WO2012108578A1 - Système de surveillance du mouvement des os et de correction d'une trajectoire à l'aide d'une unité de mesure optique en trois dimensions - Google Patents

Système de surveillance du mouvement des os et de correction d'une trajectoire à l'aide d'une unité de mesure optique en trois dimensions Download PDF

Info

Publication number
WO2012108578A1
WO2012108578A1 PCT/KR2011/002189 KR2011002189W WO2012108578A1 WO 2012108578 A1 WO2012108578 A1 WO 2012108578A1 KR 2011002189 W KR2011002189 W KR 2011002189W WO 2012108578 A1 WO2012108578 A1 WO 2012108578A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
path
optical measuring
unit
motion detection
Prior art date
Application number
PCT/KR2011/002189
Other languages
English (en)
Korean (ko)
Inventor
박석호
박종오
김정언
김석민
김우영
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Publication of WO2012108578A1 publication Critical patent/WO2012108578A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to a bone motion detection and path correction system of a 3D optical measuring device, and more particularly, to a bone motion detection system using a mechanical linear encoder used in a conventional artificial joint surgery robot (Bone Motion Monitoring System: BMM). ) Is configured using the 3D optical measuring device used in bone registration, and when the bone movement occurs during the operation, the path of the artificial joint surgery robot is measured using the value measured by the optical measuring device. It relates to a system for calibrating (Tool Path Regeneration).
  • FIG. 1A illustrates an example of a robotic surgical robot, a ROBODOC and a Bone Motion Monitoring (BMM) device
  • FIG. 1B illustrates an example in which a BMM is attached to a BMM probe and bones (Femur & Tibia) that are actually used.
  • a bone motion detection apparatus using a 3-axis mechanical linear encoder connected to a robot base is used to detect bone movement during surgery.
  • this method not only limits the distance between the patient and the robot, but also the device is large in size and complex in installation, requiring skilled personnel and thus increasing the time for surgery.
  • the recovery process is performed.
  • additional recovery pins are inserted (6) irrespective of the operation, thus causing unnecessary trauma to the patient.
  • 1C is a conceptual diagram of a BMM by an optical measuring device.
  • it is intended to support the surgery of the robot by applying a real-time affected movement detection technology using a three-dimensional optical tracker system (OTS).
  • OTS optical tracker system
  • the present invention has been made in view of the above problems, the first object of the present invention is to detect the movement of the bone during the operation, when the movement occurs, the coordinate change amount according to the movement, the operation using the coordinate change amount
  • the present invention provides a system for calibrating a robot's path.
  • the second object of the present invention is to provide a system for outputting a warning message to determine whether the deviation is more than a predetermined distance based on the amount of coordinate change according to the movement of the bone, and to inform the doctor when the deviation is more than the predetermined distance. Is in.
  • the present invention for achieving the technical problem relates to a bone motion detection and path correction system using a three-dimensional optical measuring device, attached to the affected bone, the target target for detecting the movement;
  • An optical measuring unit measuring a movement of the optical target unit and extracting a change amount when the movement occurs;
  • a motion detector configured to detect whether a bone moves as a change amount extracted through the optical measuring unit and correct a path of a surgical robot;
  • a surgical robot configured to perform cutting along a path corrected through the motion detection unit or a preset path. It includes.
  • the optical measuring unit may include: a coordinate extraction module extracting initial coordinates of the optical target unit and extracting changed coordinates (hereinafter, referred to as “conversion coordinates”) of the optical target unit when bone movement occurs; And a change amount extraction module for extracting a change amount between the transformed coordinates extracted through the coordinate extraction module and the initial coordinates. Characterized in that it comprises a.
  • the motion detection unit detects the movement of the bone as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit extracted through the optical measuring unit, and using the change amount (Rotation, Translation) path of the surgical robot
  • a motion detection module for calculating a transformation matrix (T-Matrix) to be applied to
  • a correction path calculation module that calculates a correction path moved by a position where a bone is moved based on the conversion matrix calculated by the motion detection module; Characterized in that it comprises a.
  • the motion detection unit may further include: an alarm module configured to determine whether the deviation is greater than or equal to a predetermined distance based on the change amount, and stop the surgical robot when the deviation is greater than or equal to a predetermined distance, and output a warning message by voice or video; Characterized in that it comprises a.
  • the optical measuring unit measures the initial coordinate of the optical target unit again, and sets the current position as the initial coordinate.
  • Optical tracker a mechanical bone motion detection system (BMM) used in the existing artificial joint surgical robot It has the effect of improving the space constraints and additional trauma of the space, the location of the affected area by the robot itself, and creating a safe and comfortable robotic surgical environment.
