WO2012109877A1 - 小区搜索方法和装置 - Google Patents

小区搜索方法和装置 Download PDF

Info

Publication number
WO2012109877A1
WO2012109877A1 PCT/CN2011/077948 CN2011077948W WO2012109877A1 WO 2012109877 A1 WO2012109877 A1 WO 2012109877A1 CN 2011077948 W CN2011077948 W CN 2011077948W WO 2012109877 A1 WO2012109877 A1 WO 2012109877A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
points
searched
cell
signal
Prior art date
Application number
PCT/CN2011/077948
Other languages
English (en)
French (fr)
Inventor
张家佶
黄宇宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2011800015603A priority Critical patent/CN102318410B/zh
Priority to PCT/CN2011/077948 priority patent/WO2012109877A1/zh
Publication of WO2012109877A1 publication Critical patent/WO2012109877A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a cell search method and apparatus. Background technique
  • WC Li A deploys different frequency bands in different regions, taking the frequency band (BAND) I as an example, its frequency bandwidth is 60MHz, and a total of 277 effective frequency points.
  • BAND frequency band
  • 3GPP Third Generation Partnership Project
  • the embodiments of the present invention provide a cell search method and device, which greatly shortens the cell search time, and there is no problem in the prior art that the search miss alarm and the search rate are difficult to balance.
  • an embodiment of the present invention provides a cell search method, including: collecting baseband data on each to-be-searched frequency point obtained by dividing a frequency band to be searched; and performing fast Fourier on each of the baseband data. Spectrum analysis of the power spectrum obtained by the leaf transformation; when determining one or more frequency points to be searched as the effective cell frequency point according to the spectrum analysis result, A cell search is performed within a frequency offset range of the effective cell frequency point.
  • An embodiment of the present invention provides a cell search apparatus, including:
  • a collection module configured to collect baseband data on each of the to-be-searched frequency points obtained after dividing the frequency band to be searched;
  • a spectrum analysis module configured to perform spectrum analysis on a power spectrum obtained by performing fast Fourier transform on each of the baseband data
  • the cell search module is configured to perform cell search in a frequency offset range of the effective cell frequency point when determining that one or more to-be-searched frequency points are valid cell frequency points according to the spectrum analysis result.
  • a method and a device for searching a cell by collecting baseband data on each frequency to be searched in a frequency band to be searched, and performing FFT on the baseband data, performing spectrum analysis on the power spectrum obtained after the FFT, Determining, according to the result of the spectrum analysis, whether the frequency to be searched is a valid cell frequency point, and performing cell search in a frequency offset range of the effective cell frequency point; compared with the prior art, the baseband signal of each frequency point is compared with the prior art.
  • the spectrum analysis is performed to quickly locate the effective cell frequency point of the cell signal, and the frequency range of the cell search is reduced from all effective frequency points to the effective cell frequency point, which greatly shortens the search time. Meanwhile, the search is not performed in this embodiment. If there is no cell signal at those frequency points, there is no possibility of missing the frequency of the cell signal in the search process. In this embodiment, there is no difficulty in balancing the search miss alarm and the search rate in the prior art. The problem.
  • Embodiment 1 is a flowchart of Embodiment 1 of a cell search method according to the present invention
  • Embodiment 1 is a flowchart of Embodiment 2 of a cell search method according to the present invention
  • FIG. 3 is a schematic diagram of an original power spectrum in Embodiment 2 of a cell search method according to the present invention
  • 4 is a schematic diagram of a power spectrum after splicing in a second embodiment of a cell search method according to the present invention
  • FIG. 5 is a schematic diagram of a moving average curve in a second embodiment of a cell search method according to the present invention
  • FIG. 7 is a structural diagram of Embodiment 2 of a cell search apparatus according to the present invention. detailed description
  • FIG. 1 is a flowchart of Embodiment 1 of a cell search method according to the present invention. As shown in FIG. 1 , this embodiment provides a cell search method, which may specifically include the following steps:
  • Step 101 Collect baseband data sequentially on each frequency to be searched after dividing the frequency band to be searched.
  • the to-be-searched frequency band is first divided to obtain the divided frequency to be searched, and the frequency band to be searched may be defined by the 3GPP protocol.
  • the minimum interval between the frequencies of the two active cells is subject to the minimum interval.
  • the baseband data is separately collected at each frequency to be searched.
  • the working frequency points of the radio frequency device may be sequentially configured as the frequency to be searched, at each frequency to be searched.
  • the baseband data is separately collected, and the baseband I and Q data after the analog front-end analog-to-digital conversion (ADC).
  • ADC analog front-end analog-to-digital conversion
  • Step 102 Perform spectrum analysis on a power spectrum obtained by performing fast Fourier transform on each of the baseband data.
  • the present embodiment After the baseband data is collected on each of the to-be-searched frequency points, the present embodiment performs a Fast Fourier Transform (hereinafter referred to as FFT) on the baseband data, and further obtains each The power spectrum corresponding to the frequency to be searched, and the spectrum analysis of the power spectrum is performed to obtain a spectrum analysis result.
  • FFT Fast Fourier Transform
  • the spectrum analysis here can be specifically calculated to calculate the frequency peak, signal energy, noise energy and the like.
  • Step 103 Perform, when the one or more to-be-searched frequency points are valid cell frequency points according to the spectrum analysis result, performing cell search in a frequency offset range of the effective cell frequency points.
  • determining whether the frequency to be searched is a valid cell frequency point by using the spectrum analysis result, for example, determining the signal to noise ratio at the frequency point obtained by the spectrum analysis result. Whether the frequency is a valid cell frequency point.
  • cell search is performed only within the frequency offset range of these effective cell frequency points, without The cell search is performed on the remaining non-effective cell frequencies.
  • the embodiment provides a cell search method, by collecting baseband data on each frequency to be searched in a frequency band to be searched, and performing FFT on the baseband data, performing spectrum analysis on the power spectrum obtained after the FFT, according to spectrum analysis. As a result, it is determined whether the frequency to be searched is a valid cell frequency point, and the cell search is performed within a frequency offset range of the effective cell frequency point. Compared with the prior art, the present embodiment performs spectrum analysis on the baseband signal of each frequency point.
