WO2012113317A1 - 一种波分复用器、光开关装置及光开关控制方法 - Google Patents

一种波分复用器、光开关装置及光开关控制方法 Download PDF

Info

Publication number
WO2012113317A1
WO2012113317A1 PCT/CN2012/071325 CN2012071325W WO2012113317A1 WO 2012113317 A1 WO2012113317 A1 WO 2012113317A1 CN 2012071325 W CN2012071325 W CN 2012071325W WO 2012113317 A1 WO2012113317 A1 WO 2012113317A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
optical
microlens
optical fiber
wdm
Prior art date
Application number
PCT/CN2012/071325
Other languages
English (en)
French (fr)
Inventor
王世军
温运生
赵雪山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12749810.3A priority Critical patent/EP2667230A4/en
Publication of WO2012113317A1 publication Critical patent/WO2012113317A1/zh
Priority to US13/972,099 priority patent/US20130343758A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/003Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]

Definitions

  • Wavelength division multiplexer Wavelength division multiplexer, optical switch device and optical switch control method
  • the present invention relates to the field of optical fiber communication technologies, and more particularly to a wavelength division multiplexer, an optical switch device, and an optical switch control method. Background technique
  • An optical switch is an optical device that has one or more optional transmission ports that interconvert or logically operate optical signals in an optical transmission line or integrated optical path.
  • the optical switch usually selects a certain channel through the control system; for example, a 1 x 4 optical switch has one input terminal and four output terminals; when working, the input terminal enters a light beam, and at this time, four commands can control four outputs.
  • a channel in the terminal can be output to realize the connection between the channel and the input channel.
  • the optical switch technology mainly focuses on mechanical and MEMS (Micro Electro Mechanical Systems), as shown in Figure 1 and Figure 2, respectively, wherein the mechanical type generally uses control components such as stepper motors to achieve the optical path. Choices, such as controlling input fiber movement, mirror movement, etc.; while MEMS-type optical switches are based primarily on MEMS mirrors, which are chip-type mirrors that achieve small deflections of MEMS mirrors by controlling signals such as voltage or current.
  • the input beam is emitted back to a specific output at a specific angle to form a 1 x N optical switch.
  • OTDR Optical Time Domain Reflectometer
  • WDM Widelength Division Multiplexing
  • N 1 XN optical switch
  • system reliability is required due to the need to place discrete WDM devices in special components and to fiber jump or splicing with other equipment fibers. The variation is difficult, the processing difficulty is increased, and the production efficiency is greatly reduced.
  • embodiments of the present invention provide a wavelength division multiplexer, an optical switch device, and an optical switch control method to reduce the number of wavelength division multiplexers in an optical network.
  • An embodiment of the present invention provides a wavelength division multiplexer (WDM) including three ports: a common end, a transmission column matched microlens array; and an optical signal output by any of the first optical fiber arrays of the common end through the common a corresponding microlens in the first microlens array of the end is then transmitted to the filter; the transmitted light of the optical signal passing through the filter enters a corresponding microlens in the second microlens array of the transmissive end, and passes through the a corresponding fiber output in the second fiber array of the transmitting end; the reflected light reflected by the optical signal through the filter enters a corresponding microlens in the third microlens array of the reflective end, and passes through the third optical fiber of the reflective end Corresponding fiber output in the array.
  • WDM wavelength division multiplexer
  • the embodiment of the present invention further provides an optical switch device, including: an optical fiber array, a microlens array, a lens, and a MEMS mirror of a microelectromechanical system; wherein each microlens in the microlens array and each optical fiber in the optical fiber array are a one-to-one corresponding spatial positional relationship; after the input optical signal is transmitted through the input optical fiber in the optical fiber array to the corresponding microlens in the microlens array, from the center of the lens a position is emitted to the MEMS mirror, the input light signal is reflected by the MEMS mirror to the lens and converted into parallel light parallel to the optical axis of the lens, the parallel light being transmitted to the corresponding in the microlens array
  • the microlenses are output through respective fibers in the array of fibers.
  • An embodiment of the present invention further provides an optical path selecting apparatus, including: an array type WDM and an I x N optical switch that integrates the array type WDM;
  • the array WDM includes three ports: a common end, a transmissive end, and a reflective end, and the common end, the neon switch includes: an optical fiber array, a microlens array, a lens, and a MEMS mirror, wherein the microlens array Each microlens has a corresponding spatial positional relationship with each of the optical fibers in the optical fiber array;
  • the optical fiber array of the IxN optical switch is connected to the transmitting end or the reflective end of the array WDM, and the input optical signal is transmitted to the microlens array of the IxN optical switch through the input optical fiber in the optical fiber array in the IxN optical switch.
  • the input optical signal is reflected by the MEMS mirror to the lens and converted into parallel light parallel to the optical axis of the lens Transmitting the parallel light to a corresponding microlens in the microlens array, passing through a corresponding optical fiber output in the optical fiber array, and entering a transmissive end or a reflective end of the array WDM;
  • the output optical signal is transmitted to the matched microlens via the corresponding optical fiber in the optical fiber array of the transmitting end or the reflective end of the array WDM, and then transmitted to the filter, and then transmitted to the microlens array of the common end through the filter.
  • Corresponding microlenses are output through corresponding fibers in the fiber array of the common end.
  • the embodiment of the invention further provides an optical switch control method, including: Passing the input optical signal through the optical fiber array in the lxN optical switch to the corresponding microlens in the microlens array of the xenon optical switch, and outputting from the central position of the lens to the MEMS mirror, the input optical signal
  • the MEMS mirror is reflected to the lens and converted into parallel light parallel to the optical axis of the lens, the parallel light being transmitted to respective microlenses in the array of microlenses, through respective fibers in the array of optical fibers Outputting, entering a transmissive end or a reflective end of the array type WDM; wherein, the matched microlens array, each microlens in the microlens array of the xenon switch, and each fiber in the optical fiber array of the xenon optical switch One-to-one correspondence of spatial positional relationship;
  • the embodiment of the present invention integrates the ports of the WDM into an array form including a fiber array and a lens array, and replaces the individual fibers with the fiber array, and uses the microlens array matched with the fiber array to realize the input and output of the light wave. Coupling transmission enables the integration of multiple discrete WDM devices into an array of WDM devices, which greatly reduces the number of wavelength division multiplexers in an optical network.