  • the space constraint between the patient and the robot is small, and only a minimal sensing device is inserted into the affected part, surgery can be performed without additional trauma to the patient.
  • its size is smaller than that of the existing surgical robot's motion detection device, making it easy to manufacture and install, and real-time measurement is performed through a three-dimensional coordinate measuring system. Through this system, the robot's operation path can be corrected and reset without the help of a doctor, and the robot is autonomous, which increases the reliability and satisfaction of robot surgery.
  • a digitizer is used in registration to match bone and 3D CT data, and a mechanical 3-axis encoder is used in the BMM.
  • OTS optical tracker
  • Figure 1a is an example of an artificial joint surgical robot ROBODOC and Bone Motion Monitoring (BMM) Device.
  • Figure 1b is an example showing a state in which the BMM is attached to the BMM Probe and Bones (Femur & Tibia) actually used.
  • 1C is a conceptual diagram of a BMM by an optical meter.
  • FIG. 2 is a block diagram of a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram conceptually illustrating a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
  • optical target portion 200 optical measuring portion
  • coordinate extraction module 220 change amount extraction module
  • FIG. 2 is a block diagram of a bone motion detection and path correction system S using a 3D optical measuring device according to an embodiment of the present invention
  • FIG. 3 is a 3D optical measuring device according to an embodiment of the present invention. It is a block diagram conceptually showing the bone motion detection and path correction system (S).
  • the bone motion detection and path correction system S using the 3D optical measuring device includes an optical target part 100, an optical measuring part 200, a motion detecting part 300, and surgery. It comprises a robot 400.
  • the optical target portion (BMM Reference) 100 is attached to the bone of the patient for the affected area, preferably for artificial joint surgery, to detect movement.
  • the affected part is set to bone, but the present invention is not limited thereto.
  • An optical tracker system 200 measures a movement of the optical target unit 100 and extracts a change amount when a movement occurs, as shown in FIG. 2. 210 and the change amount extraction module 220.
  • the coordinate extraction module 210 extracts the initial coordinates of the optical target unit 100, and when the bone movement occurs, the changed coordinates of the optical target unit 100 (hereinafter, 'conversion coordinates') ( Rot ( R 2 , R 2 , R 2 ), Trans ( T 2 , T 2 , T 2 )) are extracted.
  • the amount of change extraction module 220 changes the amount of change between the coordinates extracted through the coordinate extraction module 210 and the initial coordinates ⁇ Rot ( R x , R y , R z ), ⁇ Trans ( T x , T y , T z )).
  • the motion detection unit (BMM System) 300 detects the movement of the bone as the change amount extracted through the optical measuring unit 200 is input, and performs a function of correcting the path of the surgical robot 400. 2, the motion detection module 310 and the correction path calculation module 320 are included.
  • the motion detection module 310 is a bone cutting is in progress as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit 100 extracted by the optical measuring unit 200 is input.
  • the motion of the bone is sensed and a transformation matrix (T-Matrix) to be applied to the path of the surgical robot 400 is calculated using the change amount (Rotation, Translation) as shown in [Equation 1].
  • the correction path calculation module 320 calculates the correction path moved by the position where the bone is moved, based on the conversion matrix calculated by the motion detection module 310.
  • the optical measuring unit 200 measures the initial coordinate of the optical target unit 100 again, and sets the current position as the initial coordinate. Accordingly, a surgical procedure such as cutting can be performed.
  • the motion detecting unit 300 may move away from a predetermined cutting path when bone movement occurs due to an unexpected situation.
  • the motion detecting unit 300 determines whether the deviation is more than a predetermined distance based on the change amount, and when the deviation is more than the predetermined distance, the surgical robot 400 is stopped, and the voice or image It may further include an alarm module 330 for outputting a warning message.
  • the preset distance is set to 2 mm, but the present invention is not limited thereto.
  • the surgical robot 400 performs surgery such as cutting along a path corrected through the motion detecting unit 300 or a preset path.
  • the robot for artificial joint surgery may be provided with a cutter for cutting.
  • Bone motion detection and path correction system using a three-dimensional optical measuring device having the above-described configuration and characteristic functions, applying a real-time lesion motion detection technology using an optical tracker system (OTS) To support the operation of the robot. That is, since the optical measuring device (OTS) is wireless and the optical target (Reference) attached to the bone of the patient is small, the installation time and the operation space can be secured.
  • OTS optical tracker system
  • the three-dimensional coordinate measuring system since the three-dimensional coordinate measuring system is used, it is possible to measure the minute movement of the bone of the patient that may occur during surgery.
  • the cutting path of the surgical robot can be regenerated / corrected through the coordinates of the robot and the coordinate matching to perform the surgery, thereby inducing the affected part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

