WO2012109965A1 - 频率校准方法和装置 - Google Patents

频率校准方法和装置 Download PDF

Info

Publication number
WO2012109965A1
WO2012109965A1 PCT/CN2012/071052 CN2012071052W WO2012109965A1 WO 2012109965 A1 WO2012109965 A1 WO 2012109965A1 CN 2012071052 W CN2012071052 W CN 2012071052W WO 2012109965 A1 WO2012109965 A1 WO 2012109965A1
Authority
WO
WIPO (PCT)
Prior art keywords
register
frequency
terminal
value
predetermined value
Prior art date
Application number
PCT/CN2012/071052
Other languages
English (en)
French (fr)
Inventor
刘俊英
杨明洪
Original Assignee
意法·爱立信半导体(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意法·爱立信半导体(北京)有限公司 filed Critical 意法·爱立信半导体(北京)有限公司
Publication of WO2012109965A1 publication Critical patent/WO2012109965A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration

Definitions

  • the present invention relates to the field of communications, and in particular, to a frequency calibration method and apparatus.
  • VC-TCXO Voltage Controlled Temperature Compensated Oscillator
  • VCXO Voltage Controlled Temperature Compensated Oscillator
  • VCXO voltage controlled crystal oscillator
  • all-digital controlled crystal oscillator the cost is lower and the volume is more Small DCXOs are being widely used and are gradually replacing the previously used TCXOs.
  • the VCXO replaces the VC TCXO with standard AT-cut crystals, varactors and capacitors, while the integrated DCXO circuit integrates all external components except the crystal to reduce material costs.
  • the circuit In order to achieve a final frequency offset error of OJppm or lower, the circuit must compensate for the static error and dynamic error of the frequency, and adjust the frequency in a certain increment, and the frequency calibration can effectively compensate the static frequency error.
  • the present invention proposes a frequency calibration method and apparatus capable of performing simple and efficient frequency calibration of an oscillator whose frequency is adjusted by means of a register. , improve the accuracy of the terminal's transmission frequency.
  • a frequency calibration method in which frequency calibration is performed on a terminal that adjusts a frequency offset through a register, The method includes:
  • the signal sent by the terminal Whether the error of the frequency with respect to the center frequency point is within a second predetermined range
  • a frequency calibration device for performing frequency calibration on a terminal that adjusts a frequency offset through a register, the device comprising:
  • a first determining module configured to determine, when the first register of the terminal is set to a first predetermined value, whether an error of a frequency of the signal sent by the terminal relative to a center frequency point is within a first predetermined range
  • a second determining module configured to: when the determining result of the first determining module is YES, determining that the first register is set to the first predetermined value, and the second register of the terminal is set to be In the case of two predetermined values, whether the frequency of the signal transmitted by the terminal relative to the center frequency point is within a second predetermined range;
  • a processing module configured to: when the determination result of the second determining module is YES, acquire a signal that is sent by the terminal under the control of the first register and the second register after the value of the second register is changed a frequency change condition, the first predetermined value, and the second predetermined value.
  • the invention performs rough calibration on the terminal by setting the first register, and then sets the value of the second register, and performs accurate frequency calibration on the terminal, which can effectively adjust the transmission frequency of the terminal to the center frequency point, and improve the transmission frequency of the terminal.
  • Accuracy, and the solution is simple to implement, without the need for complex instruments and algorithms.
  • FIG. 1 is a simplified process flow diagram of a frequency calibration method in accordance with an embodiment of the present invention
  • 2 is a process flow diagram of a frequency calibration method in accordance with an embodiment of the present invention
  • 3 is a schematic structural diagram of a calibration platform built before implementation of a frequency calibration method according to an embodiment of the present invention
  • FIG. 4 is a process of performing coarse frequency offset calibration according to a frequency calibration method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of performing fine frequency offset slope calibration according to a frequency calibration method according to an embodiment of the present invention.
  • FIG. 6 is a frequency according to an embodiment of the present invention. Calibration Method Flowchart for fine frequency offset calibration;
  • Figure 7 is a block diagram of a frequency calibration apparatus in accordance with an embodiment of the present invention. detailed description
  • the present invention proposes to perform rough calibration on the terminal by setting the first register (step SI 01 ), and After setting the value of the second register, fine-tuning the slope of the frequency offset (step Si03), and finally performing accurate frequency offset calibration on the terminal (step S105), which can effectively adjust the transmission frequency of the terminal to the center frequency, and improve the terminal transmission.
  • step SI 01 fine-tuning the slope of the frequency offset
  • step S105 accurate frequency offset calibration on the terminal
  • a frequency calibration method for frequency calibration of a terminal that adjusts a frequency offset through a register.
  • the frequency calibration method according to an embodiment of the present invention includes:
  • Step S201 determining that the first register of the terminal (which may be considered as a coarse adjustment register) is set to a first predetermined value (which may be a control word initially set for the first register), the frequency of the signal sent by the terminal is relative to Whether the error of the center frequency is within the first predetermined range (in this case, the terminal only transmits signals under the control of the first register); (equivalent to performing coarse frequency offset calibration)
  • a first predetermined value which may be a control word initially set for the first register
