WO2012113169A1 - 上行控制信息复用时的资源分配方法和装置 - Google Patents

上行控制信息复用时的资源分配方法和装置 Download PDF

Info

Publication number
WO2012113169A1
WO2012113169A1 PCT/CN2011/072477 CN2011072477W WO2012113169A1 WO 2012113169 A1 WO2012113169 A1 WO 2012113169A1 CN 2011072477 W CN2011072477 W CN 2011072477W WO 2012113169 A1 WO2012113169 A1 WO 2012113169A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
code rate
service
rbs
Prior art date
Application number
PCT/CN2011/072477
Other languages
English (en)
French (fr)
Inventor
贾文娟
毛凯
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012113169A1 publication Critical patent/WO2012113169A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Definitions

  • the present invention relates to the field of communications, and in particular to a resource allocation method and apparatus for multiplexing uplink control information. Background technique
  • the uplink physical channel mainly includes a PUCCH (Physical Uplink Control Channel) and a PUSCH (Physical Uplink Control Channel).
  • the uplink control information includes ACK (Acknowledge)/NACK (Non-Acknowledge), CQI (Channel Quality Indicator), RI (Right Indicator), PMI (Precoding Matrix) Indecator, precoding matrix indication) and other information.
  • the PUSCH may transmit only uplink shared channel data, or may only transmit uplink control information, or simultaneously transmit uplink shared channel data and uplink control information.
  • a corresponding resource is allocated to a plurality of user terminals in the cell according to the size of the SR (Scheduling Request) response and the uplink channel quality. It does not consider whether each user carries the uplink control information and the size of the uplink control information. Due to the multiplexing of the uplink control information, the code rate of the service information is increased, resulting in an increase in the error rate of the traffic channel, which affects the throughput of the system.
  • a main object of the present invention is to provide a resource allocation method and apparatus for multiplexing control information to solve the problem that the error rate of a traffic channel increases due to multiplexing of uplink control information, which affects the throughput problem of the system.
  • a resource allocation method for multiplexing uplink control information including: according to MLP (MAC (Media Access Control) Logical Channel Priority, MAC replenishment channel priority)
  • the UE User Equipment
  • RB Resource Block
  • the step of calculating the code rate of the service when the uplink control information is multiplexed includes: determining whether the current MLP is the first MLP of the UE; if the current MLP is the first MLP of the UE, the initial allocated RB is And an initial MCS (Modulation Coding Scheme) value allocated for the UE to calculate a code rate upper limit of the service when the uplink control information is multiplexed and a code rate of the service when the uplink control information is multiplexed; if the current MLP is not the UE
  • the first MLP calculates the upper rate limit of the service when the uplink control information is not multiplexed and the code rate of the service when the uplink control information is multiplexed according to the total number of allocated RBs and the initial MCS value.
  • the step of augmenting the initially allocated RB according to the code rate of the service includes: determining whether the calculated code rate of the uplink control information is greater than the upper limit of the code rate; and if the calculated uplink control information is used for multiplexing If the code rate is greater than the upper code rate, the initially allocated RB is expanded.
  • the step of augmenting the initially allocated RBs includes: calculating the number N of RBs to be expanded, and determining whether the total number of unassigned RBs is greater than or equal to N; if the total number of unassigned RBs is greater than or equal to N, assigning to the UE An RB of the number N, where the total number of RBs allocated to the UE is the sum of the number of initially allocated RBs and N; if the total number of unallocated RBs is less than N, the MCS value is decreased.
  • the resource allocation method for multiplexing the uplink control information under the predetermined condition further includes: performing a backoff on the number of RBs that are extended after the UE multiplexes the control information, where the predetermined condition includes: the first MLP for the UE The RB has been extended for the UE, and the current MLP of the UE is not the first MLP, and for the current MLP, the code rate of the service of the current MLP is less than or equal to the upper limit of the code rate.
  • the code rate of the service when the uplink control information is multiplexed is greater than the code rate upper limit of the service when the uplink control information is multiplexed:
  • the code of the service when the uplink control information is multiplexed is not used.
  • the step of reducing the MCS value includes: repeating the following steps, until the code rate of the service when the uplink control information is multiplexed is less than or equal to the upper code rate limit of the service when the uplink control information is not multiplexed, where if the MCS value is 0, the UE is stopped.
  • Sending data: Let MCS i MCS value -1, and calculate the upper rate limit of the service when no uplink control information is multiplexed and the code rate of the service when the uplink control information is multiplexed according to the MCS value and the total number of allocated RBs.
  • the step of initially allocating RBs to the UE according to the MLP includes: initially allocating RBs to the UE according to the order in which the MLPs are from low to high.
  • a resource allocation apparatus for multiplexing uplink control information including: an initial allocation unit configured to initially allocate RBs to a UE according to an MLP; and a calculating unit configured to calculate uplink control information multiplexing The code rate of the service at the time; the expansion unit is set to augment the initially allocated RB according to the code rate of the service.
  • the calculation unit includes: a first determining module, configured to determine whether the current MLP is the first MLP of the UE; and the first calculating module is configured to: when the current MLP is the first MLP of the UE, The allocated RB and the initial MCS value allocated for the UE are used to calculate the upper rate limit of the service when the uplink control information is multiplexed and the code rate of the service when the uplink control information is multiplexed; the second calculation module is set to not be the UE at the current MLP. In the first MLP, the total number of allocated RBs and the initial MCS value are used to calculate the upper rate limit of the service when the uplink control information is not multiplexed and the code rate of the service when the uplink control information is multiplexed.
  • the expansion unit includes: a second determining module, configured to determine whether the code rate of the service when the calculated uplink control information is multiplexed is greater than a code rate upper limit; and the expansion module is configured to perform the service when the calculated uplink control information is multiplexed When the code rate is greater than the upper limit of the code rate, the initially allocated RB is expanded.
  • the expansion module further includes: a third calculation submodule, configured to calculate the number N of RBs to be expanded; a third determination submodule, configured to determine whether the total number of unassigned RBs is greater than or equal to N; the allocation submodule is set to When the total number of unassigned RBs is greater than or equal to N, an RB of the number N is allocated to the UE, where the total number of RBs allocated to the UE is the sum of the number of initially allocated RBs and the sum of N; When the total number of unallocated RBs is less than N, the MCS value is lowered.
  • a third calculation submodule configured to calculate the number N of RBs to be expanded
  • a third determination submodule configured to determine whether the total number of unassigned RBs is greater than or equal to N
  • the allocation submodule is set to When the total number of unassigned RBs is greater than or equal to N, an RB of the number N is allocated to the UE,
  • the technical solution for augmenting the RBs initially allocated by the UE is used to solve the problem that the multiplex rate of the uplink control information is increased, and the error rate of the traffic channel is increased, which affects the throughput of the system.
  • the problem achieves the optimal use of RB, improves the system utilization of RB, and improves the throughput.
  • FIG. 1 is a preferred flowchart of a method for resource allocation when uplink control information is multiplexed according to an embodiment of the present invention
  • FIG. 2 is a diagram of multiplexing control information according to an embodiment of the present invention.
  • FIG. 3 is another block diagram of a resource allocation apparatus for multiplexing control information according to an embodiment of the present invention
  • FIG. 1 is a preferred flowchart of a resource allocation method for multiplexing control information according to an embodiment of the present invention, including:
  • the S102 Initially allocate RBs to the UE according to the MLP.
  • the RBs are initially allocated to the multiple UEs according to the order of the MLPs from ⁇ to high.
  • the initially allocated RB is expanded according to the code rate of the service.
  • the technical solution for augmenting the RBs initially allocated by the UE is used to solve the problem that the multiplex rate of the uplink control information increases, the error rate of the service channel increases, and the throughput of the system is affected, thereby achieving the problem.
  • Optimal use of RBs improves system utilization of RBs and improves throughput.