La présente invention concerne un système de surveillance d'un mouvement des os et de correction d'une trajectoire en utilisant une unité de mesure optique en trois dimensions, et plus particulièrement, un système qui surveille le mouvement d'un os durant une opération chirurgicale, extrait une modification des coordonnées en fonction du mouvement qui s'est produit, et corrige une trajectoire d'un robot chirurgical en utilisant la modification des coordonnées. De manière à atteindre cet objectif, le système de la présente invention comprend en outre : une unité de cible optique fixée à un os et détectant le mouvement ; une unité de mesure optique destinée à mesurer le mouvement de l'unité de cible optique et à extraire le degré de modification lorsqu'un mouvement se produit ; d'une unité de détection de mouvement destinée à détecter si un os bouge ou non lorsque le degré de modification extrait par l'unité de mesure optique est entré, et la correction de la trajectoire d'un robot chirurgical ; et ledit robot chirurgical pour la réalisation d'une opération de découpe sur la trajectoire corrigée par l'unité de détection de mouvement, ou sur une trajectoire prédéterminée.
PCT/KR2011/002189 2011-02-11 2011-03-30 Système de surveillance du mouvement des os et de correction d'une trajectoire à l'aide d'une unité de mesure optique en trois dimensions WO2012108578A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110012356A KR101195994B1 (ko) 2011-02-11 2011-02-11 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템
KR10-2011-0012356 2011-02-11

Publications (1)

Publication Number Publication Date
WO2012108578A1 true WO2012108578A1 (fr) 2012-08-16

Family

ID=46638782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002189 WO2012108578A1 (fr) 2011-02-11 2011-03-30 Système de surveillance du mouvement des os et de correction d'une trajectoire à l'aide d'une unité de mesure optique en trois dimensions

Country Status (2)

