JPH024446A - Gas adsorbent - Google Patents

Gas adsorbent

Info

Publication number
JPH024446A
JPH024446A JP63153497A JP15349788A JPH024446A JP H024446 A JPH024446 A JP H024446A JP 63153497 A JP63153497 A JP 63153497A JP 15349788 A JP15349788 A JP 15349788A JP H024446 A JPH024446 A JP H024446A
Authority
JP
Japan
Prior art keywords
gas
adsorption
conductive polymer
molecules
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63153497A
Other languages
Japanese (ja)
Inventor
Takemoto Kamata
健資 鎌田
Akira Motonaga
彰 元永
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63153497A priority Critical patent/JPH024446A/en
Publication of JPH024446A publication Critical patent/JPH024446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enhance selective adsorption ability to give gas molecules and improve separation and refinement of gas by carrying conductive high molecules having conjugated double bond as effective component on a substrate and preparing a gas adsorbent. CONSTITUTION:A porous substrate is immersed in a monomer solution for forming conductive high molecules (pi conductive high molecules) having conjugated double bond, and then immersed in oxidizer solution, and pi conductive high molecules are precipitated and adhered to the substrate of porous substrate (including pore wall) to prepare a gas adsorbent. The porous substrate is composed of glass, ceramics and various kinds of high colecules, and various shapes of porous materials can be utilized. The materials having micro-pores of approximately 20A-several mu can be utilized. As the pi conductive high molecule, polyacetylene, polyphenylene, polyaniline, polypyrrole, poly-N-methylpyrrole or the like can be used.

Description

【発明の詳細な説明】 [産業上の利用分野] 一木発明は、兵役二重結合を有する導電性高分子(π系
導電性高分子)の良好なガス吸着能を利用したガス吸着
剤に関する。該吸着剤は、例えば酸素、炭酸ガス、アン
モニアなどの気体や蒸気等の吸着に用いることができ、
特に各種のガスや蒸気に含まれる成分の分離・精製用と
して、あるいは脱臭剤等として有用である。
Detailed Description of the Invention [Field of Industrial Application] The Ichiki invention relates to a gas adsorbent that utilizes the good gas adsorption ability of a conductive polymer having a military service double bond (a π-based conductive polymer). . The adsorbent can be used to adsorb gases and vapors such as oxygen, carbon dioxide, and ammonia, and
It is particularly useful for separating and purifying components contained in various gases and vapors, or as a deodorizing agent.

[従来の技術] ガス吸着剤としては、例えば、活性炭、モレキュラーシ
ーブ炭素、水和シリカからなるゼオライト、シリカゲル
等の多孔性の物質からなるものが知られており、各種ガ
スの吸着除去等に利用されている。
[Prior Art] Gas adsorbents made of porous substances such as activated carbon, molecular sieve carbon, zeolite made of hydrated silica, and silica gel are known, and are used for adsorption and removal of various gases. has been done.

[発明が解決しようとする課題] ガス吸着剤の種々の分野での利用を可能とするための、
あるいは、より高性能なガス吸着剤を得るための種々の
検討が従来よりなされてきている。
[Problems to be solved by the invention] In order to enable the use of gas adsorbents in various fields,
Alternatively, various studies have been made to obtain gas adsorbents with higher performance.

このような観点から、本発明者らは、各種材料のガス吸
着剤への応用について種々の検討を重ねた。その結果、
ポリピロール、ポリチオフェン等のπ系導電性高分子が
良好なガス吸着能を有し、また特定のガス分子に対して
優先的な親和性を有するとの新たな知見を得るに至り1
本発明を完成した。
From this point of view, the present inventors have repeatedly conducted various studies on the application of various materials to gas adsorbents. the result,
New findings have been obtained that π-based conductive polymers such as polypyrrole and polythiophene have good gas adsorption ability and preferential affinity for specific gas molecules.
The invention has been completed.

本発明の目的は、良好なガス吸着能を有し、更に電解重
合法や化学的酸化法で任意の形態を有する支持体表面に
付着させることが可能であるため、粒子状以外に繊維状
、フィルム状等任意の形態とすることができるガス吸着
剤を提供することにある。
The object of the present invention is to have good gas adsorption ability and to be able to adhere to the surface of a support having any form by electrolytic polymerization or chemical oxidation. The object of the present invention is to provide a gas adsorbent that can be in any form such as a film.

本発明の他の目的は、特定のガス分子に対して優先的な
吸着能を有し、ガスの分離・特製操作に好適に利用でき
るガス吸着剤を提供することにある。
Another object of the present invention is to provide a gas adsorbent that has preferential adsorption ability for specific gas molecules and can be suitably used for gas separation and special operations.