  • Step S203 if the determination result is yes, determining that the first register is set to a first predetermined value, and the second register of the terminal (which may be considered as a fine adjustment register) is set to a second predetermined value (may be a pair Whether the frequency of the signal transmitted by the terminal relative to the center frequency point is within a second predetermined range in the case where the control word of the second register is initially set) (wherein the first predetermined range may be greater than the second predetermined range, for example, it may be set
  • the first error range is: the transmission frequency and center frequency of the terminal The rates differ by 800 to 1200 Hz
  • the second error range is set to:
  • the step S205 can be flexibly adjusted according to actual needs. If the judgment result is yes, the terminal is controlled by the first register and the second register after the value of the second register is changed. A frequency change of the transmitted signal, a first predetermined value, and a second predetermined value. (equivalent to accurate frequency offset calibration)
  • the terminal is coarsely calibrated by setting the first register, and then the value of the second register is set, and the terminal is accurately frequency-calibrated, which can effectively transmit the heart frequency of the terminal, and improve the accuracy of the terminal transmission frequency.
  • the program implements the order, no need
  • the frequency of the signal transmitted by the terminal with respect to the center frequency point exceeds the first predetermined range when the first register is set to the first predetermined value (that is, when the signal is transmitted based on the first predetermined value, If the frequency error of the transmitted signal is too large, the first predetermined value needs to be adjusted in a first predetermined manner.
  • the first predetermined value obtained by the current adjustment is determined as the first predetermined value to be saved.
  • the first predetermined manner may be any manner.
  • the first predetermined value of the first register may be increased or decreased by a certain step size as long as it can be adjusted within a maximum range of values pre-configured for the first register.
  • the value of the first register may be set to a first adjustment value, and it is determined whether the error of the frequency of the signal transmitted by the terminal relative to the center frequency point after setting is at the first predetermined value;
  • 3 ⁇ 4_ ⁇ i is the error of the frequency of the signal sent by the terminal relative to the center frequency point when the first register is set to the first predetermined value;
  • ROUND is a rounding operation;
  • the predetermined register is set to the first adjustment value error
  • the terminal will perform signal transmission based on the first register and the second register, and, ⁇ , determine that the first register is set to the first predetermined value, and the terminal
  • the second predetermined value needs to be further adjusted, as follows:
  • the second predetermined manner may be any manner.
  • the second predetermined value of the second register may be increased or decreased by a certain step size as long as it can be adjusted within a maximum range of values pre-configured for the second register.
  • the manner of changing the second predetermined value in the second predetermined manner is as follows:
  • the frequency of the signal transmitted by the terminal in the case of the second predetermined value is the error of the center frequency point; ROUND is the rounding operation;
  • the predetermined value, 4F (; ⁇ 2 is the second adjustment value, FreEtTOr - CAFC,
  • the terminal is in the first register and
  • m idJix is the center frequency If the rate satisfies the requirement (that is, the error range of the frequency at which the terminal transmits the signal under the control of the first register and the second register with respect to the center frequency is within the second error range), the second predetermined value of the second register may be omitted. Adjusted steps ⁇ m,
  • the frequency variation of the signal transmitted by the CAFC, the device and the second register can be directly obtained.
  • the first set value is the system default value of the first register
  • the second set value is the system default value of the second register.
  • the calibration platform shown in Figure 3 can be built first.
  • the host for example, a computer
  • the terminal are connected by a Universal Serial Bus (USB) or a Universal Asynchronous Receiver/Transmitter (UART).
  • USB Universal Serial Bus
  • UART Universal Asynchronous Receiver/Transmitter
  • the terminal and the instrument can be connected by RF cable.
  • the host and the instrument can be connected through a General-purpose Interface Bus (GPIB).
  • GPIB General-purpose Interface Bus
  • Step S401 after setting the terminal to be in a transmitting state, setting a center frequency of the transmitted signal (ie, a target frequency of the calibration);
  • Step S402 assuming that the valid bit is 7B, setting an error range (ie, the first error described above)
  • Range 800 ⁇ 1200Hz, setting the value of register one (ie, the first register above)
  • the value can be the system default value, which can usually be the middle value of the full scale of the register), and the transmission frequency error of the terminal is measured by the instrument (meter) ⁇
  • Step S403 determining whether £m ⁇ is in the range of 800 to 1200, if the judgment result is S407; otherwise, step S404 is performed;
  • Step S404 the value of the register one is 0 ⁇
  • Step S405 obtaining a register - 43 ⁇ 4 CD AC by calculation
  • the measured CZX4C ⁇ ft 3 ⁇ 4 line transmission frequency is measured
  • Step S407 if e £m ⁇ is within the allowable range, then setting
  • the relationship between the value of the second register and the frequency error of the transmission signal can be determined in advance, i.e., the processing in Fig. 5 is performed.
  • Step S501 When the terminal is in the transmitting state, set the center frequency to For example, it can be 2017.4M11Z;
  • Step S502 the second register is the radio frequency fine adjustment frequency register, assuming that: 13-Bit; Set the value of register two to the system default value FreError CAFC,
  • Step S503 changing the value of the register 2 by a certain step, and setting the value of the register 2 to
  • Step S504 obtaining a register 2 (CAFC) 3 ⁇ 4
  • Step S505 calculating the slope value of the register 2 (CAFC) in each frequency band ⁇ - ' 5 ⁇ , which can be calculated by referring to the following formula:
  • FOE __SIope * F mid Sx where is the center frequency of the different frequency bands, after which all bands are saved.
  • the center frequency is 2017, 4Mhz.