  • FIG. 2 is a flowchart of Embodiment 2 of a cell search method according to the present invention. As shown in FIG. 1 , this embodiment provides a cell search method, which is specifically applied to a WC MN A cell search scenario. This embodiment may specifically include the following steps. :
  • Step 201 Obtain a frequency division number according to a frequency band bandwidth of the frequency band to be searched and a normalized frequency band value.
  • the number of frequency division points N may be obtained according to the frequency band bandwidth and the normalized frequency band value of the frequency band to be searched, and the following formula may be used. (1) to get the specific value of N:
  • Bandwidth is the bandwidth of the frequency band to be searched
  • NormF is the normalized frequency band value
  • NormF can be set according to the minimum interval of two effective frequency points, and two effective frequencies defined in the 3GPP protocol.
  • the minimum spacing of the points is 4.4MHz, so the NormF is usually set to 5MHz.
  • the frequency bandwidth is 60MHz
  • the frequency division number N is 11.
  • Step 202 Average the frequency bands to be searched according to the number of frequency divisions.
  • the frequency band to be searched is equally divided and divided into
  • Step 203 Collect baseband data on a frequency to be searched.
  • the present embodiment separately analyzes and determines the power spectrum of each to-be-searched frequency point by sequentially configuring the frequency of the front-end RF device to each of the to-be-searched frequency points.
  • the baseband data is collected at a frequency to be searched, and specifically, the baseband I and Q data after the M-group front-end ADC are continuously connected.
  • M is the total number of samples, for example, it can be set to 512.
  • the baseband data obtained by the set can be expressed by the following formula (2): ⁇ ;. "'?
  • Step 204 Perform fast Fourier transform on the baseband data according to the set total number of sampling points and the sampling frequency, and respectively generate power spectra corresponding to the baseband data.
  • FIG. 3 is a cell search of the present invention.
  • 4 is a schematic diagram of a spliced power spectrum in the second embodiment of the cell search method of the present invention. In this embodiment, the power spectrum of FIG. 3 is spliced to obtain the power spectrum shown in FIG. 4.
  • Step 205 Acquire, by the sliding window, an average of the center frequency points corresponding to the frequency peaks of the power spectrum.
  • the sliding window is cumulatively averaged to calculate the moving average of the spectrum.
  • the sliding window length win_length 128 sample points. That is, in the power frequency language shown in FIG. 4, the power value corresponding to a total of 128 frequency points on the left and right is cumulatively averaged with each frequency point in the figure as the center, and the average value is used as the sliding window corresponding to the frequency point. Accumulate the average processed power value.
  • Step 206 Generate a signal to noise ratio at the center frequency point according to the calculated signal energy and noise energy at the center frequency point.
  • the signal energy and noise energy at the center frequency can be calculated.
  • the noise energy at the center frequency it can be calculated according to the power spectrum, the number of sample points corresponding to the standard frequency bandwidth, and the length of the guard band.
  • the signal-to-noise ratio at the center frequency can be further calculated, which can be calculated by the following formula (4):
  • Step 207 Determine whether the signal to noise ratio of the center frequency point is greater than a preset signal to noise ratio threshold. If yes, go to step 208. Otherwise, go to step 209.
  • the spectrum analysis result is obtained, and according to the spectrum analysis result, whether the frequency to be searched is a valid cell frequency point is determined. Specifically, after calculating a signal to noise ratio at a center frequency corresponding to a frequency to be searched, determining whether the signal to noise ratio is greater than a preset signal to noise ratio threshold, where the signal to noise ratio threshold may be Set to 10, if yes, go to step 208, otherwise go to step 209.
  • Step 208 Determine a frequency of the to-be-searched frequency corresponding to the center frequency point as a valid cell frequency point, perform a cell search in a frequency offset range of the effective cell frequency point, and continue to perform step 210.
  • the cell search can be performed within the frequency offset range of the effective cell frequency point.
  • the specific cell search method can be similar to the existing ones, that is, in the case where there is no a priori information, the three-step search is usually used: First, the slot synchronization is obtained by using a primary synchronization code (Pr imary Synchronization code; PSC).
  • PSC primary synchronization code
  • the scrambling code group number by using Secondary Synchronization Code (SSC) or frame boundary; finally, each scrambling code in the scrambling code group is sequentially and the common pilot signal.
  • SSC Secondary Synchronization Code
  • the channel is matched and filtered to obtain the correct scrambling information.
  • the above cell search process may be simplified as follows: After obtaining the slot timing according to the PSC, the scrambling code information is directly used for matching filtering with each slot position to quickly obtain the frame timing information.
  • Step 209 Determine that there is no cell signal in the vicinity of the frequency to be searched corresponding to the center frequency point, and continue to perform step 210.
  • the signal-to-noise ratio at the center frequency corresponding to the frequency to be searched is less than or equal to the preset SNR threshold, indicating that there is no cell signal at the frequency to be searched, determining that the frequency to be searched is not valid
  • the cell frequency point does not need to perform cell search in the frequency offset range of the effective cell frequency point, and continues to perform the subsequent step 210.
  • Step 210 Determine whether the spectrum analysis of all the to-be-searched frequency points in the to-be-searched frequency band is currently completed. If yes, the process ends. Otherwise, the foregoing step 203 is continued to perform spectrum analysis and determination on the next to-be-searched frequency point.
  • the signal-to-noise ratio calculated according to the above scheme does not exceed the preset signal-to-noise ratio threshold, and the spectrum of the current sample result is The analysis will not be considered as a valid cell frequency, but will be considered successful in the spectrum analysis of the next sample to be searched.
  • the bandwidth of the frequency band is 60 MHz, and there are 276 effective frequency points.
  • the embodiment provides a cell search method, by collecting baseband data on each frequency to be searched in a frequency band to be searched, and performing FFT on the baseband data, performing spectrum analysis on the power spectrum obtained after the FFT, according to spectrum analysis. As a result, it is determined whether the frequency to be searched is a valid cell frequency point, and the cell search is performed within a frequency offset range of the effective cell frequency point.
