WO2012111676A1 - 移動局 - Google Patents

移動局 Download PDF

Info

Publication number
WO2012111676A1
WO2012111676A1 PCT/JP2012/053430 JP2012053430W WO2012111676A1 WO 2012111676 A1 WO2012111676 A1 WO 2012111676A1 JP 2012053430 W JP2012053430 W JP 2012053430W WO 2012111676 A1 WO2012111676 A1 WO 2012111676A1
Authority
WO
WIPO (PCT)
Prior art keywords
phr
transmission power
timer
mpr
mobile station
Prior art date
Application number
PCT/JP2012/053430
Other languages
English (en)
French (fr)
Inventor
徹 内野
アニール ウメシュ
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/984,033 priority Critical patent/US9008716B2/en
Priority to ES12747391.6T priority patent/ES2581730T3/es
Priority to CA2826368A priority patent/CA2826368A1/en
Priority to KR1020137021564A priority patent/KR101335416B1/ko
Priority to DK12747391.6T priority patent/DK2677806T3/en
Priority to CN201280007794.3A priority patent/CN103370965B/zh
Priority to EP12747391.6A priority patent/EP2677806B1/en
Publication of WO2012111676A1 publication Critical patent/WO2012111676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present invention relates to a mobile station.
  • the UL scheduler of the radio base station eNB performs PUSCH (Physpy) for each TTI (Transmission Time Interval) and each mobile station UE. It is configured to select a transmission format in Uplink Shared Channel (physical uplink shared channel).
  • the transmission format includes a modulation scheme, a coding rate, and the number of resource blocks.
  • TBS Transport Block Size
  • the transmission format includes a modulation scheme, a coding rate, and the number of resource blocks.
  • the radio base station eNB is configured to notify the corresponding mobile station UE of the transmission format in the selected PUSCH using “UL grant” in PDCCH (Physical Downlink Control Channel, physical downlink control channel). Has been.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the mobile station UE is configured to transmit an uplink data signal via the PUSCH based on the transmission format notified via the PDCCH.
  • a UL scheduler of a general radio base station eNB estimates a PL (Path Loss, propagation loss) with each mobile station UE, and a modulation scheme in which the TBS becomes larger for a mobile station UE with a small PL, and By selecting the coding rate, BLER (Block Error Rate) is made constant regardless of PL.
  • PL Puls, propagation loss
  • uplink throughput commensurate with PL can be realized, and system throughput can be increased while suppressing interference with other cells.
  • the mobile station UE is configured to determine the transmission power P PUSCH, c (i) in the PUSCH based on (Equation 1) shown in FIG.
  • P CMAX, c (i) is the maximum transmission power of the mobile station UE (after considering the necessary power back-off)
  • M PUSCH, c (i) is the number of resource blocks
  • P O_PUSCH, c (i)” is a reference power offset value (broadcast parameter)
  • ⁇ c (j) is a fraction TPC slope parameter (broadcast parameter)
  • PL c is a propagation parameter.
  • ⁇ TF, c (i) is a power offset value based on the modulation scheme and coding rate
  • f c (i) is a closed loop power condition correction value.
  • the UL scheduler of the radio base station eNB selects a transmission format such that the transmission power P PUSCH, c (i) in the PUSCH of the UE is equal to or less than “P CMAX, c (i)”.
  • UL scheduler of the radio base station eNB estimates (Equation 1) is used to transmit power P PUSCH in the PUSCH UE, c (i).
  • the UL scheduler of the radio base station eNB selects a transmission format that requires a transmission power larger than “P CMAX, c (i)”, the transmission power in the PUSCH of the mobile station UE is “P CMAX, c ( i) ", the BLER becomes larger than the target value.
  • a PHR Power Headroom Report
  • the radio base station eNB so that the UL scheduler of the radio base station eNB can select an appropriate transmission format. "Is fed back.
  • PHR is a report for reporting surplus transmission power PH type1, c (i) of the mobile station UE.
  • the surplus transmission power PH type1, c (i) of the mobile station UE is obtained by (Equation 2) shown in FIG.
  • Equation 2 is the transmission power in the PUSCH that does not consider the sticking by “P CMAX, c (i)”.
  • P CMAX, c (i) is an MPR (Maximum Power Reduction) or A-MPR (Additional) from the maximum transmission power based on the capability of the mobile station UE (or the maximum transmission power allowed / designated by the network). This is a value obtained by subtracting -Maximum Power Reduction (P-Maximum Power Reduction) or P-MPR (P-Maximum Power Reduction).
  • MPR and A-MPR are back-off values for the maximum transmission power required to satisfy the adjacent channel interference specification.
  • the maximum allowable back-off value is defined by the modulation scheme, the number of resource blocks, the position in the frequency band, and the frequency band. Has been.
  • the P-MPR is a back-off value for the maximum transmission power required to satisfy the SAR (Specific Absorption Rate) newly introduced from the LTE-A system (that is, LTE (Rel-10) system). is there.
  • SAR defines the amount of energy absorbed by an arbitrary tissue when a human body is exposed to electromagnetic waves.
  • the mobile station UE transmits simultaneously via two RATs (Radio Access Technology)
  • the amount of radio waves emitted from both RATs must be taken into account, so depending on the transmission power in one RAT, the SAR In order to satisfy the regulation, there is a possibility that backoff is performed for the maximum transmission power of the other RAT.
  • RATs Radio Access Technology
  • the transmission power in the cdma2000 system is not backed off in order to maintain the voice quality, but the SAR regulations are satisfied.
  • a case where backoff is applied to transmission power in the LTE scheme can be considered.
  • the backoff for the transmission power in the LTE scheme may fluctuate every moment.
  • the mobile station UE has “P CMAX, c (i) based on the P-MPR when compared with the value when the PHR was last transmitted while the“ prohibit PHR-Timer ”is stopped. ) ”Or the P-MPR variation ⁇ exceeds“ dl-PathlossChange ”(see FIG. 11).
  • the mobile station UE when the mobile station UE transmits the PHR, the mobile station UE starts the “prohibitPHR-Timer” and does not transmit the PHR until the “prohibitPHR-Timer” expires (see FIG. 11).
  • the mobile station UE is configured to transmit a PHR to the radio base station eNB from time t1 to time t5.
  • the mobile station UE does not transmit the PHR because “prohibitPHR-Timer” has expired but the fluctuation amount ⁇ does not exceed “dl-PathlossChange”.
  • the mobile station UE does not transmit the PHR because the fluctuation amount ⁇ exceeds “dl-PathlossChange” but “prohibitPHR-Timer” has not expired.
  • the mobile station UE responds to a change in transmission power or P-MPR (change in “P CMAX, c (i)” as a result) in communication via the cdma2000 scheme.
  • P-MPR change in “P CMAX, c (i)” as a result
  • PHR may not be transmitted even when the transmission format should be changed.
  • the mobile station UE increases the transmission power or P-MPR (and “P CMAX, c (i)”) in communication via the cdma2000 scheme to exceed “dl-PathlossChange”. Therefore, PHR is transmitted and “prohibit PHR-Timer” is activated.
  • the radio base station eNB decreases the coding rate and the number of resource blocks.
  • the mobile station UE does not transmit PHR.
  • the radio base station eNB cannot increase the coding rate and the number of resource blocks based on the above-described PHR.
  • the mobile station UE After that, at time t3, the mobile station UE has the transmission power or P-MPR (and “P CMAX, c (i)”) in communication via the cdma2000 system in a state where “prohibitPHR-Timer” has expired. Since it has become smaller than “dl-PathlossChange”, PHR is transmitted and “prohibitPHR-Timer” is activated.
  • the radio base station eNB Based on the above PHR, at time t4, the radio base station eNB increases the coding rate and the number of resource blocks.
  • the transmission power or P-MPR (and “P CMAX, c (i)”) in communication via the cdma2000 system has increased beyond “dl-PathlossChange”, but “prohibitPHR-Timer” has expired. Therefore, the mobile station UE does not transmit PHR. As a result, the radio base station eNB cannot reduce the coding rate and the number of resource blocks based on the above-described PHR.
  • the mobile station UE at time t5, in a state where "prohibitPHR-Timer" has expired, the transmission power or P-MPR in communication via a cdma2000 system (and "P CMAX, c (i)") is Since it becomes larger than “dl-PathlossChange”, PHR is transmitted and “prohibitPHR-Timer” is activated.
  • the radio base station eNB decreases the coding rate and the number of resource blocks.
  • the mobile station UE has an effect of reducing the frequency utilization efficiency because the coding rate and the number of resource blocks used in the uplink communication remain small. It can be done without problems.