Country Link
KR (1) KR101195994B1 (fr)
WO (1) WO2012108578A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103431A1 (fr) * 2018-11-23 2020-05-28 北京天智航医疗科技股份有限公司 Procédé et dispositif pour détecter la précision d'un système de positionnement de robot chirurgical
CN113081272A (zh) * 2021-03-22 2021-07-09 珞石(北京)科技有限公司 虚拟墙引导的膝关节置换手术辅助定位系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371053B1 (ko) 2015-06-04 2022-03-10 큐렉소 주식회사 수술로봇 시스템
KR101985915B1 (ko) * 2017-08-18 2019-09-03 서울대학교산학협력단 로봇을 이용한 골편 위치 제어 시스템 및 방법
KR102274175B1 (ko) * 2019-09-18 2021-07-12 큐렉소 주식회사 수술 내비게이션 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018008A (ko) * 2000-06-28 2003-03-04 드파이 인터내셔널 리미티드 외과용 기구 정위치 장치
US20040097952A1 (en) * 2002-02-13 2004-05-20 Sarin Vineet Kumar Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
KR20060003685A (ko) * 2004-07-07 2006-01-11 한국과학기술원 인공고관절 수술용 비구컵 방향 안내장치
JP2009537230A (ja) * 2006-05-19 2009-10-29 マコ サージカル コーポレーション 外科装置の較正を検証するためのシステムおよび方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245820A1 (en) 2004-04-28 2005-11-03 Sarin Vineet K Method and apparatus for verifying and correcting tracking of an anatomical structure during surgery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018008A (ko) * 2000-06-28 2003-03-04 드파이 인터내셔널 리미티드 외과용 기구 정위치 장치
US20040097952A1 (en) * 2002-02-13 2004-05-20 Sarin Vineet Kumar Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
KR20060003685A (ko) * 2004-07-07 2006-01-11 한국과학기술원 인공고관절 수술용 비구컵 방향 안내장치
JP2009537230A (ja) * 2006-05-19 2009-10-29 マコ サージカル コーポレーション 外科装置の較正を検証するためのシステムおよび方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103431A1 (fr) * 2018-11-23 2020-05-28 北京天智航医疗科技股份有限公司 Procédé et dispositif pour détecter la précision d'un système de positionnement de robot chirurgical
CN113081272A (zh) * 2021-03-22 2021-07-09 珞石(北京)科技有限公司 虚拟墙引导的膝关节置换手术辅助定位系统
CN113081272B (zh) * 2021-03-22 2023-02-03 珞石(北京)科技有限公司 虚拟墙引导的膝关节置换手术辅助定位系统

Also Published As

Publication number Publication date
KR20120092355A (ko) 2012-08-21
KR101195994B1 (ko) 2012-10-30

Similar Documents

Publication Publication Date Title
US11259875B2 (en) Proximity-triggered computer-assisted surgery system and method
WO2012108578A1 (fr) Système de surveillance du mouvement des os et de correction d'une trajectoire à l'aide d'une unité de mesure optique en trois dimensions
US6322567B1 (en) Bone motion tracking system
EP3284433B1 (fr) Système de robot chirurgical pour la chirurgie stéréotaxique
EP3265009B1 (fr) Système de suivi de va-et-vient redondant
EP2611378B1 (fr) Système de chirurgie assistée par ordinateur déclenché par la proximité
WO2018080086A2 (fr) Système de navigation chirurgicale
WO2014077613A1 (fr) Robot pour procédure de repositionnement, et procédé pour commander son fonctionnement
US11717351B2 (en) Navigation surgical system, registration method thereof and electronic device
EP3653162B1 (fr) Agencements de guidage interactif et de détection de manipulation pour un système robotique chirurgical et procédé associé
WO2016024797A1 (fr) Système de suivi et procédé de suivi l'utilisant
WO2017090924A1 (fr) Système d'identification de position de marqueur pour chirurgie orthopédique et procédé d'identification de celui-ci
US20130064427A1 (en) Methods and systems for object tracking
WO2017043926A1 (fr) Procédé de guidage de processus d'intervention utilisant des images médicales et système pour processus d'intervention pour celui-ci
WO2019132427A1 (fr) Appareil de projection de cible laser et son procédé de commande, et système d'induction de chirurgie au laser comprenant un appareil de projection de cible laser
KR20130132335A (ko) 수술용 내비게이션 시스템의 증강현실을 위한 카메라 레지스트레이션 방법
WO2021045546A2 (fr) Dispositif de guidage de position de robot, procédé associé et système le comprenant
US11682122B2 (en) Auto-tracker characterization with robotics applications
WO2017043924A1 (fr) Procédé de guidage de procédure d'intervention à l'aide d'images médicales, et système de procédure d'intervention associé
JP6226963B2 (ja) 医療トラッキングインタフェースがトラッキングデータを出力する方法、医療トラッキングインタフェース及びコンピュータプログラム
CN103584876A (zh) 用于x射线图像的自动质量控制
CA2744123A1 (fr) Procede de codage de rotation d'un dispositif a bras en c et dispositif a bras en c
WO2023177054A1 (fr) Appareil et procédé de commande de position de robot de désossage
CN112677148A (zh) 机器人系统
WO2021054659A2 (fr) Dispositif et procédé de navigation chirurgicale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11858013

Country of ref document: EP

Kind code of ref document: A1