  • the present embodiment passes the frequency domain feature of the WCDMA spread spectrum signal.
  • the spectrum analysis of the WCDMA spread spectrum signal can quickly locate the effective cell frequency point of the cell signal, and narrow the frequency range of the cell search from all effective frequency points to the effective cell frequency point, thereby greatly shortening the search time;
  • the cell signal is not present at the frequency point where the search is not performed, and the frequency of the cell signal is not missed during the search, and the present embodiment does not have the search for the missed alarm in the prior art.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 6 is a structural diagram of Embodiment 1 of a cell search apparatus according to the present invention. As shown in FIG. 6, this embodiment is shown in FIG. A cell search device is provided, and the steps in the first embodiment of the foregoing method are specifically performed, and details are not described herein again.
  • the cell search apparatus provided in this embodiment may specifically include a collection module 601, a spectrum analysis module 602, and a cell search module 603.
  • the collection module 601 is configured to collect baseband data on each of the to-be-searched frequency points obtained after dividing the frequency band to be searched.
  • the spectrum analysis module 602 is configured to perform spectrum analysis on a power spectrum obtained by performing fast Fourier transform on each of the baseband data.
  • the cell search module 603 is configured to perform cell search in a frequency offset range of the effective cell frequency point when determining that one or more to-be-searched frequency points are valid cell frequency points according to the spectrum analysis result.
  • FIG. 7 is a structural diagram of Embodiment 2 of a cell search apparatus according to the present invention. As shown in FIG. 7, this embodiment provides a cell search apparatus, which may specifically perform the steps in the second embodiment of the foregoing method, and details are not described herein again. .
  • the cell search apparatus provided in this embodiment is based on the foregoing FIG. 6, and the spectrum analysis module 602 may specifically include a Fourier transform unit 612, an acquisition unit 622, and a calculation unit 632.
  • the Fourier transform unit 612 is configured to perform fast Fourier transform on each of the baseband data according to the set total number of samples and the sampling frequency, and respectively generate power spectra corresponding to the respective baseband data.
  • the obtaining unit 622 is configured to obtain the center frequency point corresponding to the spectrum peak of each power spectrum by averaging through the sliding window.
  • the calculating unit 632 is configured to generate a signal to noise ratio at each of the center frequency points according to the calculated signal energy and noise energy at each of the center frequency points.
  • the calculating unit 632 may specifically include a first calculating subunit 6321, a second calculating subunit 6322, and a third calculating subunit 6323.
  • the first calculating sub-unit 6321 is configured to separately calculate signal energy of each center frequency point according to each of the power spectrum and the number of sampling points corresponding to the standard frequency bandwidth, where the standard frequency band corresponds to the sampling point The number is calculated based on the total number of sample points, the sampling frequency, and the standard frequency bandwidth.
  • the second calculating subunit 6322 is configured to calculate noise energy at each of the center frequency points according to each of the power spectrum, the number of sampling points corresponding to the standard frequency bandwidth, and the guard band length.
  • the third calculating subunit 6323 is configured to calculate a signal to noise ratio of each of the center frequency points according to signal energy at each of the central frequency points and noise energy at each of the center frequency points.
  • the cell search module 603 in this embodiment may specifically include a frequency point determination list. Element 61 3 and cell search unit 623.
  • the frequency point determining unit 61 3 is configured to determine, when the signal to noise ratio of the one or more center frequency points is greater than a preset signal to noise ratio threshold, respectively, the frequency points to be searched for each of the center frequency points are Effective cell frequency.
  • the cell search unit 623 is configured to perform cell search within a frequency offset range of the effective cell frequency point.
  • the cell search apparatus may further include an obtaining module 701 and a dividing module 702.
  • the obtaining module 701 is configured to obtain the frequency division number according to the frequency band bandwidth and the normalized frequency band value of the frequency band to be searched.
  • the dividing module 702 is configured to average divide the frequency bands to be searched according to the frequency division number of the frequency points.
  • the present embodiment provides a cell search apparatus, which performs spectrum analysis on a power spectrum obtained after FFT by performing baseband data on each to-be-searched frequency point in a frequency band to be searched, and performs spectrum analysis on the power spectrum obtained by the FFT, according to spectrum analysis. As a result, it is determined whether the frequency to be searched is a valid cell frequency point, and the cell search is performed within a frequency offset range of the effective cell frequency point.
  • the present embodiment passes the frequency domain feature of the WCDMA spread spectrum signal.
