WO2012113201A1 - 一种辅助源电路 - Google Patents

一种辅助源电路 Download PDF

Info

Publication number
WO2012113201A1
WO2012113201A1 PCT/CN2011/077547 CN2011077547W WO2012113201A1 WO 2012113201 A1 WO2012113201 A1 WO 2012113201A1 CN 2011077547 W CN2011077547 W CN 2011077547W WO 2012113201 A1 WO2012113201 A1 WO 2012113201A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
switch tube
switch
diode
Prior art date
Application number
PCT/CN2011/077547
Other languages
English (en)
French (fr)
Inventor
华桂潮
刘亚
姜德来
Original Assignee
英飞特电子(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)有限公司 filed Critical 英飞特电子(杭州)有限公司
Publication of WO2012113201A1 publication Critical patent/WO2012113201A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]

Definitions

  • the present invention relates to the field of auxiliary source circuits, and more particularly to an auxiliary source circuit for a two-wire dimmer. Background technique
  • the existing two-wire dimmer is usually connected between the power supply (Hot) and the load terminal (Dimmed Hot). Since the dimmer has only two wirings to the grid and load terminals, it is named as a two-wire dimmer. Small represents the size of the dimming signal.
  • two-wire dimmers are required to have various adjustment modes such as color and/or brightness.
  • two-wire dimmers have more lines inside, and even digital control methods such as single-chip microcomputers are needed.
  • An auxiliary power supply for the microcontroller or other line is generated inside the two-wire dimmer.
  • the auxiliary source in the circuit is when the chopper switch (110, 112) is cut off, the voltage drop is reduced when the chopper switch is turned off.
  • Capacitor C1 is charged.
  • a charging circuit is formed by the diode D1, the capacitor C1, the body diode of the field effect transistor (FET) 110, and the load; in the negative half cycle of the sine wave, the body of the diode D2, the capacitor C1, and the FET 112
  • the diode and the load form a charging loop, and then the auxiliary source (124) is regulated to obtain the auxiliary power source Vcc.
  • a minimum chopping angle is required to obtain the minimum auxiliary source voltage, that is, the chopper switch is required to be in the half AC cycle for a period of time. Turn on. However, even if the chopper switch has a short time (small chopping angle) and does not conduct, it will cause large electromagnetic interference due to sudden changes in voltage and current. Summary of the invention In view of the above, it is an object of the present invention to provide an auxiliary source circuit that eliminates electromagnetic interference problems in the process of acquiring an auxiliary power source.
  • the present invention provides the following technical solutions:
  • An auxiliary source circuit comprising: a chopper switch, a clamp circuit and a capacitor;
  • a high potential end of the clamp circuit is connected to a second end of the switch tube in the chopper switch, and a low potential end is grounded;
  • One end of the capacitor is connected to the low potential end of the clamp circuit, and the other end is connected to the second end of the switch tube in the chopper switch;
  • the clamp circuit When the chopper switch is turned on, the clamp circuit charges the capacitor, and when the chopper switch is turned off, the capacitor is not charged;
  • the voltage across the capacitor is the output voltage of the auxiliary source circuit.
  • the chopper switch comprises: a rectifier bridge and a switch tube; a first end of the switch tube is connected to a positive output end of the rectifier bridge, and a negative output end of the rectifier bridge Connected to the low potential end of the clamp circuit, one input end of the rectifier bridge is connected to one end of the alternating current power source, and the other input end of the rectifier bridge is connected to the load end.
  • the chopper switch comprises a switch tube
  • the first end of the switch tube is connected to the alternating current power source
  • the capacitor is connected to the second end of the switch tube through a fifth diode, the anode of the fifth diode is connected to the second end of the switch tube, and the cathode of the fifth diode is One end of the capacitor is connected;
  • the low potential end of the clamp circuit is connected to the load end.
  • the clamping circuit comprises: a resistor and at least one voltage regulator;
  • the resistor is connected in parallel to both ends of the voltage stabilizing tube; when the clamping circuit includes a plurality of voltage stabilizing tubes, the plurality of voltage stabilizing tubes are sequentially end to end The connections form a branch, and the resistors are connected in parallel to both ends of the branch.
  • the clamp circuit includes: at least one diode; when the clamp circuit includes a diode, an anode of the diode is a high potential end of the clamp circuit, a cathode of the diode is a low potential end of the clamp circuit;
  • the clamping circuit includes a plurality of diodes
  • the plurality of diodes are connected end to end to form a branch
  • the anode end of the branch is the high potential end of the clamp circuit
  • the cathode end of the branch is the low potential end of the clamp circuit.
  • An auxiliary source circuit comprising: a chopper switch, a charge-off circuit and a first capacitor; a first end of the switch tube in the chopper switch is connected to a first output end of the charge-off circuit; One end of a capacitor is connected to the second end of the switch tube, and the other end is connected to the second output end of the charge-off circuit;
  • the control terminal of the charge-off circuit is connected to the second control signal.
  • the control chopper switch When the chopper switch is turned on, the control chopper switch operates in a linear state, and the charge-off circuit is controlled to be in a low-impedance state. Charging the first capacitor, when the chopper switch is turned off, controlling the charge-off circuit to be in a high-impedance state, and the first capacitor is not charged;
  • the voltage on the first capacitor is a first output voltage of the auxiliary source circuit.
  • the chopper switch comprises: a rectifier bridge and a switch tube; a first end of the switch tube is connected to a positive output end of the rectifier bridge, and a second end of the switch tube Connected to the negative output end of the rectifier bridge, one input end of the rectifier bridge is connected to one end of the alternating current power source, and the other input end of the rectifier bridge is connected to the load end.
  • the chopper switch comprises a switch tube
  • the first end of the switch tube is connected to an alternating current power source, and the second end is connected to the load end;
  • a first end of the switch tube is connected to a first output end of the charge-off circuit through a sixth diode, and an anode of the sixth diode is connected to a first end of the switch tube, A cathode of the sixth diode is coupled to the first output of the charge shutdown circuit.
  • the chopper switch comprises a first switch tube and a second switch tube;
  • the first end of the first switch tube is connected to the first output end of the charge-off circuit through a seventh diode, and the first end of the first switch tube is connected to one end of the AC power source;
  • the first end of the second switch tube is connected to the first output end of the charge-off circuit through an eighth diode, and the first end of the second switch tube is connected to the load end;
  • the anode of the seventh diode is connected to the first end of the first switch tube, and the anode of the eighth diode is connected to the first end of the second switch tube;
  • the second end of the first switch tube is connected to the second end of the second switch tube and is connected to the other end of the capacitor.
  • the auxiliary source circuit further comprising a Boost boost converter and a second capacitor; two input ends of the Boost converter are connected to both ends of the first capacitor;
  • the second capacitor is connected between two outputs of the Boost boost converter
  • the voltage on the second capacitor is the second output voltage of the auxiliary source circuit.
  • the auxiliary source circuit further includes an auxiliary control circuit, wherein the auxiliary control circuit includes a first resistor, a second resistor, a third resistor, a fourth resistor, an NPN transistor, and a PNP transistor;
  • the first resistor and the second resistor are connected in series and then connected in parallel to both ends of the first capacitor, or the first resistor and the second resistor are connected in series and then connected in parallel to both ends of the second capacitor;
  • a base of the NPN transistor is connected to a common end of the first resistor and the second resistor, an emitter is grounded, and a collector is connected to a base of the PNP transistor through the third resistor;
  • the emitter of the PNP transistor is connected to the ungrounded end of the second capacitor, and the collector is connected to the control end of the switch tube in the chopper switch through the fourth resistor.
  • the charge-off circuit includes: a fifth switch tube; the first end of the fifth switch tube is a first output end of the charge-off circuit, and the fifth switch tube The second end of the charge-off circuit is a second output end, and the control end of the fifth switch tube is an input end of the charge-off circuit.
  • the auxiliary power source is obtained when the chopper switch is turned on, and the minimum chopping angle is not required, thereby eliminating the electromagnetic interference problem.
  • Figure 1 shows the existing auxiliary source circuit
  • FIG. 2 is a circuit diagram of an auxiliary source circuit disclosed in the present invention.
  • FIG. 3 is a circuit diagram of an auxiliary source circuit according to Embodiment 1 of the present invention.
  • FIG. 4 is a circuit diagram of an auxiliary source circuit according to Embodiment 2 of the present invention.
  • FIG. 5 is a circuit diagram of an auxiliary source circuit according to Embodiment 3 of the present invention.
  • 6 is a circuit diagram of another auxiliary source circuit disclosed in the present invention.
  • FIG. 7 is a circuit diagram of an auxiliary source circuit according to Embodiment 4 of the present invention.
  • Embodiment 8 is a circuit diagram of an auxiliary source circuit disclosed in Embodiment 5 of the present invention.
  • FIG. 9 is a circuit diagram of an auxiliary source circuit according to Embodiment 6 of the present invention.
  • FIG. 10 is a circuit diagram of an auxiliary source circuit disclosed in Embodiment 7 of the present invention.
  • FIG. 11 is a circuit diagram of an auxiliary source circuit disclosed in Embodiment 8 of the present invention. detailed description
  • MOS tube insulated gate field effect transistor
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • Boost converter Boost converter.
  • FIG. 2 is a circuit diagram of an auxiliary source circuit disclosed in the present invention.
  • the auxiliary source circuit includes: a chopper switch 21, a clamp circuit 22, and a capacitor Cl.
  • the chopper switch 21 includes at least one switch tube Q1, and the high potential end of the clamp circuit 22 is connected to the second end of the switch tube Q1.
  • the low potential end of the clamp circuit 22 is the auxiliary power reference ground ( The lower end of the capacitor C1 is connected to the second end of the switch tube Q1, that is, to the high potential end of the clamp circuit 22, and the other end of the capacitor C1 is connected to the low potential end of the clamp circuit 22. That is, the other end of the capacitor C1 is grounded.
  • the control end of the switch tube Q1 is connected to the first control signal Vgl to control the on and off of the switch tube Q1.
  • the switching transistor Q1 When the switching transistor Q1 is turned on under the control of the first control signal Vgl, the current flowing through the switching transistor Q1 flows through the clamping circuit 22 at the same time, and a predetermined voltage drop is generated at both ends of the clamping circuit 22,
  • the capacitor C1 When the capacitor C1 is charged by the clamp circuit 22, the auxiliary voltage Vcc is obtained at both ends of the capacitor C1.
  • the voltage output from the two-wire dimmer to the load is equal to the difference between the input AC voltage Vin and the voltage drop of the clamp circuit;
  • the switch Q1 When the switch Q1 is turned off under the control of the first control signal Vgl, there is no voltage drop across the clamp circuit 22.
  • the capacitor C1 is not charged, but is discharged to the load of the auxiliary power source (not shown).