  • 1 is a schematic structural view of a mechanical optical switch in the prior art
  • 2 is a schematic structural view of a MEMS type optical switch in the prior art
  • FIG. 3 is a schematic diagram of an optical path for performing PON optical path detection using WDM and an optical switch in the prior art
  • FIG. 4 is a schematic structural view of a three-port WDM in the prior art
  • FIG. 5 is a schematic structural diagram of a WDM according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an optical switch device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optical path for performing PON optical path detection by using an optical path selecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of steps of an optical switch control method according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a WDM, an optical switch device, and an optical switch control method to reduce the number of wavelength division multiplexers in an optical network.
  • the WDM provided by the embodiment of the present invention is described as follows.
  • the WDM is mostly in the form of a three-port, and its structure is shown in FIG. 4.
  • "1" represents a double-core pin, that is, two fixed optical fibers, and thus includes two optical ports, which are respectively public.
  • Com Port and Reflection Port
  • "2" denotes a self-focusing lens for light-wave coupling of a two-core fiber in "1”
  • "3" denotes a dielectric film filter for Specific wavelength
  • "4" means a single-core collimator, specifically a single-core fiber, and has a beam focusing function, which is used as a transmission port (Pass Port).
  • the working principle of the WDM is: light waves with two or more wavelengths are input from the common end, part of the light is reflected at the component 3 according to the wavelength characteristic, and is output from the reflective end; part of the light is transmitted from the component 3, from the transmitting end Output. It can be seen that the existing WDM is a discrete device.
  • FIG. 5 is a schematic structural diagram of a WDM according to an embodiment of the present invention.
  • the WDM includes three ports: a common terminal 10, a transmitting end 11 and a reflecting end 12, each of the three ports including an optical fiber array and a microlens array matched with the optical fiber array: a first optical fiber array 101 and a first
  • the microlens arrays 102 are combined into a common end, the second optical fiber array 111 and the second microlens array 112 are combined into a transmissive end, and the third optical fiber array 121 and the first microlens array 122 are combined into a reflective end; wherein the common end 10
  • the optical signal outputted by any one of the first optical fiber arrays 101 is transmitted to the filter 13 through the corresponding open lens in the first microlens array 102; the transmitted light passing through the filter 13 enters the transmitting end 11
  • the corresponding microlenses in the second microlens array 112 are output through the corresponding optical fibers in the second optical fiber array
  • the port of the WDM is integrated into an array form including an optical fiber array and a microlens array, and the optical fiber array is used instead of the single optical fiber, and the microlens array matched with the optical fiber array is used to perform coupling transmission of the optical wave input and output, thereby
  • the integration of multiple discrete WDM devices into an array of WDM devices can greatly reduce the number of WDMs in an optical network.
  • the optical fiber array and the microlens array included in each port of the WDM are generally set to match one-dimensional form or two-dimensional form, that is, a one-dimensional optical fiber array and One-dimensional microlens array can also use two-dimensional light according to the actual application scenario. Fiber arrays and two-dimensional microlens arrays.
  • a plurality of independent optical fibers can be replaced by the optical fiber array, and a plurality of optical channels are simultaneously formed.
  • Each optical channel in the WDM common end corresponds to one and only one optical channel of the reflective end and the transmissive end.
  • a 3 ⁇ 6 optical fiber array WDM can simultaneously implement the array. 18 WDMs.
  • each microlens in the microlens array included in each port of the WDM has a one-to-one correspondence with the corresponding fiber path in the corresponding fiber array.
  • the microlenses in the microlens arrays included in each port of the WDM are generally arranged in a spatially corresponding distribution pattern with the corresponding fiber paths in the corresponding fiber arrays.
  • the optical signal outputted by one of the optical fibers in the optical fiber array can be directly incident on the microlens corresponding to the space
  • the optical signal emitted by one of the microlenses in the microlens array can be directly coupled into a single optical fiber corresponding to the space.
  • the filter For the selection of the filter, it should be noted that a larger filter can be used, so that multiple beams of light output from the fiber array included in each port of the WDM can be transmitted to the filter, and light waves for each port are implemented on the filter. s Choice.
  • the array type WDM provided by the embodiment of the invention can integrate N WDM discrete devices into one WDM device, and the WDM device has the advantages of small volume, and can reduce the number of WDMs and the space occupied.
  • the embodiment of the present invention further provides an optical switch device. As shown in FIG.
  • the switch device specifically includes: an optical fiber array 20, a microlens array 21, a lens 22, and a MEMS mirror 23;
  • Each of the microlenses in the microlens array 21 has a corresponding spatial positional relationship with each of the optical fibers in the optical fiber array 20;
  • the input optical signal is transmitted through the optical fiber array 20 to the After the corresponding microlens in the microlens array 21 is emitted from the central position of the lens 22 to the MEMS mirror 23, the input optical signal is reflected by the MEMS mirror 23, so that the output optical signal is reflected at a specific angle to The lens 22, the output optical signal is converted into parallel light parallel to the optical axis of the lens via the lens 22, and then transmitted to the corresponding microlens in the microlens array 21, and outputted through the corresponding optical fibers in the optical fiber array 20.
  • the output fibers are in an array arrangement.
  • a one-dimensional fiber array or a two-dimensional fiber array may be used.
  • the respective microlenses in the microlens array are corresponding to the corresponding fiber paths in the corresponding fiber array.
  • the microlenses in the microlens array have a spatially corresponding distribution pattern with the corresponding fiber paths in the corresponding fiber array.
  • the input optical signal is an optical signal for turning on the optical switching device.
  • the input optical signal directly enters the center position of the lens, that is, the optical center. Therefore, the optical fiber corresponding to the optical position of the lens in the optical fiber array can be used as the transmission input light.
  • the input optical signal is transmitted through the specific optical fiber and is incident on the microlens corresponding to the specific optical fiber in the microlens array.
  • the input optical signal is emitted from the microlens and sequentially passes through the lens and the MEMS mirror.