  • An object of the present invention is to provide a mobile station capable of performing the above.
  • a first feature of the present invention is a mobile station configured to be able to simultaneously perform a first communication via a first radio access network and a second communication via a second radio access network,
  • a reporting unit configured to report surplus transmission power of the mobile station to the first radio access network; and a first timer and a second timer that are activated when the surplus transmission power is reported
  • a timer management unit configured to manage, and the reporting unit is compared with a value when the first timer is stopped and when the surplus transmission power is finally reported
  • the increase amount of the transmission power in the second communication or the maximum transmission power reduction value determined based on the transmission power in the second communication exceeds a predetermined amount
  • the first wireless access network The surplus transmission power is reported, and the reporting unit is a value when the second timer is stopped and when the surplus transmission power was last reported.
  • the surplus transmission power is reported to the first radio access network.
  • the first timer is configured to expire in a shorter period than the second time
  • a second feature of the present invention is a mobile station configured to be capable of simultaneously performing the first communication via the first radio access network and the second communication via the second radio access network,
  • a reporting unit configured to report surplus transmission power of the mobile station to the first radio access network, and a timer that is started when the surplus transmission power is reported are configured to be managed.
  • the timer managing unit and the reporting unit are configured not to report the surplus transmission power to the first radio access network when the timer is activated, Even when the timer is stopped, the transmission power in the second communication or the second communication is compared with the value when the surplus transmission power was last reported.
  • the surplus transmission power is reported to the first radio access network. It is summarized as follows.
  • a mobile station configured to be capable of simultaneously performing the first communication via the first radio access network and the second communication via the second radio access network
  • a reporting unit configured to report surplus transmission power of the mobile station to the first radio access network, and a timer that is started when the surplus transmission power is reported are configured to be managed.
  • a timer management unit wherein the reporting unit is when the timer is stopped and compared with a value when the surplus transmission power is reported last, in the second communication
  • the increase amount of the maximum transmission power reduction value determined based on the transmission power or the transmission power in the second communication exceeds the first predetermined amount the surplus to the first radio access network
  • the transmission unit is configured to report transmission power
  • the reporting unit is configured to report the second when the timer is stopped and compared to a value when the surplus transmission power is reported last.
  • the surplus transmission power is reported to the first radio access network,
  • the gist is that the first predetermined amount is configured to be smaller than the second predetermined amount.
  • a station when communication via two RATs is performed simultaneously, it is possible to perform appropriate backoff in one communication in consideration of transmission power in the other communication.
  • a station can be provided.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the mobile station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the operation of the mobile station according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the mobile station according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the mobile station according to the first modification of the present invention.
  • FIG. 6 is a flowchart showing the operation of the mobile station according to the first modification of the present invention.
  • FIG. 7 is a diagram for explaining the operation of the mobile station according to the second modification of the present invention.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the mobile station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the operation of the
  • FIG. 8 is a flowchart showing the operation of the mobile station according to the second modification of the present invention.
  • FIG. 9 is an equation for determining PUSCH transmission power in a conventional mobile station.
  • FIG. 10 is an equation for determining PH in a conventional mobile station.
  • FIG. 11 is a flowchart showing the operation of a conventional mobile station.
  • FIG. 12 is a diagram for explaining the operation of a conventional mobile station.
  • FIG. 13 is a diagram for explaining the operation of a conventional mobile station.
  • Mobile communication system according to the first embodiment of the present invention A mobile communication system according to a first embodiment of the present invention will be described with reference to FIGS.
  • the mobile communication system accommodates LTE RAT # 1 and cdma2000 RAT # 2.
  • the present invention is also applicable to a mobile communication system that accommodates RAT # 1 and RAT # 2.
  • the mobile station UE is configured to be able to simultaneously perform the first communication (for example, data communication) via RAT # 1 and the second communication (for example, voice communication) via RAT # 2. Has been.
  • the mobile station UE includes a PHR transmission unit 11, a timer management unit 12, and a determination unit 13.
  • the PHR transmission unit 11 is configured to transmit a PHR to RAT # 1 (that is, the radio base station eNB) in response to an instruction from the determination unit 13.
  • RAT # 1 that is, the radio base station eNB
  • timer management unit 12 is configured to manage “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” that are activated when a PHR is transmitted.
  • the determination unit 13 is configured to determine whether or not the PHR transmission unit 11 should transmit the PHR, and to instruct the PHR transmission unit 11 to transmit the PHR.
  • the determination unit 13 compares the value when the “prohibit PHR-Timer_up” is stopped and the last transmission of the PHR, or the increase in the transmission power in the second communication or , Increase amount of P-MPR, increase amount of MPR, increase amount of A-MPR, decrease amount of “P CMAX, c (i)” by P-MPR, or “P CMAX, c (i ) ”Or the decrease amount of“ P CMAX, c (i) ”by A-MPR exceeds“ dl-PathlossChange ”, the PHR transmission unit 11 determines that PHR should be transmitted. It is configured as follows.
  • P-MPR is assumed to be a maximum transmission power reduction value determined based on transmission power in the second communication.
  • di-PathlossChange may be set for each RAT that performs simultaneous communication, or may be flexibly set according to a variation in transmission power or a variation in P-MPR (and “P CMAX, c (i)”). It may be set.
  • the determination unit 13 compares the value when the “prohibit PHR-Timer_down” is stopped and the last transmission of the PHR, or the amount of decrease in the transmission power in the second communication or P ⁇ reduction of MPR or decrease the MPR or decrease the amount of a-MPR or by P-MPR increase in "P CMAX, c (i)” or, by MPR of "P CMAX, c (i)”
  • the increase amount or the increase amount of “P CMAX, c (i)” by A-MPR exceeds “dl-PathlossChange”
  • the PHR transmission unit 11 determines that the PHR should be transmitted. Has been.
  • the determination unit 13 is configured to determine that the PHR transmission unit 11 should not transmit the PHR.
  • prohibitPHR-Timer_up is configured to expire in a shorter period than “prohibitPHR-Timer_down”.
  • the mobile station UE increases the amount of increase in transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication exceeding “dl-PathlossChange”.
  • PHR is transmitted to the radio base station eNB, and “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” are activated.
  • the mobile station UE At time t2, the mobile station UE, as compared to the value at time t1, the transmission power or P-MPR in the second communication (and "P CMAX, c (i)") reduction of the "dl-PathlossChange" However, since “prohibitPHR-Timer_down” has not expired, no PHR is transmitted to the radio base station eNB.
  • the mobile station UE has expired “prohibitPHR-Timer_down”, and compared with the value at time t1, transmission power or P-MPR (and “P CMAX, c (i)” in the second communication. ) Exceeds “dl-PathlossChange”, PHR is transmitted to the radio base station eNB, and “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” are activated.