  • the step of calculating the code rate of the service when the uplink control information is multiplexed includes, but is not limited to, the following steps: S1, determining whether the current MLP is the first MLP of the UE; S2, if the current MLP is the first of the UE The MLP is used to calculate the upper rate limit of the service when the uplink control information is not multiplexed and the code rate of the service when the uplink control information is multiplexed according to the initially allocated RB and the initial MCS value allocated for the UE; S3, if the current MLP If the first MLP is not the UE, the upper limit of the rate of the service when the uplink control information is not multiplexed and the code rate of the service when the uplink control information is multiplexed are calculated according to the total number of allocated RBs and the initial MCS value.
  • the MCS value ranges from 0-28.
  • the present invention is not limited to the above-mentioned judgment and calculation process.
  • the code rate after multiplexing UCI Uplink Control Information
  • the code rate after multiplexing the UCI is certainly not high. Therefore, step S3 may not be performed, that is, it is not necessary to enter the above rate control process to determine the code rate once, and stop the initial allocation.
  • the expansion of the RB directly transfers the UE data. At this time, the calculation process can be simplified by increasing whether a code rate satisfies the requirement flag.
  • the present invention is not limited to the above-described determination conditions, and it is also possible to determine whether or not to perform an operation of augmenting the initially allocated RBs by other determination conditions.
  • the number of RBs to be expanded may be first calculated, and the total number of unassigned RBs is greater than or equal to N; if the total number of unassigned RBs is greater than or equal to N, the UE is The number of RBs allocated to the UE is allocated, and the total number of RBs allocated to the UE is the sum of the number of initially allocated RBs and N. For example, the number of RBs initially allocated to the UE is 10, and in the augmentation process, 5 RBs are allocated to the UE, and after the expansion, the total number of RBs allocated for the UE is 15.
  • the following steps may be repeated until the code rate of the service when the uplink control information is multiplexed is less than or equal to the code rate of the service when the uplink control information is multiplexed.
  • the present invention is not limited to the above-described recursive calculation process, and the number N of RBs that need to be expanded can be calculated by a similar recursive process.
  • the operation of lowering the MCS value is performed without performing an operation of augmenting the initially allocated RBs.
  • the following steps can be repeated until the code rate of the service when the uplink control information is multiplexed is less than or equal to the upper limit of the rate of the service when the uplink control information is not multiplexed:
  • MCS ⁇ i The MCS value is -1, and the upper limit of the rate of the service when the uplink control information is multiplexed and the code rate of the service when the uplink control information is multiplexed are calculated according to the MCS value and the total number of allocated RBs.
  • the MCS value 0, the UE is stopped from transmitting data.
  • the present invention is not limited to the above-described recursive calculation process, and the MCS value can be reduced by a similar recursive process.
  • the purpose of the ⁇ MCS value is not limited to the above-described recursive calculation process, and the MCS value can be reduced by a similar recursive process.
  • the resource allocation method when the uplink control information is multiplexed under predetermined conditions further includes: performing a back-off of the number of RBs that are extended after the multiplex control information of the UE, where the predetermined condition includes: MLP, the RB has been extended for the UE, and the current MLP of the UE is not the first MLP, and for the current MLP, the code rate of the service when the uplink control information is multiplexed under the current MLP is less than or equal to the upper limit of the code rate, that is, the UE is not required. Perform RB expansion.
  • all the RBs that are extended or a part of the RBs are released, so that the released RBs can be used by other UEs, and the RB resources are optimized to improve the throughput of the cells.
  • the initially allocated RBs can be extended according to the code rate of the service, and the RB is reasonably extended to the UE, which saves resources, and ensures that the MCS is reduced when the RB cannot be extended to the UE.
  • the value is used to ensure that the UE performs normal data transmission. When the MCS value is reduced to zero, the UE is not scheduled, and the resources are used by other UEs.
  • FIG. 2 is a block diagram showing a preferred structure of a resource allocation apparatus for multiplexing control information according to an embodiment of the present invention, including: an initial allocation unit 202, configured to initially allocate RBs to a UE according to an MLP; 204, connected to the initial allocation unit 202, configured to calculate a code rate of the service when the uplink control information is multiplexed; the expansion unit 206 is connected to the computing unit 204, and is set to a code rate of the service to augment the initially allocated RB.
  • the technical solution for augmenting the RBs initially allocated by the UE is used to solve the problem that the multiplex rate of the uplink control information increases, the error rate of the service channel increases, and the throughput of the system is affected, thereby achieving the problem.
  • FIG. 3 is a block diagram showing another structure of the resource allocation apparatus for multiplexing the uplink control information according to the embodiment of the present invention, where: the calculating unit 204 includes: a first determining module that connects the initial allocation unit 202. 2041. The first computing module 2042 and the second computing module 2043 are respectively connected to the first determining module 2041.
  • the expansion unit 206 includes: a second determining module 2061 connecting the first computing module 2042 and the second computing module 2043, and connecting the second determining
  • the expansion module 2062 of the module 2061 further includes: a third calculation sub-module 20621, a third determination sub-module 20622, and an allocation sub-module 20623, which are sequentially connected, and the expansion module 2062 further includes a connection third judgment sub-module The dropout sub-module 20624 of 20622.
  • the calculating unit 204 calculates the code rate of the service when the uplink control information is multiplexed by, but not limited to, the following operations:
  • the first determining module 2041 determines whether the current MLP is the first MLP of the UE; if the current MLP is the UE The first MLP, the first calculation module 2042 calculates the upper rate limit of the service when the uplink control information is not multiplexed and the code rate of the service when the uplink control information is multiplexed according to the initially allocated RB and the initial MCS value allocated for the UE.
  • the second calculating module 2043 calculates the upper limit of the code rate and the uplink control information multiplexing when the uplink control information is not multiplexed according to the total number of allocated RBs and the initial MCS value.
  • the code rate of the service is not the first MLP of the UE.
  • the present invention is not limited to the determining operation of the first determining module 2041, and the calculating operations of the first calculating module 2042 and the second calculating module 2043, for example, if the current MLP is the first MLP, multiplexing UCI (Uplink Control) After the information rate of the uplink control information is not high, for the second MLP, since the number of RBs allocated to the UE increases, the code rate after multiplexing the UCI is certainly not high, and therefore, the second calculation may not be performed.
  • the calculation operation of the module 2043 that is, does not need to enter the above-mentioned rate control flow to determine the code rate once, and stops the expansion of the initially allocated RB, and directly transmits the UE data.
  • the second determining module 2061 may first determine whether the calculated code rate of the uplink control information is greater than the upper limit of the code rate; if the calculated uplink control information is used for multiplexing The code rate is greater than the upper limit of the code rate, and the second determining module 2061 informs the expansion module 2062 to augment the initially allocated RB.
  • the present invention is not limited to the above-described determination conditions, and it is also possible to determine whether or not to perform an operation of augmenting the initially allocated RBs by other determination conditions.
  • the expansion module 2062 can also actively obtain the judgment result of the second judging module 2061, so as to expand the initially allocated RB according to the judgment result.
  • the third computing submodule 20621 may first calculate the number N of RBs to be expanded, and the third determining submodule 20622 determines whether the total number of unallocated RBs is greater than or equal to N; If the total number of unassigned RBs is greater than or equal to N, the third determining sub-module 20622 informs the allocation sub-module 20623 to allocate an RB of the number N to the UE, where the total number of RBs allocated to the UE is the number of initially allocated RBs. The sum of N.
  • the number of RBs initially allocated to the UE is 10, and in the augmentation process, 5 RBs are allocated to the UE, and after the expansion, the total number of RBs allocated for the UE is 15.
  • the allocation sub-module 20623 can also actively obtain the judgment result of the third judging sub-module 20622, so as to allocate an RB of the number N to the UE according to the judgment result.
  • the third calculating sub-module 20621 may repeat the following operations until the second determining module 2061 determines that the code rate of the service when the uplink control information is multiplexed is less than or equal to the no-uplink control information multiplexing.
  • the present invention is not limited to the above-described recursive calculation process, but can also be performed by a similar recursive process.