  • the lens is a common optical lens, and may be a single lens, or a lens group composed of a plurality of lenses, and may be a spherical mirror or an aspherical mirror.
  • a MEMS mirror is a chip-type mirror that, when an input light signal emerging from a lens is incident on the center of a MEMS mirror, achieves a slight deflection of the MEMS mirror by a control signal such as a voltage or current, thereby allowing the output light to be at a specific angle.
  • the optical fiber corresponding to the microlens is outputted, that is, the optical path is selected, so that the output optical signal is output from a specific optical fiber to open the optical path corresponding to the optical fiber, thereby forming an optical switch of I x N, and capable of performing N strips.
  • the embodiment of the invention further provides an optical path selecting device, which is integrated with an array
  • the WDM device and the optical switching device may specifically include: an array WDM and integrating the array
  • the array type WDM includes three ports: a common end, a transmissive end, and a reflective end, and the three ports each include an optical fiber array and a microlens array matched with the optical fiber array, as shown in FIG. 5;
  • the IxN optical switch includes: an optical fiber array, a microlens array, a lens, and a MEMS mirror, wherein each microlens in the microlens array has a corresponding spatial position relationship with each of the optical fibers in the optical fiber array, as shown in FIG. Show
  • the optical fiber array of the optical switch is connected to the transmitting end or the reflective end of the array WDM, and the input optical signal is transmitted to the microlens array of the IxN optical switch through an input optical fiber in the optical fiber array in the IxN optical switch. After the corresponding microlens, it is emitted from the center position of the lens to
  • the input light signal being reflected by the MEMS mirror to the lens and converted into parallel light parallel to an optical axis of the lens, the parallel light being transmitted to a corresponding microlens in the microlens array Passing through the corresponding fiber output in the fiber array to enter the transmitting end or the reflecting end of the array type WDM;
  • the output optical signal is transmitted to the matched microlens through the corresponding optical fiber in the optical fiber array in the transmitting end or the reflective end of the array WDM, and then transmitted to the filter, and then transmitted to the microlens of the common end through the filter.
  • Corresponding microlenses in the array corresponding light in the array of fibers through the common end Fiber output.
  • the optical switch and the WDM are both array devices, and the optical fiber arrays of the two are matched with each other, such as an optical array of M x N; the output optical fiber array of the optical switch and the optical fiber of the reflective end or the transmitting end of the array WDM
  • the array is directly connected and fixed, for example: a fusion connection is used, thus realizing the integration of the optical switch and the WDM. Since the process parameters of the filter are different for the transmitted and reflected light wave characteristics, such as the transmission efficiency and the transmission efficiency, the different ports connecting the WDM can be selected according to different network conditions.
  • the optical switching device and the WDM device in the optical path selecting device can be directly connected through the optical fiber array, thereby eliminating the fiber management between the discrete WDM and the optical switch; in addition, integrating the WDM into the optical switch, so that the light There is no need to set up the installation location of the discrete WDM in the network, which can greatly reduce the difficulty of production and processing and improve production efficiency.
  • the optical path selection device of the integrated array type WDM and optical switch is externally connected with an optical fiber array of only one optical switch and one optical fiber array of two WDM ports. Still taking the PON network as an example, as shown in FIG. 7, a single input fiber of the optical path selecting device is connected to the OTDR, and the input of the OTDR is connected to the line of the downlink ONU, and the optical fiber array of the reflective end or the transmitting end is connected to the uplink OLT. In the line.
  • the OTDR can perform link performance detection on each optical path in the PON network.
  • WDM is integrated into the optical switch as long as the fiber arrays of the two are matched.
  • an embodiment of the present invention provides an optical switch control method, as shown in FIG. 8, which is a step flow of the method, and the method may include the following steps:
  • Step 801 The input optical signal is transmitted to the corresponding microlens in the microlens array in the optical switch through the optical fiber array in the optical switch, and is emitted from the central position of the lens to the MEMS mirror.
  • An input optical signal is reflected by the MEMS mirror to the lens and converted into parallel light parallel to an optical axis of the lens, the parallel light being transmitted to a corresponding microlens in the microlens array, through the optical fiber array
  • the corresponding fiber output in the array enters the transmissive or reflective end of the array WDM;
  • the transmissive end, the reflective end, and the common end of the array WDM each include an optical fiber array and a microlens array matched with the optical fiber array, and each microlens in the microlens array of the l xN optical switch and the Each fiber in the fiber array of the light switch is in a corresponding spatial position relationship;
  • Step 802 The output optical signal is transmitted to the matched microlens through the corresponding optical fiber in the optical fiber array of the transmitting end or the reflective end of the array WDM, and then transmitted to the filter, and then transmitted to the public through the filter.
  • Corresponding microlenses in the end microlens array are output through corresponding fibers in the fiber array of the common end.
  • the fiber array in the ⁇ ⁇ switch is matched with the fiber array of the transmitting end or the reflecting end of the array WDM in a one-dimensional form or a two-dimensional form, and the optical switch and the fiber array in the WDM are matched with each other.
  • the port of the WDM is integrated into a fiber array and a microlens array.
  • a fiber optic array is used instead of a separate fiber, and a microlens array matched with the fiber array is used to perform coupling transmission of light wave input and output, thereby realizing integration of a plurality of discrete WDM devices into one array WDM device, which can greatly reduce The number of WDMs in the optical network; in addition, since the optical switch is also an array device, when the optical fiber array and the optical fiber array in the WDM are matched with each other, the optical switching device and the WDM device are directly connected through the optical fiber array, thereby eliminating The optical fiber management between the discrete WDM and the optical switch, through the optical path selection of the optical switching device, transmits the output optical signal to the WDM, and outputs it from the corresponding port of the WDM.
  • the description is relatively simple, and the relevant parts can be referred to the description of the device embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located One place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Description