[課題を解決するための手段] 本発明のガス吸着剤の有効主成分は、その主鎖中に共役
二重結合を有する導電性高分子(π系導電性高分子)で
ある。
[Means for Solving the Problems] The effective main component of the gas adsorbent of the present invention is a conductive polymer (π-based conductive polymer) having a conjugated double bond in its main chain.

本発明に用いるπ系導電性高分子としては、例えば、ポ
リアセチレン、ポリフェニレン、ポリアニリン、ポリピ
ロール、ポリ−N−メチルピロール、ポリチオフェン、
ポリフラン等を挙げることができ、これらの中では、ピ
ロール等の複素5員環式構造を有する千ツマ−の重合体
が、千ツマ−の重合を化学的酸化法により容易に行なえ
るという点から利用し易い。
Examples of the π-based conductive polymer used in the present invention include polyacetylene, polyphenylene, polyaniline, polypyrrole, poly-N-methylpyrrole, polythiophene,
Among these, pyrrole and other 5-membered heterocyclic polymers are preferred because they can be easily polymerized by chemical oxidation. Easy to use.

なお、上記π系導電性高分子はホモポリマーである必要
はなく、例えば、π系導電性高分子を形成できる千ツマ
−の2種以上を含んだ共重合体や、π系導電性高分子を
形成できる千ツマ−の1種以上と他のモノマー(共役2
重結合の形成に必しも必要ではない千ツマー等)の1種
以上を含む共重合体であっても良い。これらの共重合体
を用いる場合には、その賦形性やガス吸着能等を考慮し
て、用いるモノマーの種類や配合比を決定すれば良い。
The above-mentioned π-based conductive polymer does not need to be a homopolymer; for example, it may be a copolymer containing two or more types of π-based conductive polymers that can form a π-based conductive polymer, or a π-based conductive polymer. One or more types of monomers that can form
It may also be a copolymer containing one or more of the following: When using these copolymers, the type and blending ratio of the monomers to be used may be determined in consideration of their shapeability, gas adsorption ability, and the like.

更に、π系導電性高分子は、その導電性の調節に用い得
るドープ剤としての各種化合物(イオン状態にあるもの
を含む)を含有しているものであっても良い。
Furthermore, the π-based conductive polymer may contain various compounds (including those in an ionic state) as dopants that can be used to adjust its conductivity.

このような化合物としては、例えばC12,11r2.
12等のハロゲン、例えばll2SO,、llNO3等
のプロトン酸、例えばSO,、AsF、、FeCr1L
、等のルイス酸などの電子受容体として作用することの
できる化合物、例えばLi、 Na、に等のアルカリ金
属などの電子供与体として作用することのできる化合物
を挙げることができる。
Examples of such compounds include C12,11r2.
halogens such as 12, protic acids such as ll2SO, , 11NO3, eg SO, , AsF, , FeCr1L
Compounds that can act as electron acceptors, such as Lewis acids such as , and compounds that can act as electron donors, such as alkali metals such as Li, Na, etc., can be mentioned.

π系導電性高分子を得るには、例えば、電極上での電界
重合法、π系導電性高分子用モノマーを含む溶液を塩化
第二鉄や過硫酸カリウム等の酸化剤溶液と混合して反応
させる化学的酸化法などの方法が利用できる。
To obtain a π-based conductive polymer, for example, an electrolytic polymerization method on an electrode or a solution containing a monomer for a π-based conductive polymer is mixed with a solution of an oxidizing agent such as ferric chloride or potassium persulfate. Methods such as a chemical oxidation method that causes a reaction can be used.

これらの方法で得られるπ系導電性高分子の電気伝導性
は、重合条件や上述したようなドープ剤の有無、あるい
はその添加量等により異なるが、通常1010〜l0−
4Ω・clIl程度の抵抗値を示す。
The electrical conductivity of the π-based conductive polymer obtained by these methods varies depending on the polymerization conditions, the presence or absence of the above-mentioned dopant, or the amount added, but it is usually 1010 to 10-
It shows a resistance value of about 4Ω·clIl.

以上述べたπ系導電性高分子を用いて本発明のガス吸着
剤を得ることができる。
The gas adsorbent of the present invention can be obtained using the π-based conductive polymer described above.

本発明のガス吸着剤は、π系導電性高分子を必須構成成
分として含むことにより、特定のガス分子に対する優先
的な吸着特性を有し、混合ガスからの該特定ガス分子の
分離・特製等に好適に利用できる。
The gas adsorbent of the present invention has a preferential adsorption property for specific gas molecules by containing a π-based conductive polymer as an essential component, and can be used to separate and specially prepare specific gas molecules from a mixed gas. It can be suitably used for.