  • the third calculating sub-module 20621 calculates the number N of RBs to be expanded, if the third determining sub-module 20622 determines that the total number of unallocated RBs is less than N, the third determining sub-module 20622 informs the descending sub-module 20624 to perform the descending
  • the operation of the MCS value is performed without performing an operation of augmenting the initially allocated RB.
  • the descending sub-module 20624 can repeat the following operations until the second determining module 2061 determines that the code rate of the service when the uplink control information is multiplexed is less than or equal to the service when the uplink control information is multiplexed.
  • the MCS value MCS value -1
  • the allocation sub-module 20623 further performs a back-off of the number of RBs that are extended after the UE multiplexes the control information, where the predetermined condition includes: for the first MLP of the UE, the RB has been extended for the UE, The current MLP of the UE is not the first MLP, and for the current MLP, the second determining module 2061 determines that the code rate of the service when the uplink control information is multiplexed under the current MLP is less than or equal to the upper limit of the code rate, that is, the UE does not need to be performed.
  • RB expansion includes: for the first MLP of the UE, the RB has been extended for the UE, The current MLP of the UE is not the first MLP, and for the current MLP, the second determining module 2061 determines that the code rate of the service when the uplink control information is multiplexed under the current MLP is less than or equal to the upper limit of the code rate, that is, the UE does not need to
  • the released RBs or a part of the RBs are released, so that the released RBs can be used by other UEs, and the RB resources are optimized to improve the throughput of the cells.
  • the initially allocated RBs may be expanded according to the code rate of the service, and the RB is reasonably extended to the UE, which saves resources and ensures that the RB cannot be performed on the UE.
  • the MCS value is reduced to ensure that the UE performs normal data transmission.
  • the MCS value is reduced to zero, the UE is not scheduled, and the resources are used by other UEs.
  • Embodiment 3 This embodiment provides a resource allocation method for multiplexing uplink control information.
  • resources are allocated to a UE according to an MLP (MAC Logical Channel Priority). The scheduling and allocation of RBs is performed according to the MLP from small to large.
  • MLP MAC Logical Channel Priority
  • FIG. 4 is another flowchart of a resource allocation method when the uplink control information is multiplexed according to an embodiment of the present invention.
  • the process of the embodiment is specifically implemented by the base station side. It is assumed that the number of RBs allocated to the UE on each MLP is RB Last , which mainly includes the following steps:
  • S401 Determine whether the UCI_flag (uplink control information flag) (the value is initialized to 0) is equal to zero. If it is equal to zero, the allocation process when the uplink control information is multiplexed is performed. If not, the flow is exited.
  • the consideration of this step is mainly for the case where the multiplexed uplink control information is small. If the code rate is not high at the first MLP, it can be determined that the code rate is not high at the second MLP. Therefore, there is no need to enter the RB and MCS value adjustment process.
  • step 4 S402 Determine whether the current MLP is the first MLP of the UE, if yes, go to step S403, if no, perform step 4 S409.
  • the first MLP and the second MLP of the UE are treated differently.
  • the first MLP performs the RB expansion
  • the second MLP if the RB expansion is not required, only The normal RB allocation process can achieve the code rate requirement for multiplexing the uplink control information.
  • the extended RB needs to be rolled back. The purpose of this is to make the RB that is rolled back.
  • the rewinding operation may include releasing all the RBs that are expanded, or releasing only a part of the RBs that are expanded, if it is determined that the code rate requirement of the multiplexed uplink control information is reached.
  • step S404 Determine whether the code rate R of the service when the CQI/PMI/RI is multiplexed is greater than the upper limit R of the code rate. In this case, the determination condition of whether the upper limit of the code rate is greater than the current code rate after multiplexing the uplink control information is high. The judgment condition is that only when the code rate is high, it is necessary to consider the extension of the RB resource. If the code rate R of the service when the CQI/PMI/RI is multiplexed is greater than the upper rate limit R, step S405 is performed. If it is less than, the UCI_flag is set to 1, and step S408 is performed.
  • step S405 After calculation of the need to expand the multiplexed uplink control information, the code rate R 'is greater than the upper limit code rate R RB itRB UCI m, while RB is determined whether there is available, if so, performing step S406, and if not, to step S407.
  • Judging the available RBs is mainly to judge whether t ⁇ ⁇ 101 - RB ) & ⁇ Laa + ⁇ UCI - RB ⁇ ⁇ Rerf ), where R3 ⁇ 4.
  • RB rf power is the maximum number that can be supported, R5 Rerf for the remainder of the maximum number of consecutive RB.
  • Step S408 is performed.
  • S407 The MCS value of the reduced allocation.
  • R The code rate upper limit R and the code rate R of the service when the uplink control information is multiplexed, and whether R is greater than R. If R is greater than R, the MCS value MCS value-1 operation is continued until the code rate R is less than or equal to R. Therefore, it should be noted here that if the MCS value is 0, the code rate is still high, then the data transmission of the current UE is abandoned, and the resources of the UE are used by other UEs.
  • S408 Output UCI_flag, RB UCI w , RB tRB Last allocated by the MLP, and total RB number RB UE allocated by the UE .
  • S411 Perform a rollback operation of the RB.
  • the number of RBs allocated and the initial MCS value at this time have met the requirements for multiplexing the uplink control information. Since the multiplexing of the uplink control information introduces additional RBs, the RB needs to be rolled back for subsequent UE use.
  • the RB resource is allocated to the UE in the second MLP, the RB resources allocated on the two MLPs are accumulated, and after the uplink information is multiplexed, the code rate R is less than the upper limit R of the code rate. Considering whether the RB resource allocated when considering the uplink control information in the case of the first MLP is high can be rolled back.
  • the fallback mechanism of the RB is mainly introduced to optimize the RB resources, thereby improving the throughput of the cell.
  • the resource allocation method for multiplexing the uplink control information provided in this embodiment is applicable to all users in the cell that perform control information multiplexing, and performs low-to-high allocation according to MLP. After the resource is used, the processing of multiplexing the uplink control information is performed again, and the bit rate of the traffic channel data when the uplink information is controlled and multiplexed is considered. If the code rate is greater than the upper limit of the code rate, the processing of expanding the RB is prioritized. For the available RBs, consider dropping the MCS value until the code rate is less than or equal to the upper limit of the code rate.
  • the UE allocates resources in both MLPs, if the code rate is lower than the upper limit of the code rate in the second MLP, it will be considered.
  • the RB's fallback operation that is, if the sum of the resources allocated by the two MLPs causes the code rate of the traffic channel to be less than the upper limit of the code rate, the number of RBs added when the first MLP is rolled back, so that the RB can be optimally utilized, and thus Improve RB system utilization and ultimately improve throughput
  • steps 406 and 407 two ways of multiplexing the uplink control information are considered. If there are available RBs, the processing of increasing the RBs is prioritized, and if there are no available RBs, the processing of lowering the MCS values is considered.
