WO2012108604A1 - 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치 - Google Patents

무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치 Download PDF

Info

Publication number
WO2012108604A1
WO2012108604A1 PCT/KR2011/007419 KR2011007419W WO2012108604A1 WO 2012108604 A1 WO2012108604 A1 WO 2012108604A1 KR 2011007419 W KR2011007419 W KR 2011007419W WO 2012108604 A1 WO2012108604 A1 WO 2012108604A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
relay node
base stations
srn
terminals
Prior art date
Application number
PCT/KR2011/007419
Other languages
English (en)
French (fr)
Inventor
김학성
양모찬
유성철
신오순
신요안
Original Assignee
(주)엘지전자
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지전자, 성균관대학교산학협력단 filed Critical (주)엘지전자
Priority to US13/984,772 priority Critical patent/US9426811B2/en
Priority to KR1020137021041A priority patent/KR101784040B1/ko
Publication of WO2012108604A1 publication Critical patent/WO2012108604A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present disclosure relates to a wireless access system, and more particularly, to a method and an apparatus for avoiding inter-cell interference (ICI).
  • ICI inter-cell interference
  • 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) -Advanced is a next-generation mobile communication system standard that expands cell coverage by installing relay nodes (RNs) in shaded areas and cell boundary areas. It supports multi-hop relay transmission technology that can be provided.
  • RNs relay nodes
  • Orthogonal Frequency-Division Multiple Access (OFDMA) technology is a modulation and demodulation scheme for overcoming multipath fading in a wireless channel, and uses multiple subcarriers to flexibly allocate time, frequency, and power resources to multiple users. There is an advantage to this.
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • RA Resource Allocation
  • OFDMA Resource Allocation
  • a method of reallocating a resource in which collision occurs within relay node coverage to avoid inter-cell interference (ICI) while implementing a full dynamic RA method for each cell The purpose is to provide.
  • the present specification relates to a method for a relay node (RN) to reallocate resources to avoid inter-cell interference (ICI) in a radio access system, wherein a plurality of base stations are the coverage of each base station.
  • RN relay node
  • ICI inter-cell interference
  • the performing of the resource reassignment process may include exchanging a resource region where the collision occurs with a resource region allocated to terminals outside the relay node coverage.
  • the exchanging with the resource region may include a signal-to-interference plus noise ratio (SINR) value of the resource region in which the collision occurs and a resource region allocated to terminals outside the relay node coverage. Comparing the SINR values respectively; And determining, as a result of the comparison, a resource region having a smallest difference in SINR value as a resource region to be exchanged.
  • SINR signal-to-interference plus noise ratio
  • the present specification is characterized by further comprising the step of transmitting downlink or uplink data to the terminal through the reallocated resource region.
  • the plurality of base stations may perform a dynamic resource allocation process based on Full Frequency Reuse (FFR).
  • FFR Full Frequency Reuse
  • the plurality of base stations may include three base stations, and the relay node may be a shared relay node (SRN) shared by the three base stations.
  • SRN shared relay node
  • performing the resource reallocation process may include classifying all terminals within the relay node coverage into terminals corresponding to the respective base stations; And transmitting ratio information on the classified terminals to each base station.
  • the control channel or the data is transmitted through a specific subframe, and the specific subframe includes a first time zone and a second time zone, and the first time zone. And the second time zone includes a downlink region and an uplink region, respectively.
  • the first time zone is characterized in that the signal is transmitted and received between the base station and the terminal
  • the second time zone is characterized in that the signal is transmitted and received between the base station and the terminal and / or relay node.
  • the relay node is characterized in that using the plurality of base stations and X2 signaling.
  • control channel is characterized in that the PDCCH or PUCCH.
  • the step of reallocating the resource may include transmitting information indicating the resource area where the collision occurs to the plurality of base stations.
  • the present specification is a relay node (RN) for reallocating resources to avoid inter-cell interference (ICI) in a radio access system, for transmitting and receiving radio signals with the outside Wireless communication unit; And a processor connected to the wireless communication unit, wherein the processor controls a plurality of base stations to overhear a control channel including downlink or uplink resource allocation information transmitted to terminals within coverage of each base station. Compares resource regions allocated to terminals within the relay node coverage through the control channel to determine whether there is a resource region in which a collision occurs; and if there is a resource region in which collision occurs, the collision occurs. Control to perform a resource reallocation process for the resource area, characterized in that the plurality of base stations share the relay node.
  • RN relay node
  • ICI inter-cell interference
  • the processor may control to perform the resource reallocation process by exchanging a resource region where the collision occurs with a resource region allocated to terminals outside the relay node coverage.
  • the processor compares a signal-to-interference plus noise ratio (SINR) value of the resource region where the collision occurs with a SINR value of a resource region allocated to terminals outside the relay node coverage, respectively.
  • SINR signal-to-interference plus noise ratio
  • the processor may control the wireless communication unit to transmit downlink or uplink data to the terminal through the reallocated resource region.
  • the plurality of base stations may perform a dynamic resource allocation process based on Full Frequency Reuse (FFR).
  • FFR Full Frequency Reuse
  • the processor may classify all the terminals within the relay node coverage into terminals corresponding to the respective base stations, and control the wireless communication unit to transmit ratio information about the classified terminals to the respective base stations. do.
  • the processor may control the wireless communication unit to transmit the information indicating the resource region where the collision occurs to the plurality of base stations.
  • ICI Inter-Cell Interference
  • FIG. 1 is a diagram illustrating a configuration of a relay backhaul link and a relay access link in a wireless communication system 100 to which an embodiment of the present specification can be applied.
  • FIG. 2 is an internal block diagram of a base station 110 and a repeater 120 in a wireless communication system 100 to which an embodiment of the present disclosure can be applied.
  • FIG. 3 is a diagram illustrating a multi-cell shared relay structure to which an embodiment of the present specification can be applied.
  • FIGS. 4 (a) to (c) are diagrams illustrating a case where interference between neighbor cells occurs in a shared relay node based network structure.
  • FIG. 5 illustrates a frame structure for applying a dynamic relay allocation method based on a shared relay node (SRN) to which an embodiment of the present specification can be applied.
  • SRN shared relay node
  • FIG. 6 (a) and (b) are diagrams illustrating signal transmission operations in respective time zones centered on the shared relay node SRN of FIG. 5.
  • SRN shared relay node
  • FIGS. 8 (a) to (c) are diagrams illustrating a case in which a collision occurs because the same resource block (RB) is allocated to terminals of a cell edge when each base station uses a dynamic resource allocation method.
  • FIGS. 9 (a) to (c) are diagrams illustrating the division of RBs in a cell structure based on a shared relay node (SRN) according to the first embodiment of the present specification.
  • FIG. 10 is a diagram illustrating an actual case of a collision resource block (RB) in a shared relay node (SRN) based cell structure according to the first embodiment of the present specification.
  • FIG. 11 is a diagram illustrating a resource reallocation process for avoiding collision resource block (RB) in a shared relay node (SRN) based cell structure according to the first embodiment of the present specification.
  • FIG. 12 is a diagram illustrating a resource reallocation method for ICI avoidance according to a third embodiment of the present specification.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), and an advanced mobile station (AMS).
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • the repeater may be variously referred to as a relay node (RN), a relay station (RS), a relay, or the like.
  • a user equipment and a repeater may receive information from a base station through downlink, and the terminal and repeater may also transmit information through uplink.
  • the information transmitted or received by the terminal and the repeater includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal and the repeater.
  • FIG. 1 is a diagram illustrating a configuration of a relay backhaul link and a relay access link in a wireless communication system 100 to which an embodiment of the present specification can be applied.
  • each of the uplink and downlink carrier frequencies while introducing a role of forwarding the link connection between the base station 110 and the terminal 130 to the repeater 120.
  • Two kinds of links with different attributes are applied to the band.
  • the connection link portion established between the link between the base station and the repeater is defined as a backhaul link.
  • the transmission is performed in the frequency division duplex (FDD) or the time division duplex (TDD) method using the downlink resource, and is called backhaul downlink, and the transmission is performed in the FDD or TDD method using the uplink resource. It can be expressed as a backhaul uplink.
  • FDD frequency division duplex
  • TDD time division duplex
  • the part of the connection link established between the relay and the terminals is defined and represented as a relay access link.
  • a relay access link transmits using a downlink frequency band (in case of FDD) or a downlink subframe (in case of TDD), it is expressed as an access downlink and an uplink frequency band (in case of FDD).
  • TDD uplink subframe
  • the relay RN may receive information from the base station through the relay backhaul downlink, and may transmit information to the base station through the relay backhaul uplink.
  • the repeater may transmit information to the terminal through the relay access downlink, and may receive information from the terminal through the relay access uplink.
  • the repeater may perform an initial cell search operation such as synchronization with the base station. To this end, the repeater may receive a synchronization channel from the base station, synchronize with the base station, and obtain information such as a cell ID. Subsequently, the repeater may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the repeater may check the channel state of the relay backhaul downlink by receiving a relay backhaul downlink reference signal in an initial cell search step. The repeater may receive more detailed system information by receiving a relay-physical downlink control channel (R-PDCCH) and / or a relay-physical downlink control channel (R-PDSCH).
  • R-PDCCH relay-physical downlink control channel
  • R-PDSCH relay-physical downlink control channel
  • the repeater may perform a random access procedure (Random Access Procedure) to the base station.
  • the repeater may transmit a preamble through a physical random access channel (PRACH) and the like, and receive a response message for the random access through the R-PDCCH and the corresponding R-PDSCH.
  • PRACH physical random access channel
  • contention resolution procedures such as transmission of additional physical random access channels and R-PDCCH / R-PDSCH reception may be performed.
  • the repeater performing the above-described procedure is a general uplink / downlink signal transmission procedure, and then the R-PDCCH / R-PDSCH and the relay-physical uplink shared channel (R-PUSCH) / relay- A physical uplink control channel (R-PUCCH: Relay-Physical Uplink Control CHannel) transmission may be performed.
  • R-PUSCH relay-physical uplink shared channel
  • R-PUCCH Relay-Physical Uplink Control CHannel
  • the control information transmitted from the repeater to the base station through the uplink or received from the repeater by the base station includes an ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank.
  • An indicator (Rank Indicator, RI) may be included.
  • the repeater may transmit the above-described control information such as CQI, PMI, RI, etc. through the R-PUSCH / R-PUCCH.
  • FIG. 2 is an internal block diagram of a base station 110 and a repeater 120 in a wireless communication system 100 to which an embodiment of the present disclosure can be applied.
  • the wireless communication system 200 may include one or more base stations and / or one or more repeaters. .
  • the base station 110 includes a transmit (Tx) data processor 111, a symbol modulator 112, a transmitter 113, a transmit / receive antenna 114, a processor 115, a memory 116, and a receiver ( 117, symbol demodulator 118, and receive data processor 119.
  • Tx transmit
  • symbol modulator 112 the base station 110 includes a transmit (Tx) data processor 111, a symbol modulator 112, a transmitter 113, a transmit / receive antenna 114, a processor 115, a memory 116, and a receiver ( 117, symbol demodulator 118, and receive data processor 119.
  • the transmitter 113 and the receiver 117 may be represented by a radio (RF) communication unit.
  • RF radio
  • the repeater 120 may include a transmit (Tx) data processor 127, a symbol modulator 128, a transmitter 129, a transmit / receive antenna 121, a processor 125, a memory 126, a receiver 122, and a symbol. Demodulator 123, a receive data processor 124. Although antennas 114 and 121 are shown as one at base station 110 and repeater 120, respectively, base station 110 and repeater 120 are equipped with a plurality of antennas. Similarly, transmitter 129 and receiver 122 may be represented by a radio (RF) communication unit.
  • RF radio
  • the base station 110 and the repeater 120 according to the present invention supports a multiple input multiple output (MIMO) system.
  • the base station 110 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 111 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 112 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 112 multiplexes data and pilot symbols and sends it to the transmitter 113.
  • each transmission symbol may be a data symbol, a pilot symbol, or a null signal value.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexing (FDM), orthogonal frequency division multiplexing (OFDM), time division multiplexing (TDM), or code division multiplexing (CDM) symbols.
  • Transmitter 113 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) these analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the downlink signal, which is then transmitted to the repeater via antenna 114.
  • the antenna 121 receives the downlink signal from the base station and provides the received signal to the receiver 122.
  • Receiver 122 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 123 demodulates the received pilot symbols and provides them to the processor 125 for channel estimation.
  • the symbol demodulator 123 also receives a frequency response estimate for the downlink from the processor 125 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 124. Receive data processor 124 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • Processing by the symbol demodulator 123 and the receiving data processor 124 is complementary to processing by the symbol modulator 112 and the transmitting data processor 111 at the base station 110, respectively.