例えば、分子サイズのほぼ等しい02ガスとN2ガスに
対して、本発明のガス吸着剤は飽和吸着状態においても
02ガスを優先的に可逆吸着し、0□ガスとN2ガスの
分離操作に好適に利用し得る。
For example, for 02 gas and N2 gas, which have almost the same molecular size, the gas adsorbent of the present invention reversibly adsorbs 02 gas preferentially even in a saturated adsorption state, making it suitable for separation operations between 0□ gas and N2 gas. It can be used.

参考までに、PSA(Pressure Swing 
Absorption)、法による空気からの02ガス
及びN2ガスの分離に工業的に用いられているモレキュ
ラー・シープ・ゼオ・ライト(MSZ)では、第2図の
02ガス及びN2ガスに対する吸着等混線(別冊化学工
業31−6増補「高度分離技術の開発・実用化」化学工
業社出版、昭和60年発行参照)に示されているように
N2ガスに対して優先的吸着能を有する。
For reference, PSA (Pressure Swing
In molecular sheep zeolite (MSZ), which is used industrially to separate 02 gas and N2 gas from air using As shown in Kagaku Kogyo 31-6 Supplement "Development and Practical Application of Advanced Separation Technology" published by Kagaku Kogyosha, published in 1985), it has preferential adsorption ability for N2 gas.

上記の特定分子の選択的吸着は、π系導電性高分子の有
する共役2重結合と被吸着分子との関係に起因するもの
と推定される。すなわち、π系導電性高分子の有するπ
電子と被吸着分子の電子雲との間に何らかの相互作用が
働くことによって、上記のような吸着における優先順位
が生じるものと考えられる。
It is presumed that the selective adsorption of the specific molecule described above is due to the relationship between the conjugated double bond of the π-based conductive polymer and the adsorbed molecule. In other words, the π possessed by the π-based conductive polymer
It is thought that the above-described priority order in adsorption occurs due to some kind of interaction between the electrons and the electron cloud of the adsorbed molecule.

従って、本発明のガス吸着剤は、上述の02ガスとN2
ガスとの組合せのように、分子サイズレベルではほぼ等
しいが電子雲の状態が異なるガス分子間の分離に好適に
利用できる可能性を有する。
Therefore, the gas adsorbent of the present invention combines the above-mentioned 02 gas and N2 gas.
As in the case of a combination with a gas, it has the potential to be suitably used for separation between gas molecules that are approximately the same at the molecular size level but have different electron cloud states.

そのような被分離ガス分子の組合せとしては、エタンと
エチレン、プロパンとプロピレンなどの炭素数が同じア
ルカンとアルケンの組合せ、炭素数が同じアルケンとア
ルキンの組合せ及び分子サイズがほぼ等い極性分子と非
極性分子の組合せ、たとえばCO2ガスと空気(N2.
02)などをあげることができる。
Such combinations of gas molecules to be separated include combinations of alkanes and alkenes with the same number of carbon atoms, such as ethane and ethylene, propane and propylene, combinations of alkenes and alkynes with the same number of carbon atoms, and polar molecules with approximately the same molecular size. Combinations of nonpolar molecules, such as CO2 gas and air (N2.
02) etc.

また、分子サイズが異なる場合でも、吸着剤中に微細孔
を形成させれば、該微細孔中への拡散速度が相異するた
め、あるいはモレキュラー・シーブ・カーボンのような
篩効果で吸着剤に対する吸着能の相異が現れ、分離が可
能となる。たとえば11eガスとN2ガスではlieガ
スの吸着速度が大きく、有効に分離が可能である。
In addition, even if the molecular sizes are different, if micropores are formed in the adsorbent, the diffusion rate into the micropores will be different, or the sieve effect of molecular sieve carbon will affect the adsorbent. Differences in adsorption capacity appear and separation becomes possible. For example, between 11e gas and N2 gas, the adsorption rate of lie gas is high and effective separation is possible.

本発明のガス吸着剤に被吸着ガス分子のより高い吸着速
度を得るには、その比表面積が10m2/g以上、好ま
しくは50i2/g、より好ましくは100 m2/g
以上となるようにこれを形成すると良い。
In order to obtain a higher adsorption rate of adsorbed gas molecules to the gas adsorbent of the present invention, its specific surface area is 10 m2/g or more, preferably 50 i2/g, more preferably 100 m2/g.
It is good to form this so that it becomes the above.