一种波分复用器、 光开关装置及光开关控制方法 技术领域
本发明涉及光纤通信技术领域, 更具体地说, 涉及一种波分复用器、 光开 关装置及光开关控制方法。 背景技术
光开关是一种具有一个或多个可选的传输端口、对光传输线路或集成光路 中的光信号进行相互转换或逻辑操作的光学器件。光开关通常通过控制系统选 择某一个通道; 如 1 x 4光开关, 有 1个输入端, 4个输出端; 当工作时, 输 入端进入一个光束,此时有 4个指令可以控制 4个输出端中某一个通道可以输 出, 实现该通道与输入通道的连接。
目前光开关技术主要集中于机械式和 MEMS ( Micro Electro Mechanical Systems, 微机电系统) 式, 分别如图 1和图 2所示, 其中, 机械式一般是采 用控制部件如步进电机等实现光路的选择,如控制输入光纤移动、反射镜移动 等; 而 MEMS式光开关主要基于 MEMS反射镜, 其是一种芯片式的反射镜, 通过控制信号如电压或电流实现 MEMS反射镜的微小偏转, 从而让输入光束 以特定角度发射回到特定的输出端, 形成 1 x N的光开关。
现有光开关广泛应用于采用 OTDR ( Optical Time Domain Reflectometer, 光时域反射计)探测光纤链路性能。 要将 OTDR发出的测试光耦合进 PON ( Passive Optical Network, 无源光网络) 中还需要应用到 WDM ( Wavelength Division Multiplexing, 波分复用器件), 如图 3所示, OTDR输出的测试光, 经 ΙχΝ光开关中的某一特定通道传输到 WDM处,通过 WDM,测试光可向下 行传输, 直到 ONU ( Optical Network Unit, 光网络单元)处, 而反射回的测 试光再次经过 WDM和光开关回到 OTDR进行测试分析和处理。
如图 3所示, 整个监测系统中, 每个光开关的支路都要连接一个 WDM, 即 1个 1 X N光开关需要连接 N个 WDM; 当 N=128时,所需的 WDM将达到 128个, 不仅成本高, 并且在有限的机房机架资源下布放也是非常困难; 同时, 由于需要在特殊部件放置分立的 WDM器件,并与其他设备的光纤进行跳纤或 熔接, 使得系统可靠性变差, 加工难度增加, 生产效率大大降低。 发明内容
有鉴于此, 本发明实施例提供一种波分复用器、光开关装置及光开关控制 方法, 以减少光网络中波分复用器的数量。
本发明实施例提供一种波分复用器 WDM, 包括三个端口: 公共端、 透射 列匹配的微透镜阵列;所述公共端的第一光纤阵列中任一光纤输出的光信号经 所述公共端的第一微透镜阵列中相应的微透镜后传输至滤波片上;所述光信号 经过所述滤波片后的透射光进入所述透射端的第二微透镜阵列中的相应微透 镜, 并通过所述透射端的第二光纤阵列中相应的光纤输出; 所述光信号经过所 述滤波片反射的反射光进入所述反射端的第三微透镜阵列中的相应微透镜,并 经过所述反射端的第三光纤阵列中相应的光纤输出。
本发明实施例还提供一种光开关装置, 包括: 光纤阵列、 微透镜阵列、 透 镜以及微机电系统 MEMS反射镜; 其中, 所述微透镜阵列中各微透镜与所述 光纤阵列中各光纤呈一一对应的空间位置关系;输入光信号经过所述光纤阵列 中的输入光纤传输至所述微透镜阵列中相对应的微透镜后,从所述透镜的中心 位置射出至 MEMS反射镜,所述输入光信号经所述 MEMS反射镜反射至所述 透镜并转换成与所述透镜光轴平行的平行光,所述平行光传输至所述微透镜阵 列中相应的微透镜, 经过所述光纤阵列中的相应光纤输出。
本发明实施例还提供一种光路选择装置, 包括: 阵列式 WDM以及集成所 述阵列式 WDM的 I xN光开关; 其中,
所述阵列式 WDM包括三个端口:公共端、透射端及反射端,所述公共端、 所述 ΙχΝ光开关包括: 光纤阵列、微透镜阵列、透镜以及 MEMS反射镜, 所述微透镜阵列中各微透镜与所述光纤阵列中各光纤呈——对应的空间位置 关系;
所述 IxN光开关中光纤阵列连接所述阵列式 WDM中的透射端或反射端, 输入光信号经过所述 IxN光开关中的光纤阵列中的输入光纤传输至所述 IxN 光开关中微透镜阵列中相对应的微透镜后, 从所述透镜的中心位置射出至 MEMS反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换 成与所述透镜光轴平行的平行光,所述平行光传输至所述微透镜阵列中相应的 微透镜,经过所述光纤阵列中的相应光纤输出,进入所述阵列式 WDM的透射 端或反射端;
所述输出光信号经所述阵列式 WDM 的透射端或反射端的光纤阵列中相 应的光纤传输至匹配的微透镜后传输至滤波片上,经过所述滤波片后传输至所 述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列中相应的光 纤输出。
本发明实施例又提供一种光开关控制方法, 包括: 将输入光信号经过 lxN光开关中的光纤阵列传输至所述 Ι χΝ光开关中微 透镜阵列中相对应的微透镜, 从所述透镜的中心位置射出至 MEMS反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换成与所述透镜光 轴平行的平行光, 所述平行光传输至所述微透镜阵列中相应的微透镜, 经过所 述光纤阵列中的相应光纤输出, 进入阵列式 WDM的透射端或反射端; 其中, 匹配的微透镜阵列,所述 Ι χΝ光开关的微透镜阵列中各微透镜与所述所述 Ι χΝ 光开关的光纤阵列中各光纤呈一一对应的空间位置关系;
将所述输出光信号经所述阵列式 WDM 的透射端或反射端的光纤阵列中 相应的光纤传输至匹配的微透镜后传输至滤波片上 ,经过所述滤波片后传输至 所述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列中相应的 光纤输出。
同现有技术相比,本发明实施例将 WDM的端口集成为包括光纤阵列和 透镜阵列的阵列形式, 利用光纤阵列替代单独的光纤, 利用与光纤阵列匹配的 微透镜阵列, 实现光波输入输出的耦合传输,从而实现将多个分立的 WDM器 件集成为一个阵列式 WDM器件, 能够大大减少光网络中波分复用器的数量。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中机械式光开关的结构示意图; 图 2为现有技术中 MEMS式光开关的结构示意图;
图 3为现有技术中利用 WDM和光开关进行 PON光路检测的光路示意图; 图 4为现有技术中三端口 WDM的结构示意图;