  • the spectrum analysis of the WCDMA spread spectrum signal can quickly locate the effective cell frequency point of the cell signal, and narrow the frequency range of the cell search from all effective frequency points to the effective cell frequency point, thereby greatly shortening the search time;
  • the cell signal is not present at the frequency point where the search is not performed, and the frequency of the cell signal is not missed during the search, and the present embodiment does not have the search for the missed alarm in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

小区搜索方法和装置 技术领域
本发明实施例涉及通信技术, 尤其涉及一种小区搜索方法和装置。 背景技术
在宽带码分多址 ( Wideband Code Divi s ion Mul t iple Acces s ; 以下简 称: WC丽 A ) 系统中, 在多种场景下都需要进行小区搜索, 以同步系统帧头, 获取小区扰码信息。 WC丽 A在不同的地区部署使用不同的频段,以频段( BAND ) I为例, 其频带宽度为 60MHz , —共包含 277个有效频点。 目前, 第三代合作 伙伴计划 ( The 3rd Generat ion Par tnershi p Project ; 以下简称: 3GPP )对 WC丽 A 定义了十几个频段, 以便在不同的国家和地区部署, 一般的终端解决 方案均需要同时支持 3-4个频段, 则有效频点约有 800个。 在没有任何先验 信息的前提下, 至少需要 1-2分钟时间才能将频点完全扫描一遍来完成小区 搜索。
在现有技术中, 为了缩短小区搜索时间, 通常通过网络侧下发频点, 并 按照设定的规律进行跳跃搜索, 其尽管能在一定程度上缩短小区搜索时间, 但同时也会带来搜索漏警和搜索速率之间难以平衡的新问题。 发明内容
本发明实施例在于提供一种小区搜索方法和装置, 大大缩短小区搜索时 间, 同时也不存在现有技术中搜索漏警和搜索速率之间难以平衡的问题。
为了实现上述目的, 本发明实施例提供了一种小区搜索方法, 包括: 在对待搜索频段进行划分后得到的各待搜索频点上分别釆集基带数据; 对各所述基带数据进行快速傅里叶变换得到的功率频谱进行频谱分析; 当根据频谱分析结果确定一个或多个待搜索频点为有效小区频点时, 在 所述有效小区频点的频偏范围内进行小区搜索。
本发明实施例提供了一种小区搜索装置, 包括:
釆集模块, 用于在对待搜索频段进行划分后得到的各待搜索频点上分别 釆集基带数据;
频谱分析模块, 用于对各所述基带数据进行快速傅里叶变换得到的功率 频谱进行频谱分析;
小区搜索模块, 用于当根据频谱分析结果确定一个或多个待搜索频点为 有效小区频点时, 在所述有效小区频点的频偏范围内进行小区搜索。
本发明实施例提供的一种小区搜索方法和装置, 通过在待搜索频段中的 各待搜索频点上釆集基带数据, 并对基带数据进行 FFT, 对 FFT后得到的功 率频谱进行频谱分析, 根据频谱分析结果来确定待搜索频点是否为有效小区 频点, 并在有效小区频点的频偏范围内进行小区搜索; 与现有技术相比, 本 实施例通过对各频点的基带信号进行频谱分析, 快速定位出存在小区信号的 有效小区频点,将小区搜索的频点范围从所有有效频点缩小到有效小区频点, 大大缩短了搜索时间; 同时, 本实施例中未进行搜索的那些频点上不存在小 区信号, 则在搜索过程中不会出现漏掉存在小区信号的频点的情况, 则本实 施例也不存在现有技术中搜索漏警和搜索速率之间难以平衡的问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明小区搜索方法实施例一的流程图;
图 1为本发明小区搜索方法实施例二的流程图;
图 3为本发明小区搜索方法实施例二中的原始功率频谱示意图; 图 4为本发明小区搜索方法实施例二中的拼接后的功率频谱示意图; 图 5为本发明小区搜索方法实施例二中的滑动平均曲线示意图; 图 6为本发明小区搜索装置实施例一的结构图;
图 7为本发明小区搜索装置实施例二的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明小区搜索方法实施例一的流程图, 如图 1所示, 本实施例 提供了一种小区搜索方法, 可以具体包括如下步骤:
步骤 101 , 在对待搜索频段进行划分后得到的各待搜索频点上依次釆集 基带数据。
在本实施例中, 当在一个待搜索频段上进行小区搜索时, 先对该待搜索 频段进行划分处理, 得到划分后的各待搜索频点, 对待搜索频段进行划分时 可以以 3GPP协议定义的两个有效小区频点的最小间隔为准。本步骤为在各待 搜索频点上分别釆集基带数据, 在划分得到各待搜索频点后, 可以将射频器 件的工作频点依次配置为各待搜索频点, 在各待搜索频点上分别釆集基带数 据, 具体可以为釆集前端模拟数字转换( Ana log-to-Dig i ta l Convers ion; 以下简称: ADC )后的基带 I,Q数据。
步骤 102 , 对各所述基带数据进行快速傅里叶变换得到的功率频谱进行 频谱分析。
在釆集到各待搜索频点上的基带数据之后, 本实施例对该基带数据进行 快速傅里叶变换(Fas t Four ier Transform; 以下简称: FFT ) , 进而得到各 待搜索频点对应的功率频谱, 并对功率频谱进行频谱分析, 得到频谱分析结 果。 此处的频谱分析可以具体为计算频语峰值、 信号能量、 噪声能量等。
步骤 103 , 当根据频谱分析结果确定一个或多个待搜索频点为有效小区 频点时, 在所述有效小区频点的频偏范围内进行小区搜索。
经过对各待搜索频点对应的功率频谱的分析, 通过频谱分析结果确定各 待搜索频点是否为有效小区频点, 例如, 可以根据频谱分析结果得到的频点 上的信噪比来判断该频点是否为有效小区频点。 当根据频谱分析结果确定一 个或多个待搜索频点为有效小区频点时, 表明在这些频点上存在小区信号, 则只在这些有效小区频点的频偏范围内进行小区搜索, 无需在其余非有效小 区频点上进行小区搜索。