  • the mobile station UE has expired “prohibitPHR-Timer_up” (although “prohibitPHR-Timer_down” has not expired), and compared with the value at time t3, the transmission power or P since -MPR (and "P CMAX, c (i)") increase in exceeds the "dl-PathlossChange" to the radio base station eNB, and transmits the PHR, "prohibitPHR-Timer_up” and "prohibitPHR -Start “Timer_down”.
  • the mobile station UE has expired “prohibitPHR-Timer_up”, and compared with the value at time t4, the transmission power or P-MPR (and “P CMAX, c (i)” in the second communication. ) Exceeds “dl-PathlossChange”, PHR is transmitted to the radio base station eNB, and “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” are activated.
  • step S101 the mobile station UE transmits the transmission power or P-MPR (and “P CMAX, c (i)) in the second communication when compared with the value at the time of the last transmission of the PHR. )) Is observed, and it is determined in step S102 whether or not the variation ⁇ exceeds “dl-PathlossChange”.
  • step S103 If “YES”, the operation proceeds to step S103, and if “NO”, the operation proceeds to step S106.
  • step S103 the mobile station UE determines whether or not the fluctuation amount ⁇ is larger than “0”.
  • step S104 If “YES”, the operation proceeds to step S104, and if “NO”, the operation proceeds to step S105.
  • step S104 the mobile station UE determines whether or not “prohibitPHR-Timer_up” is stopped.
  • step S107 If “YES”, the operation proceeds to step S107, and if “NO”, the operation proceeds to step S106.
  • step S105 the mobile station UE determines whether or not “prohibitPHR-Timer_down” is stopped.
  • step S107 If “YES”, the operation proceeds to step S107, and if “NO”, the operation proceeds to step S106.
  • step S106 the mobile station UE determines whether or not the PHR should be transmitted by another trigger (periodic PHR transmission trigger, transmission trigger when the PHR function is turned on, etc.). .
  • step S107 If “YES”, the operation proceeds to step S107, and if “NO”, the operation ends.
  • step S107 the mobile station UE transmits a PHR to the radio base station eNB.
  • step S108 “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” are activated (or restarted).
  • step S107 may be performed after step S108 is performed.
  • step S102 may be performed after steps S104 / S105 are performed.
  • the mobile station UE uses a transmission format that is not appropriate using “prohibitPHR-Timer_up” and “prohibitPHR-Timer_down” that have different periods until expiration. It is possible to avoid a situation in which data errors due to transmission may occur frequently.
  • the timer management unit 12 is configured to manage “prohibitPHR-Timer” that is activated when a PHR is transmitted.
  • the determination unit 13 is configured to determine that a PHR should not be transmitted by the PHR transmission unit 11 when “prohibit PHR-Timer” is activated.
  • the determination unit 13 compares the amount of decrease in transmission power in the second communication or P reduction of -MPR or decrease the MPR or decrease the amount of a-MPR or by P-MPR increase in "P CMAX, c (i)” or, according to the MPR "P CMAX, c (i)” the amount of increase or, if the state by a-MPR increase in "P CMAX, c (i)” is greater than "dl-PathlossChange” is the duration of the TTT (Time to Trigger), PHR transmission
  • the unit 11 is configured to determine that the PHR should be transmitted.
  • the determination unit 13 may continuously monitor the TTT period as in timer control, or may discretely monitor the TTT period as in the number of protection stages.
  • the determination unit 13 compares the value when the PHR is transmitted last time with the increase in transmission power in the second communication or P increase in -MPR or increase in MPR or, increase in a-MPR or by P-MPR reduction of "P CMAX, c (i)” or, according to the MPR "P CMAX, c (i)” Or a decrease in “P CMAX, c (i)” by A-MPR exceeds “dl-PathlossChange” for a period of TTT, the PHR transmission unit 11 It may be configured to determine that it should be transmitted.
  • di-PathlossChange may be set for each RAT that performs simultaneous communication, or may be flexibly set according to a variation in transmission power or a variation in P-MPR (and “P CMAX, c (i)”). It may be set.
  • the mobile station UE increases the transmission power or the increase amount of P-MPR (and “P CMAX, c (i)”) in the second communication exceeding “dl-PathlossChange”.
  • a PHR is transmitted to the radio base station eNB, and “prohibit PHR-Timer” is activated.
  • the mobile station UE reduces the transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication to “dl-PathlossChange” compared to the value at time t1.
  • PHR is not transmitted to the radio base station eNB.
  • the mobile station UE has changed the transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication over “dl-PathlossChange”, so that the fluctuation within the TTT period Start observation of quantity ⁇ .
  • the mobile station UE increases the transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication to increase the transmission power or P-MPR (and Since the state where the decrease amount of “P CMAX, c (i)” exceeds “dl-PathlossChange” has not continued for the period of TTT, no PHR is transmitted to the radio base station eNB.
  • the mobile station UE has changed the transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication over “dl-PathlossChange”, and therefore the fluctuation within the TTT period.
  • P-MPR and “P CMAX, c (i)”
  • the mobile station UE is in a state where the transmission power or the decrease amount of P-MPR (and “P CMAX, c (i)”) in the second communication exceeds “dl-PathlossChange”. Since the period has continued, PHR is transmitted to the radio base station eNB, and “prohibit PHR-Timer” is activated.
  • step S201 the mobile station UE transmits the transmission power or P-MPR (and “P CMAX, c (i) in the second communication when compared with the value when the PHR was last transmitted in step S201”. )) Is observed, and it is determined in step S202 whether or not the variation ⁇ exceeds “dl-PathlossChange”.
  • step S203 If “YES”, the operation proceeds to step S203, and if “NO”, the operation proceeds to step S206.
  • step S203 the mobile station UE determines whether or not the fluctuation amount ⁇ is larger than “0”.
  • step S205 If “YES”, the operation proceeds to step S205, and if “NO”, the operation proceeds to step S204.
  • step S204 the mobile station UE continues the state in which the amount of decrease in transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication exceeds “dl-PathlossChange” for the period of TTT. Judge whether or not.
  • step S205 If “YES”, the operation proceeds to step S205, and if “NO”, the operation proceeds to step S206.
  • step S205 the mobile station UE determines whether or not “prohibitPHR-Timer” is stopped.
  • step S207 If “YES”, the operation proceeds to step S207, and if “NO”, the operation proceeds to step S206.
  • step S206 the mobile station UE determines whether or not the PHR should be transmitted by another trigger (periodic PHR transmission trigger, transmission trigger when the PHR function is turned on, etc.). .
  • step S207 If “YES”, the operation proceeds to step S207, and if “NO”, the operation ends.
  • step S207 the mobile station UE transmits a PHR to the radio base station eNB.
  • step S208 “prohibitPHR-Timer” is started (or restarted).
  • step S207 may be performed after step S208 is performed.
  • step S202 may be performed after step S205 is performed.
  • the mobile station UE determines that the transmission power or P-MPR (and “P CMAX, c (i)”) decrease amount in the second communication is “dl-PathlossChange”.
  • P-MPR and “P CMAX, c (i)”
  • the state exceeding “” continues for the period of TTT, since it is configured to transmit PHR, the state where the coding rate and the number of resource blocks used in uplink communication remain large, Data error that can be resolved preferentially over the state where the coding rate and the number of resource blocks used in uplink communication remain small, and the mobile station UE performs transmission using an inappropriate transmission format Can be avoided.
  • Modification 2 With reference to FIG.7 and FIG.8, the mobile communication system which concerns on the modification 2 of this invention is demonstrated.
  • the mobile communication system according to the second modification of the present invention will be described by focusing on differences from the mobile communication system according to the first embodiment described above.
  • the timer management unit 12 is configured to manage “prohibitPHR-Timer” that is activated when a PHR is transmitted.