これらtom2/g以上の比表面積を存するガス吸着剤
は、例えば以下の方法などを用いて得ることかできる。
These gas adsorbents having a specific surface area of tom2/g or more can be obtained using, for example, the following method.

1)ガス吸着剤を1μ程度以下の微粒子状に形成する。1) Form the gas adsorbent into fine particles of about 1 μm or less.

すなわち、上述したπ系導電性高分子を種々の方法によ
り微粒子状に形成し、それをガス吸着剤として利用する
That is, the above-mentioned π-based conductive polymer is formed into fine particles by various methods and used as a gas adsorbent.

具体的には、化学的酸化法でπ系導電性高分子を得る際
に、π某導電性高分子形成用千ツマー溶液と酸化剤溶液
とを、1μ程度以下の微粒状態を形成される高分子に得
るのに必要な条件で攪拌しながら混合し、得られた高分
子粒子沈殿を回収、洗浄、乾燥することによって、1μ
程度以下の微粒子状のだ系導電性高分子を得ることがで
きる。
Specifically, when obtaining a π-based conductive polymer by a chemical oxidation method, a π-conductive polymer forming solution and an oxidizing agent solution are mixed into a polymer that forms fine particles of about 1μ or less. By mixing with stirring under the conditions necessary to obtain a molecule, the resulting polymer particle precipitate is collected, washed, and dried.
It is possible to obtain a conductive polymer in the form of small particles.

なお、攪拌効果を有効なものとするため、超音波を照射
しながら上記固溶液を混合するのも効果がある。また、
溶液中に界面活性剤を少量添加するのも効果的である。
In addition, in order to make the stirring effect effective, it is also effective to mix the solid solution while irradiating the solid solution with ultrasonic waves. Also,
It is also effective to add a small amount of surfactant to the solution.

2)比表面積の大きな多孔質支持体表面(孔壁を含む)
に上述のπ系導電性高分子を付着させる。
2) Porous support surface with large specific surface area (including pore walls)
The above-mentioned π-based conductive polymer is attached to the substrate.

該多孔質支持体としては、ガラス、セラミックス及び各
種高分子などからなり、ビーズ状、膜状、繊維状、中空
糸状及びチューブ状等の種々の形状の多孔質体が利用で
きる。
The porous support may be made of glass, ceramics, various polymers, or the like, and may have various shapes such as beads, membranes, fibers, hollow fibers, and tubes.

多孔質支持体にπ系導電性高分子を付着させる方法とし
ては、例えば、多孔質支持体をπ系導電性高分子形成用
の千ツマー溶液に浸漬した後、更に酸化剤溶液に浸漬さ
せて、多孔質支持体表面(孔壁を含む)にπ系導電性高
分子を沈殿・付着させる方法が利用できる。
As a method for attaching a π-based conductive polymer to a porous support, for example, the porous support is immersed in a solution for forming a π-based conductive polymer, and then further immersed in an oxidizing agent solution. , a method can be used in which a π-based conductive polymer is precipitated and attached to the surface of a porous support (including pore walls).

なお、上記2種の溶液への多孔質支持体の浸漬順序は上
記と逆であっても良い。
Note that the order of dipping the porous support in the two types of solutions described above may be reversed.

多孔質支持体の種類や形状、それが有する微細孔のサイ
ズ、あるいはπ系導電性高分子の重合条件は、π系導電
性高分子の充分な付着状態が得られ、かつ最終的に得ら
れるπ系導電性高分子付着多孔質体の比表面積がIOn
+2/g以上となるように適宜選択される。
The type and shape of the porous support, the size of the micropores it has, and the polymerization conditions for the π-based conductive polymer are such that a sufficient adhesion state of the π-based conductive polymer can be obtained and the final result can be obtained. The specific surface area of the π-based conductive polymer-adhered porous material is IOn.
It is appropriately selected so that it is +2/g or more.

例えば、多孔質支持体として、20人〜数μ程度の微細
孔を有するものを利用し、かつπ系導電性高分子沈殿か
微細孔を塞いでしまい、比表面積を大幅に低下させるこ
とかないような条件を適宜選択して用いれば良い。
For example, use a porous support that has micropores of about 20 to several microns, and be careful not to cause π-based conductive polymer precipitation to block the micropores and significantly reduce the specific surface area. The conditions may be selected and used as appropriate.