  • the present invention achieves the following technical effects: By adding the foregoing resource allocation apparatus when pre-dividing RBs, and using the resource allocation method, the PUSCH channel when multiplexing control information can be multiplexed There is a more suitable RB and a suitable MCS value, so that the transmission success rate of the uplink control information multiplexed on the PUSCH channel is increased, and the transmission success rate of the traffic channel is increased, thereby effectively improving the throughput of the system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or make multiple modules or steps in them Implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

上^ f亍控制信息复用时的资源分配方法和装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种上行控制信息复用时的资源 分配方法和装置。 背景技术
LTE ( Long Term Evolution, 长期演进) 系统中, 上行物理信道主要有 PUCCH ( Physical Uplink Control Channel , 物理上行控制信道), PUSCH ( Physical Uplink Control Channel,物理上行共享信道) 等信道组成。 上行控 制信息 包括上行反馈的 ACK ( Acknowledge,正确应答 ) /NACK ( Non- Acknowledge,错误应答), CQI ( Channel Quality Indicator, 信道质量 指示), RI ( Rank Indicator, 秩指示信息), PMI ( Precoding Matrix Indecator, 预编码矩阵指示)等信息。 PUSCH可以只传输上行共享信道数据, 也可以只 传输上行控制信息, 或者, 同时传输上行共享信道数据和上行控制信息。 现有技术中, 在对传输上行控制信息的 PUSCH进行资源分配时, 一般 是根据 SR ( Scheduling Request, 调度请求)响应的大小以及上行信道质量给 小区里的多个用户终端分配对应的资源, 而没有考虑每个用户上是否承载上 行控制信息以及上行控制信息的大小。 由于上行控制信息的复用, 会让业务 信息的码率增大, 导致业务信道误码率增加, 影响系统的吞吐量。 发明内容 本发明的主要目的在于提供一种上行控制信息复用时的资源分配方法和 装置, 以解决由于上行控制信息的复用, 导致业务信道误码率增加, 影响系 统的吞吐量问题。 根据本发明的一个方面, 提供了一种上行控制信息复用时的资源分配方 法, 包括: 按照 MLP ( MAC ( Media Access Control, 媒体接入控制) Logical Channel Priority, MAC還辑信道优先级)对 UE ( User Equipment, 用户设备 ) 初始分配 RB ( Resource Block, 资源块); 计算上行控制信息复用时的业务的 码率; 据业务的码率对初始分配的 RB进行扩充。 其中, 计算上行控制信息复用时业务的码率的步骤包括: 判断当前的 MLP是否为 UE的第一个 MLP; 若当前的 MLP为 UE的第一个 MLP, 则才艮 据初始分配的 RB以及为 UE分配的初始 MCS ( Modulation Coding Scheme, 调制编码方案)值计算无上行控制信息复用时业务的码率上限和上行控制信 息复用时业务的码率; 若当前的 MLP不为 UE的第一个 MLP, 则根据已分 配 RB的总数及初始 MCS值计算无上行控制信息复用时业务的码率上限和上 行控制信息复用时业务的码率。 其中, 根据业务的码率对初始分配的 RB进行扩充的步骤包括: 判断计 算得到的上行控制信息复用时业务的码率是否大于码率上限; 若计算得到的 上行控制信息复用时业务的码率大于码率上限, 则对初始分配的 RB进行扩 充。 其中, 对初始分配的 RB进行扩充的步骤包括: 计算需要扩充的 RB的 数量 N, 并判断未分配的 RB的总数是否大于等于 N; 若未分配的 RB的总 数大于等于 N, 则为 UE分配数量为 N的 RB, 其中, 已分配给 UE的 RB的 总数为初始分配的 RB的个数与 N之和; 若未分配的 RB的总数小于 N, 则 降低 MCS值。 其中, 计算需要扩充的 RB的数量 N的步骤包括: 重复以下步骤, 直至 上行控制信息复用时业务的码率小于等于无上行控制信息复用时业务的码率 上限: ^ N=N+1 , 并根据已分配的 RB的总数及初始 MCS值计算无上行控 制信息复用时业务的码率上限和上行控制信息复用时业务的码率, 其中, 已 分配的 RB的总数 =N+初始分配的 RB的个数, N的初始值为 0。 其中, 在预定的条件下, 上行控制信息复用时的资源分配方法还包括: 对 UE复用控制信息后扩充的 RB数进行回退, 其中, 预定的条件包括: 对 于 UE的第一个 MLP, 已为 UE扩充 RB, UE的当前 MLP不为第一个 MLP, 且对于当前 MLP, 当前 MLP下的上行控制信息复用时业务的码率小于等于 码率上限; 其中, 回退步骤包括: 重复以下步骤, 直至上行控制信息复用时 业务的码率大于无上行控制信息复用时业务的码率上限: 计算已分配的 RB 的总数- 1时, 无上行控制信息复用时业务的码率上限和上行控制信息复用时 业务的码率, 若此时上行控制信息复用时业务的码率小于等于码率上限, 则 已分配的 RB的总数 =已分配的 RB的总数 -1。 其中, 降低 MCS值的步骤包括: 重复以下步骤, 直到上行控制信息复 用时业务的码率小于等于无上行控制信息复用时业务的码率上限, 其中, 若 MCS值 =0, 则停止 UE发送数据: 令 MCS i=MCS值 -1 , 并根据 MCS值以 及已分配的 RB的总数计算无上行控制信息复用时业务的码率上限和上行控 制信息复用时业务的码率。 其中, 按照 MLP对 UE初始分配 RB的步骤包括: 按照 MLP由低到高 的顺序对 UE初始分配 RB。 根据本发明的另一方面, 提供了一种上行控制信息复用时的资源分配装 置, 包括: 初始分配单元, 设置为按照 MLP对 UE初始分配 RB; 计算单元, 设置为计算上行控制信息复用时的业务的码率; 扩充单元, 设置为根据业务 的码率对初始分配的 RB进行扩充。 其中, 计算单元包括: 第一判断模块, 设置为判断当前的 MLP 是否为 UE的第一个 MLP; 第一计算模块, 设置为在当前的 MLP为 UE的第一个 MLP时, 才艮据初始分配的 RB以及为 UE分配的初始 MCS值计算无上行控 制信息复用时业务的码率上限和上行控制信息复用时业务的码率; 第二计算 模块, 设置为在当前的 MLP不为 UE的第一个 MLP时, 居已分配的 RB 的总数及初始 MCS值计算无上行控制信息复用时业务的码率上限和上行控 制信息复用时业务的码率。 其中, 扩充单元包括: 第二判断模块, 设置为判断计算得到的上行控制 信息复用时业务的码率是否大于码率上限; 扩充模块, 设置为在计算得到的 上行控制信息复用时业务的码率大于码率上限时, 对初始分配的 RB进行扩 充。 其中, 扩充模块还包括: 第三计算子模块, 设置为计算需要扩充的 RB 的数量 N; 第三判断子模块, 设置为判断未分配的 RB的总数是否大于等于 N; 分配子模块, 设置为在未分配的 RB的总数大于等于 N时, 为 UE分配 数量为 N的 RB, 其中, 已分配给 UE的 RB的总数为初始分配的 RB的个数 和 N之和; 降低子模块,设置为在未分配的 RB的总数小于 N时, 降低 MCS 值。 通过本发明, 釆用对 UE初始分配的 RB进行扩充的技术方案, 解决了 由于上行控制信息的复用, 导致业务信道误码率增加, 影响系统的吞吐量的 问题, 进而达到了最优地利用 RB, 提高 RB的系统利用率, 提高吞吐量的效 果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例的上行控制信息复用时的资源分配方法的一种 优选流程图; 图 2是才艮据本发明实施例的上行控制信息复用时的资源分配装置的一种 优选结构框图; 图 3是才艮据本发明实施例的上行控制信息复用时的资源分配装置的另一 种结构框图; 图 4是才艮据本发明实施例的上行控制信息复用时的资源分配方法的另一 种流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例 1 图 1是才艮据本发明实施例的上行控制信息复用时的资源分配方法的一种 优选流程图, 包括:
S 102, 按照 MLP对 UE初始分配 RB, 优选的, 按照 MLP由氐到高的 顺序对多个 UE初始分配 RB;
S 104, 计算上行控制信息复用时的业务的码率;
S 106, 才艮据业务的码率对初始分配的 RB进行扩充。 在本优选实施例中, 釆用对 UE初始分配的 RB进行扩充的技术方案, 解决了由于上行控制信息的复用, 导致业务信道误码率增加, 影响系统的吞 吐量的问题, 进而达到了最优地利用 RB, 提高 RB的系统利用率, 提高吞吐 量的效果。 优选的, 计算上行控制信息复用时业务的码率的步骤包括但不仅限于如 下步骤: S 1 ,判断当前的 MLP是否为 UE的第一个 MLP; S2,若当前的 MLP 为 UE的第一个 MLP, 则才艮据初始分配的 RB以及为 UE分配的初始 MCS 值计算无上行控制信息复用时业务的码率上限和上行控制信息复用时业务的 码率; S3 , 若当前的 MLP不为 UE的第一个 MLP, 则才艮据已分配 RB的总 数及初始 MCS值计算无上行控制信息复用时业务的码率上限和上行控制信 息复用时业务的码率。 优选的, MCS值的取值范围为 0-28。 当然, 本发明不仅限于上述判断和计算过程, 例如, 若当前 MLP 为第 一个 MLP时, 复用 UCI ( Uplink Control information, 上行控制信息)之后 的码率不高, 则对于第二个 MLP时, 由于分配给该 UE的 RB数增多, 复用 UCI后码率肯定不会高, 因此, 可以不执行步骤 S3 , 即不需要进入上述码率 控制流程再判断一次码率, 而停止对初始分配的 RB 的扩充, 直接进行 UE 数据的传输。 此时, 可以通过增加一个码率是否满足要求标识, 从而可以简 化计算流程。 在对初始分配的 RB进行扩充之前, 可以首先判断计算得到的上行控制 信息复用时业务的码率是否大于码率上限; 若计算得到的上行控制信息复用 时业务的码率大于码率上限, 则对初始分配的 RB进行扩充。 当然, 本发明 不仅限于上述判断条件, 也可以通过其他的判断条件来判断是否执行对初始 分配的 RB进行扩充的操作。 在对初始分配的 RB 进行扩充的过程中, 可以首先计算需要扩充的 RB 的数量 N, 并判断未分配的 RB的总数是否大于等于 N; 若未分配的 RB的 总数大于等于 N, 则为 UE分配数量为 N的 RB, 其中, 已分配给 UE的 RB 的总数为初始分配的 RB的个数与 N之和。 例如, 初始分配给该 UE的 RB 的个数为 10, 而在扩充过程中, 又为该 UE分配了 5个 RB, 则扩充之后, 为该 UE分配的 RB的总数为 15。 在对初始分配的 RB进行扩充的过程中, 可以重复以下步骤, 直至上行 控制信息复用时业务的码率小于等于无上行控制信息复用时业务的码率上 限, 以便计算得到需要扩充的 RB 的数量 N: 令 N=N+1 , 并根据已分配的 RB的总数及初始 MCS值计算无上行控制信息复用时业务的码率上限和上行 控制信息复用时业务的码率, 其中, 已分配的 RB的总数 =N+初始分配的 RB 的个数, N的初始值为 0。 当然, 本发明不仅限于上述递推的计算过程, 还 可以通过类似的递推过程来计算所需要扩充的 RB 的数量 N, 例如, 通过 N=N+2来执行上述相同的递 4舞过程, 以便达到更加快速地计算得到 N的目 的。 在计算出需要扩充的 RB的数量 N之后, 若判断出未分配的 RB的总数 小于 N, 则执行降氏 MCS值的操作, 而不执行对初始分配的 RB进行扩充的 操作。 具体地, 在执行降氏 MSC 的过程中, 可以重复以下步 4聚, 直到上行 控制信息复用时业务的码率小于等于无上行控制信息复用时业务的码率上 限: 令 MCS ^i=MCS值 - 1 , 并根据 MCS值以及已分配的 RB的总数计算无 上行控制信息复用时业务的码率上限和上行控制信息复用时业务的码率。 在 降低 MCS值的过程中, 若 MCS值 =0, 则停止 UE发送数据。 当然, 本发明 不仅限于上述递推的计算过程, 还可以通过类似的递推过程来降低 MCS值, 例如, 通过 MCS ^i=MCS值 -2来执行上述相同的递推过程, 以便达到快速 降氐 MCS值的目的。 优选的,在预定的条件下, 上行控制信息复用时的资源分配方法还包括: 对 UE复用控制信息后扩充的 RB数进行回退, 其中, 预定的条件包括: 对 于 UE的第一个 MLP, 已为 UE扩充 RB, UE的当前 MLP不为第一个 MLP, 且对于当前 MLP, 当前 MLP下的上行控制信息复用时业务的码率小于等于 码率上限, 也就是不需要对 UE进行 RB扩充。 具体的, 在执行回退的过程 中, 可以重复以下步骤, 直至上行控制信息复用时业务的码率大于无上行控 制信息复用时业务的码率上限: 计算已分配的 RB的总数 -1时, 无上行控制 信息复用时业务的码率上限和上行控制信息复用时业务的码率, 若此时上行 控制信息复用时业务的码率小于等于码率上限,则已分配的 RB的总数 =已分 配的 RB的总数 -1。 在本优选实施例中, 对扩充的全部 RB或者其中一部分 RB进行释放, 可以令释放的 RB供其他 UE使用, 同时保证了 RB资源达到 最优化, 进而提高小区的吞吐量。 当然, 本发明不仅限于上述递推的计算过 程, 还可以通过类似的递 4舞过程来回退 RB , 例如, 通过已分配的 RB的总数 =已分配的 RB的总数 -2来执行上述相同的回退过程, 以便达到快速回退 RB 的目的。 在本优选实施例中, 可以才艮据业务的码率对初始分配的 RB进行扩充, 对 UE进行 RB合理的扩充, 节约了资源, 并保证了在无法对 UE进行 RB的 扩充时, 降低 MCS值, 以保证 UE正常进行数据传输, 当 MCS值降到零码 率还高时, 则对该 UE不进行调度, 将资源给其他 UE使用。 实施例 2 图 2是才艮据本发明实施例的上行控制信息复用时的资源分配装置的一种 优选结构框图, 包括: 初始分配单元 202 , 设置为按照 MLP对 UE初始分配 RB; 计算单元 204 , 连接至初始分配单元 202 , 设置为计算上行控制信息复 用时的业务的码率; 扩充单元 206 , 连接至计算单元 204 , 设置为 居业务 的码率对初始分配的 RB进行扩充。 在本优选实施例中, 釆用对 UE初始分配的 RB进行扩充的技术方案, 解决了由于上行控制信息的复用, 导致业务信道误码率增加, 影响系统的吞 吐量的问题, 进而达到了最优地利用 RB, 提高 RB的系统利用率, 提高吞吐 量的效果。 在图 2的基础上, 图 3出示了本发明实施例的上行控制信息复用时的资 源分配装置的另一种结构框图, 其中: 计算单元 204包括: 连接初始分配单元 202的第一判断模块 2041 , 分别 连接第一判断模块 2041的第一计算模块 2042和第二计算模块 2043 ;扩充单 元 206包括: 连接第一计算模块 2042和第二计算模块 2043的第二判断模块 2061 , 连接第二判断模块 2061的扩充模块 2062, 其中扩充模块 2062进一步 包括: 依次连接的第三计算子模块 20621 , 第三判断子模块 20622 , 以及分 配子模块 20623 , 同时, 扩充模块 2062还包括连接第三判断子模块 20622的 降氐子模块 20624。 优选的, 计算单元 204通过但不仅限于如下操作来计算上行控制信息复 用时业务的码率: 第一判断模块 2041判断当前的 MLP是否为 UE的第一个 MLP; 若当前的 MLP为 UE的第一个 MLP, 第一计算模块 2042则才艮据初始 分配的 RB以及为 UE分配的初始 MCS值计算无上行控制信息复用时业务的 码率上限和上行控制信息复用时业务的码率;若当前的 MLP不为 UE的第一 个 MLP,第二计算模块 2043则根据已分配 RB的总数及初始 MCS值计算无 上行控制信息复用时业务的码率上限和上行控制信息复用时业务的码率。 当然, 本发明不仅限于上述第一判断模块 2041 的判断操作, 以及第一 计算模块 2042和第二计算模块 2043的计算操作, 例如, 若当前 MLP为第 一个 MLP时, 复用 UCI ( Uplink Control information, 上行控制信息)之后 的码率不高, 则对于第二个 MLP时, 由于分配给该 UE的 RB数增多, 复用 UCI后码率肯定不会高, 因此, 可以不进行第二计算模块 2043的计算操作, 即不需要进入上述码率控制流程再判断一次码率, 而停止对初始分配的 RB 的扩充, 直接进行 UE数据的传输。 