  • Repeater 120 is on the uplink, and transmit data processor 127 processes the traffic data to provide data symbols.
  • the symbol modulator 128 can receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 129.
  • the transmitter 129 receives and processes a stream of symbols to generate an uplink signal, which is transmitted to the base station 110 through the antenna 121.
  • an uplink signal from the repeater 120 is received through the antenna 114, and the receiver 117 processes the received uplink signal to obtain samples.
  • the symbol demodulator 118 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • Receive data processor 119 processes the data symbol estimates to recover traffic data sent from repeater 120.
  • Processors 115 and 125 of repeater 120 and base station 110 respectively direct (eg, control, coordinate, manage, etc.) operation at repeater 120 and base station 110.
  • Each processor 115, 125 may be coupled with memory units 116, 126 that store program codes and data.
  • Memory units 116 and 126 are coupled to processor 115 to store operating systems, applications, and general files.
  • the processors 115 and 125 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. Meanwhile, the processors 115 and 125 may be implemented by hardware or firmware, software, or a combination thereof. When implementing embodiments of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) configured to perform the present invention.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field Programmable Gate Arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be included in the processors 115 and 125 or may be stored in the memories 116 and 126 to be driven by the processors 115 and 125.
  • the layers of the air interface protocol between the repeater and the base station between the wireless communication system (network) are based on the first three layers (L1), the second layer ( L2), and the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the repeater, the base station can exchange RRC messages through the wireless communication network and the RRC layer.
  • FIG. 3 is a diagram illustrating a multi-cell shared relay structure to which an embodiment of the present specification can be applied.
  • ICI inter-cell interference
  • the SRN is located at the center of three independent cells and performs data retransmission for improving throughput of a cell boundary region, which is a function of a basic relay.
  • the SRN overhears the downlink signal and the uplink signal of the terminal 130 from each base station, and controls to avoid interference between terminals causing performance degradation in the cell boundary region. A detailed method thereof will be described later.
  • the SRN is similar to the Type II RN functionally, but supports some additional functions than the Type II RN in terms of sharing control signals. That is, the SRN referred to herein has the same characteristics as 1 to 9 below.
  • SRN does not have a separate cell ID and does not create another new cell.
  • the SRN may transmit the PDSCH. (It may perform a function of relaying Rel-8 UEs.)
  • Rel-8 UEs do not recognize the presence of an SRN.
  • the SRN may transmit control (PDCCH, PUCCH, etc.) information to the eNBs through X2 signaling, but not to the UEs. (However, in the non-cooperative mode, the SRN can transmit the PDCCH signal without interference.)
  • control PDCCH, PUCCH, etc.
  • the SRN may restore control (PDCCH, PUCCH, etc.) information.
  • SRN newly defines X2 signaling for sharing control information with eNB.
  • SRN performs relay function only for UEs overhearing downlink and uplink signals of eNBs-UEs.
  • the SRN has a function of identifying a UE in its area for coordination of intercell interference.
  • SRN has a function of overhearing uplink SRS (Sounding Reference Signal) of UEs and discriminating them as UEs in the region of SRN based on an arbitrary threshold.
  • SRS Sounding Reference Signal
  • the SRN can overhear the Uplink SRS signal to measure the channel and change the MCS Level.
  • the SRN overhears a plurality of eNBs-> UEs DL signals to share PDCCH and PDSCH information.
  • the SRN overhears the UEs-> eNBs UL signal in its area to share PUCCH and PUSCH information.
  • the SRN performs interference management between cells by using information shared by the methods 10 and 11 above.
  • the interference management between the cell and the cell means all possible methods using the data obtained by the above 10 and 11. That is, based on the function of the SRN as described above, in this specification, the SRN, not eNBs, is the center of the cluster. It provides a method for sharing control information of eNBs and determining UEs where ICI occurs at cell boundary, and directly assigning resources for ICI avoidance by SRN.
  • FIGS. 4 (a) to (c) are diagrams illustrating a case where interference between neighbor cells occurs in a shared relay node based network structure.
  • 4A illustrates a case in which ICI occurs using the same resource in each of the direct links between the three base stations 110 and the terminal 130 (eNB1-UE1, eNB2-UE2, eNB3-UE3).
  • 4B illustrates a case in which ICI occurs using the same resource in a direct link between two base stations and terminals (eNB1-UE1 and direct links of eNB2-UE2).
  • 4C illustrates that when the SRN 120 retransmits a signal, when the eNB1-UE1 direct link and the SRN-UE2 access link use the same resource, the signal of the access link of the SRN becomes an interference source to the UE1 to generate ICI. The case is shown.
  • FIG. 5 shows a frame structure for applying a SRN-based dynamic resource allocation (dynamic RA) method to which an embodiment of the present specification can be applied.
  • dynamic RA dynamic resource allocation
  • FIG. 5 shows a frame structure in each time zone centered on the SRN.
  • the eNB transmits a data packet to UE M , and the SRN simultaneously overhears a packet transmitted by the eNB.
  • the eNB transmits a data packet to the UE M , and the SRN relays only a UE R having a NACK in the 1st Time Zone.
  • the SRN uses the same resource allocated to the eNB-UE M.
  • the SRN-based dynamic RA is applied to the entire RB (Resource Block).
  • the eNB transmits a common RS to the UE M to obtain channel quality indication (CQI) information of a corresponding band assigned to each resource region.
  • CQI channel quality indication
  • UE M calculates the CQI from the received common RS and delivers the CQI to the eNB through a time point when the corresponding uplink is opened.
  • SRN transmits a dedicated RS (Reference Signal) to destination nodes in the eNB-SRN, SRN-UE R for the accurate decoding of the signal, the destination node of each link,
  • the CQI may be calculated from the received dedicated RS, and the CQI may be delivered to the source nodes through the time point of opening each uplink.
  • FIG. 6 (a) and (b) are diagrams illustrating signal transmission operations in respective time zones of the SRN center of FIG. 5.
  • resources are allocated to the eNB-UE M in the 1st time zone so that each eNB transmits signals to UEs to which the eNB belongs.
  • the SRN since the SRN is considered to be fixed and the propagation path is excellent, the SRN completely overhears signal transmission from the eNB to the UE.
  • the SRN can transmit a signal to the SRN-UE through overhear in the 1st time zone without the link between the eNB-SRN, resource allocation for the eNB-SRN is not performed.
  • the signal transmission from the eNB to the UE is still valid in the 2nd time zone, and the signal transmission from the SRN-> UE is valid only when the eNB-> UE is NACK generated.
  • the SRN may operate in a cooperative mode and a non-cooperative mode.
  • the same resource is used as eNB-> UE, and in the non-cooperative mode, the same resource allocated as the eNB-> UE is used. That is, the basic frame structure as shown in FIG. 5 may be considered.
  • FIG. 7 is a diagram illustrating a dynamic RA method of each eNB in an SRN structure to which an embodiment of the present specification can be applied.
  • Each eNB considers a structure for dynamically allocating all RBs based on Full Frequency Reuse (FFR), and allocates RBs to UEs through various scheduling techniques (PF, Max CINR, etc.).
  • FFR Full Frequency Reuse
  • the method in which the RBs do not overlap is referred to as non-overlap or non-cooperative.
  • the SRN has no signal transmission to the eNB-UE and only considers the SRN-UE signal transmission.
  • the resource overlap or resource cooperative method may transmit the same signal using the same RB to the eNB-UE and the SRN-UE, and may expect diversity gain.
  • FIGS. 8 (a) to (c) are diagrams illustrating a case in which a collision occurs because the same RB is allocated to UEs at a cell edge when each eNB uses the Dynamic RA method.
  • the region 800 corresponding to the hatched portion represents the region where resources collide with each other. That is, when multiple cells consider the FFR-based dynamic RA method, collisions occur when UEs at the cell edge use the same RB.
  • the SRN provides a SRN-based resource reallocation method for ICI avoidance.
  • the SRN is geographically located at the center of neighboring eNBs.
  • This region where the SRN is located is the cell boundary area of eNBs, where the collision of RB occurs frequently and ICI is strongly influenced by neighboring eNBs. Therefore, the SRN has an advantageous geographical advantage to observe the occurrence of ICI in the center of the region where ICI of several eNBs is strongly operated.
  • the SRN is capable of overhearing the signals of all eNBs-UEs.
  • the SRN overhears the signals of eNBs-UEs, and can accurately detect the RBs in which collision occurs by using downlink and uplink control signals.
  • the first embodiment provides a method in which an SRN overhears a control channel between an eNB and a UE so as to reallocate a resource region directly to a resource region where a collision occurs.
  • B and B are angles Index and total number of UEs for
  • UEs of the SRN may be classified as follows.
  • the index of the RB can be expressed as follows.
  • the SINR for each RB can be expressed as follows.
  • the SRN uses the parameters to find an RB in which collision occurs in the region of the SRN, and reallocates resources for the collided RB. That is, the resource reallocation method for collision avoidance in this specification can be largely divided into 1) the process of finding the collision RB, and 2) the resource reallocation process for avoiding the collision RB.
  • the SRN compares the S C of the SRN, that is, the RBs of the UEs within the coverage of the SRN, to find the RB where the collision occurs.
  • RBs are divided into RBs 920 for UEs in the SRN and RBs 910 for UEs outside the SRN.
  • the collision RBs 930 are shown.
  • the process of finding the collision RB follows the following procedure.
  • the UE finds all indexes using the same RB.
  • the index k at which collision RB occurs for is specified as a variable of collision_k i (q) and stored as a vector string.
  • the second step proposes a method of blocking ICI generation between eNBs in the cell boundary region using the collision RB index obtained in the first step.
  • the main method is to exchange the RB where the collision has occurred and the RB outside the SRN region.
  • the second step is to follow the steps below.
  • each Here is how to remove collision RB for.
  • the SRN updates the RB that is replaced by the RA.
  • the RB set of S d is a region without ICI, unlike the region of S C.
  • FIG. 10 is a diagram illustrating an actual case of a collision RB in an SRN based cell structure according to the first embodiment of the present specification.
  • the first step of finding the collision RB may be represented as follows.
  • the RB reallocation process through collision RB avoidance is examined through the second process.
  • Collision_k 3 (1) 28
  • Collision_k 3 (2) 32
  • Collision_k 3 (3) 36
  • FIG. 11 illustrates a resource reallocation process for collision RB avoidance in an SRN based cell structure according to the first embodiment of the present specification.
  • the SIBs of the RBs in which collision has occurred and the RBs of UEs not in the region of the SRN are compared to each eNB, and the RBs having the smallest difference are selected to exchange RBs with each other.
  • Black solid line 1100 represents an RB that can be replaced with a Collision RB.
  • the second embodiment provides a method of reallocating collision resources by transmitting information for collision avoidance of a resource region allocated to a UE to a base station.
  • the SRN may transmit information for preventing resource collision to the eNBs to prevent the eNBs from reallocating the resource to the UEs so that the resource does not collide.
  • the information delivered by the SRN to the eNBs is as follows.
  • the SRN can identify UEs that are within the coverage of the SRN. Therefore, after identifying the UEs in the SRN, the SRN transfers the IDs of the corresponding UEs to the eNBs.
  • SRN overhears downlink and uplink signals transmitted and received between base stations and terminals and transmits IDs for UEs having NACKs (ie, resource collisions) to eNBs.
  • NACKs ie, resource collisions
  • each eNB that receives the two pieces of information from the SRN exchanges for the RB of the UEs in which the NACK has occurred, thereby preventing resource collision for the UEs.
  • the RB to be exchanged is performed in the RB except for the RBs of the UEs in the area of the SRN.
  • the third embodiment provides a method in which SRN and eNBs reallocate resources together when a resource collision occurs.
  • the third embodiment provides a method in which the SRN partially processes the resource allocation avoidance information and transmits the processed information to each eNB to prevent the ICI, so that each eNB performs resource reallocation.
  • a detailed method of the resource reallocation method according to the third embodiment may be performed as follows.
  • SRN calculates proportionally the number of UEs in SRN for UEs served by each eNB.
  • the SRN transfers the RBs area of the SRN UEs to each eNB by applying the ratio information calculated in (2) as the RB ratio.
  • the third embodiment may not only be performed when a resource collision occurs, but also applies to a method in which each eNB allocates resources so that resource collision does not occur without HARQ timing, thereby causing a basic resource allocation to be collided. You can prevent it.
  • each eNB may prevent resources from colliding in advance by allocating resources to the UE through the following methods.
  • Each eNB receives a cell ID corresponding to each UE in the SRN from the SRN, and uses this to allocate resources to the UEs. Specifically,
  • the SRN overhears its Uplink SRS signal and determines the UEs in the SRN. Thereafter, the SRN grasps the cell ID of each UE in the SRN, and then informs the corresponding cells that the UEs are UEs in the SRN. (It is assumed that resources are already statically divided for each cell.)
  • the SRN classifies the UEs in the SRN by each cell ID, classifies the UEs in the SRN by the corresponding cell, identifies the number of UEs in the SRN for each cell, and then proportionally applies the entire resource region to apply the corresponding resource ratio. Inform each cell. Through this, each eNB performs resource allocation to the UEs (a method of dynamically classifying resources according to the number of UEs in the SRN).
  • FIG. 12 is a diagram illustrating a resource reallocation method for ICI avoidance according to a third embodiment of the present specification.
  • RBs for UEs in the SRN region are allocated as shown in FIG. 12 (1210, 1220, 1230).
  • the SRN delivers RBs allocated for UEs to each eNB, each eNBs preferentially allocates SRN UEs in the corresponding shadow area, and dynamically allocates all other UEs to the remaining RBs. Assign.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 접속 시스템에서 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 릴레이 노드(Relay Node:RN)가 자원을 재할당하기 위한 방법에 있어서, 복수의 기지국이 각 기지국의 커버리지 내의 단말들로 전송하는 하향링크 또는 상향링크 자원 할당 정보를 포함하는 제어 채널을 엿듣는(overhear) 단계, 상기 복수의 기지국은 상기 릴레이 노드를 공유하며; 상기 제어 채널을 통해 상기 릴레이 노드 커버리지 내의 단말들에게 할당되는 자원 영역을 비교하여 충돌이 발생하는 자원 영역이 있는지를 확인하는 단계; 상기 확인 결과 충돌이 발생하는 자원 영역이 있는 경우, 상기 충돌이 발생하는 자원 영역에 대한 자원 재할당 과정을 수행하는 단계를 포함하여 이루어진다.