  • the determination unit 13 increases the transmission power increase amount in the second communication or the P-MPR. Increase amount, increase amount of MPR, increase amount of A-MPR, decrease amount of “P CMAX, c (i)” by P-MPR, decrease amount of “P CMAX, c (i)” by MPR Alternatively, when the amount of decrease of “P CMAX, c (i)” by A-MPR exceeds “dl-PathlossChange_up”, the PHR transmission unit 11 determines that PHR should be transmitted. Yes.
  • the determination unit 13 compares the value when the “prohibit PHR-Timer” is stopped and the last transmission of the PHR, or the amount of decrease in the transmission power in the second communication, or P ⁇ reduction of MPR or decrease the MPR or decrease the amount of a-MPR or by P-MPR increase in "P CMAX, c (i)” or, by MPR of "P CMAX, c (i)”
  • the PHR transmission unit 11 determines that the PHR should be transmitted. Has been.
  • dl-PathlossChange_up is configured to be smaller than “dl-PathlossChange_down”.
  • “dl-PathlossChange_up” and “dl-PathlossChange_down” may be set for each RAT performing simultaneous communication, transmission power fluctuation or P-MPR fluctuation amount (and “P CMAX, c (i) )) Etc., it may be set flexibly.
  • the mobile station UE increases the transmission power or the increase amount of P-MPR (and “P CMAX, c (i)”) in the second communication exceeds “dl-PathlossChange_up”.
  • a PHR is transmitted to the radio base station eNB, and “prohibit PHR-Timer” is activated.
  • the mobile station UE since the transmission power or the P-MPR in the second communication (and "P CMAX, c (i)") decrease in the does not exceed the "dl-PathlossChange_down", the radio base station eNB In contrast, PHR is not transmitted.
  • the mobile station UE increases the transmission power or the increase amount of P-MPR (and “P CMAX, c (i)”) in the second communication over “dl-PathlossChange_up”. Then, PHR is transmitted and “prohibit PHR-Timer” is activated.
  • the mobile station UE increases the transmission power or P-MPR (and “P CMAX, c (i)”) in the second communication over “dl-PathlossChange_down”. Then, PHR is transmitted and “prohibit PHR-Timer” is activated.
  • the mobile station UE increases the transmission power or the increase amount of P-MPR (and “P CMAX, c (i)”) in the second communication over “dl-PathlossChange_up”. Then, PHR is transmitted and “prohibit PHR-Timer” is activated.
  • step S301 the mobile station UE transmits the transmission power or P-MPR (and “P CMAX, c (i)) in the second communication when compared with the value at the last transmission of the PHR. )) Is observed, and in step S302, it is determined whether or not the variation ⁇ is larger than “0”.
  • step S303 If “YES”, the operation proceeds to step S303, and if “NO”, the operation proceeds to step S304.
  • step S303 the mobile station UE determines whether or not the fluctuation amount ⁇ exceeds “dl-PathlossChange_up”.
  • step S305 If “YES”, the operation proceeds to step S305, and if “NO”, the operation proceeds to step S306.
  • step S304 the mobile station UE determines whether or not the fluctuation amount ⁇ exceeds “dl-PathlossChange_down”.
  • step S305 If “YES”, the operation proceeds to step S305, and if “NO”, the operation proceeds to step S306.
  • step S305 it is determined whether or not “prohibitPHR-Timer” is stopped.
  • step S307 If “YES”, the operation proceeds to step S307, and if “NO”, the operation proceeds to step S306.
  • step S306 the mobile station UE determines whether or not the PHR should be transmitted by other triggers (periodic PHR transmission trigger, transmission trigger when the PHR function is turned on, etc.). .
  • step S307 If “YES”, the operation proceeds to step S307, and if “NO”, the operation ends.
  • step S307 the mobile station UE transmits a PHR to the radio base station eNB.
  • step S308 “prohibitPHR-Timer” is started (or restarted).
  • step S307 may be performed after step S308 is performed.
  • steps S303 / S304 may be performed after step S305 is performed.
  • the mobile station UE performs transmission using an inappropriate transmission format using “dl-PathlossChange_up” and “dl-PathlossChange_down” having different values. It is possible to avoid a situation where there is a possibility of frequent data errors.
  • the first feature of the present embodiment is that the first communication via RAT # 1 (first radio access network) and the second communication via RAT # 2 (second radio access network) can be performed simultaneously.
  • PHR transmitting unit 11 reporting unit
  • RAT # 1 that is, to report surplus transmission power of the mobile station
  • a timer management unit 12 configured to manage “prohibitPHR-Timer_up (first timer)” and “prohibitPHR-Timer_down (second timer)” that are activated when a PHR is transmitted
  • the PHR transmission unit 11 is a value when “prohibit PHR-Timer_up” is stopped and when the PHR is transmitted last.
  • the increase amount of transmission power in the second communication the increase amount of P-MPR (maximum transmission power reduction value determined based on the transmission power in the second communication), the increase amount of MPR, or A- increase in MPR or by P-MPR "P CMAX, c (i)” reduction or, by MPR by reduction or a-MPR in "P CMAX, c (i)” "P CMAX, c (i ) ”Decreases when“ dl-PathlossChange (predetermined amount) ”is exceeded, the PHR transmitter 11 is configured to transmit PHR to RAT # 1, and the PHR transmitter 11 transmits“ prohibit PHR-Timer_down ”.
  • the amount of decrease in transmission power in the second communication the amount of decrease in P-MPR, the amount of decrease in MPR, or the value when the PHR is transmitted last.
  • C (i) is configured to transmit a PHR to RAT # 1 when the increment of“ dl-PathlossChange ”exceeds“ dl-PathlossChange ”.“ ProhibitPHR-Timer_up ”
  • the main point is that it is configured to expire in a shorter period than ".”
  • the second feature of the present embodiment is a mobile station UE configured to be able to simultaneously perform the first communication via RAT # 1 and the second communication via RAT # 2, and the RAT # 1, a PHR transmission unit 11 configured to transmit a PHR, and a timer management unit configured to manage a “prohibit PHR-Timer (timer)” that is activated when the PHR is transmitted 12 and the PHR transmission unit 11 is configured not to transmit PHR to RAT # 1 when “prohibit PHR-Timer” is activated.
  • the PHR transmission unit 11 Even when “prohibit PHR-Timer” is stopped, the amount of decrease in transmission power in the second communication or P ⁇ is compared with the value when the PHR was last transmitted.
  • a third feature of the present embodiment is a mobile station UE configured to be able to simultaneously perform the first communication via RAT # 1 and the second communication via RAT # 2, and the RAT # 1, a PHR transmission unit 11 configured to transmit a PHR, and a timer management unit 12 configured to manage a “prohibit PHR-Timer” that is activated when the PHR is transmitted
  • the PHR transmission unit 11 includes the amount of increase in transmission power in the second communication when “prohibit PHR-Timer” is stopped and compared with the value when the PHR was transmitted last, or increase in P-MPR (maximum transmission power reduction value which is determined based on the transmission power in the second communication), or increase in MPR or, increase in a-MPR or by P-MPR "P CM X, the amount of decrease c (i) "or, according to the MPR" P CMAX, c (i) "of the reduction or by A-MPR" P CMAX, c (i) decrease the amount of "is" d
  • the PHR transmission unit 11 is configured to transmit the PHR to RAT # 1, and the PHR transmission unit 11 is in a case where “prohibit PHR-Timer” is stopped, and Compared with the value when the PHR is transmitted last, the amount of decrease in transmission power in the second communication, the amount of decrease in P-MPR, the amount of decrease in MPR, the amount of decrease in A-MPR, or P- According to MPR increase in "P CMAX, c (i)” or, by MPR According to increment or a-MPR in "P CMAX, c (i)" amount of increase in "P CMAX, c (i)” is "dl -PathlossC When “hang_down (second predetermined amount)” is exceeded, it is configured to transmit PHR to RAT # 1, so that “dl-PathlossChange_up” is smaller than “dl-PathlossChange_down”.
  • the gist is that it is configured.
  • the operations of the radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. Good.
  • the software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, Hard Disk, and Removable ROM).
  • RAM Random Access Memory
  • flash memory ROM (Read Only Memory)
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable and Programmable, Removable ROM, Hard Disk, and Removable ROM.
  • it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Such a storage medium and processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB, the mobile station UE, or the like. Further, the storage medium and the processor may be provided as a discrete component in the radio base station eNB, the mobile station UE, or the like.
  • UE ... mobile station 11 ... PHR transmission unit 12 ... timer management unit 13 ... determination unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