此时, 可以通过增加一个码率是否满足 要求标识, 从而可以简^ ^计算流程。 在对初始分配的 RB进行扩充之前,可以首先由第二判断模块 2061判断 计算得到的上行控制信息复用时业务的码率是否大于码率上限; 若计算得到 的上行控制信息复用时业务的码率大于码率上限, 则第二判断模块 2061 告 知扩充模块 2062对初始分配的 RB进行扩充。 当然, 本发明不仅限于上述判 断条件, 也可以通过其他的判断条件来判断是否执行对初始分配的 RB进行 扩充的操作。 当然, 扩充模块 2062还可以主动获取第二判断模块 2061的判 断结果, 从而 艮据判断结果对初始分配的 RB进行扩充。 在对初始分配的 RB 进行扩充的过程中, 可以首先由第三计算子模块 20621计算需要扩充的 RB的数量 N, 同时第三判断子模块 20622判断未分 配的 RB的总数是否大于等于 N; 若未分配的 RB的总数大于等于 N, 则第 三判断子模块 20622告知分配子模块 20623为 UE分配数量为 N的 RB, 其 中, 已分配给 UE的 RB的总数为初始分配的 RB的个数与 N之和。 例如, 初始分配给该 UE的 RB的个数为 10, 而在扩充过程中, 又为该 UE分配了 5个 RB, 则扩充之后, 为该 UE分配的 RB的总数为 15。 当然, 分配子模块 20623还可以主动获取第三判断子模块 20622的判断结果, 从而 艮据判断结 果为 UE分配数量为 N的 RB。 在对初始分配的 RB进行扩充的过程中, 第三计算子模块 20621可以重 复以下操作, 直至第二判断模块 2061 判断出上行控制信息复用时业务的码 率小于等于无上行控制信息复用时业务的码率上限, 以便计算得到需要扩充 的 RB的数量 N: 令 N=N+1 , 并才艮据已分配的 RB的总数及初始 MCS值计 算无上行控制信息复用时业务的码率上限和上行控制信息复用时业务的码 率, 其中, 已分配的 RB的总数 =N+初始分配的 RB的个数, N的初始值为 0。 当然, 本发明不仅限于上述递推的计算过程, 还可以通过类似的递推过程来 计算所需要扩充的 RB的数量 N, 例如, 通过 N=N+2来执行上述相同的递 4舞 过程, 以便达到更加快速地计算得到 N的目的。 在第三计算子模块 20621计算出需要扩充的 RB的数量 N之后, 若第三 判断子模块 20622 判断出未分配的 RB 的总数小于 N, 则第三判断子模块 20622告知降氏子模块 20624执行降氏 MCS值的操作,而不执行对初始分配 的 RB进行扩充的操作。 具体地, 在执行降氏 MSC的过程中, 降氏子模块 20624可以重复以下操作, 直到第二判断模块 2061判断出上行控制信息复用 时业务的码率小于等于无上行控制信息复用时业务的码率上限: 令 MCS值 =MCS值 -1 , 并根据 MCS值以及已分配的 RB的总数计算无上行控制信息复 用时业务的码率上限和上行控制信息复用时业务的码率。 在降氏 MCS值的 过程中, 若 MCS值 =0, 则停止 UE发送数据。 当然, 本发明不仅限于上述 递推的计算过程, 还可以通过类似的递推过程来降氏 MCS值, 例如, 通过 MCS ^i=MCS值 -2来执行上述相同的递推过程, 以便达到快速降低 MCS值 的目的。 优选的, 在预定的条件下, 分配子模块 20623还对 UE复用控制信息后 扩充的 RB数进行回退, 其中, 预定的条件包括: 对于 UE的第一个 MLP, 已为 UE扩充 RB, UE的当前 MLP不为第一个 MLP, 且对于当前 MLP, 第 二判断模块 2061判断出当前 MLP下的上行控制信息复用时业务的码率小于 等于码率上限, 也就是不需要对 UE进行 RB扩充。 具体的, 在执行回退的 过程中, 分配子模块 20623可以重复以下步骤, 直至第二判断模块 2061判 断上行控制信息复用时业务的码率大于无上行控制信息复用时业务的码率上 限: 计算已分配的 RB的总数 -1时, 无上行控制信息复用时业务的码率上限 和上行控制信息复用时业务的码率, 若此时上行控制信息复用时业务的码率 小于等于码率上限, 则已分配的 RB的总数 =已分配的 RB的总数 -1。 在本优 选实施例中, 对扩充的全部 RB或者其中一部分 RB进行释放, 可以令释放 的 RB 供其他 UE使用, 同时保证了 RB资源达到最优化, 进而提高小区的吞 吐量。 当然, 本发明不仅限于上述递推的计算过程, 还可以通过类似的递推 过程来回退 RB, 例如, 通过已分配的 RB的总数 =已分配的 RB的总数 -2来 执行上述相同的回退过程, 以便达到快速回退 RB的目的。 在本优选实施例中, 可以才艮据业务的码率对初始分配的 RB进行扩充, 对 UE进行 RB合理的扩充, 节约了资源, 并保证了在无法对 UE进行 RB的 扩充时, 降低 MCS值, 以保证 UE正常进行数据传输, 当 MCS值降到零码 率还高时, 则对该 UE不调度, 将资源给其他 UE使用。 实施例 3 本实施例提供了一种上行控制信息复用时的资源分配方法, 在上行的资 源分配中, 按照 MLP ( MAC Logical Channel Priority, MAC還辑控制信道优 先级)对 UE进行分配资源, 调度和分配 RB是按照 MLP由小到大进行的, £设输入该模块时, 已得到初次分配的 RB及初始 MCS值。 本发明实施例可以应用于 LTE系统中, 例如, 图 3所示的 LTE系统, 图 4是才艮据本发明实施例的上行控制信息复用时的资源分配方法的另一种流 程图, 该实施例的流程具体通过基站侧来实现, 假设每个 MLP上分配给 UE 的 RB数为 RBLast , 主要包括以下步骤:
S401 : 判断 UCI_flag (上行控制信息标志位)(该值初始化为 0 )是否等 于零, 若等于零, 则进行上行控制信息复用时的分配处理, 若不为 0 , 则退 出该流程。 此处该步骤的考虑主要是对于复用上行控制信息较少的情况, 若 在第一个 MLP时, 码率就不高, 则可以判断出在第二个 MLP时, 码率也不 高, 因此不需要进 RB及 MCS值调整的流程。
S402: 判断当前的 MLP是否为该 UE的第一个 MLP, 若是, 执行步骤 S403 , 若否, 执行步 4聚 S409。 本实施例中, 对 UE的第一个 MLP和第二个 MLP进行区别对待, 当第 一个 MLP进行了 RB的扩充, 在第二个 MLP时, 若不需要进行 RB的扩充, 则只需进行正常的 RB分配流程, 就可达到复用上行控制信息的码率要求, 同时, 在第二个 MLP时, 还需要对扩充的 RB进行回退操作, 这样做的目的 是让回退的 RB让其他 UE可以使用, 其中, 回退操作可以包括在判断达到 复用上行控制信息的码率要求的情况下, 释放所扩充的所有 RB , 或者仅仅 释放扩充的一部分 RB。
S403 : 才艮据初始分配的 ^ , 以及初始 MCS 值, 计算该配置下无上 行控制信息复用时业务的码率 RMCS ,并计算无上行控制信息复用时码率的上 限 R, 其中 R= RMCS+(RMCS+1-RMCS)/A, 为满足业务性能的码率上限(其中 A 的取值可为大于 1 的任意数), 同时计算当前 MCS值下, 复用 CQI/PMI/RI 时业务的码率 R,。
S404:判断此时复用 CQI/PMI/RI时业务的码率 R,是否大于码率上限 R, 此时, 判断是否大于码率上限的判断条件为目前复用上行控制信息后码率是 否高的判断条件, 只有此时码率高才需要考虑 RB资源的扩展。 若复用 CQI/PMI/RI时业务的码率 R,大于码率上限 R,则执行步骤 S405, 若小于, 则将 UCI_flag设置为 1 , 执行步骤 S408。
S405: 计算复用上行控制信息后,码率 R'大于码率上限 R时需要扩充的 RB itRBUCI m , 同时判断是否有可用的 RB, 若有, 执行步骤 S406, 若无, 执行步骤 S407。 此处需要扩充的 RB数 RBUC1 计算的方法为: 令 RBUC1 m = RBUCI ^+l , 其中, RBUC1 的初始值为 0, 根据需要扩充的 RB数与初始分配的 RB数之 和与初始 MCS值重新计算业务性能的码率上限 R及复用上行控制信息时业 务的码率 R,, 判断 R,是否大于 R, 若大于, 则继续进行 RBUC1 w = RBUCI w + 1 操作, 直至码率 R,小于等于 R为止。 判断可用的 RB, 主要是判断 t ^101 -RB ) & ^Laa + ^UCI—RB ^Rerf ) 是否成立, 其中 R¾。rf为最大功率能支持的 RB数, R5Rerf为剩余的最大连续 的 RB数。