Description

무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치
본 명세서는 무선 접속 시스템에 관한 것으로 특히, 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위한 방법 및 장치에 관한 것이다.
차세대 이동통신 시스템 규격으로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution)-Advanced는 음영지역 및 셀 경계지역에 릴레이 노드(Relay Node:RN)를 설치함으로써 셀 커버리지를 확장하고, 사용자들에게 고속 전송률을 제공할 수 있는 다중 홉 (Multi Hop) relay 전송 기술을 지원한다.
또한, OFDMA (Orthogonal Frequency-Division Multiple Access) 기술은 무선채널에서의 다중경로 페이딩 현상을 극복하기 위한 변복조 방식으로서 다수의 부반송파들을 이용하여 다수의 사용자들에게 시간, 주파수, 전력 자원을 유연하게 할당할 수 있는 이점이 있다.
단일 셀만을 고려할 때 OFDMA 방식을 이용한 RA (Resource Allocation)는 각 resource에 외부 간섭에 의한 제약이 없기 때문에 그 효율성이 높다. 하지만 실제 다중 셀에서는 인접 셀에서 동일한 주파수 자원을 사용하는 경우 간섭이 크게 작용하게 된다.
이와 같은 문제점을 극복하기 위해서 셀과 셀 경계지역에서 주파수 재사용 패턴의 변화를 주는 방식이 제안되었지만, 각 셀을 여러 구역으로 구분하여 주파수를 정적으로 할당하기 때문에 주파수 사용 측면에서 효율성이 떨어지는 측면이 있다.
본 명세서는 각 셀 별로 전체 동적 자원 할당(full dynamic RA) 방법을 구현하면서도 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 릴레이 노드 커버리지 내에서 충돌이 발생하는 자원을 재할당하는 방법을 제공함에 목적이 있다.
본 명세서는 무선 접속 시스템에서 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 릴레이 노드(Relay Node:RN)가 자원을 재할당하기 위한 방법에 있어서, 복수의 기지국이 각 기지국의 커버리지 내의 단말들로 전송하는 하향링크 또는 상향링크 자원 할당 정보를 포함하는 제어 채널을 엿듣는(overhear) 단계, 상기 복수의 기지국은 상기 릴레이 노드를 공유하며; 상기 제어 채널을 통해 상기 릴레이 노드 커버리지 내의 단말들에게 할당되는 자원 영역을 비교하여 충돌이 발생하는 자원 영역이 있는지를 확인하는 단계; 상기 확인 결과 충돌이 발생하는 자원 영역이 있는 경우, 상기 충돌이 발생하는 자원 영역에 대한 자원 재할당 과정을 수행하는 단계를 포함하여 이루어진다.
또한, 상기 자원 재할당 과정을 수행하는 단계는 상기 충돌이 발생하는 자원 영역을 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역과 교환하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 자원 영역과 교환하는 단계는 상기 충돌이 발생하는 자원 영역의 신호 대 간섭 및 잡음비(Signal-to-Interference plus Noise Ration:SINR) 값과 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역의 SINR 값을 각각 비교하는 단계; 및 상기 비교 결과, SINR 값의 차이가 가장 작은 자원 영역을 교환할 자원 영역으로 결정하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 명세서는 상기 재할당된 자원 영역을 통해 단말로 하향링크 또는 상향링크 데이터를 전송하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 상기 복수의 기지국은 전체 주파수 재활용(Full Frequency Reuse:FFR) 기반의 동적 자원 할당(dynamic resource allocation) 과정을 수행하는 것을 특징으로 한다.
또한, 상기 복수의 기지국은 3개의 기지국으로 구성되며, 상기 릴레이 노드는 상기 3개의 기지국에 의해 공유되는 공유 릴레이 노드(Shared Relay Node:SRN)인 것을 특징으로 한다.
또한, 상기 자원 재할당 과정을 수행하는 단계는 상기 릴레이 노드 커버리지 내의 모든 단말들을 상기 각 기지국에 해당하는 단말들로 분류하는 단계; 및 상기 분류된 단말들에 대한 비율 정보를 상기 각 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 제어 채널 또는 상기 데이터는 특정 서브 프레임을 통해 전송되되, 상기 특정 서브 프레임은 제 1 시간 존(1st Time Zone) 및 제 2 시간 존(2nd Time Zone)으로 구성되며, 상기 제 1 시간 존 및 상기 제 2 시간 존은 각각 하향링크 영역 및 상향링크 영역으로 구성되는 것을 특징으로 한다.
또한, 상기 제 1 시간 존은 기지국-단말 간의 신호가 송수신되며, 상기 제 2 시간 존은 기지국-단말 간 및/또는 릴레이 노드-단말 간 신호가 송수신되는 것을 특징으로 한다.
또한, 상기 릴레이 노드는 상기 복수의 기지국과 X2 시그널링을 이용하는 것을 특징으로 한다.
또한, 상기 제어 채널은 PDCCH 또는 PUCCH인 것을 특징으로 한다.
또한, 상기 자원 재할당 과정을 수행하는 단계는 상기 충돌이 발생한 자원 영역을 나타내는 정보를 상기 복수의 기지국으로 전송하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 명세서는 무선 접속 시스템에서 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 자원을 재할당하기 위한 릴레이 노드(Relay Node:RN)에 있어서, 외부와 무선신호를 송수신하기 위한 무선통신부; 및 상기 무선통신부와 연결되는 프로세서를 포함하되, 상기 프로세서는 복수의 기지국이 각 기지국의 커버리지 내의 단말들로 전송하는 하향링크 또는 상향링크 자원 할당 정보를 포함하는 제어 채널을 엿듣(overhear)도록 제어하며, 상기 제어 채널을 통해 상기 릴레이 노드 커버리지 내의 단말들에게 할당되는 자원 영역을 비교하여 충돌이 발생하는 자원 영역이 있는지를 확인하고, 상기 확인 결과 충돌이 발생하는 자원 영역이 있는 경우, 상기 충돌이 발생하는 자원 영역에 대한 자원 재할당 과정을 수행하도록 제어하되, 상기 복수의 기지국은 상기 릴레이 노드를 공유하는 것을 특징으로 한다.
또한, 상기 프로세서는 상기 충돌이 발생하는 자원 영역을 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역과 교환하여 상기 자원 재할당 과정을 수행하도록 제어하는 것을 특징으로 한다.
또한, 상기 프로세서는 상기 충돌이 발생하는 자원 영역의 신호 대 간섭 및 잡음비(Signal-to-Interference plus Noise Ration:SINR) 값과 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역의 SINR 값을 각각 비교하고, 상기 비교 결과, SINR 값의 차이가 가장 작은 자원 영역을 교환할 자원 영역으로 결정하는 것을 특징으로 한다.
또한, 상기 프로세서는 상기 재할당된 자원 영역을 통해 단말로 하향링크 또는 상향링크 데이터를 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 한다.
또한, 상기 복수의 기지국은 전체 주파수 재활용(Full Frequency Reuse:FFR) 기반의 동적 자원 할당(dynamic resource allocation) 과정을 수행하는 것을 특징으로 한다.
또한, 상기 프로세서는 상기 릴레이 노드 커버리지 내의 모든 단말들을 상기 각 기지국에 해당하는 단말들로 분류하고, 상기 분류된 단말들에 대한 비율 정보를 상기 각 기지국으로 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 한다.
또한, 상기 프로세서는 상기 충돌이 발생한 자원 영역을 나타내는 정보를 상기 복수의 기지국으로 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 한다.
본 명세서는 공유 릴레이 노드가 기지국에서 단말로 전송하는 하향링크 또는 상향링크 신호를 overhear하면서, 공유 릴레이 노드 내의 단말들에게 할당되는 자원 영역이 충돌하는 경우, 충돌된 자원 영역에 대해 자원을 재할당함으로써 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피할 수 있는 효과가 있다.
도 1은 본 명세서의 일 실시 예가 적용될 수 있는 무선 통신 시스템(100)에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
도 2는 본 명세서의 일 실시 예가 적용될 수 있는 무선 통신 시스템(100)에서의 기지국(110) 및 중계기(120)의 내부 블록도이다.
도 3은 본 명세서의 일 실시 예가 적용될 수 있는 다중 셀 공유 릴레이(Multi-Cell Shared Relay) 구조를 나타낸 도이다.
도 4 (a) 내지 (c)는 공유 릴레이 노드 기반의 네트워크 구조에서 인접 셀 간 간섭이 발생하는 경우를 나타낸 도이다.
도 5는 본 명세서의 일 실시 예가 적용될 수 있는 공유 릴레이 노드(SRN) 기반의 동적 자원 할당(dynamic RA) 방법을 적용하기 위한 프레임 구조를 나타낸다.
도 6 (a) 및 (b)는 도 5의 공유 릴레이 노드(SRN) 중심의 각 시간 존(time zone)에서의 신호 전송 동작을 나타낸 도이다.
도 7은 본 명세서의 일 실시 예가 적용될 수 있는 공유 릴레이 노드(SRN) 구조에서 각 기지국의 동적 자원 할당 방법을 나타낸 도이다.
도 8 (a) 내지 (c)는 각각의 기지국이 동적 자원 할당 방법을 사용하는 경우, 셀 가장자리의 단말들에게 동일한 자원 블록(RB)이 할당되어 충돌이 발생하는 경우를 나타낸 도이다.
도 9 (a) 내지 (c)는 본 명세서의 제 1 실시 예에 따른 공유 릴레이 노드(SRN) 기반의 셀 구조에서 RB의 구분을 나타낸 도이다.
도 10은 본 명세서의 제 1 실시 예에 따른 공유 릴레이 노드(SRN) 기반의 셀 구조에서 충돌 자원 블록(RB)의 실제 경우를 나타낸 도이다.
도 11은 본 명세서의 제 1 실시 예에 따른 공유 릴레이 노드(SRN) 기반의 셀 구조에서 충돌 자원 블록(RB) 회피를 위한 자원 재할당 과정을 나타낸 도이다.
도 12는 본 명세서의 제 3 실시 예에 따른 ICI 회피를 위한 자원 재할당 방법을 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 사용자 기기(User Equipment, UE), 모바일 스테이션(Mobile Station, MS), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 중계기는 릴레이 노드(Relay Node, RN), 릴레이 스테이션(Relay Station, RS), 릴레이 등으로 다양하게 호칭될 수 있다.
이동 통신 시스템에서 단말(User Equipment), 중계기는 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말, 중계기는 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말, 중계기가 전송 또는 수신하는 정보로는 데이터 및 다양한 제어정보가 있으며, 단말, 중계기가 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 명세서의 일 실시 예가 적용될 수 있는 무선 통신 시스템(100)에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
3GPP LTE-A(3rd Generation Partnership Project Long Term Evolution-Advanced) 시스템에서 중계기(120)에 기지국(110)과 단말(130) 간의 링크 연결을 포워딩하는 역할을 도입하면서 각각의 상향링크 및 하향링크 캐리어 주파수 대역에 속성이 다른 두 가지 종류의 링크가 적용되게 된다. 기지국과 중계기의 링크 간에 설정되는 연결 링크 부분을 백홀 링크(backhaul link)라고 정의하여 표현한다. 하향링크 자원을 이용하여 FDD(Frequency Division Duplex) 혹은 TDD(Time Division Duplex) 방식으로 전송이 이루어지는 것을 백홀 하향링크(backhaul downlink)라고 하며, 상향링크 자원을 이용하여 FDD 또는 TDD 방식으로 전송이 이루어지는 것을 백홀 상향링크라고 표현할 수 있다.
반면, 중계기와 단말들 간에 설정되는 연결 링크 부분을 릴레이 액세스 링크(relay access link)로서 정의하여 표현한다. 릴레이 액세스 링크가 하향링크 주파수 대역(FDD의 경우)이나 하향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 하향링크(access downlink)로 표현하고 상향링크 주파수 대역(FDD의 경우)이나 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 상향링크(access uplink)로 표현할 수 있다.
중계기(RN)는 릴레이 백홀 하향링크(relay backhaul downlink)를 통해 기지국으로부터 정보를 수신할 수 있고, 릴레이 백홀 상향링크를 통해 기지국으로 정보를 전송할 수 있다. 또한, 중계기는 릴레이 액세스 하향링크를 통해 단말로 정보를 전송할 수 있고, 릴레이 액세스 상향링크를 통해 단말로부터 정보를 수신할 수 있다.