 本発明に係る移動局UEにおいて、PHR送信部11は、「prohibitPHR-Timer_up」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力又はP-MPRの増加量が「dl-PathlossChange」を超えた場合に、RAT#1に対して、PHRを送信し、「prohibitPHR-Timer_down」が停止している場合で、かつ、第2通信における送信電力又はP-MPRの減少量が「dl-PathlossChange」を超えた場合に、RAT#1に対して、PHRを送信し、「prohibitPHR-Timer_up」は、「prohibitPHR-Timer_down」よりも短い期間で満了する。

Description

移動局
 本発明は、移動局に関する。
 LTE(Long Term Evolution)方式及びLTE-A(Long Term Evolution-Advanced)方式において、上りリンクでは、無線基地局eNBのULスケジューラが、TTI(Transmission Time Interval)及び移動局UE毎に、PUSCH(Physical Uplink Shared Channel、物理上りリンク共有チャネル)における送信フォーマットを選択するように構成されている。
 ここで、かかる送信フォーマットには、変調方式や符号化率やリソースブロック数が含まれる。また、TBS(Transport Block Size:トランスポートブロックサイズ)は、変調方式と符号化率とリソースブロック数とによって一意に決まる。
 無線基地局eNBは、PDCCH(Physical Downlink Control Channel、物理下りリンク制御チャネル)内の「UL grant」を用いて、該当する移動局UEに対して、選択したPUSCHにおける送信フォーマットを通知するように構成されている。
 また、移動局UEは、PDCCHを介して通知された送信フォーマットに基づいて、PUSCHを介して上りリンクデータ信号を送信するように構成されている。
 一般的な無線基地局eNBのULスケジューラは、各移動局UEとの間のPL(Path Loss、伝搬損)を推定し、PLが小さい移動局UEに対して、よりTBSが大きくなる変調方式及び符号化率を選択することにより、PLによらず、BLER(Block Error Rate)が一定になるようにする。
 その結果、PLに見合った上りリンクのスループットを実現し、他セルへの干渉を抑圧しつつ、システムスループットを増大させることができる。
 また、移動局UEは、図9に示す(式1)に基づいて、PUSCHにおける送信電力PPUSCH,c(i)を決定するように構成されている。
 ここで、「PCMAX,c(i)」は、移動局UEの最大送信電力(必要な電力バックオフ考慮後)であり、「MPUSCH,c(i)」は、リソースブロック数であり、「PO_PUSCH,c(i)」は、基準となる電力オフセット値(報知パラメータ)であり、「α(j)」は、Fraction TPCの傾斜パラメータ(報知パラメータ)であり、PLは、伝搬損であり、ΔTF,c(i)は、変調方式及び符号化率に基づく電力オフセット値であり、f(i)は、閉ループパワコン補正値である。
 無線基地局eNBのULスケジューラは、UEのPUSCHにおける送信電力PPUSCH,c(i)が、「PCMAX,c(i)」以下となるような送信フォーマットを選択する。
 ここで、無線基地局eNBのULスケジューラは、(式1)を用いて、UEのPUSCHにおける送信電力PPUSCH,c(i)を推定する。
 また、無線基地局eNBのULスケジューラが「PCMAX,c(i)」より大きい送信電力を必要とする送信フォーマットを選択しても、移動局UEのPUSCHにおける送信電力が「PCMAX,c(i)」で張り付くため、BLERは目標値に対して大きくなる。
 ここで、従来のLTE方式/LTE-A方式では、無線基地局eNBのULスケジューラが適切な送信フォーマットを選択できるように、移動局UEから無線基地局eNBに対して「PHR(Power Headroom Report)」をフィードバックする機構が設けられている。
 ここで、PHRは、移動局UEの余剰送信電力PHtype1,c(i)を報告するためのレポートである。かかる移動局UEの余剰送信電力PHtype1,c(i)は、図10に示す(式2)によって求められる。
 ここで、(式2)における項(1)は、「PCMAX,c(i)」による張り付きを考慮しないPUSCHにおける送信電力である。
 なお、「PCMAX,c(i)」は、移動局UEの能力による最大送信電力(若しくは、ネットワークより許容/指定される最大送信電力)から、MPR(Maximum Power Reduction)やA-MPR(Additional-Maximum Power Reduction)やP-MPR(P-Maximum Power Reduction)を差し引いた値である。
 ここで、MPRやA-MPRは、隣接チャネル干渉規定を満たすために必要な最大送信電力に対するバックオフ値である。
 なお、3GPPのTS36.101(v10.0.0)に、バックオフ値の最大許容値が、変調方式やリソースブロックの数や周波数帯域内の位置や周波数帯域(バンド)によった形で規定されている。
 また、P-MPRは、LTE-A方式(すなわち、LTE(Rel-10)方式)から新たに導入されるSAR(Specific Absorption Rate)規定等を満たすために必要な最大送信電力に対するバックオフ値である。
 「SAR」とは、人体が電磁波にさらされることによって、任意の組織に吸収されるエネルギー量を規定するものである。
 移動局UEが、2つのRAT(Radio Access Technology)を介して同時に送信する際には、両方のRATから発せられる電波の量を考慮しなければならないため、一方のRATにおける送信電力によっては、SAR規定を満たすために、他方のRATの最大送信電力に対してバックオフを行う可能性がある。
 例えば,cdma2000方式を介した音声通信及びLTE方式を介したデータ通信が同時に行われる場合に、音声品質を保つために、cdma2000方式における送信電力にはバックオフを実施しないが、SAR規定を満たすために、LTE方式における送信電力にはバックオフを適用するケースが考えられる。
 この際、cdma2000方式を介した音声通信がマルチレートであることにより、その送信電力が刻々と変動すると、LTE方式における送信電力に対するバックオフも刻々と変動し得る。
 LTE-A方式では、移動局UEは、「prohibitPHR-Timer」が停止している状態で、最後にPHRを送信した際の値と比較した場合のP-MPRに基づく「PCMAX,c(i)」の変動量Δ又はP-MPRの変動量Δが「dl-PathlossChange」を超えた場合に、PHRを送信するように構成されている(図11参照)。
 また、移動局UEは、PHRを送信すると、 「prohibitPHR-Timer」を起動し、「prohibitPHR-Timer」が満了するまで、PHRを送信しないように構成されている(図11参照)。
 具体的には、図12の例では、移動局UEは、時刻t1乃至t5において、無線基地局eNBに対して、PHRを送信するように構成されている。
 ここで、移動局UEは、期間A/B/Dでは、「prohibitPHR-Timer」は満了しているが、変動量Δが「dl-PathlossChange」を超えていないため、PHRを送信しない。
 また、移動局UEは、期間Cでは、変動量Δが「dl-PathlossChange」を超えているが、「prohibitPHR-Timer」が満了していないため、PHRを送信しない。
3GPP TS36.321(v10.0.0)
 しかしながら、従来の移動通信システムでは、移動局UEは、cdma2000方式を介した通信における送信電力又はP-MPRの変化(その結果としての「PCMAX,c(i)」の変化)に応じて、送信フォーマットを変更すべきタイミングであっても、PHRを送信することができない可能性があるという問題点があった。
 例えば、図13において、移動局UEは、時刻t1において、cdma2000方式を介した通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が「dl-PathlossChange」を超えて大きくなったため、PHRを送信し、「prohibitPHR-Timer」を起動する。
 上述のPHRに基づいて、時刻t2において、無線基地局eNBは、符号化率及びリソースブロックの数を小さくする。
 時刻Aでは、cdma2000方式を介した通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が「dl-PathlossChange」を超えて小さくなったが、「prohibitPHR-Timer」が満了していないため、移動局UEは、PHRを送信しない。その結果、無線基地局eNBは、上述のPHRに基づいて、符号化率及びリソースブロックの数を大きくすることができない。
 その後、移動局UEは、時刻t3において、「prohibitPHR-Timer」が満了している状態で、cdma2000方式を介した通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が「dl-PathlossChange」を超えて小さくなったため、PHRを送信し、「prohibitPHR-Timer」を起動する。
 上述のPHRに基づいて、時刻t4において、無線基地局eNBは、符号化率及びリソースブロックの数を大きくする。
 時刻Bでは、cdma2000方式を介した通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が「dl-PathlossChange」を超えて大きくなったが、「prohibitPHR-Timer」が満了していないため、移動局UEは、PHRを送信しない。その結果、無線基地局eNBは、上述のPHRに基づいて、符号化率及びリソースブロックの数を小さくすることができない。
 その後、移動局UEは、時刻t5において、「prohibitPHR-Timer」が満了している状態で、cdma2000方式を介した通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が「dl-PathlossChange」を超えて大きくなったため、PHRを送信し、「prohibitPHR-Timer」を起動する。
 上述のPHRに基づいて、時刻t6において、無線基地局eNBは、符号化率及びリソースブロックの数を小さくする。
 ここで、時刻Aのようなケースでは、移動局UEは、上りリンク通信において用いる符号化率やリソースブロックの数が小さいままであるため、周波数利用効率が低下する影響があるが、上りリンク通信自体は問題なく行うことができる。
 一方、時刻Bのようなケースでは、上りリンク通信において用いる符号化率やリソースブロックの数が大きいままであるため、データ誤りが多発する可能性があるという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、2つのRATを介した通信を同時に行う場合に、一方の通信において、他方の通信における送信電力を考慮して適切なバックオフを行うことができる移動局を提供することを目的とする。
 本発明の第1の特徴は、第1無線アクセスネットワークを介した第1通信及び第2無線アクセスネットワークを介した第2通信を同時に行うことができるように構成されている移動局であって、前記第1無線アクセスネットワークに対して、前記移動局の余剰送信電力を報告するように構成されている報告部と、前記余剰送信電力が報告された際に起動する第1タイマ及び第2タイマを管理するように構成されているタイマ管理部とを具備し、前記報告部は、前記第1タイマが停止している場合で、かつ、最後に前記余剰送信電力が報告された際の値と比較して、前記第2通信における送信電力又は該第2通信における送信電力に基づいて決定される最大送信電力低減値の増加量が所定量を超えた場合に、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告するように構成されており、前記報告部は、前記第2タイマが停止している場合で、かつ、最後に前記余剰送信電力が報告された際の値と比較して、前記第2通信における送信電力又は前記最大送信電力低減値の減少量が前記所定量を超えた場合に、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告するように構成されており、前記第1タイマは、前記第2タイマよりも短い期間で満了するように構成されていることを要旨とする。
 本発明の第2の特徴は、第1無線アクセスネットワークを介した第1通信及び第2無線アクセスネットワークを介した第2通信を同時に行うことができるように構成されている移動局であって、前記第1無線アクセスネットワークに対して、前記移動局の余剰送信電力を報告するように構成されている報告部と、前記余剰送信電力が報告された際に起動するタイマを管理するように構成されているタイマ管理部と、前記報告部は、前記タイマが起動している場合には、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告しないように構成されており、前記報告部は、前記タイマが停止している場合であっても、最後に前記余剰送信電力が報告された際の値と比較して、前記第2通信における送信電力又は該第2通信における送信電力に基づいて決定される最大送信電力低減値の減少量が所定量を超えている状態が所定期間継続した場合に、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告するように構成されていることを要旨とする。