  • the auxiliary power source is obtained by using the voltage drop generated at both ends of the clamp circuit when the chopper switch is turned on, and the minimum chopping angle is not required, thereby eliminating the electromagnetic interference problem.
  • auxiliary source circuit disclosed in the present invention can employ various forms of chopper switches and clamp circuits, which will be described below in conjunction with specific embodiments.
  • FIG. 3 is a circuit diagram of an auxiliary source circuit according to Embodiment 1 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 31, a clamp circuit 32, and a capacitor Cl.
  • the chopper switch 31 is composed of a rectifier bridge 311 and a switch tube Q1.
  • the rectifier bridge 311 includes diodes D1, D2, D3 and D4, a common terminal of the diode D1 cathode and the diode D2 anode, and a common terminal of the diode D3 cathode and the diode D4 anode.
  • the common terminal of the diode D2 cathode and the diode D4 cathode is the positive output terminal of the rectifier bridge 311
  • the common terminal of the diode D1 anode and the diode D3 anode is the negative output end of the rectifier bridge 311.
  • the first end of the switch tube Q1 is connected to the positive output end of the rectifier bridge 311, and the control end is connected to the first control signal Vgl.
  • one input end of the rectifier bridge 311 is connected to one end of the AC power source, the other input end is connected to one end of the load, and the other end of the load is connected to the other end of the AC power supply.
  • the load may be a switching power supply type load such as an LED driver or the like.
  • the low potential end of the clamp circuit 32 (ie, "ground") is connected to the negative output end of the rectifier bridge 311, and includes a Zener diode ZD1 and a resistor R1.
  • the cathode of the Zener diode ZD1 is connected to the second end of the switch transistor Q1. Grounding, the resistor R1 is connected in parallel to the two ends of the Zener diode ZD1. When a current flows, the potential of the cathode of the Zener diode ZD1 is higher than the potential of the anode of the Zener diode ZD1.
  • the cathode of the Zener diode ZD1 that is, the high potential end of the clamp circuit 32, is connected to one end of the capacitor C1, and the other end of the capacitor C1 is connected to the low potential end of the clamp circuit 32, that is, ground.
  • the clamping circuit 32 may include a plurality of voltage stabilizing tubes and resistors, and the plurality of voltage stabilizing tubes are connected end to end to form a branch, the cathode end of the branch is connected to the second end of the switch tube Q1, and the anode end thereof is grounded.
  • the resistors are connected in parallel at both ends of the branch.
  • FIG. 4 is a circuit diagram of an auxiliary source circuit according to Embodiment 2 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 41, a clamp circuit 42, and a capacitor Cl.
  • the chopper switch 41 is composed of a rectifier bridge 411 and a switching transistor Q1.
  • the rectifier bridge 411 includes diodes D1, D2, D3 and D4, a common terminal of the diode D1 cathode and the diode D2 anode, and a common terminal of the diode D3 cathode and the diode D4 anode.
  • the common terminal of the diode D2 cathode and the diode D4 cathode is the positive output terminal of the rectifier bridge 411
  • the common terminal of the diode D1 anode and the diode D3 anode is the negative output terminal of the rectifier bridge 411.
  • the first end of the switch tube Q1 is connected to the positive output end of the rectifier bridge 411, and the control end is connected to the first control signal Vgl.
  • the load may be a switching power supply type load such as an LED driver or the like.
  • the clamp circuit 42 includes a diode Drl ⁇ Drn, the diodes Dr1 ⁇ Drn are connected end to end in sequence, the branch formed by the diodes Dr1 ⁇ Drn has an anode end and a cathode end, and the cathode end is connected as a low potential end of the clamp circuit to the rectifier bridge.
  • the negative output end of 411, the anode end is connected as the high potential end of the clamp circuit to the second end of the switch tube Q1, and the cathode end is grounded.
  • the anode potential of the diode string is higher than the cathode terminal potential when a current flows.
  • the potential difference between the high potential terminal and the low potential terminal of the clamp circuit 42 depends on the number of diodes constituting the diode string and the conduction voltage drop of each diode.
  • the anode of the diode is connected to the second end of the switch Q1, and the cathode is grounded. In the energized state, the anode of the diode is the high potential end of the clamp circuit 42, and the cathode is the low potential end of the clamp circuit 42.
  • Capacitor C1 is connected in parallel across the clamp circuit 42.
  • FIG. 5 is a circuit diagram of an auxiliary source circuit according to Embodiment 3 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 51, a clamp circuit 52, a fifth diode D5, and a capacitor
  • the chopper switch 51 is only composed of the switch tube Q1.
  • the first end of the switch tube Q1 is connected to one end of the AC power source, the second end of the switch tube Q1 is connected to the high potential end of the clamp circuit 52, and the control end thereof is connected to the first control signal. Vgl.
  • the high potential end of the clamp circuit 52 is respectively connected to the second end of the switch tube Q1 and the anode of the fifth diode D5, the low potential end thereof is grounded, and the low potential end is connected to one end of the load, and the other end of the load is connected to the alternating current.
  • the other end of the power supply The cathode of the fifth diode D5 is connected to one end of the capacitor C1, and the other end of the capacitor C1 is connected to the low potential end of the clamp circuit 52, that is, grounded.
  • clamp circuit 52 in the auxiliary source circuit disclosed in the third embodiment may be the clamp circuit disclosed in the first embodiment or the clamp circuit disclosed in the second embodiment.
  • the switching transistor may be one of a triode, a MOS transistor, an IGBT, and a unidirectional thyristor.
  • the switch tube adopts a triode
  • the first end is a collector
  • the second end is an emitter
  • the control end is a base
  • the switch tube is a MOS tube
  • the first end is a drain and the second end is a source.
  • the switch is an IGBT
  • the first end is a collector, the second end is an emitter, and the control end is a gate
  • the switch tube is a unidirectional thyristor
  • the first end is an anode
  • the second end is an anode.
  • the terminal is the cathode and the control terminal is the gate.
  • an auxiliary power source can be obtained in both the positive half cycle and the negative half cycle of the alternating current power source.
  • the auxiliary source circuit disclosed in the third embodiment only half of the alternating current power source is used.
  • the auxiliary power source can be obtained in the cycle, but the structure of the auxiliary source circuit disclosed in the third embodiment is more Add a single order.
  • the auxiliary source circuits disclosed in the second embodiment and the third embodiment all use the voltage drop generated at the two ends of the clamp circuit when the chopper switch is turned on to obtain the auxiliary power supply, and the minimum chopping angle is not required. Eliminate electromagnetic interference problems.
  • FIG. 6 is a circuit diagram of another auxiliary source circuit disclosed in the present invention.
  • the auxiliary source circuit includes: a chopper switch 61, a charge shutdown circuit 62, and a first capacitor Cl.
  • the chopper switch 61 includes at least one switch Q1. The first end of the switch Q1 is connected to the first output end of the charge-off circuit 62, the second end is grounded, and the control terminal is connected to the first control signal Vgl.
  • the second output terminal of the charging shutdown circuit 62 is connected to one end of the first capacitor C1, and the input terminal thereof is connected to the second control signal Vg2.
  • the other end of the first capacitor C1 is connected to the second end of the switch transistor Q1, that is, grounded.
  • the control terminal of the switch transistor Q1 is connected to the first control signal Vgl, and the charge shutdown circuit 62 is connected to the second control signal Vg2.
  • the first control signal Vgl controls the chopping switch 61 to be turned on (ie, the switching transistor Q1 is turned on)
  • the conduction state of the switching transistor Q1 is a linear state
  • the second control signal Vg2 controls the charging shutdown circuit 62 to be in a low impedance.
  • the voltage drop across the switch Q1 is charged to the first capacitor C1 via the charge-off circuit 62, and the auxiliary voltage Vcc is obtained at both ends of the first capacitor C1.
  • the voltage output from the two-wire dimmer to the load is equal to the input AC voltage Vin.
  • the second control signal Vg2 controls the charging shutdown circuit 62 to be in a high impedance state, cutting off the first capacitor In the charging circuit of C1, the first capacitor C1 is not charged, and the first capacitor C1 is discharged to the load of the auxiliary power source (not shown in the auxiliary power load diagram).
  • the charge-off circuit when the chopper switch is turned on, the charge-off circuit is in a low-impedance state, and the first capacitor C1 is charged to obtain an auxiliary power source, which does not require a minimum chopping angle, thereby eliminating electromagnetic interference. problem.
  • auxiliary source circuit disclosed in the present invention can adopt various forms of chopper switches, which will be described below in conjunction with specific embodiments.
  • FIG. 7 is a circuit diagram of an auxiliary source circuit according to Embodiment 4 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 71, a charge shutdown circuit 72, and a first capacitor C1.
  • the chopper switch 71 is composed of a rectifier bridge 711 and a switch tube Q1.
  • the rectifier bridge 711 includes diodes D1, D2, D3 and D4, a common terminal of the diode D1 cathode and the diode D2 anode, and a common terminal of the diode D3 cathode and the diode D4 anode.
  • diode D2 For the two inputs of the rectifier bridge 711, diode D2
  • the common terminal of the cathode and the cathode of the diode D4 is the positive output terminal of the rectifier bridge 711
  • the common terminal of the anode of the diode D1 and the anode of the diode D3 is the negative output terminal of the rectifier bridge 711.
  • the first end of the switch tube Q1 is connected to the positive output end of the rectifier bridge 311, the second end is grounded, and the control end is connected to the first control signal Vgl.
  • the load may be a switching power supply type load such as an LED driver or the like.
  • the first output end of the charge-off circuit 72 is connected to the first end of the switch tube Q1, the second output end is connected to one end of the first capacitor C1, and the control end is connected to the second control signal Vg2.
  • the other end of the first capacitor C1 is connected to the second end of the switch transistor Q1, that is, grounded.
  • the first control signal Vgl controls the chopper switch 71 to be turned on (ie, the switch transistor Q1 is turned on), and operates in a linear state when turned on
  • the second control signal Vg2 controls the charge-off circuit 72.
  • diodes D2 and D3 in rectifier bridge 711 are turned on, current flow
  • auxiliary voltage Vcc is obtained at both ends of the first capacitor C1; when the first control signal Vgl controls the chopper switch 71 to be turned off (ie, the switching transistor Q1 is turned off), the second control signal Vg2 controls the charge-off circuit 72. In a high impedance state, the charging circuit of the first capacitor C1 is turned off, and the first capacitor C1 is not charged.
  • the first control signal Vgl controls the chopper switch 71 to be turned on (ie, the switch transistor Q1 is turned on), and operates in a linear state when turned on
  • the second control signal Vg2 controls the charge-off circuit 72.
  • diodes D4 and D1 in rectifier bridge 711 are turned on, current flow
  • auxiliary voltage Vcc is obtained at both ends of the first capacitor C1; when the first control signal Vgl controls the chopper switch 71 to be turned off (ie, the switching transistor Q1 is turned off), the second control signal Vg2 controls the charge-off circuit 72. In a high impedance state, the charging circuit of the first capacitor C1 is turned off, and the first capacitor C1 is not charged.
