WO2012110464A1 - Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties - Google Patents
Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties Download PDFInfo
- Publication number
- WO2012110464A1 WO2012110464A1 PCT/EP2012/052430 EP2012052430W WO2012110464A1 WO 2012110464 A1 WO2012110464 A1 WO 2012110464A1 EP 2012052430 W EP2012052430 W EP 2012052430W WO 2012110464 A1 WO2012110464 A1 WO 2012110464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyl
- asr
- tolerant
- resistant
- frog
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/56—1,2-Diazoles; Hydrogenated 1,2-diazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N45/00—Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring
- A01N45/02—Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring having three carbocyclic rings
Definitions
- SDHI fungicides on conventionally bred ASR-tolerant, Stem canker resistant and/or Frog- eye leaf spot resistant soybean varieties
- the present invention relates to a method for controlling Asian soybean rust (ASR) of a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety comprising the application of a succinate dehydrogenase inhibitor (SDHI) fungicide to said plant, plant propagation material, or at its locus of growth.
- ASR Asian soybean rust
- SDHI succinate dehydrogenase inhibitor
- Soybean (genus Glycine) is considered to be an important crop and is highly valued by world agriculture. Therefore, one of the major objectives of the soybean breeders is to develop more stable, productive and disease-resistant varieties. The basic motivation is to maximize grain yield for human and animal consumption. In order to attain said objects, the breeder usually selects varieties having superior traits.
- Asian soybean rust caused by the fungus Phakopsora pachyrhizi, is considered to be the most destructive soybean leaf disease (Miles, M. R.; Frederick R. D.; Hartman, G. (2003) Soybean rust: Is the U. S. soybean crop at risk? Online. APSnet Feature, American Phytopathological Society).
- the disease spreads by windblown uredospores which consequently let to long-distance dispersal to new, rust-free regions. Therefore, ASR has already caused losses in many soybean-growing regions of the world.
- the impact of the pathogen on productivity is drastic: up to 80 % yield loss was observed in some regions (Yorinori J. T.
- fungicides commonly bears the problem of unfavorable environmental or toxicological effects due to high dosage rates which are needed to effectively control the disease.
- Fungus resistance is known to naturally occur in genotypes of the Glycine genus (Burdon, J. J.; Marshall, D. R. (1981) Evaluation of Australian native species of Glycine canescens, a wild relative of soybean. Theoretical Applied Genetics, 65 : 44-45 ; Burdon, J. J. ( 1988) Major gene resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean. Theoretical Applied Genetics, 75 : 923-928).
- WO 2010/049405 teaches a method for improving the health of a plant by the application of a combination containing a heteroaryl-substituted alanine compound and an agriculturally active compound such as for example the fungicides fluxapyroxad, bixafen, boscalid, isopyrazam or penthiopyrad. Therein, the improvement of the plant's health does not indicate a teaching for the control of ASR.
- WO 2010/046380 describes a method of controlling pests and/or increasing the health of a plant by treating a cultivated plant with a carboxamide compound. Soybean varieties which are referred to in the description or the examples of this reference are transgenic plants. The soybean variety employed in the biological example of WO 2010/046380 contains a transgene conferring an herbicide tolerance. There is no hint in WO 2010/046380 that the application of a succinate dehydrogenase inhibitor (SDHI) fungicide to an ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant conventionally bred soybean variety would result in a synergistic effect between the trait of said plant and the applied fungicide.
- SDHI succinate dehydrogenase inhibitor
- traits introduced by conventional breading are more stable than traits introduced by transgenic methods.
- conventionally bred plants there is less risk of environmental contamination e.g. by horizontal gene transfer.
- conventionally bred plants there is no risk that might be conferred by an antibiotic resistance gene that is routinely introduced in transgenic plants for selection purposes.
- there is a strong economic advantage generated as there is no need for expensive and longish deregulation proceedings in each country for conventionally bred plants.
- the timespan and costs needed to develop a conventionally bred variety are much shorter than for transgenic varieties.
- the acceptance by the consumer is generally higher.
- beneficial plant properties are disturbed or even eliminated by the randomly occurring introduction of the transgene into the genome.
- Another objective of the present invention is to provide a method which enables control over ASR wherein the superior traits of a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant plant lead to a synergistic effect against ASR upon application of a fungicide.
- Another objective of the present invention is to provide a method, which enables control over ASR on a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety using a fungicide, wherein there is a synergistic effect of the plant's traits and the fungicide, and wherein there are additional advantages of using a conventionally bred as compared to a transgenic plant selected from the group consisting of higher stability of the new trait(s), less risk of environmental contamination, no risk of contamination by an antibiotic resistance gene, economic advantage, higher acceptance by the consumer, and no risk that beneficial plant properties are disturbed or even eliminated by the randomly occurring introduction of the transgene.
- Synergistic in the present context means that the use of the SDHI fungicide in combination with the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety exceeds the additive effect, to be expected on Phakopsora pachyrhizi and thus extends the range of action of the SDHI fungicide and of the active principle expressed by the conventionally bred ASR- tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety.
- the treatment with the fungicide(s) according to the invention would result in a synergistic effect regarding the control of ASR between the trait of said plant and the applied fungicide.
- the application of at least one SDHI fungicide to a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety leads to a synergistically enhanced action against Phakopsora pachyrhizi compared to the control rates that are possible with the same SDHI fungicide at wild type plants when applied to a conventionally bred ASR- tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety, parts of that plant, plant propagation material or at its locus of growth.
- the present invention relates to a method for controlling ASR of a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety comprising the application of a SDHI fungicide to said plant, plant propagation material, or at its locus of growth.
- the SDHI fungicide is applied at least at parts of the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety, preferably the leaves, the roots, the flowers and/or the stem of the conventionally bred plant, and its seed.
- the application of at least one SDHI fungicide chosen from the group consisting of penflufen, isopyrazam, bixafen, sedaxane, fluxapyroxad, fluopyram, penthiopyrad, boscalid, N-[l-(2,4-dichlorophenyl)-l-methoxypropan-2-yl]-3- (difluoromethyl)- 1 -methyl- lH-pyrazole-4-carboxamide, N-[9-(dichloromethylene)- 1 ,2,3,4-tetrahydro- l,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide, N-[(lS,4R)-9- (Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthal
- the at least one SDHI fungicide is chosen from the group consisting of penflufen, isopyrazam, bixafen, sedaxane, and fluxapyroxad.
- Penflufen (chemical name: N-[2-(l,3-dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazole-4- carboxamide) and methods for its production on basis of commercially available compounds can be found in WO 03/010149.
- Isopyrazam is a mixture comprising both syn isomers of 3 -(difluormethyl)- 1 -methyl -N- [(lRS,4SR,9RS)-l,2,3,4-tetrahydro-9-isopropyl-l,4-methanonaphthalen-5-yl]pyrazole-4-carboxamide and both anti isomers of 3-(difluormethyl)-l-methyl-N-[(lRS,4SR,9SR)-l,2,3,4-tetrahydro-9-isopropyl- l,4-methanonaphthalen-5-yl]pyrazole-4-carboxamide.
- Isopyrazam further comprises isopyrazam (anti- epimeric racemate 1RS,4SR,9SR), isopyrazam (anti-epimeric enantiomer 1R,4S,9S), isopyrazam (anti- epimeric enantiomer 1S,4R,9R), isopyrazam (syn epimeric racemate 1RS,4SR,9RS), isopyrazam (syn- epimeric enantiomer 1R,4S,9R), and isopyrazam (syn-epimeric enantiomer 1 S,4R,9S).
- Isopyrazam and methods for its production on basis of commercially available compounds is given in WO 2004/035589.
- Bixafen (chemical name: N-(3',4'-dichloro-5-fluoro-l,r-biphenyl-2-yl)-3-(difluoromethyl)-l-methyl- lH-pyrazole-4-carboxamide) and methods of its production on basis of commercially available compounds can be found in WO 03/070705.
- Sedaxane is a mixture comprising both cis isomers of 2'-[(lRS,2RS)-l,r-bicycloprop-2-yl]-3- (difluoromethyl)-l-methylpyrazole-4-carboxanilide and both trans isomers of 2'-[(lRS,2SR)-l, l '- bicycloprop-2-yl]-3-(difluoromethyl)-l-methylpyrazole-4-carboxanilide.
- Sedaxane and methods for its production on basis of commercially available compounds can be found in WO 03/074491 , WO 2006/015865 and WO 2006/015866.
- Fluxapyroxad (chemical name: 3-(difluoromethyl)-l-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)-lH- pyrazole-4-carboxamide) and methods for its production on basis of commercially available compounds can be found in WO 2005/123690.
- Fluopyram (chemical name : N- ⁇ [3 -chloro-5 -(trifluoromethyl)-2-pyridinyl] ethyl ⁇ -2,6-dichlorbenzamide and methods for its production on basis of commercially available compounds can be found in EP-A- 1 531 673 and WO 2004/016088..
- Penthiopyrad (chemical name : (RS)-N-[2-( 1 ,3 -dimethylbutyl9-3 -thienyl] - 1 -methyl-3 -(trifluoromethyl)- pyrazole-4-carboxamide) methods for its production on basis of commercially available compounds can be found in EP 0737682.
- Boscalid (chemical name: 2-chloro-N-(4'-chlorobipheyl-2-yl)nicotinamide) and methods for its production on basis of commercially available compounds can be found in DE 19531813.
- N-[ 1 -(2,4-dichlorophenyl)- 1 -methoxypropan-2-yl]-3-(difluoromethyl)- 1 -methyl- lH-pyrazole-4- carboxamide is known from WO 2010/000612.
- N-[9-(dichloromethylene)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5 -yl] -3 -(difluoromethyl)- 1 - methyl- lH-pyrazole-4-carboxamide, N-[( 1 S,4R)-9-(Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1,4- methanonaphthalen-5 -yl] -3 -(difluormethyl)- 1 -methyl- 1 H-pyrazol-4-c arboxami d, and N- [( 1 R,4S)-9- (Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5 -yl] -3 -(difluormethyl)- 1 -methyl- 1H- pyrazol-4-carboxamid are known from WO 2007/048556.
- SDHI fungicides may be used alone or in combination with other active ingredients such as:
- Inhibitors of the ergosterol biosynthesis for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutrazol,
- Inhibitors of the respiratory chain at complex I or II for example carboxin, diflumetorim, fenfuram, flutolanil, furametpyr, furmecyclox, mepronil, oxycarboxin, thifluzamide, l-methyl-N-[2-(l, l,2,2- tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-lH-pyrazole-4-carboxamide, 3-(difluoromethyl)-l- methyl-N-[2-(l,l,2,2-tetrafluoroethoxy)phenyl]-lH-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-[4- fluoro-2-(l, 1,2,3,3, 3-hexafluoropropoxy)phenyl]-l-methyl-lH-pyrazole-4-carb oxam ide , and salts thereof.
- Inhibitors of the respiratory chain at complex III for example ametoctradin, amisulbrom, azoxystrobin, cyazofamid, dimoxystrobin, enestroburin, famoxadone, fenamidone, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrib e nc arb , tri fl o xy strob in , ( 2 E )-2-(2 - ⁇ [6-(3 -chloro-2-methylphenoxy)-5 -fluoropyrimidin-4- yl]oxy ⁇ phenyl)-2-(methoxyimino)-N-methylethanamide, (2E)-2-(methoxyimino)-N-methyl-2-(2- ⁇ [( ⁇ ( 1 E)- 1
- Inhibitors of the mitosis and cell division for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fluopicolide, fuberidazole, pencycuron, thiabendazole, thiophanate-methyl, thiophanate, zoxamide, 5 -chloro-7-(4-methylpiperidin- 1 -yl)-6-(2,4,6-trifluorophenyl) [ 1 ,2,4]triazolo[ 1 ,5- a]pyrimidine, 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine and salts thereof.
- Inhibitors of the amino acid and/or protein biosynthesis for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim, pyrimethanil and salts thereof.
- Inhibitors of the ATP production for example fentin acetate, fentin chloride, fentin hydroxide and silthiofam.
- Inhibitors of the cell wall synthesis for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, validamycin A and valifenalate.
- Inhibitors of the lipid and membrane synthesis for example biphenyl, chloroneb, dicloran, edifenphos, etridiazole, iodocarb, iprobenfos, isoprothiolane, propamocarb, propamocarb hydrochloride, prothiocarb, pyrazophos, quintozene, tecnazene and tolclofos-methyl.
- Inhibitors of the melanine biosynthesis for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon and tricyclazole .
- Inhibitors of the nucleic acid synthesis for example benalaxyl, benalaxyl-M (kiralaxyl), bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl and oxolinic acid.
- Inhibitors of the signal transduction for example chlozolinate, fenpiclonil, fludioxonil, iprodione, procymidone, quinoxyfen and vinclozolin.
- Acetylcholinesterase (AChE) inhibitors for example carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, and Xylylcarb; or organophosphates, e.g.
- GABA-gated chloride channel antagonists for example cyclodiene organochlorines, e.g. Chlordane and Endosulfan; or phenylpyrazoles (fiproles), e.g. Ethiprole and Fipronil.
- Sodium channel modulators / voltage-dependent sodium channel blockers for example pyrethroids, e.g. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S- cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda- Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta- Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(lR)-trans isomers], Deltamethrin, Empenthrin [(EZ)- (1R) isomers), Esfenvalerate, Etof
- Nicotinic acetylcholine receptor (nAChR) agonists for example neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam; or Nicotine.
- neonicotinoids e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam
- Nicotine for example neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam
- Nicotine for example neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam
- Nicotinic acetylcholine receptor (nAChR) allosteric activators for example spinosyns, e.g. Spinetoram and Spinosad.
- Chloride channel activators for example avermectins/milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin, and Milbemectin.
- Juvenile hormone mimics for example juvenile hormon analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or Fenoxycarb; or Pyriproxyfen.
- Miscellaneous non-specific (multi-site) inhibitors for example alkyl halides, e.g. Methyl bromide and other alkyl halides; or Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.
- alkyl halides e.g. Methyl bromide and other alkyl halides; or Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.
- Selective homopteran feeding blockers e.g. Pymetrozine; or Flonicamid.
- Mite growth inhibitors e.g. Clofentezine, Hexythiazox, and Diflovidazin; or Etoxazole.
- Microbial disruptors of insect midgut membranes e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT crop proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl .
- Inhibitors of mitochondrial ATP synthase for example Diafenthiuron; or organotin miticides, e.g. Azocyclotin, Cyhexatin, and Fenbutatin oxide; or Propargite; or Tetradifon.
- Uncouplers of oxidative phoshorylation via disruption of the proton gradient for example Chlorfenapyr, DNOC, and Sulfluramid.
- Nicotinic acetylcholine receptor (nAChR) channel blockers for example Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap-sodium.
- Inhibitors of chitin biosynthesis type 0, for example Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, and Triflumuron.
- Inhibitors of chitin biosynthesis type 1, for example Buprofezin.
- Moulting disrupters for example Cyromazine.
- Ecdysone receptor agonists for example Chromafenozide, Halofenozide, Methoxyfenozide, and Tebufenozide.
- Octopamine receptor agonists for example Amitraz.
- Mitochondrial complex III electron transport inhibitors for example Hydramethylnon; or Acequinocyl; or Fluacrypyrim.
- Mitochondrial complex I electron transport inhibitors for example METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, and Tolfenpyrad; or Rotenone (Derris). Voltage-dependent sodium channel blockers, e.g. Indoxacarb; or Metaflumizone.
- Inhibitors of acetyl CoA carboxylase for example tetronic and tetramic acid derivatives, e .g. Spirodiclofen, Spiromesifen, and Spirotetramat.
- Mitochondrial complex IV electron transport inhibitors for example phosphines, e.g. Aluminium phosphide, Calcium phosphide, Phosphine, and Zinc phosphide; or Cyanide.
- Mitochondrial complex II electron transport inhibitors for example Cyenopyrafen.
- Ryanodine receptor modulators for example diamides, e.g. Chlorantraniliprole and Flubendiamide.
- Plant parts are understood as meaning all aerial and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, stems, flowers, fruiting bodies, and seeds, and also roots and rhizomes.
- the plant parts also include crop material and vegetative and generative propagation material, for example cuttings, rhizomes, slips and seeds.
- plant parts are understood as meaning the leaves, the roots the flowers and/or the stem of the conventionally bred plant, and its seed. More preferably, plant parts are understood as meaning leaves.
- the plants or plant varieties used according to the present invention are ASR-tolerant, Stem cranker resistant and/or Frog leaf spot resistant.
- the ASR tolerance of the plant or plant varieties according to the present invention is conferred by a gene selected from the group consisting of Rppl, Rpp2, Rpp3, Rpp4 and Rpp5 or a combination thereof.
- the ASR tolerance is conferred by a gene selected from the group consisting of Rpp2, Rpp4 and Rpp5 or a combination thereof.
- the plants or plant varieties used according to the present invention are not transgenic.
- Transgenic organisms are produced by introducing an exogenous gene (a transgene) into a living organism using genetic engineering so that the organism will exhibit a new property.
- the genetic material of transgenic plants has been modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination, whereby the modification confers ASR-tolerance, Stem canker resistantance and/or Frog-eye leaf spot resistance or confers the increase of ASR-tolerance, Stem canker resistance and/or Frog-eye leaf spot resistance.
- transgenes are DNA sequences, whether from a different species or from the same species, which are inserted into the genome using transformation, which are inserted into the genome using transformation, which are referred to herein collectively as "transgenes”.
- a “transgene” also encompasses antisense, or sense and antisense sequences capable of gene silencing.
- the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety according to the present invention is obtained upon conducting segregating generations, preferably the bulk Method, SSD (Single Seed Descent) and/or backcrossing.
- SSD Single Seed Descent
- the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety according to the present invention is obtained by the bulk method.
- segregating generations generally F2 and F5 are grown with the seeding and harvest of all the plants mixed in a single population. Therefore, in the bulk method, the seeds used for growing each segregating generation are a sample of the seeds harvested in the previous generation. After five generations of self-fertilizing crops, the plants exhibit a high degree of homozygosis and can be selected for individual harvest (Souza, A. P. Biologia Molecular PV PV PV PVVa ao melhoramento. In: Recursos Geneticos e Melhoramento - Plantas. Luciano L.
- the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety according to the present invention is obtained by the SSD method.
- the SSD method was described by Brim in 1966 (Brim, C. A. ; 1966. A modified pedigree method of selection in soybeans.
- Crop Science, 6: 20 and consists of segregating generation advancement (from F2 to F5) harvesting a single pot (2 to 3 seeds) from each plant; however, only one plant from each pot is used to grow the next generation. A sample is harvested and conserved. In this way, at the end of the process, each line corresponds to a different F2 plant and, therefore, there is a reduction in the loss caused by deficient sampling or natural selection.
- the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety according to the present invention is obtained by backcrossing.
- Backcrossing is not exactly a method for growing segregation populations. It is a strategy used to improve the phenotypic expression of a deficient trait, especially if this trait is of a qualitative inheritance.
- the use enables the transfer of a gene or of a few genes from a parent called donor parent (DP) to another parent called recurrent parent (RP), and the recurrent parent is usually a cultivar of commercial interest having some kind of deficiency in its cultivation that needs to be improved.
- the plant varieties used according to the present invention are TMG 801 and/or TMG 803 from Tropical Melhoramento e Genetica LTD A, Brasil.
- the wild type soybean is preferably a plant, which has no superior trait as the conventionally bred ASR- tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety but is in any other property as similar as possible to a soybean, employed in the process of the present invention.
- the wild type plant is in its genome, transcriptome, proteome or metabolome as similar as possible to a plant, employed in the process of the present invention.
- the wild type soybean is a Miyagishirome variety.
- the treatment of the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean varieties, its plant parts, plant propagation material, or at its locus of growth with the SDHI fungicide according to the present invention is carried out directly or by acting on the environment, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, misting, evaporating, dusting, fogging, scattering, foaming, painting on, spreading, injecting, drenching, trickle irrigation and, in the case of propagation material, in particular in the case of seed, furthermore by the dry seed treatment method, the wet seed treatment method, the slurry treatment method, by encrusting, by coating with one or more coats and the like. It is furthermore possible to apply the SDHI fungicide by the ultra-low volume method.
- the SDHI fungicide is sprayed onto the soybean variety, parts of the plant, or its locus of growth.
- the present invention further provides formulations and application forms prepared from the fungicidal compositions described above comprising at least one of the SDHI fungicides of the invention.
- the fungicidal formulations or application forms in question are preferably those which comprise auxiliaries, such as extenders, solvents and carriers, for example, and/or other auxiliaries, such as surface-active substances, for example.
- customary formulations include solutions, emulsions, wettable powders, water-based and oil-based suspensions, water-based and oil-based suspension concentrates, powders, dusting products, pastes, soluble powders, granules, dispersible granules, soluble granules, granules for broadcasting, suspension-emulsion concentrates, natural materials impregnated with active compound, synthetic materials impregnated with active compound, fertilizers and ultra-fine encapsulations in polymeric compounds.
- the application form prepared from the SDHI fungicide is an emulsion.
- formulations are produced in a conventional manner, for example by mixing of the active compounds with auxiliaries such as extenders, solvents and/or solid carriers, for example, and/or other auxiliaries such as surface-active substances, for example.
- auxiliaries such as extenders, solvents and/or solid carriers, for example, and/or other auxiliaries such as surface-active substances, for example.
- the formulations are produced either in suitable equipment or else before or during application.
- Auxiliaries used may be substances capable of giving the formulation of the SDHI fungicide, or the application forms prepared from these formulations (such as ready-to-use crop protection compositions, for example, such as spray liquors or seed dressings) particular properties, such as certain physical, technical and/or biological properties.
- Suitable extenders include water, polar and non-polar organic chemical liquids, such as those, for example, from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which if desired may also be substituted, etherified and/or esterified), ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, simple and substituted amines, amides, lactams, (such as N- alkylpyrrolidones) and lactones, sulphones and sulphoxides (such as dimethyl sulphoxide).
- aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
- alcohols and polyols which if desired may also be substituted,
- Liquid solvents contemplated are essentially as follows: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, such as petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
- aromatics such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or m
- suitable solvents are aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, aliphatic hydrocarbons, such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulphoxide, and water.
- acetone is used as solvent.
- Carriers contemplated are more particularly the following: for example, ammonium salts and natural, finely ground minerals, such as kaolins, aluminas, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic, finely ground minerals, such as highly disperse silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers may likewise be used.
- Carriers contemplated for granules include the following: for example, crushed and fractionated natural minerals such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of finely ground organic and inorganic substances, and also granules of organic material such as sawdust, paper, coconut shells, maize cobs and tobacco stalks.
- crushed and fractionated natural minerals such as calcite, marble, pumice, sepiolite, dolomite
- organic material such as sawdust, paper, coconut shells, maize cobs and tobacco stalks.
- Liquefied gaseous extenders or solvents can also be used. Suitability is possessed more particularly by those extenders or carriers which are gaseous at standard temperature and under atmospheric pressure, examples being aerosol propellants, such as halogenated hydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
- Surface-active substances for the purposes of the invention are emulsifiers and/or foam formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surface-active substances.
- Examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyltaurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of compounds comprising sulphates, sulphonates and phosphates, e.g.
- alkylaryl polyglycol ethers alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lignin-sulphite waste liquors and methylcellulose.
- a surface-active substance is advantageous if one of the SDHI fungicides and/or one of the inert carriers is insoluble in water and if application takes place in water.
- polyoxyethylene alkly phenyl ether is used as an emulsifier.
- auxiliaries present in the formulations and the application forms derived from them may include colorants, such as inorganic pigments, examples being iron oxide, titanium oxide and Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients, including trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- colorants such as inorganic pigments, examples being iron oxide, titanium oxide and Prussian Blue
- organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes
- nutrients including trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- stabilizers such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which enhance the chemical and/or physical stability. Additionally present may be foam formers or defoamers.
- the formulations and application forms derived therefrom may further comprise, as additional auxiliaries, stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
- stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
- stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
- Other possible auxiliaries include mineral and vegetable
- auxiliaries present in the formulations and in the application forms derived from them.
- adjuvants include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic agents, penetrants, retention promoters, stabilizers, sequestrants and complexing agents.
- the active compounds may be combined with any solid or liquid adjuvant which is commonly used for formulation purposes.
- the SDHI fungicide may be present in its commercially customary formulations and also in the application forms prepared from those formulations, in a mixture of other active compounds such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers, semiochemicals or else agents for enhancing plant properties.
- active compounds such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers, semiochemicals or else agents for enhancing plant properties.
- the formulations contain preferably between 0.00000001% and 98% by weight of the SDHI fungicide or, with particular preference, between 0.01% and 95% by weight of the SDHI fungicide, more preferably between 0.5% and 90% by weight, most preferably 1% by weight of the SDHI fungicide, based on the weight of the formulation.
- SDHI fungicide also includes combinations of SDHI fungicides.
- the formulations comprise at least one of the SDHI fungicides, a solvent, an emulsifier and/or water.
- the SDHI fungicide content of the application forms (crop protection compositions) prepared from the formulations may vary within wide ranges.
- the SDHI fungicide concentration of the application forms may typically be between 0.002 ppm and 500 ppm of the SDHI fungicide, preferably between 0.2 ppm and 500 ppm, more preferably between 0.2 ppm and 100 ppm.
- the term "SDHI fungicide” also includes combinations of SDHI fungicides.
- penflufen is applied as an emulsion containing 0.2 ppm to 50 ppm of said fungicide.
- isopyrazam is applied as an emulsion containing 0.2 ppm to 1 ppm of said fungicide.
- bixafen is applied as an emulsion containing 0.2 ppm to 100 ppm of said fungicide.
- sedaxane is applied as an emulsion containing 0.2 ppm to 25 ppm of said fungicide.
- fluxapyroxad is applied as an emulsion containing 0.2 ppm to 25 ppm of said fungicide.
- the application volume of the SDHI fungicide to a conventionally bred soybean variety, plant propagation material, or at its locus of growth is in the range of 0.01 kg/ha to 3 kg/ha, preferably 0.01 kg/ha to 1.5 kg/ha, more preferably 0.02 kg/ha to 0.5 kg/ha.
- the application volume of the SDHI fungicide is 25-500 1/ha, preferably 25-250 1/ha.
- the present invention is related to a kit of parts comprising a conventionally bred ASR- tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety and a SDHI fungicide selected from the group consisting of penflufen, isopyrazam, bixafen, sedaxane, fluxapyroxad, fluopyram, penthiopyrad, boscalid, N-[l-(2,4-dichlorophenyl)-l-methoxypropan-2-yl]-3- (difluoromethyl)- 1 -methyl- lH-pyrazole-4-carboxamide, N-[9-(dichloromethylene)- 1 ,2,3,4-tetrahydro- l,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-l-methyl-lH-pyrazole-4-carboxamide, N-[(lS,4R)-9- (Dich
- the kit of parts comprises a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety and a SDHI fungicide selected from the group consisting of penflufen, isopyrazam, bixafen, sedaxane, and fluxapyroxad.
- the kit of parts comprises the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean varieties TMG 801 and/or TMG 803.
- the present invention also comprises a method for the production of an agricultural product comprising the application of a SDHI fungicide to a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety, its plant propagation material, or at its locus of growth, and producing the agricultural product from said plant or parts of such a plant or plant propagation material.
- the SDHI fungicide applied in said method for the production of an agricultural product is selected from the group consisting of penflufen, isopyrazam, bixafen, sedaxane, fluxapyroxad, fluopyram, penthiopyrad, boscalid, N-[l-(2,4- dichlorphenyl)- 1 -methoxypropan-2-yl]-3 -(difluoromethyl)- 1 -methyl- lH-pyrazole-4-carboxamide, N-[9- (dichloromethylene)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5 -yl] -3 -(difluoromethyl)- 1 -methyl- 1H- pyrazole-4-carboxamide, N-[(lS,4R)-9-(Dichlormethylen)-l,2,3,4-tetrahydro-l,
- the SDHI fungicide applied in said method for the production of an agricultural product is applied at least at parts of the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety, preferably the leaves, the roots, the flowers and/or the stem of the conventionally bred plant, and its seed.
- the SDHI fungicide is applied as an emulsion, preferably containing 0.2 to 500 ppm of said fungicide.
- the application volume of the SDHI fungicide is in the range of 0.01 to 3 kg/ha, preferably 0.01 to 1.5 kg/ha, more preferably 0.02 to 0.5 kg/ha.
- the ASR tolerance in the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety is conferred by the gene selected from the group consisting of Rppl, Rpp2, Rpp3, Rpp4 and Rpp5 or a combination thereof. Even more preferably, the ASR tolerance is conferred by the gene selected from the group consisting of Rpp2, Rpp4 and Rpp5 or a combination thereof. Also preferably, the conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety is TMG 801 and/or TMG 803.
- a further preferred embodiment of the present invention is also the use of a SDHI fungicide for controlling ASR of a conventionally bred ASR-tolerant, Stem canker resistant and/or Frog-eye leaf spot resistant soybean variety comprising the application of a SDHI fungicide to said plant, plant propagation material, or at its locus of growth.
- One susceptible (Miyagishirome) and soybean varieties tolerant to soybean rust (Phakospora pachyrhizi) (TMG 801 and TMG 803) were cultivated in greenhouse up to 1.5-leaf stage.
- a suitable preparation of SDHI fungicide was produced by mixing 1 part per weight of the SDHI ingredient with 28.5 parts by weight of acetone as solvent and 1.5 parts by weight of poly oxy ethylene alkyl phenyl ether as emulsifier. The concentrate was diluted with water to the desired concentrations.
- Plants were evaluated 11 days after inoculation. The percentage of infected leaf area was determined visually. The results were calculated according to ABBOTT (% efficacy). 0% means an efficacy which corresponds to that of the control, while an efficacy of 100% means that no disease was observed.
- E is the expected efficacy as a percent of the check when using the combination of a fungicide and ASR-tolerant variety; x is the efficacy of the percent check when using the fungicide; y is the efficacy of the percent check when using the ASR-tolerant variety.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2827304A CA2827304C (en) | 2011-02-17 | 2012-02-13 | Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties |
CN201280018978.XA CN103476256B (en) | 2011-02-17 | 2012-02-13 | SDHI fungicide is used for the stem canker resistance of ASR tolerance and/or the purposes of frogeye leaf spot resistant soybean kind of conventional breeding |
MX2013009455A MX347939B (en) | 2011-02-17 | 2012-02-13 | Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties. |
BR112013021019A BR112013021019A2 (en) | 2011-02-17 | 2012-02-13 | use of sdhi fungicides in conventionally cultivated soybean varieties with Asian soybean rust (asr) tolerance, stem cancer resistance and / or frog eye leaf spot |
US13/984,654 US9510594B2 (en) | 2011-02-17 | 2012-02-13 | Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161443849P | 2011-02-17 | 2011-02-17 | |
US61/443,849 | 2011-02-17 | ||
EP11154827.7 | 2011-02-17 | ||
EP11154827 | 2011-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012110464A1 true WO2012110464A1 (en) | 2012-08-23 |
Family
ID=44202897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/052430 WO2012110464A1 (en) | 2011-02-17 | 2012-02-13 | Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties |
Country Status (5)
Country | Link |
---|---|
CN (1) | CN103476256B (en) |
AR (1) | AR085232A1 (en) |
CA (1) | CA2827304C (en) |
MX (1) | MX347939B (en) |
WO (1) | WO2012110464A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014060520A1 (en) * | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2015079334A1 (en) | 2013-11-26 | 2015-06-04 | Upl Limited | A method for controlling rust |
WO2016204160A1 (en) * | 2015-06-15 | 2016-12-22 | 石原産業株式会社 | Soybean disease control composition and soybean disease control method |
Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539588A1 (en) | 1990-07-05 | 1993-05-05 | Nippon Soda Co., Ltd. | Amine derivative |
EP0737682A1 (en) | 1995-04-11 | 1996-10-16 | Mitsui Toatsu Chemicals, Incorporated | Substituted thiophene derivative and agricultural and horticultural fungicide containing the same as active ingredient |
DE19531813A1 (en) | 1995-08-30 | 1997-03-06 | Basf Ag | Bisphenylamides |
WO2002096882A1 (en) | 2001-05-31 | 2002-12-05 | Nihon Nohyaku Co., Ltd. | Substituted anilide derivatives, intermediates thereof, agricultural and horticultural chemicals, and their usage |
WO2003010149A1 (en) | 2001-07-25 | 2003-02-06 | Bayer Cropscience Ag | Pyrazolylcarboxanilides as fungicides |
WO2003070705A1 (en) | 2002-02-19 | 2003-08-28 | Bayer Cropscience Aktiengesellschaft | Disubstituted pyrazolyl carboxanilides |
WO2003074491A1 (en) | 2002-03-05 | 2003-09-12 | Syngenta Participations Ag | O-cyclopropyl-carboxanilides and their use as fungicides |
WO2003106457A1 (en) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Spiroindolinepiperidine derivatives |
WO2004016088A2 (en) | 2002-08-12 | 2004-02-26 | Bayer Cropscience S.A. | Novel 2-pyridylethylbenzamide derivative |
WO2004035589A1 (en) | 2002-10-18 | 2004-04-29 | Syngenta Participations Ag | Heterocyclocarboxamide derivatives |
WO2004099160A1 (en) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and pests controlling composition containing the same |
WO2005035486A1 (en) | 2003-10-02 | 2005-04-21 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamides for combating animal pests |
WO2005063094A1 (en) | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | A beverage maker incorporating multiple beverage collection chambers |
WO2005077934A1 (en) | 2004-02-18 | 2005-08-25 | Ishihara Sangyo Kaisha, Ltd. | Anthranilamides, process for the production thereof, and pest controllers containing the same |
WO2005085216A1 (en) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Isoxazoline-substituted benzamide compound and noxious organism control agent |
WO2005123690A1 (en) | 2004-06-18 | 2005-12-29 | Basf Aktiengesellschaft | 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide |
WO2006015866A1 (en) | 2004-08-12 | 2006-02-16 | Syngenta Participations Ag | Method for protecting useful plants or plant propagation material |
WO2006015865A1 (en) | 2004-08-12 | 2006-02-16 | Syngenta Participations Ag | Fungicidal compositions |
WO2006043635A1 (en) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient |
WO2006056433A2 (en) | 2004-11-26 | 2006-06-01 | Basf Aktiengesellschaft | Novel 2-cyano-3-(halo)alkoxy-benzenesulfonamide compounds for combating animal pests |
WO2006089633A2 (en) | 2005-02-22 | 2006-08-31 | Bayer Cropscience Ag | Spiroketal-substituted cyclic ketoenols |
WO2006100288A2 (en) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamide compounds for seed treatment |
WO2007040280A1 (en) | 2005-10-06 | 2007-04-12 | Nippon Soda Co., Ltd. | Cyclic amine compound and pest control agent |
WO2007048556A1 (en) | 2005-10-25 | 2007-05-03 | Syngenta Participations Ag | Heterocyclic amide derivatives useful as microbiocides |
WO2007057407A2 (en) | 2005-11-21 | 2007-05-24 | Basf Se | Insecticidal methods using 3-amino-1,2-benzisothiazole derivatives |
WO2007075459A2 (en) | 2005-12-16 | 2007-07-05 | E. I. Du Pont De Nemours And Company | 5-aryl isoxazolines for controlling invertebrate pests |
WO2007101369A1 (en) | 2006-03-09 | 2007-09-13 | East China University Of Science And Technology | Preparation method and use of compounds having high biocidal activities |
WO2007115643A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds |
WO2007115646A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds used as insecticides |
WO2007115644A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds |
WO2007149134A1 (en) | 2006-06-23 | 2007-12-27 | Dow Agrosciences Llc | A method to control insects resistant to common insecticides |
WO2008009360A2 (en) | 2006-07-20 | 2008-01-24 | Bayer Cropscience Ag | N'-cyano-n-alkyl halide imide amide derivatives |
JP2008110953A (en) | 2006-10-31 | 2008-05-15 | Meiji Seika Kaisha Ltd | Quinoline derivative and agricultural or horticultural insecticide containing same |
WO2008066153A1 (en) | 2006-11-30 | 2008-06-05 | Meiji Seika Kaisha, Ltd. | Pest control agent |
WO2008067911A1 (en) | 2006-12-04 | 2008-06-12 | Bayer Cropscience Ag | Biphenyl-substituted spirocyclic ketoenols |
WO2008104503A1 (en) | 2007-03-01 | 2008-09-04 | Basf Se | Pesticidal active mixtures comprising aminothiazoline compounds |
WO2009049851A1 (en) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides |
WO2010000612A1 (en) | 2008-07-01 | 2010-01-07 | Syngenta Participations Ag | Fungicidal compositions |
WO2010005692A2 (en) | 2008-06-16 | 2010-01-14 | E. I. Du Pont De Nemours And Company | Insecticidal cyclic carbonyl amidines |
WO2010006713A2 (en) | 2008-07-17 | 2010-01-21 | Bayer Cropscience Ag | Heterocyclic compounds used as pesticides |
JP2010018586A (en) | 2008-07-14 | 2010-01-28 | Meiji Seika Kaisha Ltd | Substance pf1364, its manufacturing method, producing strain and agricultural/horticultural insecticide having the substance as active ingredient |
US20100093715A1 (en) | 2007-04-23 | 2010-04-15 | Basf Se | Plant productivity enhancement by combining chemical agents with transgenic modifications |
WO2010046380A2 (en) | 2008-10-21 | 2010-04-29 | Basf Se | Use of carboxamides on cultivated plants |
WO2010049405A1 (en) | 2008-10-31 | 2010-05-06 | Basf Se | Method for improving plant health |
WO2010069502A2 (en) | 2008-12-18 | 2010-06-24 | Bayer Cropscience Ag | Tetrazole substituted anthranilic acid amides as pesticides |
WO2010074751A1 (en) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Stable sulfoximine-insecticide compositions |
WO2010074747A1 (en) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Stable insecticide compositions and methods for producing same |
WO2010096227A1 (en) * | 2009-02-18 | 2010-08-26 | Syngenta Participations Ag | Markers associated with soybean rust resistance and methods of use therefor |
-
2012
- 2012-02-13 WO PCT/EP2012/052430 patent/WO2012110464A1/en active Application Filing
- 2012-02-13 CA CA2827304A patent/CA2827304C/en active Active
- 2012-02-13 MX MX2013009455A patent/MX347939B/en active IP Right Grant
- 2012-02-13 CN CN201280018978.XA patent/CN103476256B/en not_active Expired - Fee Related
- 2012-02-14 AR ARP120100491 patent/AR085232A1/en unknown
Patent Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539588A1 (en) | 1990-07-05 | 1993-05-05 | Nippon Soda Co., Ltd. | Amine derivative |
EP0737682A1 (en) | 1995-04-11 | 1996-10-16 | Mitsui Toatsu Chemicals, Incorporated | Substituted thiophene derivative and agricultural and horticultural fungicide containing the same as active ingredient |
DE19531813A1 (en) | 1995-08-30 | 1997-03-06 | Basf Ag | Bisphenylamides |
WO2002096882A1 (en) | 2001-05-31 | 2002-12-05 | Nihon Nohyaku Co., Ltd. | Substituted anilide derivatives, intermediates thereof, agricultural and horticultural chemicals, and their usage |
WO2003010149A1 (en) | 2001-07-25 | 2003-02-06 | Bayer Cropscience Ag | Pyrazolylcarboxanilides as fungicides |
WO2003070705A1 (en) | 2002-02-19 | 2003-08-28 | Bayer Cropscience Aktiengesellschaft | Disubstituted pyrazolyl carboxanilides |
WO2003074491A1 (en) | 2002-03-05 | 2003-09-12 | Syngenta Participations Ag | O-cyclopropyl-carboxanilides and their use as fungicides |
WO2003106457A1 (en) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Spiroindolinepiperidine derivatives |
EP1531673A2 (en) | 2002-08-12 | 2005-05-25 | Bayer CropScience S.A. | Novel 2-pyridylethylbenzamide derivative |
WO2004016088A2 (en) | 2002-08-12 | 2004-02-26 | Bayer Cropscience S.A. | Novel 2-pyridylethylbenzamide derivative |
WO2004035589A1 (en) | 2002-10-18 | 2004-04-29 | Syngenta Participations Ag | Heterocyclocarboxamide derivatives |
WO2004099160A1 (en) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and pests controlling composition containing the same |
WO2005035486A1 (en) | 2003-10-02 | 2005-04-21 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamides for combating animal pests |
WO2005063094A1 (en) | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | A beverage maker incorporating multiple beverage collection chambers |
WO2005077934A1 (en) | 2004-02-18 | 2005-08-25 | Ishihara Sangyo Kaisha, Ltd. | Anthranilamides, process for the production thereof, and pest controllers containing the same |
WO2005085216A1 (en) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Isoxazoline-substituted benzamide compound and noxious organism control agent |
WO2005123690A1 (en) | 2004-06-18 | 2005-12-29 | Basf Aktiengesellschaft | 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide |
WO2006015866A1 (en) | 2004-08-12 | 2006-02-16 | Syngenta Participations Ag | Method for protecting useful plants or plant propagation material |
WO2006015865A1 (en) | 2004-08-12 | 2006-02-16 | Syngenta Participations Ag | Fungicidal compositions |
WO2006043635A1 (en) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient |
WO2006056433A2 (en) | 2004-11-26 | 2006-06-01 | Basf Aktiengesellschaft | Novel 2-cyano-3-(halo)alkoxy-benzenesulfonamide compounds for combating animal pests |
WO2006089633A2 (en) | 2005-02-22 | 2006-08-31 | Bayer Cropscience Ag | Spiroketal-substituted cyclic ketoenols |
WO2006100288A2 (en) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamide compounds for seed treatment |
WO2007040280A1 (en) | 2005-10-06 | 2007-04-12 | Nippon Soda Co., Ltd. | Cyclic amine compound and pest control agent |
WO2007048556A1 (en) | 2005-10-25 | 2007-05-03 | Syngenta Participations Ag | Heterocyclic amide derivatives useful as microbiocides |
WO2007057407A2 (en) | 2005-11-21 | 2007-05-24 | Basf Se | Insecticidal methods using 3-amino-1,2-benzisothiazole derivatives |
WO2007075459A2 (en) | 2005-12-16 | 2007-07-05 | E. I. Du Pont De Nemours And Company | 5-aryl isoxazolines for controlling invertebrate pests |
WO2007101369A1 (en) | 2006-03-09 | 2007-09-13 | East China University Of Science And Technology | Preparation method and use of compounds having high biocidal activities |
WO2007115643A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds |
WO2007115646A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds used as insecticides |
WO2007115644A1 (en) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Substituted enaminocarbonyl compounds |
WO2007149134A1 (en) | 2006-06-23 | 2007-12-27 | Dow Agrosciences Llc | A method to control insects resistant to common insecticides |
WO2008009360A2 (en) | 2006-07-20 | 2008-01-24 | Bayer Cropscience Ag | N'-cyano-n-alkyl halide imide amide derivatives |
JP2008110953A (en) | 2006-10-31 | 2008-05-15 | Meiji Seika Kaisha Ltd | Quinoline derivative and agricultural or horticultural insecticide containing same |
WO2008066153A1 (en) | 2006-11-30 | 2008-06-05 | Meiji Seika Kaisha, Ltd. | Pest control agent |
WO2008067911A1 (en) | 2006-12-04 | 2008-06-12 | Bayer Cropscience Ag | Biphenyl-substituted spirocyclic ketoenols |
WO2008104503A1 (en) | 2007-03-01 | 2008-09-04 | Basf Se | Pesticidal active mixtures comprising aminothiazoline compounds |
US20100093715A1 (en) | 2007-04-23 | 2010-04-15 | Basf Se | Plant productivity enhancement by combining chemical agents with transgenic modifications |
WO2009049851A1 (en) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides |
WO2010005692A2 (en) | 2008-06-16 | 2010-01-14 | E. I. Du Pont De Nemours And Company | Insecticidal cyclic carbonyl amidines |
WO2010000612A1 (en) | 2008-07-01 | 2010-01-07 | Syngenta Participations Ag | Fungicidal compositions |
JP2010018586A (en) | 2008-07-14 | 2010-01-28 | Meiji Seika Kaisha Ltd | Substance pf1364, its manufacturing method, producing strain and agricultural/horticultural insecticide having the substance as active ingredient |
WO2010006713A2 (en) | 2008-07-17 | 2010-01-21 | Bayer Cropscience Ag | Heterocyclic compounds used as pesticides |
WO2010046380A2 (en) | 2008-10-21 | 2010-04-29 | Basf Se | Use of carboxamides on cultivated plants |
WO2010049405A1 (en) | 2008-10-31 | 2010-05-06 | Basf Se | Method for improving plant health |
WO2010069502A2 (en) | 2008-12-18 | 2010-06-24 | Bayer Cropscience Ag | Tetrazole substituted anthranilic acid amides as pesticides |
WO2010074751A1 (en) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Stable sulfoximine-insecticide compositions |
WO2010074747A1 (en) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Stable insecticide compositions and methods for producing same |
WO2010096227A1 (en) * | 2009-02-18 | 2010-08-26 | Syngenta Participations Ag | Markers associated with soybean rust resistance and methods of use therefor |
Non-Patent Citations (18)
Title |
---|
"biological and physical plant transformation protocols", 1993, CRC PRESS, INC., pages: 67 - 88 |
ARMSTRONG: "The First Decade of Maize Transformation: A Review and Future Perspective", MAYDICA, 1999, pages 101 - 109, XP009112559 |
BRIM, C. A.: "A modified pedigree method of selection in soybeans", CROP SCIENCE, vol. 6, 1966, pages 20 |
BROMFIELD K. R.; MELCHING, J. S.: "Sources of specific resistance to soybean rust", PHYTOPATHOLOGY, vol. 72, 1982, pages 706 |
BROMFIELD, K. R.; HARTWIG E. E.: "Resistance to soybean rust and mode of inheritance", CROP SCIENCE, vol. 20, 1980, pages 254 - 255, XP009159888, DOI: doi:10.2135/cropsci1980.0011183X002000020026x |
BURDON, J. J.: "Major gene resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean", THEORETICAL APPLIED GENETICS, vol. 75, 1988, pages 923 - 928 |
BURDON, J. J.; MARSHALL, D. R.: "Evaluation of Australian native species of Glycine canescens, a wild relative of soybean.", THEORETICAL APPLIED GENETICS, vol. 65, 1981, pages 44 - 45 |
COLBY, S. R.: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961 |
HARTWIG R. R: "Identification of a fourth major gene conferring to resistance to soybean rust.", CROP SCIENCE, vol. 26, 1986, pages 1135 - 1136, XP008089889 |
LUIS EDUARDO MAGALHAES, BRAZIL (DTN): "Brazil Launches Rust-Resistant Soybean", 1 July 2009 (2009-07-01), XP002648923, Retrieved from the Internet <URL:http://www.dtnprogressivefarmer.com/dtnag/view/ag/printablePage.do?ID=NEWS_PRINTABLE_PAGE&bypassCache=true&pageLayout=v4&vendorReference=b175295c-1d3a-43d2-8eeb-55028c9fc61f__1242740098906&articleTitle=Brazil+Launches+Rust-Resistant+Soybean&editionName=DTNAgFreeSiteOnline> [retrieved on 20090701] * |
MCLEAN, R. J.; BYTH, D. E.: "Inheritance of resistance to rust (Phakopsora pachyrhizi) in soybean", AUSTRALIAN JOURNAL AGRICULTURAL RESEARCH, vol. 31, 1980, pages 951 - 956 |
MEYER J. D. F.: "Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian Soybean Rust in soybean", PLANT PHYSIOL, vol. 150, 2009, pages 295 - 307, XP002615628, DOI: doi:10.1104/pp.108.134551 |
MEYER J.D.F. ET AL.: "Identification and analyses of candidate genes for rpp4-mediated resistance to ASR in soybean", PLANT PHYSIOLOGY, vol. 150, 2009, pages 295 - 307, XP002615628, DOI: doi:10.1104/pp.108.134551 |
MILES, M. R.; FREDERICK R. D.; HARTMAN, G.: "Online. APSnet Feature", 2003, AMERICAN PHYTOPATHOLOGICAL SOCIETY, article "Soybean rust: Is the U. S. soybean crop at risk?" |
OLOKA H. K.; TUKAMUHABWA P.: "Reaction of exotic soybean germplasm to Phakopsora pachyrhizi in Uganda", PLANT DISEASE, vol. 92, 2008, pages 1493 - 1496 |
SOUZA, A. P.: "Recursos Geneticos e Melhoramento - Plantas", vol. 1, 2001, article "Biologia Molecular Aplicada ao melhoramento", pages: 939 - 966 |
SOUZA, A. P: "Recursos Geneticos e Melhoramento - Plantas", vol. 1, 2001, article "Biologia Molecular Aplicada ao melhoramento", pages: 939 - 966 |
YORINORI J. T.: "Documentos", vol. 247, 2004, EMBRAPA, article "Ferrugem ''asiatica'' da soja no Brasil: evoluçào, importancia economica e controle", pages: 36 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9668480B2 (en) | 2012-10-19 | 2017-06-06 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) * | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
CN105451556A (en) * | 2012-10-19 | 2016-03-30 | 拜尔农科股份公司 | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
CN105451556B (en) * | 2012-10-19 | 2017-11-14 | 拜尔农科股份公司 | Plant is handled to resist the method for the fungi resistant to fungicide using carboxylic acid amides or thiocarboxamide derivative |
EA026838B1 (en) * | 2012-10-19 | 2017-05-31 | Байер Кропсайенс Аг | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
EP3427584A2 (en) | 2013-11-26 | 2019-01-16 | UPL Ltd | A method for controlling rust |
WO2015079334A1 (en) | 2013-11-26 | 2015-06-04 | Upl Limited | A method for controlling rust |
EP3932206A1 (en) | 2013-11-26 | 2022-01-05 | UPL Ltd | A method for controlling rust |
EP4014737A1 (en) | 2013-11-26 | 2022-06-22 | UPL Ltd | A method for controlling rust |
EP4014738A1 (en) | 2013-11-26 | 2022-06-22 | UPL Ltd | A method for controlling rust |
EP4014741A1 (en) | 2013-11-26 | 2022-06-22 | UPL Ltd | A method for controlling rust |
EP4018829A1 (en) | 2013-11-26 | 2022-06-29 | UPL Ltd | A method for controlling rust |
EP4018828A1 (en) | 2013-11-26 | 2022-06-29 | UPL Ltd | A method for controlling rust |
EP4233544A2 (en) | 2013-11-26 | 2023-08-30 | UPL Ltd | A method for controlling rust |
WO2016204160A1 (en) * | 2015-06-15 | 2016-12-22 | 石原産業株式会社 | Soybean disease control composition and soybean disease control method |
US20180168156A1 (en) | 2015-06-15 | 2018-06-21 | Ishihara Sangyo Kaisha, Ltd. | Soybean disease control composition and soybean disease control method |
US10791737B2 (en) | 2015-06-15 | 2020-10-06 | Ishihara Sangyo Kaisha, Ltd. | Soybean disease control composition and soybean disease control method |
US11317627B2 (en) | 2015-06-15 | 2022-05-03 | Ishihara Sangyo Kaisha, Ltd. | Soybean disease control composition and soybean disease control method |
Also Published As
Publication number | Publication date |
---|---|
CA2827304C (en) | 2018-11-13 |
CA2827304A1 (en) | 2012-08-23 |
MX347939B (en) | 2017-05-19 |
MX2013009455A (en) | 2013-09-06 |
CN103476256A (en) | 2013-12-25 |
CN103476256B (en) | 2016-01-20 |
AR085232A1 (en) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3019014B1 (en) | Use of combinations comprising host defense inducers and biological control agents for controlling bacterial harmful organisms in useful plants | |
TWI612897B (en) | Use of host defense inducers for controlling bacterial harmful organisms in useful plants | |
JP2020054343A5 (en) | ||
TWI649032B (en) | Binary fungicidal and bactericidal combinations | |
US9510594B2 (en) | Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties | |
WO2014139897A1 (en) | Use of dithiine-tetracarboximides for controlling bacterial harmful organisms in useful plants | |
WO2016055096A1 (en) | Method for treating rice seed | |
WO2017186543A2 (en) | Use of fluopyram and/or bacillus subtilis for controlling fusarium wilt in plants of the musaceae family | |
CA2827304C (en) | Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties | |
WO2013010758A1 (en) | Nematocide n- cyclopropyl - sulfonylamide derivatives | |
WO2015055505A1 (en) | Active substance for controlling stink bugs | |
WO2016055439A1 (en) | Method for treating rice seed | |
BR112018071851B1 (en) | USE OF FLUOPYRAM AND METHOD FOR CONTROLING FUSARIUM WITHELING IN PLANTS OF THE MUSACEAE FAMILY | |
WO2015055554A1 (en) | Active substance for treating seed and soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12703136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2827304 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/009455 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13984654 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12703136 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013021019 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013021019 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130816 |