminal side ground terminal, a balanced signal terminal side ground terminal, and a plurality of IDT electrodes. ,
    The unbalanced signal terminal side ground terminal and the balanced signal terminal side ground terminal are not connected to each other on the piezoelectric substrate,
    The plurality of IDT electrodes are:
    An unbalanced signal terminal-side IDT electrode having a comb-like electrode connected to the unbalanced signal terminal and a comb-like electrode connected to the unbalanced signal terminal-side ground terminal;
    A first balanced signal terminal-side IDT electrode having a comb-like electrode connected to the first balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal;
    A second balanced signal terminal-side IDT electrode having a comb-like electrode connected to the second balanced signal terminal and a comb-like electrode connected to the balanced signal terminal-side ground terminal; And
    The wiring board has an unbalanced signal terminal side ground electrode connected to the unbalanced signal terminal side ground terminal, and a balanced signal terminal side ground electrode connected to the balanced signal terminal side ground terminal,
    The unbalanced signal terminal-side ground electrode and the balanced signal terminal-side ground electrode are elastic wave duplexers that are shared on the back surface of the wiring board.
  3.  前記弾性波フィルタチップは、前記受信フィルタを構成する電極を有する受信側弾性波フィルタチップと、前記送信フィルタを構成する電極を有する送信側弾性波フィルタチップとを含む、請求項1または2に記載の弾性波分波器。 The said elastic wave filter chip | tip contains the receiving side elastic wave filter chip | tip which has the electrode which comprises the said reception filter, and the transmission side elastic wave filter chip | tip which has the electrode which comprises the said transmission filter. Elastic wave demultiplexer.
  4.  前記送信フィルタは、ラダー型弾性波フィルタにより構成されており、
     前記送信フィルタを構成する電極は、出力端子と、入力端子と、送信側グラウンド端子と、直列腕共振子及び並列腕共振子を構成している複数の弾性波共振子とを含み、
     前記並列腕共振子を構成している弾性波共振子は、前記直列腕共振子を構成している弾性波共振子に接続されているくし歯状電極と、前記送信側グラウンド端子に接続されているくし歯状電極とを有するIDT電極を有し、
     前記配線基板は、前記送信側グラウンド端子と接続されている送信側グラウンド電極を有し、
     前記送信側グラウンド電極と、前記平衡信号端子側グラウンド電極とは、前記配線基板で互いに接続されていない、請求項3に記載の弾性波分波器。
    The transmission filter is configured by a ladder-type elastic wave filter,
    The electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator,
    The elastic wave resonator constituting the parallel arm resonator is connected to a comb-like electrode connected to the elastic wave resonator constituting the series arm resonator and the transmission side ground terminal. An IDT electrode having a comb-like electrode,
    The wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal,
    The elastic wave duplexer according to claim 3, wherein the transmission-side ground electrode and the balanced signal terminal-side ground electrode are not connected to each other on the wiring board.
  5.  前記送信フィルタは、ラダー型弾性波フィルタにより構成されており、
     前記送信フィルタを構成する電極は、出力端子と、入力端子と、送信側グラウンド端子と、直列腕共振子及び並列腕共振子を構成している複数の弾性波共振子とを含み、
     前記並列腕共振子を構成している弾性波共振子は、前記直列腕共振子を構成している弾性波共振子に接続されているくし歯状電極と、前記送信側グラウンド端子に接続されているくし歯状電極とを有するIDT電極を有し、
     前記配線基板は、前記送信側グラウンド端子と接続されている送信側グラウンド電極を有し、
     前記送信側グラウンド電極と、前記平衡信号端子側グラウンド電極とは、前記配線基板の裏面において共通化されている、請求項3に記載の弾性波分波器。
    The transmission filter is configured by a ladder-type elastic wave filter,
    The electrode constituting the transmission filter includes an output terminal, an input terminal, a transmission-side ground terminal, and a plurality of acoustic wave resonators constituting a series arm resonator and a parallel arm resonator,
    The elastic wave resonator constituting the parallel arm resonator is connected to a comb-like electrode connected to the elastic wave resonator constituting the series arm resonator and the transmission side ground terminal. An IDT electrode having a comb-like electrode,
    The wiring board has a transmission-side ground electrode connected to the transmission-side ground terminal,
    The elastic wave duplexer according to claim 3, wherein the transmission-side ground electrode and the balanced signal terminal-side ground electrode are shared on the back surface of the wiring board.
PCT/JP2011/077174 2011-02-24 2011-11-25 Acoustic wave branching filter WO2012114593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-038422 2011-02-24
JP2011038422 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012114593A1 true WO2012114593A1 (en) 2012-08-30