중계기는 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행할 수 있다. 이를 위해 중계기는 기지국으로부터 동기 채널을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 중계기는 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 중계기는 초기 셀 탐색 단계에서 릴레이 백홀 하향링크 참조신호(Downlink Reference Signal)를 수신하여 릴레이 백홀 하향링크의 채널 상태를 확인할 수 있다. 중계기는 R-PDCCH(Relay-Physical Downlink Control CHannel) 및/또는 R-PDSCH(Relay-Physical Downlink Control CHannel)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 중계기는 기지국에 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 중계기는 물리 임의접속 채널(Physical Random Access CHannel, PRACH) 등을 통해 프리앰블을 전송하고, R-PDCCH 및 이에 대응하는 R-PDSCH을 통해 상기 임의접속에 대한 응답 메시지를 수신할 수 있다.
핸드오버(Handover)의 경우를 제외한 경쟁 기반 임의접속의 경우 그 후 추가적인 물리 임의접속 채널의 전송 및 R-PDCCH/R-PDSCH 수신과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 중계기는 이후 일반적인 상/하향링크 신호 전송 절차로서 R-PDCCH/R-PDSCH 및 릴레이-물리 상향링크 공유 채널(R-PUSCH: Relay-Physical Uplink Shared CHannel)/릴레이-물리 상향링크 제어 채널(R-PUCCH: Relay-Physical Uplink Control CHannel) 전송을 수행할 수 있다.
이때 중계기가 상향링크를 통해 기지국에 전송하는 또는 기지국이 중계기로부터 수신하는 제어정보에는 ACK/NACK 신호, 채널품질정보(CQI: Channel Quality Indicator), 프리코딩 행렬 인덱스(Precoding Matrix Index, PMI), 랭크 지시자(Rank Indicator, RI) 등이 포함될 수 있다. 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) LTE-A 시스템의 경우, 중계기는 상술한 CQI, PMI, RI 등의 제어정보를 R-PUSCH/R-PUCCH을 통해 전송할 수 있다.
도 2는 본 명세서의 일 실시 예가 적용될 수 있는 무선 통신 시스템(100)에서의 기지국(110) 및 중계기(120)의 내부 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(110)과 하나의 중계기(120)를 도시하였지만, 무선 통신 시스템(200)은 하나 이상의 기지국 및/또는 하나 이상의 중계기를 포함할 수 있다.
도 2를 참조하면, 기지국(110)은 송신(Tx) 데이터 프로세서(111), 심볼 변조기(112), 송신기(113), 송수신 안테나(114), 프로세서(115), 메모리(116), 수신기(117), 심볼 복조기(118), 수신 데이터 프로세서(119)를 포함할 수 있다.
여기서, 송신기(113) 및 수신기(117)는 무선(RF)통신부로 표현될 수도 있다.
그리고, 중계기(120)는 송신(Tx) 데이터 프로세서(127), 심볼 변조기(128), 송신기(129), 송수신 안테나(121), 프로세서(125), 메모리(126), 수신기(122), 심볼 복조기(123), 수신 데이터 프로세서(124)를 포함할 수 있다. 안테나(114, 121)가 각각 기지국(110) 및 중계기(120)에서 하나로 도시되어 있지만, 기지국(110) 및 중계기(120)는 복수 개의 안테나를 구비하고 있다. 마찬가지로, 송신기(129) 및 수신기(122)는 무선(RF)통신부로 표현될 수도 있다.
따라서, 본 발명에 따른 기지국(110) 및 중계기(120)는 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 본 발명에 따른 기지국(110)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(111)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들") 을 제공한다. 심볼 변조기(112)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(112)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (113)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 널(null)의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(Orthgonal Frequency Division Multiplexing, OFDM), 시분할 다중화(Time Division Multiplexing, TDM), 또는 코드 분할 다중화(Code Division Multiplexing, CDM) 심볼일 수 있다.
송신기(113)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 이어서, 하향링크 신호는 안테나(114)를 통해 중계기로 전송된다.
중계기(120)의 구성에서, 안테나(121)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(122)로 제공한다. 수신기(122)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(123)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(125)로 제공한다.
또한, 심볼 복조기(123)는 프로세서(125)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(124)로 제공한다. 수신 데이터 프로세서 (124)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping)) 하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(123) 및 수신 데이터 프로세서(124)에 의한 처리는 각각 기지국(110)에서의 심볼 변조기(112) 및 송신 데이터 프로세서(111)에 의한 처리에 대해 상보적이다.
중계기(120)는 상향링크 상에서, 송신 데이터 프로세서(127)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(128)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(129)로 제공할 수 있다. 송신기(129)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시키고, 이러한 상향링크 신호는 안테나(121)를 통해 기지국(110)으로 전송된다.
기지국(110)에서, 중계기(120)로부터 상향링크 신호가 안테나(114)를 통해 를 수신되고, 수신기(117)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(118)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(119)는 데이터 심볼 추정치를 처리하여, 중계기(120)로부터 전송된 트래픽 데이터를 복구한다.
중계기(120) 및 기지국(110) 각각의 프로세서(115, 125)는 각각 중계기(120) 및 기지국(110)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서(115, 125)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(116, 126)들과 연결될 수 있다. 메모리 유닛(116, 126)는 프로세서(115)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(115, 125)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(115, 125)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(115, 125)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(115, 125) 내에 구비되거나 메모리(116, 126)에 저장되어 프로세서(115, 125)에 의해 구동될 수 있다.
중계기와 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은, 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 중계기, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
도 3은 본 명세서의 일 실시 예가 적용될 수 있는 다중 셀 공유 릴레이(Multi-Cell Shared Relay) 구조를 나타낸 도이다.
본 명세서에서 제안하는 공유 릴레이 노드(Shared Relay Node:SRN) 기반의 인접 셀 간 간섭(Inter Cell Interference:ICI) 회피 방법은 도 3에 도시된 바와 같이, 3개의 기지국이(enhanced Node-B:eNB,110) 1개의 SRN(120)을 공유하는 SRN 기반의 네트워크 기본 구조를 가진다. 또한, SRN을 공유하는 3개의 기지국은 전체 주파수 재사용(Full Frequency Reuse:FFR)을 가정한다.
도 3을 참조하면, SRN은 3개의 독립적인 셀의 중심에 위치하면서 기본적인 릴레이의 기능인 셀 경계지역의 throughput 향상을 위한 데이터 재전송 역할을 수행한다. 또한, SRN은 각 기지국으로부터 downlink 신호와 단말(130)의 uplink 신호를 overhear하면서, 셀 경계 지역에서의 성능 저하를 유발하는 단말들 간의 간섭을 회피할 수 있도록 제어하는 역할을 수행한다. 이에 대한 구체적인 방법은 후술하기로 한다.
여기서, SRN은 기능적으로는 Type II RN과 유사하지만, control 신호의 공유 측면에서 Type II RN 보다 몇 가지 추가적인 기능을 더 지원한다. 즉, 본 명세서에서 언급하는 SRN은 하기 1 내지 9와 같은 특성을 가진다.
1. SRN은 별도의 cell ID를 갖지 않으며, 또 다른 새로운 셀을 생성하지 않는다.
2. SRN은 PDSCH를 전송할 수 있다.(Rel-8 UEs를 릴레이 하는 기능을 수행할 수 있다.)
3. Rel-8 UEs는 SRN의 존재를 인식하지 못한다.
4. SRN은 control (PDCCH, PUCCH 등) 정보를 X2 signalling을 통해 eNBs에게 전송할 수 있지만 UEs에게 전송하지는 못한다. (단, 비협력 모드(non-cooperative mode)의 경우에는 SRN이 PDCCH 신호를 간섭 없이 전송할 수 있다.)
5. SRN은 control (PDCCH, PUCCH 등) 정보를 복원할 수 있다.
6. SRN은 eNB와 control 정보 공유를 위한 X2 signalling을 새롭게 정의한다.
7. SRN은 eNBs-UEs의 downlink 및 uplink 신호를 overhear하는 UEs에 대해서만 릴레이 기능을 수행한다.
8. SRN은 셀 간 간섭의 조정을 위해 자신의 영역에 있는 UE를 판별하는 기능을 가진다.
: SRN은 UEs의 Uplink SRS (Sounding Reference Signal)를 overhear하여, 임의의 threshold를 기준으로 SRN의 영역 내의 UE로 판별하는 기능을 가진다.
9. SRN은 Uplink SRS 신호를 overhear하여, 이 신호를 채널 측정하고 MCS Level을 변경할 수 있다.
10. SRN은 다수의 eNBs->UEs DL 신호를 overhear하여 PDCCH, PDSCH 정보를 공유한다.
11. SRN은 자신의 영역에 있는 UEs->eNBs UL 신호를 overhear하여 PUCCH, PUSCH 정보를 공유한다.
12. SRN은 위 10, 11과 같은 방법에 의해 공유한 정보를 이용하여 셀과 셀 사이에 간섭 관리를 수행한다. 여기서, 셀과 셀사이에 간섭 관리는 위 10, 11에 의해 얻은 데이터를 이용한 모든 가능한 방법들을 의미한다.즉, 상기와 같은 SRN의 기능을 토대로 본 명세서는 eNBs가 아닌 SRN이 클러스터의 중심이 되어서 eNBs의 control 정보를 공유하고, 셀 경계에서 ICI가 발생하는 UEs을 판별하여 SRN이 직접 ICI 회피를 위한 resource를 재할당하는 방법을 제공한다.
도 4 (a) 내지 (c)는 공유 릴레이 노드 기반의 네트워크 구조에서 인접 셀 간 간섭이 발생하는 경우를 나타낸 도이다.
도 4a는 3 개의 기지국(110)-단말(130) 간의 직접 링크(eNB1-UE1, eNB2-UE2, eNB3-UE3) 각각에서 동일한 resource를 사용하여 ICI가 발생하는 경우를 나타낸다.
도 4b는 2 개의 기지국-단말 간의 직접 링크(eNB1-UE1, eNB2-UE2의 direct links)에서 동일한 resource를 사용하여 ICI가 발생하는 경우를 나타낸다.
도 4c는 SRN(120)이 신호를 재전송하는 과정에서 eNB1-UE1 direct link와 SRN-UE2 access link가 동일한 resource를 사용하는 경우에 SRN의 access link의 신호가 UE1에게 간섭원이 되어 ICI가 발생하는 경우를 나타낸다.