本实施例提供了一种小区搜索方法, 通过在待搜索频段中的各待搜索频 点上釆集基带数据, 并对基带数据进行 FFT, 对 FFT后得到的功率频谱进行 频谱分析, 根据频谱分析结果来确定待搜索频点是否为有效小区频点, 并在 有效小区频点的频偏范围内进行小区搜索; 与现有技术相比, 本实施例通过 对各频点的基带信号进行频谱分析, 快速定位出存在小区信号的有效小区频 点, 将小区搜索的频点范围从所有有效频点缩小到有效小区频点, 大大缩短 了搜索时间; 同时, 本实施例中未进行搜索的那些频点上不存在小区信号, 则在搜索过程中不会出现漏掉存在小区信号的频点的情况, 则本实施例也不 存在现有技术中搜索漏警和搜索速率之间难以平衡的问题。
图 2为本发明小区搜索方法实施例二的流程图, 如图 1所示, 本实施例 提供了一种小区搜索方法, 具体应用于 WC丽 A小区搜索场景, 本实施例可以 具体包括如下步骤:
步骤 201 , 根据待搜索频段的频段带宽和归一化频段值获取频点划分份 数。
在本实施例中, 在对待搜索频段进行划分时, 可以先根据该待搜索频段 的频段带宽和归一化频段值来获取频点划分份数 N, 具体可以釆用如下公式 ( 1 )来得到 N的具体值:
,r Bandwidth Λ
NormF
( 1 )
其中, 編为取整操作, Bandwidth为待搜索频段的频段带宽, NormF 为归一 化频段值, NormF可以根据两个有效频点的最小间隔来设定,在 3GPP协议中 定义的两个有效频点的最小间隔为 4.4MHz, 因此通常将 NormF设定为 5MHz。 以 BAND I为例, 其频带宽度为 60MHz, 则频点划分份数 N为 11。
步骤 202, 根据频点划分份数将待搜索频段进行平均划分。
在计算得到频点划分份数后, 对待搜索频段进行平均划分, 将其划分为
N份, 可以分别记为 ¾Mi = {F0, FY,... , FN、。 仍以 BAND I为例, 则划分后 得到 12个待搜索频点, 如频率值分别为 0, 5, 10, ..., 60的频点。
步骤 203, 在一个待搜索频点上釆集基带数据。
当获取到待搜索频段内的各待搜索频点后, 本实施例通过依次将前端射 频器件的频率配置为各待搜索频点, 来分别对各待搜索频点的功率频谱进行 分析判断。 本步骤为在一个待搜索频点上釆集基带数据, 具体可以为同时连 续釆集 M组前端 ADC后的基带 I, Q数据。 此处的 M为总釆样点个数, 例如可 以将其设定为 512。 釆集得到的基带数据可以如下式(2 )所示: ϋ ;。 "'? ^。' J ( 2 ) 其中, X = 0, N , 代表第 X个待搜索频点, 、 ^… ^为 M组基带 I 数据, 。、 …^为 M组基带 Q数据, 即釆集得到的基带数据为复数形式。 步骤 204, 根据设定的总釆样点个数和釆样频率对基带数据进行快速傅 里叶变换, 并分别生成基带数据对应的功率频谱。
在釆集到一个待搜索频点上的基带数据后,根据设定的总釆样点个数和 釆样频率对该基带数据进行快速傅里叶变换, 即对 DFx做 M点的 FFT。 此处 以总釆样点个数 M=512, 釆样频率 Fs=15.36MHz为例, 图 3为本发明小区搜 索方法实施例二中的原始功率频谱示意图, 对在待搜索频点 0 (MHz)上釆集 的基带数据/ ^做 FFT后, 可以得到图 3所示的功率频谱。 图 4为本发明小区 搜索方法实施例二中的拼接后的功率频谱示意图, 本实施例对上述图 3的功 率频谱进行拼接处理, 得到图 4所示的功率频谱。
步骤 205 , 通过滑窗累加平均获取功率频谱的频语峰值对应的中心频点。 在上述图 4所示的功率频语基础之上, 对其进行滑窗累加平均, 计算该 频谱的滑动平均, 此处可以假设滑窗长度 win— length=128个釆样点。 即在图 4所示的功率频语中, 以图中每个频点为中心, 将其左右一共 128个频点对 应的功率值进行累加平均, 以该平均值作为该频点对应的滑窗累加平均处理 后的功率值。 当釆样点不足 128个时, 则按照实际釆样点个数进行平均, 得 到图 5所示的滑窗平均曲线。从图 5中可以直接找到该功率频谱的频语峰值, 进而获取到该频谱峰值对应的中心频点, 此处得到的中心频点为 Fcenter=0. 03MHz。
当一个频点上存在两个有效 WC丽 A小区时, 通常从滑窗平均曲线中可以 得到两个频谱峰值, 进而得到两个中心频点。 在本实施例中, 也可以在通过 滑窗平均找到功率频谱的最大值的坐标 Fcenter 后, 可以在 ( Fcenter+std_points )或 ( Fcenter-std_points )处查找另夕卜一个峰值, J¾处的 std_points为标准频带宽度对应的釆样点个数。令 WC丽 A频谱标准频带宽度为 std_bw=3. 84MHz, std— bw对应的釆样点个数 std_points可以釆用下述公式( 3 ) 计算得到:
std_points=M*(std_bw/Fs)=512*(3.84/ 15.36)= 128 ( 3 )
步骤 206 , 根据计算得到的中心频点上的信号能量和噪声能量分别生成 中心频点上的信噪比。
在获取到待搜索频点对应的中心频点后, 对功率频谱进行进一步的频谱 分析, 可以计算该中心频点上的信号能量和噪声能量。 在计算中心频点上的 信号能量时, 可以根据功率频谱和标准频带宽度对应的釆样点个数来计算, 具体可以在中心频点左右各取 std_points/2=64个点, 以这 128个频点对应的 功率值的平均值作为该中心频点上的信号能量 Psig。 在计算中心频点上的噪 声能量时, 可以根据功率频谱、 标准频带宽度对应的釆样点个数和保护带长 度来计算, 此处假设保护带长度为 win— buffer=std_points/20, 即约等于 6, 并 令噪声计算点数 noise_length=std_points/2=64 , 在中心频点向左或向右 (std_points+win— buffer)起计算 noise— length个点对应的功率值的平均值, 将 该平均值作为中心频点上的噪声能量 Pnoi。 在计算得到中心频点上的信号能 量和噪声能量后, 便可以进一步计算该中心频点上的信噪比, 具体可以釆用 下述公式(4 ) 来计算得到:
SNR=10*lg(Psig/Pnoi) (4)
步骤 207 , 判断该中心频点上的信噪比是否大于预设的信噪比门限值, 如果是, 则执行步骤 208 , 否则执行步骤 209。
经过上述频谱分析过程得到频谱分析结果, 可以根据该频谱分析结果来 确定待搜索频点是否为有效小区频点。 具体地, 在计算得到一个待搜索频点 对应的中心频点上的信噪比后,判断该信噪比是否大于预设的信噪比门限值, 此处的信噪比门限值可以设置为 10, 如果是, 则执行步骤 208 , 否则执行步 骤 209。
步骤 208 , 确定该中心频点对应的待搜索频点为有效小区频点, 在该有 效小区频点的频偏范围内进行小区搜索, 并继续执行步骤 210。
