WO2012110734A1 - Method and device for separating simple chemical entities from chemically complex bodies or mixtures of simple bodies - Google Patents

Method and device for separating simple chemical entities from chemically complex bodies or mixtures of simple bodies Download PDF

Info

Publication number
WO2012110734A1
WO2012110734A1 PCT/FR2012/050312 FR2012050312W WO2012110734A1 WO 2012110734 A1 WO2012110734 A1 WO 2012110734A1 FR 2012050312 W FR2012050312 W FR 2012050312W WO 2012110734 A1 WO2012110734 A1 WO 2012110734A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
bodies
separation
chemical entities
chemically complex
Prior art date
Application number
PCT/FR2012/050312
Other languages
French (fr)
Inventor
Thibaud EMIN
Jean-Marc VINSON
Pascal Andre
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Universite Blaise Pascal - Clermont Ii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Universite Blaise Pascal - Clermont Ii filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2012110734A1 publication Critical patent/WO2012110734A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/814Magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0832Details relating to the shape of the electrodes essentially toroidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the field of gas separation, and in general, of simple chemical entities, for the eventual subsequent synthesis of gases.
  • H 2 hydrogen gas It is more particularly in the field of the genesis of H 2 hydrogen gas, molecule increasingly sought after, especially as a fuel, and generally in the field of organic chemistry.
  • the invention is not limited to the production of hydrogen alone.
  • electrolysis including water for the production of hydrogen.
  • this technology is now largely controlled, it has a disadvantage unacceptable, namely a low energy efficiency.
  • the electrolysis allows to ensure the separation of two bodies, respectively at the anode and the cathode.
  • a variant of electrolysis concerns so-called "high temperature” electrolysis, which has the advantage of an energy efficiency higher than the conventional low temperature electrolysis.
  • this technology is not currently controlled industrially, mainly due to leakage at the electrodes related to the differential expansion between the insulators and the electrodes.
  • Another separation technology consists in the implementation of porous membranes. If qualitatively, it leads to a satisfactory separation, on the other hand, the implemented processes are slow, inefficient, and have a low energy efficiency.
  • the membrane is traditionally dedicated to a single product.
  • the invention firstly relates to a method for carrying out the separation of simple chemical entities, charged or uncharged, from chemically complex bodies or from mixtures of simple bodies.
  • This method involves injecting the one or more chemically complex bodies or the mixture of single bodies into a plasma torch, and subjecting the plasma to the action of a magnetic field, the field lines of which are generally perpendicular to the direction of the plasma. plasma jet.
  • the method according to the invention makes it possible to operate at atmospheric pressure or at higher pressures.
  • the plasma torch induces, because of its energy supply resulting from the heat it generates, typically between 4000 and 25000 ° C., the effective separation of the entities constituting the mixture of simple bodies or the complex body, typically atoms or ions, and the magnetic field at the output of the torch acts on the charged species by application of the Lorentz forces, inducing their offset with respect to the direction of the plasma jet, thus likely to allow the reception of the different entities in places different.
  • the distance separating the two electrodes generating the plasma within the plasma torch can be adjustable
  • one of said electrodes has a cone-shaped zone inverted with respect to the direction of propagation of the fluids
  • the length of the plasma jet can be adjustable.
  • Figure 1 is a schematic representation of the general operating principle of the separation device according to the invention.
  • FIG. 2 is a figure similar to FIG. 1, the device implementing a multi-electrode plasma torch.
  • FIG. 3 illustrates the series connection of two devices according to FIG. 1 or 2.
  • FIG. 4 is a synopsis of the forces applied on the plasma jet, in accordance with the invention.
  • FIG. 5 is a graph symbolizing the variation of the partial and total dynamic viscosity of a water plasma as a function of temperature.
  • FIG. 6 is a graph representing the volume emission coefficient of the O, H and Ar chemical species at a height of 20 mm above the plasma torch and subjected to a radial magnetic field of the order of 40 milliTesla.
  • FIG. 1 schematically shows a device implementing the operating principle of the method of the invention.
  • a plasma torch (1) in this case consisting of two electrodes (1a) and (1b), electrically insulated from each other, in particular by a piece (10). made of an insulating material.
  • a chamber (11) within which leads by pipes to generate a vortex (12), the mixture of either simple bodies or complex bodies that are desired to separate.
  • this mixture opens into the chamber (11) in the form of vapor, this vaporization occurring at a vaporizer (2), integrating for example a heat exchanger (13). adapted to raise the temperature within the vaporizer (2), and thus induce the phase change of the mixture to be separated.
  • the characteristics of the plasma, and in particular its temperature are regulated by the electrical supply of the electrodes, and more particularly by the voltage at their terminals.
  • the operating point of the plasma torch is chosen so as to have a stable operation of the torch, resulting from a compromise between the load line of the power supply and the voltage-voltage characteristic curve. current of the electric arc which depends essentially on the physical properties of the plasma which composes it.
  • alternating current In alternating current, one can choose a two-phase operation, an electrode successively playing the role of cathode and anode, or a multi-electrode operation is chosen in the case of a multi-phase operation.
  • the voltage variation will generate variations in the characteristics of the arc (arc voltage, arc length, current density) which will in turn cause a change in the characteristics of the plasma (temperature, chemical composition mainly)
  • the characteristics of this plasma are likely to result from the distance separating the two electrodes, since both of these depend on the intensity and the voltage of the electric arc.
  • the plasma comprises not one, but three anodes (lb), distributed substantially symmetrically with respect to the plasma diffusion direction.
  • electrical arcs can be generated rotating within the plasma torch, making it possible to better control the rotation frequency of the anode spot and the cathode spot, that is to say to say respective points of attachment of the electric arc on the anode and on the cathode, and therefore corollary, to limit or slow down the wear of the corresponding parts of the torch.
  • the separation device integrates a magnetic field generator (4), the active field lines being those that are oriented substantially perpendicular to the direction of propagation of the plasma.
  • this magnetic field generator consists of a coil supplied with direct current or alternating current by wires (8a) and (8b).
  • this magnetic field generator consists of a permanent magnet correctly oriented, and for example circular, since it generates a radial magnetic field with respect to the direction of the plasma jet.
  • a magnetic field generator constituted by a coil, as illustrated in FIGS. 1 to 3, it may be envisaged to adjust the intensity of the magnetic field generated by varying the intensity electrical current flowing through said coil.
  • the electric current supplying said coil may be of variable nature, and the intensity of said current may be controlled or harmonized with that supplying the electrodes of the plasma torch, with the aim of optimizing the separation of the species contained in plasma, or to more precisely select this or that entity or species.
  • the shape of the electrical signals can also be selected.
  • the shape of the electrical signals can also be selected.
  • the internal geometry of the torch (la) has a frustoconical shape inverted with respect to the direction of displacement of the fluid to be separated, or said in an equivalent manner, according to the jet direction of the plasma, that is, the base of the truncated cone is located immediately near the chamber (11), and the opposite end of smaller diameter is located near the exit of the plasma torch.
  • This particular conformation makes it possible to ensure the passage of the maximum gas in the plasma, to stabilize the electric arc ensuring a good electrical stability, and if condensation appears, to avoid extinguishing the arc.
  • this particular zone of the cone-shaped electrode (5) is provided with a heat exchanger, typically consisting of a pipe (3) wound at the periphery of the partition defining it, and in which circulates a coolant, including water.
  • This heat exchanger (3) first allows the part in question to withstand the very high temperature generated by the plasma.
  • it is intended to recover a portion of the energy generated by the plasma torch and to route it for example at a steam generator (not shown) able to actuate a turbine and thus to generate the electricity, or at the level of the heat exchanger (13) formed in the vaporizer (2), for, as already indicated, increase the temperature of the mixture to be separated, and in particular induce its vaporization.
  • Some other components of the plasma torch can also be provided with such heat exchangers. This is for example the case of the electrode or electrodes (lb) provided with such an exchanger (14).
  • the plasma jet can reach a speed of several hundred m / s. This speed is adjustable by the size of the gas outlet hole and the flow of steam entering the chamber (11) of the plasma torch.
  • the Lorentz forces tend to drive the charged entities in a circular configuration with respect to the axis of the plasma jet.
  • FIG. 4 shows a synoptic of the forces applied to the plasma jet.
  • the latter has been symbolized by a vertical cylinder, the flow being directed upwards in said figure.
  • the partial dynamic viscosity coefficient ⁇ relating to each of the species involved.
  • the external force is mainly due to the Lorentz forces.
  • the viscosity of monoatomic hydrogen is three times lower than that of oxygen at 6000 K. The least viscous entity will therefore remain in the center and the more viscous at the edges.
  • the species whose partial dynamic viscosity is less are able to progress further.
  • the aim of the invention is to play on this more or less important separation, in the end being able to recover the species independently of one another in the purest possible way and, correlatively, to be able to generate, because of the recombination phenomena observed between the thus separated species, including hydrogen, which may recombine to form stable molecules of hydrogen H 2.
  • FIG. 6 shows a separation test using the device of the invention.
  • a radial magnetic field of about 40 milli Tesla is used with an argon mixing plasma and water vapor.
  • FIG. 1 a recovery member of the species (6), having in the example described two different recovery zones (9) connected to the organ (6) through pipelines. (15). Each of these two zones (9) integrates a heat exchanger (16), at which the energy resulting from the exothermic recombination of the temporarily stored species is recovered.
  • the heat, and therefore the energy thus recovered by the heat exchanger (16) is once again likely to generate the genesis of steam, suitable for supplying turbines and thus generate electricity.
  • FIG. 3 shows the series connection of two devices of FIG. 1.
  • the energy balance resulting from the production is very largely optimized compared to what allowed the devices of the prior art, whether it is electrolysis, membranes or cracking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a method for separating simple chemical entities, which may or may not be charged, from chemically complex bodies or from mixtures of simple bodies, consisting in subjecting the chemically complex body or bodies or the mixture of simple bodies to the action of a plasma torch and, subsequently, subjecting the resulting plasma to the action of a magnetic field in which the field lines are essentially oriented perpendicularly to the direction of the plasma jet.