  • FIG. 8 is a circuit diagram of an auxiliary source circuit according to Embodiment 5 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 81, a charge shutdown circuit 82, a sixth diode D6, and a first capacitor Cl.
  • the chopper switch 81 is only composed of the switch tube Q1, and the first end of the switch tube Q1 is connected to the AC power source. One end is connected, the second end is connected to one end of the load, the control end is connected to the first control signal Vgl, and the other end of the AC power source is connected to the other end of the load.
  • the first output end of the charge-off circuit 82 is connected to the first end of the switch tube Q1 through the sixth diode D6, and the anode of the sixth diode D6 is connected to the first end of the switch tube Q1.
  • the first output end of the shutdown circuit 82 is connected, the second output end of the charge shutdown circuit 82 is connected to one end of the first capacitor C1, and the input end of the charge shutdown circuit 82 is connected to the second control signal Vg2, the first capacitor C1 The other end is connected to the second end of the switch tube Q1, that is, grounded.
  • the auxiliary source circuit disclosed in the fifth embodiment generates an auxiliary power source only in a half cycle of the alternating current power source, and the circuit structure thereof is more compact.
  • the first control signal Vgl controls the chopper switch 81 to be turned on (ie, the switch transistor Q1 is turned on), and operates in a linear state when turned on
  • the second control signal Vg2 controls the charge-off circuit 82 to operate in a low-impedance state, current Flowing through the switching transistor Q1, the voltage drop generated across the switching transistor Q1 is charged to the first capacitor C1 through the charging shutdown circuit 82, and the auxiliary voltage Vcc is obtained at both ends of the first capacitor C1;
  • the first control signal Vgl is controlled
  • the second control signal Vg2 controls the charge-off circuit 82 to be in a high-impedance state, and the charging circuit of the first capacitor C1 is turned off, and the first capacitor C1 is not charged.
  • FIG. 9 is a circuit diagram of an auxiliary source circuit disclosed in Embodiment 6 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 91, a charge shutdown circuit 92, a seventh diode D7, a eighth diode D8, and a first capacitor Cl.
  • the chopper switch 91 includes a first switch tube Q1 and a second switch tube Q2.
  • the first end of the first switch tube Q1 is connected to one end of the AC power source, the second end thereof is grounded, and the control end thereof is connected to the first control signal. Vgl; the first end of the second switch Q2 is connected to one end of the load, the second end is grounded, the control end is connected to the first control signal Vgl; the other end of the AC power is connected to the other end of the load.
  • the anode of the seventh diode D7 is connected to the first end of the first switching transistor Q1, the anode of the eighth diode D8 is connected to the first end of the second switching transistor Q2, and the seventh diode D7 and the eighth diode
  • the cathode of pole tube D8 is coupled to a first output of charge shutdown circuit 92.
  • the second output end of the charge-off circuit 92 is connected to one end of the capacitor C1, the input end of which is connected to the second control signal Vg2, and the other end of the capacitor C1 is grounded.
  • the charge shutdown circuit is in a low impedance state, and the seventh diode D7 is turned on, the first switch tube
  • the voltage across Q1 and the second switching transistor Q2 is sequentially charged to the first capacitor C1 through the seventh diode D7 and the charging shutdown circuit 92, and the auxiliary power source Vcc is obtained at both ends of the first capacitor C1; when the first control signal Vgl is controlled
  • the chopping switch 92 is turned off, the first switching transistor Q1 and the second switching transistor Q2 are turned off, and the second control signal Vg2 controls the charging shutdown circuit 92 to be in a high impedance state, and the charging path of the first capacitor C1 is cut off, the first capacitor C1 is in the discharge phase to the auxiliary power supply.
  • the second switching transistor Q2 operates in a linear state, and the first switching transistor Q1 is turned on, and at this time, the second control signal Vg2 is controlled.
  • the charging shutdown circuit is in a low impedance state, the eighth diode D8 is turned on, and the voltage across the first switching transistor Q1 and the second switching transistor Q2 sequentially passes through the eighth diode D8 and the charging shutdown circuit 92 to the first capacitor.
  • the auxiliary power supply Vcc is obtained at both ends of the first capacitor C1; when the first control signal Vgl controls the chopping switch 92 to be turned off, the first switching transistor Q1 and the second switching transistor Q2 are turned off, and the second control signal Vg2 is controlled.
  • the charge-off circuit 92 is in a high-impedance state, and the charging path of the first capacitor C1 is cut off, and the first capacitor C1 is in a discharge phase to the auxiliary power source.
  • the first switch tube and the second switch tube may be MOS tubes, or may be IGBTs with collector and emitter parallel diodes, wherein the anode of the diode is connected to the emitter of the IGBT, and the collector of the cathode and the IGBT Connected.
  • the auxiliary power supply structure disclosed in the sixth embodiment is more compact, and the auxiliary power source can be obtained in both the positive half cycle and the negative half cycle of the alternating current power source.
  • FIG. 10 is a circuit diagram of an auxiliary source circuit according to Embodiment 7 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 101, a charge shutdown circuit 102, a seventh diode D7, an eighth diode D8, a first capacitor Cl, a Boost converter, and a second capacitor C2.
  • the structure and operation of the chopper switch 101, the charge-off circuit 102, the seventh diode D7, the eighth diode D8, and the first capacitor C1, and the structure and operation of the auxiliary source circuit disclosed in the sixth embodiment The process is consistent and will not be repeated here.
  • the first switch tube and the second switch tube may be a MOS tube, or may be an IGBT with a collector and an emitter parallel diode, wherein the anode of the diode is connected to the emitter of the IGBT, and the collector of the cathode and the IGBT Connected.
  • the two inputs of the Boost converter are connected to both ends of the first capacitor C1, the second capacitor C2 is connected between the two outputs of the Boost converter, and the first end of the second capacitor C2 is grounded.
  • the output voltage of the auxiliary source circuit can be raised to the voltage required by the auxiliary source by connecting the Boost converter across the first capacitor C1.
  • Vcc the voltage generated across the second capacitor C2 is taken as the second output voltage.
  • FIG. 11 is a circuit diagram of an auxiliary source circuit according to Embodiment 8 of the present invention.
  • the auxiliary source circuit includes: a chopper switch 111, a charge shutdown circuit 112, a seventh diode D7, an eighth diode D8, a first capacitor Cl, a Boost converter, a second capacitor C2, and an auxiliary control circuit 113.
  • the chopper switch 111 includes a first switch tube Q1 and a second switch tube Q2.
  • the first end of the first switch tube Q1 is connected to one end of the AC power source, the second end thereof is grounded, and the control end thereof is connected to the first control signal. Vgl; the first end of the second switch tube Q2 is connected to one end of the load, the second end of the second switch tube is grounded, the control end is connected to the first control signal Vgl, and the other end of the AC power source is connected to the other end of the load.
  • the anode of the seventh diode D7 is connected to the first end of the first switching transistor Q1, the anode of the eighth diode D8 is connected to the first end of the second switching transistor Q2, and the seventh diode D7 and the eighth diode
  • the cathode of pole tube D8 is coupled to a first output of charge shutdown circuit 92.
  • the second output end of the charge-off circuit 92 is connected to one end of the first capacitor C1, and the input end thereof is connected to the second control signal Vg2, and the other end of the first capacitor C1 is grounded.
  • the first switch tube and the second switch tube may be MOS tubes, or IGBTs with collector and emitter parallel diodes, wherein the anode of the diode is connected to the emitter of the IGBT, and the collector of the cathode and the IGBT Connected.
  • the two input terminals of the Boost converter are connected to both ends of the first capacitor C1, the second capacitor C2 is connected between the two outputs of the Boost converter, and the first terminal of the second capacitor C2 is grounded.
  • the auxiliary control circuit 113 includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, an NPN transistor Q3, and a PNP transistor Q4.
  • One end of the first resistor R1 is connected to the ungrounded end of the first capacitor C1, the other end of the first resistor R1 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is grounded (ie, the first resistor R1 and the second
  • the resistor R2 is connected in series and then connected in parallel to the two ends of the first capacitor C1);
  • the base of the NPN transistor Q3 is connected to the common end of the first resistor R1 and the second resistor R2, the emitter is grounded, and the collector passes through the third resistor R3 and the PNP transistor Q4
  • the base is connected, the emitter of the PNP transistor Q4 is connected to the ungrounded end of the second capacitor C2, and the collector is connected to the control terminals of the first switching transistor Q1 and
  • the resistors R1 and R2 detect the voltage Vdd across the first capacitor C1.
  • Vdd exceeds the threshold
  • the gate signal voltage of the chopper switch 111 is raised by the NPN transistor Q3 and the PNP transistor Q4.
  • the wave switch 111 is turned on, the operating state is close to the saturation region, thereby lowering the voltage charged by the capacitor C1, and the voltage Vdd across the second capacitor C2 is also lowered.
  • the auxiliary control circuit 113 is used to implement the closed-loop control, so that the auxiliary control circuit can reduce the loss when the chopper switch 111 is turned on as much as possible when the required supply voltage Vcc is obtained, so that the operation is lower at the time of conduction. Linear state.
  • the resistors R1 and R2 are connected in series and then connected in parallel across the first capacitor C1 to detect the voltage of the first capacitor C1.
  • the resistors R1 and R2 of the present invention may also be connected in series and then connected in parallel to the second capacitor. Both ends of C2 detect the voltage of the second capacitor C2, and the auxiliary control circuit also achieves the effect of closed-loop regulation, so that the chopper switch 111 is turned on and operates in a linear state with low loss.
  • a structure of the charge-off circuit is shown in Fig. 11, and includes: a fifth resistor R5 and a fifth switch tube Q5.
  • One end of the fifth resistor R5 is connected to the control end of the fifth switch tube Q5, and the other end of the fifth resistor R5 is connected to the first end of the fifth switch tube Q5, and serves as the first output end of the charge-off circuit 112.
  • the second end of the fifth switch tube Q5 serves as the second output end of the charge-off circuit 112, and the control end of the fifth switch tube Q5 is the input end of the charge-off circuit 112.
  • the charge-off circuit may be: only the fifth switch tube is included, the first end of the fifth switch tube is the first output end of the charge-off circuit, and the second end is The second output end of the charge-off circuit, the control end is an input end of the charge-off circuit, and is connected to the second control signal Vg2.
  • the switching transistor may be one of a triode, a MOS transistor, an IGBT, and a unidirectional thyristor.
  • the switch tube adopts a triode
  • the first end is a collector
  • the second end is an emitter
  • the control end is a base
  • the switch tube is a MOS tube
  • the first end is a drain and the second end is a source.
  • the switch is an IGBT
  • the first end is a collector, the second end is an emitter, and the control end is a gate
  • the switch tube is a unidirectional thyristor
  • the first end is an anode
  • the second end is an anode.
  • the terminal is the cathode and the control terminal is the gate.