当待搜索频点对应的中心频点上的信噪比大于预设的信噪比门限值时, 表明该待搜索频点上存在小区信号, 则确定该待搜索频点为有效小区频点, 则可以在该有效小区频点的频偏范围内进行小区搜索。 具体的小区搜索方法 可以与现有类似, 即在没有先验信息的情况下, 通常釆用三步法搜索: 先通 过主同步码(Pr imary Synchronizat ion Code; 以下简称: PSC )获得时隙同 步; 再通过辅同步码 ( Secondary Synchronizat ion Code; 以下简称: SSC ) 或者帧边界获得扰码组号; 最后将该扰码组内的每个扰码依次与公共导频信 道进行匹配滤波, 以获得正确的扰码信息。 在存在先验扰码信息时, 可以将 上述小区搜索过程简化为: 根据 PSC获得时隙定时后, 直接使用扰码信息与 各个时隙位置进行匹配滤波, 以快速获得帧定时信息。
步骤 209 , 确定该中心频点对应的待搜索频点附近不存在小区信号, 并 继续执行步骤 210。
当待搜索频点对应的中心频点上的信噪比小于或等于预设的信噪比门限 值时, 表明该待搜索频点上不存在小区信号, 则确定该待搜索频点不是有效 小区频点, 则无需在该有效小区频点的频偏范围内进行小区搜索, 并继续执 行后续步骤 210。
步骤 210 , 判断当前是否完成待搜索频段内的所有待搜索频点的频谱分 析, 如果是, 则结束本流程, 否则继续执行上述步骤 203 , 对下一个待搜索 频点进行频谱分析和判断。
在完成一个待搜索频点的上述步骤 203-209 的频谱分析和判断之后, 不 管该频点是否为有效小区频点, 均判断该频点是否为待搜索频段内的最后一 个待搜索频点, 即判断当前是否完成待搜索频段内的所有待搜索频点的频谱 分析, 如果是, 则结束本流程, 否则继续执行上述步骤 203 , 对下一个待搜 索频点进行频谱分析和判断, 直到将所有待搜索频点均进行频谱分析和判断 为止。
在本实施例中, 当某个待搜索频点上存在全球移动通讯系统 (Globa l Sys tem of Mobi le communicat ion; 以下简称: GSM )信号时, 由于其频谱有 效带宽与 WC丽 A不同, 仅为 200KHz , 因此, 在计算信噪比时, 便可以直接将 该信号的功率值滤除掉, 而不会影响 WC丽 A信噪比计算的准确性。
在本实施例中, 对于有效带宽背抗混叠滤波器截止的情况, 根据上述方 案计算得到的信噪比不会超过预设的信噪比门限值, 其在当次釆样结果的频 谱分析中不会被认为是有效小区频点, 但在下一个待搜索频点的釆样结果的 频谱分析中则会被认定成功。 以 BAND I作为待搜索频段为例, 其频段带宽为 60MHz , —共有 276个有 效频点, WC丽 A扩频信号的有效带宽为 5MHz , 则令 N=60/5=12。 且4 设没有 任何先验信息。 如果使用默认的方法搜索, 则搜索一个频点需要 3-9帧的时 间, 此处按照 5帧计算, 对半数有效频点进行全搜索, 一共需要 5 X 10ms X 276 / 2 = 69 s , 约需要 1分钟。 而如果按照本实施例的上述方案搜索, 且当 该频段上存在一个有效小区频点, 则有效小区频点必然落在某一个区间内, 大约需要进行 4-6次小区搜索, 按照 6次计算, 一共需要 5 X 10ms x 6 = 3s , 仅是现有搜索时间的 1 /20。 最恶劣的情况下, 若该频段上有 12个有效频点, 且分别落在 12个区间内, 则搜索时间一共约需要 36 s , 也比原来节省一半左 右的时间。 因此, 本实施例的小区搜索效率相比于现有技术得到大大提高。
本实施例提供了一种小区搜索方法, 通过在待搜索频段中的各待搜索频 点上釆集基带数据, 并对基带数据进行 FFT, 对 FFT后得到的功率频谱进行 频谱分析, 根据频谱分析结果来确定待搜索频点是否为有效小区频点, 并在 有效小区频点的频偏范围内进行小区搜索; 与现有技术相比, 本实施例根据 WCDMA扩频信号的频域特征 ,通过对 WCDMA扩频信号的频谱分析 ,可以 快速定位出存在小区信号的有效小区频点, 将小区搜索的频点范围从所有有 效频点缩小到有效小区频点, 大大缩短了搜索时间; 同时, 本实施例中未进 行搜索的那些频点上不存在小区信号, 则在搜索过程中不会出现漏掉存在小 区信号的频点的情况, 则本实施例也不存在现有技术中搜索漏警和搜索速率 之间难以平衡的问题。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 6为本发明小区搜索装置实施例一的结构图, 如图 6所示, 本实施例 提供了一种小区搜索装置, 可以具体执行上述方法实施例一中的各个步骤, 此处不再赘述。 本实施例提供的小区搜索装置可以具体包括釆集模块 601、 频谱分析模块 602和小区搜索模块 603。 其中, 釆集模块 601用于在对待搜 索频段进行划分后得到的各待搜索频点上分别釆集基带数据。 频谱分析模块 602 用于对各所述基带数据进行快速傅里叶变换得到的功率频谱进行频谱分 析。 小区搜索模块 603用于当根据频谱分析结果确定一个或多个待搜索频点 为有效小区频点时, 在所述有效小区频点的频偏范围内进行小区搜索。
图 7为本发明小区搜索装置实施例二的结构图, 如图 7所示, 本实施例 提供了一种小区搜索装置, 可以具体执行上述方法实施例二中的各个步骤, 此处不再赘述。 本实施例提供的小区搜索装置在上述图 6所示的基础之上, 频谱分析模块 602可以具体包括傅里叶变换单元 612、 获取单元 622和计算 单元 632。 其中, 傅里叶变换单元 612用于根据设定的总釆样点个数和釆样 频率对各所述基带数据进行快速傅里叶变换, 并分别生成所述各基带数据对 应的功率频谱。 获取单元 622用于通过滑窗累加平均获取各功率频谱的频谱 峰值对应的中心频点。 计算单元 632用于根据计算得到的各所述中心频点上 的信号能量和噪声能量分别生成所述各中心频点上的信噪比。
进一步地, 计算单元 632可以具体包括第一计算子单元 6321、 第二计算 子单元 6322和第三计算子单元 6323。 其中, 第一计算子单元 6321用于根据 各所述功率频谱和标准频带宽度对应的釆样点个数分别计算所述各中心频点 上的信号能量, 所述标准频带宽度对应的釆样点个数为根据所述总釆样点个 数、 所述釆样频率和所述标准频带宽度计算得到的。 第二计算子单元 6322用 于根据各所述功率频谱、 所述标准频带宽度对应的釆样点个数和保护带长度 计算所述各中心频点上的噪声能量。第三计算子单元 6323用于根据所述各中 心频点上的信号能量和所述各中心频点上的噪声能量分别计算所述各中心频 点上的信噪比。
更进一步地, 本实施例中的小区搜索模块 603可以具体包括频点确定单 元 61 3和小区搜索单元 623。 其中, 频点确定单元 61 3用于当一个或多个中 心频点上的信噪比大于预设的信噪比门限值时, 分别确定各所述中心频点对 应的待搜索频点为有效小区频点。 小区搜索单元 623用于在所述有效小区频 点的频偏范围内进行小区搜索。
更进一步地, 本实施例提供的小区搜索装置还可以包括获取模块 701和 划分模块 702。 其中, 获取模块 701 用于根据待搜索频段的频段带宽和归一 化频段值获取频点划分份数。 划分模块 702用于根据所述频点划分份数将所 述待搜索频段进行平均划分。