图 5为本发明实施例提供的 WDM的结构示意图;
图 6为本发明实施例提供的一种光开关装置结构示意图;
图 7为应用本发明实施例提供的光路选择装置进行 PON光路检测的光路 示意图;
图 8为本发明实施例提供的一种光开关控制方法步骤流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种 WDM、 光开关装置及光开关控制方法, 以减少 光网络中波分复用器的数量。
为了便于对本发明实施例技术方案的充分理解,下面将结合本发明实施例 中的附图, 对本发明实施例中的技术方案进行清楚、 完整的描述。
首先, 对本发明实施例提供的 WDM进行如下说明。
现有技术中, WDM多为三端口形式, 其结构如图 4所示, 图 4中 "1" 表示的为双芯插针, 即两根固定光纤, 因此包含两个光端口, 分别为公共端 ( Com Port )和反射端( Reflection Port ); "2 "表示的为自聚焦透镜,用于 "1" 中双芯光纤的光波耦合; "3"表示的为介质膜滤波片, 用于对特定波长进行透 射或反射的选择处理; "4"表示的为单芯准直器, 具体可以为单芯光纤, 并具 有光束聚焦功能, 作为透射端(Pass Port )使用。 该 WDM的工作原理为: 含 两个或多个波长的光波从公共端输入,在部件 3处根据波长特性,部分光被反 射,从反射端输出;部分光从部件 3处透射,从透射端输出。可见,现有 WDM 为分立器件。
如图 5所示,为本发明实施例提供的 WDM的结构示意图。其中,该 WDM 包括三个端口: 公共端 10、 透射端 11及反射端 12, 所述三个端口均包括光纤 阵列以及与所述光纤阵列匹配的微透镜阵列:第一光纤阵列 101和第一微透镜 阵列 102组合成公共端,第二光纤阵列 111和第二微透镜阵列 112组合成透射 端, 第三光纤阵列 121和第一微透镜阵列 122组合成反射端; 其中, 所述公共 端 10中第一光纤阵列 101中任一光纤输出的光信号经第一微透镜阵列 102中 相应的啟透镜后传输至滤波片 13上;经过所述滤波片 13后的透射光进入所述 透射端 11中第二微透镜阵列 112中的相应微透镜, 通过第二光纤阵列 111中 相应的光纤输出;经过所述滤波片 13后的反射光进入所述反射端 12中第三微 透镜阵列 122中的相应微透镜, 经过第三光纤阵列 121中相应的光纤输出。
本发明实施例中,将 WDM的端口集成为包括光纤阵列和微透镜阵列的阵 列形式, 利用光纤阵列替代单独的光纤, 利用与光纤阵列匹配的微透镜阵列, 进行光波输入输出的耦合传输,从而, 实现将多个分立的 WDM器件集成为一 个阵列式 WDM器件, 能够大大减少光网络中 WDM的数量。
需要说明的是, 在具体实施时, 为了便于器件的安装, 通常将 WDM各端 口包括的光纤阵列和微透镜阵列设置为相匹配的一维形式或者二维形式,即可 以采用一维光纤阵列和一维微透镜阵列,也可以根据实际应用场景采用二维光 纤阵列和二维微透镜阵列。
本发明实施例中, 通过光纤阵列能够替代多条独立的光纤, 并且, 同时形 成多条光通道。 其中, WDM公共端中每一个光通道都与反射端和透射端中的 有且只有一个光通道进行对应, 以二维光纤阵列式 WDM为例, 例如 3x6的 光纤阵列式 WDM, 能够同时实现阵列式的 18个 WDM。
此外, WDM各端口所包含的微透镜阵列中各微透镜与相应光纤阵列中相 应光纤通路是一一对应的关系。为了便于微透镜阵列中各微透镜对光纤阵列中 相应光纤通路的对应,通常设置 WDM各端口所包含的微透镜阵列中各微透镜 与相应光纤阵列中相应光纤通路为空间对应的分布形式。从而, 当光纤阵列中 某条光纤输出的光信号可以直接入射至其空间对应的微透镜,微透镜阵列中某 个微透镜出射的光信号也可直接耦合进其空间对应的单条光纤中。
对于滤波片的选择, 需要注意的是, 可以使用一片面积较大的滤波片, 使 得 WDM各端口包含的光纤阵列输出的多束光都可以传输至滤波片,在滤波片 上实现针对各端口的光波的选择。
通过本发明实施例提供的阵列式 WDM,能够将 N个 WDM分立器件集成 到一个 WDM器件中 ,且该 WDM器件具有体积小的优点 , 可以降低 WDM的 数量及占用的空间。 对应上述阵列式 WDM, 本发明实施例还提供了一种光开关装置, 如图 6 所示,该开关装置具体包括:光纤阵列 20、微透镜阵列 21、透镜 22以及 MEMS 反射镜 23; 其中, 所述微透镜阵列 21 中各微透镜与所述光纤阵列 20中各光 纤呈——对应的空间位置关系; 输入光信号经过所述光纤阵列 20传输至所述 微透镜阵列 21中相对应的微透镜后,从所述透镜 22的中心位置射出至 MEMS 反射镜 23 , 所述输入光信号经所述 MEMS反射镜 23反射, 使得输出光信号 以特定角度反射至所述透镜 22, 输出光信号经透镜 22转换成与所述透镜光轴 平行的平行光后传输至所述微透镜阵列 21 中相应的微透镜, 经过所述光纤阵 列 20中相应的光纤输出。
需要说明的是, 本发明实施例中提供的光开关装置, 其输出光纤采用阵列 式排布形式, 在具体实现时, 可采用一维的光纤阵列, 也可采用二维的光纤阵 列。 微透镜阵列中各微透镜与相应光纤阵列中相应光纤通路是——对应的关 系。 为了便于微透镜阵列中各微透镜对光纤阵列中相应光纤通路的对应,通常 微透镜阵列中各微透镜与相应光纤阵列中相应光纤通路为空间对应的分布形 式。
此外, 输入光信号是用于开启光开关装置的光信号, 通常, 该输入光信号 直接入射透镜的中心位置即光心, 因此, 可将光纤阵列中对应透镜光心位置的 光纤作为传输输入光信号的特定光纤。输入光信号经过该特定光纤的传输,入 射至微透镜阵列中与该特定光纤对应的微透镜中 ,输入光信号从微透镜中出射 后依次经过透镜及 MEMS反射镜。 其中, 透镜为普通光学透镜, 可以是单个 透镜, 也可以是多个透镜组成的透镜组, 还可以是球面镜或者非球面镜, 本发 明实施例对此不做具体限定,本领域技术人员可以根据实际应用场景进行具体 设置。 MEMS反射镜是一种芯片式的反射镜, 当从透镜出射的输入光信号入 射至 MEMS反射镜中心时,通过控制信号如电压或电流实现 MEMS反射镜的 微小偏转, 从而让输出光以特定角度发生反射, 回射至透镜, 该反射光经过透 镜转换成与所述透镜光轴平行的平行光后入射至微透镜阵列中相应的微透镜 中, 经过对应该微透镜的光纤进行输出, 即: 通过光路选择, 使得输出光信号 从特定的光纤输出, 以开启该光纤对应的光通路, 从而形成 I x N的光开关, 能够进行 N条光路的选择。 本发明实施例还提供了一种光路选择装置,该光路选择装置集成了阵列式