たとえば、コーニング社のバイコールガラス(# 79
30)は細孔径40人、気孔率28%、比表面積274
(rn’/g)を有する多孔質ガラスであるが、実施例
3に示す条件でポリピロールを細孔表面に化学的酸化法
で付着させることにより、比表面積2:15 (rn’
 /g)を有する吸着剤を得ることが出来る。
For example, Corning's Vycor Glass (#79
30) has a pore diameter of 40, a porosity of 28%, and a specific surface area of 274.
The porous glass has a specific surface area of 2:15 (rn'/g) by attaching polypyrrole to the pore surface using a chemical oxidation method under the conditions shown in Example 3.
/g) can be obtained.

なお、微粒子状のガス吸着剤をカラムやタンク等の容器
に充填して使用する際に、その充填状態によっては容器
内でのガスの流動抵抗が大きくなり過ぎて、処理操作上
の不都合が生じる場合があるか、ガスのスムーズな流動
を可能とする構造の多孔質支持体にガス吸着剤を付着さ
せた構成のガス吸着剤を用いれば、ガスのスムーズな流
動、すなわちガス流動抵抗の低い状態での効率良い処理
操作が実現でき常に行なえるという利点がある。
Furthermore, when using particulate gas adsorbent by filling it into a container such as a column or tank, depending on the filling condition, the flow resistance of the gas within the container may become too large, causing problems in processing operations. In some cases, if a gas adsorbent is used, which has a gas adsorbent attached to a porous support with a structure that allows for smooth gas flow, it is possible to achieve smooth gas flow, that is, a state of low gas flow resistance. It has the advantage that efficient processing operations can be realized and can be performed at all times.

[実h’Fh例] 以下、実施例及び比較例により本発明を更に詳細に説明
する。
[Actual h'Fh Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 0.6Mのビロール水溶液と0.6MのFeCl1.・
6H20水溶液を別々に調製し、これらを室温で超音波
を照射しながら混合・攪拌した。
Example 1 0.6M virol aqueous solution and 0.6M FeCl1.・
6H20 aqueous solutions were prepared separately, and these were mixed and stirred at room temperature while being irradiated with ultrasound.

黒色沈殿が生じたところで、混合液から黒色沈殿を0.
45μ孔径のメンブランフィルタ−によって濾過分離し
、更に水及びエタノールで繰り返し十分に洗浄した。洗
浄後、沈殿を60℃で5時間減圧乾燥処理し、黒色粉末
を得た。
When a black precipitate is formed, remove the black precipitate from the mixed solution by 0.00%.
It was filtered and separated using a membrane filter with a pore size of 45 μm, and was thoroughly washed repeatedly with water and ethanol. After washing, the precipitate was dried under reduced pressure at 60° C. for 5 hours to obtain a black powder.

該黒色粉末は、その赤外吸収スペクトルからポリピロー
ル粉末であることが確認された。
The black powder was confirmed to be polypyrrole powder from its infrared absorption spectrum.

また、該黒色粉末を走査型電子顕微鏡で観察したところ
、直径的IJLsの微粒子の凝集が認められ、その比表
面積をBET法で測定した結果、19m2/gであった
Further, when the black powder was observed with a scanning electron microscope, agglomeration of fine particles of diameter IJLs was observed, and the specific surface area was measured by the BET method and was 19 m2/g.

次に、該黒色粉末の室温(約20℃)における02ガス
及びN2ガス対する吸着等混線を常法に従って測定した
。その結果を第1図に示す。
Next, the adsorption and crosstalk of the black powder with respect to 02 gas and N2 gas at room temperature (approximately 20° C.) was measured according to a conventional method. The results are shown in FIG.

第1図に示されているように、該黒色粉末は。As shown in FIG. 1, the black powder.

1気圧のガス圧で0.77モル/kg吸着剤という飽和
吸着量を示し、またその吸着特性は02ガスに優先的で
あった。
It exhibited a saturated adsorption amount of 0.77 mol/kg adsorbent at a gas pressure of 1 atm, and its adsorption characteristics were preferential to 02 gas.

更に、該黒色粉末の02ガス及びN2ガスの吸着率の経
時的変化を常法に従って測定した結果、第3図に示す結
果を得た。
Furthermore, the change over time in the adsorption rate of O2 gas and N2 gas in the black powder was measured according to a conventional method, and the results shown in FIG. 3 were obtained.

第3図の結果から0□ガス及びN2ガスにおける吸着速
度を求めたところ、飽和吸着(吸着率1.0 )に至る
までの時間は、N2ガスの場合で50分、0□ガスの場
合で150分であった。
When we calculated the adsorption rates for 0□ gas and N2 gas from the results in Figure 3, we found that the time to reach saturated adsorption (adsorption rate 1.0) was 50 minutes for N2 gas and 50 minutes for 0□ gas. It was 150 minutes.