本实施例提供了一种小区搜索装置, 通过在待搜索频段中的各待搜索频 点上釆集基带数据, 并对基带数据进行 FFT, 对 FFT后得到的功率频谱进行 频谱分析, 根据频谱分析结果来确定待搜索频点是否为有效小区频点, 并在 有效小区频点的频偏范围内进行小区搜索; 与现有技术相比, 本实施例根据 WCDMA扩频信号的频域特征,通过对 WCDMA扩频信号的频谱分析,可以 快速定位出存在小区信号的有效小区频点, 将小区搜索的频点范围从所有有 效频点缩小到有效小区频点, 大大缩短了搜索时间; 同时, 本实施例中未进 行搜索的那些频点上不存在小区信号, 则在搜索过程中不会出现漏掉存在小 区信号的频点的情况, 则本实施例也不存在现有技术中搜索漏警和搜索速率 之间难以平衡的问题。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种小区搜索方法, 其特征在于, 包括:
在对待搜索频段进行划分后得到的各待搜索频点上分别釆集基带数据; 对各所述基带数据进行快速傅里叶变换得到的功率频谱进行频谱分析; 当根据频谱分析结果确定一个或多个待搜索频点为有效小区频点时, 在 所述有效小区频点的频偏范围内进行小区搜索。
2、 根据权利要求 1所述的方法, 其特征在于, 所述对各所述基带数据进 行快速傅里叶变换得到的功率频谱进行频谱分析包括:
根据设定的总釆样点个数和釆样频率对各所述基带数据进行快速傅里叶 变换, 并分别生成所述各基带数据对应的功率频谱;
通过滑窗累加平均获取各功率频谱的频语峰值对应的中心频点; 根据计算得到的各所述中心频点上的信号能量和噪声能量分别生成所述 各中心频点上的信噪比。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据计算得到的各所 述中心频点上的信号能量和噪声能量分别生成所述各中心频点上的信噪比包 括:
根据各所述功率频谱和标准频带宽度对应的釆样点个数分别计算所述各 中心频点上的信号能量, 所述标准频带宽度对应的釆样点个数为根据所述总 釆样点个数、 所述釆样频率和所述标准频带宽度计算得到的;
根据各所述功率频谱、 所述标准频带宽度对应的釆样点个数和保护带长 度计算所述各中心频点上的噪声能量;
根据所述各中心频点上的信号能量和所述各中心频点上的噪声能量分别 计算所述各中心频点上的信噪比。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述当根据频谱分析 结果确定一个或多个待搜索频点为有效小区频点时, 在所述有效小区频点的 频偏范围内进行小区搜索包括: 当一个或多个中心频点上的信噪比大于预设的信噪比门限值时, 分别确 定各所述中心频点对应的待搜索频点为有效小区频点;
在所述有效小区频点的频偏范围内进行小区搜索。
5、 根据权利要求 1所述的方法, 其特征在于, 还包括:
根据待搜索频段的频段带宽和归一化频段值获取频点划分份数; 根据所述频点划分份数将所述待搜索频段进行平均划分。
6、 一种小区搜索装置, 其特征在于, 包括:
釆集模块, 用于在对待搜索频段进行划分后得到的各待搜索频点上分别 釆集基带数据;
频谱分析模块, 用于对各所述基带数据进行快速傅里叶变换得到的功率 频谱进行频谱分析;
小区搜索模块, 用于当根据频谱分析结果确定一个或多个待搜索频点为 有效小区频点时, 在所述有效小区频点的频偏范围内进行小区搜索。
7、 根据权利要求 6所述的装置, 其特征在于, 所述频谱分析模块包括: 傅里叶变换单元, 用于根据设定的总釆样点个数和釆样频率对各所述基 带数据进行快速傅里叶变换, 并分别生成所述各基带数据对应的功率频谱; 获取单元, 用于通过滑窗累加平均获取各功率频谱的频谱峰值对应的中 心频点;
计算单元, 用于根据计算得到的各所述中心频点上的信号能量和噪声能 量分别生成所述各中心频点上的信噪比。
8、 根据权利要求 7所述的装置, 其特征在于, 所述计算单元包括: 第一计算子单元, 用于根据各所述功率频谱和标准频带宽度对应的釆样 点个数分别计算所述各中心频点上的信号能量, 所述标准频带宽度对应的釆 样点个数为根据所述总釆样点个数、 所述釆样频率和所述标准频带宽度计算 得到的;
第二计算子单元, 用于根据各所述功率频谱、 所述标准频带宽度对应的 釆样点个数和保护带长度计算所述各中心频点上的噪声能量;
第三计算子单元, 用于根据所述各中心频点上的信号能量和所述各中心 频点上的噪声能量分别计算所述各中心频点上的信噪比。
9、 根据权利要求 7或 8所述的装置, 其特征在于, 所述小区搜索模块包 括:
频点确定单元, 用于当一个或多个中心频点上的信噪比大于预设的信噪 比门限值时, 分别确定各所述中心频点对应的待搜索频点为有效小区频点; 小区搜索单元, 用于在所述有效小区频点的频偏范围内进行小区搜索。
10、 根据权利要求 6所述的装置, 其特征在于, 还包括:
获取模块, 用于根据待搜索频段的频段带宽和归一化频段值获取频点划 分份数;
划分模块,用于根据所述频点划分份数将所述待搜索频段进行平均划分。
PCT/CN2011/077948 2011-08-03 2011-08-03 小区搜索方法和装置 WO2012109877A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800015603A CN102318410B (zh) 2011-08-03 2011-08-03 小区搜索方法和装置
PCT/CN2011/077948 WO2012109877A1 (zh) 2011-08-03 2011-08-03 小区搜索方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077948 WO2012109877A1 (zh) 2011-08-03 2011-08-03 小区搜索方法和装置

Publications (1)

Publication Number Publication Date
WO2012109877A1 true WO2012109877A1 (zh) 2012-08-23

Family

ID=45429454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077948 WO2012109877A1 (zh) 2011-08-03 2011-08-03 小区搜索方法和装置

Country Status (2)

Country Link
CN (1) CN102318410B (zh)
WO (1) WO2012109877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640139A (zh) * 2015-02-12 2015-05-20 成都大公博创信息技术有限公司 一种高铁通信的干扰检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533607B (zh) * 2013-09-18 2017-01-25 华为技术有限公司 一种频段搜索方法及装置
CN104754698B (zh) * 2013-12-31 2019-06-18 联芯科技有限公司 快速驻留的小区搜索方法及移动终端