S406: 才广 己 ό RB数。 扩充该 MLP分配给该 UE的 RB数, RBLast = RBLast +RBUC1 w , 更新最大 功率能支持的 RB数及剩余的最大的连续 RB数, RB st=R^st_RBUCI ,
RB =H CIRB, 并记录分给该 UE的 KB数 RBm=RBlast ( RBUE初始 化值为 0 ) 执行步骤 S408。
S407: 降氐分配的 MCS值。 此时, 由于无法扩充 RB, 则只能通过降 MCS值来降低复用上行控制信 息后业务的码率, 调整 MCS值的方法为: 令 MCS ^i=MCS值 -1 , 重新计算业务性能的码率上限 R及复用上行控 制信息时业务的码率 R,,判断 R,是否大于 R,若 R,大于 R,则继续进行 MCS 值 MCS值 -1操作, 直至码率 R,小于等于 R为止, 此处需要注意的是, 若 MCS值 =0时, 码率依然高, 则放弃本次 UE的数据传输, 将该 UE的资源给 其他 UE用。
S408: 输出 UCI_flag, RBUCI w , 该 MLP分配的 RB tRBLast以及该 UE 分配的总的 RB数 RBUE。 S409: 若当前 MLP不为该 UE的第一个 MLP, 则先计算当前该 UE已 分配的 RB tRBUE=RBUE+RBLast, 根据 R¾s及初始 MCS值, 计算该配置下 无 UCI复用时业务的码率 RMCS, 并计算 UCI复用时业务的码率上限 R, 其 中 R= RMCS+(RMCS+I-RMCS) /A, (A的取值见步骤 S403), 同时计算当前 MCS 值下, 复用 CQI/PMI/RI时业务的码率 R,。 S410: 判断是否满足 R<R,, 若不满足, 令 UCI_flag=l, 执行步骤 S411, 若满足, 执行步骤 S405。
S411: 进行 RB的回退操作。 此时分配的 RB数及初始 MCS值已满足复 用上行控制信息的要求, 由于上行控制信息的复用引入了额外的 RB, 需要 进行 RB的回退, 以便后续 UE的使用。 此时, 若在第二个 MLP中, 由于该 UE又分配了 RB资源, 两次 MLP上分配的 RB资源进行累加, 复用上行信 息后, 码率 R,小于码率上限 R, 此时需要考虑第一个 MLP时码率高时考虑 上行控制信息时分配的 RB资源是否能进行回退, 若回退后码率 R,依然小于 码率上限 R, 则进行 RB的回退, 若回退后码率 R,大于等于码率上限 R, 则 不回退。 引入 RB的回退机制主要是为了让 RB资源达到最优化, 进而提高 小区的吞吐量。 上述回退过程具体包括: 令 RBm Temp=RBm_^RB, = \,...,RBUCI , 根 据 及 MCS值, 计算该配置下, 无 UCI复用时业务的码率 RMCS, 并 计算满足业务性能要求的码率上限 R, 其中 R= RMCS+(RMCS+1-RMCS)/A。 同时 计算当前 RB数及 MCS值下, 复用 CQI/PMI/RI时业务的码率 R,。 判断是 否满足 R,<R, 若满足, 则令 ARS = ARS + 1 , 继续计算 R及 R,, 直至找到一 个第一个 R'<R不满足时对应的 ARB值。 更新分配给该 UE的 RB数, 及 R^ = ^ - ^ + 1 , 考虑上行控制信息 复用时的 RB调整值 RS^ m = RBuri m - ARB + l ,该 MLP分给该 UE的 RB数 为: RBLast = RBLast—ARB + l 本实施例提供的上行控制信息复用时的资源分配方法, 适用于小区内所 有进行控制信息复用的用户, 在进行按 MLP 由低到高分配资源后, 再进行 一次上行控制信息复用时的处理, 考虑上行信息控制复用时业务信道数据的 码率, 若码率大于码率上限, 则优先考虑进行扩 RB的处理, 若此时无可用 的 RB , 则考虑降 MCS值, 直至码率小于等于码率上限为止, 同时若 UE在 两个 MLP中都分配资源, 在第二个 MLP时, 若码率小于码率上限, 则会考 虑 RB的回退操作,即若两个 MLP分配的资源之和让业务信道的码率小于码 率上限时, 则回退第一个 MLP时增加的 RB数, 这样可以最优地利用 RB , 进而提高 RB的系统利用率, 最终提高吞吐量。 在步骤 406和 407中, 考虑了两种复用上行控制信息的方式, 若有可用 的 RB时, 则优先考虑增大 RB的处理, 若无可用的 RB时, 则考虑降 MCS 值的处理。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 通过在预分 RB 时, 加入上述的资源分配装置, 釆用上述资源分配方法, 可以让复用上 行控制信息时的 PUSCH信道有更加合适的 RB及合适的 MCS值, 这样让复 用在 PUSCH信道上的上行控制信息的发射成功率增加, 同时增大了业务信 道的发送成功率, 有效地提高了系统的吞吐量。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种上行控制信息复用时的资源分配方法, 包括:
按照媒体接入控制逻辑信道优先级 MLP对用户设备 UE初始分配 资源块 RB;
计算上行控制信息复用时业务的码率;
根据所述业务的码率对所述初始分配的 RB进行扩充。
2. 根据权利要求 1所述的方法, 其中所述计算上行控制信息复用时业务 的码率的步 4聚包括:
判断当前的 MLP是否为所述 UE的第一个 MLP;
若当前的 MLP为所述 UE的第一个 MLP, 则才艮据所述初始分配 的 RB以及为所述 UE分配的初始调制编码方案 MCS值计算无上行控 制信息复用时业务的码率上限和上行控制信息复用时业务的码率; 若当前的 MLP不为所述 UE的第一个 MLP, 则才艮据已分配的 RB 的总数及所述初始 MCS 值计算无上行控制信息复用时业务的码率上 限和上行控制信息复用时业务的码率。
3. 居权利要求 2所述的方法, 其中所述 -据所述业务的码率对所述初 始分配的 RB进行扩充的步骤包括:
判断计算得到的所述上行控制信息复用时业务的码率是否大于所 述码率上限;
若计算得到的所述上行控制信息复用时业务的码率大于所述码率 上限, 则对所述初始分配的 RB进行扩充。
4. 根据权利要求 3所述的方法, 其中所述对所述初始分配的 RB进行扩 充的步 4聚包括:
计算需要扩充的 RB的数量 N,并判断未分配的 RB的总数是否大 于等于所述 N; 若未分配的 RB的总数大于等于所述 N,则为所述 UE分配数量为 N的 RB,其中, 已分配给所述 UE的 RB的总数为所述初始分配的 RB 的个数与所述 N之和;
若所述未分配的 RB的总数小于所述 N, 则降低 MCS值。
5. 根据权利要求 4所述的方法, 其中所述计算需要扩充的 RB的数量 N 的步 4聚包括:
重复以下步骤, 直至所述上行控制信息复用时业务的码率小于等 于所述无上行控制信息复用时业务的码率上限:
令 N=N+1 , 并才艮据已分配的 RB的总数及所述初始 MCS值计算 无上行控制信息复用时业务的码率上限和上行控制信息复用时业务的 码率,其中,所述已分配的 RB的总数 =N+所述初始分配的 RB的个数, 所述 N的初始值为 0。
6. 根据权利要求 1所述的方法, 其中在预定的条件下, 还包括: 对所述 UE复用控制信息后扩充的 RB数进行回退, 其中, 所述预定的条件包 括: 对于所述 UE的第一个 MLP, 已为所述 UE扩充 RB, 所述 UE的 当前 MLP 不为所述第一个 MLP, 且对于所述当前 MLP, 所述当前 MLP 下的所述上行控制信息复用时业务的码率小于等于所述码率上 限;
其中, 所述回退步骤包括: 重复以下步骤, 直至所述上行控制信 息复用时业务的码率大于所述无上行控制信息复用时业务的码率上 限:
计算所述已分配的 RB的总数 -1 时, 无上行控制信息复用时业务 的码率上限和上行控制信息复用时业务的码率, 若此时上行控制信息 复用时业务的码率小于等于所述码率上限, 则已分配的 RB的总数 =所 述已分配的 RB的总数 -1。
7. 根据权利要求 4所述的方法, 其中所述降低 MCS值的步骤包括: 重复以下步骤, 直到所述上行控制信息复用时业务的码率小于等 于所述无上行控制信息复用时业务的码率上限, 其中, 若 MCS值 =0, 则停止所述 UE发送数据: 令 MCS ^i=MCS值 -1 , 并根据所述 MCS值以及已分配的 RB的 总数计算无上行控制信息复用时业务的码率上限和上行控制信息复用 时业务的码率。
8. 根据权利要求 1所述的方法, 其中所述按照 MLP对 UE初始分配 RB 的步骤包括:按照所述 MLP由低到高的顺序对所述 UE初始分配 RB。
9. 一种上行控制信息复用时的资源分配装置, 包括:
初始分配单元,设置为按照媒体接入控制逻辑信道优先级 MLP对 用户设备 UE初始分配资源块 RB;