  • Step S506 normally, the initial value of the register 2 cannot make the transmission frequency satisfy the error requirement (within the second error range), and therefore, the system clock fine frequency offset calibration can be performed.
  • the process of fine frequency offset calibration is as follows:
  • Step S601 setting the center frequency of the transmission when the terminal is in the transmitting state;
  • Step S602 setting the value of the register 2 to the system default value ⁇ ' ⁇ 'measuring the frequency of the transmission - the difference is FreError __ CAFC,
  • Step S603, determining the frequency error /; e£ /w ' e4F (:: i is within the error range allowed by the register, assuming the error range is 50 to 120 Hz; if it is within the allowable range, setting the execution step - m Spur 8605;
  • Step S604 setting FOE Slope), H setting
  • Step S605 CAFC ⁇ f word CAFC tuned w ' ⁇ : ⁇ Step S606; Step S606, measuring the current temperature, and saving.
  • the DCXO based frequency calibration method described above should be performed as much as possible at room temperature. If the temperature changes greatly during the calibration process, at the end of the CAFC calibration, the current temperature is read and saved along with the calibration parameters. This temperature value will provide a temperature reference for the temperature compensation at the time of the machine registration and end the current calibration.
  • a frequency calibration apparatus for frequency calibration of a terminal that adjusts a frequency offset through a register.
  • the frequency calibration apparatus includes:
  • a first determining module 71 configured to determine whether an error of a frequency of a signal sent by a case where the first register of the terminal is set to a first predetermined value is within a first predetermined range; the second determining module 72, connecting To the first determining module 71, in the case that the determination result of the first determining module 71 is YES, the first register is set to the first predetermined value, and the second register of the terminal is set to the second predetermined value Whether the frequency of the signal transmitted by the lower terminal relative to the center frequency point is within a second predetermined range;
  • the processing module 73 is connected to the second determining module 72, configured to: when the determination result of the second determining module 72 is YES, acquire the value of the second register, after the value of the second register is changed, the terminal is controlled by the first register and the second register. The frequency change of the signal, the first predetermined value, and the second predetermined value.
  • the first determining module 71 is further configured to: when the first register is set to a first predetermined value, and the error of the frequency of the signal sent by the terminal relative to the center frequency point exceeds the first predetermined range, Adjusting the first predetermined value in a predetermined manner, and determining, after each adjustment, whether the error of the frequency of the signal transmitted by the terminal under the control of the first register adjusted this time is within a first predetermined range, and When the result of the determination is YES, the first predetermined value obtained by the current adjustment is determined as the first predetermined value to be saved.
  • the first determining module 7 is configured to set the value of the first register to the first adjustment value, and determine whether the error of the frequency of the signal sent by the terminal relative to the center frequency point is within a first predetermined range after setting, if the fault is no, Then, the step size determined according to the following formula changes the first predetermined value; a register is set to an error of the first predetermined value; ROUND is a rounding operation; and, CDA is the first - predetermined
  • Fre Err is the error of the frequency of the signal transmitted by the terminal with respect to the center frequency point when the first register is set to the first adjustment value.
  • the second determining module 72 is further configured to: when determining that the first register is set to the first predetermined value, and the second register of the terminal is set to the second predetermined value, the error of the frequency of the signal sent by the terminal relative to the center frequency point If the second predetermined range is exceeded, the second predetermined value is changed in a second predetermined manner, and
  • the second determining module 72 is configured to set the value of the second register to the second adjustment value, and determine whether the error of the frequency of the signal sent by the terminal relative to the center frequency point is within a second predetermined range after the setting, if the step size changes
  • the second predetermined value - the error of the frequency of the signal relative to the center frequency; ROUND is the rounding operation;
  • CAFC de!auh * F tnid — Tx ; where, CAFC, - ⁇
  • the predetermined value, 4Fc ⁇ - 2 is the second adjustment value
  • ⁇ ⁇ - ⁇ is the error of the frequency of the terminal sending j number relative to the center frequency point when the second register is set to the second adjustment value
  • the processing module 73 can also determine the slope of the error variation in the frequency band for the frequency band in which the center frequency is located. For details, refer to the following formula: F0E ⁇ sl ° e - 2 ⁇ AFC ⁇ F ⁇ c
  • the processing module 73 can ffi save the frequency change of the signal transmitted by the terminal under the control of the first register and the second register after changing the value of the C4FC ⁇ as the second register.
  • the device can also perform the multiple processes described in the method embodiments.
  • the specific working process and working principle are described in detail in the method section, and are not described herein again.
  • the terminal is coarsely calibrated by setting the first register, and then the value of the second register is set, and the terminal of the oscillator adopting the frequency offset control by the register such as DCXO is performed.
  • Accurate frequency calibration can effectively adjust the transmission frequency of the terminal to the center frequency, improve the accuracy of the terminal's transmission frequency, and the program can realize the single, without the need of complicated instruments and algorithms; in addition, by calculating the value of the register and the frequency error The change relationship can help to quickly determine the appropriate register values, further improving the efficiency of the calibration.

Abstract

本发明公开了一种频率校准方法和装置,该方法包括:确定终端的第一寄存器被置为第一预定值的情况下,终端发送的信号的频率相对于中心频点的误差是否在第一预定范围内;在确定结果为是的情况下,判断第一寄存器被置为第一预定值、且终端的第二寄存器被置为第二预定值的情况下终端发送的信号的频率相对于中心频点的误差是否在第二预定范围内;在判断结果为是的情况下,获取第二寄存器的值改变后终端在第一寄存器和第二寄存器控制下发射的信号的频率变化情况、第一预定值和第二预定值。本发明能够对终端进行精确频率校准,有效将终端的发射频率调整至中心频点,提高终端发射频率的准确性,并且该方案实现简单,无需借助复杂的仪器和算法。

Description

频率校准方法和装置
本发明涉及通信领域, 尤其涉及一种频率校准方法和装置。
多年来, 把振荡频率维持在所需要的频率, 一直以来都是通过电压控制 温度补偿振荡器 (VC-TCXO) 组件来实现的。 之前, 在 B寸钟接口电路中, 大 量终端均使用包含电压控制晶体振荡器 (VCXO) 的收发器或者使用包含全 数字控制晶体振荡器的收发器, 然而近些年, 成本更低、 体积更小的 DCXO 正在得到广泛使用, 并 ϋ正在逐步取代之前使用的 TCXO。 VCXO是使用标 准的 AT切割晶体、变容二极管和电容器来取代 VC TCXO, 而集成型 DCXO 电路是把除了晶体之外所有外部元件都集成起来, 从而降低材料成本。
为了达到最终频偏误差在 OJppm甚至更低,电路 须补偿频率的静态误 差和动态误差, 并且按一定的增量来调整频率, 而频率校准能有效地补偿静 态频率误差。
目前,对于 VCXO已经提出了一些频率校准的方法,但是由于诸如 DCXO 的很多振荡器是通过数字控制、 并且借助于寄存器来调整频率的, 因此, 其 原理不同于 VCXO, 也就是说, 已有的针对 VCXO进行频率校准的方法并不 能够适用于 DCXO。
针对相关技术中对于借助于寄存器调整频率的振荡器缺少有效的频率校 准方案的问题, 目前尚来提出有效的解决方案。
针对相关技术中对于借助于寄存器调整频率的振荡器缺少有效的频率校 准方案的问题, 本发明提出一种频率校准方法和装置, 能够对借助于寄存器 调整频率的振荡器进行简单、有效的频率校准, 提高终端发射频率的准确性。
本发明的技术方案是这样实现的:
一种频率校准方法, ^于对通过寄存器调整频偏的终端进行频率校准, 所述方法包括:
确定所述终端的第一寄存器被置为第一预定值的情况下所述终端发送的 信号的频率相对于中心频点的误差是否在第一预定范围内;
在确定结果为是的情况下,判断所述第一寄存器被置为所述第一预定值、 且所述终端的第二寄存器被置为第二预定值的情况下所述终端发送的信号的 频率相对于中心频点的误差是否在第二预定范围内;
在判断结果为是的情况下, 获取第二寄存器的值改变后所述终端在所述 第一寄存器和所述第二寄存器控制下发射的信号的频率变化情况、 所述第一 预定值和所述第二预定值。
一种频率校准装置, ^于对通过寄存器调整频偏的终端进行频率校准, 所述装置包括:
第一确定模块, 用于确定所述终端的第一寄存器被置为第一预定值的情 况下, 所述终端发送的信号的频率相对于中心频点的误差是否在第一预定范 围内;
第二确定模块, 用于在所述第一确定模块的确定结果为是的情况下, 判 断所述第一寄存器被置为所述第一预定值、 所述终端的第二寄存器被置为 第二预定值的情况下, 所述终端发送的信号的频率相对于中心频点的误差是 否在第二预定范围内;
处理模块, 用于在所述第二确定模块的判断结果为是的情况下, 获取第 二寄存器的值改变后所述终端在所述第一寄存器和所述第二寄存器控制下发 射的信号的频率变化情况、 所述第一预定值和所述第二预定值。
本发明通过设置第一寄存器对终端进行粗校准, 并—目.之后设置第二寄存 器的值, 对终端进行精确频率校准, 能够有效将终端的发射频率调整至中心 频点, 提高终端发射频率的准确性, 并且该方案实现简单, 无需借助复杂的 仪器和算法。
图 1是根据本发明实施例的频率校准方法的简要处理流程图;
图 2是根据本发明实施例的频率校准方法的处理流程图; 图 3是根据本发明实施例的频率校准方法实现前所搭建校准平台的结构 示意图;
图 4 是根据本发明实施例的频率校准方法进行粗频偏校准的处理流程 图 5是根据本发明实施例的频率校准方法进行精调频偏斜率校准的流程 图 6是根据本发明实施例的频率校准方法迸行精调频偏校准的流程图; 图 7是根据本发明实施例的频率校准装置的框图。 具体实施方式
针对相关技术中对于借助于寄存器调整频率的振荡器缺少有效的频率校 准方案的问题, 如图 〗 所示, 本发明提出通过设置第一寄存器来对终端迸行 粗校准 (步骤 SI 01 ), 并 ϋ之后设置第二寄存器的值, 精调频率频偏的斜率 (步骤 Si03 ), 最后对终端进行精确频偏校准(步骤 S105 ) , 能够有效将终端 的发射频率调整至中心频点, 提高终端发射频率的准确性, 并且该方案实现 简单, 无需借助复杂的仪器和算法。
下面将结合^图详细描述本发明的具体实施例。
根据本发明的实施例, 提供了一种频率校准方法, 用于对通过寄存器调 整频偏的终端进行频率校准。
如图 2所示, 根据本发明实施例的频率校准方法包括:
步骤 S201, 确定终端的第一寄存器 (可以认为是粗调寄存器) 被置为第 一预定值 (可以是指对第一寄存器初始设置的控制字) 的情况下, 终端发送 的信号的频率相对于中心频点的误差是否在第一预定范围内 (此时, 终端仅 在第一寄存器的控制下进行信号发送); (相当于进行粗频偏校准)
步骤 S203 , 在确定结果为是的情况下, 判断第一寄存器被置为第一预定 值、 且终端的第二寄存器 (可以认为是细调寄存器) 被置为第二预定值 (可 以是指对第二寄存器初始设置的控制字) 的情况下终端发送的信号的频率相 对于中心频点的误差是否在第二预定范围内 (其中, 第一预定范围可以大于 第二预定范围, 例如, 可以设置第一误差范围为: 终端的发射频率与中心频 率相差 800至 1200Hz, 而设置第二误差范围为:
Figure imgf000006_0001
相差 50至 120 , 具体如何配置上述两个误差范围, 可以根据实际需要灵活 步骤 S205, 在判断结果为是的情况下, 获取第二寄存器的值改变后终端 在第一寄存器和第二寄存器控制下发射的信号的频率变化情况、 第一预定值 和第二预定值。 (相当于进行精确频偏校准)
借助于上述处理, 通过设置第一寄存器对终端进行粗校准, 并且之后设 置第二寄存器的值, 对终端进行精确频率校准, 能够有效将终端的发射频率 心频点, 提高终端发射频率的准确性, 并且该方案实现筒单, 无需
Figure imgf000006_0002
其中, 如果在第一寄存器被置为第一预定值的情况下终端发送的信号的 频率相对于中心频点的误差超出第一预定范围 (也就是说, 基于第一预定值 进行信号发送时, 发送信号的频率误差过大), 则需要以第一预定方式调整第 预定值,
Figure imgf000006_0003
的信号的频率相对于中心频点的误差是否在第一预定范围内, 并在判断结果 为是的情况下将本次调整得到的第一预定值确定为需要保存的第一预定值。
其中, 第一预定方式可以是任意方式, 例如, 可以以一定步长增加或减 小第一寄存器的第一预定值, 只要能够在对第一寄存器预先配置的数值最大 范围内进行调整即可。
优选地, 为了保证调整的效率, 可以将第一寄存器的值设置为第一调整 值, 确定设置后终端发送的信号的频率相对于中心频点的误差是否在第一预 预定值;
Figure imgf000006_0004
, 其中, ¾_ ^i为第一寄存器被置为第一预定值 清况下终端发送的信号的频率相对于中心频点的误差; ROUND为取整操作;
:¾: —预定 寄存器被置为第一调整值的
Figure imgf000006_0005
这样, 通过确定第一寄: 就會够 更快地找到符合要求的第一预定值。
另夕卜, 一旦满足误差要求的第一预定值确定之后, 终端将会基于第一寄 存器和第二寄存器进行信号发送, 并 ϋ, 在确定第一寄存器被置为第一预定 值、 且终端的第二寄存器被置为第二预定值的情况下终端发送的信号的频率 相对于中心频点的误差超出第二预定范围的情况下, 需要进一步调整第二预 定值, 具体方式如下:
以第二预定方式改变第二预定值, 并在每次调整后确定终端在第一寄存 器和经本次调整的第二寄存器控制下发送的信号的频率相对于中心频点的误 差是否在第二预定范围内, 并在判断结果为是的情况下将本次调整得到的第 二预定值确定为需要保存的第二预定值。
其中, 第二预定方式可以是任意方式, 例如, 可以以一定步长增加或减 小第二寄存器的第二预定值, 只要能够在对第二寄存器预先配置的数值最大 范围内进行调整即可。
优选地, 为了保证能够尽快找到使得终端的发射频率满足要求的第二预 定值, 以第二预定方式改变第二预定值的方式如下:
将第二寄存器的值设置为第二调整值, 确定设置后终端发送的信号的频 率相对于中心频点的误差是否在第二预定范围内, 如果判断为否, 则根据以 公式确定的步长改变第二预定值;
ROUND 其中 , FreqError CAF 为第二寄存器被置为
Figure imgf000007_0001
第二预定值的情况下终端发送的信号的频 ¾对于中心频点的误差; ROUND 为取整操作;
FreError CAFC -- FreError CAF
CAFC.
CAFC ■CAFCde,!uk } * F„
苴中 CAFC
.预定值, 4F(;^ 2为第二调整值, FreEtTOr - CAFC,
为第二寄存器被置为第 二调整值的情况下终端发送的信号的频率相对于中心频点的误
心频点。
这样, 在保存第二寄存器的值改变后终端在第一寄存器和
Figure imgf000007_0002
e
Figure imgf000007_0003
FOE Slope - 2Al 6/ {CAFC slope * F
midJix为该中心频 率满足要求 (即, 终端在第一寄存器和第二寄存器的控制下发送信号的频率 相对于中心频率的误差范围在第二误差范围内),则可以省略对第二寄存器的 靠二预定值进行调整的步 ■m,
Figure imgf000008_0001
CAFC, 器和第二寄存器控制下发射的信号的频率变化情况 B寸可以直接求取
并迸行保存即可。
优选地, 考虑到以上两个寄存器初始默认值往往较为接近满足发射频率 要求的值, 所以第一设定值为第一寄存器的系统默认值, 第二设定值为第二 寄存器的系统默认值。
下面将结合具体的实例, 详细描述上述处理过程。
在实际应用当中, 可以首先搭建图 3所示的校准平台。 如图 3所示, 主 机 (例如, 可以是计算机) 和终端通过通用串行总线 ( Universal Seria BUS, 简称为 USB ) 或通用异步接收 /发送装置 ( Universal Asynchronous Receiver/Transmitter, 简称为 UART) 连接, 终端和仪器之间可以通过射频线 (RF Cable)连接, 主机和仪器之间可以通过通用接口总线( General- Purpose Interface Bus, 筒称为 GPIB ) 连接。
如图 4所示, 在进行粗频偏校准时, 过程如下:
步骤 S401,在设置终端处于发送状态后, 设置发送信号的中心频率(即, 校准的目标频率);
步骤 S402, 假设有效比特为 7B , 设定误差范围 (即, 上述的第一误差
CDAC
范围) 800〜1200Hz, 设置寄存器一(即, 上述第一寄存器) 的值为
值可以是系统默认值, 通常可以为该寄存器满量程的中间值), 并通过仪 器 (仪表) 测量终端的发送频率误差 ^^^^
步骤 S403, 判断 £m ^是否在 800至 1200范围内, 如果判断结果为
Figure imgf000008_0002
S407; 否则执行步骤 S404;
步骤 S404, 寄存器一的值为0^^
Figure imgf000008_0003
Fre __ Error, ^ 并执行步骤 S405 ;
.
步骤 S405 , 通过计算得到寄存器 -的 4¾ CD AC
Fre― Error2 -- Fre― Error
CD A C .
CDAC. - CDAC
并执行步骤 S406; CDAC
少骤 S406 , 设置
Figure imgf000009_0001
, 并— 设 CDAC CDAC.
;新基于新设置的 α¾ις
改后的 CZX4C^ft ¾行发射频率的测量;
CDAC
步骤 S407, 如果 e £m ^在允许的范围内, 则设置
保存續: ^并结束对寄存器一的校准, 执行精确频偏斜率校准。
优选地, 在进行精确频偏时, 可以预先确定第二寄存器的值与发送信号 频率误差之间的变化关系, 即, 执行图 5中的处理。
如图 5所示, 根据本发明实施例的精确频偏斜率校准过程如下: 步骤 S501 , 在终端处于发送状态的情况下, 设置中心频率为
Figure imgf000009_0002
如, 可以是 2017.4M11Z;
步骤 S502,寄存器二为射频端细调频率寄存器,假设其: 13—Bit;
Figure imgf000009_0003
设置寄存器二的值为 系统默认值 FreError CAFC,
G4FC
Figure imgf000009_0004
骤 S503 , 以一定的步长改变寄存器二的值, 将寄存器二的值设为
CAFC
测量其发送的频率 FreError CAFC,
步骤 S504, 得到寄存器二 (CAFC ) 的¾
Figure imgf000009_0005
后发送频率误差的变化情况) 为:
FreError CAFC-, - FreError CAFC,
CAFC.
CAFC. ■CAFC ■■F„„
步骤 S505, 计算寄存器二(CAFC)在各个频段的斜率值 ^ -'5^ , 具体 可以参照以下公式进行计算:
FOE __SIope
Figure imgf000009_0006
* Fmid Sx ) 其中, 为不同频带的中心 频点,之后保存所有频带的 。以 TD - SCDMA系统为例,在 2010〜2025 频段内, 其中心频点 为 2017, 4Mhz。
步骤 S506 , 通常情况下, 寄存器二的初始值不能使发射频率满足误差要 求(在第二误差范围内), 因此, 可以进行系统时钟精频偏校准。如图 6所示, 精频偏校准的过程如下:
步骤 S601, 在终端处于发送状态的情况下, 设置发送的中心频率; 步骤 S602 , 设置寄存器二的值为系统默认值 ^' ^ ' 测量其发送的频 率—;吴差为 FreError __ CAFC , · 步骤 S603 , 判断频率误差 /; e£ /w' e4F(::i是否在该寄存器允许的误差范 内, 假设该误差范围为 50〜 120Hz; 如果在允许的范围内, 则设置执行步 - m棘 8605; 否 ί亍步骤 S604;
FreqError CAFC, 、)
CAFC tuned - CAFClefault― ROUND
歩骤 S604, 设置 FOE Slope ) , H设
CDAC^ ¾!f ^ CDAC d, 并将寄存器 ί勺值设为" "^ , 重新执行步骤 S602 , 以测量其频率误差为 FreError— CAF , 直到该误差满足误差范围
步骤 CAFC
S605, CAFC^ f字 CAFC tuned w' ί: ^步骤 S606 ; 步骤 S606, 测量当前温度, 并进行保存。
优选地, 上述基于 DCXO的频率校准方法应当尽量保证在室温下进行。 如果在校准过程中, 温度变化较大, 在 CAFC校准结束时, 读取当前温度, 并将此温度值与校准参数一起保存起来。 此温度值将为幵机注册时的温度补 偿提供温度参考值, 并结束当前校准。
通过上述处理, 能够有效对 DCXO等通过寄存器进行频偏控制的振荡器 进行频率校准, 并且, 通过什算寄存器的值与频率误差的变化关系, 能够有 助于快速地确定适当的寄存器值, 进一步提高校准的效率。
根据本发明的另一实施例, 还提供了一种频率校准装置, 用于对通过寄 存器调整频偏的终端进行频率校准。
如图 7所示, 根据本发明的频率校准装置包括:
第一确定模块 71, 用于确定终端的第一寄存器被置为第一预定值的情况 发送的信号的频率相对于中心频点的误差是否在第一预定范围内; 第二确定模块 72, 连接至第一确定模块 71, 用于在第一确定模块 71的 确定结果为是的情况下, 第一寄存器被置为第一预定值、 且终端的第二 寄存器被置为第二预定值的情况下终端发送的信号的频率相对于中心频点的 误差是否在第二预定范围内;
处理模块 73 , 连接至第二确定模块 72, 用于在第二确定模块 72的判断 结果为是的情况下, 获取第二寄存器的值改变后终端在第一寄存器和第二寄 存器控制下发射的信号的频率变化情况、 第一预定值和第二预定值。
其中, 第一确定模块 71还用于在第一寄存器被置为第一预定值、且终端 发送的信号的频率相对于中心频点的误差超出第一预定范围的情况下, 以第 一预定方式调整第一预定值, 并在每次调整后确定终端在经本次调整的第一 寄存器控制下发送的信号的频率相对于中心频点的误差是否在第一预定范围 内, 并在判断结果为是的情况下将本次调整得到的第一预定值确定为需要保 存的第一预定值。
第一确定模块 7 用于将第一寄存器的值设置为第一调整值,确定设置后 终端发送的信号的频率相对于中心频点的误差是否在第一预定范围内, 如果 ^断为否, 则根据以下公式确定的步长改变第一预定值; 一寄存器被置为第一预定值 的误差; ROUND为取整操作; 其 , CDA 为第 - -预定
Figure imgf000011_0001
值, 讓— 2为第一调整值, Fre Err 为第一寄存器被置为第一调整值的 情况下终端发送的信号的频率相对于中心频点的误差。
第二确定模块 72还用于在确定第一寄存器被置为第一预定值、且终端的 第二寄存器被置为第二预定值的情况下终端发送的信号的频率相对于中心频 点的误差超出第二预定范围的情况下, 以第二预定方式改变第二预定值, 并
:/r:每次调整后确定终端在第一寄存器和经本次调整的第二寄存器控制下发送 信号的频率相对于中心频点的误差是否在第二预定范围内, 并在判断结果 情况下将本次调整得到的第二预定值确定为需要保存的第二预定值。 第二确定模块 72用于将第二寄存器的值设置为第二调整值,确定设置后 终端发送的信号的频率相对于中心频点的误差是否在第二预定范围内, 如果 的步长改变第
其中 , FreqError CAF 为第二寄存器被置为
Figure imgf000011_0002
第二预定值的情况— ί勺信号的频率相对于中心频点的误差; ROUND 为取整操作;
FreError CAFC^ -- FreError
CAFC.
并巨, CAFC、 -. CAFCde!auh * FtnidTx ; 其中, CAFC, -^
.预定值, 4Fc^-2为第二调整值, ^ ^ - ^为第二寄存器被置为第 二调整值的情况下终端发 j 号的频率相对于中心频点的误差; ^ - :3 心频点。 处理模块 73 还可以针对中心频率所在的频段确定该频段内的误差变化 斜率, 具体可以参照以下公式: F0E ~ sl° e - 2^ AFC^ F^^ c
处理模块 73 可 ffi于将 C4FC ^^作为第二寄存器的值改变后终端在第一 寄存器和第二寄存器控制下发射的信号的频率变化情况进行保存。
该装置同样能够执行方法实施例中所描述的多个处理, 其具体的工作过 程以及工作原理在方法部分已经进行了详细描述, 在此不再赘述, 参照方法 中相应部分的描述即可。
综上所述, 借助于本发明的上述技术方案, 通过设置第一寄存器对终端 进行粗校准, 并且之后设置第二寄存器的值, 对采用 DCXO等通过寄存器进 行频偏控制的振荡器的终端进行精确频率校准, 能够有效将终端的发射频率 调整至中心频点, 提高终端发射频率的准确性, 并且该方案实现筒单, 无需 借助复杂的仪器和算法; 另外, 通过计算寄存器的值与频率误差的变化关系, 能够有助于快速地确定适当的寄存器值, 进一步提高校准的效率。
以上所述仅为本发明的较佳实施例而己, 并不用以限制本发明, 凡在本 发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

1. 一种频率校准方法, 用于对通过寄存器调整频偏的终端进行频率校 准, 其特征在于, 所述方法包括:
确定所述终端的第一寄存器被置为第一预定值的情况下所述终端发送的 信号的频率相对于中心频点的误差是否在第一预定范围内;
在确定结果为是的情况下,判断所述第一寄存器被置为所述第一预定值、 且所述终端的第二寄存器被置为第二预定值的情况下所述终端发送的信号的 频率相对于中心频点的误差是否在第二预定范围内;
在判断结果为是的情况下, 获取第二寄存器的值改变后所述终端在所述 第一寄存器和所述第二寄存器控制下发射的信号的频率变化情况、 所述第一 预定值和所述第二预定值。
2. 根据权利要求 i所述的频率校准方法, 其特征在于, 如果在所述第一 一预定值的情况下所述 率相对于所述中
Figure imgf000013_0001
以第一预定方式调整所述第一预定值, 并在每次调整后确定所述终端在 经本次调整的第一寄存器控制下发送的信号的频率相对于所述中心频点的误 差是否在所述第一预定范围内, 并在判断结果为是的情况下将本次调整得到 的第一预定值确定为需要保存的第一预定值。
3, 根据权利要求 2所述的频率校准方法, 其特征在于, 以所述第一预定 方式改变所述第一预定值包括:
将所述第一寄存器的值设置为第一调整值, 确定设置后所述终端发送的 信号的频率相对于所述中心频点的误差是否在所述第一预定范围内, 如果 断为否, 贝搬据以下公式确定的步长改文 述第一预定值;
ROUND
CDACslope 冲, J r0r、为所述第一寄存器被置为所述第 况下所述终端发送的信号的频率相对于中心频点的误差; ROUND 为取整操作:
Fre Error2― Fre Err or x
CDAC
CDAC ■CDAC Si Φ 为所述第一 CD AC
预定值, '为所述第一调整值, Fre - 为所述第一寄存 ¾ 所述第一调整值的情况下所述终端发送的信号的频率相对于中心频点
4. 根据权利要求 i所述的频率校准方法, 其特征在于, 在判斷 寄存器被置为所述第一预定值、 且所述终端的第二寄存器被置为第二预定值 的情况下所述终端发送的信号的频率相对于中心频点的误差超出所述第二预 定范围的情况下, 所述方法进一步包括:
以第二预定方式改变所述第二预定值, 并在每次调整后确定所述终端在
Figure imgf000014_0001
号的频率相对于 所述中心频点的误差
Figure imgf000014_0002
£判断结果 情况
I每本次调整得到的第二预定值确定为需要保存的第二预定值。
5. 根据权利要求 4所述的频率校准方法, 其特征在于, 以所述第二预定 方式改变所述第二预定值包括- 将所述第二寄存器的值设置为第二调整值, 确定设置后所述终端发送的 信号的频率相对于所述中心频点的误差是否在所述第二预定范围内, 如果判 断为否, 则根据以下公式确定的步长改变所述第二预定值;
CAFQ 其中, FreqError 为所述第二寄存器被
、 FOE Slope 1 —―
置为所述第二预定值的情况下所述终端发送的信号的频率相对于中心频点的 ; H ROUND为取整操作;
Fre Error CAFC - FreError CAFC,
CAFC
' CAFC
并且 . 其中 《 为所 预定值, CAFC 为所述第二调整值, 丽— CAFC2为所述第二寄 存器被置为所述第二调整值的情况下所述终端发送的信号的频率相对于中心 频点的误差; 为所述中心频点。
6. 根据权利要求 5所述的频率校准方法, 其特征在于, 保存第二寄存器 的值改变后所述终端在所述第一寄存器和所述第二寄存器控制下发射的信号
Figure imgf000014_0003
根据以下公式确定所述中心频率所在频段的误差 ,斜率 FOE― Slope FOE ^ Slope - 2^ 6/{CAFCs!ope ^ Fmid 廿 ,
. !:::! fl
为所述中心频率; 保存确定的 ^0^5^。
8. 根据权利要求 所述的频率校准方法, 其特征在于, 所述第一设定值 为所述第一寄存器的系统默认值; 所述第二设定值为所述第二寄存器的系统 默认值。
9. 一种频率校准装置, 用于对通过寄存器调整频偏的终端进行频率校 准, 其特征在于, 所述装置包括:
第一确定模块, 用于确定所述终端的第一寄存器被置为第一预定值的情 况下, 所述终端发送的信号的频率相对于中心频点的误差是否在第一预定范 围内;
第二确定模块, 用于在所述第一确定模块的确定结果为是的情况下, 判 断所述第一寄存器被置为所述第一预定值、 ϋ所述终端的第二寄存器被置为 第二预定值的情况下, 所述终端发送的信号的频率相对于中心频点的误差是 否在第二预定范围内;
处理模块, 用于在所述第二确定模块的判断结果为是的情况下, 获取第 二寄存器的值改变后所述终端在所述第一寄存器和所述第二寄存器控制下发 射的信号的频率变化情况、 所述第一预定值和所述第二预定值。
10. 根据权利要求 9所述的频率校准装置, 其特征在于, 所述第一确定 模块还 ^于在所述第一寄存器被置为第一预定值、 且所述终端发送的信号的 频率相对于所述中心频点的误差超出所述第一预定范围的情况下, 以第一预 定方式调整所述第一预定值, 并在每次调整后确定所述终端在经本次调整的 第一寄存器控制下发送的信号的频率相对于所述中心频点的误差是否在所述 第一预定范围内, 并在判断结果为是的情况下将本次调整得到的第一预定值 确定为需要保存的第一预定值。
11. 根据权利要求 10所述的频率校准装置, 其特征在于, 所述第一确定 模块用于将所述第一寄存器的值设置为第一调整值, 确定设置后所述终端发 送的信号的频率相对于所述中心频点的误差是否在所述第一预定范围内, 如 果判断为否, 则根据以 Τ公式确定的步长改变所述第一预定值;
ROUND 、
、. CDACs;ope 其中, Freq_Errori为所述第一寄存器被置为所述第 预定值的情况下所述终端发送的信号的频率相对于中心频点的误差; ROUND Fre― Error2― Fre― Errorx
CD AC s.lope
CDA Cvalue 2— CZ14C
并且 ; d. efault 仁 tf , CDA Cdefauk为 γ沐 "^' 预定值, "Mt^ 2为所述: Fre
-调整值 斤述第一寄存器被置为 所述第一调整值的情况下所述终端发送 号的频率相对于中心频点的误
12. 根据权利要求 9 所述的频率校准装置, 其特征在于, 所述第二确定 模块还 ^于在判断所述第一寄存器被置为所述第一预定值、 且所述终端的第 二寄存器被置为第二预定值的情况下所述终端发送的信号的频率相对于中心 频点的误差超出所述第二预定范围的情况下, 以第二预定方式改变所述第二 预定值, 并在每次调整后确定所述终端在所述第一寄存器和经本次调整的第 二寄存器控制下发送的信号的频率相对于所述中心频点的误差是否在所述第 二预定范围内, 并在判断结果为是的情况下将本次调整得到的第二预定值确 定为需要保存的第二预定值。
13. 根据权利要求 12所述的频率校准装置, 其特征在于, 所述第二确定 模块用于将所述第二寄存器的值设置为第二调整值, 确定设置后所述终端发 送的信号的频率相对于所述中心频点的误差是否在所述第二预定范围内, 如 果判断为否 则根据以下公式确定的步长改变所述第二预定值;
rror― CAFC,
ROUND FreqError CAFQ为所述第二寄存器
FOE Slope
置为所述第二预定值的情况下所述终端发送的信号的频率相对于中心频点的 误差; ROUND为取整操作;
FreError CAFC^ - FreError CAFC.
CAFC.
AFCKlkie 2 - AFCd ,au!i ) * Fm
并且, 其中, CAFC ' 为所 述第二预定值, ^ 2为所述第二调整值, ^^^-c^^为所述第二寄 存器被置为所述第二调整值的情况下所述终端发送的信号的频率相对于中心 频点的误差; 为所述中心频点。
14. 根据权利要求 13所述的频率校准装置, 其特征在于, 所述处理模块 还用于将 β作为第二寄存器的值改变后所述终端在所述第一寄存器和 所述第二寄存器控制下发射的信号的频率变化情况进行保存。
PCT/CN2012/071052 2011-02-16 2012-02-13 频率校准方法和装置 WO2012109965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110039362.8 2011-02-16
CN201110039362.8A CN102185663B (zh) 2011-02-16 2011-02-16 频率校准方法和装置

Publications (1)

Publication Number Publication Date
WO2012109965A1 true WO2012109965A1 (zh) 2012-08-23

Family

ID=44571738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071052 WO2012109965A1 (zh) 2011-02-16 2012-02-13 频率校准方法和装置

Country Status (2)

Country Link
CN (1) CN102185663B (zh)
WO (1) WO2012109965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549720A (zh) * 2016-10-13 2017-03-29 广东欧珀移动通信有限公司 一种改善移动终端射频频偏的方法和移动终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185663B (zh) * 2011-02-16 2014-07-30 意法·爱立信半导体(北京)有限公司 频率校准方法和装置
WO2013163802A1 (zh) * 2012-05-03 2013-11-07 海能达通信股份有限公司 一种终端及终端的频率校准方法
CN104883231B (zh) * 2015-05-28 2018-01-12 深圳市共进电子股份有限公司 一种无线路由器的频率偏移较准方法和装置
CN105471522B (zh) * 2015-11-13 2018-01-23 太仓市同维电子有限公司 一种基于统计数据和特征曲线的频率偏移校准方法
CN110488091B (zh) * 2018-12-07 2021-06-08 合肥本源量子计算科技有限责任公司 一种基于串扰分析的超导量子比特调控方法
CN112671494B (zh) * 2020-12-21 2024-03-12 广州粒子微电子有限公司 自动调整时钟频偏的方法及装置
CN113434008B (zh) * 2021-06-25 2022-09-16 紫光展锐(重庆)科技有限公司 一种校准方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951016A (zh) * 2003-12-19 2007-04-18 皇家飞利浦电子股份有限公司 用于压控频率发生器中的干扰补偿的方法和装置
US20070258524A1 (en) * 2006-05-02 2007-11-08 Faraday Technology Corp. Phase offset tracking method for tracking a phase offset and device thereof
CN101277288A (zh) * 2007-03-30 2008-10-01 中兴通讯股份有限公司 正交频分复用系统的频率同步方法
JP2010016723A (ja) * 2008-07-04 2010-01-21 Toyota Industries Corp 周波数補正システム及び受信機
CN101753171A (zh) * 2008-12-16 2010-06-23 中兴通讯股份有限公司 移动通信中的频偏估计与补偿方法
CN102185663A (zh) * 2011-02-16 2011-09-14 意法·爱立信半导体(北京)有限公司 频率校准方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248124B2 (en) * 2004-03-22 2007-07-24 Mobius Microsystems, Inc. Frequency calibration for a monolithic clock generator and timing/frequency reference
US7250825B2 (en) * 2004-06-04 2007-07-31 Silicon Labs Cp Inc. Method and apparatus for calibration of a low frequency oscillator in a processor based system
CN101051837B (zh) * 2006-04-07 2011-08-10 盛群半导体股份有限公司 Usb接口内建式振荡器的频率校正装置及其方法
US7859343B2 (en) * 2006-11-13 2010-12-28 Industrial Technology Research Institute High-resolution varactors, single-edge triggered digitally controlled oscillators, and all-digital phase-locked loops using the same
CN101127507A (zh) * 2007-09-19 2008-02-20 鼎芯通讯(上海)有限公司 一种利用校准算法实现频率控制的方法及装置
US8222962B2 (en) * 2007-09-28 2012-07-17 Realtek Semiconductor Corp. High-resolution digitally controlled oscillator and method thereof
US7675370B2 (en) * 2008-06-12 2010-03-09 Qualcomm Incorporated Dynamic calibration techniques for digitally controlled oscillator
CN101753287A (zh) * 2008-11-28 2010-06-23 上海芯略电子科技有限公司 全数字全集成的频率综合发生器及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951016A (zh) * 2003-12-19 2007-04-18 皇家飞利浦电子股份有限公司 用于压控频率发生器中的干扰补偿的方法和装置
US20070258524A1 (en) * 2006-05-02 2007-11-08 Faraday Technology Corp. Phase offset tracking method for tracking a phase offset and device thereof
CN101277288A (zh) * 2007-03-30 2008-10-01 中兴通讯股份有限公司 正交频分复用系统的频率同步方法
JP2010016723A (ja) * 2008-07-04 2010-01-21 Toyota Industries Corp 周波数補正システム及び受信機
CN101753171A (zh) * 2008-12-16 2010-06-23 中兴通讯股份有限公司 移动通信中的频偏估计与补偿方法
CN102185663A (zh) * 2011-02-16 2011-09-14 意法·爱立信半导体(北京)有限公司 频率校准方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549720A (zh) * 2016-10-13 2017-03-29 广东欧珀移动通信有限公司 一种改善移动终端射频频偏的方法和移动终端

Also Published As

Publication number Publication date
CN102185663B (zh) 2014-07-30
CN102185663A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012109965A1 (zh) 频率校准方法和装置
US8130892B2 (en) ADPLL frequency synthesizer
CN108736984B (zh) 射频模块的频偏校准方法及装置
JP4929429B2 (ja) 通信システムで使用される水晶のための周波数オフセット補正技術
WO2016206384A1 (zh) 晶体振荡器电路、晶体振荡器电路的调谐方法及存储介质
CN107525968B (zh) 一种基于压控晶体振荡器的频率测量系统
US7619465B2 (en) filter circuit and semiconductor device
CN103149970A (zh) 时钟校准的方法和系统
CN113114108A (zh) 一种估计晶振频率的方法
CN106330134B (zh) 一种晶体振荡器电路及其调谐方法
CN109067475B (zh) 射频模块的频偏校准方法及系统
CN112083226A (zh) 电子设备的频率校准方法、装置、介质及电子设备
CN105811964A (zh) 射频通信终端
US7576621B2 (en) Film bulk acoustic resonator calibration
CN115699583A (zh) 具有谐振器的无线电装置
JP2009260598A (ja) 無線装置
US6970701B1 (en) Radio calibration by correcting the crystal frequency
CN111694399B (zh) 调整显示时钟的方法及装置
TWI789080B (zh) 振盪器頻率調整查找表建立方法及相關傳收器
CN111669155B (zh) 时钟校正方法与校正电路和参考时钟产生方法与产生电路
JP4683032B2 (ja) 無線通信機
US8994466B2 (en) Methods for addressing aging of XO crystals
CN116185128B (zh) Mcu芯片内部时钟校准方法及电路
CN109358236A (zh) 用于测量电阻的电路和方法
CN115002892B (zh) 降低窄带系统晶振温漂影响的方法、终端及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12747061

Country of ref document: EP

Kind code of ref document: A1