CN103957556B (zh) * 2014-04-17 2017-04-05 京信通信系统(广州)有限公司 Lte 信号检测方法及系统
CN107506551B (zh) * 2017-08-25 2021-04-27 海能达通信股份有限公司 一种通道成型滤波器的设计方法及相关设备
CN110086740B (zh) * 2019-05-14 2022-04-05 中国铁道科学研究院集团有限公司通信信号研究所 一种基于频谱分析的数字编码fsk轨道电路信息解调方法
CN111163029B (zh) * 2019-12-27 2022-04-22 重庆物奇科技有限公司 一种增强机器类通信e-MTC的定位参考信号搜索方法
CN113133018A (zh) * 2021-04-21 2021-07-16 重庆第二师范学院 一种应用于5g新空口的初始小区搜索方法、介质及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859666A (zh) * 2005-04-30 2006-11-08 大唐移动通信设备有限公司 一种移动通信终端的小区搜索方法及其装置
CN101102121A (zh) * 2007-06-14 2008-01-09 重庆重邮信科(集团)股份有限公司 时分-同步码分多址系统的全频段频点扫描方法
CN101557604A (zh) * 2008-04-11 2009-10-14 中兴通讯股份有限公司 邻小区指示信息的获取方法及无线接入网系统
CN102045815A (zh) * 2009-10-10 2011-05-04 中国科学院计算技术研究所 用于lte系统的小区搜索装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296553B1 (ko) * 2009-11-30 2013-08-13 한국전자통신연구원 단말기 및 기지국, 그리고, 그들의 주파수 센싱 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859666A (zh) * 2005-04-30 2006-11-08 大唐移动通信设备有限公司 一种移动通信终端的小区搜索方法及其装置
CN101102121A (zh) * 2007-06-14 2008-01-09 重庆重邮信科(集团)股份有限公司 时分-同步码分多址系统的全频段频点扫描方法
CN101557604A (zh) * 2008-04-11 2009-10-14 中兴通讯股份有限公司 邻小区指示信息的获取方法及无线接入网系统
CN102045815A (zh) * 2009-10-10 2011-05-04 中国科学院计算技术研究所 用于lte系统的小区搜索装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640139A (zh) * 2015-02-12 2015-05-20 成都大公博创信息技术有限公司 一种高铁通信的干扰检测方法
CN104640139B (zh) * 2015-02-12 2018-10-02 成都大公博创信息技术有限公司 一种高铁通信的干扰检测方法

Also Published As

Publication number Publication date
CN102318410B (zh) 2013-12-04
CN102318410A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012109877A1 (zh) 小区搜索方法和装置
EP2659607B1 (en) Methods for cell search in synchronous interference limited channels
US8498640B2 (en) Fast radio access technology detection for cell search
CN102356671B (zh) 一种通信系统频段搜索的方法和装置
JP5384640B2 (ja) 同時同期チャネル検索
CN102421114B (zh) 一种lte系统的同频邻区搜索装置和方法
US8467787B2 (en) Method and apparatus for searching for modes and frequencies
WO2012068853A1 (zh) 一种wcdma小区搜索方法及装置
JPWO2005088855A1 (ja) 無線通信システム用のセル・サーチ方法
US9065586B2 (en) Carrier detection and parallel GSM cell search in multimode terminals
CN108377174B (zh) 一种nb-iot同频小区的检测方法及装置
CN111093252B (zh) 一种窄带物联网NB-IoT的分层快速搜索方法
CN110677364B (zh) 一种检测主同步信号的方法及检测装置
CN111885633B (zh) 一种nr系统的同频邻区检测方法及装置
CN1217504C (zh) 获得通信质量的装置和方法
US9369948B2 (en) Method and related mobile device for cell search in multi radio access technology systems
CN105634542A (zh) 一种td-scdma多小区搜索方法
EP4270826B1 (en) Systems and methods for fast acquisition of a primary synchronization signal for 5g new radio network
US7366141B2 (en) Cell search method and apparatus in a WCDMA system
CN113163424B (zh) 用于检测设备的nr小区pss搜索方法与检测设备
EP3742817A1 (en) A method of neighbor cell detection
CN103096452B (zh) 获取fb的方法和装置
JP5952397B2 (ja) Lteシステムにおける端末による隣接セルの自動サーチ及び追加方法、並びに端末
KR20110009552A (ko) 다중 셀 간섭에 강인한 프레임 동기 획득 방법과 이를 이용한 셀 탐색 방법
CN113253214B (zh) 一种信道间的相位校正方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001560.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858868

Country of ref document: EP

Kind code of ref document: A1