Landscapes

  • Rectifiers (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种辅助源电路,包括:斩波开关、钳位电路和电容;钳位电路的高电位端与斩波开关内开关管的第二端相连、低电位端接地;电容的一端与钳位电路的低电位端相连,另一端与斩波开关内开关管的第二端相连;当斩波开关导通时,钳位电路为电容充电,当斩波开关关断时,电容不充电;电容上的电压为辅助源电路的输出电压。本发明公开的辅助源电路中,在斩波开关导通时获得辅助电源,不需要最小斩波角度,由此消除了电磁干扰问题。

Description

一种辅助源电路
本申请要求于 2011年 2月 23日提交中国专利局、 申请号为 201110045135.6、 发明名称为 "一种辅助源电路"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明涉及辅助源电路技术领域, 尤其涉及一种两线调光器的辅助源电 路。 背景技术
现有的两线调光器, 通常连接在电网 (Hot )和负载端(Dimmed Hot )之 间, 由于调光器与电网及负载端的接线只有两根, 因此命名为两线调光器。 通 小代表调光信号的大小。
为了适应彩色照明系统的需求, 要求两线调光器能够具有颜色和 /或亮度 等多种调节方式,通常两线调光器内部具有较多线路, 甚至需要用单片机等数 字控制方式,因此需要在两线调光器内部产生为单片机或其它线路供电的辅助 电源。
图 1所示的电路, (见美国专利 US7242150, Dimmer having a power supply monitoring circuit) , 电路中的辅助源是在斩波开关( 110, 112 )都截止时, 利用 斩波开关截止时电压降向电容 C1 充电。 在正弦波正半周, 由二极管 Dl、 电 容 C 1、 场效应晶体管 ( Field Effect Transistor , FET ) 110的体二极管和负载 形成充电回路; 在正弦波负半周, 由二极管 D2、 电容 Cl、 FET112的体二极 管和负载形成充电回路, 然后经过辅助源 ( 124 )稳压获得辅助电源 Vcc。
由于该辅助电源 Vcc的获取是利用斩波开关截止产生的电压来获取,因此 要获得最小辅助源电压需要一个最小的斩波角度,也即需要斩波开关在半个交 流周期内的一段时间不导通。但是即使斩波开关有很短的时间(很小的斩波角 度) 不导通, 都会因为电压电流的突变带来^艮大的电磁干扰。 发明内容 有鉴于此, 本发明的目的在于提供一种辅助源电路,在获取辅助电源的过 程中消除电磁干扰问题。
为实现上述目的, 本发明提供如下技术方案:
一种辅助源电路, 包括: 斩波开关、 钳位电路和电容;
所述钳位电路的高电位端与所述斩波开关内开关管的第二端相连、低电位 端接地;
所述电容的一端与所述钳位电路的低电位端相连,另一端与所述斩波开关 内开关管的第二端相连;
当所述斩波开关导通时, 所述钳位电路为所述电容充电, 当所述斩波开关 关断时, 所述电容不充电;
所述电容上的电压为辅助源电路的输出电压。
优选的, 在上述辅助源电路中, 所述斩波开关包括: 整流桥和开关管; 所述开关管的第一端与所述整流桥的正输出端相连,所述整流桥的负输出 端与所述钳位电路的低电位端相连,所述整流桥的一个输入端与交流电源的一 端相连, 所述整流桥的另一个输入端与负载端相连。
优选的, 在上述辅助源电路中, 所述斩波开关包括开关管;
所述开关管的第一端与所述交流电源相连;
所述电容通过第五二极管与所述开关管的第二端相连,所述第五二极管的 阳极与所述开关管的第二端相连、所述第五二极管的阴极与所述电容的一端相 连;
所述钳位电路的低电位端与负载端相连。
优选的, 在上述辅助源电路中, 所述钳位电路包括: 电阻和至少一个稳压 管;
当所述钳位电路包括一个稳压管时, 所述电阻并联于所述稳压管的两端; 当所述钳位电路包括多个稳压管时,所述多个稳压管依次首尾连接构成支 路, 所述电阻并联于所述支路的两端。
优选的, 在上述辅助源电路中, 所述钳位电路包括: 至少一个二极管; 当所述钳位电路包括一个二极管时,所述二极管的阳极为所述钳位电路的 高电位端, 所述二极管的阴极为所述钳位电路的低电位端;
当所述钳位电路包括多个二极管时,所述多个二极管依次首尾连接构成支 路, 所述支路的阳极端为所述钳位电路的高电位端、所述支路的阴极端为所述 钳位电路的低电位端。
一种辅助源电路, 包括: 斩波开关、 充电关断电路和第一电容; 所述斩波开关内开关管的第一端与所述充电关断电路的第一输出端相连; 所述第一电容的一端与所述开关管的第二端相连、另一端与所述充电关断 电路的第二输出端相连;
所述充电关断电路的控制端接入第二控制信号, 当所述斩波开关导通时, 控制斩波开关工作在线性状态,控制所述充电关断电路处于低阻抗状态, 为所 述第一电容充电, 当所述斩波开关关断时,控制所述充电关断电路处于高阻抗 状态, 所述第一电容不充电;
所述第一电容上的电压为辅助源电路的第一输出电压。
优选的, 在上述辅助源电路中, 所述斩波开关包括: 整流桥和开关管; 所述开关管的第一端与所述整流桥的正输出端相连,所述开关管的第二端 与所述整流桥的负输出端相连,所述整流桥的一个输入端与交流电源的一端相 连, 所述整流桥的另一个输入端与负载端相连。
优选的, 在上述辅助源电路中, 所述斩波开关包括开关管;
所述开关管的第一端与交流电源连接、 第二端与负载端相连;
所述开关管的第一端通过第六二极管与所述充电关断电路的第一输出端 相连, 所述第六二极管的阳极与所述开关管的第一端相连, 所述第六二极管的 阴极与所述充电关断电路的第一输出端相连。
优选的,在上述辅助源电路中, 所述斩波开关包括第一开关管和第二开关 管;
所述第一开关管的第一端通过第七二极管与所述充电关断电路的第一输 出端相连, 同时所述第一开关管的第一端与交流电源的一端相连;
所述第二开关管的第一端通过第八二极管与所述充电关断电路的第一输 出端相连, 同时所述第二开关管的第一端与负载端相连;
所述第七二极管的阳极连接所述第一开关管的第一端,所述第八二极管的 阳极连接所述第二开关管的第一端;
第一开关管的第二端连接第二开关管的第二端,并与所述电容的另一端相 连。 优选的,在上述辅助源电路中,进一步包括 Boost升压变换器和第二电容; 所述 Boost变换器的两个输入端连接于所述第一电容的两端;
所述第二电容连接于所述 Boost升压变换器的两个输出端之间;
所述第二电容上的电压为辅助源电路的第二输出电压。
优选的, 在上述辅助源电路中, 进一步包括辅助控制电路, 所述辅助控制 电路包括第一电阻、 第二电阻、 第三电阻、 第四电阻、 NPN三极管和 PNP三 极管;
所述第一电阻和第二电阻串联之后并联于所述第一电容的两端, 或者, 所 述第一电阻和第二电阻串联之后并联于所述第二电容的两端;
所述 NPN三极管的基极与所述第一电阻和第二电阻的公共端相连、 发射 极接地、 集电极通过所述第三电阻与所述 PNP三极管的基极相连;
所述 PNP三极管的发射极与所述第二电容的未接地端相连、 集电极通过 所述第四电阻与所述斩波开关中开关管的控制端相连。
优选的, 在上述辅助源电路中, 所述充电关断电路包括: 第五开关管; 第五开关管的第一端为所述充电关断电路的第一输出端,所述第五开关管 的第二端为所述充电关断电路的第二输出端,所述第五开关管的控制端为所述 充电关断电路的输入端。
由此可见,本发明公开的辅助源电路中,在斩波开关导通时获得辅助电源, 不需要最小斩波角度, 由此消除了电磁干扰问题。 附图说明
为了更清楚地说明本发明实施例,下面将对实施例中所需要使用的附图做 筒单的介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些 附图获得其他的附图。
图 1 为现有的辅助源电路;
图 2为本发明公开的一种辅助源电路的电路图;
图 3为本发明实施例一公开的辅助源电路的电路图;