도 5는 본 명세서의 일 실시 예가 적용될 수 있는 SRN 기반의 동적 자원 할당(dynamic RA) 방법을 적용하기 위한 프레임 구조를 나타낸다.
즉, 도 5는 SRN 중심의 각 Time Zone에서의 프레임 구조를 나타낸다.
도 5에 도시된 바와 같이, 1st time zone의 하향링크에서는 eNB가 UEM에게 데이터 패킷을 전송하며, SRN은 동시에 eNB가 전송하는 패킷을 overhear 한다.
2nd time zone에서도 eNB가 UEM에게 데이터 패킷을 전송하며, SRN은 1st Time Zone에서 NACK가 발생한 UER에 대해서만 릴레이 전송을 한다.
이때, SRN은 eNB-UEM으로 할당된 자원을 동일하게 사용한다. 여기서, SRN 기반의 dynamic RA는 전체 RB (Resource Block)에 대해서 적용한다.
eNB는 eNB-UEM 링크의 스케줄링을 구현하기 위해서 각 resource 영역에 부여된 해당 대역의 채널 품질 지시(Channel Quality Indication:CQI) 정보를 획득하기 위해 UEM에게 common RS를 전송한다. 또한, UEM은 수신된 common RS로부터 CQI를 계산하여 해당 상향 링크가 열리는 시점을 통해 eNB에게 CQI를 전달한다.
한편, SRN은 신호의 정확한 decode를 위하여 eNB-SRN, SRN-UER에서 소스 노드들은 (Source Node)들은 dedicated RS (Reference Signal)를 종착 노드 (Destination Node)들에게 전송하고, 각 링크의 종착 노드들은 수신된 dedicated RS로부터 CQI를 계산하여 각각의 상향 링크가 열리는 시점을 통해 소스 노드들에게 CQI를 전달할 수 있다.
도 6 (a) 및 (b)는 도 5의 SRN 중심의 각 시간 존(time zone)에서의 신호 전송 동작을 나타낸 도이다.
도 6a에 도시된 바와 같이, 1st time zone에서 eNB-UEM 으로 resource가 할당되어 각 eNB는 eNB가 속하는 UE들에게 신호를 전송한다. 여기서, SRN은 고정되어 있고 전파경로가 우수한 것을 고려하기 때문에, SRN은 eNB에서 UE로 신호 전송을 완벽히 overhear한다.
따라서, SRN은 1st time zone에서는 eNB-SRN 간의 링크가 없이도 overhear를 통해 SRN-UE로의 신호 전송이 가능하기 때문에 eNB-SRN를 위한 자원할당은 하지 않는다.
도 6b에 도시된 바와 같이, 2nd time zone에서 eNB에서 UE로의 신호 전송은 여전히 유효하며, SRN->UE로써의 신호 전송은 eNB->UE이 NACK이 발생했을 때만 유효하다.
또한, SRN은 협력 모드(cooperative mode)와 비협력 모드(non-cooperative mode)를 구분해서 동작할 수 있다.
cooperative mode의 경우, eNB->UE으로 동일한 resource를 사용하게 되고, non-cooperative mode에서는 본래 eNB->UE으로 할당된 자원을 동일하게 쓰는 것을 가정한다. 즉, 도 5와 같은 기본적인 프레임 구조를 고려한다고 할 수 있다.
도 7은 본 명세서의 일 실시 예가 적용될 수 있는 SRN 구조에서 각 eNB의 dynamic RA 방법을 나타낸 도이다.
각 eNB는 전체 주파수 재사용(Full Frequency Reuse:FFR)을 기반으로 모든 RB들을 dynamic하게 할당하는 구조를 고려하고 있으며, 다양한 스케줄링 기법 (PF, Max CINR 등)들을 통해 UE들로 RB를 할당한다.
도 7에 도시된 바와 같이, RB가 중첩이 되지 않는 방법을 비중첩(Non-overlap 또는, 비 협력(Non-cooperative))이라 한다. 상기 비중첩 방법에서, SRN은 eNB-UE로 신호 전송은 없고, 오직 SRN-UE 신호 전송만 고려한다.
또한, 자원 중첩(Resource overlap 또는, 협력(Cooperative)) 방법은 eNB-UE와 SRN-UE로 동일한 RB를 이용하여 동일한 신호를 전송하게 되고 Diversity Gain을 기대할 수 있다.
도 8 (a) 내지 (c)는 각각의 eNB가 Dynamic RA 방법을 사용하는 경우, 셀 가장자리의 UEs에게 동일한 RB가 할당되어 충돌이 발생하는 경우를 나타낸 도이다.
도 8a 내지 도 8c에 도시된 바와 같이, 빗금 친 부분에 해당되는 영역(800)이 자원이 충돌되는 영역을 나타낸다. 즉, 다중 셀이 FFR 기반의 dynamic RA 방법을 고려하는 경우, 셀 가장자리의 UEs이 동일한 RB를 사용하여 충돌이 발생하는 경우이다.
이하에서는, 다중 셀 FFR 기반의 동적 자원 할당 방법에서 ICI 회피를 위한 SRN 기반의 자원 재할당 방법에 대해 구체적으로 살펴보기로 한다.
상기에서도 살핀 바와 같이, SRN의 기본적인 두 가지 장점을 이용함으로써, ICI 회피를 위한 SRN 기반의 자원 재할당 방법을 제공한다.
첫번째, SRN은 지리적으로 주변 eNBs의 중심에 위치한다.
SRN이 위치하는 이 지역은 eNBs의 셀 경계지역으로 RB의 충돌이 빈번하게 발생하고 주변 eNBs로부터 ICI가 강하게 영향을 미치는 지역이다. 따라서, SRN은 여러 eNBs의 ICI가 강하게 작용하는 지역의 중심에서 ICI 발생을 관찰 하기에 유리한 지리적인 이점을 가지고 있다.
두번째, SRN은 모든 eNBs-UEs의 신호를 overhear 할 수 있는 특징이 있다.
SRN은 eNBs-UEs의 신호를 overhear하고, 이 신호 중에서 downlink, uplink control 신호를 이용하여 충돌이 발생하는 RB를 정확하게 찾아낼 수 있다.
SRN 기반의 ICI 회피 방법
제 1 실시 예
제 1 실시 예는 SRN이 eNB-UE 간의 제어 채널을 overhear하여, 충돌이 발생하는 자원 영역에 대해 직접 자원 영역을 재할당하는 방법을 제공한다.
제 1 실시 예의 ICI 회피 방법을 위해 먼저, 하기와 같은 파라미터들을 정의한다.
1.
Figure PCTKR2011007419-appb-I000001
:
Figure PCTKR2011007419-appb-I000002
에 대한
Figure PCTKR2011007419-appb-I000003
2.
Figure PCTKR2011007419-appb-I000004
이며, a와 A는 각
Figure PCTKR2011007419-appb-I000005
의 index와 총 개수
3.
Figure PCTKR2011007419-appb-I000006
이며, b와 B는 각
Figure PCTKR2011007419-appb-I000007
에 대한 UE의 index와 총 개수
또한, SRN의 UEs을 하기와 같이 분류할 수 있다.
1. SC∈{UEa,b┃SRN의 커버리지 내에 있는 eNBa에 대한 UEb}
2. c∈{1,...,C}이며, c와 C는 SRN의 커버리지 내에 있는 UE의 index와 총 개수
3. Sd=
Figure PCTKR2011007419-appb-I000008
∈{UEa,b┃SRN의 커버리지 밖에 있는 eNBa에 대한 UEb}
4. d∈{1,...,D}이며, d와 D는 SRN의 커버리지 밖에 있는 UE의 index와 총 개수
또한, RB의 index는 하기와 같이 표현할 수 있다.
1. RB(k): index k-th RB
2. k∈{1,...,K}이며, k와 K는 RB의 index와 총 개수
3.
Figure PCTKR2011007419-appb-I000009
:Sc의 UE에 대한 index l-th RB
4. l∈{1,...,L}이며, l과 L은 SC의 UE에 대한 RB의 index와 총 개수
5.
Figure PCTKR2011007419-appb-I000010
:Sd의 UE에 대한 index m-th RB
6. m∈{1,...,M}이며, m과 M은 Sd의 UE에 대한 RB의 index와 총 개수
또한, 각 RB에 대한 SINR은 하기와 같이 표현할 수 있다.
Figure PCTKR2011007419-appb-I000011
,
Figure PCTKR2011007419-appb-I000012
,
Figure PCTKR2011007419-appb-I000013
은 각각 k-th, l-th, m-th RB에 대한 SINR을 의미한다.
SRN은 상기 파라미터들을 이용하여, SRN의 영역에서 충돌(collision)이 발생하는 RB를 찾고, 상기 충돌된 RB에 대해 자원을 재할당한다. 즉, 본 명세서에서의 충돌 회피를 위한 자원 재할당 방법은 크게, 1) 충돌 RB를 찾는 과정, 2) 충돌 RB 회피를 위한 자원 재할당 과정으로 구분할 수 있다.
이하에서, 1) 충돌 RB를 찾는 과정, 2) 충돌 RB 회피를 위한 자원 재할당 과정에 대해 구체적으로 살펴보기로 한다.
충돌 RB를 찾는 과정
도 9 (a) 내지 (c)는 본 명세서의 제 1 실시 예에 따른 SRN 기반의 셀 구조에서 RB의 구분을 나타낸 도이다.
SRN은 SRN의 SC 즉,SRN의 커버리지 내에 있는 UEs의 RB를 비교하여 충돌이 발생하는 RB를 찾는다. 도 9a 내지 9c에 도시된 바와 같이 RB를 SRN의 영역 내에 있는 UE에 대한 RB(920)와 SRN의 영역 밖에 있는 UE에 대한 RB(910)로 구분하여 나타낸다. 여기서, SRN의 영역 내에 있는 UE의 RB가 서로 같은 경우 충돌 RB(930)로 구분하여 나타낸다.
충돌 RB를 찾는 과정은 하기와 같은 과정을 따른다.
① Set
Figure PCTKR2011007419-appb-I000014
,
Figure PCTKR2011007419-appb-I000015
at each
Figure PCTKR2011007419-appb-I000016
② Mapping
Figure PCTKR2011007419-appb-I000017
into
Figure PCTKR2011007419-appb-I000018
at each
Figure PCTKR2011007419-appb-I000019
For i=1:(A-1)
③ Find
Figure PCTKR2011007419-appb-I000020
==
Figure PCTKR2011007419-appb-I000021
④ Store collision_ki(q)∈{∀k┃
Figure PCTKR2011007419-appb-I000022
==
Figure PCTKR2011007419-appb-I000023
}
End
여기서, q∈{1,...,Q}, q와 Q는 각각 충돌 RB의 index 및 총 개수를 나타낸다.
Figure PCTKR2011007419-appb-I000024
Figure PCTKR2011007419-appb-I000025
∈{∀a┃except current i}을 만족하는 것으로, 현재 i를 제외한 모든 a를 의미한다.
상기의 ① 내지 ④의 과정을 순차적으로 살펴보면, ①에서는 각각의
Figure PCTKR2011007419-appb-I000026
에 대해서
Figure PCTKR2011007419-appb-I000027
,
Figure PCTKR2011007419-appb-I000028
를 설정한다.
②에서는 각각의
Figure PCTKR2011007419-appb-I000029
에 대해서 RB Index를 l에서 k로 맵핑한다.
③에서는 각각의
Figure PCTKR2011007419-appb-I000030
에 대해서 SRN의 UE가 동일한 RB를 사용하는 모든 index 를 찾는다.
④에서는 각
Figure PCTKR2011007419-appb-I000031
에 대한 collision RB가 발생하는 index k를 collision_ki(q)의 변수로 지정하여 벡터열로 저장한다.
충돌 RB 회피를 위한 자원 재할당 과정
상기 두번째 단계의 Collsion RB 회피를 위한 resource 재할당 과정에 대해서 설명한다.
즉, 두 번째 단계에서는 첫 번째 단계에서 얻어진 collision RB index를 이용하여 셀 경계지역에서 eNBs 사이에 ICI 발생을 차단하는 방법을 제시한다. 특히, 본 단계에서는 collision이 발생한 RB와 SRN의 영역 밖에 있는 RB를 교환하는 방법이 주요 내용이 된다.
두 번째 단계의 절차는 하기와 같은 과정을 따른다.
For a=1:A
For q=1:Q
For m=1:M
① Mapping
Figure PCTKR2011007419-appb-I000032
into
Figure PCTKR2011007419-appb-I000033
at each
Figure PCTKR2011007419-appb-I000034
Figure PCTKR2011007419-appb-I000035
③ Change collision_k-th RB into k'-th RB
④ Update
Figure PCTKR2011007419-appb-I000036
∈{
Figure PCTKR2011007419-appb-I000037
┃except ampped current
Figure PCTKR2011007419-appb-I000038
to avoid RB collision}
End
End
End
상기 첫 번째 단계에서는 각
Figure PCTKR2011007419-appb-I000039
에 대한 collision_ki(q)를 구하였다.
상기 첫 번째 단계에서의 결과를 이용하여, 두 번째 단계에서는 각
Figure PCTKR2011007419-appb-I000040
에 대한 collision RB를 제거하는 방법을 제시한다.
상기 두 번째 단계의 과정을 순차적을 살펴보면, 먼저 ①에서는 각각의
Figure PCTKR2011007419-appb-I000041
에 대해서
Figure PCTKR2011007419-appb-I000042
Figure PCTKR2011007419-appb-I000043
로 index를 맵핑한다.
②에서는 해당 수식