WDM器件和光开关器件, 具体可以包括: 阵列式 WDM以及集成所述阵列式
WDM的 ΙχΝ光开关; 其中,
所述阵列式 WDM包括三个端口: 公共端、 透射端及反射端, 所述三个端 口均包括光纤阵列以及与所述光纤阵列匹配的微透镜阵列, 如图 5所示;
所述 IxN光开关包括: 光纤阵列、微透镜阵列、透镜以及 MEMS反射镜, 所述微透镜阵列中各微透镜与所述光纤阵列中各光纤呈——对应的空间位置 关系, 如图 6所示;
所述 ΙχΝ光开关中光纤阵列连接所述阵列式 WDM中的透射端或反射端, 输入光信号经过所述 IxN光开关中的光纤阵列中的输入光纤传输至所述 IxN 光开关中微透镜阵列中相对应的微透镜后, 从所述透镜的中心位置射出至
MEMS反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换 成与所述透镜光轴平行的平行光,所述平行光传输至所述微透镜阵列中相应的 微透镜,经过所述光纤阵列中的相应光纤输出,进入所述阵列式 WDM的透射 端或反射端;
所述输出光信号经所述阵列式 WDM 的透射端或反射端中的光纤阵列中 相应光纤传输至匹配的微透镜后传输至滤波片上,经过所述滤波片后传输至所 述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列中相应的光 纤输出。
本发明实施例中,光开关和 WDM都是阵列器件,两者光纤阵列相互匹配, 如都是 M x N的光纤阵列; 将光开关的输出光纤阵列与阵列式 WDM的反射 端或透射端的光纤阵列直接连接固定, 例如: 采用熔接的连接方式, 如此实现 光开关和 WDM的集成。由于滤光片的工艺参数对于透射和反射的光波特性有 所区别,如透射效率和发射效率不一样等, 因此可以根据不同的网络情况选择 连接 WDM的不同端口。 由此可见,该光路选择装置中光开关器件和 WDM器 件之间可以直接通过光纤阵列对接,从而,可消除对于分立 WDM与光开关间 的光纤管理;此外,将 WDM集成于光开关,使得光网络中无需设置分立 WDM 的安装位置, 可大大降低生产加工难度, 提高生产效率。
这种集成阵列式 WDM和光开关的光路选择装置,对外连接上仅有光开关 的输入光纤一根和 WDM两个端口的光纤阵列。 仍以 PON网络为例, 如图 7 所示, 该光路选择装置的单独一根输入光纤连接 OTDR, 由 OTDR产生输入 连接到下行 ONU的线路中,反射端或者透射端的光纤阵列连接到上行 OLT的 线路中。 从而, 通过光路选择, OTDR能够对 PON网络中各光路进行链路性 能检测。
有关阵列式 WDM和光开关的详细内容, 可参见前面实施例的相关内容, 此处不再进行赘述。
对于任何一个采用光纤阵列作为输出端的光开关来说, 都可将阵列式
WDM集成到光开关中, 只要两者的光纤阵列匹配即可。
本技术方案不仅适用于 MEMS光开关, 其同样适用于其他各种光开关。 只要光开关的输出光纤采用阵列式,其阵列与阵列式 WDM器件的光纤阵列匹 配, 都可将这样的光开关器件和阵列式 WDM进行集成。 相应地, 本发明实施例提供了一种光开关控制方法, 如图 8所示, 为该方 法的步骤流程, 该方法可以包括以下步骤:
步骤 801、 将输入光信号经过 Ι χΝ光开关中的光纤阵列传输至所述 Ι χΝ 光开关中微透镜阵列中相对应的微透镜,从所述透镜的中心位置射出至 MEMS 反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换成与所 述透镜光轴平行的平行光, 所述平行光传输至所述微透镜阵列中相应的微透 镜,经过所述光纤阵列中的相应光纤输出,进入阵列式 WDM的透射端或反射 端;
其中, 阵列式 WDM的透射端、反射端及公共端均包括光纤阵列以及与所 述光纤阵列匹配的微透镜阵列, 所述 l xN光开关的微透镜阵列中各微透镜与 所述所述 Ι χΝ光开关的光纤阵列中各光纤呈——对应的空间位置关系;
步骤 802、将所述输出光信号经所述阵列式 WDM的透射端或反射端的光 纤阵列中相应的光纤传输至匹配的微透镜后传输至滤波片上,经过所述滤波片 后传输至所述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列 中相应的光纤输出。
所述 Ι χΝ光开关中光纤阵列与所述阵列式 WDM中透射端或反射端的光 纤阵列为相匹配的一维形式或者二维形式,且光开关与 WDM中光纤阵列之间 相互匹配。
通过本发明实施例,将 WDM的端口集成为包括光纤阵列和微透镜阵列的 阵列形式,利用光纤阵列替代单独的光纤,利用与光纤阵列匹配的微透镜阵列, 进行光波输入输出的耦合传输,从而, 实现将多个分立的 WDM器件集成为一 个阵列式 WDM器件, 能够大大减少光网络中 WDM的数量; 此外, 由于光开 关也是阵列器件, 当其光纤阵列与 WDM中光纤阵列相互匹配时,将该光开关 器件和 WDM器件之间直接通过光纤阵列对接, 从而, 可消除对于分立 WDM 与光开关间的光纤管理, 通过光开关器件的光路选择, 将输出光信号传输至 WDM中, 从 WDM的对应端口进行输出。
对于方法实施例而言, 由于其基本相应于装置实施例, 所以描述得比较简 单,相关之处参见装置实施例的部分说明即可。 以上所描述的装置实施例仅仅 是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上 分开的,作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一 个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的 部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出 创造性劳动的情况下, 即可以理解并实施。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机 可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的,本文中所定义的一般原理可以在不脱离本发明实施例的精神或范围的情况 下, 在其它实施例中实现。 因此, 本发明实施例将不会被限制于本文所示的这 些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