计算单元, 设置为计算上行控制信息复用时的业务的码率; 扩充单元, 设置为根据所述业务的码率对所述初始分配的 RB进 行扩充。
10. 根据权利要求 9所述的装置, 其中所述计算单元包括:
第一判断模块,设置为判断当前的 MLP是否为所述 UE的第一个 MLP;
第一计算模块, 设置为在当前的 MLP为所述 UE的第一个 MLP 时,才艮据所述初始分配的 RB以及为所述 UE分配的初始调制编码方案 MCS 值计算无上行控制信息复用时业务的码率上限和上行控制信息 复用时业务的码率;
第二计算模块,设置为在当前的 MLP不为所述 UE的第一个 MLP 时, 居已分配的 RB的总数及所述初始 MCS值计算无上行控制信息 复用时业务的码率上限和上行控制信息复用时业务的码率。
11. 根据权利要求 10所述的装置, 其中所述扩充单元包括:
第二判断模块, 设置为判断计算得到的所述上行控制信息复用时 业务的码率是否大于码率上限;
扩充模块, 设置为在计算得到的所述上行控制信息复用时业务的 码率大于所述码率上限时, 对所述初始分配的 RB进行扩充。
12. 根据权利要求 11所述的装置, 其中所述对扩充模块还包括:
第三计算子模块, 设置为计算需要扩充的 RB的数量 N; 第三判断子模块, 设置为判断未分配的 RB 的总数是否大于等于 所述 N;
分配子模块, 设置为在未分配的 RB的总数大于等于所述 N时, 为所述 UE分配数量为 N的 RB , 其中, 已分配给所述 UE的 RB的总 数为所述初始分配的 RB的个数和所述 N之和;
降低子模块, 设置为在所述未分配的 RB的总数小于所述 N时, 降低 MCS值。
PCT/CN2011/072477 2011-02-25 2011-04-06 上行控制信息复用时的资源分配方法和装置 WO2012113169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110046170.X 2011-02-25
CN201110046170.XA CN102651909B (zh) 2011-02-25 2011-02-25 上行控制信息复用时的资源分配方法和装置

Publications (1)

Publication Number Publication Date
WO2012113169A1 true WO2012113169A1 (zh) 2012-08-30

Family

ID=46693782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072477 WO2012113169A1 (zh) 2011-02-25 2011-04-06 上行控制信息复用时的资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN102651909B (zh)
WO (1) WO2012113169A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876623B2 (en) * 2014-12-22 2018-01-23 Samsung Electronics Co., Ltd. Transmission of uplink control information in carrier aggregation with a large number of cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902817A (zh) * 2009-05-26 2010-12-01 中兴通讯股份有限公司 无线通信系统中上行无线资源调度方法与装置
WO2010148254A1 (en) * 2009-06-17 2010-12-23 Qualcomm Incorporated Resource block reuse for coordinated multi-point transmission
CN101977443A (zh) * 2010-11-09 2011-02-16 北京邮电大学 资源分配方法及其装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693897B2 (ja) * 2008-12-24 2011-06-01 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び通信制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902817A (zh) * 2009-05-26 2010-12-01 中兴通讯股份有限公司 无线通信系统中上行无线资源调度方法与装置
WO2010148254A1 (en) * 2009-06-17 2010-12-23 Qualcomm Incorporated Resource block reuse for coordinated multi-point transmission
CN101977443A (zh) * 2010-11-09 2011-02-16 北京邮电大学 资源分配方法及其装置

Also Published As

Publication number Publication date
CN102651909A (zh) 2012-08-29
CN102651909B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
US9906347B2 (en) Method and system for hybrid automatic repeat request operation in a semi-persistent scheduling (SPS) interval
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
JP6479040B2 (ja) 電力設定方法、ユーザ装置、及び基地局
JP2018504866A (ja) 許可不要アップリンク伝送方式における伝送のためのシステムおよび方法
WO2012079517A1 (zh) 一种资源调度的方法、装置和基站
WO2012094990A1 (zh) 一种csi的传输方法和装置
WO2016010123A1 (ja) 端末装置、基地局装置、および通信方法
WO2015043246A1 (zh) 上行功率削减处理方法、装置、终端及基站
WO2014000288A1 (zh) 一种调度下行数据传输的方法和装置
WO2015021599A1 (zh) 上行信道的功率控制方法、用户设备以及通信系统
US10924206B2 (en) Adaptive modulation and coding method and base station
JP6756901B2 (ja) ダウンリンクデータをフィードバックする方法及び装置
TW201728198A (zh) 上行授權信息發送方法及基站
JPWO2005076655A1 (ja) 移動局、基地局、通信システム、および通信方法
WO2016175256A1 (ja) 無線端末、基地局、及びプロセッサ
US10334621B2 (en) Buffer status report
US11943026B2 (en) Method for obtaining channel state information, apparatus, and computer storage medium
US20230026327A1 (en) Sidelink transmission method and apparatus
JP2017532888A (ja) サービススケジューリング方法およびデバイス
WO2013178165A2 (zh) 发送功率余量报告的方法及装置
US10200988B2 (en) Physical resource block scheduling method, device, and system
KR20200007841A (ko) 업링크 제어 정보 전송 방법, 장치 및 시스템
EP3771270B1 (en) Uplink transmission resource allocation method and apparatus
WO2012113169A1 (zh) 上行控制信息复用时的资源分配方法和装置
KR20160056771A (ko) 상향링크 자원 할당 요청 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859304

Country of ref document: EP

Kind code of ref document: A1