图 4为本发明实施例二公开的辅助源电路的电路图;
图 5为本发明实施例三公开的辅助源电路的电路图; 图 6为本发明公开的另一种辅助源电路的电路图;
图 7为本发明实施例四公开的辅助源电路的电路图;
图 8为本发明实施例五公开的辅助源电路的电路图;
图 9为本发明实施例六公开的辅助源电路的电路图;
图 10为本发明实施例七公开的辅助源电路的电路图;
图 11为本发明实施例八公开的辅助源电路的电路图。 具体实施方式
为了引用和清楚起见, 下文中使用的技术名词、 筒写或缩写总结如下: MOS管: 绝缘栅型场效应三极管;
IGBT: Insulated Gate Bipolar Transistor , 绝缘栅双极型晶体管;
Boost变换器: 升压变换器。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性 劳动前提下, 所获得的所有其他实施例, 都属于本发明保护范围。
参见图 2, 图 2为本发明公开的一种辅助源电路的电路图。
该辅助源电路包括: 斩波开关 21、 钳位电路 22和电容 Cl。 其中斩波开 关 21中至少包含一个开关管 Q1 , 钳位电路 22的高电位端与开关管 Q1的第 二端连接, 为描述方便, 设钳位电路 22的低电位端为辅助电源参考地(以下 筒称 "地" ), 电容 C1的一端与开关管 Q1的第二端连接, 即与钳位电路 22的 高电位端连接, 电容 C1的另一端与钳位电路 22的低电位端连接, 即电容 C1 的另一端接地。
开关管 Q1的控制端接入第一控制信号 Vgl , 控制开关管 Q1的导通与关 断。 当开关管 Q1在第一控制信号 Vgl的控制下导通时, 流过开关管 Q1的电 流同时流过钳位电路 22, 并在钳位电路 22的两端产生一个预设的压降, 此时 通过钳位电路 22为电容 C1充电,在电容 C1的两端获得辅助电压 Vcc,此时, 两线调光器输出到负载的电压等于输入交流电压 Vin与钳位电路压降之差; 当 开关管 Q1在第一控制信号 Vgl的控制下关断时, 钳位电路 22两端无压降, 此时电容 C1不充电, 而是向辅助电源的负载 (图中未示出)放电。 在本发明公开的辅助源电路中,利用斩波开关导通时在钳位电路两端产生 的压降来获得辅助电源, 不需要最小斩波角度, 由此消除了电磁干扰问题。
在实施中,本发明公开的辅助源电路可以采用多种形式的斩波开关和钳位 电路, 下面结合具体实施例进行说明。
实施例一
参见图 3, 图 3为本发明实施例一公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 31、 钳位电路 32和电容 Cl。
其中, 斩波开关 31由整流桥 311和开关管 Q1组成, 整流桥 311包括二 极管 Dl、 D2、 D3和 D4, 二极管 D1阴极和二极管 D2阳极的公共端以及二极 管 D3阴极和二极管 D4阳极的公共端为整流桥 311的两个输入端,二极管 D2 阴极和二极管 D4阴极的公共端为整流桥 311的正输出端, 二极管 D1阳极和 二极管 D3阳极的公共端为整流桥 311的负输出端。 开关管 Q1的第一端与整 流桥 311的正输出端连接, 控制端接入第一控制信号 Vgl。
斩波开关 31中整流桥 311的一个输入端连接交流电源的一端, 另一个输 入端连接负载的一端, 负载的另一端连接交流电源的另一端。 在本发明中, 负 载可以为开关电源类负载, 如 LED驱动器等。
钳位电路 32的低电位端(即 "地")连接整流桥 311的负输出端, 包括稳 压管 ZD1和电阻 R1 , 稳压管 ZD1的阴极与开关管 Q1的第二端连接, 其阳极 接地, 电阻 R1并联于稳压管 ZD1的两端, 在有电流流过时稳压管 ZD1的阴 极的电位高于稳压管 ZD1的阳极的电位。
稳压管 ZD1的阴极, 即钳位电路 32的高电位端, 与电容 C1的一端连接, 电容 C1的另一端与钳位电路 32的低电位端连接, 即接地。
另外, 钳位电路 32中可以包括多个稳压管和电阻, 多个稳压管依次首尾 连接构成支路, 该支路的阴极端与开关管 Q1的第二端连接, 其阳极端接地, 电阻并联于该支路的两端。
在交流电源的正半周,当开关管 Q1在第一控制信号 Vgl的控制下导通时, 整流桥 311中的二极管 D2和 D3导通, 流过开关管 Q1的电流同时流过钳位 电路 32, 并在钳位电路 32的两端产生一个预设的压降, 此时为电容 C1充电, 在电容 C1的两端获得辅助电压 Vcc; 当开关管 Q1在第一控制信号 Vgl的控 制下关断时, 钳位电路 32两端无压降, 此时电容 C1不充电。 在交流电源的负半周,当开关管 Q1在第一控制信号 Vgl的控制下导通时, 整流桥 311中的二极管 D4和 D1导通, 流过开关管 Q1的电流同时流过钳位 电路 32, 并在钳位电路 32的两端产生一个预设的压降, 为电容 C1充电, 在 电容 C1的两端获得辅助电压 Vcc; 当开关管 Q1在第一控制信号 Vgl的控制 下关断时, 钳位电路 32两端无压降, 此时电容 C1不充电。
实施例二
参见图 4, 图 4为本发明实施例二公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 41、 钳位电路 42和电容 Cl。
其中, 斩波开关 41由整流桥 411和开关管 Q1组成, 整流桥 411包括二 极管 Dl、 D2、 D3和 D4, 二极管 D1阴极和二极管 D2阳极的公共端以及二极 管 D3阴极和二极管 D4阳极的公共端为整流桥 411的两个输入端,二极管 D2 阴极和二极管 D4阴极的公共端为整流桥 411的正输出端, 二极管 D1阳极和 二极管 D3阳极的公共端为整流桥 411的负输出端。 开关管 Q1的第一端与整 流桥 411的正输出端连接, 控制端接入第一控制信号 Vgl。
斩波开关 41中整流桥 411的一个输入端连接交流电源的一端, 另一个输 入端连接负载的一端, 负载的另一端连接交流电源的另一端。 在本发明中, 负 载可以为开关电源类负载, 如 LED驱动器等。
钳位电路 42包括二极管 Drl~Drn, 二极管 Drl~Drn依次首尾连接, 二极 管 Drl~Drn连接而成的支路具有一个阳极端和一个阴极端, 阴极端作为钳位 电路的低电位端连接整流桥 411的负输出端,阳极端作为钳位电路的高电位端 与开关管 Q1的第二端连接, 且阴极端接地。 在有电流流过时该二极管串的阳 极端电位高于阴极端电位。 钳位电路 42高电位端与低电位端之间的电位差值 取决于组成二极管串的二极管数量和每个二极管的导通压降。 当钳位电路 42 中只包括一个二极管时, 该二极管的阳极与开关管 Q1的第二端连接, 阴极接 地。 在通电状态下, 该二极管的阳极为钳位电路 42的高电位端, 其阴极为钳 位电路 42的低电位端。
电容 C1并联在钳位电路 42的两端。
在交流电源的正半周,当开关管 Q1在第一控制信号 Vgl的控制下导通时, 整流桥 411中的二极管 D2和 D3导通, 流过开关管 Q1的电流同时流过钳位 电路 42, 并在钳位电路 42的两端产生一个预设的压降, 为电容 C1充电, 在 电容 CI的两端获得辅助电压 Vcc; 当开关管 Q1在第一控制信号 Vgl的控制 下关断时, 钳位电路 42两端无压降, 此时电容 C1不充电。
在交流电源的负半周,当开关管 Q1在第一控制信号 Vgl的控制下导通时, 整流桥 411中的二极管 D4和 D1导通, 流过开关管 Q1的电流同时流过钳位 电路 42, 并在钳位电路 42的两端产生一个预设的压降, 为电容 C1充电, 在 电容 C1的两端获得辅助电压 Vcc; 当开关管 Q1在第一控制信号 Vgl的控制 下关断时, 钳位电路 42两端无压降很小, 此时电容 C1不充电。
实施例三
参见图 5, 图 5为本发明实施例三公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 51、 钳位电路 52、 第五二极管 D5和电容