Figure PCTKR2011007419-appb-I000044
을 만족하는 인수 k를 k'로 정의한다. 여기서, 상기 수식이 의미하는 것은 SRN의 Type과 연관이 있다.
SRN은 NACK을 인지한 후에 retransmission을 하기 때문에 Sd의 RB에서 더 높은 SINR을 찾을 필요는 없다. 즉, Retransmission에서 동일한 MCS level의 신호가 전송된다는 것을 고려하여 수식을 전개하였다.
④에서는 RA의 바뀜을 당하는 RB를 SRN이 업데이트 하는 과정이다. 특히, Sd의 RB set은 SC의 영역과 달리 ICI가 없는 지역임을 고려한다.
이하에서는, 제 1 실시 예에 따른 SRN의 자원 재할당 방법을 예로 들어 설명하기로 한다.
먼저, 하기와 같이 파라미터를 설정한다.
A=3(
Figure PCTKR2011007419-appb-I000045
,
Figure PCTKR2011007419-appb-I000046
,
Figure PCTKR2011007419-appb-I000047
),
B=20(
Figure PCTKR2011007419-appb-I000048
,
Figure PCTKR2011007419-appb-I000049
,
Figure PCTKR2011007419-appb-I000050
),
C=10(
Figure PCTKR2011007419-appb-I000051
,
Figure PCTKR2011007419-appb-I000052
,
Figure PCTKR2011007419-appb-I000053
,
Figure PCTKR2011007419-appb-I000054
,
Figure PCTKR2011007419-appb-I000055
,
Figure PCTKR2011007419-appb-I000056
,
Figure PCTKR2011007419-appb-I000057
,,
Figure PCTKR2011007419-appb-I000059
,
Figure PCTKR2011007419-appb-I000060
)
D=50(Except following these C=10)
K=50(RB total index),
Figure PCTKR2011007419-appb-I000061
,
Figure PCTKR2011007419-appb-I000062
,
Figure PCTKR2011007419-appb-I000063
,
Figure PCTKR2011007419-appb-I000064
,
Figure PCTKR2011007419-appb-I000065
,
Figure PCTKR2011007419-appb-I000066
도 10은 본 명세서의 제 1 실시 예에 따른 SRN 기반의 셀 구조에서 충돌 RB의 실제 경우를 나타낸 도이다.
도 10에 도시된 바와 같이, RB 충돌이 발생하였다고 가정하면, 상기 충돌 RB를 찾는 첫 번째 단계는 하기와 같이 나타낼 수 있다.
(1) Set
Figure PCTKR2011007419-appb-I000067
,
Figure PCTKR2011007419-appb-I000068
at each
Figure PCTKR2011007419-appb-I000069
:
Figure PCTKR2011007419-appb-I000070
,
Figure PCTKR2011007419-appb-I000071
,
Figure PCTKR2011007419-appb-I000072
,
Figure PCTKR2011007419-appb-I000073
,
Figure PCTKR2011007419-appb-I000074
,
Figure PCTKR2011007419-appb-I000075
,
Figure PCTKR2011007419-appb-I000076
,
Figure PCTKR2011007419-appb-I000077
,
Figure PCTKR2011007419-appb-I000078
,
Figure PCTKR2011007419-appb-I000079
(2) Mapping
Figure PCTKR2011007419-appb-I000080
into
Figure PCTKR2011007419-appb-I000081
at each
Figure PCTKR2011007419-appb-I000082
For i=1:(A-1)
:
Figure PCTKR2011007419-appb-I000083
,
Figure PCTKR2011007419-appb-I000084
,
Figure PCTKR2011007419-appb-I000085
,
Figure PCTKR2011007419-appb-I000086
,
Figure PCTKR2011007419-appb-I000087
,
Figure PCTKR2011007419-appb-I000088
,
Figure PCTKR2011007419-appb-I000089
:
Figure PCTKR2011007419-appb-I000090
,
Figure PCTKR2011007419-appb-I000091
,
Figure PCTKR2011007419-appb-I000092
,
Figure PCTKR2011007419-appb-I000093
,
Figure PCTKR2011007419-appb-I000094
,
Figure PCTKR2011007419-appb-I000095
,
Figure PCTKR2011007419-appb-I000096
,
Figure PCTKR2011007419-appb-I000097
,
Figure PCTKR2011007419-appb-I000098
,
Figure PCTKR2011007419-appb-I000099
,
Figure PCTKR2011007419-appb-I000100
:
Figure PCTKR2011007419-appb-I000101
,
Figure PCTKR2011007419-appb-I000102
,
Figure PCTKR2011007419-appb-I000103
,
Figure PCTKR2011007419-appb-I000104
,
Figure PCTKR2011007419-appb-I000105
For i=1:(A-1)
(3) Find
Figure PCTKR2011007419-appb-I000106
==
Figure PCTKR2011007419-appb-I000107
(4) Store collision_ki(q)∈{∀k┃
Figure PCTKR2011007419-appb-I000108
==
Figure PCTKR2011007419-appb-I000109
}
:
Figure PCTKR2011007419-appb-I000110
,
Figure PCTKR2011007419-appb-I000111
,
Figure PCTKR2011007419-appb-I000112
:
Figure PCTKR2011007419-appb-I000113
,
Figure PCTKR2011007419-appb-I000114
,
Figure PCTKR2011007419-appb-I000115
:
Figure PCTKR2011007419-appb-I000116
,
Figure PCTKR2011007419-appb-I000117
,
Figure PCTKR2011007419-appb-I000118
End
상기 첫 번째 단계에서의 충돌 RB를 찾은 것을 바탕으로 두 번째 과정을 통해 충돌 RB 회피를 통한 RB 재할당 과정을 살펴본다.
For a=1:A
For q=1:Q
For m=1:M
(1) Mapping
Figure PCTKR2011007419-appb-I000119
into
Figure PCTKR2011007419-appb-I000120
at each
Figure PCTKR2011007419-appb-I000121
(2)
Figure PCTKR2011007419-appb-I000122
: Collision_k1(1)=30, Collision_k1(2)=32, Collision_k1(3)=36
: Collision_k2(1)=28, Collision_k2(2)=30, Collision_k2(3)=32
: Collision_k3(1)=28, Collision_k3(2)=32, Collision_k3(3)=36
:
Figure PCTKR2011007419-appb-I000123
은 7-th,27-th,30-th,32-th,33-th,36-th,42-th RB를 제외한 모든 RB
:
Figure PCTKR2011007419-appb-I000124
은 26-th,28-th,29-th,30-th,31-th,32-th,38-th,41-th,44-th,45-th,49-th RB를 제외한 모든 RB
:
Figure PCTKR2011007419-appb-I000125
은 3-th,28-th,32-th,36-th,37-th RB를 제외한 모든 RB
(3) Change collision_k-th RB into k'-th RB
(4) Update
Figure PCTKR2011007419-appb-I000126
∈{
Figure PCTKR2011007419-appb-I000127
┃except ampped current
Figure PCTKR2011007419-appb-I000128
to avoid RB collision}
End
End
End
도 11은 본 명세서의 제 1 실시 예에 따른 SRN 기반의 셀 구조에서 충돌 RB 회피를 위한 자원 재할당 과정을 나타낸 도이다.
두 번째 단계에서는 도 11에 도시된 바와 같이, 각각의 eNB에 대하여 collision이 발생한 RB와 SRN의 지역에 없는 UE의 RB의 SINR을 비교하여 가장 차이가 적은 RB를 선택하여 서로의 RB를 교환한다. 검정 실선(1100)은 Collision RB와 교체가 가능한 RB를 나타낸다.
제 2 실시 예
제 2 실시 예는 SRN이 단말에게 할당되는 자원 영역의 충돌 방지를 위한 정보를 기지국에 전달함으로써, 충돌 자원을 재할당하는 방법을 제공한다.
SRN은 SRN 커버리지 내의 UEs에 대한 자원이 충돌하는 경우, 자원 충돌을 방지하기 위한 정보를 eNBs에게 전달하여 eNBs이 UEs에게 자원을 재할당하여 자원이 충돌하는 것을 방지할 수 있다.
여기서, SRN이 eNBs에게 전달하는 정보는 하기 1 내지 2와 같다.
1. SRN의 영역 내에 있는 UEs ID (Identification)
: 앞에서도 살핀 것처럼, SRN은 SRN의 커버리지 내에 있는 UEs을 파악할 수 있다. 따라서, SRN은 SRN 내의 UEs들을 파악한 후, 해당 UEs의 ID를 eNBs에게 전달한다.
2. 자원 충돌이 발생한 UEs ID
: SRN은 기지국-단말 간 송수신되는 Downlink, Uplink 신호를 overhear하면서 NACK이 발생한(즉, 자원 충돌이 발생한) UEs에 대한 ID를 eNBs에게 전달한다.
따라서, SRN으로부터 상기 두 가지 정보를 수신한 각 eNBs은 NACK이 발생한 UEs의 RB에 대해 교환함으로써, UEs에 대한 자원 충돌을 방지한다.
여기서, 교환될 RB는 SRN의 영역내에 있는 UEs의 RB를 제외한 RB에서 수행된다.
제 3 실시 예
제 3 실시 예는 자원 충돌이 발생하는 경우, SRN 및 eNBs 가 함께 자원을 재할당하는 방법을 제공한다.
즉, 제 3 실시 예는 ICI를 방지하기 위해 SRN이 부분적으로 자원 할당 회피 정보를 가공하고, 각 eNBs에게 가공된 정보를 전달하여 각 eNBs이 자원 재할당을 수행하는 방법을 제공한다. 제 3 실시 예에 의한 자원 재할당 방법의 구체적인 방법은 하기와 같이 수행될 수 있다.
먼저, (1) SRN 내의 전체 UEs을 각각 해당 eNBs 별로 구분하여 분류한다.
(2) SRN은 각 eNBs이 서비스하는 UEs에 대한 SRN 내의 UEs의 개수를 비율적으로 계산한다.
(3) SRN은 (2)에서 계산된 비율 정보를 RB 비율로 적용하여 SRN UEs의 RBs 영역을 각 eNBs에게 전달한다.
여기서, 상기 제 3 실시 예는 자원 충돌이 발생하는 경우 수행될 수 있을 뿐만 아니라, HARQ 타이밍 과정 없이 각 eNB가 자원 충돌이 발생하지 않도록 자원을 할당하는 방법에 적용함으로써, 기본적인 자원 할당이 충돌되는 것을 방지할 수 있다.
즉, 하기와 같은 방법들을 통해 각 eNB는 UE에게 자원을 할당함으로써, 자원 할당이 충돌되는 것을 미리 방지할 수 있다.
(1) 각 eNB는 SRN으로부터 SRN 내의 각 UE에 해당하는 셀 ID를 수신하고, 이를 이용하여 UE들에게 자원 할당을 한다. 구체적으로,
먼저, SRN은 자신의 Uplink SRS 신호를 엿듣고(overhear), 상기 SRN 내의 UE들을 판별한다. 이후, SRN은 SRN 내의 각 UE들에 대한 cell ID를 파악한 후, 해당 셀들로 각 UE들이 SRN 내의 UE들임을 알려준다.(여기서, 각 셀 별로 자원이 이미 정적으로 나누어져 있다고 가정한다.)
(2) SRN은 SRN 내의 UE들을 각 셀 ID로 구분하고, SRN 내의 UE를 해당 셀 별로 구분하여 각 셀 별 SRN 내의 UE 개수를 파악한 후, 비례적으로 전체 자원 영역에 적용하여, 해당 자원 비율을 각 셀 별로 알려준다. 이를 통해, 각 eNB는 UE들에게 자원 할당을 수행한다.(SRN 내의 UE 개수에 따라 자원을 동적으로 구분하는 방법)
도 12는 본 명세서의 제 3 실시 예에 따른 ICI 회피를 위한 자원 재할당 방법을 나타낸 도이다.
각 eNBs이 서비스하는 UEs의 비율이 eNB1: eNB2: eNB3 = 3: 4: 3일 경우, 도 12에 도시된 바와 같이 SRN 영역 내의 UEs을 위한 RB를 할당한다(1210,1220,1230).
즉, 도 12에 도시된 바와 같이, SRN은 UEs을 위해 할당된 RB를 각 eNBs에게 전달하고, 각 eNBs은 해당 음영지역에서는 SRN UEs를 우선적으로 할당하고, 남은 RB에 대해서는 다른 모든 UEs을 dynamic하게 할당한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (19)