Family

ID=46720396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077174 WO2012114593A1 (en) 2011-02-24 2011-11-25 Acoustic wave branching filter

Country Status (1)

Country Link
WO (1) WO2012114593A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061694A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Antenna branching filter
WO2015016203A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Duplexer
JP2018023074A (en) * 2016-08-05 2018-02-08 株式会社村田製作所 Radio frequency module and method of manufacturing acoustic wave filter
US9935611B2 (en) 2014-04-11 2018-04-03 Murata Manufacturing Co., Ltd. Elastic wave filter device
US10530336B2 (en) 2015-06-24 2020-01-07 Murata Manufacturing Co., Ltd. Elastic wave filter, multiplexer, duplexer, high-frequency front end circuit, and communication device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318307A (en) * 2004-04-28 2005-11-10 Fujitsu Media Device Kk Balance output type filter
JP2006014296A (en) * 2004-05-27 2006-01-12 Kyocera Corp Surface acoustic wave device and communication device
JP2007142560A (en) * 2005-11-15 2007-06-07 Fujitsu Media Device Kk Branching filter
JP2008053922A (en) * 2006-08-23 2008-03-06 Kyocera Corp Surface acoustic wave apparatus
WO2008146525A1 (en) * 2007-05-28 2008-12-04 Murata Manufacturing Co., Ltd. Duplexer and elastic wave device
WO2010052821A1 (en) * 2008-11-04 2010-05-14 株式会社 村田製作所 Elastic wave filter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318307A (en) * 2004-04-28 2005-11-10 Fujitsu Media Device Kk Balance output type filter
JP2006014296A (en) * 2004-05-27 2006-01-12 Kyocera Corp Surface acoustic wave device and communication device
JP2007142560A (en) * 2005-11-15 2007-06-07 Fujitsu Media Device Kk Branching filter
JP2008053922A (en) * 2006-08-23 2008-03-06 Kyocera Corp Surface acoustic wave apparatus
WO2008146525A1 (en) * 2007-05-28 2008-12-04 Murata Manufacturing Co., Ltd. Duplexer and elastic wave device
WO2010052821A1 (en) * 2008-11-04 2010-05-14 株式会社 村田製作所 Elastic wave filter device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061694A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Antenna branching filter
JPWO2014061694A1 (en) * 2012-10-19 2016-09-05 株式会社村田製作所 Antenna duplexer
WO2015016203A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Duplexer
JP5862842B2 (en) * 2013-08-02 2016-02-16 株式会社村田製作所 Demultiplexer
CN105409121A (en) * 2013-08-02 2016-03-16 株式会社村田制作所 Duplexer
US9680446B2 (en) 2013-08-02 2017-06-13 Murata Manufacturing Co., Ltd. Demultiplexing apparatus with heat transfer via electrodes
US9935611B2 (en) 2014-04-11 2018-04-03 Murata Manufacturing Co., Ltd. Elastic wave filter device
DE112015001771B4 (en) 2014-04-11 2019-05-23 Murata Manufacturing Co., Ltd. Filter device for elastic waves
US10530336B2 (en) 2015-06-24 2020-01-07 Murata Manufacturing Co., Ltd. Elastic wave filter, multiplexer, duplexer, high-frequency front end circuit, and communication device
JP2018023074A (en) * 2016-08-05 2018-02-08 株式会社村田製作所 Radio frequency module and method of manufacturing acoustic wave filter

Similar Documents

Publication Publication Date Title
JP4905614B1 (en) Elastic wave splitter
JP5781827B2 (en) Ladder filter, duplexer and module
JP4868064B2 (en) Elastic wave splitter
JP4255959B2 (en) Balance filter and duplexer
JP5354028B2 (en) Surface acoustic wave filter device
US9077311B2 (en) Acoustic filter and method of acoustic filter manufacture
US9236850B2 (en) Signal separation device
JP5333403B2 (en) Surface acoustic wave filter device
US9184728B2 (en) Elastic-wave filter device
US7868715B2 (en) Duplexer and communication apparatus using the same
EP2346166B1 (en) Elastic wave filter device and module comprising the elastic wave filter device
WO2012046481A1 (en) Elastic wave filter device
JP5423928B2 (en) Elastic wave device
WO2012114593A1 (en) Acoustic wave branching filter
JP2012205215A (en) Surface acoustic wave device and method for manufacturing the same
JP5010256B2 (en) Surface acoustic wave device and communication device including the same
JP4207836B2 (en) Surface acoustic wave duplexer
JP5168360B2 (en) Duplexer
WO2012132093A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP