WO2012111845A1 - Carbon dioxide adsorbent - Google Patents
Carbon dioxide adsorbent Download PDFInfo
- Publication number
- WO2012111845A1 WO2012111845A1 PCT/JP2012/054178 JP2012054178W WO2012111845A1 WO 2012111845 A1 WO2012111845 A1 WO 2012111845A1 JP 2012054178 W JP2012054178 W JP 2012054178W WO 2012111845 A1 WO2012111845 A1 WO 2012111845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon dioxide
- formula
- compound
- structural unit
- Prior art date
Links
- 0 CC(C)N=C(C=C1)C(CNCl)=CC1=Nc(cc1)c(CNCl)cc1Nc(cc1)c(CN(C)Cl)cc1Nc1c(CNCl)cc(*(C)C)cc1 Chemical compound CC(C)N=C(C=C1)C(CNCl)=CC1=Nc(cc1)c(CNCl)cc1Nc(cc1)c(CN(C)Cl)cc1Nc1c(CNCl)cc(*(C)C)cc1 0.000 description 2
- GVOYKJPMUUJXBS-UHFFFAOYSA-N NCc1ccccc1N Chemical compound NCc1ccccc1N GVOYKJPMUUJXBS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/026—Wholly aromatic polyamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3425—Regenerating or reactivating of sorbents or filter aids comprising organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3441—Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/80—Organic bases or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Definitions
- the present invention relates to a carbon dioxide adsorbent.
- Non-Patent Documents 1 and 2 materials capable of adsorbing and desorbing carbon dioxide have been studied.
- amino alcohols and ionic liquids having amino groups are known (Non-Patent Documents 1 and 2).
- R 1 represents a divalent organic group having 1 to 20 carbon atoms, and when there are two or more R 1 s , they may be the same or different.
- R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.
- a plurality of R 2 may be the same or different. When two or more R 3 are present, they may be the same or different.
- Two R 1 's may combine to form a ring with the carbon atom to which they are attached.
- Two R 2 may be bonded to form a ring together with the nitrogen atom to which they are bonded.
- Two R 3 may be bonded to form a ring together with the carbon atom to which they are bonded.
- One R 1 and one R 2 may combine to form a ring together with the carbon atom to which R 1 is bonded and the nitrogen atom to which R 2 is bonded.
- One R 1 and one R 3 may be bonded to form a ring together with the carbon atom to which they are bonded.
- One R 2 and one R 3 may combine to form a ring together with the nitrogen atom to which R 2 is bonded and the carbon atom to which R 3 is bonded.
- FIG. 1 is a schematic diagram of a carbon dioxide adsorption / desorption experimental apparatus used in Example 4.
- a halogen atom, a hydrocarbyl group having 1 to 18 carbon atoms, a carbon atom number of 1 It is preferably substituted with a hydrocarbyloxy group having 1 to 18 carbon atoms or a hydrocarbylamino group having 1 to 18 carbon atoms, and a hydrocarbyl group having 1 to 12 carbon atoms, It is more preferably substituted with a hydrocarbyloxy group having 1 to 12 children or a hydrocarbylamino group having 1 to 12 carbon atoms, a hydrocarbyl group having 1 to 6 carbon atoms, or a hydrocarbyloxy group having 1 to 6 carbon atoms Alternatively, it is more preferably substituted with a hydrocarbylamino group having 1 to 6 carbon atoms.
- Substituents such as a hydrocarbyl group, hydrocarbyloxy group and hydrocarbylamino group may each be linear, branched or cyclic.
- “Divalent aromatic group” means the remaining atomic group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon ring, constituting the ring of the aromatic heterocyclic compound
- the remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom, or a ring in a compound in which two or more compounds selected from aromatic hydrocarbons and aromatic heterocyclic compounds are directly bonded constitute a ring It represents the remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom.
- Conjugated compound means (1) a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately, and (2) a structure in which double bonds and single bonds are arranged through nitrogen atoms. (3) means a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately and a structure in which double bonds and single bonds are arranged via nitrogen atoms.
- the halogen atom as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a fluorine atom or a chlorine atom. is there.
- the substituent hydrocarbyl group may be linear, branched or cyclic.
- Examples of the hydrocarbyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, hexyl, and octyl.
- decyl group dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, ammonium ethyl group, benzyl group , ⁇ , ⁇ -dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group 2-tolyl group, 4-tolyl group, 4-trifluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophen
- the hydrocarbyloxy group as a substituent may be linear, branched or cyclic.
- Examples of the hydrocarbyloxy group include methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, octyloxy group, decyloxy group, dodecyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, cyclopropanoxy group, cyclopentyloxy group, cyclohexyloxy group, 1-adamantyloxy group, 2- Adamantyloxy group, norbornyloxy group, ammonium ethoxy group, trifluoromethoxy group, benzyloxy group, ⁇ , ⁇ -dimethylbenzyloxy group, 2-phenethyloxy group, 1-phenethyloxy
- the hydrocarbylamino group as a substituent may be linear, branched or cyclic.
- Examples of the hydrocarbylamino group include methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, isobutylamino group, and tert-butylamino.
- the carbon dioxide adsorbing material of the present invention is a carbon dioxide adsorbing material containing a compound having a structural unit represented by the formula (1).
- R 1 The divalent organic group represented by may have a substituent. The number of carbon atoms in the divalent organic group is usually 1-20. Examples of the divalent organic group include an alkylene group having 1 to 20 carbon atoms, a divalent aromatic group having 6 to 20 carbon atoms, and an oxyalkylene group having 1 to 20 carbon atoms (that is, —RO—O).
- a group represented by-(R represents an alkylene group) From the viewpoint of enhancing basicity, an alkylene group and an oxyalkylene group are preferable, and an alkylene group is more preferable.
- the alkylene groups those having 1 carbon atom are preferable from the viewpoint of easy exchange of protons in the compound. From the viewpoint of enhancing the solubility of the compound in a solvent and ensuring processability, those having 2 to 20 carbon atoms are preferred.
- divalent organic group examples include methylene group, 1,1-ethylene-diyl group, 1,2-ethylene-diyl group, 1,2-propylene-diyl group, 1,3-propylene-diyl group, , 3-Isopropylene-diyl group, 2,2-propylene-diyl group, 1,2-butylene-diyl group, 1,3-butylene-diyl group, 1,4-butylene-diyl group, 2,2-butylene -Diyl group, 2,3-butylene-diyl group, 1,1-pentylene-diyl group, 1,2-pentylene-diyl group, 1,3-pentylene-diyl group, 1,4-pentylene-diyl group, 1 , 5-pentylene-diyl group, 2,2-pentylene-diyl group, 2,3-pentylene-diyl group, 2,4-pentylene-
- a methylene group 1,2-ethylene-diyl group, 1,3-propylene-diyl group, 1,4-butylene-diyl group, 1,5-pentylene-diyl group, 2-oxa-1,3- Propylene-diyl group, 2-oxa-1,4-butylene-diyl group, 3-oxa-1,4-butylene-diyl group, 2-oxa-1,3-pentylene-diyl group, 2-oxa-1, 4-pentylene-diyl group, 2-oxa-1,5-pentylene-diyl group, 3-oxa-1,4-pentylene-diyl group, 3-oxa-1,5-pentylene-diyl group, butane-1, 4-diyl group or pentane-1,5-diyl group.
- the hydrocarbyl group having 1 to 20 carbon atoms represented by the above formula may have a substituent and may be linear, branched or cyclic.
- Examples of the hydrocarbyl group include methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group and octyl group.
- Alkyl groups such as decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group; cycloalkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, etc.
- a is preferably 1 or 2. This is because the conjugate length of the compound having the structural unit represented by the formula (1) can be longer. Since the structural unit represented by the formula (1) has a long conjugate length, the structural unit represented by the following formula (2) is preferable. (In formula (2), a, R 1 , R 2 And R 3 Represents the same meaning as described above. )
- the compound having the structural unit represented by the formula (1) (hereinafter also including the compound having the structural unit represented by the formula (2)) is represented by the structure represented by the formula (1).
- the content of the structural unit is more excellent in carbon dioxide adsorption, and since sufficient protons can be liberated by energization, carbon dioxide can be desorbed more efficiently, so when the total of all structural units is 100 mol% It is preferably 1 to 100 mol%, more preferably 5 to 100 mol%, still more preferably 10 to 100 mol%.
- the structural unit represented by the formula (1) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
- the compound having the structural unit represented by the formula (1) has other structural units different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). You may do it.
- Ar 1 represents a divalent aromatic group. This aromatic group includes a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent.
- An aryl group having 6 to 20 carbon atoms which may have, an aryloxy group having 6 to 20 carbon atoms which may have a substituent and 2 to 2 carbon atoms which may have a substituent A group selected from the group consisting of 20 acyl groups may be present as a substituent.
- Ar 1 An alkyl group, an alkoxy group, an aryl group, and an aryloxy group, which are substituents that may be present, are the same as those described and exemplified in the formula (1).
- Ar 1 As the divalent aromatic group represented by, for example, a divalent monocyclic aromatic group such as 1,3-phenylene group or 1,4-phenylene group; 1,3-naphthalenediyl group, 1, Divalent such as 4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc.
- a divalent monocyclic aromatic group such as 1,3-phenylene group or 1,4-phenylene group
- 1,3-naphthalenediyl group 1, Divalent such as 4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc.
- Condensed ring aromatic group Condensed ring aromatic group; bivalent aromatic heterocyclic groups such as pyridinediyl group, quinoxaline diyl group, and thiophene diyl group are exemplified, and among these, a divalent monocyclic aromatic group is preferable.
- the content of other structural units such as the structural unit represented by the formula (3) is that of the structural unit represented by the formula (1).
- the total is 100 mol%, 0 to 200 mol% is preferable, and 0 to 100 mol% is more preferable.
- Other structural units such as the structural unit represented by the formula (3) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
- the compound having the structural unit represented by the formula (1) is particularly preferably a compound having a polyaniline skeleton.
- the compound having a polyaniline skeleton is represented by the following, for example. (In the formula, y is a number from 0 to 1 representing the molar ratio, and n is the number of repeating units.) There are the following modes (names) depending on the value of y.
- n is preferably 4 or more, more preferably 10 or more, and still more preferably 20 or more, because the conductivity is improved and the film strength when the film is formed is excellent.
- the upper limit of n is usually 2000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent. All of these compounds are converted into a salt form by protonation and show diversity.
- Interconversion between these compounds and salt forms can be performed by oxidation-reduction, pH change or the like. These compounds differ in conductivity for each of the above-described embodiments. Those containing cations (salt type) have high conductivity, and those not containing cations (base type) have low conductivity or no conductivity.
- the compound having the structural unit represented by the formula (1) preferably has the above polyaniline skeleton in the main chain of the molecular chain and an alkylamino group in the side chain. Thereby, for example, since the following redox cycle can be circulated, switching by adsorption and desorption of carbon dioxide becomes possible.
- the carbon dioxide adsorbing material of the present invention tends to improve conductivity when carbon dioxide is adsorbed, and lower conductivity when carbon dioxide is desorbed.
- n is the number of repeating units.
- the carbon dioxide adsorbent of the present invention is electrically neutral because it has better carbon dioxide adsorptivity.
- the aminoalkyl group is not protonated.
- the emeraldine type is used.
- the compound having the structural unit represented by the formula (1) is exemplified as an emeraldine type.
- the compound having the structural unit represented by the formula (1) is preferably a high molecular compound because of its improved conductivity and excellent film strength when formed, and its molecular weight is 2000 or more. Is preferably 5000 or more, more preferably 10,000 or more. The upper limit of the molecular weight is usually 1,000,000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent.
- the molecular weight means a weight average molecular weight in terms of polystyrene.
- the carbon dioxide adsorbent of the present invention may be composed only of a compound having a structural unit represented by the formula (1), but a compound having a structural unit represented by the formula (1) and other components The composition of may be sufficient.
- the compound having the structural unit represented by the formula (1) may be used alone or in combination of two or more.
- Examples of other components that can be included in the carbon dioxide adsorbent of the present invention include polymer compounds different from the compound having the structural unit represented by the formula (1).
- the polymer compound is preferably a polymer compound having a pH close to neutrality because it can maintain the carbon dioxide adsorptivity.
- polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester examples include polysulfone, polyphenylene oxide, polybutadiene, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, and silicon resin. These other components may be used alone or in combination of two or more.
- the content of the compound having the structural unit represented by the formula (1) is preferably 1 to 100% by weight, more preferably 5 to 100% by weight, and 10 to 100% by weight. Is more preferable.
- the content of the polymer compound as the other component is 0 to 1000 weights when the total of the compounds having the structural unit represented by the formula (1) is 100 parts by weight. Part by weight, more preferably 0 to 500 parts by weight, still more preferably 0 to 300 parts by weight.
- -Manufacturing method of the compound which has a structural unit represented by said Formula (1) As a method for producing a compound having the structural unit represented by the formula (1), for example, using an aniline compound in which one of the aromatic ring hydrogen atoms is substituted with an aminoalkyl group, ammonium persulfate is added in an aqueous hydrochloric acid solution.
- a reaction method for example, a known method such as a polyaniline synthesis method described in Experimental Examples 4 and 74 in Experimental Chemistry Course (Maruzen 4th edition), Vol. 28, “Polymer Synthesis”, pages 342 to 343) can be applied.
- the molecular weight and chemical structure of the compound obtained by this reaction can be determined by ordinary analysis means such as gel permeation chromatography and nuclear magnetic resonance spectrum (NMR).
- ⁇ Shape of carbon dioxide adsorbent> The shape of the carbon dioxide adsorbent of the present invention is, for example, a film, a powder, or a pellet. Among these, since energization is easy, a membrane is preferable when used for the purpose of removing carbon dioxide from gas (for example, in the atmosphere).
- the form of the film examples include a single film, a composite film, and a porous film.
- the thickness of the film is preferably 3 ⁇ m to 3 cm, because the carbon dioxide adsorbing property and air permeability are improved. 0.1 mm to 2 cm is more preferable, and 1 mm to 1 cm is particularly preferable.
- the porosity of the membrane is adjusted so that carbon dioxide adsorption and air permeability can be maintained when it is used for the purpose of removing carbon dioxide from gas (for example, air).
- electric energy or light energy can be suitably used.
- the carbon dioxide adsorbing material of the present invention can also be applied to an apparatus for separating carbon dioxide from gas. Further, the present invention can also be applied to an apparatus for purifying low-purity carbon dioxide (for example, an apparatus in which carbon dioxide is adsorbed by the carbon dioxide adsorbing material of the present invention and then released by energization). When the carbon dioxide adsorbing material of the present invention is used in these apparatuses, it can be determined that the adsorption of carbon dioxide has reached saturation if the conductivity increases.
- the carbon dioxide adsorbing capacity is regenerated by desorbing carbon dioxide by, for example, energizing the carbon dioxide adsorbing material, or the carbon dioxide adsorbing material is replaced to continue using these devices.
- an apparatus for separating carbon dioxide from a gas is effective for the problem of global warming when installed in a place where the concentration of carbon dioxide is high or a place where the amount of carbon dioxide is large. Examples of such places include exhaust gas lines of industrial plants such as factories and thermal power plants, and household appliances such as refrigerators.
- the compound which has a structural unit represented by Formula (1) can be used for manufacture of a carbon dioxide adsorption material.
- the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound.
- a gas purification method that removes all gasses.
- the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound, and then desorb carbon dioxide from the compound.
- a method for purifying carbon dioxide is provided.
- an electrolytic reaction electrolytic reduction, electrolytic oxidation
- an H-type electrolytic cell HX-108 manufactured by Hokuto Denko Co., Ltd.
- a model 701C dual electrochemical analyzer manufactured by ALS was used as a device for applying a voltage in the electrolytic reaction.
- the carbon dioxide adsorption amount of the compound was calculated as follows.
- Example 2 [Carbon dioxide adsorption experiment 2 of poly (aminomethyl) aniline]
- a solution prepared by dissolving the poly (aminomethyl) aniline obtained in Example 1 in an organic solvent is used, a film can be obtained by a casting method. And when this film is sandwiched between two electrodes and energized to measure the conductivity (before exposure to carbon dioxide), it is found that the conductivity is extremely low.
- the membrane is placed in a plastic tray. Place it on the bottom of a stainless steel cup, place a piece of dry ice on it, cover it and leave it for several hours. On the way, replenish as needed so that dry ice does not disappear. Thereafter, the membrane is recovered.
- Example 3 [Experiment of carbon dioxide desorption from poly (aminomethyl) aniline adsorbed carbon dioxide]
- Example 2 when the electrical conductivity was measured by sandwiching the film obtained after carbon dioxide exposure between two electrodes and continuing the energization, the electrical conductivity gradually decreased, and before the carbon dioxide exposure in Example 2 Approaches the conductivity of ⁇ Comparative Example 2> [Carbon dioxide adsorption and desorption experiment of 2-piperidineethanol] According to “ED Bates et al., J. Am. Chem. Soc.
- Example 1 After adding to each of a counter electrode side tank and a working electrode side tank at ° C, the gas in the working electrode side tank was replaced with nitrogen gas by bubbling with nitrogen gas. Thereafter, 0.27 g of poly- (aminomethylaniline) obtained in Example 1 (in terms of the repeating unit described in Example 1 (molecular weight 479), 0.57 mmol) was added to tetra-n- in the working electrode side tank. A dispersion of butylammonium tetrafluoroborate in an N, N-dimethylformamide solution was dispersed, and the dispersion in the working electrode side tank was bubbled with nitrogen gas.
- a mixed gas of carbon dioxide and nitrogen gas (carbon dioxide content is 4500 ppm) is introduced into the working electrode side tank, so that a mixed atmosphere of carbon dioxide and nitrogen having a carbon dioxide content of 2400 ppm is obtained.
- carbon dioxide content is 4500 ppm
- the solution is circulated by bubbling a gas that is discharged after the carbon dioxide concentration measured from the CO 2 detector, a working electrode
- the carbon dioxide concentration in the gas phase portion of the side tank decreased to 2100 ppm in 30 minutes.
- electrolytic oxidation was performed at 23 ° C. with a constant voltage of 1.5 V between the counter electrode and the working electrode until reaching 16 C.
- the carbon dioxide concentration in the gas phase portion of the working electrode side tank was 2400 ppm in 70 minutes. Increased to. From these facts, it was confirmed that the adsorption and desorption of carbon dioxide proceeded. Subsequently, after performing electrolytic reduction at 23 ° C. between the counter electrode and the working electrode at a constant voltage of ⁇ 2.5 V until reaching ⁇ 13 C, the gas phase portion was measured with a CO 2 detector without applying voltage. The solution was bubbled with a gas discharged after measuring the carbon dioxide concentration from the CO 2 detector and circulated. As a result, the carbon dioxide concentration in the gas phase portion of the working electrode side tank decreased to 2000 ppm in 60 minutes. Thereafter, electrolytic oxidation was performed at 23 ° C.