Cl。
其中, 斩波开关 51仅由开关管 Q1构成, 开关管 Q1的第一端与交流电源 一端连接, 其第二端与钳位电路 52的高电位端连接, 其控制端接入第一控制 信号 Vgl。 钳位电路 52的高电位端分别与开关管 Q1的第二端和第五二极管 D5的阳极连接, 其低电位端接地, 同时该低电位端连接负载的一端, 负载的 另一端连接交流电源的另一端。第五二极管 D5的阴极与电容 C1的一端连接, 电容 C1的另一端与钳位电路 52的低电位端连接, 即接地。
需要指出的是, 本事实例三公开的辅助源电路中的钳位电路 52, 既可以 采用实施例一公开的钳位电路, 也可以采用实施例二公开的钳位电路。
在开关管 Q1导通时, 在钳位电路 52的两端产生预设的压降, 为电容 C1 充电, 在电容 C1的两端获得辅助电压 Vcc; 当开关管 Q1在第一控制信号的 控制下关断时, 钳位电路 52两端无压降, 此时电容 C1不充电。
在实施中, 开关管可以采用三极管、 MOS管、 IGBT和单向可控硅中的一 种。 当开关管采用三极管时, 第一端为集电极, 第二端为发射极, 控制端为基 极; 所述开关管为 MOS管时, 第一端为漏极, 第二端为源极, 控制端为栅极; 开关管为 IGBT时, 第一端为集电极, 第二端为发射极, 控制端为门极; 开关 管为单向可控硅时, 第一端为阳极, 第二端为阴极, 控制端为门极。
在本发明实施例一和实施例二公开的辅助源电路中,在交流电源的正半周 和负半周均可以获得辅助电源,在实施例三公开的辅助源电路中, 只在交流电 源的半个周期内可以获得辅助电源,但是实施例三公开的辅助源电路的结构更 加筒单。本发明实施例一、 实施例二和实施例三公开的辅助源电路均利用斩波 开关导通时在钳位电路两端产生的压降来获得辅助电源, 不需要最小斩波角 度, 由此消除了电磁干扰问题。 参见图 6, 图 6为本发明公开的另一种辅助源电路的电路图。
该辅助源电路包括: 斩波开关 61、 充电关断电路 62和第一电容 Cl。 其 中, 斩波开关 61中至少包含一个开关管 Q1 , 开关管 Q1的第一端与充电关断 电路 62的第一输出端连接、 第二端接地、 控制端接入第一控制信号 Vgl。 充 电关断电路 62的第二输出端与第一电容 C1的一端连接、 其输入端接入第二 控制信号 Vg2。 第一电容 C1的另一端与开关管 Q1的第二端连接, 即接地。
开关管 Q1的控制端接入第一控制信号 Vgl , 充电关断电路 62接入第二 控制信号 Vg2。 当第一控制信号 Vgl控制斩波开关 61导通(即开关管 Q1导 通)时, 开关管 Q1的导通状态为线性状态, 此时第二控制信号 Vg2控制充电 关断电路 62处于低阻抗状态, 开关管 Q1两端的压降经过充电关断电路 62向 第一电容 C1充电, 在第一电容 C1的两端获得辅助电压 Vcc, 两线调光器输 出到负载的电压等于输入交流电压 Vin与辅助电压 Vcc之差;当第一控制信号 Vgl控制斩波开关 61关断(即开关管 Q1关断 ) 时, 第二控制信号 Vg2控制 充电关断电路 62处于高阻抗状态, 切断第一电容 C1的充电电路, 第一电容 C1不充电,第一电容 C1向辅助电源的负载放电(辅助电源负载图中未示出)。
在本发明公开的辅助源电路中,利用斩波开关导通时充电关断电路处于低 阻抗状态, 向第一电容 C1充电来获得辅助电源, 不需要最小斩波角度, 由此 消除了电磁干扰问题。
在实施中, 本发明公开的辅助源电路可以采用多种形式的斩波开关, 下面 结合具体实施例进行说明。
实施例四
参见图 7, 图 7为本发明实施例四公开的辅助源电路的电路图;
该辅助源电路包括: 斩波开关 71、 充电关断电路 72和第一电容 Cl。 其中, 斩波开关 71由整流桥 711和开关管 Q1组成, 整流桥 711包括二 极管 Dl、 D2、 D3和 D4, 二极管 D1阴极和二极管 D2阳极的公共端以及二极 管 D3阴极和二极管 D4阳极的公共端为整流桥 711的两个输入端,二极管 D2 阴极和二极管 D4阴极的公共端为整流桥 711的正输出端, 二极管 D1阳极和 二极管 D3阳极的公共端为整流桥 711的负输出端。 开关管 Q1的第一端与整 流桥 311的正输出端连接, 第二端接地, 控制端接入第一控制信号 Vgl。
斩波开关 71中整流桥 711的一个输入端连接交流电源的一端, 另一个输 入端连接负载的一端, 负载的另一端连接交流电源的另一端。 在本发明中, 负 载可以为开关电源类负载, 如 LED驱动器等。
充电关断电路 72的第一输出端与开关管 Q1的第一端连接、 第二输出端 与第一电容 C1的一端连接、 控制端接入第二控制信号 Vg2。 第一电容 C1的 另一端与开关管 Q1的第二端连接, 即接地。
在交流电源的正半周, 当第一控制信号 Vgl控制斩波开关 71导通(即开 关管 Q1导通)时, 且导通时工作在线性状态, 第二控制信号 Vg2控制充电关 断电路 72工作在低阻抗状态, 整流桥 711中的二极管 D2和 D3导通, 电流流
C1充电, 在第一电容 C1的两端获得辅助电压 Vcc; 当第一控制信号 Vgl控 制斩波开关 71关断(即开关管 Q1关断 ) 时, 第二控制信号 Vg2控制充电关 断电路 72处于高阻抗状态, 切断第一电容 C1的充电电路, 第一电容 C1不充 电。
在交流电源的负半周, 当第一控制信号 Vgl控制斩波开关 71导通(即开 关管 Q1导通)时, 且导通时工作在线性状态, 第二控制信号 Vg2控制充电关 断电路 72工作在低阻抗状态, 整流桥 711中的二极管 D4和 D1导通, 电流流
C1充电, 在第一电容 C1的两端获得辅助电压 Vcc; 当第一控制信号 Vgl控 制斩波开关 71关断(即开关管 Q1关断 ) 时, 第二控制信号 Vg2控制充电关 断电路 72处于高阻抗状态, 切断第一电容 C1的充电电路, 第一电容 C1不充 电。
实施例五
参见图 8, 图 8为本发明实施例五公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 81、 充电关断电路 82、 第六二极管 D6和 第一电容 Cl。
其中, 斩波开关 81仅由开关管 Q1构成, 开关管 Q1的第一端与交流电源 一端连接, 其第二端与负载一端连接, 控制端接入第一控制信号 Vgl , 交流电 源另一端连接负载另一端。充电关断电路 82的第一输出端通过第六二极管 D6 与开关管 Q1的第一端连接, 第六二极管 D6的阳极与开关管 Q1的第一端连 接, 其阴极与充电关断电路 82的第一输出端连接, 充电关断电路 82的第二输 出端与第一电容 C1的一端连接, 充电关断电路 82的输入端接入第二控制信 号 Vg2, 第一电容 C1的另一端与开关管 Ql的第二端连接, 即接地。
本实施例五公开的辅助源电路, 仅在交流电源的半个周期内产生辅助电 源, 其电路结构更加筒单。 当第一控制信号 Vgl控制斩波开关 81导通(即开 关管 Q1导通)时, 且导通时工作在线性状态, 第二控制信号 Vg2控制充电关 断电路 82工作在低阻抗状态, 电流流过开关管 Q1 , 在开关管 Q1两端产生的 压降经过充电关断电路 82向第一电容 C1充电,在第一电容 C1的两端获得辅 助电压 Vcc; 当第一控制信号 Vgl控制斩波开关 81关断(即开关管 Q1关断) 时, 第二控制信号 Vg2控制充电关断电路 82处于高阻抗状态, 切断第一电容 C1的充电电路, 第一电容 C1不充电。
实施例六
参见图 9, 图 9为本发明实施例六公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 91、 充电关断电路 92、 第七二极管 D7、 第 八二极管 D8和第一电容 Cl。
其中, 斩波开关 91 包括第一开关管 Q1 和第二开关管 Q2, 第一开关管 Q1 的第一端与交流电源的一端连接, 其第二端接地, 其控制端接入第一控制 信号 Vgl ; 第二开关管 Q2的第一端与负载一端连接, 其第二端接地, 其控制 端接入第一控制信号 Vgl; 交流电源另一端连接负载的另一端。