  1. 무선 접속 시스템에서 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 릴레이 노드(Relay Node:RN)가 자원을 재할당하기 위한 방법에 있어서,
    복수의 기지국이 각 기지국의 커버리지 내의 단말들로 전송하는 하향링크 또는 상향링크 자원 할당 정보를 포함하는 제어 채널을 엿듣는(overhear) 단계, 상기 복수의 기지국은 상기 릴레이 노드를 공유하며;
    상기 제어 채널을 통해 상기 릴레이 노드 커버리지 내의 단말들에게 할당되는 자원 영역을 비교하여 충돌이 발생하는 자원 영역이 있는지를 확인하는 단계;
    상기 확인 결과 충돌이 발생하는 자원 영역이 있는 경우, 상기 충돌이 발생하는 자원 영역에 대한 자원 재할당 과정을 수행하는 단계를 포함하여 이루어지는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서, 상기 자원 재할당 과정을 수행하는 단계는,
    상기 충돌이 발생하는 자원 영역을 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역과 교환하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서, 상기 자원 영역과 교환하는 단계는,
    상기 충돌이 발생하는 자원 영역의 신호 대 간섭 및 잡음비(Signal-to-Interference plus Noise Ration:SINR) 값과 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역의 SINR 값을 각각 비교하는 단계; 및
    상기 비교 결과, SINR 값의 차이가 가장 작은 자원 영역을 교환할 자원 영역으로 결정하는 단계를 포함하여 이루어지는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 재할당된 자원 영역을 통해 단말로 하향링크 또는 상향링크 데이터를 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 복수의 기지국은 전체 주파수 재활용(Full Frequency Reuse:FFR) 기반의 동적 자원 할당(dynamic resource allocation) 과정을 수행하는 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 복수의 기지국은 3개의 기지국으로 구성되며,
    상기 릴레이 노드는,
    상기 3개의 기지국에 의해 공유되는 공유 릴레이 노드(Shared Relay Node:SRN)인 것을 특징으로 하는 방법.
  7. 제 1항에 있어서, 상기 자원 재할당 과정을 수행하는 단계는,
    상기 릴레이 노드 커버리지 내의 모든 단말들을 상기 각 기지국에 해당하는 단말들로 분류하는 단계; 및
    상기 분류된 단말들에 대한 비율 정보를 상기 각 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  8. 제 1항 또는 제 4항에 있어서,
    상기 제어 채널 또는 상기 데이터는 특정 서브 프레임을 통해 전송되되,
    상기 특정 서브 프레임은,
    제 1 시간 존(1st Time Zone) 및 제 2 시간 존(2nd Time Zone)으로 구성되며, 상기 제 1 시간 존 및 상기 제 2 시간 존은 각각 하향링크 영역 및 상향링크 영역으로 구성되는 것을 특징으로 하는 방법.
  9. 제 8항에 있어서,
    상기 제 1 시간 존은 기지국-단말 간의 신호가 송수신되며,
    상기 제 2 시간 존은 기지국-단말 간 및/또는 릴레이 노드-단말 간 신호가 송수신되는 것을 특징으로 하는 방법.
  10. 제 1항에 있어서,
    상기 릴레이 노드는 상기 복수의 기지국과 X2 시그널링을 이용하는 것을 특징으로 하는 방법.
  11. 제 1항에 있어서,
    상기 제어 채널은 PDCCH 또는 PUCCH인 것을 특징으로 하는 방법.
  12. 제 1항에 있어서, 상기 자원 재할당 과정을 수행하는 단계는,
    상기 충돌이 발생한 자원 영역을 나타내는 정보를 상기 복수의 기지국으로 전송하는 단계를 포함하여 이루어지는 것을 특징으로 하는 방법.
  13. 무선 접속 시스템에서 인접 셀 간 간섭(Inter-Cell Interference:ICI)을 회피하기 위해 자원을 재할당하기 위한 릴레이 노드(Relay Node:RN)에 있어서,
    외부와 무선신호를 송수신하기 위한 무선통신부; 및
    상기 무선통신부와 연결되는 프로세서를 포함하되, 상기 프로세서는,
    복수의 기지국이 각 기지국의 커버리지 내의 단말들로 전송하는 하향링크 또는 상향링크 자원 할당 정보를 포함하는 제어 채널을 엿듣(overhear)도록 제어하며, 상기 제어 채널을 통해 상기 릴레이 노드 커버리지 내의 단말들에게 할당되는 자원 영역을 비교하여 충돌이 발생하는 자원 영역이 있는지를 확인하고, 상기 확인 결과 충돌이 발생하는 자원 영역이 있는 경우, 상기 충돌이 발생하는 자원 영역에 대한 자원 재할당 과정을 수행하도록 제어하되,
    상기 복수의 기지국은 상기 릴레이 노드를 공유하는 것을 특징으로 하는 릴레이 노드.
  14. 제 13항에 있어서, 상기 프로세서는,
    상기 충돌이 발생하는 자원 영역을 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역과 교환하여 상기 자원 재할당 과정을 수행하도록 제어하는 것을 특징으로 하는 릴레이 노드.
  15. 제 14항에 있어서, 상기 프로세서는,
    상기 충돌이 발생하는 자원 영역의 신호 대 간섭 및 잡음비(Signal-to-Interference plus Noise Ration:SINR) 값과 상기 릴레이 노드 커버리지 밖의 단말들에게 할당되는 자원 영역의 SINR 값을 각각 비교하고, 상기 비교 결과, SINR 값의 차이가 가장 작은 자원 영역을 교환할 자원 영역으로 결정하는 것을 특징으로 하는 릴레이 노드.
  16. 제 13항에 있어서, 상기 프로세서는,
    상기 재할당된 자원 영역을 통해 단말로 하향링크 또는 상향링크 데이터를 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 하는 릴레이 노드.
  17. 제 13항에 있어서,
    상기 복수의 기지국은 전체 주파수 재활용(Full Frequency Reuse:FFR) 기반의 동적 자원 할당(dynamic resource allocation) 과정을 수행하는 것을 특징으로 하는 릴레이 노드.
  18. 제 13항에 있어서, 상기 프로세서는,
    상기 릴레이 노드 커버리지 내의 모든 단말들을 상기 각 기지국에 해당하는 단말들로 분류하고, 상기 분류된 단말들에 대한 비율 정보를 상기 각 기지국으로 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 하는 릴레이 노드.
  19. 제 13항에 있어서, 상기 프로세서는,
    상기 충돌이 발생한 자원 영역을 나타내는 정보를 상기 복수의 기지국으로 전송하도록 상기 무선통신부를 제어하는 것을 특징으로 하는 릴레이 노드.
PCT/KR2011/007419 2011-02-09 2011-10-06 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치 WO2012108604A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/984,772 US9426811B2 (en) 2011-02-09 2011-10-06 Method and device for avoiding inter-cell interference in a wireless access system
KR1020137021041A KR101784040B1 (ko) 2011-02-09 2011-10-06 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161440874P 2011-02-09 2011-02-09
US61/440,874 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108604A1 true WO2012108604A1 (ko) 2012-08-16

Family

ID=46638796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007419 WO2012108604A1 (ko) 2011-02-09 2011-10-06 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치

Country Status (3)

Country Link
US (1) US9426811B2 (ko)
KR (1) KR101784040B1 (ko)
WO (1) WO2012108604A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101423A1 (en) 2014-01-06 2015-07-09 Fujitsu Limited Radio resource allocation method and base station for use in cellular wireless communication systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9432159B2 (en) * 2011-12-21 2016-08-30 Nokia Solutions And Networks Oy Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
EP3076737B1 (en) * 2013-12-30 2021-09-08 Huawei Technologies Co., Ltd. Interference coordination method, apparatus and system
KR101521049B1 (ko) * 2014-05-22 2015-05-21 연세대학교 산학협력단 다중 홉 셀룰러 네트워크에 포함된 기지국 및 중계기와, 상기 기지국의 제어 방법
CN108632919A (zh) * 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子装置以及无线通信方法
CN108352974B (zh) 2017-09-07 2021-02-19 北京小米移动软件有限公司 规避小区间干扰的方法及基站
PT3525517T (pt) * 2018-02-12 2021-01-27 Curvalux Uk Ltd Rede multissalto de taxa elevada com formação de feixe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090102419A (ko) * 2008-03-26 2009-09-30 엘지전자 주식회사 셀간 간섭 조절의 수행방법
KR20090108358A (ko) * 2008-04-11 2009-10-15 삼성전자주식회사 광대역 무선 접속 시스템에서 같은 무선 자원 사용을 통해발생하는 간섭을 이용한 효율적인 간접 제거 장치 및 방법
KR20090119527A (ko) * 2008-05-16 2009-11-19 주식회사 케이티 고정 중계기를 이용한 무선 통신 시스템 및 그 자원 할당방법
US20100240380A1 (en) * 2009-03-20 2010-09-23 Raymond Yim Inter-Cell Interference Prediction for Frequency Resource Allocation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100232A1 (en) * 2006-03-03 2007-09-07 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
KR101445078B1 (ko) * 2007-10-04 2014-11-03 삼성전자주식회사 릴레이 시스템 및 상기 릴레이 시스템을 위한 데이터프레임 구조
US7962091B2 (en) * 2008-03-14 2011-06-14 Intel Corporation Resource management and interference mitigation techniques for relay-based wireless networks
US8982765B2 (en) * 2009-03-17 2015-03-17 Lg Electronics Inc. Method and apparatus for transmitting data on relay communication system
US8553711B2 (en) * 2009-03-19 2013-10-08 Qualcomm Incorporated Association and resource partitioning in a wireless network with relays
US9014636B2 (en) * 2009-03-20 2015-04-21 Centre Of Excellence In Wireless Technology Cognitive interference management in wireless networks with relays, macro cells, micro cells, pico cells and femto cells
EP2476284B1 (en) * 2009-09-09 2014-01-15 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for interference coordination in a telecommunications system
US8588839B2 (en) * 2009-12-16 2013-11-19 Telefonaktiebolaget L M Ericsson (Publ) Power loop control method and apparatus
US9247479B2 (en) * 2010-09-02 2016-01-26 Intel Deutschland Gmbh Resource allocation in a mobile communication system
EP2620028B1 (en) * 2010-09-23 2020-04-29 BlackBerry Limited System and method for dynamic coordination of radio resources usage in a wireless network environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090102419A (ko) * 2008-03-26 2009-09-30 엘지전자 주식회사 셀간 간섭 조절의 수행방법
KR20090108358A (ko) * 2008-04-11 2009-10-15 삼성전자주식회사 광대역 무선 접속 시스템에서 같은 무선 자원 사용을 통해발생하는 간섭을 이용한 효율적인 간접 제거 장치 및 방법
KR20090119527A (ko) * 2008-05-16 2009-11-19 주식회사 케이티 고정 중계기를 이용한 무선 통신 시스템 및 그 자원 할당방법
US20100240380A1 (en) * 2009-03-20 2010-09-23 Raymond Yim Inter-Cell Interference Prediction for Frequency Resource Allocation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101423A1 (en) 2014-01-06 2015-07-09 Fujitsu Limited Radio resource allocation method and base station for use in cellular wireless communication systems
EP3229548A1 (en) 2014-01-06 2017-10-11 Fujitsu Limited Radio resource allocation method and femto base station for use in cellular wireless communication systems

Also Published As

Publication number Publication date
US20130322323A1 (en) 2013-12-05
US9426811B2 (en) 2016-08-23
KR20140010378A (ko) 2014-01-24
KR101784040B1 (ko) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2012074192A2 (ko) 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법
WO2018226065A1 (ko) Nr에서 이중 연결을 지원하는 방법 및 장치
WO2018128428A1 (ko) 크로스-링크 간섭을 제어하는 방법 및 이를 위한 장치
WO2012064117A9 (ko) 무선 통신 시스템에서 셀간 간섭 조정에 대한 하향링크 제어 채널의 송수신 방법 및 장치
WO2015065087A1 (en) Apparatus and method for cancelling inter-cell interference in communication system
WO2012070914A2 (ko) 무선 통신 시스템에서 제어 채널 및 데이터 채널 전송 방법 및 장치
WO2012108604A1 (ko) 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법 및 장치
WO2016013901A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 파워 제어 방법 및 이를 위한 장치
WO2010018909A1 (en) Method of transmitting data in multi-cell cooperative wireless communication system
WO2011078571A2 (ko) 프리코딩된 사운딩 참조신호를 이용하여 comp 통신을 수행하는 장치 및 그 방법
WO2011102631A2 (en) Relay node apparatus for transmitting and receiving signal according to link operation mode in wireless communication system and method thereof
WO2016036111A1 (en) Resource management method and apparatus
WO2014010841A1 (en) Controlling transmit power of uplink sounding reference signal
WO2012070823A2 (ko) 무선 통신 시스템에서 하향링크 측정 방법 및 장치
WO2011155785A2 (ko) Harq 프로세스 수행 방법 및 이를 이용하는 장치
WO2016021999A1 (ko) D2d 통신에서의 단말의 d2d 신호 송신 방법 및 이를 위한 장치
WO2012118311A2 (en) Method of transmitting and receiving data in a wireless communication system and apparatus therefor
WO2019074338A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치
WO2020197194A1 (en) Method and apparatus for csi-rs enhancement for nr unlicensed spectrum
WO2018174312A1 (ko) 무선통신 시스템에서 셀 간 간섭을 제어하는 방법 및 이를 위한 장치
WO2012053842A1 (en) Method of transmitting and receiving data in a multi radio access technology system using an access point and apparatus therefor
WO2018030708A1 (ko) 무선 통신 시스템에서 하향링크 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2022030962A1 (en) Time adjustment during handover
WO2012108605A1 (ko) 무선 접속 시스템에서 인접 셀 간 간섭을 회피하기 방법
WO2012148192A2 (ko) 기지국의 상향링크 전력 제어 정보 제공 방법 및 단말의 상향링크 전력 제어 방법, 그 기지국, 그 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984772

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11858414

Country of ref document: EP

Kind code of ref document: A1