1、 一种波分复用器 WDM, 包括三个端口: 公共端、 透射端及反射端, 列匹配的微透镜阵列;所述公共端的第一光纤阵列中任一光纤输出的光信号经 所述公共端的第一微透镜阵列中相应的微透镜后传输至滤波片上;所述光信号 中经过所述滤波片后的透射光进入所述透射端的第二微透镜阵列中的相应微 透镜, 并通过所述透射端的第二光纤阵列中相应的光纤输出; 所述光信号中经 过所述滤波片反射的反射光进入所述反射端的第三微透镜阵列中的相应微透 镜, 并经过所述反射端的第三光纤阵列中相应的光纤输出。
2、 根据权利要求 1所述的 WDM, 其特征在于, 所述公共端、 透射端及 反射端的光纤阵列和微透镜阵列为相匹配的一维形式或者二维形式。
3、 一种光开关装置, 其特征在于, 包括: 光纤阵列、 微透镜阵列、 透镜 以及微机电系统 MEMS反射镜; 其中, 所述微透镜阵列中各微透镜与所述光 纤阵列中各光纤呈——对应的空间位置关系;输入光信号经过所述光纤阵列中 的输入光纤传输至所述微透镜阵列中相对应的微透镜后,从所述透镜的中心位 置射出至 MEMS反射镜,所述输入光信号经所述 MEMS反射镜反射至所述透 镜并转换成与所述透镜光轴平行的平行光,所述平行光传输至所述微透镜阵列 中相应的微透镜, 经过所述光纤阵列中相应的光纤输出。
4、 根据权利要求 3所述的光开关, 其特征在于, 所述输入光信号经过所 述光纤阵列中间位置的输入光纤传输至所述微透镜阵列中匹配的微透镜。
5、 根据权利要求 3或 4所述的光开关, 其特征在于, 所述光纤阵列和微 透镜阵列为相匹配的一维形式或者二维形式。
6、 一种光路选择装置, 其特征在于, 包括: 阵列式 WDM以及集成所述 阵列式 WDM的 ΙχΝ光开关; 其中,
所述阵列式 WDM包括三个端口:公共端、透射端及反射端,所述公共端、 所述 ΙχΝ光开关包括: 光纤阵列、微透镜阵列、透镜以及 MEMS反射镜, 所述微透镜阵列中各微透镜与所述光纤阵列中各光纤呈——对应的空间位置 关系;
所述 ΙχΝ光开关中光纤阵列连接所述阵列式 WDM中的透射端或反射端, 输入光信号经过所述 IxN光开关中的光纤阵列中的输入光纤传输至所述 IxN 光开关中微透镜阵列中相对应的微透镜后, 从所述透镜的中心位置射出至 MEMS反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换 成与所述透镜光轴平行的平行光,所述平行光传输至所述微透镜阵列中相应的 微透镜,经过所述光纤阵列中的相应光纤输出,进入所述阵列式 WDM的透射 端或反射端;
所述输出光信号经所述阵列式 WDM 的透射端或反射端的光纤阵列中相 应的光纤传输至匹配的微透镜后传输至滤波片上,经过所述滤波片后传输至所 述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列中相应的光 纤输出。
7、 根据权利要求 6所述的光路选择装置, 其特征在于, 所述输入光信号 经过所述 ΙχΝ光开关中光纤阵列中间位置的输入光纤传输至所述 IxN光开关 中微透镜阵列中匹配的微透镜。
8、 根据权利要求 6所述的光路选择装置, 其特征在于, 所述 ΙχΝ光开关 中光纤阵列与所述阵列式 WDM 中透射端或反射端的光纤阵列为相匹配的一 维形式或者二维形式。
9、 一种光开关控制方法, 其特征在于, 包括:
将输入光信号经过 lxN光开关中的光纤阵列传输至所述 lxN光开关中微 透镜阵列中相对应的微透镜, 从所述透镜的中心位置射出至 MEMS反射镜, 所述输入光信号经所述 MEMS反射镜反射至所述透镜并转换成与所述透镜光 轴平行的平行光, 所述平行光传输至所述微透镜阵列中相应的微透镜, 经过所 述光纤阵列中的相应光纤输出, 进入阵列式 WDM的透射端或反射端; 其中, 匹配的微透镜阵列,所述 ΙχΝ光开关的微透镜阵列中各微透镜与所述所述 ΙχΝ 光开关的光纤阵列中各光纤呈一一对应的空间位置关系;
将所述输出光信号经所述阵列式 WDM 的透射端或反射端的光纤阵列中 相应的光纤传输至匹配的微透镜后传输至滤波片上 ,经过所述滤波片后传输至 所述公共端的微透镜阵列中相应的微透镜,经所述公共端的光纤阵列中相应的 光纤输出。
10、 根据权利要求 9所述的光开关控制方法, 其特征在于, 所述 ΙχΝ光 开关中光纤阵列与所述阵列式 WDM 中透射端或反射端的光纤阵列为相匹配 的一维形式或者二维形式。
PCT/CN2012/071325 2011-02-21 2012-02-20 一种波分复用器、光开关装置及光开关控制方法 WO2012113317A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12749810.3A EP2667230A4 (en) 2011-02-21 2012-02-20 WAVE-LENGTH MULTIPLEXER, OPTICAL SWITCHING APPARATUS, AND OPTICAL SWITCHING CONTROL METHOD
US13/972,099 US20130343758A1 (en) 2011-02-21 2013-08-21 Wavelength division multiplexer, optical switch device and control method of optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110042323.3 2011-02-21
CN2011100423233A CN102645705A (zh) 2011-02-21 2011-02-21 一种波分复用器、光开关装置及光开关控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/972,099 Continuation US20130343758A1 (en) 2011-02-21 2013-08-21 Wavelength division multiplexer, optical switch device and control method of optical switch