 本発明の第3の特徴は、第1無線アクセスネットワークを介した第1通信及び第2無線アクセスネットワークを介した第2通信を同時に行うことができるように構成されている移動局であって、前記第1無線アクセスネットワークに対して、前記移動局の余剰送信電力を報告するように構成されている報告部と、前記余剰送信電力が報告された際に起動するタイマを管理するように構成されているタイマ管理部とを具備し、前記報告部は、前記タイマが停止している場合で、かつ、最後に前記余剰送信電力が報告された際の値と比較して、前記第2通信における送信電力又は該第2通信における送信電力に基づいて決定される最大送信電力低減値の増加量が第1所定量を超えた場合に、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告するように構成されており、前記報告部は、前記タイマが停止している場合で、かつ、最後に前記余剰送信電力が報告された際の値と比較して、前記第2通信における送信電力又は前記最大送信電力低減値の減少量が第2所定量を超えた場合に、前記第1無線アクセスネットワークに対して、前記余剰送信電力を報告するように構成されており、前記第1所定量は、前記第2所定量よりも小さくなるように構成されていることを要旨とする。
 以上説明したように、本発明によれば、2つのRATを介した通信を同時に行う場合に、一方の通信において、他方の通信における送信電力を考慮して適切なバックオフを行うことができる移動局を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る移動局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る移動局の動作を説明するための図である。 図4は、本発明の第1の実施形態に係る移動局の動作を示すフローチャートである。 図5は、本発明の変更例1に係る移動局の動作を説明するための図である。 図6は、本発明の変更例1に係る移動局の動作を示すフローチャートである。 図7は、本発明の変更例2に係る移動局の動作を説明するための図である。 図8は、本発明の変更例2に係る移動局の動作を示すフローチャートである。 図9は、従来の移動局におけるPUSCHの送信電力を決定するための式である。 図10は、従来の移動局におけるPHを決定するための式である。 図11は、従来の移動局の動作を示すフローチャートである。 図12は、従来の移動局の動作を説明するための図である。 図13は、従来の移動局の動作を説明するための図である。
(本発明の第1の実施形態に係る移動通信システム)
 図1乃至図4を参照して、本発明の第1の実施形態に係る移動通信システムについて説明する。
 図1に示すように、本実施形態に係る移動通信システムは、LTE方式のRAT#1及びcdma2000方式のRAT#2を収容している。なお、本発明は、RAT#1及びRAT#2を収容する移動通信システムに対しても適用可能である。
 本実施形態に係る移動局UEは、RAT#1を介した第1通信(例えば、データ通信)及びRAT#2を介した第2通信(例えば、音声通信)を同時に行うことができるように構成されている。
 図2に示すように、移動局UEは、PHR送信部11と、タイマ管理部12と、判定部13とを具備している。
 PHR送信部11は、判定部13による指示に応じて、RAT#1(すなわち、無線基地局eNB)に対して、PHRを送信するように構成されている。
 また、タイマ管理部12は、PHRが送信された際に起動する「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を管理するように構成されている。
 判定部13は、PHR送信部11によってPHRを送信すべきか否かについて判定し、PHR送信部11に対して、PHRを送信すべき旨の指示を行うように構成されている。
 具体的には、判定部13は、「prohibitPHR-Timer_up」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の増加量又は、P-MPRの増加量又は、MPRの増加量又は、A-MPRの増加量又は、P-MPRによる「PCMAX,c(i)」の減少量又は、MPRによる「PCMAX,c(i)」の減少量又は、A-MPRによる「PCMAX,c(i)」の減少量が「dl-PathlossChange」を超えた場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されている。
 ここで、P-MPRは、第2通信における送信電力に基づいて決定される最大送信電力低減値であるものとする。
 なお、「dl-PathlossChange」は、同時通信を行うRAT毎に設定してもよいし、送信電力の変動又はP-MPRの変動量(及び「PCMAX,c(i)」)等に従って柔軟に設定してもよい。
 また、判定部13は、「prohibitPHR-Timer_down」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又は、A-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange」を超えた場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されている。
 それ以外の場合には、判定部13は、PHR送信部11によってPHRを送信すべきでないと判定するように構成されている。
 ここで、「prohibitPHR-Timer_up」は、「prohibitPHR-Timer_down」よりも短い期間で満了するように構成されている。
 図3の例では、時刻t1において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を起動する。
 時刻t2では、移動局UEは、時刻t1における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えているが、「prohibitPHR-Timer_down」が満了していないため、無線基地局eNBに対して、PHRを送信しない。
 時刻t3において、移動局UEは、「prohibitPHR-Timer_down」が満了しており、時刻t1における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えているため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を起動する。
 時刻t4において、移動局UEは、「prohibitPHR-Timer_up」が満了しており(「prohibitPHR-Timer_down」は満了していないが)、時刻t3における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange」を超えているため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を起動する。
 時刻t5において、時刻t4における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えているが、「prohibitPHR-Timer_down」が満了していないため、無線基地局eNBに対して、PHRを送信しない。
 時刻t6において、移動局UEは、「prohibitPHR-Timer_up」が満了しており、時刻t4における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange」を超えているため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を起動する。
 以下、図4を参照して、本実施形態に係る移動局UEの動作の一例について説明する。
 図4に示すように、移動局UEは、ステップS101において、最後にPHRを送信した際の値と比較した場合の第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の変動量Δを観測し、ステップS102において、変動量Δが「dl-PathlossChange」を超えているか否かについて判定する。
 「YES」の場合、本動作は、ステップS103に進み、「NO」の場合、本動作は、ステップS106に進む。
 ステップS103において、移動局UEは、変動量Δが「0」よりも大きいか否かについて判定する。
 「YES」の場合、本動作は、ステップS104に進み、「NO」の場合、本動作は、ステップS105に進む。
 ステップS104において、移動局UEは、「prohibitPHR-Timer_up」が停止しているか否かについて判定する。
 「YES」の場合、本動作は、ステップS107に進み、「NO」の場合、本動作は、ステップS106に進む。
 ステップS105において、移動局UEは、「prohibitPHR-Timer_down」が停止しているか否かについて判定する。
 「YES」の場合、本動作は、ステップS107に進み、「NO」の場合、本動作は、ステップS106に進む。
 ステップS106において、移動局UEは、他のトリガ(周期的なPHRの送信トリガや、PHR機能がONになった場合の送信トリガ等)によって、PHRを送信すべきであるか否かについて判定する。
 「YES」の場合、本動作は、ステップS107に進み、「NO」の場合、本動作は、終了する。
 ステップS107において、移動局UEは、無線基地局eNBに対して、PHRを送信する。
 ステップS108において、「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を起動(又は、再起動)する。
 図4において、ステップS108が行われた後に、ステップS107が行われてもよい。また、図4において、ステップS104/S105が行われた後に、ステップS102が行われてもよい。
 本発明の第1の実施形態に係る移動通信システムによれば、満了するまでの期間が異なる「prohibitPHR-Timer_up」及び「prohibitPHR-Timer_down」を用いて、移動局UEが適切でない送信フォーマットを用いた送信を行うことに起因するデータ誤りが多発する可能性があるという事態を回避することができる。
(変更例1)
 図5及び図6を参照して、本発明の変更例1に係る移動通信システムについて説明する。以下、本発明の変更例1に係る移動通信システムについて、上述の第1の実施形態に係る移動通信システムとの相違点に着目して説明する。
 タイマ管理部12は、PHRが送信された際に起動する「prohibitPHR-Timer」を管理するように構成されている。
 判定部13は、「prohibitPHR-Timer」が起動している場合には、PHR送信部11によってPHRを送信すべきでないと判定するように構成されている。
 また、判定部13は、「prohibitPHR-Timer」が停止している場合であっても、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又は、A-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange」を超えている状態がTTT(Time To Trigger)の期間継続している場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されている。
 なお、判定部13は、タイマ制御のように、TTTの期間を連続的に監視してもよいし、保護段数のように、TTTの期間を離散的に監視してもよい。
 また、判定部13は、「prohibitPHR-Timer」が停止している場合であっても、最後にPHRが送信された際の値と比較して、第2通信における送信電力の増加量又は、P-MPRの増加量又は、MPRの増加量又は、A-MPRの増加量又は、P-MPRによる「PCMAX,c(i)」の減少量又は、MPRによる「PCMAX,c(i)」の減少量又は、A-MPRによる「PCMAX,c(i)」の減少量が「dl-PathlossChange」を超えている状態がTTTの期間継続している場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されていてもよい。
 なお、「dl-PathlossChange」は、同時通信を行うRAT毎に設定してもよいし、送信電力の変動又はP-MPRの変動量(及び「PCMAX,c(i)」)等に従って柔軟に設定してもよい。
 図5の例では、時刻t1において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 時刻t2では、移動局UEは、時刻t1における値と比較して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えているが、「prohibitPHR-Timer」が満了していないため、無線基地局eNBに対して、PHRを送信しない。
 時刻t3において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えたため、TTTの期間内における変動量Δの観測を開始する。
 そして、移動局UEは、時刻4において、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が増加して、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えている状態がTTTの期間継続しなかったため、無線基地局eNBに対して、PHRを送信しない。
 時刻t5において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えたため、TTTの期間内における変動量Δの観測を開始する。
 そして、時刻6において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えている状態がTTTの期間継続したため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 以下、図6を参照して、本実施形態に係る移動局UEの動作の一例について説明する。
 図6に示すように、移動局UEは、ステップS201において、最後にPHRを送信した際の値と比較した場合の第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の変動量Δを観測し、ステップS202において、変動量Δが「dl-PathlossChange」を超えているか否かについて判定する。
 「YES」の場合、本動作は、ステップS203に進み、「NO」の場合、本動作は、ステップS206に進む。