第七二极管 D7的阳极与第一开关管 Q1 的第一端连接, 第八二极管 D8 的阳极与第二开关管 Q2的第一端连接, 第七二极管 D7和第八二极管 D8的 阴极连接至充电关断电路 92的第一输出端。充电关断电路 92的第二输出端与 电容 C1的一端连接, 其输入端接入第二控制信号 Vg2, 电容 C1的另一端接 地。
在交流电源的正半周, 当第一控制信号 Vgl控制斩波开关 91导通时, 第 一开关管 Q1工作在线性状态, 而第二开关管 Q2导通, 此时, 第二控制信号 Vg2控制充电关断电路处于低阻抗状态, 第七二极管 D7 导通, 第一开关管 Ql和第二开关管 Q2两端的电压依次通过第七二极管 D7和充电关断电路 92 向第一电容 C1充电, 在第一电容 C1两端获得辅助电源 Vcc; 当第一控制信 号 Vgl控制斩波开关 92关断时, 第一开关管 Q1和第二开关管 Q2截止, 同 时第二控制信号 Vg2控制充电关断电路 92处于高阻抗状态, 切断第一电容 C1的充电通路, 第一电容 C1处于向辅助电源负载放电阶段。
在交流电源的负半周, 当第一控制信号 Vgl控制斩波开关 91导通时, 第 二开关管 Q2工作在线性状态, 而第一开关管 Q1导通, 此时, 第二控制信号 Vg2控制充电关断电路处于低阻抗状态, 第八二极管 D8 导通, 第一开关管 Q1和第二开关管 Q2两端的电压依次通过第八二极管 D8和充电关断电路 92 向第一电容 C1充电, 在第一电容 C1两端获得辅助电源 Vcc; 当第一控制信 号 Vgl控制斩波开关 92关断时, 第一开关管 Q1和第二开关管 Q2截止, 同 时第二控制信号 Vg2控制充电关断电路 92处于高阻抗状态, 切断第一电容 C1的充电通路, 第一电容 C1处于向辅助电源负载放电阶段。
在本实施例中, 第一开关管和第二开关管可以为 MOS管, 也可以为集电 极和发射极并联二极管的 IGBT, 其中二极管的阳极与 IGBT的发射极相连, 阴极与 IGBT的集电极相连。
与本发明实施例四公开的辅助源电路相比,实施例六公开的辅助电源结构 更筒单, 而且在交流电源的正半周和负半周均可以获得辅助电源。
实施例七
参见图 10, 图 10为本发明实施例七公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 101、 充电关断电路 102、 第七二极管 D7、 第八二极管 D8、 第一电容 Cl、 Boost变换器和第二电容 C2。 其中, 斩波开关 101、 充电关断电路 102、 第七二极管 D7、 第八二极管 D8和第一电容 C1的结 构与工作过程, 与实施例六公开的辅助源电路的结构和工作过程一致,在此不 再赘述。
在本实施例中, 第一开关管和第二开关管可以为 M0S管, 也可以为集电 极和发射极并联二极管的 IGBT, 其中二极管的阳极与 IGBT的发射极相连, 阴极与 IGBT的集电极相连。
Boost变换器的两个输入端连接于第一电容 C1的两端,第二电容 C2连接 于 Boost变换器的两个输出端之间, 并且第二电容 C2第一端接地。 当第一电容 CI两端的电压 Vdd不能够达到辅助源需要的电压 Vcc时,通 过在第一电容 C1两端连接 Boost变换器, 可以将辅助源电路的输出电压升高 到辅助源所需的电压 Vcc,将第二电容 C2两端产生的电压作为第二输出电压。
实施例八
参见图 11 , 图 11为本发明实施例八公开的辅助源电路的电路图。
该辅助源电路包括: 斩波开关 111、 充电关断电路 112、 第七二极管 D7、 第八二极管 D8、 第一电容 Cl、 Boost变换器、 第二电容 C2和辅助控制电路 113。
其中, 斩波开关 111 包括第一开关管 Q1和第二开关管 Q2, 第一开关管 Q1 的第一端与交流电源的一端连接, 其第二端接地, 其控制端接入第一控制 信号 Vgl; 第二开关管 Q2的第一端与负载一端连接, 其第二端接地, 其控制 端接入第一控制信号 Vgl , 交流电源另一端连接负载的另一端。
第七二极管 D7的阳极与第一开关管 Q1 的第一端连接, 第八二极管 D8 的阳极与第二开关管 Q2的第一端连接, 第七二极管 D7和第八二极管 D8的 阴极连接至充电关断电路 92的第一输出端。充电关断电路 92的第二输出端与 第一电容 C1的一端连接, 其输入端接入第二控制信号 Vg2, 第一电容 C1的 另一端接地。
在本实施例中, 第一开关管和第二开关管可以为 M0S管, 也可以为集电 极和发射极并联二极管的 IGBT , 其中二极管的阳极与 IGBT的发射极相连, 阴极与 IGBT的集电极相连。
Boost变换器的两个输入端连接于第一电容 C1的两端,第二电容 C2连接 于 Boost变换器的两个输出端之间, 并且第二电容 C2第一端接地。
辅助控制电路 113包括第一电阻 Rl、 第二电阻 R2、 第三电阻 R3、 第四 电阻 R4、 NPN三极管 Q3和 PNP三极管 Q4。 第一电阻 R1的一端与第一电容 C1的未接地端连接, 第一电阻 R1的另一端与第二电阻 R2的一端连接, 第二 电阻 R2的另一端接地(即第一电阻 R1和第二电阻 R2串联之后并联于第一电 容 C1两端); NPN三极管 Q3的基极与第一电阻 R1和第二电阻 R2的公共端 连接、 发射极接地、 集电极通过第三电阻 R3与 PNP三极管 Q4的基极连接, PNP三极管 Q4的发射极与第二电容 C2的未接地端连接、 集电极通过第四电 阻 R4连接至第一开关管 Q1和第二开关管 Q2的控制端。 辅助控制电路 113中, 电阻 R1和 R2检测第一电容 C1两端的电压 Vdd, 当 Vdd超过阈值时, 通过 NPN三极管 Q3和 PNP三极管 Q4, 使斩波开关 111 的门极信号电压升高, 是斩波开关 111导通时的工作状态接近饱和区, 从而降 低电容 C1充电的电压, 第二电容 C2两端的电压 Vdd也随之降低。
采用辅助控制电路 113实现闭环控制,使得辅助控制电路能够在获得所需 的供电电压 Vcc的情况下,尽可能降低斩波开关 111导通时的损耗,使其导通 时工作在损耗较低的线性状态。
需要说明的是, 本实施例中电阻 R1 和 R2 串联之后并联于第一电容 C1 两端,检测的是第一电容 C1的电压, 本发明的电阻 R1和 R2还可以串联之后 并联于第二电容 C2两端, 检测第二电容 C2的电压, 同样使辅助控制电路达 到闭环调节的效果, 使斩波开关 111导通时工作在损耗较低的线性状态。
图 11 中示出了充电关断电路的一种结构, 包括: 第五电阻 R5和第五开 关管 Q5。 其中, 第五电阻 R5的一端与第五开关管 Q5的控制端连接, 第五电 阻 R5的另一端与第五开关管 Q5的第一端连接、 并作为充电关断电路 112的 第一输出端, 第五开关管 Q5的第二端作为充电关断电路 112的第二输出端, 第五开关管 Q5的控制端为充电关断电路 112的输入端。
在以上的实施例四到实施例七中, 充电关断电路可以为: 仅包括第五开关 管, 该第五开关管的第一端为充电关断电路的第一输出端, 第二端为充电关断 电路的第二输出端, 控制端为充电关断电路的输入端, 并连接第二控制信号 Vg2。
在实施中, 开关管可以采用三极管、 MOS管、 IGBT和单向可控硅中的一 种。 当开关管采用三极管时, 第一端为集电极, 第二端为发射极, 控制端为基 极; 所述开关管为 MOS管时, 第一端为漏极, 第二端为源极, 控制端为栅极; 开关管为 IGBT时, 第一端为集电极, 第二端为发射极, 控制端为门极; 开关 管为单向可控硅时, 第一端为阳极, 第二端为阴极, 控制端为门极。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 筒单, 相关之处参见方法部分说明即可。