- the energy required to desorb and regenerate the adsorbed carbon dioxide is small, and the degree of carbon dioxide adsorption or the degree of carbon dioxide desorption is determined. Easy to do. Therefore, carbon dioxide can be efficiently removed from gases discharged in various industries, and it is expected to contribute to the solution of the global warming problem.
- the carbon dioxide adsorbent of the present invention is useful as a carbon dioxide sensor material, a carbon dioxide switch material, etc., because its conductivity changes due to adsorption or desorption of carbon dioxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
This carbon dioxide adsorbent contains a compound having a structural unit represented by formula (1). (In formula (1), a represents an integer from 1-4. R1 represents a divalent organic group of 1-20 carbon atoms, and R2 and R3 independently represent a hydrogen atom or a hydrocarbyl group of 1-20 carbon atoms. Two R1s, two R2s, two R3s, one R1 and one R2, one R1 and one R3, and one R2 and one R3 may optionally bond to form a ring.)
Description
本発明は、二酸化炭素吸着材に関する。
The present invention relates to a carbon dioxide adsorbent.
二酸化炭素吸着材として、二酸化炭素を吸着したり脱離したりできる材料が検討されており、例えば、アミノアルコールや、アミノ基を有するイオン性液体が知られている(非特許文献1、2)。
G.Puxtyら、Environ.Sci.Technol.2009,43,6427−6433. E.D.Batesら、J.Am.Chem.Soc.2002,124,926−927. As the carbon dioxide adsorbing material, materials capable of adsorbing and desorbing carbon dioxide have been studied. For example, amino alcohols and ionic liquids having amino groups are known (Non-PatentDocuments 1 and 2).
G. Puxty et al., Environ. Sci. Technol. 2009, 43, 6427-6433. E. D. Bates et al. Am. Chem. Soc. 2002, 124, 926-927.
G.Puxtyら、Environ.Sci.Technol.2009,43,6427−6433. E.D.Batesら、J.Am.Chem.Soc.2002,124,926−927. As the carbon dioxide adsorbing material, materials capable of adsorbing and desorbing carbon dioxide have been studied. For example, amino alcohols and ionic liquids having amino groups are known (Non-Patent
G. Puxty et al., Environ. Sci. Technol. 2009, 43, 6427-6433. E. D. Bates et al. Am. Chem. Soc. 2002, 124, 926-927.
しかし、これらの二酸化炭素吸着材は、吸着した二酸化炭素を脱離して再生させるために必要となるエネルギーが大きいという問題や、二酸化炭素の吸着の度合い、または、二酸化炭素の脱離の度合いを判断することが困難である。
本発明は、吸着した二酸化炭素を脱離して再生させるために必要となるエネルギーが小さく、かつ、二酸化炭素の吸着の度合い、または、二酸化炭素の脱離の度合いを判断することが容易な二酸化炭素吸着材を提供することを目的とする。
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、本発明を完成するに至った。即ち、本発明は以下の[1]~[3]を提供する。
[1]下記式(1)で表される構造単位を有する化合物を含む二酸化炭素吸着材。
(式(1)中、
aは1~4の整数を表す。
R1は、炭素原子数1~20の2価の有機基を表し、R1が2つ以上ある場合、それらは同一であっても異なっていてもよい。
R2およびR3は、それぞれ独立に、水素原子または炭素原子数1~20のヒドロカルビル基を表す。複数あるR2は、同一であっても異なっていてもよい。R3が2つ以上ある場合、それらは同一であっても異なっていてもよい。
2つのR1は結合して、それらが結合する炭素原子とともに環を形成していてもよい。2つのR2は結合して、それらが結合する窒素原子とともに環を形成していてもよい。2つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR1と1つのR2は結合して、R1が結合する炭素原子およびR2が結合する窒素原子とともに環を形成していてもよい。1つのR1と1つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR2と1つのR3は結合して、R2が結合する窒素原子およびR3が結合する炭素原子とともに環を形成していてもよい。)
[2]前記式(1)で表される構造単位を有する化合物が共役系化合物である、[1]に記載の二酸化炭素吸着材。
[3]前記式(1)で表される構造単位を有する化合物が、前記式(1)で表される構造単位のみからなる化合物である、[2]に記載の二酸化炭素吸着材。 However, these carbon dioxide adsorbents determine the problem of large energy required to desorb and regenerate the adsorbed carbon dioxide, the degree of carbon dioxide adsorption, or the degree of carbon dioxide desorption. Difficult to do.
The present invention requires a small amount of energy required to desorb and regenerate the adsorbed carbon dioxide, and can easily determine the degree of carbon dioxide adsorption or the degree of carbon dioxide desorption. The object is to provide an adsorbent.
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following [1] to [3].
[1] A carbon dioxide adsorbent containing a compound having a structural unit represented by the following formula (1).
(In the formula (1),
a represents an integer of 1 to 4.
R 1 represents a divalent organic group having 1 to 20 carbon atoms, and when there are two or more R 1 s , they may be the same or different.
R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms. A plurality of R 2 may be the same or different. When two or more R 3 are present, they may be the same or different.
Two R 1 's may combine to form a ring with the carbon atom to which they are attached. Two R 2 may be bonded to form a ring together with the nitrogen atom to which they are bonded. Two R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 1 and one R 2 may combine to form a ring together with the carbon atom to which R 1 is bonded and the nitrogen atom to which R 2 is bonded. One R 1 and one R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 2 and one R 3 may combine to form a ring together with the nitrogen atom to which R 2 is bonded and the carbon atom to which R 3 is bonded. )
[2] The carbon dioxide adsorbing material according to [1], wherein the compound having the structural unit represented by the formula (1) is a conjugated compound.
[3] The carbon dioxide adsorbing material according to [2], wherein the compound having the structural unit represented by the formula (1) is a compound including only the structural unit represented by the formula (1).
本発明は、吸着した二酸化炭素を脱離して再生させるために必要となるエネルギーが小さく、かつ、二酸化炭素の吸着の度合い、または、二酸化炭素の脱離の度合いを判断することが容易な二酸化炭素吸着材を提供することを目的とする。
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、本発明を完成するに至った。即ち、本発明は以下の[1]~[3]を提供する。
[1]下記式(1)で表される構造単位を有する化合物を含む二酸化炭素吸着材。
(式(1)中、
aは1~4の整数を表す。
R1は、炭素原子数1~20の2価の有機基を表し、R1が2つ以上ある場合、それらは同一であっても異なっていてもよい。
R2およびR3は、それぞれ独立に、水素原子または炭素原子数1~20のヒドロカルビル基を表す。複数あるR2は、同一であっても異なっていてもよい。R3が2つ以上ある場合、それらは同一であっても異なっていてもよい。
2つのR1は結合して、それらが結合する炭素原子とともに環を形成していてもよい。2つのR2は結合して、それらが結合する窒素原子とともに環を形成していてもよい。2つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR1と1つのR2は結合して、R1が結合する炭素原子およびR2が結合する窒素原子とともに環を形成していてもよい。1つのR1と1つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR2と1つのR3は結合して、R2が結合する窒素原子およびR3が結合する炭素原子とともに環を形成していてもよい。)
[2]前記式(1)で表される構造単位を有する化合物が共役系化合物である、[1]に記載の二酸化炭素吸着材。
[3]前記式(1)で表される構造単位を有する化合物が、前記式(1)で表される構造単位のみからなる化合物である、[2]に記載の二酸化炭素吸着材。 However, these carbon dioxide adsorbents determine the problem of large energy required to desorb and regenerate the adsorbed carbon dioxide, the degree of carbon dioxide adsorption, or the degree of carbon dioxide desorption. Difficult to do.
The present invention requires a small amount of energy required to desorb and regenerate the adsorbed carbon dioxide, and can easily determine the degree of carbon dioxide adsorption or the degree of carbon dioxide desorption. The object is to provide an adsorbent.
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following [1] to [3].
[1] A carbon dioxide adsorbent containing a compound having a structural unit represented by the following formula (1).
(In the formula (1),
a represents an integer of 1 to 4.
R 1 represents a divalent organic group having 1 to 20 carbon atoms, and when there are two or more R 1 s , they may be the same or different.
R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms. A plurality of R 2 may be the same or different. When two or more R 3 are present, they may be the same or different.
Two R 1 's may combine to form a ring with the carbon atom to which they are attached. Two R 2 may be bonded to form a ring together with the nitrogen atom to which they are bonded. Two R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 1 and one R 2 may combine to form a ring together with the carbon atom to which R 1 is bonded and the nitrogen atom to which R 2 is bonded. One R 1 and one R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 2 and one R 3 may combine to form a ring together with the nitrogen atom to which R 2 is bonded and the carbon atom to which R 3 is bonded. )
[2] The carbon dioxide adsorbing material according to [1], wherein the compound having the structural unit represented by the formula (1) is a conjugated compound.
[3] The carbon dioxide adsorbing material according to [2], wherein the compound having the structural unit represented by the formula (1) is a compound including only the structural unit represented by the formula (1).
図1は、実施例4で用いた二酸化炭素吸着・脱離実験装置の模式図である。
FIG. 1 is a schematic diagram of a carbon dioxide adsorption / desorption experimental apparatus used in Example 4.
(1)…H型電解槽
(2a)…対電極
(2b)…作用電極
(2c)…参照電極
(3)…イオン交換膜
(4)…二酸化炭素検知器
(4a)…吸引口
(4b)…排気口
(5)…スターラーチップ (1) ... H-type electrolytic cell (2a) ... Counter electrode (2b) ... Working electrode (2c) ... Reference electrode (3) ... Ion exchange membrane (4) ... Carbon dioxide detector (4a) ... Suction port (4b) ... Exhaust port (5) ... Stirrer tip
(2a)…対電極
(2b)…作用電極
(2c)…参照電極
(3)…イオン交換膜
(4)…二酸化炭素検知器
(4a)…吸引口
(4b)…排気口
(5)…スターラーチップ (1) ... H-type electrolytic cell (2a) ... Counter electrode (2b) ... Working electrode (2c) ... Reference electrode (3) ... Ion exchange membrane (4) ... Carbon dioxide detector (4a) ... Suction port (4b) ... Exhaust port (5) ... Stirrer tip
以下、本発明について、説明する。
<用語>
まず、本明細書において使用される用語について説明する。
「置換基を有していてもよい」とは、その直後に記載された化合物または基を構成する水素原子が無置換の場合および水素原子の一部または全部が置換基によって置換されている場合の双方を含み、置換基によって置換されている場合には、ハロゲン原子、炭素原子数1~30のヒドロカルビル基、炭素原子数1~30のヒドロカルビルオキシ基、炭素原子数1~30のヒドロカルビルアミノ基等(これらの基は、さらに置換基を有していてもよい。)によって置換されていることを意味し、これらの中でも、ハロゲン原子、炭素原子数1~18のヒドロカルビル基、炭素原子数1~18のヒドロカルビルオキシ基または炭素原子数1~18のヒドロカルビルアミノ基で置換されていることが好ましく、炭素原子数1~12のヒドロカルビル基、炭素原子数1~12のヒドロカルビルオキシ基または炭素原子数1~12のヒドロカルビルアミノ基で置換されていることがより好ましく、炭素原子数1~6のヒドロカルビル基、炭素原子数1~6のヒドロカルビルオキシ基または炭素原子数1~6のヒドロカルビルアミノ基で置換されていることが更に好ましい。ヒドロカルビル基、ヒドロカルビルオキシ基およびヒドロカルビルアミノ基等の置換基はそれぞれ、直鎖、分岐鎖または環状のいずれであってもよい。
「2価の芳香族基」とは、芳香族炭化水素の環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団、芳香族複素環式化合物の環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団、または、芳香族炭化水素および芳香族複素環式化合物から選ばれる2個以上の化合物が直接結合した化合物における環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団を表す。
「共役系化合物」とは、(1)二重結合と単結合とが交互に並んだ構造から実質的になる化合物、(2)二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる化合物、(3)二重結合と単結合とが交互に並んだ構造および二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる化合物を意味する。
置換基であるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは、フッ素原子、塩素原子または臭素原子であり、より好ましくは、フッ素原子または塩素原子である。
置換基であるヒドロカルビル基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビル基としては、例えば、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、2−アダマンチル基、ノルボルニル基、アンモニウムエチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基、9−フェナントリル基、1−ピレニル基、クリセニル基、ナフタセニル基、コロニル基等のアルキル基、アルケニル基およびアリール基が挙げられ、
好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基または9−フェナントリル基であり、
より好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基またはフェニル基であり、
更に好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基またはヘキシル基である。
置換基であるヒドロカルビルオキシ基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビルオキシ基としては、例えば、メトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、2−エチルヘキシルオキシ基、3,7−ジメチルオクチルオキシ基、シクロプロパノキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、1−アダマンチルオキシ基、2−アダマンチルオキシ基、ノルボルニルオキシ基、アンモニウムエチトキシ基、トリフルオロメトキシ基、ベンジロキシ基、α,α−ジメチルベンジロキシ基、2−フェネチルオキシ基、1−フェネチルオキシ基、フェノキシ基、アルコキシフェノキシ基、アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等のアルキルオキシ基およびアリールオキシ基が挙げられ、
好ましくはメトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、2−エチルヘキシルオキシ基または3,7−ジメチルオクチルオキシ基であり、
より好ましくはメトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基またはヘキシルオキシ基である。
置換基であるヒドロカルビルアミノ基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、デシルアミノ基、ドデシルアミノ基、2−エチルヘキシルアミノ基、3,7−ジメチルオクチルアミノ基、シクロプロピルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、1−アダマンチルアミノ基、2−アダマンチルアミノ基、ノルボルニルアミノ基、アンモニウムエチルアミノ基、トリフルオロメチルアミノ基、ベンジルアミノ基、α,α−ジメチルベンジルアミノ基、2−フェネチルアミノ基、1−フェネチルアミノ基、フェニルアミノ基、アルコキシフェニルアミノ基、アルキルフェニルアミノ基、1−ナフチルアミノ基、2—ナフチルアミノ基、ペンタフルオロフェニルアミノ基等のアルキルアミノ基およびアリールアミノ基が挙げられ、
好ましくはメチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、デシルアミノ基、ドデシルアミノ基、2−エチルヘキシルアミノ基または3,7−ジメチルオクチルアミノ基であり、
更に好ましくはメチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基またはヘキシルアミノ基である。
以下、本発明の実施形態について説明する。
<二酸化炭素吸着材>
−式(1)で表される構造単位を有する化合物−
本発明の二酸化炭素吸着材は、前記式(1)で表される構造単位を有する化合物を含む、二酸化炭素吸着材である。
前記式(1)中、R1で表される2価の有機基は、置換基を有していてもよい。2価の有機基の炭素原子数は通常1~20である。
2価の有機基としては、例えば、炭素原子数1~20のアルキレン基、炭素原子数6~20の2価の芳香族基、炭素原子数1~20のオキシアルキレン基(即ち −R−O− で表される基(Rはアルキレン基を表す))があげられ、
塩基性を高める観点から、アルキレン基、オキシアルキレン基が好ましく、アルキレン基が更に好ましい。
アルキレン基の中では、化合物内でのプロトンの授受のしやすさの観点からは、炭素原子数1のものが好ましい。化合物の溶媒への溶解性を高めて加工性を確保する観点からは炭素原子数2~20のものが好ましい。
2価の有機基の例としては、メチレン基、1,1−エチレン−ジイル基、1,2−エチレン−ジイル基、1,2−プロピレン−ジイル基、1,3−プロピレン−ジイル基、1,3−イソプロピレン−ジイル基、2,2−プロピレン−ジイル基、1,2−ブチレン−ジイル基、1,3−ブチレン−ジイル基、1,4−ブチレン−ジイル基、2,2−ブチレン−ジイル基、2,3−ブチレン−ジイル基、1,1−ペンチレン−ジイル基、1,2−ペンチレン−ジイル基、1,3−ペンチレン−ジイル基、1,4−ペンチレン−ジイル基、1,5−ペンチレン−ジイル基、2,2−ペンチレン−ジイル基、2,3−ペンチレン−ジイル基、2,4−ペンチレン−ジイル基、3,3−ペンチレン−ジイル基、2−オキサ−1,3−プロピレン−ジイル基、2−オキサ−1,4−ブチレン−ジイル基、3−オキサ−1,4−ブチレン−ジイル基、2−オキサ−1,3−ペンチレン−ジイル基、2−オキサ−1,4−ペンチレン−ジイル基、2−オキサ−1,5−ペンチレン−ジイル基、3−オキサ−1,4−ペンチレン−ジイル基、3−オキサ−1,5−ペンチレン−ジイル基、1,3−ブタジエン−1,4−ジイル基、ブタン−1,4−ジイル基、ペンタン−1,5−ジイル基、1,2−フェンレンジイル基、1,3−フェンレンジイル基、1,4−フェンレンジイル基、o−キシリレン基等が挙げられ、
好ましくは、メチレン基、1,2−エチレン−ジイル基、1,3−プロピレン−ジイル基、1,4−ブチレン−ジイル基、1,5−ペンチレン−ジイル基、2−オキサ−1,3−プロピレン−ジイル基、2−オキサ−1,4−ブチレン−ジイル基、3−オキサ−1,4−ブチレン−ジイル基、2−オキサ−1,3−ペンチレン−ジイル基、2−オキサ−1,4−ペンチレン−ジイル基、2−オキサ−1,5−ペンチレン−ジイル基、3−オキサ−1,4−ペンチレン−ジイル基、3−オキサ−1,5−ペンチレン−ジイル基、ブタン−1,4−ジイル基またはペンタン−1,5−ジイル基である。
前記式(1)中、R2およびR3で表される炭素原子数1~20のヒドロカルビル基は、置換基を有していてもよく、直鎖、分岐鎖または環状のいずれでもよい。
このヒドロカルビル基の例としては、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基等のアルキル基;、シクロプロピル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、1−アダマンチル基、2−アダマンチル基等のアダマンチル基;ノルボルニル基;アンモニウムエチル基などのヒドロカルビル基以外の置換基を有するアルキル基;ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基等のアリールアルキル基;ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基等のアルケニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基、9−フェナントリル基、1−ピレニル基、クリセニル基、ナフタセニル基、コロニル基等のアリール基が挙げられ、
好ましくは、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基または9−フェナントリル基であり、
より好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基またはフェニル基であり、
更に好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基またはヘキシル基である。
前記式(1)中、aは、好ましくは1または2である。前記式(1)で表される構造単位を有する化合物の共役長がより長くなり得るためである。
前記式(1)で表される構造単位は、共役長が長くなるので、下記式(2)で表される構造単位であることが好ましい。
(式(2)中、a、R1、R2およびR3は、前記と同じ意味を表す。)
前記式(1)で表される構造単位を有する化合物(以下、前記式(2)で表される構造単位を有する化合物も含む。)において、式(1)で表される構造で表される構造単位の含有率は、二酸化炭素吸着性がより優れ、かつ、通電により十分なプロトンを遊離できるため二酸化炭素をより効率的に脱離し得るので、全構造単位の合計を100モル%としたとき、1~100モル%が好ましく、5~100モル%がより好ましく、10~100モル%が更に好ましい。
前記式(1)で表される構造単位は、本発明の二酸化炭素吸着材に含まれる化合物に、一種のみ含まれていても二種以上含まれていてもよい。
前記式(1)で表される構造単位を有する化合物は、前記式(1)で表される構造単位以外に、前記式(1)で表される構造単位とは異なるその他の構造単位を有していてもよい。
その他の構造単位としては、共役長がより長いと、二酸化炭素を吸着した際に導電性が向上するため、二酸化炭素センサー材料や二酸化炭素スイッチ材料に用いた際の二酸化炭素の検出感度が向上するので、下記式(3)で表される構造単位が好ましい。
(式(3)中、
Ar1は、2価の芳香族基を表す。この芳香族基は、フッ素原子、置換基を有していてもよい炭素原子数1~20のアルキル基、置換基を有していてもよい炭素原子数1~20のアルコキシ基、置換基を有していてもよい炭素原子数6~20のアリール基、置換基を有していてもよい炭素原子数6~20のアリールオキシ基および置換基を有していてもよい炭素原子数2~20のアシル基からなる群より選ばれる基を置換基として有していてもよい。)
前記式(3)中、Ar1が有し得る置換基である、アルキル基、アルコキシ基、アリール基およびアリールオキシ基は、前記式(1)において説明し例示したものと同じである。前記式(3)中、Ar1が有し得る置換基であるアシル基としては、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の炭素数2~20のアシル基があげられ、これらの基は置換基を有していてもよい。
上記式(3)中、Ar1で表される2価の芳香族基としては、例えば、1,3−フェニレン基、1,4−フェニレン基等の2価の単環性芳香族基;1,3−ナフタレンジイル基、1,4−ナフタレンジイル基、1,5−ナフタレンジイル基、1,6−ナフタレンジイル基、1,7−ナフタレンジイル基、2,6−ナフタレンジイル基、2,7−ナフタレンジイル基等の2価の縮合環芳香族基;ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基が挙げられ、これらの中でも、2価の単環性芳香族基が好ましい。
前記式(1)で表される構造単位を有する化合物において、前記式(3)で表される構造単位等のその他の構造単位の含有率は、前記式(1)で表される構造単位の合計を100モル%としたとき、0~200モル%が好ましく、0~100モル%がより好ましい。
前記式(3)で表される構造単位等のその他の構造単位は、本発明の二酸化炭素吸着材に含まれる化合物に、一種のみ含まれていても二種以上含まれていてもよい。
前記式(1)で表される構造単位を有する化合物は、ポリアニリン骨格を有する化合物であることが特に好ましい。ポリアニリン骨格を有する化合物は、例えば、以下で表される。
(式中、yはモル比を表す0~1の数であり、nは繰り返し単位数である。)
yの値によって、以下の態様(呼称)がある。
y=1 ポリ(パラフェニレンアミン)(「ロイコエメラルディン」と呼ばれることもある。)
y=0.5 ポリ(パラフェニレンアミンイミン)(「エメラルディン」と呼ばれることもある。)
y=0 ポリ(パラフェニレンイミン)(「ペルニグラニリン」と呼ばれることもある。)
nとしては、導電性が向上し、かつ、成膜した際の膜強度が優れるので、4以上が好ましく、10以上がより好ましく、20以上が更に好ましい。、nの上限としては、溶媒に溶解させて加工(例えば、塗布。)する際の操作性が確保し易いので、通常、2000である。
これらの化合物は、いずれもプロトン化によって塩型にもなり、多様性を示す。これらの化合物と塩型との相互変換は、酸化還元、pH変化等によって行うことができる。
これらの化合物は、上述の各態様について導電性が異なる。カチオンを含むもの(塩型)は導電性が高く、カチオンを含まないもの(ベース型)は導電性が低いか、または、導電性を有しない。
前記式(1)で表される構造単位を有する化合物は、分子鎖の主鎖に上記のポリアニリン骨格を有し、かつ、側鎖にアルキルアミノ基を有することが好ましい。これにより、例えば、下記の酸化還元サイクルを循環させることができるので、二酸化炭素の吸着および脱離によるスイッチングが可能になる。本発明の二酸化炭素吸着材は、二酸化炭素が吸着すると導電性が向上し、二酸化炭素が脱離すると導電性が低下する傾向にある。
(式中、nは繰り返し単位数である。)
本発明の好ましい実施形態では、本発明の二酸化炭素吸着材は、二酸化炭素の吸着性がより優れるので、電気的に中性である。具体的には、アミノアルキル基がプロトン化等されていない。本発明の別の好ましい実施形態では、導電性を変化させ易いので、エメラルディン型である。
以下、前記式(1)で表される構造単位を有する化合物を、エメラルディン型で例示する。
(式中、nは繰り返し単位数である。)
前記式(1)で表される構造単位を有する化合物は、導電性が向上し、かつ、成膜した際の膜強度が優れるので、高分子化合物であることが好ましく、その分子量は、2000以上が好ましく、5000以上がより好ましく、10000以上が更に好ましい。前記分子量の上限は、溶媒に溶解させて加工(例えば、塗布。)する際の操作性が確保し易いので、通常、1000000である。前記式(1)で表される構造単位を有する化合物が高分子化合物である場合、その分子量は、ポリスチレン換算の重量平均分子量を意味する。
本発明の二酸化炭素吸着材は、前記式(1)で表される構造単位を有する化合物のみからなるものでもよいが、前記式(1)で表される構造単位を有する化合物とその他の成分との組成物であってもよい。前期式(1)で表される構造単位を有する化合物は、一種単独で用いても二種以上を併用してもよい。
本発明の二酸化炭素吸着材が含み得るその他の成分としては、例えば、前記式(1)で表される構造単位を有する化合物とは異なる高分子化合物が挙げられる。この高分子化合物としては、二酸化炭素の吸着性をより維持できるので、pHが中性に近い高分子化合物が好ましく、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコン樹脂が挙げられる。これらのその他の成分は、一種単独で用いても二種以上を併用してもよい。
本発明の二酸化炭素吸着材において、前記式(1)で表される構造単位を有する化合物の含有率は、1~100重量%が好ましく、5~100重量%がより好ましく、10~100重量%が更に好ましい。
本発明の二酸化炭素吸着材において、その他の成分である高分子化合物の含有率は、前記式(1)で表される構造単位を有する化合物の合計を100重量部としたとき、0~1000重量部が好ましく、0~500重量部がより好ましく、0~300重量部が更に好ましい。
−前記式(1)で表される構造単位を有する化合物の製造方法−
前記式(1)で表される構造単位を有する化合物の製造方法としては、例えば、芳香環の水素原子の1つがアミノアルキル基に置換されたアニリン化合物を用いて、塩酸水溶液中、過硫酸アンモニウムを反応させる方法(例えば、実験化学講座(丸善第4版)28巻「高分子合成」342−343頁の実験例4・74記載のポリアニリン合成法等の公知の方法)を適用することができる。この反応により得られた化合物の分子量や化学構造は、ゲル浸透クロマトグラフィー、核磁気共鳴スペクトル(NMR)等の通常の分析手段により求めることができる。
<二酸化炭素吸着材の形状>
本発明の二酸化炭素吸着材の形状は、例えば、膜、粉末、ペレットである。これらの中でも、通電がし易いので、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、膜が好ましい。膜の形態には、例えば、単独膜、複合膜、多孔質膜がある。
前記膜の厚さは、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、二酸化炭素の吸着性および空気透過性が良好になるので、3μm~3cmが好ましく、0.1mm~2cmがより好ましく、1mm~1cmが特に好ましい。
膜の空隙率は、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、二酸化炭素の吸着性と空気透過性を維持できるように調整する。
二酸化炭素を吸着した前記膜から、二酸化炭素を脱離させるには、電気エネルギーまたは光エネルギーが、好適に利用できる。
<二酸化炭素吸着材の用途・応用>
本発明の二酸化炭素吸着材は、気体中から二酸化炭素を分離する装置にも応用することができる。また、純度の低い二酸化炭素を精製する装置(例えば、本発明の二酸化炭素吸着材に二酸化炭素を吸着させた後、通電により該二酸化炭素を放出させる装置)にも応用することができる。
これらの装置に本発明の二酸化炭素吸着材を用いる場合、導電性が高くなれば二酸化炭素の吸着が飽和に達したと判断することができる。その後、この二酸化炭素吸着材に通電する等して二酸化炭素を脱離することで二酸化炭素吸着能を再生するか、あるいは、二酸化炭素吸着材を交換することにより、これらの装置を継続利用することができる。
特に、気体中から二酸化炭素を分離する装置は、二酸化炭素の濃度が高い場所や二酸化炭素量が多い場所に設置すると、地球温暖化問題に有効である。このような場所としては、例えば、工場、火力発電所等の産業プラントの排気ガスラインや、冷蔵庫等の家電用品が挙げられる。
上述のとおり、式(1)で表される構造単位を有する化合物は、二酸化炭素吸着材の製造に使用できる。
また、本発明は、式(1)で表される構造単位を含む化合物と、二酸化炭素を含む気体とを接触させて、該化合物に二酸化炭素を吸着させ、該気体から二酸化炭素の一部又は全部を除く気体の精製方法を提供する。
さらに 本発明は、式(1)で表される構造単位を含む化合物と、二酸化炭素を含む気体とを接触させて、該化合物に二酸化炭素を吸着させ、その後該化合物から二酸化炭素を脱離させる二酸化炭素の精製方法を提供する。 The present invention will be described below.
<Terminology>
First, terms used in this specification will be described.
“May have a substituent” means that the hydrogen atom constituting the compound or group described immediately after it is unsubstituted or a part or all of the hydrogen atoms are substituted by a substituent And when substituted with a substituent, a halogen atom, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, or a hydrocarbylamino group having 1 to 30 carbon atoms Etc. (these groups may further have a substituent). Among these, a halogen atom, a hydrocarbyl group having 1 to 18 carbon atoms, a carbon atom number of 1 It is preferably substituted with a hydrocarbyloxy group having 1 to 18 carbon atoms or a hydrocarbylamino group having 1 to 18 carbon atoms, and a hydrocarbyl group having 1 to 12 carbon atoms, It is more preferably substituted with a hydrocarbyloxy group having 1 to 12 children or a hydrocarbylamino group having 1 to 12 carbon atoms, a hydrocarbyl group having 1 to 6 carbon atoms, or a hydrocarbyloxy group having 1 to 6 carbon atoms Alternatively, it is more preferably substituted with a hydrocarbylamino group having 1 to 6 carbon atoms. Substituents such as a hydrocarbyl group, hydrocarbyloxy group and hydrocarbylamino group may each be linear, branched or cyclic.
“Divalent aromatic group” means the remaining atomic group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon ring, constituting the ring of the aromatic heterocyclic compound The remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom, or a ring in a compound in which two or more compounds selected from aromatic hydrocarbons and aromatic heterocyclic compounds are directly bonded constitute a ring It represents the remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom.
“Conjugated compound” means (1) a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately, and (2) a structure in which double bonds and single bonds are arranged through nitrogen atoms. (3) means a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately and a structure in which double bonds and single bonds are arranged via nitrogen atoms.
Examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a fluorine atom or a chlorine atom. is there.
The substituent hydrocarbyl group may be linear, branched or cyclic.
Examples of the hydrocarbyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, hexyl, and octyl. Group, decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, ammonium ethyl group, benzyl group , Α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group 2-tolyl group, 4-tolyl group, 4-trifluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenylyl group, 3 , 5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) phenyl group, fluorenyl Group, alkyl group such as 1-naphthyl group, 2-naphthyl group, 9-anthryl group, 2-anthryl group, 9-phenanthryl group, 1-pyrenyl group, chrysenyl group, naphthacenyl group, coronyl group, alkenyl group and aryl group Are mentioned,
Preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, 2- Ethylhexyl group, 3,7-dimethyloctyl group, benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, Docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4-trifluoro Methylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, turf Enilyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) A phenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-anthryl group, a 2-anthryl group, or a 9-phenanthryl group;
More preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group 3,7-dimethyloctyl group, benzyl group or phenyl group,
More preferred are methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group or hexyl group.
The hydrocarbyloxy group as a substituent may be linear, branched or cyclic.
Examples of the hydrocarbyloxy group include methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, octyloxy group, decyloxy group, dodecyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, cyclopropanoxy group, cyclopentyloxy group, cyclohexyloxy group, 1-adamantyloxy group, 2- Adamantyloxy group, norbornyloxy group, ammonium ethoxy group, trifluoromethoxy group, benzyloxy group, α, α-dimethylbenzyloxy group, 2-phenethyloxy group, 1-phenethyloxy group, phenoxy group, alkoxyphenoxy group , Alkylph An alkyloxy group such as an enoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a pentafluorophenyloxy group, and an aryloxy group;
Preferably, methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group, dodecyloxy group A 2-ethylhexyloxy group or a 3,7-dimethyloctyloxy group,
More preferred are methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group or hexyloxy group.
The hydrocarbylamino group as a substituent may be linear, branched or cyclic.
Examples of the hydrocarbylamino group include methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, isobutylamino group, and tert-butylamino. Group, pentylamino group, hexylamino group, octylamino group, decylamino group, dodecylamino group, 2-ethylhexylamino group, 3,7-dimethyloctylamino group, cyclopropylamino group, cyclopentylamino group, cyclohexylamino group, 1 -Adamantylamino group, 2-adamantylamino group, norbornylamino group, ammonium ethylamino group, trifluoromethylamino group, benzylamino group, α, α-dimethylbenzylamino group, 2-phenethylamino group, 1-phenethyl Amino group, phenyl Examples include amino groups, alkoxyphenylamino groups, alkylphenylamino groups, 1-naphthylamino groups, 2-naphthylamino groups, alkylamino groups such as pentafluorophenylamino groups, and arylamino groups.
Preferably methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, tert-butylamino group, pentylamino group, hexylamino group, octylamino Group, decylamino group, dodecylamino group, 2-ethylhexylamino group or 3,7-dimethyloctylamino group,
More preferably, methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, isobutylamino group, tert-butylamino group, pentylamino group or hexyl It is an amino group.
Hereinafter, embodiments of the present invention will be described.
<Carbon dioxide adsorbent>
-Compound having a structural unit represented by Formula (1)-
The carbon dioxide adsorbing material of the present invention is a carbon dioxide adsorbing material containing a compound having a structural unit represented by the formula (1).
In the formula (1), R 1 The divalent organic group represented by may have a substituent. The number of carbon atoms in the divalent organic group is usually 1-20.
Examples of the divalent organic group include an alkylene group having 1 to 20 carbon atoms, a divalent aromatic group having 6 to 20 carbon atoms, and an oxyalkylene group having 1 to 20 carbon atoms (that is, —RO—O). A group represented by-(R represents an alkylene group),
From the viewpoint of enhancing basicity, an alkylene group and an oxyalkylene group are preferable, and an alkylene group is more preferable.
Among the alkylene groups, those having 1 carbon atom are preferable from the viewpoint of easy exchange of protons in the compound. From the viewpoint of enhancing the solubility of the compound in a solvent and ensuring processability, those having 2 to 20 carbon atoms are preferred.
Examples of the divalent organic group include methylene group, 1,1-ethylene-diyl group, 1,2-ethylene-diyl group, 1,2-propylene-diyl group, 1,3-propylene-diyl group, , 3-Isopropylene-diyl group, 2,2-propylene-diyl group, 1,2-butylene-diyl group, 1,3-butylene-diyl group, 1,4-butylene-diyl group, 2,2-butylene -Diyl group, 2,3-butylene-diyl group, 1,1-pentylene-diyl group, 1,2-pentylene-diyl group, 1,3-pentylene-diyl group, 1,4-pentylene-diyl group, 1 , 5-pentylene-diyl group, 2,2-pentylene-diyl group, 2,3-pentylene-diyl group, 2,4-pentylene-diyl group, 3,3-pentylene-diyl group, 2-oxa-1, 3-propylene-diyl 2-oxa-1,4-butylene-diyl group, 3-oxa-1,4-butylene-diyl group, 2-oxa-1,3-pentylene-diyl group, 2-oxa-1,4-pentylene- Diyl group, 2-oxa-1,5-pentylene-diyl group, 3-oxa-1,4-pentylene-diyl group, 3-oxa-1,5-pentylene-diyl group, 1,3-butadiene-1, 4-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, 1,2-phenenediyl group, 1,3-phenenediyl group, 1,4-phenenediyl group, o-xylylene group, etc.
Preferably, a methylene group, 1,2-ethylene-diyl group, 1,3-propylene-diyl group, 1,4-butylene-diyl group, 1,5-pentylene-diyl group, 2-oxa-1,3- Propylene-diyl group, 2-oxa-1,4-butylene-diyl group, 3-oxa-1,4-butylene-diyl group, 2-oxa-1,3-pentylene-diyl group, 2-oxa-1, 4-pentylene-diyl group, 2-oxa-1,5-pentylene-diyl group, 3-oxa-1,4-pentylene-diyl group, 3-oxa-1,5-pentylene-diyl group, butane-1, 4-diyl group or pentane-1,5-diyl group.
In the formula (1), R 2 And R 3 The hydrocarbyl group having 1 to 20 carbon atoms represented by the above formula may have a substituent and may be linear, branched or cyclic.
Examples of the hydrocarbyl group include methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group and octyl group. Alkyl groups such as decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group; cycloalkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, etc. Adamantyl group; norbornyl group; alkyl group having a substituent other than hydrocarbyl group such as ammonium ethyl group; arylalkyl group such as benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group; vinyl Group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, doco group Alkenyl groups such as sahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4- Trifluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenylyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl Group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) phenyl group, fluorenyl group, 1-naphthyl group, 2-naphthyl group, 9 -Anthryl group, 2-anthryl group, 9-phenanthryl group, 1-pyrenyl group, chrycenyl group, naphthacenyl group, coronyl Include aryl group such as,
Preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, 2 -Ethylhexyl group, 3,7-dimethyloctyl group, benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group , Docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4-tril group Fluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, ter Phenylyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) A phenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-anthryl group, a 2-anthryl group, or a 9-phenanthryl group;
More preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group 3,7-dimethyloctyl group, benzyl group or phenyl group,
More preferred are methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group or hexyl group.
In the formula (1), a is preferably 1 or 2. This is because the conjugate length of the compound having the structural unit represented by the formula (1) can be longer.
Since the structural unit represented by the formula (1) has a long conjugate length, the structural unit represented by the following formula (2) is preferable.
(In formula (2), a, R 1 , R 2 And R 3 Represents the same meaning as described above. )
The compound having the structural unit represented by the formula (1) (hereinafter also including the compound having the structural unit represented by the formula (2)) is represented by the structure represented by the formula (1). The content of the structural unit is more excellent in carbon dioxide adsorption, and since sufficient protons can be liberated by energization, carbon dioxide can be desorbed more efficiently, so when the total of all structural units is 100 mol% It is preferably 1 to 100 mol%, more preferably 5 to 100 mol%, still more preferably 10 to 100 mol%.
The structural unit represented by the formula (1) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
The compound having the structural unit represented by the formula (1) has other structural units different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). You may do it.
As other structural units, the longer the conjugate length, the better the conductivity when carbon dioxide is adsorbed, so the detection sensitivity of carbon dioxide when used as a carbon dioxide sensor material or carbon dioxide switch material is improved. Therefore, the structural unit represented by the following formula (3) is preferable.
(In Formula (3),
Ar 1 Represents a divalent aromatic group. This aromatic group includes a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryl group having 6 to 20 carbon atoms which may have, an aryloxy group having 6 to 20 carbon atoms which may have a substituent and 2 to 2 carbon atoms which may have a substituent A group selected from the group consisting of 20 acyl groups may be present as a substituent. )
In the formula (3), Ar 1 An alkyl group, an alkoxy group, an aryl group, and an aryloxy group, which are substituents that may be present, are the same as those described and exemplified in the formula (1). In the formula (3), Ar 1 Examples of the acyl group that may be substituted include acyl having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Groups, and these groups may have a substituent.
In the above formula (3), Ar 1 As the divalent aromatic group represented by, for example, a divalent monocyclic aromatic group such as 1,3-phenylene group or 1,4-phenylene group; 1,3-naphthalenediyl group, 1, Divalent such as 4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc. Condensed ring aromatic group; bivalent aromatic heterocyclic groups such as pyridinediyl group, quinoxaline diyl group, and thiophene diyl group are exemplified, and among these, a divalent monocyclic aromatic group is preferable.
In the compound having the structural unit represented by the formula (1), the content of other structural units such as the structural unit represented by the formula (3) is that of the structural unit represented by the formula (1). When the total is 100 mol%, 0 to 200 mol% is preferable, and 0 to 100 mol% is more preferable.
Other structural units such as the structural unit represented by the formula (3) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
The compound having the structural unit represented by the formula (1) is particularly preferably a compound having a polyaniline skeleton. The compound having a polyaniline skeleton is represented by the following, for example.
(In the formula, y is a number from 0 to 1 representing the molar ratio, and n is the number of repeating units.)
There are the following modes (names) depending on the value of y.
y = 1 poly (paraphenyleneamine) (sometimes called "leuco emeraldine")
y = 0.5 Poly (paraphenyleneamine imine) (sometimes called "emeraldine")
y = 0 poly (paraphenyleneimine) (sometimes referred to as “pernigraniline”)
n is preferably 4 or more, more preferably 10 or more, and still more preferably 20 or more, because the conductivity is improved and the film strength when the film is formed is excellent. The upper limit of n is usually 2000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent.
All of these compounds are converted into a salt form by protonation and show diversity. Interconversion between these compounds and salt forms can be performed by oxidation-reduction, pH change or the like.
These compounds differ in conductivity for each of the above-described embodiments. Those containing cations (salt type) have high conductivity, and those not containing cations (base type) have low conductivity or no conductivity.
The compound having the structural unit represented by the formula (1) preferably has the above polyaniline skeleton in the main chain of the molecular chain and an alkylamino group in the side chain. Thereby, for example, since the following redox cycle can be circulated, switching by adsorption and desorption of carbon dioxide becomes possible. The carbon dioxide adsorbing material of the present invention tends to improve conductivity when carbon dioxide is adsorbed, and lower conductivity when carbon dioxide is desorbed.
(In the formula, n is the number of repeating units.)
In a preferred embodiment of the present invention, the carbon dioxide adsorbent of the present invention is electrically neutral because it has better carbon dioxide adsorptivity. Specifically, the aminoalkyl group is not protonated. In another preferred embodiment of the present invention, since the conductivity is easily changed, the emeraldine type is used.
Hereinafter, the compound having the structural unit represented by the formula (1) is exemplified as an emeraldine type.
(In the formula, n is the number of repeating units.)
The compound having the structural unit represented by the formula (1) is preferably a high molecular compound because of its improved conductivity and excellent film strength when formed, and its molecular weight is 2000 or more. Is preferably 5000 or more, more preferably 10,000 or more. The upper limit of the molecular weight is usually 1,000,000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent. When the compound having the structural unit represented by the formula (1) is a polymer compound, the molecular weight means a weight average molecular weight in terms of polystyrene.
The carbon dioxide adsorbent of the present invention may be composed only of a compound having a structural unit represented by the formula (1), but a compound having a structural unit represented by the formula (1) and other components The composition of may be sufficient. The compound having the structural unit represented by the formula (1) may be used alone or in combination of two or more.
Examples of other components that can be included in the carbon dioxide adsorbent of the present invention include polymer compounds different from the compound having the structural unit represented by the formula (1). The polymer compound is preferably a polymer compound having a pH close to neutrality because it can maintain the carbon dioxide adsorptivity. For example, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, Examples include polysulfone, polyphenylene oxide, polybutadiene, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, and silicon resin. These other components may be used alone or in combination of two or more.
In the carbon dioxide adsorbent of the present invention, the content of the compound having the structural unit represented by the formula (1) is preferably 1 to 100% by weight, more preferably 5 to 100% by weight, and 10 to 100% by weight. Is more preferable.
In the carbon dioxide adsorbent of the present invention, the content of the polymer compound as the other component is 0 to 1000 weights when the total of the compounds having the structural unit represented by the formula (1) is 100 parts by weight. Part by weight, more preferably 0 to 500 parts by weight, still more preferably 0 to 300 parts by weight.
-Manufacturing method of the compound which has a structural unit represented by said Formula (1)-
As a method for producing a compound having the structural unit represented by the formula (1), for example, using an aniline compound in which one of the aromatic ring hydrogen atoms is substituted with an aminoalkyl group, ammonium persulfate is added in an aqueous hydrochloric acid solution. A reaction method (for example, a known method such as a polyaniline synthesis method described in Experimental Examples 4 and 74 in Experimental Chemistry Course (Maruzen 4th edition), Vol. 28, “Polymer Synthesis”, pages 342 to 343) can be applied. The molecular weight and chemical structure of the compound obtained by this reaction can be determined by ordinary analysis means such as gel permeation chromatography and nuclear magnetic resonance spectrum (NMR).
<Shape of carbon dioxide adsorbent>
The shape of the carbon dioxide adsorbent of the present invention is, for example, a film, a powder, or a pellet. Among these, since energization is easy, a membrane is preferable when used for the purpose of removing carbon dioxide from gas (for example, in the atmosphere). Examples of the form of the film include a single film, a composite film, and a porous film.
When used for the purpose of removing carbon dioxide from gas (for example, in the air), the thickness of the film is preferably 3 μm to 3 cm, because the carbon dioxide adsorbing property and air permeability are improved. 0.1 mm to 2 cm is more preferable, and 1 mm to 1 cm is particularly preferable.
The porosity of the membrane is adjusted so that carbon dioxide adsorption and air permeability can be maintained when it is used for the purpose of removing carbon dioxide from gas (for example, air).
In order to desorb carbon dioxide from the film adsorbed with carbon dioxide, electric energy or light energy can be suitably used.
<Uses and applications of carbon dioxide adsorbents>
The carbon dioxide adsorbing material of the present invention can also be applied to an apparatus for separating carbon dioxide from gas. Further, the present invention can also be applied to an apparatus for purifying low-purity carbon dioxide (for example, an apparatus in which carbon dioxide is adsorbed by the carbon dioxide adsorbing material of the present invention and then released by energization).
When the carbon dioxide adsorbing material of the present invention is used in these apparatuses, it can be determined that the adsorption of carbon dioxide has reached saturation if the conductivity increases. Thereafter, the carbon dioxide adsorbing capacity is regenerated by desorbing carbon dioxide by, for example, energizing the carbon dioxide adsorbing material, or the carbon dioxide adsorbing material is replaced to continue using these devices. Can do.
In particular, an apparatus for separating carbon dioxide from a gas is effective for the problem of global warming when installed in a place where the concentration of carbon dioxide is high or a place where the amount of carbon dioxide is large. Examples of such places include exhaust gas lines of industrial plants such as factories and thermal power plants, and household appliances such as refrigerators.
As above-mentioned, the compound which has a structural unit represented by Formula (1) can be used for manufacture of a carbon dioxide adsorption material.
In the present invention, the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound. Provided is a gas purification method that removes all gasses.
In the present invention, the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound, and then desorb carbon dioxide from the compound. A method for purifying carbon dioxide is provided.
<用語>
まず、本明細書において使用される用語について説明する。
「置換基を有していてもよい」とは、その直後に記載された化合物または基を構成する水素原子が無置換の場合および水素原子の一部または全部が置換基によって置換されている場合の双方を含み、置換基によって置換されている場合には、ハロゲン原子、炭素原子数1~30のヒドロカルビル基、炭素原子数1~30のヒドロカルビルオキシ基、炭素原子数1~30のヒドロカルビルアミノ基等(これらの基は、さらに置換基を有していてもよい。)によって置換されていることを意味し、これらの中でも、ハロゲン原子、炭素原子数1~18のヒドロカルビル基、炭素原子数1~18のヒドロカルビルオキシ基または炭素原子数1~18のヒドロカルビルアミノ基で置換されていることが好ましく、炭素原子数1~12のヒドロカルビル基、炭素原子数1~12のヒドロカルビルオキシ基または炭素原子数1~12のヒドロカルビルアミノ基で置換されていることがより好ましく、炭素原子数1~6のヒドロカルビル基、炭素原子数1~6のヒドロカルビルオキシ基または炭素原子数1~6のヒドロカルビルアミノ基で置換されていることが更に好ましい。ヒドロカルビル基、ヒドロカルビルオキシ基およびヒドロカルビルアミノ基等の置換基はそれぞれ、直鎖、分岐鎖または環状のいずれであってもよい。
「2価の芳香族基」とは、芳香族炭化水素の環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団、芳香族複素環式化合物の環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団、または、芳香族炭化水素および芳香族複素環式化合物から選ばれる2個以上の化合物が直接結合した化合物における環を構成する炭素原子に直接結合する水素原子の2個を除いた残りの原子団を表す。
「共役系化合物」とは、(1)二重結合と単結合とが交互に並んだ構造から実質的になる化合物、(2)二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる化合物、(3)二重結合と単結合とが交互に並んだ構造および二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる化合物を意味する。
置換基であるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは、フッ素原子、塩素原子または臭素原子であり、より好ましくは、フッ素原子または塩素原子である。
置換基であるヒドロカルビル基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビル基としては、例えば、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、2−アダマンチル基、ノルボルニル基、アンモニウムエチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基、9−フェナントリル基、1−ピレニル基、クリセニル基、ナフタセニル基、コロニル基等のアルキル基、アルケニル基およびアリール基が挙げられ、
好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基または9−フェナントリル基であり、
より好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基またはフェニル基であり、
更に好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基またはヘキシル基である。
置換基であるヒドロカルビルオキシ基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビルオキシ基としては、例えば、メトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、2−エチルヘキシルオキシ基、3,7−ジメチルオクチルオキシ基、シクロプロパノキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、1−アダマンチルオキシ基、2−アダマンチルオキシ基、ノルボルニルオキシ基、アンモニウムエチトキシ基、トリフルオロメトキシ基、ベンジロキシ基、α,α−ジメチルベンジロキシ基、2−フェネチルオキシ基、1−フェネチルオキシ基、フェノキシ基、アルコキシフェノキシ基、アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等のアルキルオキシ基およびアリールオキシ基が挙げられ、
好ましくはメトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、2−エチルヘキシルオキシ基または3,7−ジメチルオクチルオキシ基であり、
より好ましくはメトキシ基、エトキシ基、1−プロパノキシ基、2−プロパノキシ基、1−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基またはヘキシルオキシ基である。
置換基であるヒドロカルビルアミノ基は、直鎖、分岐鎖または環状のいずれでもよい。
上記のヒドロカルビルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、デシルアミノ基、ドデシルアミノ基、2−エチルヘキシルアミノ基、3,7−ジメチルオクチルアミノ基、シクロプロピルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、1−アダマンチルアミノ基、2−アダマンチルアミノ基、ノルボルニルアミノ基、アンモニウムエチルアミノ基、トリフルオロメチルアミノ基、ベンジルアミノ基、α,α−ジメチルベンジルアミノ基、2−フェネチルアミノ基、1−フェネチルアミノ基、フェニルアミノ基、アルコキシフェニルアミノ基、アルキルフェニルアミノ基、1−ナフチルアミノ基、2—ナフチルアミノ基、ペンタフルオロフェニルアミノ基等のアルキルアミノ基およびアリールアミノ基が挙げられ、
好ましくはメチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、デシルアミノ基、ドデシルアミノ基、2−エチルヘキシルアミノ基または3,7−ジメチルオクチルアミノ基であり、
更に好ましくはメチルアミノ基、エチルアミノ基、1−プロピルアミノ基、2−プロピルアミノ基、1−ブチルアミノ基、2−ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基またはヘキシルアミノ基である。
以下、本発明の実施形態について説明する。
<二酸化炭素吸着材>
−式(1)で表される構造単位を有する化合物−
本発明の二酸化炭素吸着材は、前記式(1)で表される構造単位を有する化合物を含む、二酸化炭素吸着材である。
前記式(1)中、R1で表される2価の有機基は、置換基を有していてもよい。2価の有機基の炭素原子数は通常1~20である。
2価の有機基としては、例えば、炭素原子数1~20のアルキレン基、炭素原子数6~20の2価の芳香族基、炭素原子数1~20のオキシアルキレン基(即ち −R−O− で表される基(Rはアルキレン基を表す))があげられ、
塩基性を高める観点から、アルキレン基、オキシアルキレン基が好ましく、アルキレン基が更に好ましい。
アルキレン基の中では、化合物内でのプロトンの授受のしやすさの観点からは、炭素原子数1のものが好ましい。化合物の溶媒への溶解性を高めて加工性を確保する観点からは炭素原子数2~20のものが好ましい。
2価の有機基の例としては、メチレン基、1,1−エチレン−ジイル基、1,2−エチレン−ジイル基、1,2−プロピレン−ジイル基、1,3−プロピレン−ジイル基、1,3−イソプロピレン−ジイル基、2,2−プロピレン−ジイル基、1,2−ブチレン−ジイル基、1,3−ブチレン−ジイル基、1,4−ブチレン−ジイル基、2,2−ブチレン−ジイル基、2,3−ブチレン−ジイル基、1,1−ペンチレン−ジイル基、1,2−ペンチレン−ジイル基、1,3−ペンチレン−ジイル基、1,4−ペンチレン−ジイル基、1,5−ペンチレン−ジイル基、2,2−ペンチレン−ジイル基、2,3−ペンチレン−ジイル基、2,4−ペンチレン−ジイル基、3,3−ペンチレン−ジイル基、2−オキサ−1,3−プロピレン−ジイル基、2−オキサ−1,4−ブチレン−ジイル基、3−オキサ−1,4−ブチレン−ジイル基、2−オキサ−1,3−ペンチレン−ジイル基、2−オキサ−1,4−ペンチレン−ジイル基、2−オキサ−1,5−ペンチレン−ジイル基、3−オキサ−1,4−ペンチレン−ジイル基、3−オキサ−1,5−ペンチレン−ジイル基、1,3−ブタジエン−1,4−ジイル基、ブタン−1,4−ジイル基、ペンタン−1,5−ジイル基、1,2−フェンレンジイル基、1,3−フェンレンジイル基、1,4−フェンレンジイル基、o−キシリレン基等が挙げられ、
好ましくは、メチレン基、1,2−エチレン−ジイル基、1,3−プロピレン−ジイル基、1,4−ブチレン−ジイル基、1,5−ペンチレン−ジイル基、2−オキサ−1,3−プロピレン−ジイル基、2−オキサ−1,4−ブチレン−ジイル基、3−オキサ−1,4−ブチレン−ジイル基、2−オキサ−1,3−ペンチレン−ジイル基、2−オキサ−1,4−ペンチレン−ジイル基、2−オキサ−1,5−ペンチレン−ジイル基、3−オキサ−1,4−ペンチレン−ジイル基、3−オキサ−1,5−ペンチレン−ジイル基、ブタン−1,4−ジイル基またはペンタン−1,5−ジイル基である。
前記式(1)中、R2およびR3で表される炭素原子数1~20のヒドロカルビル基は、置換基を有していてもよく、直鎖、分岐鎖または環状のいずれでもよい。
このヒドロカルビル基の例としては、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基等のアルキル基;、シクロプロピル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、1−アダマンチル基、2−アダマンチル基等のアダマンチル基;ノルボルニル基;アンモニウムエチル基などのヒドロカルビル基以外の置換基を有するアルキル基;ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基等のアリールアルキル基;ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基等のアルケニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基、9−フェナントリル基、1−ピレニル基、クリセニル基、ナフタセニル基、コロニル基等のアリール基が挙げられ、
好ましくは、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基、α,α—ジメチルベンジル基、1−フェネチル基、2−フェネチル基、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、2−フェニル−2−プロペニル基、フェニル基、2−トリル基、4−トリル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−シアノフェニル基、2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、ターフェニリル基、3,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、ペンタフェニルフェニル基、4−(2,2−ジフェニルビニル)フェニル基、4−(1,2,2−トリフェニルビニル)フェニル基、フルオレニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、2−アントリル基または9−フェナントリル基であり、
より好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ベンジル基またはフェニル基であり、
更に好ましくはメチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、ペンチル基またはヘキシル基である。
前記式(1)中、aは、好ましくは1または2である。前記式(1)で表される構造単位を有する化合物の共役長がより長くなり得るためである。
前記式(1)で表される構造単位は、共役長が長くなるので、下記式(2)で表される構造単位であることが好ましい。
(式(2)中、a、R1、R2およびR3は、前記と同じ意味を表す。)
前記式(1)で表される構造単位を有する化合物(以下、前記式(2)で表される構造単位を有する化合物も含む。)において、式(1)で表される構造で表される構造単位の含有率は、二酸化炭素吸着性がより優れ、かつ、通電により十分なプロトンを遊離できるため二酸化炭素をより効率的に脱離し得るので、全構造単位の合計を100モル%としたとき、1~100モル%が好ましく、5~100モル%がより好ましく、10~100モル%が更に好ましい。
前記式(1)で表される構造単位は、本発明の二酸化炭素吸着材に含まれる化合物に、一種のみ含まれていても二種以上含まれていてもよい。
前記式(1)で表される構造単位を有する化合物は、前記式(1)で表される構造単位以外に、前記式(1)で表される構造単位とは異なるその他の構造単位を有していてもよい。
その他の構造単位としては、共役長がより長いと、二酸化炭素を吸着した際に導電性が向上するため、二酸化炭素センサー材料や二酸化炭素スイッチ材料に用いた際の二酸化炭素の検出感度が向上するので、下記式(3)で表される構造単位が好ましい。
(式(3)中、
Ar1は、2価の芳香族基を表す。この芳香族基は、フッ素原子、置換基を有していてもよい炭素原子数1~20のアルキル基、置換基を有していてもよい炭素原子数1~20のアルコキシ基、置換基を有していてもよい炭素原子数6~20のアリール基、置換基を有していてもよい炭素原子数6~20のアリールオキシ基および置換基を有していてもよい炭素原子数2~20のアシル基からなる群より選ばれる基を置換基として有していてもよい。)
前記式(3)中、Ar1が有し得る置換基である、アルキル基、アルコキシ基、アリール基およびアリールオキシ基は、前記式(1)において説明し例示したものと同じである。前記式(3)中、Ar1が有し得る置換基であるアシル基としては、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の炭素数2~20のアシル基があげられ、これらの基は置換基を有していてもよい。
上記式(3)中、Ar1で表される2価の芳香族基としては、例えば、1,3−フェニレン基、1,4−フェニレン基等の2価の単環性芳香族基;1,3−ナフタレンジイル基、1,4−ナフタレンジイル基、1,5−ナフタレンジイル基、1,6−ナフタレンジイル基、1,7−ナフタレンジイル基、2,6−ナフタレンジイル基、2,7−ナフタレンジイル基等の2価の縮合環芳香族基;ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基が挙げられ、これらの中でも、2価の単環性芳香族基が好ましい。
前記式(1)で表される構造単位を有する化合物において、前記式(3)で表される構造単位等のその他の構造単位の含有率は、前記式(1)で表される構造単位の合計を100モル%としたとき、0~200モル%が好ましく、0~100モル%がより好ましい。
前記式(3)で表される構造単位等のその他の構造単位は、本発明の二酸化炭素吸着材に含まれる化合物に、一種のみ含まれていても二種以上含まれていてもよい。
前記式(1)で表される構造単位を有する化合物は、ポリアニリン骨格を有する化合物であることが特に好ましい。ポリアニリン骨格を有する化合物は、例えば、以下で表される。
(式中、yはモル比を表す0~1の数であり、nは繰り返し単位数である。)
yの値によって、以下の態様(呼称)がある。
y=1 ポリ(パラフェニレンアミン)(「ロイコエメラルディン」と呼ばれることもある。)
y=0.5 ポリ(パラフェニレンアミンイミン)(「エメラルディン」と呼ばれることもある。)
y=0 ポリ(パラフェニレンイミン)(「ペルニグラニリン」と呼ばれることもある。)
nとしては、導電性が向上し、かつ、成膜した際の膜強度が優れるので、4以上が好ましく、10以上がより好ましく、20以上が更に好ましい。、nの上限としては、溶媒に溶解させて加工(例えば、塗布。)する際の操作性が確保し易いので、通常、2000である。
これらの化合物は、いずれもプロトン化によって塩型にもなり、多様性を示す。これらの化合物と塩型との相互変換は、酸化還元、pH変化等によって行うことができる。
これらの化合物は、上述の各態様について導電性が異なる。カチオンを含むもの(塩型)は導電性が高く、カチオンを含まないもの(ベース型)は導電性が低いか、または、導電性を有しない。
前記式(1)で表される構造単位を有する化合物は、分子鎖の主鎖に上記のポリアニリン骨格を有し、かつ、側鎖にアルキルアミノ基を有することが好ましい。これにより、例えば、下記の酸化還元サイクルを循環させることができるので、二酸化炭素の吸着および脱離によるスイッチングが可能になる。本発明の二酸化炭素吸着材は、二酸化炭素が吸着すると導電性が向上し、二酸化炭素が脱離すると導電性が低下する傾向にある。
(式中、nは繰り返し単位数である。)
本発明の好ましい実施形態では、本発明の二酸化炭素吸着材は、二酸化炭素の吸着性がより優れるので、電気的に中性である。具体的には、アミノアルキル基がプロトン化等されていない。本発明の別の好ましい実施形態では、導電性を変化させ易いので、エメラルディン型である。
以下、前記式(1)で表される構造単位を有する化合物を、エメラルディン型で例示する。
(式中、nは繰り返し単位数である。)
前記式(1)で表される構造単位を有する化合物は、導電性が向上し、かつ、成膜した際の膜強度が優れるので、高分子化合物であることが好ましく、その分子量は、2000以上が好ましく、5000以上がより好ましく、10000以上が更に好ましい。前記分子量の上限は、溶媒に溶解させて加工(例えば、塗布。)する際の操作性が確保し易いので、通常、1000000である。前記式(1)で表される構造単位を有する化合物が高分子化合物である場合、その分子量は、ポリスチレン換算の重量平均分子量を意味する。
本発明の二酸化炭素吸着材は、前記式(1)で表される構造単位を有する化合物のみからなるものでもよいが、前記式(1)で表される構造単位を有する化合物とその他の成分との組成物であってもよい。前期式(1)で表される構造単位を有する化合物は、一種単独で用いても二種以上を併用してもよい。
本発明の二酸化炭素吸着材が含み得るその他の成分としては、例えば、前記式(1)で表される構造単位を有する化合物とは異なる高分子化合物が挙げられる。この高分子化合物としては、二酸化炭素の吸着性をより維持できるので、pHが中性に近い高分子化合物が好ましく、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコン樹脂が挙げられる。これらのその他の成分は、一種単独で用いても二種以上を併用してもよい。
本発明の二酸化炭素吸着材において、前記式(1)で表される構造単位を有する化合物の含有率は、1~100重量%が好ましく、5~100重量%がより好ましく、10~100重量%が更に好ましい。
本発明の二酸化炭素吸着材において、その他の成分である高分子化合物の含有率は、前記式(1)で表される構造単位を有する化合物の合計を100重量部としたとき、0~1000重量部が好ましく、0~500重量部がより好ましく、0~300重量部が更に好ましい。
−前記式(1)で表される構造単位を有する化合物の製造方法−
前記式(1)で表される構造単位を有する化合物の製造方法としては、例えば、芳香環の水素原子の1つがアミノアルキル基に置換されたアニリン化合物を用いて、塩酸水溶液中、過硫酸アンモニウムを反応させる方法(例えば、実験化学講座(丸善第4版)28巻「高分子合成」342−343頁の実験例4・74記載のポリアニリン合成法等の公知の方法)を適用することができる。この反応により得られた化合物の分子量や化学構造は、ゲル浸透クロマトグラフィー、核磁気共鳴スペクトル(NMR)等の通常の分析手段により求めることができる。
<二酸化炭素吸着材の形状>
本発明の二酸化炭素吸着材の形状は、例えば、膜、粉末、ペレットである。これらの中でも、通電がし易いので、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、膜が好ましい。膜の形態には、例えば、単独膜、複合膜、多孔質膜がある。
前記膜の厚さは、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、二酸化炭素の吸着性および空気透過性が良好になるので、3μm~3cmが好ましく、0.1mm~2cmがより好ましく、1mm~1cmが特に好ましい。
膜の空隙率は、気体中(例えば、大気中)から二酸化炭素を除去する目的で利用する際には、二酸化炭素の吸着性と空気透過性を維持できるように調整する。
二酸化炭素を吸着した前記膜から、二酸化炭素を脱離させるには、電気エネルギーまたは光エネルギーが、好適に利用できる。
<二酸化炭素吸着材の用途・応用>
本発明の二酸化炭素吸着材は、気体中から二酸化炭素を分離する装置にも応用することができる。また、純度の低い二酸化炭素を精製する装置(例えば、本発明の二酸化炭素吸着材に二酸化炭素を吸着させた後、通電により該二酸化炭素を放出させる装置)にも応用することができる。
これらの装置に本発明の二酸化炭素吸着材を用いる場合、導電性が高くなれば二酸化炭素の吸着が飽和に達したと判断することができる。その後、この二酸化炭素吸着材に通電する等して二酸化炭素を脱離することで二酸化炭素吸着能を再生するか、あるいは、二酸化炭素吸着材を交換することにより、これらの装置を継続利用することができる。
特に、気体中から二酸化炭素を分離する装置は、二酸化炭素の濃度が高い場所や二酸化炭素量が多い場所に設置すると、地球温暖化問題に有効である。このような場所としては、例えば、工場、火力発電所等の産業プラントの排気ガスラインや、冷蔵庫等の家電用品が挙げられる。
上述のとおり、式(1)で表される構造単位を有する化合物は、二酸化炭素吸着材の製造に使用できる。
また、本発明は、式(1)で表される構造単位を含む化合物と、二酸化炭素を含む気体とを接触させて、該化合物に二酸化炭素を吸着させ、該気体から二酸化炭素の一部又は全部を除く気体の精製方法を提供する。
さらに 本発明は、式(1)で表される構造単位を含む化合物と、二酸化炭素を含む気体とを接触させて、該化合物に二酸化炭素を吸着させ、その後該化合物から二酸化炭素を脱離させる二酸化炭素の精製方法を提供する。 The present invention will be described below.
<Terminology>
First, terms used in this specification will be described.
“May have a substituent” means that the hydrogen atom constituting the compound or group described immediately after it is unsubstituted or a part or all of the hydrogen atoms are substituted by a substituent And when substituted with a substituent, a halogen atom, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, or a hydrocarbylamino group having 1 to 30 carbon atoms Etc. (these groups may further have a substituent). Among these, a halogen atom, a hydrocarbyl group having 1 to 18 carbon atoms, a carbon atom number of 1 It is preferably substituted with a hydrocarbyloxy group having 1 to 18 carbon atoms or a hydrocarbylamino group having 1 to 18 carbon atoms, and a hydrocarbyl group having 1 to 12 carbon atoms, It is more preferably substituted with a hydrocarbyloxy group having 1 to 12 children or a hydrocarbylamino group having 1 to 12 carbon atoms, a hydrocarbyl group having 1 to 6 carbon atoms, or a hydrocarbyloxy group having 1 to 6 carbon atoms Alternatively, it is more preferably substituted with a hydrocarbylamino group having 1 to 6 carbon atoms. Substituents such as a hydrocarbyl group, hydrocarbyloxy group and hydrocarbylamino group may each be linear, branched or cyclic.
“Divalent aromatic group” means the remaining atomic group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon ring, constituting the ring of the aromatic heterocyclic compound The remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom, or a ring in a compound in which two or more compounds selected from aromatic hydrocarbons and aromatic heterocyclic compounds are directly bonded constitute a ring It represents the remaining atomic group excluding two hydrogen atoms directly bonded to a carbon atom.
“Conjugated compound” means (1) a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately, and (2) a structure in which double bonds and single bonds are arranged through nitrogen atoms. (3) means a compound consisting essentially of a structure in which double bonds and single bonds are arranged alternately and a structure in which double bonds and single bonds are arranged via nitrogen atoms.
Examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a fluorine atom or a chlorine atom. is there.
The substituent hydrocarbyl group may be linear, branched or cyclic.
Examples of the hydrocarbyl group include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, hexyl, and octyl. Group, decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, ammonium ethyl group, benzyl group , Α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group 2-tolyl group, 4-tolyl group, 4-trifluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenylyl group, 3 , 5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) phenyl group, fluorenyl Group, alkyl group such as 1-naphthyl group, 2-naphthyl group, 9-anthryl group, 2-anthryl group, 9-phenanthryl group, 1-pyrenyl group, chrysenyl group, naphthacenyl group, coronyl group, alkenyl group and aryl group Are mentioned,
Preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, 2- Ethylhexyl group, 3,7-dimethyloctyl group, benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, Docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4-trifluoro Methylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, turf Enilyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) A phenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-anthryl group, a 2-anthryl group, or a 9-phenanthryl group;
More preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-
More preferred are methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group or hexyl group.
The hydrocarbyloxy group as a substituent may be linear, branched or cyclic.
Examples of the hydrocarbyloxy group include methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, octyloxy group, decyloxy group, dodecyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, cyclopropanoxy group, cyclopentyloxy group, cyclohexyloxy group, 1-adamantyloxy group, 2- Adamantyloxy group, norbornyloxy group, ammonium ethoxy group, trifluoromethoxy group, benzyloxy group, α, α-dimethylbenzyloxy group, 2-phenethyloxy group, 1-phenethyloxy group, phenoxy group, alkoxyphenoxy group , Alkylph An alkyloxy group such as an enoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a pentafluorophenyloxy group, and an aryloxy group;
Preferably, methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group, dodecyloxy group A 2-ethylhexyloxy group or a 3,7-dimethyloctyloxy group,
More preferred are methoxy group, ethoxy group, 1-propanoxy group, 2-propanoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group or hexyloxy group.
The hydrocarbylamino group as a substituent may be linear, branched or cyclic.
Examples of the hydrocarbylamino group include methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, isobutylamino group, and tert-butylamino. Group, pentylamino group, hexylamino group, octylamino group, decylamino group, dodecylamino group, 2-ethylhexylamino group, 3,7-dimethyloctylamino group, cyclopropylamino group, cyclopentylamino group, cyclohexylamino group, 1 -Adamantylamino group, 2-adamantylamino group, norbornylamino group, ammonium ethylamino group, trifluoromethylamino group, benzylamino group, α, α-dimethylbenzylamino group, 2-phenethylamino group, 1-phenethyl Amino group, phenyl Examples include amino groups, alkoxyphenylamino groups, alkylphenylamino groups, 1-naphthylamino groups, 2-naphthylamino groups, alkylamino groups such as pentafluorophenylamino groups, and arylamino groups.
Preferably methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, tert-butylamino group, pentylamino group, hexylamino group, octylamino Group, decylamino group, dodecylamino group, 2-ethylhexylamino group or 3,7-dimethyloctylamino group,
More preferably, methylamino group, ethylamino group, 1-propylamino group, 2-propylamino group, 1-butylamino group, 2-butylamino group, isobutylamino group, tert-butylamino group, pentylamino group or hexyl It is an amino group.
Hereinafter, embodiments of the present invention will be described.
<Carbon dioxide adsorbent>
-Compound having a structural unit represented by Formula (1)-
The carbon dioxide adsorbing material of the present invention is a carbon dioxide adsorbing material containing a compound having a structural unit represented by the formula (1).
In the formula (1), R 1 The divalent organic group represented by may have a substituent. The number of carbon atoms in the divalent organic group is usually 1-20.
Examples of the divalent organic group include an alkylene group having 1 to 20 carbon atoms, a divalent aromatic group having 6 to 20 carbon atoms, and an oxyalkylene group having 1 to 20 carbon atoms (that is, —RO—O). A group represented by-(R represents an alkylene group),
From the viewpoint of enhancing basicity, an alkylene group and an oxyalkylene group are preferable, and an alkylene group is more preferable.
Among the alkylene groups, those having 1 carbon atom are preferable from the viewpoint of easy exchange of protons in the compound. From the viewpoint of enhancing the solubility of the compound in a solvent and ensuring processability, those having 2 to 20 carbon atoms are preferred.
Examples of the divalent organic group include methylene group, 1,1-ethylene-diyl group, 1,2-ethylene-diyl group, 1,2-propylene-diyl group, 1,3-propylene-diyl group, , 3-Isopropylene-diyl group, 2,2-propylene-diyl group, 1,2-butylene-diyl group, 1,3-butylene-diyl group, 1,4-butylene-diyl group, 2,2-butylene -Diyl group, 2,3-butylene-diyl group, 1,1-pentylene-diyl group, 1,2-pentylene-diyl group, 1,3-pentylene-diyl group, 1,4-pentylene-diyl group, 1 , 5-pentylene-diyl group, 2,2-pentylene-diyl group, 2,3-pentylene-diyl group, 2,4-pentylene-diyl group, 3,3-pentylene-diyl group, 2-oxa-1, 3-propylene-diyl 2-oxa-1,4-butylene-diyl group, 3-oxa-1,4-butylene-diyl group, 2-oxa-1,3-pentylene-diyl group, 2-oxa-1,4-pentylene- Diyl group, 2-oxa-1,5-pentylene-diyl group, 3-oxa-1,4-pentylene-diyl group, 3-oxa-1,5-pentylene-diyl group, 1,3-butadiene-1, 4-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, 1,2-phenenediyl group, 1,3-phenenediyl group, 1,4-phenenediyl group, o-xylylene group, etc.
Preferably, a methylene group, 1,2-ethylene-diyl group, 1,3-propylene-diyl group, 1,4-butylene-diyl group, 1,5-pentylene-diyl group, 2-oxa-1,3- Propylene-diyl group, 2-oxa-1,4-butylene-diyl group, 3-oxa-1,4-butylene-diyl group, 2-oxa-1,3-pentylene-diyl group, 2-oxa-1, 4-pentylene-diyl group, 2-oxa-1,5-pentylene-diyl group, 3-oxa-1,4-pentylene-diyl group, 3-oxa-1,5-pentylene-diyl group, butane-1, 4-diyl group or pentane-1,5-diyl group.
In the formula (1), R 2 And R 3 The hydrocarbyl group having 1 to 20 carbon atoms represented by the above formula may have a substituent and may be linear, branched or cyclic.
Examples of the hydrocarbyl group include methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group and octyl group. Alkyl groups such as decyl group, dodecyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group; cycloalkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, etc. Adamantyl group; norbornyl group; alkyl group having a substituent other than hydrocarbyl group such as ammonium ethyl group; arylalkyl group such as benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group; vinyl Group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group, doco group Alkenyl groups such as sahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4- Trifluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenylyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl Group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) phenyl group, fluorenyl group, 1-naphthyl group, 2-naphthyl group, 9 -Anthryl group, 2-anthryl group, 9-phenanthryl group, 1-pyrenyl group, chrycenyl group, naphthacenyl group, coronyl Include aryl group such as,
Preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, 2 -Ethylhexyl group, 3,7-dimethyloctyl group, benzyl group, α, α-dimethylbenzyl group, 1-phenethyl group, 2-phenethyl group, vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl group , Docosahexaenyl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, phenyl group, 2-tolyl group, 4-tolyl group, 4-tril group Fluoromethylphenyl group, 4-methoxyphenyl group, 4-cyanophenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, ter Phenylyl group, 3,5-diphenylphenyl group, 3,4-diphenylphenyl group, pentaphenylphenyl group, 4- (2,2-diphenylvinyl) phenyl group, 4- (1,2,2-triphenylvinyl) A phenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-anthryl group, a 2-anthryl group, or a 9-phenanthryl group;
More preferably, methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-
More preferred are methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group or hexyl group.
In the formula (1), a is preferably 1 or 2. This is because the conjugate length of the compound having the structural unit represented by the formula (1) can be longer.
Since the structural unit represented by the formula (1) has a long conjugate length, the structural unit represented by the following formula (2) is preferable.
(In formula (2), a, R 1 , R 2 And R 3 Represents the same meaning as described above. )
The compound having the structural unit represented by the formula (1) (hereinafter also including the compound having the structural unit represented by the formula (2)) is represented by the structure represented by the formula (1). The content of the structural unit is more excellent in carbon dioxide adsorption, and since sufficient protons can be liberated by energization, carbon dioxide can be desorbed more efficiently, so when the total of all structural units is 100 mol% It is preferably 1 to 100 mol%, more preferably 5 to 100 mol%, still more preferably 10 to 100 mol%.
The structural unit represented by the formula (1) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
The compound having the structural unit represented by the formula (1) has other structural units different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). You may do it.
As other structural units, the longer the conjugate length, the better the conductivity when carbon dioxide is adsorbed, so the detection sensitivity of carbon dioxide when used as a carbon dioxide sensor material or carbon dioxide switch material is improved. Therefore, the structural unit represented by the following formula (3) is preferable.
(In Formula (3),
Ar 1 Represents a divalent aromatic group. This aromatic group includes a fluorine atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryl group having 6 to 20 carbon atoms which may have, an aryloxy group having 6 to 20 carbon atoms which may have a substituent and 2 to 2 carbon atoms which may have a substituent A group selected from the group consisting of 20 acyl groups may be present as a substituent. )
In the formula (3), Ar 1 An alkyl group, an alkoxy group, an aryl group, and an aryloxy group, which are substituents that may be present, are the same as those described and exemplified in the formula (1). In the formula (3), Ar 1 Examples of the acyl group that may be substituted include acyl having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Groups, and these groups may have a substituent.
In the above formula (3), Ar 1 As the divalent aromatic group represented by, for example, a divalent monocyclic aromatic group such as 1,3-phenylene group or 1,4-phenylene group; 1,3-naphthalenediyl group, 1, Divalent such as 4-naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc. Condensed ring aromatic group; bivalent aromatic heterocyclic groups such as pyridinediyl group, quinoxaline diyl group, and thiophene diyl group are exemplified, and among these, a divalent monocyclic aromatic group is preferable.
In the compound having the structural unit represented by the formula (1), the content of other structural units such as the structural unit represented by the formula (3) is that of the structural unit represented by the formula (1). When the total is 100 mol%, 0 to 200 mol% is preferable, and 0 to 100 mol% is more preferable.
Other structural units such as the structural unit represented by the formula (3) may be included in the compound included in the carbon dioxide adsorbent of the present invention, or may be included in two or more types.
The compound having the structural unit represented by the formula (1) is particularly preferably a compound having a polyaniline skeleton. The compound having a polyaniline skeleton is represented by the following, for example.
(In the formula, y is a number from 0 to 1 representing the molar ratio, and n is the number of repeating units.)
There are the following modes (names) depending on the value of y.
y = 1 poly (paraphenyleneamine) (sometimes called "leuco emeraldine")
y = 0.5 Poly (paraphenyleneamine imine) (sometimes called "emeraldine")
y = 0 poly (paraphenyleneimine) (sometimes referred to as “pernigraniline”)
n is preferably 4 or more, more preferably 10 or more, and still more preferably 20 or more, because the conductivity is improved and the film strength when the film is formed is excellent. The upper limit of n is usually 2000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent.
All of these compounds are converted into a salt form by protonation and show diversity. Interconversion between these compounds and salt forms can be performed by oxidation-reduction, pH change or the like.
These compounds differ in conductivity for each of the above-described embodiments. Those containing cations (salt type) have high conductivity, and those not containing cations (base type) have low conductivity or no conductivity.
The compound having the structural unit represented by the formula (1) preferably has the above polyaniline skeleton in the main chain of the molecular chain and an alkylamino group in the side chain. Thereby, for example, since the following redox cycle can be circulated, switching by adsorption and desorption of carbon dioxide becomes possible. The carbon dioxide adsorbing material of the present invention tends to improve conductivity when carbon dioxide is adsorbed, and lower conductivity when carbon dioxide is desorbed.
(In the formula, n is the number of repeating units.)
In a preferred embodiment of the present invention, the carbon dioxide adsorbent of the present invention is electrically neutral because it has better carbon dioxide adsorptivity. Specifically, the aminoalkyl group is not protonated. In another preferred embodiment of the present invention, since the conductivity is easily changed, the emeraldine type is used.
Hereinafter, the compound having the structural unit represented by the formula (1) is exemplified as an emeraldine type.
(In the formula, n is the number of repeating units.)
The compound having the structural unit represented by the formula (1) is preferably a high molecular compound because of its improved conductivity and excellent film strength when formed, and its molecular weight is 2000 or more. Is preferably 5000 or more, more preferably 10,000 or more. The upper limit of the molecular weight is usually 1,000,000 because it is easy to ensure operability when processing (for example, coating) by dissolving in a solvent. When the compound having the structural unit represented by the formula (1) is a polymer compound, the molecular weight means a weight average molecular weight in terms of polystyrene.
The carbon dioxide adsorbent of the present invention may be composed only of a compound having a structural unit represented by the formula (1), but a compound having a structural unit represented by the formula (1) and other components The composition of may be sufficient. The compound having the structural unit represented by the formula (1) may be used alone or in combination of two or more.
Examples of other components that can be included in the carbon dioxide adsorbent of the present invention include polymer compounds different from the compound having the structural unit represented by the formula (1). The polymer compound is preferably a polymer compound having a pH close to neutrality because it can maintain the carbon dioxide adsorptivity. For example, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, Examples include polysulfone, polyphenylene oxide, polybutadiene, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, and silicon resin. These other components may be used alone or in combination of two or more.
In the carbon dioxide adsorbent of the present invention, the content of the compound having the structural unit represented by the formula (1) is preferably 1 to 100% by weight, more preferably 5 to 100% by weight, and 10 to 100% by weight. Is more preferable.
In the carbon dioxide adsorbent of the present invention, the content of the polymer compound as the other component is 0 to 1000 weights when the total of the compounds having the structural unit represented by the formula (1) is 100 parts by weight. Part by weight, more preferably 0 to 500 parts by weight, still more preferably 0 to 300 parts by weight.
-Manufacturing method of the compound which has a structural unit represented by said Formula (1)-
As a method for producing a compound having the structural unit represented by the formula (1), for example, using an aniline compound in which one of the aromatic ring hydrogen atoms is substituted with an aminoalkyl group, ammonium persulfate is added in an aqueous hydrochloric acid solution. A reaction method (for example, a known method such as a polyaniline synthesis method described in Experimental Examples 4 and 74 in Experimental Chemistry Course (Maruzen 4th edition), Vol. 28, “Polymer Synthesis”, pages 342 to 343) can be applied. The molecular weight and chemical structure of the compound obtained by this reaction can be determined by ordinary analysis means such as gel permeation chromatography and nuclear magnetic resonance spectrum (NMR).
<Shape of carbon dioxide adsorbent>
The shape of the carbon dioxide adsorbent of the present invention is, for example, a film, a powder, or a pellet. Among these, since energization is easy, a membrane is preferable when used for the purpose of removing carbon dioxide from gas (for example, in the atmosphere). Examples of the form of the film include a single film, a composite film, and a porous film.
When used for the purpose of removing carbon dioxide from gas (for example, in the air), the thickness of the film is preferably 3 μm to 3 cm, because the carbon dioxide adsorbing property and air permeability are improved. 0.1 mm to 2 cm is more preferable, and 1 mm to 1 cm is particularly preferable.
The porosity of the membrane is adjusted so that carbon dioxide adsorption and air permeability can be maintained when it is used for the purpose of removing carbon dioxide from gas (for example, air).
In order to desorb carbon dioxide from the film adsorbed with carbon dioxide, electric energy or light energy can be suitably used.
<Uses and applications of carbon dioxide adsorbents>
The carbon dioxide adsorbing material of the present invention can also be applied to an apparatus for separating carbon dioxide from gas. Further, the present invention can also be applied to an apparatus for purifying low-purity carbon dioxide (for example, an apparatus in which carbon dioxide is adsorbed by the carbon dioxide adsorbing material of the present invention and then released by energization).
When the carbon dioxide adsorbing material of the present invention is used in these apparatuses, it can be determined that the adsorption of carbon dioxide has reached saturation if the conductivity increases. Thereafter, the carbon dioxide adsorbing capacity is regenerated by desorbing carbon dioxide by, for example, energizing the carbon dioxide adsorbing material, or the carbon dioxide adsorbing material is replaced to continue using these devices. Can do.
In particular, an apparatus for separating carbon dioxide from a gas is effective for the problem of global warming when installed in a place where the concentration of carbon dioxide is high or a place where the amount of carbon dioxide is large. Examples of such places include exhaust gas lines of industrial plants such as factories and thermal power plants, and household appliances such as refrigerators.
As above-mentioned, the compound which has a structural unit represented by Formula (1) can be used for manufacture of a carbon dioxide adsorption material.
In the present invention, the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound. Provided is a gas purification method that removes all gasses.
In the present invention, the compound containing the structural unit represented by the formula (1) is brought into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the compound, and then desorb carbon dioxide from the compound. A method for purifying carbon dioxide is provided.
以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
化合物のフーリエ変換赤外吸収スペクトル(FT−IR)は、日本分光製のFT/IR−460Plus(商品名)を用いてATR法にて測定した。ピーク面積は、当該装置に付属の解析ソフトで算出した。
気相中の二酸化炭素濃度の測定には、理研計器製赤外線式ポータブルCO2検知器(RI−85)を用いた。該CO2検知器は、吸引した測定気体の二酸化炭素濃度を測定した後、該測定気体を排気する機構を有する。
二酸化炭素吸着・脱離の確認を行うための電解反応(電解還元、電解酸化)装置としては、北斗電工株式会社製のH型電解槽(HX−108)を用いた。
電解反応で電圧をかける装置としては、ALS製 モデル701Cデュアル電気化学アナライザーを用いた。
化合物の二酸化炭素吸着量は、以下のとおり、算出した。
赤外吸収スペクトルについて、−C(=O)−O−結合構造のピーク面積を1543~1582cm−1の範囲で最大となるピーク面積(P2)とし、ベンゼン環のsp2炭素−sp2炭素結合構造のピーク面積を1372~1534cm−1の範囲で最大となるピーク面積(P1)とした。そして、P2/P1を化合物の二酸化炭素の吸着率とした。
<実施例1>
[ポリ(アミノメチル)アニリンの合成]
過硫酸アンモニウム5.0g(0.022mol)を2.0mol/Lの塩酸40mlに−3℃で溶解させ、溶液Aを調製した。別途、2−アミノベンジルアミン2.69g(0.022mmol)を2.0mol/Lの塩酸15mLに−3℃で溶解させ、溶液Bを調製した。
溶液Aを溶液Bに3分間かけて滴下し、0℃以下で3時間撹拌した後、10℃以下で2時間攪拌した。その後、反応液をアセトン水溶液400mL(アセトンと水の体積比は、アセトン:水=1:1)に滴下し、12時間攪拌した後、沈殿が生じたので、吸引ろ過して、この沈殿を取り出した。得られた沈殿をアセトン水溶液(アセトンと水の体積比は、アセトン:水=1:1)で繰り返し洗浄し、ろ液のpHが7になったことを確認後、沈殿を2.0mol/Lのアンモニア水82mLに入れて攪拌した。その後、吸引ろ過により沈殿をろ別した。得られた沈殿をアセトン水溶液(アセトンと水の体積比は、アセトン:水=1:1)で繰り返し洗浄し、ろ液のpHが7であることを確認した。50℃で1日間真空乾燥させることにより、褐色粉末のポリ(アミノメチル)アニリン0.36g(2−アミノベンジルアミン基準の重量収率13%、エメラルディン型)を得た。
[ポリ(アミノメチル)アニリンの二酸化炭素吸着実験]
まず、得られたポリ(アミノメチル)アニリンのFT−IRを測定し、ピーク面積(P2/P1)を算出した(二酸化炭素曝露時間0時間)。
続いて、ポリ(アミノメチル)アニリン50mgをサンプル瓶に入れ、このサンプル瓶をポリエチレン製カップに入れてから、ドライアイスを入れた後、アルミホイルで蓋をし、二酸化炭素中に曝露した。ドライアイスはなくならないように適宜追加した。二酸化炭素曝露5時間後に、FT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間5時間)。得られた結果を表1に示す。
ポリ(アミノメチル)アニリンを二酸化炭素に曝露することにより、1560cm−1付近にC(=O)(−O−)逆対称伸縮と推測される吸収が現れ、また、P2/P1が増加しているので、ポリ(アミノメチル)アニリンへの二酸化炭素吸着が進行していることが確認された。
<比較例1>
[ポリアニリンの合成]
実験化学講座(丸善第4版)28巻「高分子合成」342−343頁の実験例4・74記載のポリアニリン合成法に従って、エメラルディン型ポリアニリン(粉末)0.71gを合成した。
[ポリアニリンの二酸化炭素吸着実験]
まず、得られたポリアニリンのFT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間0時間)。
続いて、ポリアニリン50mgをサンプル瓶に入れ、このサンプル瓶をポリエチレン製カップに入れてから、ドライアイスを入れた後、アルミホイルで蓋をし、二酸化炭素中に曝露した。ドライアイスはなくならないように適宜追加した。二酸化炭素曝露3時間にFT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間3時間)。得られた結果を表2に示す。
二酸化炭素曝露前と二酸化炭素曝露3時間後では、P2/P1の変化もピークの変化も認められないので、ポリアニリンへの二酸化炭素吸着は進行していないことが確認された。
<実施例2>
[ポリ(アミノメチル)アニリンの二酸化炭素吸着実験2]
まず、実施例1で得られたポリ(アミノメチル)アニリンを有機溶媒に溶解させて調製する溶液を用いれば、キャスト法により膜を得ることができる。そして、この膜を2つの電極で挟んで通電することにより、その導電性(二酸化炭素曝露前)を測定すると、導電性は著しく低いことが分かる。
続いて、この膜をプラスチック製のトレイに入れる。それをステンレス製カップの底に置き、そこにドライアイスの塊を置いた後、蓋をして数時間放置する。途中、ドライアイスがなくならないように、随時補充する。その後、前記膜を回収する。回収する膜を2つの電極で挟んで通電することにより、その導電性を測定すると、二酸化炭素曝露後の導電性は、二酸化炭素曝露前の導電性より高いことが分かる。
<実施例3>
[二酸化炭素を吸着したポリ(アミノメチル)アニリンの膜からの二酸化炭素脱離実験]
実施例2において、二酸化炭素曝露後に得られた膜を2つの電極で挟んで通電を継続することにより、その導電性を測定すると、導電性は徐々に低下し、実施例2における二酸化炭素曝露前の導電性に近づく。
<比較例2>[2−ピペリジンエタノールの二酸化炭素吸着および脱離実験]
「E.D.Batesら、J.Am.Chem.Soc.2002,124,926−927.」に従って、2−ピペリジンエタノールを合成し、2−ピペリジンエタノールを二酸化炭素に曝露させると、二酸化炭素を吸着する。しかし、二酸化炭素を吸着後に、得られた2−ピペリジンエタノールに電圧を印加しても、導電率に経時的な変化はないので、二酸化炭素は脱離しないことが分かる。
<実施例4>
[ポリ(アミノメチル)アニリンの二酸化炭素吸着・脱離実験]
図1に示す二酸化炭素吸着・脱離実験装置を用いて、ポリ(アミノメチル)アニリンの二酸化炭素吸着・脱離実験を行った。
すなわち、対電極と作用電極をナフィオン(登録商標)膜(Nafion117、Aldrich社より購入)で遮断したH型電解槽に、テトラ−n−ブチルアンモニウムテトラフルオロボレートのN,N−ジメチルホルムアミド溶液25ml(0.1mol/L)(テトラ−n−ブチルアンモニウムテトラフルオロボレート3.29gを100mLメスフラスコに仕込み、N,N−ジメチルホルムアミドに溶解させながら100mLにメスアップすることで調製した。)を、23℃にて、対電極側槽、作用電極側槽のそれぞれに加えた後、窒素ガスでバブリングすることで、作用電極側槽の気体を窒素ガスで置換した。
その後、実施例1で得られたポリ−(アミノメチルアニリン)0.27g(実施例1に記載の繰返し単位換算で(分子量479)、0.57mmol)を、作用電極側槽のテトラ−n−ブチルアンモニウムテトラフルオロボレートのN,N−ジメチルホルムアミド溶液中に分散させ、作用電極側槽の分散液を窒素ガスでバブリングした。その後、二酸化炭素と窒素ガスの混合ガス(二酸化炭素含有量は4500ppm。)を作用電極側槽に導入することで、二酸化炭素含有量が2400ppmである二酸化炭素と窒素の混合雰囲気を作用電極側槽に調製した。
23℃にて、作用電極側槽の気相部分をCO2検知器で吸引し、該CO2検知器より二酸化炭素濃度測定後に排出される気体で溶液をバブリングして循環させたところ、作用電極側槽の気相部分の二酸化炭素濃度は30分間で2100ppmまで減少した。
その後、23℃にて、対電極と作用電極の間に1.5Vの一定電圧で16Cに達するまで電解酸化を行ったところ、70分間で作用電極側槽の気相部分の二酸化炭素濃度は2400ppmまで増加した。これらのことから、二酸化炭素の吸着および脱離が進行していることを確認した。
続けて、23℃にて、対電極と作用電極の間に−2.5Vの一定電圧で−13Cに達するまで電解還元を行なったのち、電圧をかけずに気相部分をCO2検知器で吸引し、CO2検知器より二酸化炭素濃度測定後に排出される気体で溶液をバブリングして循環させたところ、作用電極側槽の気相部分の二酸化炭素濃度は60分間で2000ppmまで減少した。
その後、23℃にて、対電極と作用電極の間に1.5Vの一定電圧で23Cに達するまで電解酸化を行ったところ、70分間で作用電極側槽の気相部分の二酸化炭素濃度は2300ppmまで増加した。これらのことから、二酸化炭素の吸着および脱離が再び進行していることを確認した。 EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited at all by these Examples.
The Fourier transform infrared absorption spectrum (FT-IR) of the compound was measured by ATR method using FT / IR-460Plus (trade name) manufactured by JASCO Corporation. The peak area was calculated with the analysis software attached to the apparatus.
An infrared portable CO 2 detector (RI-85) manufactured by Riken Keiki was used for measuring the carbon dioxide concentration in the gas phase. The CO 2 detector has a mechanism for exhausting the measurement gas after measuring the carbon dioxide concentration of the sucked measurement gas.
As an electrolytic reaction (electrolytic reduction, electrolytic oxidation) apparatus for confirming carbon dioxide adsorption / desorption, an H-type electrolytic cell (HX-108) manufactured by Hokuto Denko Co., Ltd. was used.
As a device for applying a voltage in the electrolytic reaction, a model 701C dual electrochemical analyzer manufactured by ALS was used.
The carbon dioxide adsorption amount of the compound was calculated as follows.
For infrared absorption spectrum, -C (= O) -O - and becomes maximum peak area (P2) in the range of 1543 ~ 1582cm -1 peak area of the coupling structure, sp 2 carbons -sp 2 carbon bonds of the benzene ring The peak area of the structure was the maximum peak area (P1) in the range of 1372 to 1534 cm −1 . P2 / P1 was defined as the carbon dioxide adsorption rate of the compound.
<Example 1>
[Synthesis of poly (aminomethyl) aniline]
A solution A was prepared by dissolving 5.0 g (0.022 mol) of ammonium persulfate in 40 ml of 2.0 mol / L hydrochloric acid at −3 ° C. Separately, 2.69 g (0.022 mmol) of 2-aminobenzylamine was dissolved in 15 mL of 2.0 mol / L hydrochloric acid at −3 ° C. to prepare Solution B.
Solution A was added dropwise to Solution B over 3 minutes, stirred at 0 ° C. or lower for 3 hours, and then stirred at 10 ° C. or lower for 2 hours. Thereafter, the reaction solution was added dropwise to 400 mL of an aqueous acetone solution (volume ratio of acetone to water is acetone: water = 1: 1) and stirred for 12 hours, and a precipitate was formed. It was. The obtained precipitate was washed repeatedly with an aqueous acetone solution (the volume ratio of acetone to water is acetone: water = 1: 1), and after confirming that the pH of the filtrate was 7, the precipitate was reduced to 2.0 mol / L. Was stirred in 82 mL of aqueous ammonia. Thereafter, the precipitate was separated by suction filtration. The obtained precipitate was repeatedly washed with an aqueous acetone solution (volume ratio of acetone to water is acetone: water = 1: 1), and it was confirmed that the pH of the filtrate was 7. By vacuum-drying at 50 ° C. for 1 day, 0.36 g of brown powder poly (aminomethyl) aniline (weight yield of 13% based on 2-aminobenzylamine, emeraldine type) was obtained.
[Carbon dioxide adsorption experiment of poly (aminomethyl) aniline]
First, FT-IR of the obtained poly (aminomethyl) aniline was measured, and the peak area (P2 / P1) was calculated (carbon dioxide exposure time 0 hour).
Subsequently, 50 mg of poly (aminomethyl) aniline was placed in a sample bottle, and the sample bottle was placed in a polyethylene cup, and then dry ice was added, followed by covering with aluminum foil and exposure to carbon dioxide. Dry ice was added as appropriate so as not to disappear. FT-IR was measured 5 hours after carbon dioxide exposure, and the peak area ratio (P2 / P1) was calculated (carbondioxide exposure time 5 hours). The obtained results are shown in Table 1.
By exposing poly (aminomethyl) aniline to carbon dioxide, absorption presumed to be C (═O) (— O − ) reverse symmetric stretching appears in the vicinity of 1560 cm −1 , and P2 / P1 increases. Therefore, it was confirmed that carbon dioxide adsorption on poly (aminomethyl) aniline was in progress.
<Comparative Example 1>
[Synthesis of polyaniline]
In accordance with the polyaniline synthesis method described in Experimental Examples 4 and 74 in Experimental Chemistry Course (Maruzen 4th Edition), Volume 28, “Polymer Synthesis”, pages 342-343, 0.71 g of emeraldine polyaniline (powder) was synthesized.
[Carbon dioxide adsorption experiment of polyaniline]
First, FT-IR of the obtained polyaniline was measured, and the peak area ratio (P2 / P1) was calculated (carbon dioxide exposure time 0 hours).
Subsequently, 50 mg of polyaniline was put into a sample bottle, and after putting this sample bottle into a polyethylene cup, dry ice was added, and then the lid was covered with aluminum foil and exposed to carbon dioxide. Dry ice was added as appropriate so as not to disappear. FT-IR was measured 3 hours after carbon dioxide exposure, and the peak area ratio (P2 / P1) was calculated (carbondioxide exposure time 3 hours). The obtained results are shown in Table 2.
Before the carbon dioxide exposure and 3 hours after the carbon dioxide exposure, neither P2 / P1 nor peak change was observed, so it was confirmed that carbon dioxide adsorption to polyaniline did not proceed.
<Example 2>
[Carbon dioxide adsorption experiment 2 of poly (aminomethyl) aniline]
First, if a solution prepared by dissolving the poly (aminomethyl) aniline obtained in Example 1 in an organic solvent is used, a film can be obtained by a casting method. And when this film is sandwiched between two electrodes and energized to measure the conductivity (before exposure to carbon dioxide), it is found that the conductivity is extremely low.
Subsequently, the membrane is placed in a plastic tray. Place it on the bottom of a stainless steel cup, place a piece of dry ice on it, cover it and leave it for several hours. On the way, replenish as needed so that dry ice does not disappear. Thereafter, the membrane is recovered. When the conductivity is measured by sandwiching the membrane to be collected between two electrodes and measuring the conductivity, it can be seen that the conductivity after carbon dioxide exposure is higher than the conductivity before carbon dioxide exposure.
<Example 3>
[Experiment of carbon dioxide desorption from poly (aminomethyl) aniline adsorbed carbon dioxide]
In Example 2, when the electrical conductivity was measured by sandwiching the film obtained after carbon dioxide exposure between two electrodes and continuing the energization, the electrical conductivity gradually decreased, and before the carbon dioxide exposure in Example 2 Approaches the conductivity of
<Comparative Example 2> [Carbon dioxide adsorption and desorption experiment of 2-piperidineethanol]
According to “ED Bates et al., J. Am. Chem. Soc. 2002, 124, 926-927.”, 2-piperidineethanol was synthesized, and 2-piperidineethanol was exposed to carbon dioxide. Adsorb. However, it can be seen that, even if a voltage is applied to the obtained 2-piperidineethanol after carbon dioxide is adsorbed, the conductivity does not change with time, so that carbon dioxide is not desorbed.
<Example 4>
[Carbon dioxide adsorption / desorption experiment of poly (aminomethyl) aniline]
The carbon dioxide adsorption / desorption experiment of poly (aminomethyl) aniline was conducted using the carbon dioxide adsorption / desorption experimental apparatus shown in FIG.
That is, 25 ml of an N, N-dimethylformamide solution of tetra-n-butylammonium tetrafluoroborate was placed in an H-type electrolytic cell in which the counter electrode and the working electrode were blocked with a Nafion (registered trademark) membrane (Nafion 117, purchased from Aldrich). 0.1 mol / L) (prepared by charging 3.29 g of tetra-n-butylammonium tetrafluoroborate into a 100 mL volumetric flask and dissolving it in N, N-dimethylformamide to make up to 100 mL). After adding to each of a counter electrode side tank and a working electrode side tank at ° C, the gas in the working electrode side tank was replaced with nitrogen gas by bubbling with nitrogen gas.
Thereafter, 0.27 g of poly- (aminomethylaniline) obtained in Example 1 (in terms of the repeating unit described in Example 1 (molecular weight 479), 0.57 mmol) was added to tetra-n- in the working electrode side tank. A dispersion of butylammonium tetrafluoroborate in an N, N-dimethylformamide solution was dispersed, and the dispersion in the working electrode side tank was bubbled with nitrogen gas. Thereafter, a mixed gas of carbon dioxide and nitrogen gas (carbon dioxide content is 4500 ppm) is introduced into the working electrode side tank, so that a mixed atmosphere of carbon dioxide and nitrogen having a carbon dioxide content of 2400 ppm is obtained. Prepared.
At 23 ° C., where the gas phase portion of the working electrode side tank by suction in a CO 2 detector, the solution is circulated by bubbling a gas that is discharged after the carbon dioxide concentration measured from the CO 2 detector, a working electrode The carbon dioxide concentration in the gas phase portion of the side tank decreased to 2100 ppm in 30 minutes.
Thereafter, electrolytic oxidation was performed at 23 ° C. with a constant voltage of 1.5 V between the counter electrode and the working electrode until reaching 16 C. The carbon dioxide concentration in the gas phase portion of the working electrode side tank was 2400 ppm in 70 minutes. Increased to. From these facts, it was confirmed that the adsorption and desorption of carbon dioxide proceeded.
Subsequently, after performing electrolytic reduction at 23 ° C. between the counter electrode and the working electrode at a constant voltage of −2.5 V until reaching −13 C, the gas phase portion was measured with a CO 2 detector without applying voltage. The solution was bubbled with a gas discharged after measuring the carbon dioxide concentration from the CO 2 detector and circulated. As a result, the carbon dioxide concentration in the gas phase portion of the working electrode side tank decreased to 2000 ppm in 60 minutes.
Thereafter, electrolytic oxidation was performed at 23 ° C. between the counter electrode and the working electrode at a constant voltage of 1.5 V until reaching 23 C. The carbon dioxide concentration in the gas phase portion of the working electrode side tank was 2300 ppm in 70 minutes. Increased to. From these facts, it was confirmed that the adsorption and desorption of carbon dioxide proceeded again.
化合物のフーリエ変換赤外吸収スペクトル(FT−IR)は、日本分光製のFT/IR−460Plus(商品名)を用いてATR法にて測定した。ピーク面積は、当該装置に付属の解析ソフトで算出した。
気相中の二酸化炭素濃度の測定には、理研計器製赤外線式ポータブルCO2検知器(RI−85)を用いた。該CO2検知器は、吸引した測定気体の二酸化炭素濃度を測定した後、該測定気体を排気する機構を有する。
二酸化炭素吸着・脱離の確認を行うための電解反応(電解還元、電解酸化)装置としては、北斗電工株式会社製のH型電解槽(HX−108)を用いた。
電解反応で電圧をかける装置としては、ALS製 モデル701Cデュアル電気化学アナライザーを用いた。
化合物の二酸化炭素吸着量は、以下のとおり、算出した。
赤外吸収スペクトルについて、−C(=O)−O−結合構造のピーク面積を1543~1582cm−1の範囲で最大となるピーク面積(P2)とし、ベンゼン環のsp2炭素−sp2炭素結合構造のピーク面積を1372~1534cm−1の範囲で最大となるピーク面積(P1)とした。そして、P2/P1を化合物の二酸化炭素の吸着率とした。
<実施例1>
[ポリ(アミノメチル)アニリンの合成]
過硫酸アンモニウム5.0g(0.022mol)を2.0mol/Lの塩酸40mlに−3℃で溶解させ、溶液Aを調製した。別途、2−アミノベンジルアミン2.69g(0.022mmol)を2.0mol/Lの塩酸15mLに−3℃で溶解させ、溶液Bを調製した。
溶液Aを溶液Bに3分間かけて滴下し、0℃以下で3時間撹拌した後、10℃以下で2時間攪拌した。その後、反応液をアセトン水溶液400mL(アセトンと水の体積比は、アセトン:水=1:1)に滴下し、12時間攪拌した後、沈殿が生じたので、吸引ろ過して、この沈殿を取り出した。得られた沈殿をアセトン水溶液(アセトンと水の体積比は、アセトン:水=1:1)で繰り返し洗浄し、ろ液のpHが7になったことを確認後、沈殿を2.0mol/Lのアンモニア水82mLに入れて攪拌した。その後、吸引ろ過により沈殿をろ別した。得られた沈殿をアセトン水溶液(アセトンと水の体積比は、アセトン:水=1:1)で繰り返し洗浄し、ろ液のpHが7であることを確認した。50℃で1日間真空乾燥させることにより、褐色粉末のポリ(アミノメチル)アニリン0.36g(2−アミノベンジルアミン基準の重量収率13%、エメラルディン型)を得た。
[ポリ(アミノメチル)アニリンの二酸化炭素吸着実験]
まず、得られたポリ(アミノメチル)アニリンのFT−IRを測定し、ピーク面積(P2/P1)を算出した(二酸化炭素曝露時間0時間)。
続いて、ポリ(アミノメチル)アニリン50mgをサンプル瓶に入れ、このサンプル瓶をポリエチレン製カップに入れてから、ドライアイスを入れた後、アルミホイルで蓋をし、二酸化炭素中に曝露した。ドライアイスはなくならないように適宜追加した。二酸化炭素曝露5時間後に、FT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間5時間)。得られた結果を表1に示す。
ポリ(アミノメチル)アニリンを二酸化炭素に曝露することにより、1560cm−1付近にC(=O)(−O−)逆対称伸縮と推測される吸収が現れ、また、P2/P1が増加しているので、ポリ(アミノメチル)アニリンへの二酸化炭素吸着が進行していることが確認された。
[ポリアニリンの合成]
実験化学講座(丸善第4版)28巻「高分子合成」342−343頁の実験例4・74記載のポリアニリン合成法に従って、エメラルディン型ポリアニリン(粉末)0.71gを合成した。
[ポリアニリンの二酸化炭素吸着実験]
まず、得られたポリアニリンのFT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間0時間)。
続いて、ポリアニリン50mgをサンプル瓶に入れ、このサンプル瓶をポリエチレン製カップに入れてから、ドライアイスを入れた後、アルミホイルで蓋をし、二酸化炭素中に曝露した。ドライアイスはなくならないように適宜追加した。二酸化炭素曝露3時間にFT−IRを測定し、ピーク面積比(P2/P1)を算出した(二酸化炭素曝露時間3時間)。得られた結果を表2に示す。
<実施例2>
[ポリ(アミノメチル)アニリンの二酸化炭素吸着実験2]
まず、実施例1で得られたポリ(アミノメチル)アニリンを有機溶媒に溶解させて調製する溶液を用いれば、キャスト法により膜を得ることができる。そして、この膜を2つの電極で挟んで通電することにより、その導電性(二酸化炭素曝露前)を測定すると、導電性は著しく低いことが分かる。
続いて、この膜をプラスチック製のトレイに入れる。それをステンレス製カップの底に置き、そこにドライアイスの塊を置いた後、蓋をして数時間放置する。途中、ドライアイスがなくならないように、随時補充する。その後、前記膜を回収する。回収する膜を2つの電極で挟んで通電することにより、その導電性を測定すると、二酸化炭素曝露後の導電性は、二酸化炭素曝露前の導電性より高いことが分かる。
<実施例3>
[二酸化炭素を吸着したポリ(アミノメチル)アニリンの膜からの二酸化炭素脱離実験]
実施例2において、二酸化炭素曝露後に得られた膜を2つの電極で挟んで通電を継続することにより、その導電性を測定すると、導電性は徐々に低下し、実施例2における二酸化炭素曝露前の導電性に近づく。
<比較例2>[2−ピペリジンエタノールの二酸化炭素吸着および脱離実験]
「E.D.Batesら、J.Am.Chem.Soc.2002,124,926−927.」に従って、2−ピペリジンエタノールを合成し、2−ピペリジンエタノールを二酸化炭素に曝露させると、二酸化炭素を吸着する。しかし、二酸化炭素を吸着後に、得られた2−ピペリジンエタノールに電圧を印加しても、導電率に経時的な変化はないので、二酸化炭素は脱離しないことが分かる。
<実施例4>
[ポリ(アミノメチル)アニリンの二酸化炭素吸着・脱離実験]
図1に示す二酸化炭素吸着・脱離実験装置を用いて、ポリ(アミノメチル)アニリンの二酸化炭素吸着・脱離実験を行った。
すなわち、対電極と作用電極をナフィオン(登録商標)膜(Nafion117、Aldrich社より購入)で遮断したH型電解槽に、テトラ−n−ブチルアンモニウムテトラフルオロボレートのN,N−ジメチルホルムアミド溶液25ml(0.1mol/L)(テトラ−n−ブチルアンモニウムテトラフルオロボレート3.29gを100mLメスフラスコに仕込み、N,N−ジメチルホルムアミドに溶解させながら100mLにメスアップすることで調製した。)を、23℃にて、対電極側槽、作用電極側槽のそれぞれに加えた後、窒素ガスでバブリングすることで、作用電極側槽の気体を窒素ガスで置換した。
その後、実施例1で得られたポリ−(アミノメチルアニリン)0.27g(実施例1に記載の繰返し単位換算で(分子量479)、0.57mmol)を、作用電極側槽のテトラ−n−ブチルアンモニウムテトラフルオロボレートのN,N−ジメチルホルムアミド溶液中に分散させ、作用電極側槽の分散液を窒素ガスでバブリングした。その後、二酸化炭素と窒素ガスの混合ガス(二酸化炭素含有量は4500ppm。)を作用電極側槽に導入することで、二酸化炭素含有量が2400ppmである二酸化炭素と窒素の混合雰囲気を作用電極側槽に調製した。
23℃にて、作用電極側槽の気相部分をCO2検知器で吸引し、該CO2検知器より二酸化炭素濃度測定後に排出される気体で溶液をバブリングして循環させたところ、作用電極側槽の気相部分の二酸化炭素濃度は30分間で2100ppmまで減少した。
その後、23℃にて、対電極と作用電極の間に1.5Vの一定電圧で16Cに達するまで電解酸化を行ったところ、70分間で作用電極側槽の気相部分の二酸化炭素濃度は2400ppmまで増加した。これらのことから、二酸化炭素の吸着および脱離が進行していることを確認した。
続けて、23℃にて、対電極と作用電極の間に−2.5Vの一定電圧で−13Cに達するまで電解還元を行なったのち、電圧をかけずに気相部分をCO2検知器で吸引し、CO2検知器より二酸化炭素濃度測定後に排出される気体で溶液をバブリングして循環させたところ、作用電極側槽の気相部分の二酸化炭素濃度は60分間で2000ppmまで減少した。
その後、23℃にて、対電極と作用電極の間に1.5Vの一定電圧で23Cに達するまで電解酸化を行ったところ、70分間で作用電極側槽の気相部分の二酸化炭素濃度は2300ppmまで増加した。これらのことから、二酸化炭素の吸着および脱離が再び進行していることを確認した。 EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited at all by these Examples.
The Fourier transform infrared absorption spectrum (FT-IR) of the compound was measured by ATR method using FT / IR-460Plus (trade name) manufactured by JASCO Corporation. The peak area was calculated with the analysis software attached to the apparatus.
An infrared portable CO 2 detector (RI-85) manufactured by Riken Keiki was used for measuring the carbon dioxide concentration in the gas phase. The CO 2 detector has a mechanism for exhausting the measurement gas after measuring the carbon dioxide concentration of the sucked measurement gas.
As an electrolytic reaction (electrolytic reduction, electrolytic oxidation) apparatus for confirming carbon dioxide adsorption / desorption, an H-type electrolytic cell (HX-108) manufactured by Hokuto Denko Co., Ltd. was used.
As a device for applying a voltage in the electrolytic reaction, a model 701C dual electrochemical analyzer manufactured by ALS was used.
The carbon dioxide adsorption amount of the compound was calculated as follows.
For infrared absorption spectrum, -C (= O) -O - and becomes maximum peak area (P2) in the range of 1543 ~ 1582cm -1 peak area of the coupling structure, sp 2 carbons -sp 2 carbon bonds of the benzene ring The peak area of the structure was the maximum peak area (P1) in the range of 1372 to 1534 cm −1 . P2 / P1 was defined as the carbon dioxide adsorption rate of the compound.
<Example 1>
[Synthesis of poly (aminomethyl) aniline]
A solution A was prepared by dissolving 5.0 g (0.022 mol) of ammonium persulfate in 40 ml of 2.0 mol / L hydrochloric acid at −3 ° C. Separately, 2.69 g (0.022 mmol) of 2-aminobenzylamine was dissolved in 15 mL of 2.0 mol / L hydrochloric acid at −3 ° C. to prepare Solution B.
Solution A was added dropwise to Solution B over 3 minutes, stirred at 0 ° C. or lower for 3 hours, and then stirred at 10 ° C. or lower for 2 hours. Thereafter, the reaction solution was added dropwise to 400 mL of an aqueous acetone solution (volume ratio of acetone to water is acetone: water = 1: 1) and stirred for 12 hours, and a precipitate was formed. It was. The obtained precipitate was washed repeatedly with an aqueous acetone solution (the volume ratio of acetone to water is acetone: water = 1: 1), and after confirming that the pH of the filtrate was 7, the precipitate was reduced to 2.0 mol / L. Was stirred in 82 mL of aqueous ammonia. Thereafter, the precipitate was separated by suction filtration. The obtained precipitate was repeatedly washed with an aqueous acetone solution (volume ratio of acetone to water is acetone: water = 1: 1), and it was confirmed that the pH of the filtrate was 7. By vacuum-drying at 50 ° C. for 1 day, 0.36 g of brown powder poly (aminomethyl) aniline (weight yield of 13% based on 2-aminobenzylamine, emeraldine type) was obtained.
[Carbon dioxide adsorption experiment of poly (aminomethyl) aniline]
First, FT-IR of the obtained poly (aminomethyl) aniline was measured, and the peak area (P2 / P1) was calculated (carbon dioxide exposure time 0 hour).
Subsequently, 50 mg of poly (aminomethyl) aniline was placed in a sample bottle, and the sample bottle was placed in a polyethylene cup, and then dry ice was added, followed by covering with aluminum foil and exposure to carbon dioxide. Dry ice was added as appropriate so as not to disappear. FT-IR was measured 5 hours after carbon dioxide exposure, and the peak area ratio (P2 / P1) was calculated (carbon
By exposing poly (aminomethyl) aniline to carbon dioxide, absorption presumed to be C (═O) (— O − ) reverse symmetric stretching appears in the vicinity of 1560 cm −1 , and P2 / P1 increases. Therefore, it was confirmed that carbon dioxide adsorption on poly (aminomethyl) aniline was in progress.
[Synthesis of polyaniline]
In accordance with the polyaniline synthesis method described in Experimental Examples 4 and 74 in Experimental Chemistry Course (Maruzen 4th Edition), Volume 28, “Polymer Synthesis”, pages 342-343, 0.71 g of emeraldine polyaniline (powder) was synthesized.
[Carbon dioxide adsorption experiment of polyaniline]
First, FT-IR of the obtained polyaniline was measured, and the peak area ratio (P2 / P1) was calculated (carbon dioxide exposure time 0 hours).
Subsequently, 50 mg of polyaniline was put into a sample bottle, and after putting this sample bottle into a polyethylene cup, dry ice was added, and then the lid was covered with aluminum foil and exposed to carbon dioxide. Dry ice was added as appropriate so as not to disappear. FT-IR was measured 3 hours after carbon dioxide exposure, and the peak area ratio (P2 / P1) was calculated (carbon
<Example 2>
[Carbon dioxide adsorption experiment 2 of poly (aminomethyl) aniline]
First, if a solution prepared by dissolving the poly (aminomethyl) aniline obtained in Example 1 in an organic solvent is used, a film can be obtained by a casting method. And when this film is sandwiched between two electrodes and energized to measure the conductivity (before exposure to carbon dioxide), it is found that the conductivity is extremely low.
Subsequently, the membrane is placed in a plastic tray. Place it on the bottom of a stainless steel cup, place a piece of dry ice on it, cover it and leave it for several hours. On the way, replenish as needed so that dry ice does not disappear. Thereafter, the membrane is recovered. When the conductivity is measured by sandwiching the membrane to be collected between two electrodes and measuring the conductivity, it can be seen that the conductivity after carbon dioxide exposure is higher than the conductivity before carbon dioxide exposure.
<Example 3>
[Experiment of carbon dioxide desorption from poly (aminomethyl) aniline adsorbed carbon dioxide]
In Example 2, when the electrical conductivity was measured by sandwiching the film obtained after carbon dioxide exposure between two electrodes and continuing the energization, the electrical conductivity gradually decreased, and before the carbon dioxide exposure in Example 2 Approaches the conductivity of
<Comparative Example 2> [Carbon dioxide adsorption and desorption experiment of 2-piperidineethanol]
According to “ED Bates et al., J. Am. Chem. Soc. 2002, 124, 926-927.”, 2-piperidineethanol was synthesized, and 2-piperidineethanol was exposed to carbon dioxide. Adsorb. However, it can be seen that, even if a voltage is applied to the obtained 2-piperidineethanol after carbon dioxide is adsorbed, the conductivity does not change with time, so that carbon dioxide is not desorbed.
<Example 4>
[Carbon dioxide adsorption / desorption experiment of poly (aminomethyl) aniline]
The carbon dioxide adsorption / desorption experiment of poly (aminomethyl) aniline was conducted using the carbon dioxide adsorption / desorption experimental apparatus shown in FIG.
That is, 25 ml of an N, N-dimethylformamide solution of tetra-n-butylammonium tetrafluoroborate was placed in an H-type electrolytic cell in which the counter electrode and the working electrode were blocked with a Nafion (registered trademark) membrane (Nafion 117, purchased from Aldrich). 0.1 mol / L) (prepared by charging 3.29 g of tetra-n-butylammonium tetrafluoroborate into a 100 mL volumetric flask and dissolving it in N, N-dimethylformamide to make up to 100 mL). After adding to each of a counter electrode side tank and a working electrode side tank at ° C, the gas in the working electrode side tank was replaced with nitrogen gas by bubbling with nitrogen gas.
Thereafter, 0.27 g of poly- (aminomethylaniline) obtained in Example 1 (in terms of the repeating unit described in Example 1 (molecular weight 479), 0.57 mmol) was added to tetra-n- in the working electrode side tank. A dispersion of butylammonium tetrafluoroborate in an N, N-dimethylformamide solution was dispersed, and the dispersion in the working electrode side tank was bubbled with nitrogen gas. Thereafter, a mixed gas of carbon dioxide and nitrogen gas (carbon dioxide content is 4500 ppm) is introduced into the working electrode side tank, so that a mixed atmosphere of carbon dioxide and nitrogen having a carbon dioxide content of 2400 ppm is obtained. Prepared.
At 23 ° C., where the gas phase portion of the working electrode side tank by suction in a CO 2 detector, the solution is circulated by bubbling a gas that is discharged after the carbon dioxide concentration measured from the CO 2 detector, a working electrode The carbon dioxide concentration in the gas phase portion of the side tank decreased to 2100 ppm in 30 minutes.
Thereafter, electrolytic oxidation was performed at 23 ° C. with a constant voltage of 1.5 V between the counter electrode and the working electrode until reaching 16 C. The carbon dioxide concentration in the gas phase portion of the working electrode side tank was 2400 ppm in 70 minutes. Increased to. From these facts, it was confirmed that the adsorption and desorption of carbon dioxide proceeded.
Subsequently, after performing electrolytic reduction at 23 ° C. between the counter electrode and the working electrode at a constant voltage of −2.5 V until reaching −13 C, the gas phase portion was measured with a CO 2 detector without applying voltage. The solution was bubbled with a gas discharged after measuring the carbon dioxide concentration from the CO 2 detector and circulated. As a result, the carbon dioxide concentration in the gas phase portion of the working electrode side tank decreased to 2000 ppm in 60 minutes.
Thereafter, electrolytic oxidation was performed at 23 ° C. between the counter electrode and the working electrode at a constant voltage of 1.5 V until reaching 23 C. The carbon dioxide concentration in the gas phase portion of the working electrode side tank was 2300 ppm in 70 minutes. Increased to. From these facts, it was confirmed that the adsorption and desorption of carbon dioxide proceeded again.
本発明の二酸化炭素吸着材によれば、吸着した二酸化炭素を脱離して再生させるために必要となるエネルギーが小さく、かつ、二酸化炭素の吸着の度合い、または、二酸化炭素の脱離の度合いを判断することが容易である。従って、各種産業にて排出される気体から、二酸化炭素を効率的に除去することが可能となり、地球温暖化問題の解決に貢献するが期待される。
好ましい実施形態では、本発明の二酸化炭素吸着材は、二酸化炭素の吸着または脱離により導電性が変化するので、二酸化炭素センサー材料、二酸化炭素スイッチ材料等として有用である。 According to the carbon dioxide adsorbing material of the present invention, the energy required to desorb and regenerate the adsorbed carbon dioxide is small, and the degree of carbon dioxide adsorption or the degree of carbon dioxide desorption is determined. Easy to do. Therefore, carbon dioxide can be efficiently removed from gases discharged in various industries, and it is expected to contribute to the solution of the global warming problem.
In a preferred embodiment, the carbon dioxide adsorbent of the present invention is useful as a carbon dioxide sensor material, a carbon dioxide switch material, etc., because its conductivity changes due to adsorption or desorption of carbon dioxide.
好ましい実施形態では、本発明の二酸化炭素吸着材は、二酸化炭素の吸着または脱離により導電性が変化するので、二酸化炭素センサー材料、二酸化炭素スイッチ材料等として有用である。 According to the carbon dioxide adsorbing material of the present invention, the energy required to desorb and regenerate the adsorbed carbon dioxide is small, and the degree of carbon dioxide adsorption or the degree of carbon dioxide desorption is determined. Easy to do. Therefore, carbon dioxide can be efficiently removed from gases discharged in various industries, and it is expected to contribute to the solution of the global warming problem.
In a preferred embodiment, the carbon dioxide adsorbent of the present invention is useful as a carbon dioxide sensor material, a carbon dioxide switch material, etc., because its conductivity changes due to adsorption or desorption of carbon dioxide.
Claims (3)
- 下記式(1)で表される構造単位を有する化合物を含む、二酸化炭素吸着材。
(式(1)中、
aは1~4の整数を表す。
R1は、炭素原子数1~20の2価の有機基を表し、R1が2つ以上ある場合、それらは同一であっても異なっていてもよい。
R2およびR3は、それぞれ独立に、水素原子または炭素原子数1~20のヒドロカルビル基を表す。複数あるR2は、同一であっても異なっていてもよい。R3が2つ以上ある場合、それらは同一であっても異なっていてもよい。
2つのR1は結合して、それらが結合する炭素原子とともに環を形成していてもよい。2つのR2は結合して、それらが結合する窒素原子とともに環を形成していてもよい。2つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR1と1つのR2は結合して、R1が結合する炭素原子およびR2が結合する窒素原子とともに環を形成していてもよい。1つのR1と1つのR3は結合して、それらが結合する炭素原子とともに環を形成していてもよい。1つのR2と1つのR3は結合して、R2が結合する窒素原子およびR3が結合する炭素原子とともに環を形成していてもよい。) The carbon dioxide adsorption material containing the compound which has a structural unit represented by following formula (1).
(In the formula (1),
a represents an integer of 1 to 4.
R 1 represents a divalent organic group having 1 to 20 carbon atoms, and when there are two or more R 1 s , they may be the same or different.
R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms. A plurality of R 2 may be the same or different. When two or more R 3 are present, they may be the same or different.
Two R 1 's may combine to form a ring with the carbon atom to which they are attached. Two R 2 may be bonded to form a ring together with the nitrogen atom to which they are bonded. Two R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 1 and one R 2 may combine to form a ring together with the carbon atom to which R 1 is bonded and the nitrogen atom to which R 2 is bonded. One R 1 and one R 3 may be bonded to form a ring together with the carbon atom to which they are bonded. One R 2 and one R 3 may combine to form a ring together with the nitrogen atom to which R 2 is bonded and the carbon atom to which R 3 is bonded. ) - 前記式(1)で表される構造単位を有する化合物が共役系化合物である、請求項1に記載の二酸化炭素吸着材。 The carbon dioxide adsorbent according to claim 1, wherein the compound having the structural unit represented by the formula (1) is a conjugated compound.
- 前記式(1)で表される構造単位を有する化合物が、前記式(1)で表される構造単位のみからなる化合物である、請求項2に記載の二酸化炭素吸着材。 The carbon dioxide adsorbent according to claim 2, wherein the compound having the structural unit represented by the formula (1) is a compound composed of only the structural unit represented by the formula (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011033044 | 2011-02-18 | ||
JP2011-033044 | 2011-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111845A1 true WO2012111845A1 (en) | 2012-08-23 |
Family
ID=46672750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054178 WO2012111845A1 (en) | 2011-02-18 | 2012-02-15 | Carbon dioxide adsorbent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5874429B2 (en) |
WO (1) | WO2012111845A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024446A (en) * | 1988-06-23 | 1990-01-09 | Mitsubishi Rayon Co Ltd | Gas adsorbent |
JP2009114292A (en) * | 2007-11-05 | 2009-05-28 | Fuji Amido Chem Kk | Cyclic amidine copolymer and carbon dioxide absorbent containing the same |
-
2012
- 2012-02-15 WO PCT/JP2012/054178 patent/WO2012111845A1/en active Application Filing
- 2012-02-17 JP JP2012032521A patent/JP5874429B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024446A (en) * | 1988-06-23 | 1990-01-09 | Mitsubishi Rayon Co Ltd | Gas adsorbent |
JP2009114292A (en) * | 2007-11-05 | 2009-05-28 | Fuji Amido Chem Kk | Cyclic amidine copolymer and carbon dioxide absorbent containing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5874429B2 (en) | 2016-03-02 |
JP2012183529A (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks | |
Luo et al. | Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies | |
Enright et al. | Thermally programmable gas storage and release in single crystals of an organic van der Waals host | |
CN104056598A (en) | MOFs based carbon dioxide adsorbent, preparation method and application thereof | |
WO2014208712A1 (en) | Carbon dioxide separating material, and method for separation or recovery of carbon dioxide | |
JP2015036128A (en) | Acidic gas adsorption/desorption device | |
Guo et al. | Soluble polymers with intrinsic porosity for efficient removal of phenolic compounds from water | |
Yang et al. | Trifluoromethyl-modified hierarchical nanoporous metal–organic framework nanoparticles for adsorption of fluorine-containing pesticides | |
JP2018001131A (en) | Carbon dioxide separation apparatus | |
Ngue et al. | An electroactive zinc-based metal–organic Framework: bifunctional fluorescent quenching behavior and direct observation of nitrobenzene | |
Gogia et al. | Exploiting a Multi-Responsive Oxadiazole Moiety in One Three-Dimensional Metal–Organic Framework for Remedies to Three Environmental Issues | |
Manna et al. | Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury | |
Sheybani et al. | Synthesis of Fluoro-Bridged Ho3+ and Gd3+ 1, 3, 5-Tris (4-carboxyphenyl) benzene Metal–Organic Frameworks from Perfluoroalkyl Substances | |
JP6402102B2 (en) | Hydrogen carrier and hydrogen generation method | |
CN106964323B (en) | A kind of CO containing imine linkage2Adsorbent material and its preparation method and application | |
Dalapati et al. | Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal–Organic Framework | |
EP4287362A1 (en) | Carbon dioxide adsorption battery and charge/discharge device | |
WO2018070933A1 (en) | Fluorescent porous organic frameworks containing molecular rotors for chemical sensing | |
JP5874429B2 (en) | Carbon dioxide adsorbent | |
JP6007598B2 (en) | Carbon dioxide adsorption / desorption method | |
Tsue et al. | Spontaneous and selective CO2 sorption under ambient conditions in seemingly nonporous molecular crystal of azacalix [5] arene pentamethyl ether | |
JPWO2022185903A5 (en) | ||
CN113929905A (en) | Preparation method and application of imine bond-connected fluorescent covalent organic framework | |
CN104086773B (en) | In a kind of skeleton, contain chirality polysilsesquioxane of arlydene and its preparation method and application | |
JP2021102198A (en) | Carbon dioxide separation device, air cleaner, air conditioner, and carbon dioxide concentration device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12747310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12747310 Country of ref document: EP Kind code of ref document: A1 |