 ステップS203において、移動局UEは、変動量Δが「0」よりも大きいか否かについて判定する。
 「YES」の場合、本動作は、ステップS205に進み、「NO」の場合、本動作は、ステップS204に進む。
 ステップS204において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えている状態がTTTの期間継続したか否かについて判定する。
 「YES」の場合、本動作は、ステップS205に進み、「NO」の場合、本動作は、ステップS206に進む。
 ステップS205において、移動局UEは、「prohibitPHR-Timer」が停止しているか否かについて判定する。
 「YES」の場合、本動作は、ステップS207に進み、「NO」の場合、本動作は、ステップS206に進む。
 ステップS206において、移動局UEは、他のトリガ(周期的なPHRの送信トリガや、PHR機能がONになった場合の送信トリガ等)によって、PHRを送信すべきであるか否かについて判定する。
 「YES」の場合、本動作は、ステップS207に進み、「NO」の場合、本動作は、終了する。
 ステップS207において、移動局UEは、無線基地局eNBに対して、PHRを送信する。
 ステップS208において、「prohibitPHR-Timer」を起動(又は、再起動)する。
 図6において、ステップS208が行われた後に、ステップS207が行われてもよい。また、図6において、ステップS205が行われた後に、ステップS202が行われてもよい。
 本発明の変更例1に係る移動通信システムによれば、移動局UEが、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange」を超えている状態がTTTの期間継続している場合に、PHRを送信するように構成されているため、上りリンク通信において用いる符号化率やリソースブロックの数が大きいままである状態を、上りリンク通信において用いる符号化率やリソースブロックの数が小さいままである状態よりも優先的に解消することができ、移動局UEが適切でない送信フォーマットを用いた送信を行うことに起因するデータ誤りが多発する可能性があるという事態を回避することができる。
(変更例2)
 図7及び図8を参照して、本発明の変更例2に係る移動通信システムについて説明する。以下、本発明の変更例2に係る移動通信システムについて、上述の第1の実施形態に係る移動通信システムとの相違点に着目して説明する。
 タイマ管理部12は、PHRが送信された際に起動する「prohibitPHR-Timer」を管理するように構成されている。
 判定部13は、「prohibitPHR-Timer」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の増加量又は、P-MPRの増加量又は、MPRの増加量又は、A-MPRの増加量又は、P-MPRによる「PCMAX,c(i)」の減少量又は、MPRによる「PCMAX,c(i)」の減少量又は、A-MPRによる「PCMAX,c(i)」の減少量が「dl-PathlossChange_up」を超えた場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されている。
 また、判定部13は、「prohibitPHR-Timer」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又は、A-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange_down」を超えた場合に、PHR送信部11によってPHRを送信すべきであると判定するように構成されている。
 なお、「dl-PathlossChange_up」は、「dl-PathlossChange_down」よりも小さくなるように構成されている。
 また、「dl-PathlossChange_up」及び「dl-PathlossChange_down」は、同時通信を行うRAT毎に設定してもよいし、送信電力の変動又はP-MPRの変動量(及び「PCMAX,c(i)」)等に従って柔軟に設定してもよい。
 図7の例では、時刻t1において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange_up」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 時刻t2では、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange_down」を超えていないため、無線基地局eNBに対して、PHRを送信しない。
 時刻t3において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange_up」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 時刻t4において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange_down」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 時刻t5において、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の増加量が「dl-PathlossChange_up」を超えたため、無線基地局eNBに対して、PHRを送信し、「prohibitPHR-Timer」を起動する。
 時刻t6では、移動局UEは、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の減少量が「dl-PathlossChange_down」を超えていないため、無線基地局eNBに対して、PHRを送信しない。
 以下、図8を参照して、本実施形態に係る移動局UEの動作の一例について説明する。
 図8に示すように、移動局UEは、ステップS301において、最後にPHRを送信した際の値と比較した場合の第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)の変動量Δを観測し、ステップS302において、変動量Δが「0」よりも大きいか否かについて判定する。
 「YES」の場合、本動作は、ステップS303に進み、「NO」の場合、本動作は、ステップS304に進む。
 ステップS303において、移動局UEは、変動量Δが「dl-PathlossChange_up」を超えているか否かについて判定する。
 「YES」の場合、本動作は、ステップS305に進み、「NO」の場合、本動作は、ステップS306に進む。
 ステップS304において、移動局UEは、変動量Δが「dl-PathlossChange_down」を超えているか否かについて判定する。
 「YES」の場合、本動作は、ステップS305に進み、「NO」の場合、本動作は、ステップS306に進む。
 ステップS305において、「prohibitPHR-Timer」が停止しているか否かについて判定する。
 「YES」の場合、本動作は、ステップS307に進み、「NO」の場合、本動作は、ステップS306に進む。
 ステップS306において、移動局UEは、他のトリガ(周期的なPHRの送信トリガや、PHR機能がONになった場合の送信トリガ等)によって、PHRを送信すべきであるか否かについて判定する。
 「YES」の場合、本動作は、ステップS307に進み、「NO」の場合、本動作は、終了する。
 ステップS307において、移動局UEは、無線基地局eNBに対して、PHRを送信する。
 ステップS308において、「prohibitPHR-Timer」を起動(又は、再起動)する。
 図8において、ステップS308が行われた後に、ステップS307が行われてもよい。また、図8において、ステップS305が行われた後に、ステップS303/S304が行われてもよい。
 本発明の変更例2に係る移動通信システムによれば、値が異なる「dl-PathlossChange_up」及び「dl-PathlossChange_down」を用いて、移動局UEが適切でない送信フォーマットを用いた送信を行うことに起因するデータ誤りが多発する可能性があるという事態を回避することができる。
 具体的には、本発明の変更例2に係る移動通信システムによれば、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が増加した場合には、PHRを送信し易くし、第2通信における送信電力又はP-MPR(及び「PCMAX,c(i)」)が減少した場合には、PHRを送信し難くすることができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、RAT#1(第1無線アクセスネットワーク)を介した第1通信及びRAT#2(第2無線アクセスネットワーク)を介した第2通信を同時に行うことができるように構成されている移動局UEであって、RAT#1に対して、PHRを送信する(すなわち、移動局の余剰送信電力を報告する)ように構成されているPHR送信部11(報告部)と、PHRが送信された際に起動する「prohibitPHR-Timer_up(第1タイマ)」及び「prohibitPHR-Timer_down(第2タイマ)」を管理するように構成されているタイマ管理部12とを具備し、PHR送信部11は、「prohibitPHR-Timer_up」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の増加量又は、P-MPR(第2通信における送信電力に基づいて決定される最大送信電力低減値)の増加量又は、MPRの増加量又は、A-MPRの増加量又は、P-MPRによる「PCMAX,c(i)」の減少量又は、MPRによる「PCMAX,c(i)」の減少量又はA-MPRによる「PCMAX,c(i)」の減少量が「dl-PathlossChange(所定量)」を超えた場合に、RAT#1に対して、PHRを送信するように構成されており、PHR送信部11は、「prohibitPHR-Timer_down」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又はA-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange」を超えた場合に、RAT#1に対して、PHRを送信するように構成されており、「prohibitPHR-Timer_up」は、「prohibitPHR-Timer_down」よりも短い期間で満了するように構成されていることを要旨とする。
 本実施形態の第2の特徴は、RAT#1を介した第1通信及びRAT#2を介した第2通信を同時に行うことができるように構成されている移動局UEであって、RAT#1に対して、PHRを送信するように構成されているPHR送信部11と、PHRが送信された際に起動する「prohibitPHR-Timer(タイマ)」を管理するように構成されているタイマ管理部12とを具備し、PHR送信部11は、「prohibitPHR-Timer」が起動している場合には、RAT#1に対して、PHRを送信しないように構成されており、PHR送信部11は、「prohibitPHR-Timer」が停止している場合であっても、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又はA-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange」を超えている状態がTTTの期間(所定期間)継続した場合に、RAT#1に対して、PHRを送信するように構成されていることを要旨とする。
 本実施形態の第3の特徴は、RAT#1を介した第1通信及びRAT#2を介した第2通信を同時に行うことができるように構成されている移動局UEであって、RAT#1に対して、PHRを送信するように構成されているPHR送信部11と、PHRが送信された際に起動する「prohibitPHR-Timer」を管理するように構成されているタイマ管理部12とを具備し、PHR送信部11は、「prohibitPHR-Timer」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の増加量又は、P-MPR(第2通信における送信電力に基づいて決定される最大送信電力低減値)の増加量又は、MPRの増加量又は、A-MPRの増加量又は、P-MPRによる「PCMAX,c(i)」の減少量又は、MPRによる「PCMAX,c(i)」の減少量又はA-MPRによる「PCMAX,c(i)」の減少量が「dl-PathlossChange_up(第1所定量)」を超えた場合に、RAT#1に対して、PHRを送信するように構成されており、PHR送信部11は、「prohibitPHR-Timer」が停止している場合で、かつ、最後にPHRが送信された際の値と比較して、第2通信における送信電力の減少量又は、P-MPRの減少量又は、MPRの減少量又は、A-MPRの減少量又は、P-MPRによる「PCMAX,c(i)」の増加量又は、MPRによる「PCMAX,c(i)」の増加量又はA-MPRによる「PCMAX,c(i)」の増加量が「dl-PathlossChange_down(第2所定量)」を超えた場合に、RAT#1に対して、PHRを送信するように構成されており、「dl-PathlossChange_up」は、「dl-PathlossChange_down」よりも小さくなるように構成されていることを要旨とする。
 なお、上述の無線基地局eNBや移動局UE等の動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD-ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNBや移動局UE等内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNBや移動局UE等内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
UE…移動局
11…PHR送信部
12…タイマ管理部
13…判断部