Description

PROCÈDE ET DISPOSITIF POUR LA SÉPARATION D'ENTITÉS CHIMIQUES SIMPLES A PARTIR DE CORPS CHIMIQUEMENT COMPLEXES OU DE MELANGES DE CORPS SIMPLES. PROCESS AND DEVICE FOR THE SEPARATION OF SIMPLE CHEMICAL ENTITIES FROM CHEMICALLY COMPLEX BODIES OR MIXTURES OF SIMPLE BODIES.
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
L'invention appartient au domaine de la séparation des gaz, et de manière générale, d'entités chimiques simples, pour l'éventuelle synthèse subséquente de gaz. The invention belongs to the field of gas separation, and in general, of simple chemical entities, for the eventual subsequent synthesis of gases.
Elle s'inscrit plus particulièrement dans le domaine de la genèse de gaz hydrogène H2, molécule de plus en plus recherchée, notamment en tant que carburant, et de manière générale dans le domaine de la chimie organique. L'invention ne se limite pas pour autant à la production du seul hydrogène. It is more particularly in the field of the genesis of H 2 hydrogen gas, molecule increasingly sought after, especially as a fuel, and generally in the field of organic chemistry. The invention is not limited to the production of hydrogen alone.
ETAT ANTÉRIEUR DE LA TECHNIQUE PRIOR STATE OF THE ART
Différentes technologies sont aujourd'hui bien connues et maîtrisées pour assurer la séparation de corps chimiques complexes et pour notamment produire de l'hydrogène. Various technologies are now well known and controlled to ensure the separation of complex chemical bodies and in particular to produce hydrogen.
Parmi celles-ci, figure l'électrolyse, notamment de l'eau pour la production d'hydrogène. Si cette technologie est aujourd'hui largement maîtrisée, elle présente en revanche un inconvénient rédhibitoire, à savoir un rendement énergétique peu élevé. En outre, l'électrolyse ne permet d'assurer la séparation que de deux corps, respectivement à l'anode et à la cathode. Une variante de l'électrolyse concerne l'électrolyse dite « haute température », qui présente l'avantage d'un rendement énergétique supérieur à l'électrolyse classique basse température. Cette technologie n'est cependant pas aujourd'hui réellement maîtrisée sur le plan industriel, principalement en raison de fuites au niveau des électrodes liées à la dilatation différentielle entre les éléments isolants et les électrodes. Une autre technologie de séparation consiste dans la mise en œuvre de membranes poreuses. Si sur le plan qualitatif, on aboutit à une séparation satisfaisante, en revanche, les procédés mis en œuvres sont lents, peu performants, et présentent un rendement énergétique faible. Au demeurant, la membrane est traditionnellement dédiée à un seul produit. Among these, there is electrolysis, including water for the production of hydrogen. Although this technology is now largely controlled, it has a disadvantage unacceptable, namely a low energy efficiency. In addition, the electrolysis allows to ensure the separation of two bodies, respectively at the anode and the cathode. A variant of electrolysis concerns so-called "high temperature" electrolysis, which has the advantage of an energy efficiency higher than the conventional low temperature electrolysis. However, this technology is not currently controlled industrially, mainly due to leakage at the electrodes related to the differential expansion between the insulators and the electrodes. Another separation technology consists in the implementation of porous membranes. If qualitatively, it leads to a satisfactory separation, on the other hand, the implemented processes are slow, inefficient, and have a low energy efficiency. Moreover, the membrane is traditionally dedicated to a single product.
Enfin et s'agissant de la production d'hydrogène, on connaît le craquage du méthane, qui aujourd'hui constitue l'une des principales sources de production. Outre les difficultés de réalisation sur le plan industriel, cette technologie s'avère relativement polluante et de rendement énergétique également faible. Finally, and with regard to hydrogen production, methane cracking is known, which today is one of the main sources of production. In addition to industrial difficulties, this technology is relatively polluting and also low in energy efficiency.
En résumé, il n'existe pas à ce jour de procédé permettant d'assurer simultanément une séparation qualitative de corps complexes ou de mélanges de corps simples en éléments simples avec un rendement énergétique optimisé et dans des conditions industrielles satisfaisantes. In summary, there is currently no process for simultaneously ensuring a qualitative separation of complex bodies or single-element mixtures of simple elements with optimized energy efficiency and under satisfactory industrial conditions.
C'est l'objet de la présente invention.  This is the object of the present invention.
EXPOSE DE L'INVENTION L'invention vise tout d'abord un procédé pour réaliser la séparation d'entités chimiques simples, chargées ou non chargées, à partir de corps chimiquement complexes ou à partir de mélanges de corps simples. Ce procédé consiste à injecter le ou les corps chimiquement complexes ou le mélange de corps simples dans une torche à plasma, et à soumettre le plasma à l'action d'un champ magnétique, dont les lignes de champ sont globalement perpendiculaires à la direction du jet plasma. SUMMARY OF THE INVENTION The invention firstly relates to a method for carrying out the separation of simple chemical entities, charged or uncharged, from chemically complex bodies or from mixtures of simple bodies. This method involves injecting the one or more chemically complex bodies or the mixture of single bodies into a plasma torch, and subjecting the plasma to the action of a magnetic field, the field lines of which are generally perpendicular to the direction of the plasma. plasma jet.
Le procédé selon l'invention permet de fonctionner à pression atmosphérique ou à des pressions supérieures. Ce faisant, la torche à plasma induit, en raison de son apport énergétique résultant de la chaleur qu'elle génère, typiquement entre 4000 et 25000 °C, la séparation effective des entités constituant le mélange de corps simples ou le corps complexe, typiquement en atomes ou en ions, et le champ magnétique en sortie de la torche agit sur les espèces chargées par application des forces de Lorentz, induisant leur décalage par rapport à la direction du jet plasma, susceptible ainsi de permettre la réception des différentes entités en des lieux différents. The method according to the invention makes it possible to operate at atmospheric pressure or at higher pressures. In doing so, the plasma torch induces, because of its energy supply resulting from the heat it generates, typically between 4000 and 25000 ° C., the effective separation of the entities constituting the mixture of simple bodies or the complex body, typically atoms or ions, and the magnetic field at the output of the torch acts on the charged species by application of the Lorentz forces, inducing their offset with respect to the direction of the plasma jet, thus likely to allow the reception of the different entities in places different.
En outre, on observe également la séparation des espèces non chargées, et donc non soumises à la force de Lorentz en raison des différences de viscosité entre espèces chargées (ions, électrons) et non chargées (molécules, atomes neutres), engendrant des frottements qui vont induire une telle séparation. In addition, we also observe the separation of uncharged species, and therefore not subject to the Lorentz force due to differences in viscosity between charged species (ions, electrons) and uncharged (molecules, neutral atoms), generating friction that will induce such a separation.
Selon divers modes de réalisation de l'invention : According to various embodiments of the invention:
la distance séparant les deux électrodes générant le plasma au sein de la torche à plasma peut être réglable ;  the distance separating the two electrodes generating the plasma within the plasma torch can be adjustable;
l'une desdites électrodes présente une zone en forme de cône inversé par rapport au sens de propagation des fluides ;  one of said electrodes has a cone-shaped zone inverted with respect to the direction of propagation of the fluids;
la longueur du jet plasma peut être réglable.  the length of the plasma jet can be adjustable.
En outre, et selon une autre caractéristique avantageuse de l'invention, il peut être envisagé de monter plusieurs des dispositifs de séparation de l'invention en série, de telle sorte à optimiser le degré de séparation des corps simples que l'on entend obtenir, et partant, optimiser la pureté susceptible d'en résulter. Ainsi donc, au moins l'une des entités résultant de la séparation par plasma thermique au niveau d'un premier étage, est récupérée en sortie dudit premier étage, et réintroduite dans une nouvelle torche à plasma d'un second étage, de mêmes caractéristiques ou de caractéristiques différentes de celle du premier étage. In addition, and according to another advantageous characteristic of the invention, it may be envisaged to mount several of the separation devices of the invention in series, so as to optimize the degree of separation of the simple bodies that are intended to obtain and hence optimize the purity that can result. Thus, at least one of the entities resulting from the separation by thermal plasma at a first stage, is recovered at the output of said first stage, and reintroduced into a new plasma torch of a second stage, with the same characteristics. or different characteristics from the first floor.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
La manière dont l'invention peut être réalisée et les avantages qui en découlent, ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif à l'appui des figures annexées. La figure 1 est une représentation schématique du principe général de fonctionnement du dispositif de séparation conforme à l'invention. The manner in which the invention can be realized and the advantages which result therefrom will emerge more clearly from the following exemplary embodiments, given as an indication and not a limitation to the accompanying figures. Figure 1 is a schematic representation of the general operating principle of the separation device according to the invention.
La figure 2 est une figure analogue à la figure 1 , le dispositif mettant en œuvre une torche à plasma à électrodes multiples.  FIG. 2 is a figure similar to FIG. 1, the device implementing a multi-electrode plasma torch.
La figure 3 illustre le montage en série de deux dispositifs conformes aux figures 1 ou 2. La figure 4 est synoptique des forces appliquées sur le jet plasma, conformément à l'invention. FIG. 3 illustrates the series connection of two devices according to FIG. 1 or 2. FIG. 4 is a synopsis of the forces applied on the plasma jet, in accordance with the invention.
La figure 5 est un graphe symbolisant la variation de la viscosité dynamique partielle et totale d'un plasma d'eau en fonction de la température.  FIG. 5 is a graph symbolizing the variation of the partial and total dynamic viscosity of a water plasma as a function of temperature.
La figure 6 est un graphe représentant le coefficient d'émission volumique des espèces chimiques O, H et Ar à une hauteur de 20 mm au dessus de la torche plasma et soumis à un champ magnétique radial de l'ordre de 40 milliTesla. FIG. 6 is a graph representing the volume emission coefficient of the O, H and Ar chemical species at a height of 20 mm above the plasma torch and subjected to a radial magnetic field of the order of 40 milliTesla.
DESCRIPTION DÉTAILLÉE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
On a schématiquement représenté au sein de la figure 1 un dispositif mettant en œuvre le principe de fonctionnement du procédé de l'invention. FIG. 1 schematically shows a device implementing the operating principle of the method of the invention.
Fondamentalement, celui-ci se compose d'une torche à plasma (1), en l'espèce constituée de deux électrodes (la) et (lb), isolées électriquement l'une de l'autre, notamment par une pièce (10) réalisée en un matériau isolant. Basically, it consists of a plasma torch (1), in this case consisting of two electrodes (1a) and (1b), electrically insulated from each other, in particular by a piece (10). made of an insulating material.
Entre les deux électrodes, est ménagée une chambre (11), au sein de laquelle aboutit par des canalisations permettant de générer un vortex(12), le mélange, soit de corps simples, soit de corps complexes que l'on souhaite séparer. Between the two electrodes is formed a chamber (11), within which leads by pipes to generate a vortex (12), the mixture of either simple bodies or complex bodies that are desired to separate.
Plus précisément, et selon une caractéristique avantageuse de l'invention, ce mélange débouche dans la chambre (11) sous forme de vapeur, cette vaporisation intervenant au niveau d'un vaporisateur (2), intégrant par exemple un échangeur de chaleur (13) apte à élever la température au sein du vaporisateur (2), et ainsi induire le changement de phase du mélange à séparer. Les caractéristiques du plasma, et notamment sa température sont régulées par l'alimentation électrique des électrodes, et plus particulièrement par la tension à leurs bornes. En courant continu, le point de fonctionnement de la torche à plasma est choisi de manière à disposer d'un fonctionnement stable de la torche, résultant d'un compromis entre la droite de charge de l'alimentation électrique et de la courbe caractéristique tension-courant de l'arc électrique qui dépend essentiellement des propriétés physiques du plasma qui le compose. More precisely, and according to an advantageous characteristic of the invention, this mixture opens into the chamber (11) in the form of vapor, this vaporization occurring at a vaporizer (2), integrating for example a heat exchanger (13). adapted to raise the temperature within the vaporizer (2), and thus induce the phase change of the mixture to be separated. The characteristics of the plasma, and in particular its temperature, are regulated by the electrical supply of the electrodes, and more particularly by the voltage at their terminals. In direct current, the operating point of the plasma torch is chosen so as to have a stable operation of the torch, resulting from a compromise between the load line of the power supply and the voltage-voltage characteristic curve. current of the electric arc which depends essentially on the physical properties of the plasma which composes it.
En courant alternatif, soit on peut choisir un fonctionnement à deux phases, une électrode jouant successivement le rôle de cathode et d'anode, soit on choisit un fonctionnement multi électrodes dans le cas d'un fonctionnement multi-phases. La variation de tension va engendrer des variations des caractéristiques de l'arc (tension d'arc, longueur d'arc, densité de courant) qui vont engendrer à leur tour une variation des caractéristiques du plasma (température, composition chimique principalement) In alternating current, one can choose a two-phase operation, an electrode successively playing the role of cathode and anode, or a multi-electrode operation is chosen in the case of a multi-phase operation. The voltage variation will generate variations in the characteristics of the arc (arc voltage, arc length, current density) which will in turn cause a change in the characteristics of the plasma (temperature, chemical composition mainly)
Pour obtenir la même qualité de plasma pour une pression donnée, soit on stabilise en courant et on joue alors sur la tension, soit on régule en tension et on joue alors sur le courant. To obtain the same quality of plasma for a given pressure, either stabilize current and then play on the voltage, or regulate voltage and then play on the current.
Entre les électrodes est donc ainsi généré un arc électrique, qui va transformer, de manière connue, le gaz circulant à ce niveau en le transformant en plasma. Between the electrodes is thus generated an electric arc, which will transform, in known manner, the gas flowing at this level by transforming it into plasma.
Les caractéristiques de ce plasma sont susceptibles de résulter de la distance séparant les deux électrodes, puisqu'aussi bien de celle-ci dépendent l'intensité et la tension de l'arc électrique. Selon une forme particulière de réalisation de l'invention, on peut envisager la mise en œuvre d'une pluralité de l'un des types d'électrodes, tel qu'illustré sur la figure 2. Au sein de cette figure, la torche à plasma comporte non pas une, mais trois anodes (lb), réparties sensiblement symétriquement par rapport à la direction de diffusion du plasma. The characteristics of this plasma are likely to result from the distance separating the two electrodes, since both of these depend on the intensity and the voltage of the electric arc. According to a particular embodiment of the invention, it is possible to envisage the implementation of a plurality of one of the types of electrodes, as illustrated in FIG. 2. Within this figure, the plasma comprises not one, but three anodes (lb), distributed substantially symmetrically with respect to the plasma diffusion direction.
La mise en œuvre d'électrodes multiples permet de générer des arcs électriques de qualité différente de celle d'un arc simple, à savoir, tension d'arc, densité de courant, longueur, qui vont également jouer sur l'« accroche » de l'arc et donc sur l'usure de la cathode. Cependant, elles produisent une qualité de plasma utile à la séparation. The implementation of multiple electrodes makes it possible to generate electric arcs of different quality from that of a simple arc, namely, arc voltage, current density, length, which will also play on the "hook" of the arc and therefore the wear of the cathode. However, they produce plasma quality useful for separation.
Ainsi, combiné avec une tension alternative à phases multiples, on peut générer des arcs électriques tournant au sein de la torche à plasma, permettant de davantage maîtriser la fréquence de rotation de la tache anodique et de la tache cathodique, c'est-à-dire des points d'accrochage respectif de l'arc électrique sur l'anode et sur la cathode, et donc corollairement, de limiter ou de ralentir l'usure des pièces correspondantes de la torche. Thus, combined with a multi-phase AC voltage, electrical arcs can be generated rotating within the plasma torch, making it possible to better control the rotation frequency of the anode spot and the cathode spot, that is to say to say respective points of attachment of the electric arc on the anode and on the cathode, and therefore corollary, to limit or slow down the wear of the corresponding parts of the torch.
Selon une caractéristique essentielle de l'invention, le dispositif de séparation intègre un générateur de champ magnétique (4), les lignes de champ actives étant celles qui sont orientées sensiblement perpendiculairement au sens de propagation du plasma. Dans l'exemple décrit, ce générateur de champ magnétique est constitué d'une bobine alimentée en courant continu ou en courant alternatif par des fils (8a) et (8b). According to an essential characteristic of the invention, the separation device integrates a magnetic field generator (4), the active field lines being those that are oriented substantially perpendicular to the direction of propagation of the plasma. In the example described, this magnetic field generator consists of a coil supplied with direct current or alternating current by wires (8a) and (8b).
On pourrait cependant concevoir que ce générateur de champ magnétique est constitué d'un aimant permanent correctement orienté, et par exemple circulaire, dès lors qu'il génère un champ magnétique radial par rapport à la direction du jet plasma. However, one could conceive that this magnetic field generator consists of a permanent magnet correctly oriented, and for example circular, since it generates a radial magnetic field with respect to the direction of the plasma jet.
Dans le cas de la mise en œuvre d'un générateur de champ magnétique constitué par une bobine, tel qu'illustré sur les figures 1 à 3, il peut être envisagé de régler l'intensité du champ magnétique généré en jouant sur l'intensité du courant électrique parcourant ladite bobine. En outre, le courant électrique alimentant ladite bobine peut être de nature variable, et l'intensité dudit courant peut être asservie ou harmonisée avec celui alimentant les électrodes de la torche à plasma, dans l'objectif d'optimiser la séparation des espèces contenues dans le plasma, ou de sélectionner de manière plus précise telle ou telle entité ou espèce. In the case of the implementation of a magnetic field generator constituted by a coil, as illustrated in FIGS. 1 to 3, it may be envisaged to adjust the intensity of the magnetic field generated by varying the intensity electrical current flowing through said coil. In addition, the electric current supplying said coil may be of variable nature, and the intensity of said current may be controlled or harmonized with that supplying the electrodes of the plasma torch, with the aim of optimizing the separation of the species contained in plasma, or to more precisely select this or that entity or species.
Toujours dans le même objectif, on peut sélectionner également la forme des signaux électriques. De fait, et par une combinaison de ces différentes caractéristiques liées aux signaux électriques alimentant la torche à plasma et la bobine générant un champ magnétique, il est possible de générer un plasma, dont les caractéristiques physiques prédéterminent l'intensité du champ magnétique utile à la bonne séparation des espèces chimiques d'un mélange de corps simples ou d'un corps complexe. For the same purpose, the shape of the electrical signals can also be selected. In fact, and by a combination of these different characteristics related to the electric signals supplying the plasma torch and the coil generating a magnetic field, it is possible to generate a plasma whose physical characteristics predetermine the intensity of the magnetic field useful for the good separation of chemical species from a mixture of simple bodies or a complex body.
Si la puissance injectée dans la torche diminue, la température diminue, la concentration des espèces ionisées diminue également. Ainsi, d'après la loi de Lorentz, afin d'obtenir la même force, il est donc nécessaire d'augmenter l'intensité du champ magnétique pour appliquer une force suffisante afin de garantir une séparation au même lieu. If the power injected into the torch decreases, the temperature decreases, the concentration of ionized species also decreases. Thus, according to the Lorentz law, in order to obtain the same force, it is therefore necessary to increase the intensity of the magnetic field to apply a sufficient force to guarantee a separation at the same place.
Selon une caractéristique avantageuse de l'invention, la géométrie interne de la torche (la) présente une forme tronconique inversée par rapport au sens de déplacement du fluide à séparer, ou dit de manière équivalent, selon le sens de jet du plasma, c'est-à-dire que la base du tronc de cône est située immédiatement à proximité de la chambre (1 1), et l'extrémité opposée, de diamètre plus réduit, est située au voisinage de la sortie de la torche à plasma. Cette conformation particulière permet de s'assurer du passage du maximum de gaz dans le plasma, de stabiliser l'arc électrique assurant une bonne stabilité électrique, et si de la condensation apparaît, d'éviter d'éteindre l'arc. En outre, cette zone particulière de l'électrode en forme de tronc de cône (5) est pourvue d'un échangeur de chaleur, typiquement constitué d'une canalisation (3) enroulée à la périphérie de la cloison la définissant, et dans laquelle circule un fluide caloporteur, et notamment de l'eau. According to an advantageous characteristic of the invention, the internal geometry of the torch (la) has a frustoconical shape inverted with respect to the direction of displacement of the fluid to be separated, or said in an equivalent manner, according to the jet direction of the plasma, that is, the base of the truncated cone is located immediately near the chamber (11), and the opposite end of smaller diameter is located near the exit of the plasma torch. This particular conformation makes it possible to ensure the passage of the maximum gas in the plasma, to stabilize the electric arc ensuring a good electrical stability, and if condensation appears, to avoid extinguishing the arc. In addition, this particular zone of the cone-shaped electrode (5) is provided with a heat exchanger, typically consisting of a pipe (3) wound at the periphery of the partition defining it, and in which circulates a coolant, including water.
Cet échangeur de chaleur (3) permet tout d'abord à la pièce en question de supporter la température très élevée générée par le plasma. En outre, il a pour vocation de récupérer ainsi une partie de l'énergie générée par la torche à plasma et l'acheminer par exemple au niveau d'un générateur de vapeur (non représenté) apte à actionner une turbine et donc à générer de l'électricité, ou au niveau de l'échangeur de chaleur (13) ménagé au sein du vaporisateur (2), pour, comme déjà indiqué, augmenter la température du mélange à séparer, et notamment induire sa vaporisation. This heat exchanger (3) first allows the part in question to withstand the very high temperature generated by the plasma. In addition, it is intended to recover a portion of the energy generated by the plasma torch and to route it for example at a steam generator (not shown) able to actuate a turbine and thus to generate the electricity, or at the level of the heat exchanger (13) formed in the vaporizer (2), for, as already indicated, increase the temperature of the mixture to be separated, and in particular induce its vaporization.
Certaines autres pièces constitutives de la torche à plasma peuvent également être munies de tels échangeurs de chaleur. C'est par exemple le cas de la ou des électrodes (lb), munie d'un tel échangeur (14). Some other components of the plasma torch can also be provided with such heat exchangers. This is for example the case of the electrode or electrodes (lb) provided with such an exchanger (14).
Le fonctionnement du dispositif va être décrit ci-après. En raison de l'action de la torche à plasma thermique sur le mélange de corps simples ou sur le corps complexe introduits dans la chambre (1 1), différentes entités vont être créées puis séparées, et en l'espèce : The operation of the device will be described below. Due to the action of the thermal plasma torch on the mixture of simple bodies or on the complex body introduced into the chamber (1 1), different entities will be created and then separated, and in this case:
des entités atomiques, donc non chargées d'une part, et  atomic entities, therefore not loaded on the one hand, and
des entités chargées d'autre part outre des électrons.  charged entities besides electrons.
Ainsi donc, si de la vapeur d'eau est introduite dans la chambre (11), il va être généré majoritairement à la température de fonctionnement optimum, et typiquement à 6000 K des atomes d'oxygène et d'hydrogène, ainsi que des espèces H+, 0+, ainsi que des électrons. Ceci résulte par exemple d'une analyse par spectroscopie d'émission, la densité électronique pouvant aussi se déduire à partir de l'élargissement d'une raie spécifique d'hydrogène (Ηβ). A la sortie de la torche plasma, le jet plasma peut atteindre une vitesse de plusieurs centaines de m/s. Cette vitesse est réglable par la taille du trou de sortie des gaz et par le débit de vapeur pénétrant dans la chambre (11) de la torche plasma. Thus, if water vapor is introduced into the chamber (11), it will be generated mainly at the optimum operating temperature, and typically at 6000 K oxygen and hydrogen atoms, as well as species H + , 0 + , as well as electrons. This results for example from an emission spectroscopy analysis, the electron density can also be deduced from the broadening of a specific line of hydrogen (Η β ). At the output of the plasma torch, the plasma jet can reach a speed of several hundred m / s. This speed is adjustable by the size of the gas outlet hole and the flow of steam entering the chamber (11) of the plasma torch.
En présence d'un champ magnétique, les espèces chargées sont soumises aux forces de Lorentz. In the presence of a magnetic field, charged species are subject to Lorentz forces.
En raison de la prédominance de la composante radiale du champ magnétique généré par le générateur de champ magnétique (8), les forces de Lorentz ont tendance à entraîner les entités chargées selon une configuration circulaire par rapport à l'axe du jet plasma. Due to the predominance of the radial component of the magnetic field generated by the magnetic field generator (8), the Lorentz forces tend to drive the charged entities in a circular configuration with respect to the axis of the plasma jet.
On a représenté au sein de la figure 4 un synoptique des forces appliquées au jet plasma. Ce dernier a été symbolisé par un cylindre vertical, le flux étant dirigé vers le haut sur ladite figure. Outre les forces de Lorentz, il y a également lieu de prendre en considération le coefficient de viscosité dynamique partielle μ; relatif à chacune des espèces en présence. Celles-ci ont été symbolisées sur le graphe de la figure 5. FIG. 4 shows a synoptic of the forces applied to the plasma jet. The latter has been symbolized by a vertical cylinder, the flow being directed upwards in said figure. In addition to the Lorentz forces, it is also necessary to take into account the partial dynamic viscosity coefficient μ; relating to each of the species involved. These have been symbolized on the graph of Figure 5.
En revenant à la figure 4, la force extérieure est principalement due aux forces de Lorentz. La viscosité de l'hydrogène monoatomique est trois fois moindre que celle de l'oxygène à 6000 K. L'entité la moins visqueuse va donc rester au centre et la plus visqueuse sur les bords. Returning to Figure 4, the external force is mainly due to the Lorentz forces. The viscosity of monoatomic hydrogen is three times lower than that of oxygen at 6000 K. The least viscous entity will therefore remain in the center and the more viscous at the edges.
En d'autres termes, en fonction de la distance r par rapport à l'axe du jet plasma et pour une température donnée, les espèces dont la viscosité dynamique partielle est moindre sont en mesure de progresser plus loin. En outre, dans le cadre de la présente invention, où justement on cherche à séparer les espèces résultant de la pyrolyse par plasma, on peut jouer légèrement sur la longueur du jet plasma avec le diamètre du trou de sortie de la torche pour optimiser l'effet de séparation. In other words, as a function of the distance r with respect to the axis of the plasma jet and for a given temperature, the species whose partial dynamic viscosity is less are able to progress further. In addition, in the context of the present invention, where precisely one seeks to separate the species resulting from pyrolysis by plasma, one can play slightly on the length of the plasma jet with the diameter of the exit hole of the torch to optimize the separation effect.
En effet, les espèces les moins visqueuses se déplacent plus vite et les espèces plus visqueuses se déplacent moins vite ; ce faisant, on retrouve les espèces les moins visqueuses plutôt au centre et les plus visqueuses plutôt à la périphérie. Pour améliorer ce type de séparation, il est possible de jouer avec la longueur de la flamme plasma. In fact, the less viscous species move faster and the more viscous species move less quickly; in doing so, we find the less viscous species rather in the center and the more viscous species on the periphery. To improve this type of separation, it is possible to play with the length of the plasma flame.
L'invention vise à jouer sur cette séparation plus ou moins importante, pour au final être en mesure de récupérer les espèces indépendamment les unes des autres de manière la plus pure possible et, corrélativement, pouvoir générer, en raison des phénomènes de recombinaison observés entre les espèces ainsi séparées, notamment de l'hydrogène qui est susceptible de se recombiner pour former des molécules stables de dihydrogène H2. The aim of the invention is to play on this more or less important separation, in the end being able to recover the species independently of one another in the purest possible way and, correlatively, to be able to generate, because of the recombination phenomena observed between the thus separated species, including hydrogen, which may recombine to form stable molecules of hydrogen H 2.
On a représenté en relation avec la figure 6 un test de séparation au moyen du dispositif de l'invention. Dans cet exemple particulier, il est mis en œuvre un champ magnétique radial d'environ 40 milli Tesla avec un plasma de mélange d'Argon, et de vapeur d'eau. FIG. 6 shows a separation test using the device of the invention. In this particular example, a radial magnetic field of about 40 milli Tesla is used with an argon mixing plasma and water vapor.
On observe à r = -10 mm (de l'axe du jet plasma) une forte émissivité de l'hydrogène mono-atomique H. En comparant avec le calcul théorique on obtient une concentration en Hydrogène de l'ordre de 80 % (pourcentage molaire). On démontre ainsi l'efficacité de la séparation résultant du dispositif de l'invention. At r = -10 mm (from the axis of the plasma jet), a high emissivity of the mono-atomic hydrogen H is observed. Comparing with the theoretical calculation, a hydrogen concentration of about 80% is obtained (percentage molar). This demonstrates the effectiveness of the separation resulting from the device of the invention.
Après séparation, il y a alors lieu à collecte des entités ainsi séparées, en vue des objectifs recherchés. A cet effet, on a ainsi schématiquement représenté sur la figure 1 un organe récupérateur des espèces (6), disposant dans l'exemple décrit de deux zones de récupération différentes (9) reliées à l'organe (6) par le biais de canalisations (15). Chacune de ces deux zones (9) intègre un échangeur de chaleur (16), au niveau duquel est récupérée l'énergie résultant de la recombinaison exothermique des espèces provisoirement stockées. After separation, then separate entities are collected for the purposes sought. For this purpose, there is thus diagrammatically represented in FIG. 1 a recovery member of the species (6), having in the example described two different recovery zones (9) connected to the organ (6) through pipelines. (15). Each of these two zones (9) integrates a heat exchanger (16), at which the energy resulting from the exothermic recombination of the temporarily stored species is recovered.
La chaleur, et donc l'énergie ainsi récupérée par Γ échangeur de chaleur (16) est une nouvelle fois susceptible d'engendrer la genèse de vapeur, propre à alimenter des turbines et donc, générer de l'électricité. The heat, and therefore the energy thus recovered by the heat exchanger (16) is once again likely to generate the genesis of steam, suitable for supplying turbines and thus generate electricity.
On a représenté au niveau de la figure 3 le montage en série de deux dispositifs de la figure 1. Ainsi donc, on peut observer que le gaz généré au niveau de l'étage inférieur est réintroduit au niveau de la chambre (11) de l'étage supérieur, zone au niveau de laquelle il subit de nouveau l'action de la torche à plasma thermique. Ce faisant, on peut affiner la séparation des espèces constitutives, et donc optimiser le degré de pureté. FIG. 3 shows the series connection of two devices of FIG. 1. Thus, it can be observed that the gas generated at the level of the lower stage is reintroduced at the level of the chamber (11) of the upper stage, area where it undergoes again the action of the thermal plasma torch. In doing so, one can refine the separation of the constituent species, and thus optimize the degree of purity.
On conçoit tout l'intérêt du dispositif de l'invention. We understand the whole point of the device of the invention.
Tout d'abord, il convient de souligner la synthèse facilitée et industrialisable d'entités chimiques, notamment l'hydrogène. Les différents éléments constitutifs d'un tel dispositif étant en outre refroidis, ils sont susceptibles de résister pendant des durées économiquement viables à la chaleur inhérente à la mise en œuvre de la technologie plasma. First of all, it is worth emphasizing the facilitated and industrializable synthesis of chemical entities, especially hydrogen. The various components of such a device being further cooled, they are likely to withstand for economically viable durations to the heat inherent in the implementation of plasma technology.
En outre et surtout, en raison de la récupération de l'énergie par les différents échangeurs de chaleur dont sont pourvues un certain nombre de pièces constitutives du dispositif de l'invention, le bilan énergétique résultant de la production, par exemple d'hydrogène, s'avère très largement optimisé par rapport à ce que permettaient les dispositifs de l'art antérieur, qu'il s'agisse de l'électrolyse, des membranes ou encore du craquage. In addition and above all, because of the recovery of energy by the various heat exchangers which are provided with a number of components of the device of the invention, the energy balance resulting from the production, for example hydrogen, is very largely optimized compared to what allowed the devices of the prior art, whether it is electrolysis, membranes or cracking.

Claims

REVENDICATIONS
1. Procédé pour réaliser la séparation d'entités chimiques simples, chargées ou non chargées, à partir de corps chimiquement complexes ou à partir de mélanges de corps simples, caractérisé en ce qu'il consiste à soumettre le ou les corps chimiquement complexes ou le mélange de corps simples à l'action d'une torche à plasma, puis à soumettre le plasma en résultant à l'action d'un champ magnétique, dont les lignes de champ sont orientées globalement perpendiculairement à la direction du jet plasma.  A method for effecting the separation of single charged or uncharged chemical entities from chemically complex bodies or from simple body mixtures, which comprises subjecting the one or more chemically complex bodies or the mixing simple bodies with the action of a plasma torch, then subjecting the resulting plasma to the action of a magnetic field, whose field lines are oriented generally perpendicular to the direction of the plasma jet.
2. Procédé pour réaliser la séparation d'entités chimiques selon la revendication 1, caractérisé en ce qu'il est réalisé à pression atmosphérique ou à des pressions supérieures. 2. Process for carrying out the separation of chemical entities according to claim 1, characterized in that it is carried out at atmospheric pressure or at higher pressures.
3. Procédé pour réaliser la séparation d'entités chimiques selon l'une des revendications 1 et 2, caractérisé en ce que la chaleur résultant du plasma généré par la torche a plasma est en partie récupérée par la mise en œuvre d'échangeurs de chaleur. 3. Process for carrying out the separation of chemical entities according to one of claims 1 and 2, characterized in that the heat resulting from the plasma generated by the plasma torch is partly recovered by the implementation of heat exchangers. .
4. Dispositif pour réaliser la séparation d'entités chimiques simples, chargées ou non chargées, à partir de corps chimiquement complexes ou à partir de mélanges de corps simples, comprenant : A device for performing the separation of simple charged or uncharged chemical entities from chemically complex bodies or from simple body mixtures, comprising:
• une torche à plasma thermique (1) définissant une chambre (11) au sein de laquelle sont acheminés les corps chimiquement complexes ou le mélange de corps simples à séparer,  A thermal plasma torch (1) defining a chamber (11) within which are conveyed the chemically complex bodies or the mixture of simple bodies to be separated,
des moyens (4, 8) aptes à générer un champ magnétique, dont les lignes de champ sont orientées globalement perpendiculairement à la direction de diffusion du plasma.  means (4, 8) capable of generating a magnetic field, the field lines of which are oriented generally perpendicular to the direction of diffusion of the plasma.
5. Dispositif pour réaliser la séparation d'entités chimiques selon la revendication 4, caractérisé en ce qu'il comprend en aval de la torche à plasma des moyens aptes à réceptionner les différentes entités résultant de la séparation par plasma. Dispositif pour réaliser la séparation d'entités chimiques selon l'une des revendications 4 et 5, caractérisé en ce que la géométrie interne de la torche à plasma présente une zone en forme de cône inversé par rapport au sens de diffusion du plasma. 5. Device for performing the separation of chemical entities according to claim 4, characterized in that it comprises downstream of the plasma torch means adapted to receive the different entities resulting from the separation by plasma. Device for performing the separation of chemical entities according to one of claims 4 and 5, characterized in that the internal geometry of the plasma torch has a cone-shaped zone inverted with respect to the direction of diffusion of the plasma.
Installation pour réaliser la séparation d'entités chimiques simples, chargées ou non chargées, à partir de corps chimiquement complexes ou à partir de mélanges de corps simples, caractérisée en ce qu'elle est constituée d'au moins deux dispositifs selon l'une quelconque des revendications 4 à 6 montés en série. Apparatus for carrying out the separation of simple charged or uncharged chemical entities from chemically complex bodies or from simple body mixtures, characterized in that it consists of at least two devices according to any one of Claims 4 to 6 connected in series.
PCT/FR2012/050312 2011-02-14 2012-02-13 Method and device for separating simple chemical entities from chemically complex bodies or mixtures of simple bodies WO2012110734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1100445 2011-02-14
FR1100445A FR2971433A1 (en) 2011-02-14 2011-02-14 DEVICE FOR SEPARATING GAS FROM COMPOUND CHEMICAL BODIES

Publications (1)

Publication Number Publication Date
WO2012110734A1 true WO2012110734A1 (en) 2012-08-23

Family

ID=45833466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050312 WO2012110734A1 (en) 2011-02-14 2012-02-13 Method and device for separating simple chemical entities from chemically complex bodies or mixtures of simple bodies

Country Status (2)

Country Link
FR (1) FR2971433A1 (en)
WO (1) WO2012110734A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238629B1 (en) * 1999-04-28 2001-05-29 BARáNKOVá HANA Apparatus for plasma treatment of a gas
FR2810902A1 (en) * 2000-06-30 2002-01-04 Electricite De France METHOD AND DEVICE FOR THE TREATMENT BY ELECTRIC DISCHARGE OF LOW PRESSURE AND LOW TEMPERATURE VOLATILE ORGANIC EFFLUENTS
WO2006031075A1 (en) * 2004-09-15 2006-03-23 Automit Co., Ltd. Plasma apparatus for treating harmful gas
EP1662104A1 (en) * 2004-11-29 2006-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and method for controlling it
US20070051615A1 (en) * 2005-01-27 2007-03-08 Holcomb Robert R Method of converting green house gases from fossil fuels into non-toxic base elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238629B1 (en) * 1999-04-28 2001-05-29 BARáNKOVá HANA Apparatus for plasma treatment of a gas
FR2810902A1 (en) * 2000-06-30 2002-01-04 Electricite De France METHOD AND DEVICE FOR THE TREATMENT BY ELECTRIC DISCHARGE OF LOW PRESSURE AND LOW TEMPERATURE VOLATILE ORGANIC EFFLUENTS
WO2006031075A1 (en) * 2004-09-15 2006-03-23 Automit Co., Ltd. Plasma apparatus for treating harmful gas
EP1662104A1 (en) * 2004-11-29 2006-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and method for controlling it
US20070051615A1 (en) * 2005-01-27 2007-03-08 Holcomb Robert R Method of converting green house gases from fossil fuels into non-toxic base elements

Also Published As

Publication number Publication date
FR2971433A1 (en) 2012-08-17

Similar Documents

Publication Publication Date Title
FR2891434A1 (en) Slipping plasma arc generator comprises a reactor internally delimits a closed enclosure having reactive gas and two removable electrodes that are connected to a source of voltage to start and maintain the reactive gas discharge
FR2801813A1 (en) Device, for surface treatment of substrate, comprises plasma generation chamber, treatment chamber, which are connected via plasma nozzles, for generation of inverted discharge
FR2630251A1 (en) HIGH FLOW NEUTRON GENERATOR WITH HIGH LIFE TARGET
FR2857555A1 (en) PLASMA ACCELERATOR WITH CLOSED ELECTRON DERIVATIVE
Timerkaev et al. Discharge creeping along the surface in the process for producing nanomaterials
EP0362947B1 (en) Sealed neutron tube equipped with a multicellular ion source with magnetic confinement
WO2012110734A1 (en) Method and device for separating simple chemical entities from chemically complex bodies or mixtures of simple bodies
WO2009112667A1 (en) Filament electrical discharge ion source
EP2079096B1 (en) Ion source with filament electric discharge
Li et al. Deposition of diamond-like carbon on inner surface by hollow cathode discharge
Sublet Caractérisation de décharges à barrières diélectriques atmosphériques et sub-atmosphériques et application à la déposition de couches d'oxyde de silicium
FR2498409A1 (en) PLASMA GENERATOR
FR3017135A1 (en) DEEP METAL DEPOSITION IN POROUS MATRIX BY HIPIMS HIGH POWER PULSED MAGNETRON SPRAY MATRIX, METALLIC CATALYST IMPORTED POROUS SUBSTRATES AND USES THEREOF
EP2377373B1 (en) Method for generating a plasma flow
EP0241362B1 (en) Device, particularly a duoplasmatron, for ionizing a gas, and method of using this device
EP2367751A1 (en) Device for producing hydrogen by means of an electron cyclotron resonance plasma
BE1026449B1 (en) Method and device for diamond synthesis by CVD
FR2652981A1 (en) HOLLOW CATHODE PLASMA GENERATOR FOR THE TREATMENT OF PLASMA POWDERS.
WO2018115774A1 (en) Dielectric barrier discharge plasma reactor
FR2933532A1 (en) ELECTRONIC CYCLOTRON RESONANCE ION GENERATING DEVICE
WO2024115636A2 (en) Device and method for generating electroplasmic heat
EP3102008B1 (en) Rotary, forced-flow cold plasma reactor
EP2110007B1 (en) Device for generating cold plasma in a vacuum chamber and use of said device for thermo-chemical processing
FR2842389A1 (en) Modular device for generating multiple sliding high voltage discharges between multiple electrodes in the form of single or double bladed daggers arranged around each injection nozzle
Reyes et al. Glow discharge mixture of Ar/He

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12708915

Country of ref document: EP

Kind code of ref document: A1