実施例2 ポリピロールを常法に従って電極上に電界重合し、電極
上に得られたフィルム状のポリピロールを剥離し、洗浄
し、乾燥させた。
Example 2 Polypyrrole was electrolytically polymerized on an electrode according to a conventional method, and the film-like polypyrrole obtained on the electrode was peeled off, washed, and dried.

次に、該フィルム状のポリピロールの比表面積、0□ガ
ス及びN2ガスに対する吸着等温線及び吸着速度を実施
例1と同様に測定した。
Next, the specific surface area, adsorption isotherm for 0□ gas and N2 gas, and adsorption rate of the polypyrrole film were measured in the same manner as in Example 1.

その結果、該ポリピロールの比表面積は、3.6m”/
gであり、吸着等温線は第1図と同様の結果が得られた
As a result, the specific surface area of the polypyrrole was 3.6 m”/
g, and the adsorption isotherm showed the same results as in FIG.

また、飽和吸着(吸着率1.0)に至るまでの時間は、
N2ガスの場合で100分、02ガスの場合で300分
であった。
In addition, the time until saturated adsorption (adsorption rate 1.0) is reached is:
In the case of N2 gas, the time was 100 minutes, and in the case of 02 gas, it was 300 minutes.

実施例3 多孔質支持体としてのチューブ状(内径7113、厚み
11mm )の多孔質ガラス(バイコールガラス$79
30、コーニング社製、平均孔径40人、気孔率28%
、BET法で測定した比表面M274 ta2/g ’
)を用い、多孔質ガラス/ポリピロール複合体からなる
本発明のガス吸着剤を得た。
Example 3 Tube-shaped (inner diameter 7113, thickness 11 mm) porous glass (Vycor glass $79) as a porous support
30, manufactured by Corning, average pore size 40, porosity 28%
, specific surface M274 ta2/g' measured by BET method
) to obtain a gas adsorbent of the present invention consisting of a porous glass/polypyrrole composite.

まず、酸化剤溶液として0.3MのFeC15”6H2
0/アセトニトリル溶液を、千ツマー溶液として0.3
Mのピロール/アセトニトリル溶液をそれぞれ調製して
おいた。
First, as an oxidizing agent solution, 0.3M FeC15"6H2
0/acetonitrile solution, 0.3 as a 1000 ml solution
A pyrrole/acetonitrile solution of M was prepared in advance.

次に、減圧可能な試験管内のアセトニトリル中にチュー
ブ状支持体を入れ、試験管内を減圧状態としたところで
、超音波を支持体に照射して約10分間洗浄した。
Next, the tubular support was placed in acetonitrile in a test tube that could be depressurized, and when the pressure inside the test tube was reduced, the support was irradiated with ultrasonic waves and washed for about 10 minutes.

洗浄した支持体を、まず室温下で酸化剤溶液に5分間程
度浸漬し、次に千ツマー溶液に5分間程度浸漬した。更
に同様の操作を3回繰り返した。
The washed support was first immersed in an oxidizing agent solution for about 5 minutes at room temperature, and then immersed in a Senzummer solution for about 5 minutes. The same operation was repeated three more times.

浸漬処理後の支持体表面および内部は黒色に着色し、ポ
リピロールが付着したことが判明した。
After the immersion treatment, the surface and interior of the support were colored black, indicating that polypyrrole had adhered thereto.

以上の操作で得られた多孔質ガラス/ポリピロール複合
体の比表面積、02ガス及びN2ガスに対する吸着等温
線及び吸着速度を実施例1と同様に測定した。
The specific surface area, adsorption isotherm and adsorption rate for O2 gas and N2 gas of the porous glass/polypyrrole composite obtained by the above operations were measured in the same manner as in Example 1.

その結果、該複合体の比表面積は235m2/gであり
、また吸着等温線は第1図と同様の挙動を示した。
As a result, the specific surface area of the composite was 235 m2/g, and the adsorption isotherm showed the same behavior as in FIG.

なお、吸着等温線の測定に際しての吸着剤重量は、支持
体の多孔質ガラス重量を付着前にあらかじめ測定してお
き、付着後の重量変化を測定することにより、支持体上
に吸着したポリピロール量を算出して求めた。
The weight of the adsorbent when measuring the adsorption isotherm can be determined by measuring the weight of the porous glass of the support before adhesion, and measuring the weight change after adhesion to determine the amount of polypyrrole adsorbed on the support. It was obtained by calculating.

更に、該複合体における飽和吸着(吸着率1.0)に至
るまでの時間は、N2ガスの場合で5分、02ガスの場
合で15分であった。
Furthermore, the time required for the composite to reach saturated adsorption (adsorption rate 1.0) was 5 minutes for N2 gas and 15 minutes for 02 gas.

実施例4 ビロールの代りにN−メチルピロールを用いて実施例1
と同様にしてポリN−メチルビロール粉末を得た。
Example 4 Example 1 using N-methylpyrrole in place of virol
Poly N-methylpyrrol powder was obtained in the same manner as above.

該粉末を走査型電子顕微鏡で観察したところ、直径約1
μの微粒子の凝集が認められ、またその比表面積をBE
T法で測定した結果、860+m2/gであった。
When the powder was observed with a scanning electron microscope, it had a diameter of about 1
Agglomeration of microparticles of μ was observed, and the specific surface area was
The result of measurement using the T method was 860+m2/g.

次に、実施例1と同様に、該粉末の02ガス及びN2ガ
スに対する飽和吸着量を測定したところ、760III
mHgで02ガスに対し0.85モル/kg吸着剤、N
2ガスに対し0.36モル/kg吸着剤であった。
Next, in the same manner as in Example 1, the saturated adsorption amount of the powder for 02 gas and N2 gas was measured, and it was found that 760III
0.85 mol/kg adsorbent for 02 gas at mHg, N
The amount of adsorbent was 0.36 mol/kg for the two gases.

該粉末における飽和吸着(吸着率1.0)に至るまでの
時間を実施例1と同様に測定したところ、N2ガス及び
02ガスの場合ともに5分以内であった。
The time required for the powder to reach saturated adsorption (adsorption rate 1.0) was measured in the same manner as in Example 1, and was found to be within 5 minutes for both N2 gas and 02 gas.

[発明の効果] 本発明のガス吸着剤は有効成分としてπ系導電性高分子
を有することによって、良好なガス吸着特性を有し、各
種ガス(蒸気を含む)の吸着や脱臭などに好適に利用で
きる。
[Effects of the Invention] The gas adsorbent of the present invention has a π-based conductive polymer as an active ingredient, so it has good gas adsorption properties and is suitable for adsorption of various gases (including steam) and deodorization. Available.

また、従来の活性炭やゼオライトのような微粒子状の形
態だけでなく化学的酸化重合法という吸着剤の製法がと
れるため、任意の形態を有する支持体上あるいは内部に
本発明の吸着剤を担持させげことができ、その用途範囲
が大きいものである。
In addition, since the adsorbent can be manufactured not only in the form of fine particles such as conventional activated carbon or zeolite, but also in the chemical oxidative polymerization method, the adsorbent of the present invention can be supported on or inside a support having any form. It has a wide range of applications.

更に、π系導電性高分子は特定のガス分子に対する選択
的な吸着特性を有し、本発明の吸着剤は、例えば酸素ガ
スと窒素ガスを含む混合気体からのこれらの分離・精製
など、特定のガス分子の分離・精製に有用である。
Furthermore, π-based conductive polymers have selective adsorption properties for specific gas molecules, and the adsorbent of the present invention can be used to adsorb specific gas molecules, such as separating and purifying them from a mixed gas containing oxygen gas and nitrogen gas. It is useful for the separation and purification of gas molecules.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得たポリピロールのN2ガス及び0
□ガスに対する等温吸着線を示すグラフ、第2図はモレ
キュラー・シーブ・ゼオライトのN2ガス及び02ガス
に対する等温吸着線を示すグラフ、第3図は実施例1で
得たポリピロールにおける02ガス及びN2ガスの吸着
率の経時的変化を示すグラフである。 ’J14 E n (kg/cm2abs )第2図 第1 因 膿着埼藺(分) 第3図 −手腕tネ甫■巳書 く自発) 平成1年5月Zz日
Figure 1 shows the polypyrrole obtained in Example 1 with N2 gas and 0
□Graph showing isothermal adsorption lines for gases, Figure 2 is a graph showing isothermal adsorption lines for molecular sieve zeolite for N2 gas and 02 gas, Figure 3 is a graph showing isothermal adsorption lines for N2 gas and 02 gas in the polypyrrole obtained in Example 1. It is a graph showing the change over time in the adsorption rate of . 'J14 En (kg/cm2abs) Fig. 2 Fig. 1 Infusio adhesion (minutes) Fig. 3 - Hands and arms (kg/cm2abs) May Zz, 1999

Claims (1)

【特許請求の範囲】 1)共役二重結合を有する導電性高分子を有効成分とし
て含むことを特徴とするガス吸着剤。 2)10m^2/g以上の比表面積を有する請求項1記
載のガス吸着剤。 3)多硬質支持体の孔壁を含む表面に前記導電性高分子
を付着させた請求項1または2に記載のガス吸着剤。
[Scope of Claims] 1) A gas adsorbent characterized by containing a conductive polymer having a conjugated double bond as an active ingredient. 2) The gas adsorbent according to claim 1, which has a specific surface area of 10 m^2/g or more. 3) The gas adsorbent according to claim 1 or 2, wherein the conductive polymer is attached to a surface including pore walls of a multi-hard support.
JP63153497A 1988-06-23 1988-06-23 Gas adsorbent Pending JPH024446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153497A JPH024446A (en) 1988-06-23 1988-06-23 Gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153497A JPH024446A (en) 1988-06-23 1988-06-23 Gas adsorbent

Publications (1)

Publication Number Publication Date
JPH024446A true JPH024446A (en) 1990-01-09

Family

ID=15563853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153497A Pending JPH024446A (en) 1988-06-23 1988-06-23 Gas adsorbent

Country Status (1)

Country Link
JP (1) JPH024446A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066249A (en) * 2000-08-31 2002-03-05 Vision Development Co Ltd Deodorizing method
JP2012035169A (en) * 2010-08-05 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide absorption method
WO2012111845A1 (en) * 2011-02-18 2012-08-23 住友化学株式会社 Carbon dioxide adsorbent
JP2012250170A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide separation method and carbon dioxide adsorbent
JP2015501204A (en) * 2011-10-19 2015-01-15 インディアン インスティテュート オブ テクノロジー マドラス Polyaniline-graphite nanoplatelet material
CN112547027A (en) * 2020-11-17 2021-03-26 吉林大学 Preparation method of kaolin-doped conjugated microporous polymer composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066249A (en) * 2000-08-31 2002-03-05 Vision Development Co Ltd Deodorizing method
JP2012035169A (en) * 2010-08-05 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide absorption method
WO2012111845A1 (en) * 2011-02-18 2012-08-23 住友化学株式会社 Carbon dioxide adsorbent
JP2012183529A (en) * 2011-02-18 2012-09-27 Sumitomo Chemical Co Ltd Carbon dioxide adsorbent
JP2012250170A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide separation method and carbon dioxide adsorbent
JP2015501204A (en) * 2011-10-19 2015-01-15 インディアン インスティテュート オブ テクノロジー マドラス Polyaniline-graphite nanoplatelet material
US9468903B2 (en) 2011-10-19 2016-10-18 Indian Institute Of Technology Madras Polyaniline-graphite nanoplatelet materials
CN112547027A (en) * 2020-11-17 2021-03-26 吉林大学 Preparation method of kaolin-doped conjugated microporous polymer composite material

Similar Documents

Publication Publication Date Title
Jafari et al. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent
Mahurin et al. Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon
He et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture
Krasemann et al. Composite membranes with ultrathin separation layer prepared by self-assembly of polyelectrolytes
JP3932478B2 (en) Noble metal pore body and method for producing the same
US12070734B2 (en) Aerogel for harvesting atmospheric water
US5120600A (en) Porous composite materials and methods for preparing them
Juengchareonpoon et al. Graphene oxide and carboxymethylcellulose film modified by citric acid for antibiotic removal
Denizli et al. Removal of heavy metal ions from aquatic solutions by membrane chromatography
Li et al. Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water
KR20160093958A (en) Mixed matrix membranes and fabricating method of the same
Intrchom et al. Analytical sample preparation, preconcentration and chromatographic separation on carbon nanotubes
US5154740A (en) Membranous gas separator
Gebremariam et al. Polymer-aided microstructuring of moisture-stable GO-hybridized MOFs for carbon dioxide capture
JP3205746B2 (en) Method for producing highly functional activated carbon fiber by cathode oxidation
JPH024446A (en) Gas adsorbent
Ravi et al. Porous organic nanofiber polymers as superfast adsorbents for capturing pharmaceutical contaminants from water
Gholidoust et al. CO2 sponge from plasma enhanced seeded growth of metal organic frameworks across carbon nanotube bucky-papers
Beninati et al. Adsorption of paracetamol and acetylsalicylic acid onto commercial activated carbons
Lorignon et al. Controlling polyHIPE surface properties by tuning the hydrophobicity of MOF particles stabilizing a pickering emulsion
US5411580A (en) Oxygen-separating porous membranes
Bennett et al. Adsorption from solution on the carbon and hydroxyapatite components of bone char
US20180194621A1 (en) Porous nano structure useful as energy storage material, and method of manufacturing same
EP0475053A1 (en) Oxygen-separating porous membranes
JP3633979B2 (en) Endotoxin adsorbent, adsorption removal method and adsorber