Claims (3)

  1.  移動局であって、
     前記移動局の余剰送信電力を報告するように構成されている報告部と、
     前記余剰送信電力が報告された際に起動するタイマを管理するように構成されているタイマ管理部とを具備し、
     前記報告部は、前記タイマが起動している場合には、前記余剰送信電力を報告しないように構成されており、
     前記報告部は、前記タイマが停止している場合で、最後に前記余剰送信電力が報告された際の値と比較して、送信電力又は該送信電力に基づいて決定される最大送信電力低減値の減少量が所定量を超えている状態が所定期間継続した場合に、前記余剰送信電力を報告するように構成されていることを特徴とする移動局。
  2.  前記報告部は、前記所定期間を連続的に監視するように構成されていることを特徴とする請求項1に記載の移動局。
  3.  前記報告部は、前記所定期間を離散的に監視するように構成されていることを特徴とする請求項1に記載の移動局。
PCT/JP2012/053430 2011-02-14 2012-02-14 移動局 WO2012111676A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/984,033 US9008716B2 (en) 2011-02-14 2012-02-14 Mobile station
ES12747391.6T ES2581730T3 (es) 2011-02-14 2012-02-14 Estación móvil
CA2826368A CA2826368A1 (en) 2011-02-14 2012-02-14 Mobile station
KR1020137021564A KR101335416B1 (ko) 2011-02-14 2012-02-14 이동국
DK12747391.6T DK2677806T3 (en) 2011-02-14 2012-02-14 Mobile station
CN201280007794.3A CN103370965B (zh) 2011-02-14 2012-02-14 移动台
EP12747391.6A EP2677806B1 (en) 2011-02-14 2012-02-14 Mobile station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011029235A JP5052681B2 (ja) 2011-02-14 2011-02-14 移動局
JP2011-029235 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111676A1 true WO2012111676A1 (ja) 2012-08-23

Family

ID=46672593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053430 WO2012111676A1 (ja) 2011-02-14 2012-02-14 移動局

Country Status (9)

Country Link
US (1) US9008716B2 (ja)
EP (1) EP2677806B1 (ja)
JP (1) JP5052681B2 (ja)
KR (1) KR101335416B1 (ja)
CN (1) CN103370965B (ja)
CA (1) CA2826368A1 (ja)
DK (1) DK2677806T3 (ja)
ES (1) ES2581730T3 (ja)
WO (1) WO2012111676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506097A (ja) * 2011-02-15 2014-03-06 サムスン エレクトロニクス カンパニー リミテッド 携帯端末機の使用可能送信電力報告方法および装置
USRE49815E1 (en) 2011-04-11 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for receiving data in user equipment of supporting multimedia broadcast multicast service

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185666B2 (en) * 2011-05-06 2015-11-10 Qualcomm Incorporated Power headroom reporting related to power management maximum power reduction
US9197166B2 (en) 2012-09-26 2015-11-24 Apple Inc. Increasing power amplifier linearity to facilitate in-device coexistence between wireless communication technologies
CN103959871B (zh) 2012-09-26 2018-02-09 苹果公司 用于促进无线通信技术之间的设备内共存的传输功率调制
CN105075367A (zh) 2013-04-10 2015-11-18 索尼公司 终端设备、通信控制方法和通信控制设备
US9426759B2 (en) 2014-09-15 2016-08-23 Qualcomm Incorporated Aligning wireless local area network operations with power headroom reporting
WO2021196229A1 (zh) * 2020-04-03 2021-10-07 Oppo广东移动通信有限公司 控制发射功率的方法、终端设备和网络设备
CN113873630B (zh) * 2020-06-30 2023-07-11 华为技术有限公司 一种上行功率控制方法及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568878B1 (ko) * 2009-03-17 2015-11-12 삼성전자주식회사 무선 통신 시스템에서 단말의 가용 전송 전력 정보를 보고하는 방법 및 장치
TWI413431B (zh) 2009-03-23 2013-10-21 Innovative Sonic Corp 進行功率餘量回報的方法及通訊裝置
US8249091B2 (en) * 2009-10-21 2012-08-21 Samsung Electronics Co., Ltd Power headroom reporting method and device for wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"InterDigital, PHR Triggering for SAR", 3GPP TSG RAN WG2 #72-BIS, R2-110220, 17 January 2011 (2011-01-17), XP055120832 *
"ZTE, Discussion on PHR report", 3GPP TSG RAN WG2 #70, R2-102817, 10 May 2010 (2010-05-10), XP055120830 *
See also references of EP2677806A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506097A (ja) * 2011-02-15 2014-03-06 サムスン エレクトロニクス カンパニー リミテッド 携帯端末機の使用可能送信電力報告方法および装置
US9451564B2 (en) 2011-02-15 2016-09-20 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US9510305B2 (en) 2011-02-15 2016-11-29 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US9615338B2 (en) 2011-02-15 2017-04-04 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US10098076B2 (en) 2011-02-15 2018-10-09 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
US20180310259A1 (en) 2011-02-15 2018-10-25 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of ue
US10575265B2 (en) 2011-02-15 2020-02-25 Samsung Electronics Co., Ltd. Power headroom report method and apparatus of UE
USRE49815E1 (en) 2011-04-11 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for receiving data in user equipment of supporting multimedia broadcast multicast service

Also Published As

Publication number Publication date
JP5052681B2 (ja) 2012-10-17
US9008716B2 (en) 2015-04-14
DK2677806T3 (en) 2016-06-06
EP2677806A1 (en) 2013-12-25
KR20130105742A (ko) 2013-09-25
US20130316758A1 (en) 2013-11-28
CN103370965B (zh) 2017-03-15
ES2581730T3 (es) 2016-09-07
CA2826368A1 (en) 2012-08-23
EP2677806A4 (en) 2014-07-09
CN103370965A (zh) 2013-10-23
KR101335416B1 (ko) 2013-12-04
JP2012169873A (ja) 2012-09-06
EP2677806B1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5052681B2 (ja) 移動局
JP7022948B2 (ja) ユーザ機器および方法
KR102257411B1 (ko) 무선 통신 시스템에서 다중 경로손실 레퍼런스를 위한 전력 헤드룸 리포트를 트리거링하는 방법 및 장치
US10159051B2 (en) Methods, apparatus and systems for handling additional power backoff
TWI707594B (zh) 無線通訊系統中波束運作之功率餘量回報之方法及設備
CN102300305B (zh) 一种上行功率控制的方法及装置
EP3050372B1 (en) Method and arrangement for power control handling
US9036585B2 (en) Total remaining power estimation in carrier aggregation
KR101565764B1 (ko) 사용자 장비를 위한 최대 출력 전력을 설정하는 방법, 파워 헤드룸을 보고하는 방법, 및 사용자 장비
CN102469495B (zh) 一种终端功率余量的评估和上报方法及装置
AU2009228928A1 (en) Extension of power headroom reporting and trigger conditions
CN101778416A (zh) 功率上升空间的测量和报告方法及终端
CN102958045A (zh) 一种功率控制方法、激活管理方法、用户终端及基站
CN101567713A (zh) 时分双工系统中上行传输功率的确定方法、系统及装置
CN102378341A (zh) 一种上行功率控制方法及装置
JP6199606B2 (ja) 無線通信システムおよび移動端末装置
GB2479076A (en) A transmission power control scheme for transmissions via uplink shared and control channels
CN104254121A (zh) 一种pusch功率控制方法及装置
JP6081741B2 (ja) 移動局及び送信電力決定方法
WO2013135195A1 (zh) 功率控制方法及装置
WO2012145974A1 (zh) 功率余量报告触发方法及装置
WO2018141189A1 (zh) 自适应调整上行功率参数的方法及装置
WO2011160284A1 (zh) 一种功率余量报告方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2826368

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13984033

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137021564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012747391

Country of ref document: EP