Claims

权 利 要 求
1、 一种辅助源电路, 其特征在于, 包括: 斩波开关、 钳位电路和电容; 所述钳位电路的高电位端与所述斩波开关内开关管的第二端相连、低电位 端接地;
所述电容的一端与所述钳位电路的低电位端相连,另一端与所述斩波开关 内开关管的第二端相连;
当所述斩波开关导通时, 所述钳位电路为所述电容充电, 当所述斩波开关 关断时, 所述电容不充电;
所述电容上的电压为辅助源电路的输出电压。
2、 根据权利要求 1所述的辅助源电路, 其特征在于, 所述斩波开关包括: 整流桥和开关管;
所述开关管的第一端与所述整流桥的正输出端相连,所述整流桥的负输出 端与所述钳位电路的低电位端相连,所述整流桥的一个输入端与交流电源的一 端相连, 所述整流桥的另一个输入端与负载端相连。
3、 根据权利要求 1所述的辅助源电路, 其特征在于, 所述斩波开关包括 开关管;
所述开关管的第一端与所述交流电源相连;
所述电容通过第五二极管与所述开关管的第二端相连,所述第五二极管的 阳极与所述开关管的第二端相连、所述第五二极管的阴极与所述电容的一端相 连;
所述钳位电路的低电位端与负载端相连。
4、 根据权利要求 1~3中任一项所述的辅助源电路, 其特征在于, 所述钳 位电路包括: 电阻和至少一个稳压管;
当所述钳位电路包括一个稳压管时, 所述电阻并联于所述稳压管的两端; 当所述钳位电路包括多个稳压管时,所述多个稳压管依次首尾连接构成支 路, 所述电阻并联于所述支路的两端。
5、 根据权利要求 1~3中任一项所述的辅助源电路, 其特征在于, 所述钳 位电路包括: 至少一个二极管;
当所述钳位电路包括一个二极管时,所述二极管的阳极为所述钳位电路的 高电位端, 所述二极管的阴极为所述钳位电路的低电位端; 当所述钳位电路包括多个二极管时,所述多个二极管依次首尾连接构成支 路, 所述支路的阳极端为所述钳位电路的高电位端、所述支路的阴极端为所述 钳位电路的低电位端。
6、 一种辅助源电路, 其特征在于, 包括: 斩波开关、 充电关断电路、 和 第一电容;
所述斩波开关内开关管的第一端与所述充电关断电路的第一输出端相连; 所述第一电容的一端与所述开关管的第二端相连、另一端与所述充电关断 电路的第二输出端相连;
所述充电关断电路的控制端接入第二控制信号, 当所述斩波开关导通时, 控制斩波开关工作在线性状态,控制所述充电关断电路处于低阻抗状态, 为所 述第一电容充电, 当所述斩波开关关断时,控制所述充电关断电路处于高阻抗 状态, 所述第一电容不充电;
所述第一电容上的电压为辅助源电路的第一输出电压。
7、 根据权利要求 6所述的辅助源电路, 其特征在于, 所述斩波开关包括: 整流桥和开关管;
所述开关管的第一端与所述整流桥的正输出端相连,所述开关管的第二端 与所述整流桥的负输出端相连,所述整流桥的一个输入端与交流电源的一端相 连, 所述整流桥的另一个输入端与负载端相连。
8、 根据权利要求 6所述的辅助源电路, 其特征在于, 所述斩波开关包括 开关管;
所述开关管的第一端与交流电源连接、 第二端与负载端相连;
所述开关管的第一端通过第六二极管与所述充电关断电路的第一输出端 相连, 所述第六二极管的阳极与所述开关管的第一端相连, 所述第六二极管的 阴极与所述充电关断电路的第一输出端相连。
9、 根据权利要求 6所述的辅助源电路, 其特征在于, 所述斩波开关包括 第一开关管和第二开关管;
所述第一开关管的第一端通过第七二极管与所述充电关断电路的第一输 出端相连, 同时所述第一开关管的第一端与交流电源的一端相连;
所述第二开关管的第一端通过第八二极管与所述充电关断电路的第一输 出端相连, 同时所述第二开关管的第一端与负载端相连; 所述第七二极管的阳极连接所述第一开关管的第一端,所述第八二极管的 阳极连接所述第二开关管的第一端;
第一开关管的第二端连接第二开关管的第二端,并与所述电容的另一端相 连。
10、根据权利要求 6~9中任一项所述的辅助源电路, 其特征在于, 进一步 包括 Boost升压变换器和第二电容;
所述 Boost变换器的两个输入端连接于所述第一电容的两端;
所述第二电容连接于所述 Boost升压变换器的两个输出端之间;
所述第二电容上的电压为辅助源电路的第二输出电压。
11、 根据权利要求 10所述的辅助源电路, 其特征在于, 进一步包括辅助 控制电路,所述辅助控制电路包括第一电阻、第二电阻、第三电阻、第四电阻、
NPN三极管和 PNP三极管;
所述第一电阻和第二电阻串联之后并联于所述第一电容的两端, 或者, 所 述第一电阻和第二电阻串联之后并联于所述第二电容的两端;
所述 NPN三极管的基极与所述第一电阻和第二电阻的公共端相连、 发射 极接地、 集电极通过所述第三电阻与所述 PNP三极管的基极相连;
所述 PNP三极管的发射极与所述第二电容的未接地端相连、 集电极通过 所述第四电阻与所述斩波开关中开关管的控制端相连。
12、 根据权利要求 11所述的辅助源电路, 其特征在于, 所述充电关断电 路包括: 第五开关管;
第五开关管的第一端为所述充电关断电路的第一输出端,所述第五开关管 的第二端为所述充电关断电路的第二输出端,所述第五开关管的控制端为所述 充电关断电路的输入端。
PCT/CN2011/077547 2011-02-23 2011-07-25 一种辅助源电路 WO2012113201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110045135.6A CN102651926B (zh) 2011-02-23 2011-02-23 一种辅助源电路
CN201110045135.6 2011-02-23

Publications (1)

Publication Number Publication Date
WO2012113201A1 true WO2012113201A1 (zh) 2012-08-30

Family

ID=46693797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077547 WO2012113201A1 (zh) 2011-02-23 2011-07-25 一种辅助源电路

Country Status (2)

Country Link
CN (1) CN102651926B (zh)
WO (1) WO2012113201A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578772A (zh) * 2014-12-26 2015-04-29 福建联迪商用设备有限公司 一种升压电路
CN110266181B (zh) * 2018-03-12 2022-03-25 中兴通讯股份有限公司 一种钳位电路及钳位方法
CN109378886A (zh) * 2018-10-26 2019-02-22 杰华特微电子(杭州)有限公司 一种单火线供电电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619081A (en) * 1994-01-18 1997-04-08 Leviton Manufacturing Co., Inc. Asymmetrical AC trigger simulation
CN101171885A (zh) * 2005-05-12 2008-04-30 路创电子公司 具有电源监视电路的调光器
US20090200952A1 (en) * 2008-02-08 2009-08-13 Purespectrum, Inc. Methods and apparatus for dimming light sources
CN101584249A (zh) * 2006-03-17 2009-11-18 路创电子公司 用于防止不对称电流流过空载的磁低压变压器的调光器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201995178U (zh) * 2011-02-23 2011-09-28 英飞特电子(杭州)有限公司 一种辅助源电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619081A (en) * 1994-01-18 1997-04-08 Leviton Manufacturing Co., Inc. Asymmetrical AC trigger simulation
CN101171885A (zh) * 2005-05-12 2008-04-30 路创电子公司 具有电源监视电路的调光器
CN101584249A (zh) * 2006-03-17 2009-11-18 路创电子公司 用于防止不对称电流流过空载的磁低压变压器的调光器
US20090200952A1 (en) * 2008-02-08 2009-08-13 Purespectrum, Inc. Methods and apparatus for dimming light sources

Also Published As

Publication number Publication date
CN102651926B (zh) 2014-05-28
CN102651926A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
CN102802301B (zh) 调光信号生成装置和使用该装置的照明控制系统
CN108337789B (zh) 一种单火线调光电路及调光装置
US8502463B2 (en) LED driver circuit with open load detection and associated control method
CN103858521A (zh) Led照明装置
CN205124089U (zh) 一种led驱动电路及led灯
WO2017049900A1 (zh) Igbt短路检测保护电路及基于igbt的可控整流电路
TW201410070A (zh) 控制led之裝置及方法
US9723667B1 (en) Output tuning and dimming interface for an LED driver
US9693411B1 (en) LED driver configuration and dimming interface for dynamic adjustment of driver operating parameters
WO2012136042A1 (zh) 一种两线调光器的辅助电源电路
CN107172752B (zh) 一种兼容电压范围广的电子调光器
CN104540271B (zh) 一种自适应型led驱动电路
CN103124456A (zh) Led点亮装置
WO2018157345A1 (zh) Led灯具及led亮度调节电路
CN104968106B (zh) 一种兼容高频电子镇流器和低频输入的led驱动电路
WO2012113201A1 (zh) 一种辅助源电路
CN109286324B (zh) 一种交流转换控制电路和装置
CN109980921B (zh) 开关恒流控制器及开关恒流电源驱动电路
CN206024154U (zh) Led调光装置及led驱动电源
CN112437521B (zh) 一种基于mosfet的智能后沿调光装置
CN218162942U (zh) 耐核辐射的led驱动器电路
CN213783662U (zh) 一种灯源恒压输出调光电路
CN212344104U (zh) 基于可控硅调光的led灯管
CN102802310B (zh) 一种调光器、调光系统和调光方法
CN208434144U (zh) Led驱动电路和包括该led驱动电路的灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859415

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/04/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11859415

Country of ref document: EP

Kind code of ref document: A1