Publications (1)

Publication Number Publication Date
WO2012113317A1 true WO2012113317A1 (zh) 2012-08-30

Family

ID=46658636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071325 WO2012113317A1 (zh) 2011-02-21 2012-02-20 一种波分复用器、光开关装置及光开关控制方法

Country Status (4)

Country Link
US (1) US20130343758A1 (zh)
EP (1) EP2667230A4 (zh)
CN (1) CN102645705A (zh)
WO (1) WO2012113317A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940501A4 (en) * 2013-06-21 2016-07-27 Huawei Tech Co Ltd OPTICAL PATH PROCESSING AND DEVICE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198011A1 (zh) * 2013-06-09 2014-12-18 华为技术有限公司 光器件及光网络系统
CN105474059A (zh) * 2013-06-27 2016-04-06 光联通讯有限公司 Mems光纤开关
CN104635334B (zh) 2013-11-15 2017-09-12 华为技术有限公司 一种3d‑mems光开关
CN103713360A (zh) * 2013-12-25 2014-04-09 华中科技大学 一种带通型可调谐光滤波器阵列
US20150270900A1 (en) * 2014-03-19 2015-09-24 Apple Inc. Optical data transfer utilizing lens isolation
CN104678502A (zh) * 2015-02-04 2015-06-03 昂纳信息技术(深圳)有限公司 一种2×2通道mems光开关
CN105549166B (zh) * 2016-01-26 2018-11-30 中天电力光缆有限公司 一种大长度光纤单元连续生产在线监测系统
CN109116474A (zh) * 2018-02-08 2019-01-01 珠海迈时光电科技有限公司 波分复用/解复用光纤耦合模组及其光学设备
CN109814267B (zh) * 2019-04-08 2021-06-18 长春理工大学 能够提高耦合效率的芯片式光谱仪前端耦合系统
CN111175903B (zh) * 2020-01-07 2020-10-09 华中科技大学 一种基于mems的超宽波段可调光学滤波器
CN111257896B (zh) * 2020-05-06 2020-08-11 中国电子科技集团公司信息科学研究院 选通阵列激光雷达接收光学系统和激光雷达
CN113687472A (zh) * 2020-05-19 2021-11-23 福州高意通讯有限公司 一种小型自由空间波分复用器
CN114815072B (zh) * 2022-05-09 2023-06-27 武汉光迅科技股份有限公司 一种多芯波分复用器件及其制作方法
CN115185048A (zh) * 2022-08-22 2022-10-14 武汉光迅科技股份有限公司 一种otdr探测用的集成wdm光选路监测器件及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181836A1 (en) * 2001-06-01 2002-12-05 Lemoff Brian E. Optical switch with moving lenses
US6591029B1 (en) * 2001-01-05 2003-07-08 Tellium, Inc Optical switch and method for aligning optical switch components
US6603894B1 (en) * 2001-01-26 2003-08-05 Tellium, Inc. MEMS mirror arrays and external lens system in an optical switch
JP2005172850A (ja) * 2003-12-05 2005-06-30 Nippon Sheet Glass Co Ltd 光クロスコネクト装置およびその調整方法
CN1769944A (zh) * 2004-11-02 2006-05-10 富士通株式会社 光开关
CN201364399Y (zh) * 2009-03-10 2009-12-16 福州高意通讯有限公司 一种光学结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551886B1 (fr) * 1983-09-09 1986-09-26 Sopelem Dispositif de couplage de cables de fibres optiques
US6044187A (en) * 1998-04-01 2000-03-28 Duck; Gary S. Multi-port fiber optical device
JP2001305376A (ja) * 2000-02-17 2001-10-31 Nippon Sheet Glass Co Ltd コリメータアレイ装置の設計方法及びこの方法によって作製されたコリメータアレイ装置
JP2004206057A (ja) * 2002-11-01 2004-07-22 Omron Corp 光合分波器及び光合分波器の製造方法
JPWO2006077961A1 (ja) * 2005-01-21 2008-06-19 日本電気株式会社 光通信モジュールおよび光信号伝送方法
US8000568B2 (en) * 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591029B1 (en) * 2001-01-05 2003-07-08 Tellium, Inc Optical switch and method for aligning optical switch components
US6603894B1 (en) * 2001-01-26 2003-08-05 Tellium, Inc. MEMS mirror arrays and external lens system in an optical switch
US20020181836A1 (en) * 2001-06-01 2002-12-05 Lemoff Brian E. Optical switch with moving lenses
JP2005172850A (ja) * 2003-12-05 2005-06-30 Nippon Sheet Glass Co Ltd 光クロスコネクト装置およびその調整方法
CN1769944A (zh) * 2004-11-02 2006-05-10 富士通株式会社 光开关
CN201364399Y (zh) * 2009-03-10 2009-12-16 福州高意通讯有限公司 一种光学结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667230A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940501A4 (en) * 2013-06-21 2016-07-27 Huawei Tech Co Ltd OPTICAL PATH PROCESSING AND DEVICE
US9548810B2 (en) 2013-06-21 2017-01-17 Huawei Technologies Co., Ltd Optical path processing method and apparatus
EP3761089A1 (en) * 2013-06-21 2021-01-06 Huawei Technologies Co. Ltd. Optical path processing method and apparatus

Also Published As

Publication number Publication date
EP2667230A4 (en) 2014-05-21
EP2667230A1 (en) 2013-11-27
CN102645705A (zh) 2012-08-22
US20130343758A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
WO2012113317A1 (zh) 一种波分复用器、光开关装置及光开关控制方法
CA2392704C (en) System and method of optical switching
JP6549097B2 (ja) 統合されたチャネルモニタを有する波長選択スイッチ
EP2664950B1 (en) Optical switch system and signal-light feedback-control method
JP6240316B2 (ja) 3d−mems光スイッチ
US9733432B2 (en) 3D-MEMS optical switch
WO2017147770A1 (zh) 波长选择开关装置、通信设备和波长切换方法
JP2018504007A (ja) カラーレス、ディレクションレスおよびコンテンションレスのネットワークノード
CN110927882A (zh) 小型的波分复用器
Lee et al. Multi-core fiber technology for optical-access and short-range links
CN102707387B (zh) 波长选择开关及切换方法
US10110313B2 (en) Optical switching apparatus, optical cross-connect node, and optical signal switching method
JPWO2015005170A1 (ja) 光クロスコネクト装置
CN110927883A (zh) 一种小型的波分复用器
WO2012119412A1 (zh) 一种多通道光学组件以及测试系统
EP2940501B1 (en) Optical path processing method and apparatus
US7174065B2 (en) Optical switching fabric with an optical to electrical converter in the output plane
US11899244B2 (en) Wavelength selective switch
CN109521528B (zh) 实现波长选择开关功能的装置
EP1143285A1 (en) Testing operation of a photonic matrix switch
Pau et al. Time-multiplexed signals and parallel signal analysis/switch optimization for MEMS-based optical cross-connect
JP2014092661A (ja) 多波長光信号の光−光型シリアル−パラレル変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012749810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE