WO2012108578A1 - System for bone motion monitoring and path correction using a three-dimensional optical measuring unit - Google Patents

System for bone motion monitoring and path correction using a three-dimensional optical measuring unit Download PDF

Info

Publication number
WO2012108578A1
WO2012108578A1 PCT/KR2011/002189 KR2011002189W WO2012108578A1 WO 2012108578 A1 WO2012108578 A1 WO 2012108578A1 KR 2011002189 W KR2011002189 W KR 2011002189W WO 2012108578 A1 WO2012108578 A1 WO 2012108578A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
path
optical measuring
unit
motion detection
Prior art date
Application number
PCT/KR2011/002189
Other languages
French (fr)
Korean (ko)
Inventor
박석호
박종오
김정언
김석민
김우영
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Publication of WO2012108578A1 publication Critical patent/WO2012108578A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to a bone motion detection and path correction system of a 3D optical measuring device, and more particularly, to a bone motion detection system using a mechanical linear encoder used in a conventional artificial joint surgery robot (Bone Motion Monitoring System: BMM). ) Is configured using the 3D optical measuring device used in bone registration, and when the bone movement occurs during the operation, the path of the artificial joint surgery robot is measured using the value measured by the optical measuring device. It relates to a system for calibrating (Tool Path Regeneration).
  • FIG. 1A illustrates an example of a robotic surgical robot, a ROBODOC and a Bone Motion Monitoring (BMM) device
  • FIG. 1B illustrates an example in which a BMM is attached to a BMM probe and bones (Femur & Tibia) that are actually used.
  • a bone motion detection apparatus using a 3-axis mechanical linear encoder connected to a robot base is used to detect bone movement during surgery.
  • this method not only limits the distance between the patient and the robot, but also the device is large in size and complex in installation, requiring skilled personnel and thus increasing the time for surgery.
  • the recovery process is performed.
  • additional recovery pins are inserted (6) irrespective of the operation, thus causing unnecessary trauma to the patient.
  • 1C is a conceptual diagram of a BMM by an optical measuring device.
  • it is intended to support the surgery of the robot by applying a real-time affected movement detection technology using a three-dimensional optical tracker system (OTS).
  • OTS optical tracker system
  • the present invention has been made in view of the above problems, the first object of the present invention is to detect the movement of the bone during the operation, when the movement occurs, the coordinate change amount according to the movement, the operation using the coordinate change amount
  • the present invention provides a system for calibrating a robot's path.
  • the second object of the present invention is to provide a system for outputting a warning message to determine whether the deviation is more than a predetermined distance based on the amount of coordinate change according to the movement of the bone, and to inform the doctor when the deviation is more than the predetermined distance. Is in.
  • the present invention for achieving the technical problem relates to a bone motion detection and path correction system using a three-dimensional optical measuring device, attached to the affected bone, the target target for detecting the movement;
  • An optical measuring unit measuring a movement of the optical target unit and extracting a change amount when the movement occurs;
  • a motion detector configured to detect whether a bone moves as a change amount extracted through the optical measuring unit and correct a path of a surgical robot;
  • a surgical robot configured to perform cutting along a path corrected through the motion detection unit or a preset path. It includes.
  • the optical measuring unit may include: a coordinate extraction module extracting initial coordinates of the optical target unit and extracting changed coordinates (hereinafter, referred to as “conversion coordinates”) of the optical target unit when bone movement occurs; And a change amount extraction module for extracting a change amount between the transformed coordinates extracted through the coordinate extraction module and the initial coordinates. Characterized in that it comprises a.
  • the motion detection unit detects the movement of the bone as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit extracted through the optical measuring unit, and using the change amount (Rotation, Translation) path of the surgical robot
  • a motion detection module for calculating a transformation matrix (T-Matrix) to be applied to
  • a correction path calculation module that calculates a correction path moved by a position where a bone is moved based on the conversion matrix calculated by the motion detection module; Characterized in that it comprises a.
  • the motion detection unit may further include: an alarm module configured to determine whether the deviation is greater than or equal to a predetermined distance based on the change amount, and stop the surgical robot when the deviation is greater than or equal to a predetermined distance, and output a warning message by voice or video; Characterized in that it comprises a.
  • the optical measuring unit measures the initial coordinate of the optical target unit again, and sets the current position as the initial coordinate.
  • Optical tracker a mechanical bone motion detection system (BMM) used in the existing artificial joint surgical robot It has the effect of improving the space constraints and additional trauma of the space, the location of the affected area by the robot itself, and creating a safe and comfortable robotic surgical environment.
  • the space constraint between the patient and the robot is small, and only a minimal sensing device is inserted into the affected part, surgery can be performed without additional trauma to the patient.
  • its size is smaller than that of the existing surgical robot's motion detection device, making it easy to manufacture and install, and real-time measurement is performed through a three-dimensional coordinate measuring system. Through this system, the robot's operation path can be corrected and reset without the help of a doctor, and the robot is autonomous, which increases the reliability and satisfaction of robot surgery.
  • a digitizer is used in registration to match bone and 3D CT data, and a mechanical 3-axis encoder is used in the BMM.
  • OTS optical tracker
  • Figure 1a is an example of an artificial joint surgical robot ROBODOC and Bone Motion Monitoring (BMM) Device.
  • Figure 1b is an example showing a state in which the BMM is attached to the BMM Probe and Bones (Femur & Tibia) actually used.
  • 1C is a conceptual diagram of a BMM by an optical meter.
  • FIG. 2 is a block diagram of a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram conceptually illustrating a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
  • optical target portion 200 optical measuring portion
  • coordinate extraction module 220 change amount extraction module
  • FIG. 2 is a block diagram of a bone motion detection and path correction system S using a 3D optical measuring device according to an embodiment of the present invention
  • FIG. 3 is a 3D optical measuring device according to an embodiment of the present invention. It is a block diagram conceptually showing the bone motion detection and path correction system (S).
  • the bone motion detection and path correction system S using the 3D optical measuring device includes an optical target part 100, an optical measuring part 200, a motion detecting part 300, and surgery. It comprises a robot 400.
  • the optical target portion (BMM Reference) 100 is attached to the bone of the patient for the affected area, preferably for artificial joint surgery, to detect movement.
  • the affected part is set to bone, but the present invention is not limited thereto.
  • An optical tracker system 200 measures a movement of the optical target unit 100 and extracts a change amount when a movement occurs, as shown in FIG. 2. 210 and the change amount extraction module 220.
  • the coordinate extraction module 210 extracts the initial coordinates of the optical target unit 100, and when the bone movement occurs, the changed coordinates of the optical target unit 100 (hereinafter, 'conversion coordinates') ( Rot ( R 2 , R 2 , R 2 ), Trans ( T 2 , T 2 , T 2 )) are extracted.
  • the amount of change extraction module 220 changes the amount of change between the coordinates extracted through the coordinate extraction module 210 and the initial coordinates ⁇ Rot ( R x , R y , R z ), ⁇ Trans ( T x , T y , T z )).
  • the motion detection unit (BMM System) 300 detects the movement of the bone as the change amount extracted through the optical measuring unit 200 is input, and performs a function of correcting the path of the surgical robot 400. 2, the motion detection module 310 and the correction path calculation module 320 are included.
  • the motion detection module 310 is a bone cutting is in progress as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit 100 extracted by the optical measuring unit 200 is input.
  • the motion of the bone is sensed and a transformation matrix (T-Matrix) to be applied to the path of the surgical robot 400 is calculated using the change amount (Rotation, Translation) as shown in [Equation 1].
  • the correction path calculation module 320 calculates the correction path moved by the position where the bone is moved, based on the conversion matrix calculated by the motion detection module 310.
  • the optical measuring unit 200 measures the initial coordinate of the optical target unit 100 again, and sets the current position as the initial coordinate. Accordingly, a surgical procedure such as cutting can be performed.
  • the motion detecting unit 300 may move away from a predetermined cutting path when bone movement occurs due to an unexpected situation.
  • the motion detecting unit 300 determines whether the deviation is more than a predetermined distance based on the change amount, and when the deviation is more than the predetermined distance, the surgical robot 400 is stopped, and the voice or image It may further include an alarm module 330 for outputting a warning message.
  • the preset distance is set to 2 mm, but the present invention is not limited thereto.
  • the surgical robot 400 performs surgery such as cutting along a path corrected through the motion detecting unit 300 or a preset path.
  • the robot for artificial joint surgery may be provided with a cutter for cutting.
  • Bone motion detection and path correction system using a three-dimensional optical measuring device having the above-described configuration and characteristic functions, applying a real-time lesion motion detection technology using an optical tracker system (OTS) To support the operation of the robot. That is, since the optical measuring device (OTS) is wireless and the optical target (Reference) attached to the bone of the patient is small, the installation time and the operation space can be secured.
  • OTS optical tracker system
  • the three-dimensional coordinate measuring system since the three-dimensional coordinate measuring system is used, it is possible to measure the minute movement of the bone of the patient that may occur during surgery.
  • the cutting path of the surgical robot can be regenerated / corrected through the coordinates of the robot and the coordinate matching to perform the surgery, thereby inducing the affected part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

The present invention relates to a system for bone motion monitoring and path correction using a three-dimensional optical measuring unit, and more particularly, to a system that monitors the motion of a bone during surgery, extracts a change in coordinates according to the motion that has occurred, and corrects a path of a surgical robot using the change in coordinates. In order to achieve the above aim, the system of the present invention includes: an optical target unit attached to a bone for detecting motion; an optical measuring unit for measuring the motion of the optical target unit and extracting the degree of change when a motion occurs; a motion-detecting unit for detecting whether or not a bone moves as the degree of change extracted by the optical measuring unit is inputted, and correcting the path of a surgical robot; and said surgical robot for performing a cutting operation along the path corrected by the motion-detecting unit, or along a predetermined path.

Description

3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템Bone Motion Detection and Path Correction System Using 3D Optical Measuring Machine
본 발명은 3차원 광학 측정기를 이용한 의 뼈 움직임 감지 및 경로 보정 시스템에 관한 것으로서, 더욱 상세하게는 기존의 인공관절 수술로봇에서 사용되던 기계식 선형 엔코더를 이용한 뼈 움직임 감지 시스템(Bone Motion Monitoring System: BMM)을 뼈 정합(Bone Registration)에서 사용하는 3차원 광학 측정기를 이용하여 구성하고, 이를 이용하여 수술도중 뼈의 움직임이 발생되었을 때, 광학측정기에서 측정된 값을 이용하여 인공관절 수술로봇의 경로를 보정하는 시스템(Tool Path Regeneration)에 관한 것이다. The present invention relates to a bone motion detection and path correction system of a 3D optical measuring device, and more particularly, to a bone motion detection system using a mechanical linear encoder used in a conventional artificial joint surgery robot (Bone Motion Monitoring System: BMM). ) Is configured using the 3D optical measuring device used in bone registration, and when the bone movement occurs during the operation, the path of the artificial joint surgery robot is measured using the value measured by the optical measuring device. It relates to a system for calibrating (Tool Path Regeneration).
도 1a 는 인공관절 수술로봇인 ROBODOC과 Bone Motion Monitoring(BMM) Device에 관한 일예시도이며, 도 1b 는 실제 사용되는 BMM Probe와 Bones(Femur&Tibia)에 BMM이 부착된 상태를 보이는 일예시도이다. FIG. 1A illustrates an example of a robotic surgical robot, a ROBODOC and a Bone Motion Monitoring (BMM) device, and FIG. 1B illustrates an example in which a BMM is attached to a BMM probe and bones (Femur & Tibia) that are actually used.
상기 도 1a 및 도 1b 를 통해 알 수 있듯이, 기존의 로봇을 이용한 인공관절 수술의 경우, 수술 중에 뼈의 움직임을 감지하기 위하여 로봇 base에 연결된 3축의 기계식 선형 엔코더를 이용한 뼈 움직임 감지 장치를 사용하고 있다. 1A and 1B, in the case of artificial joint surgery using a conventional robot, a bone motion detection apparatus using a 3-axis mechanical linear encoder connected to a robot base is used to detect bone movement during surgery. have.
그러나, 이러한 방법은 환자와 로봇간의 거리가 제한될 뿐만 아니라, 이 장치는 크기가 크고 설치가 복잡하여, 숙련된 전문요원이 필요하고 그로 인해 수술 시간이 증가하게 된다. 또한, 수술 중 뼈의 움직임이 발생 하면 복구과정을 거치게 되는데 기존의 수술로봇의 경우에는 Recovery pin을 수술과 상관없이 추가로 삽입(6개)하기 때문에 환자에 불필요한 외상을 가하고 있다. However, this method not only limits the distance between the patient and the robot, but also the device is large in size and complex in installation, requiring skilled personnel and thus increasing the time for surgery. In addition, when bone movement occurs during surgery, the recovery process is performed. In the case of the existing surgical robot, additional recovery pins are inserted (6) irrespective of the operation, thus causing unnecessary trauma to the patient.
한편, 기존의 로봇수술의 경우에는 수술 중 뼈의 움직임이 발생하여 수술이 중단되었을 때, 수술로봇의 경로를 다시 생성하고 복구하기 위해 의사가 뼈의 정합(Registration)에 사용되는 기계식 디지타이저를 이용하여 환자에게 삽입한 Recovery pin을 통해 재 정합을 시켜줘야만 하는 문제점이 있었다.On the other hand, in the case of conventional robot surgery, when the movement of the bone occurs during surgery and the operation is stopped, the doctor uses a mechanical digitizer that is used for registration of the bone to regenerate and restore the path of the surgical robot. There was a problem that the patient had to be re-matched through the recovery pin inserted.
도 1c 는 광학식 측정기에 의한 BMM 개념도이다. 본 발명에서는 3차원 광학식 측정기(Optical Tracker System: OTS)를 이용한 실시간 환부 움직임 감지 기술을 적용하여 로봇의 수술을 지원하고자 한다. 1C is a conceptual diagram of a BMM by an optical measuring device. In the present invention, it is intended to support the surgery of the robot by applying a real-time affected movement detection technology using a three-dimensional optical tracker system (OTS).
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제 1 목적은, 수술 도중 뼈의 움직임을 감지하고, 움직임이 발생한 경우 움직임에 따른 좌표 변화량을 추출하고, 좌표 변화량을 이용하여 수술로봇의 경로를 보정하는 시스템을 제공함에 있다. The present invention has been made in view of the above problems, the first object of the present invention is to detect the movement of the bone during the operation, when the movement occurs, the coordinate change amount according to the movement, the operation using the coordinate change amount The present invention provides a system for calibrating a robot's path.
그리고 본 발명의 제 2 목적은, 뼈의 움직임에 따른 좌표 변화량을 바탕으로 기 설정된 거리 이상 벗어나는지 여부를 판단하여, 기 설정된 거리 이상 벗어난 경우, 의사에게 알릴 수 있도록 경고 메시지를 출력하는 시스템을 제공함에 있다. The second object of the present invention is to provide a system for outputting a warning message to determine whether the deviation is more than a predetermined distance based on the amount of coordinate change according to the movement of the bone, and to inform the doctor when the deviation is more than the predetermined distance. Is in.
이러한 기술적 과제를 달성하기 위한 본 발명은 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템에 관한 것으로서, 환부인 뼈에 부착되어, 움직임을 감지하는 광학 표적부; 상기 광학 표적부의 움직임을 측정하며, 움직임이 발생할 경우 변화량을 추출하는 광학 측정부; 상기 광학 측정부를 통해 추출된 변화량이 입력됨에 따라 뼈의 움직임 여부를 감지하고, 수술 로봇의 경로를 보정하는 움직임 감지부; 및 상기 움직임 감지부를 통해 보정된 경로 또는 기 설정된 경로에 따라 절삭을 수행하는 수술로봇; 을 포함한다.The present invention for achieving the technical problem relates to a bone motion detection and path correction system using a three-dimensional optical measuring device, attached to the affected bone, the target target for detecting the movement; An optical measuring unit measuring a movement of the optical target unit and extracting a change amount when the movement occurs; A motion detector configured to detect whether a bone moves as a change amount extracted through the optical measuring unit and correct a path of a surgical robot; And a surgical robot configured to perform cutting along a path corrected through the motion detection unit or a preset path. It includes.
또한 상기 광학 측정부는, 상기 광학 표적부의 초기좌표를 추출하며, 뼈의 움직임이 발생한 경우, 상기 광학 표적부의 변화된 좌표(이하, '변환좌표')를 추출하는 좌표 추출모듈; 및 상기 좌표 추출모듈을 통해 추출된 변환좌표와 상기 초기좌표와의 변화량을 추출하는 변화량 추출모듈; 을 포함하는 것을 특징으로 한다.The optical measuring unit may include: a coordinate extraction module extracting initial coordinates of the optical target unit and extracting changed coordinates (hereinafter, referred to as “conversion coordinates”) of the optical target unit when bone movement occurs; And a change amount extraction module for extracting a change amount between the transformed coordinates extracted through the coordinate extraction module and the initial coordinates. Characterized in that it comprises a.
또한 상기 움직임 감지부는, 상기 광학 측정부를 통해 추출된 광학 표적부의 변환좌표와 초기좌표간의 변화량이 입력됨에 따라, 뼈의 움직임 여부를 감지하고, 상기 변화량(Rotation, Translation)을 이용하여 수술로봇의 경로에 적용시킬 변환행렬(T-Matrix)을 계산하는 움직임 감지모듈; 상기 움직임 감지모듈을 통해 계산된 변환행렬을 바탕으로, 뼈가 움직인 위치만큼 이동된 보정경로를 계산하는 보정경로 계산모듈; 을 포함하는 것을 특징으로 한다.In addition, the motion detection unit detects the movement of the bone as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit extracted through the optical measuring unit, and using the change amount (Rotation, Translation) path of the surgical robot A motion detection module for calculating a transformation matrix (T-Matrix) to be applied to; A correction path calculation module that calculates a correction path moved by a position where a bone is moved based on the conversion matrix calculated by the motion detection module; Characterized in that it comprises a.
또한 상기 움직임 감지부는, 상기 변화량을 바탕으로 기 설정된 거리 이상 벗어나는지 여부를 판단하여, 기 설정된 거리 이상 벗어난 경우, 수술로봇을 정지시키고, 음성 또는 영상으로 경고 메시지를 출력하는 경보모듈; 을 포함하는 것을 특징으로 한다. The motion detection unit may further include: an alarm module configured to determine whether the deviation is greater than or equal to a predetermined distance based on the change amount, and stop the surgical robot when the deviation is greater than or equal to a predetermined distance, and output a warning message by voice or video; Characterized in that it comprises a.
그리고 상기 광학 측정부는, 상기 움직임 감지부를 통한 보정경로 계산이 완료될 경우, 상기 광학 표적부의 초기좌표를 다시 측정하여, 현재의 위치를 초기좌표로 설정하는 것을 특징으로 한다. When the calculation of the correction path through the motion detector is completed, the optical measuring unit measures the initial coordinate of the optical target unit again, and sets the current position as the initial coordinate.
상기와 같은 본 발명에 따르면, 비접촉식 광학 표적기를 환부에 삽입하고, 3차원 광학 측정기(Optical tracker)를 사용한 좌표측정을 통해, 기존의 인공관절 수술로봇에 사용하는 기계식의 뼈 움직임 감지 시스템(BMM)이 가지고 있는 공간의 제약과 추가적인 외상을 입히는 부분을 개선하고 로봇 스스로 환부의 위치를 찾을 수 있으며, 안전하고 편안한 로봇 수술 환경을 구축할 수 있는 효과가 있다. According to the present invention as described above, by inserting a non-contact optical target to the affected area, and through the coordinate measurement using a three-dimensional optical tracker (Optical tracker), a mechanical bone motion detection system (BMM) used in the existing artificial joint surgical robot It has the effect of improving the space constraints and additional trauma of the space, the location of the affected area by the robot itself, and creating a safe and comfortable robotic surgical environment.
또한 본 발명에 따르면, 환자와 로봇간의 공간 제약이 적고, 최소한의 감지 장치만 환부에 삽입하기 때문에 환자에게 추가적인 외상을 입히지 않고 수술이 가능하다. 또한 기존 수술로봇의 움직임 감지 장치보다 그 크기가 작아 제작과 설치가 간편하며, 3차원 좌표측정 시스템을 통해 실시간 측정이 이루어진다. 이러한 시스템을 통해 의사의 보조가 없어도 로봇의 수술 경로 보정 및 재설정이 가능하여 로봇이 자율적으로 이루어져서 로봇 수술의 신뢰성 및 만족도가 높아지는 효과도 있다. In addition, according to the present invention, since the space constraint between the patient and the robot is small, and only a minimal sensing device is inserted into the affected part, surgery can be performed without additional trauma to the patient. In addition, its size is smaller than that of the existing surgical robot's motion detection device, making it easy to manufacture and install, and real-time measurement is performed through a three-dimensional coordinate measuring system. Through this system, the robot's operation path can be corrected and reset without the help of a doctor, and the robot is autonomous, which increases the reliability and satisfaction of robot surgery.
그리고 본 발명에 따르면, 추가적으로 기존의 인공관절 수술로봇의 경우에는 뼈와 3차원 CT데이터를 매칭시키는 정합(Registration)에 있어서 디지타이져를 사용하고 BMM을 함에 있어 기계적 3축 엔코더를 사용하였다. 그러나, 광학적 추적기 (OTS)를 사용하면 정합과정과 BMM을 하나의 OTS를 이용하여 동시에 구현할 수 있는 효과도 있다.In addition, according to the present invention, in the existing artificial joint surgery robot, a digitizer is used in registration to match bone and 3D CT data, and a mechanical 3-axis encoder is used in the BMM. However, using an optical tracker (OTS) has the effect of simultaneously implementing the matching process and the BMM using a single OTS.
도 1a 는 인공관절 수술로봇인 ROBODOC과 Bone Motion Monitoring(BMM) Device에 관한 일예시도.Figure 1a is an example of an artificial joint surgical robot ROBODOC and Bone Motion Monitoring (BMM) Device.
도 1b 는 실제 사용되는 BMM Probe와 Bones(Femur&Tibia)에 BMM이 부착된 상태를 보이는 일예시도.Figure 1b is an example showing a state in which the BMM is attached to the BMM Probe and Bones (Femur & Tibia) actually used.
도 1c 는 광학식 측정기에 의한 BMM 개념도.1C is a conceptual diagram of a BMM by an optical meter.
도 2 는 본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템에 관한 블록도.2 is a block diagram of a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
도 3 은 본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템을 개념적으로 도시한 구성도.3 is a block diagram conceptually illustrating a bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention.
** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **
S: 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템S: Bone Motion Detection and Path Correction System using 3D Optical Measuring Device
100: 광학 표적부 200: 광학 측정부100: optical target portion 200: optical measuring portion
210: 좌표 추출모듈 220: 변화량 추출모듈210: coordinate extraction module 220: change amount extraction module
300: 움직임 관리부 310: 움직임 감지모듈300: motion management unit 310: motion detection module
320: 보정경로 계산모듈 330: 경보모듈320: correction path calculation module 330: alarm module
400: 수술로봇400: surgical robot
본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. In the meantime, when it is determined that the detailed description of the known functions and configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.
이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템을 도 2 내지 도 3 을 참조하여 설명하면 다음과 같다.The bone motion detection and path correction system using the 3D optical measuring device according to an embodiment of the present invention will be described with reference to FIGS.
도 2 는 본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템(S)에 관한 블록도이며, 도 3 은 본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템(S)을 개념적으로 도시한 구성도이다. 2 is a block diagram of a bone motion detection and path correction system S using a 3D optical measuring device according to an embodiment of the present invention, and FIG. 3 is a 3D optical measuring device according to an embodiment of the present invention. It is a block diagram conceptually showing the bone motion detection and path correction system (S).
도 2 및 도 3 에 도시된 바와 같이, 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템(S)은 광학 표적부(100), 광학 측정부(200), 움직임 감지부(300) 및 수술로봇(400)을 포함하여 이루어진다. As shown in FIGS. 2 and 3, the bone motion detection and path correction system S using the 3D optical measuring device includes an optical target part 100, an optical measuring part 200, a motion detecting part 300, and surgery. It comprises a robot 400.
광학 표적부(BMM Reference)(100)는 환부 바람직하게, 인공관절 수술을 위한 환자의 뼈에 부착되어, 움직임을 감지한다. The optical target portion (BMM Reference) 100 is attached to the bone of the patient for the affected area, preferably for artificial joint surgery, to detect movement.
본 발명에 따른 시스템은 인공관절 수술로봇을 위한 것이므로, 본 실시예에서 환부를 뼈로 설정하겠으나, 본 발명이 이에 한정되는 것은 아니다. Since the system according to the present invention is for an artificial joint surgery robot, in the present embodiment, the affected part is set to bone, but the present invention is not limited thereto.
광학 측정부(Optical Tracker System)(200)는 상기 광학 표적부(100)의 움직임을 측정하며, 움직임이 발생할 경우 변화량을 추출하는 기능을 수행하는 바, 상기 도 2 에 도시된 바와 같이 좌표 추출모듈(210) 및 변화량 추출모듈(220)을 포함한다.An optical tracker system 200 measures a movement of the optical target unit 100 and extracts a change amount when a movement occurs, as shown in FIG. 2. 210 and the change amount extraction module 220.
구체적으로, 좌표 추출모듈(210)은 상기 광학 표적부(100)의 초기좌표를 추출하며, 뼈의 움직임이 발생한 경우, 상기 광학 표적부(100)의 변화된 좌표(이하, '변환좌표')(Rot(R 2 , R 2 , R 2 ), Trans(T 2 , T 2 , T 2 ))를 추출한다.Specifically, the coordinate extraction module 210 extracts the initial coordinates of the optical target unit 100, and when the bone movement occurs, the changed coordinates of the optical target unit 100 (hereinafter, 'conversion coordinates') ( Rot ( R 2 , R 2 , R 2 ), Trans ( T 2 , T 2 , T 2 )) are extracted.
변화량 추출모듈(220)은 상기 좌표 추출모듈(210)을 통해 추출된 변환좌표와 상기 초기좌표와의 변화량(ΔRot(R x , R y , R z ), ΔTrans(T x , T y , T z ))를 추출한다.The amount of change extraction module 220 changes the amount of change between the coordinates extracted through the coordinate extraction module 210 and the initial coordinates Δ Rot ( R x , R y , R z ), Δ Trans ( T x , T y , T z )).
움직임 감지부(BMM System)(300)는 상기 광학 측정부(200)를 통해 추출된 변화량이 입력됨에 따라 뼈의 움직임 여부를 감지하고, 수술로봇(400)의 경로를 보정하는 기능을 수행하는 바, 상기 도 2 에 도시된 바와 같이 움직임 감지모듈(310) 및 보정경로 계산모듈(320)을 포함한다. The motion detection unit (BMM System) 300 detects the movement of the bone as the change amount extracted through the optical measuring unit 200 is input, and performs a function of correcting the path of the surgical robot 400. 2, the motion detection module 310 and the correction path calculation module 320 are included.
구체적으로, 움직임 감지모듈(310)은 상기 광학 측정부(200)를 통해 추출된 광학 표적부(100)의 변환좌표와 초기좌표간의 변화량이 입력됨에 따라, 뼈 절삭(Bone Cutting)이 진행되는 중의 뼈의 움직임 여부를 감지하고, 상기 변화량(Rotation, Translation)을 이용하여 수술로봇(400)의 경로에 적용시킬 변환행렬(T-Matrix)을 [수학식 1] 과 같이 계산한다. Specifically, the motion detection module 310 is a bone cutting is in progress as the amount of change between the conversion coordinate and the initial coordinate of the optical target unit 100 extracted by the optical measuring unit 200 is input. The motion of the bone is sensed and a transformation matrix (T-Matrix) to be applied to the path of the surgical robot 400 is calculated using the change amount (Rotation, Translation) as shown in [Equation 1].
[수학식 1][Equation 1]
Figure PCTKR2011002189-appb-I000001
Figure PCTKR2011002189-appb-I000001
보정경로 계산모듈(320)은 상기 움직임 감지모듈(310)을 통해 계산된 변환행렬을 바탕으로, 뼈가 움직인 위치만큼 이동된 보정경로를 계산한다. The correction path calculation module 320 calculates the correction path moved by the position where the bone is moved, based on the conversion matrix calculated by the motion detection module 310.
한편, 움직임 감지부(300)를 통한 보정경로 계산이 완료될 경우, 상기 광학 측정부(200)는 광학 표적부(100)의 초기좌표를 다시 측정하여, 현재의 위치를 초기좌표로 설정한다. 이에 따라, 절삭 등의 수술절차가 수행될 수 있다. On the other hand, when the correction path calculation through the motion detector 300 is completed, the optical measuring unit 200 measures the initial coordinate of the optical target unit 100 again, and sets the current position as the initial coordinate. Accordingly, a surgical procedure such as cutting can be performed.
본 발명에 따른 움직임 감지부(300)는 돌발상황에 의해 뼈의 움직임이 발생한 경우, 뼈가 정해진 절삭 경로에서 벗어날 수 있다. The motion detecting unit 300 according to the present invention may move away from a predetermined cutting path when bone movement occurs due to an unexpected situation.
따라서, 본 발명에 따른 움직임 감지부(300)는, 상기 변화량을 바탕으로 기 설정된 거리 이상 벗어나는지 여부를 판단하여, 기 설정된 거리 이상 벗어난 경우, 수술로봇(400)을 정지시키고, 음성 또는 영상으로 경고 메시지를 출력하는 경보모듈(330)을 더 포함할 수 있다. 본 실시예에서, 기 설정된 거리는 2mm 인 것으로 설정하겠으나, 본 발명이 이에 한정되는 것은 아니다. Therefore, the motion detecting unit 300 according to the present invention determines whether the deviation is more than a predetermined distance based on the change amount, and when the deviation is more than the predetermined distance, the surgical robot 400 is stopped, and the voice or image It may further include an alarm module 330 for outputting a warning message. In the present embodiment, the preset distance is set to 2 mm, but the present invention is not limited thereto.
수술로봇(400)은 상기 움직임 감지부(300)를 통해 보정된 경로 또는 기 설정된 경로에 따라 절삭(Cutting) 등의 수술을 수행한다. 여기서, 인공관절 수술용 로봇으로서, 절삭을 위한 커터 등을 구비할 수 있다. The surgical robot 400 performs surgery such as cutting along a path corrected through the motion detecting unit 300 or a preset path. Here, the robot for artificial joint surgery may be provided with a cutter for cutting.
상술한 구성과 특징적인 기능을 갖는 본 발명의 일실시예에 따른 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템은, 광학 측정기(Optical Tracker System: OTS)를 이용한 실시간 환부 움직임 감지 기술을 적용하여 로봇의 수술을 지원하고자 한다. 즉, 광학 측정기(OTS)는 무선방식이며 환자의 뼈에 부착되는 광학 표적(Reference)이 소형이기 때문에, 설치시간 및 수술공간의 확보가 자유롭다. Bone motion detection and path correction system using a three-dimensional optical measuring device according to an embodiment of the present invention having the above-described configuration and characteristic functions, applying a real-time lesion motion detection technology using an optical tracker system (OTS) To support the operation of the robot. That is, since the optical measuring device (OTS) is wireless and the optical target (Reference) attached to the bone of the patient is small, the installation time and the operation space can be secured.
또한, 3차원 좌표측정 시스템을 이용하기 때문에, 수술 중에 발생할 수 있는 환자 뼈의 미세한 움직임도 측정이 가능하다. In addition, since the three-dimensional coordinate measuring system is used, it is possible to measure the minute movement of the bone of the patient that may occur during surgery.
그리고, 환자 뼈의 움직임에 대한 정확한 3차원 좌표를 가지고 있기 때문에, 이 좌표를 이용하여 수술을 행하는 로봇 좌표와 좌표매칭을 통해 수술로봇의 절삭 경로를 재생성/보정하여 환부에 유도할 수 있다. In addition, since the patient has accurate three-dimensional coordinates of the movement of the bone of the patient, the cutting path of the surgical robot can be regenerated / corrected through the coordinates of the robot and the coordinate matching to perform the surgery, thereby inducing the affected part.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. As described above and described with reference to a preferred embodiment for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described as described above, it is a deviation from the scope of the technical idea It will be understood by those skilled in the art that many modifications and variations can be made to the invention without departing from the scope of the invention. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

Claims (5)

  1. 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템에 있어서,In the bone motion detection and path correction system using a three-dimensional optical measuring device,
    뼈에 부착되어, 움직임을 감지하는 광학 표적부(100);Attached to the bone, the optical target unit 100 for detecting the movement;
    상기 광학 표적부(100)의 움직임을 측정하며, 움직임이 발생할 경우 변화량을 추출하는 광학 측정부(200);An optical measuring unit 200 measuring a movement of the optical target unit 100 and extracting a change amount when the movement occurs;
    상기 광학 측정부(200)를 통해 추출된 변화량이 입력됨에 따라 뼈의 움직임 여부를 감지하고, 수술 로봇(400)의 경로를 보정하는 움직임 감지부(300); 및 A movement detecting unit 300 for detecting whether a bone moves as the amount of change extracted through the optical measuring unit 200 is input and correcting a path of the surgical robot 400; And
    상기 움직임 감지부(300)를 통해 보정된 경로 또는 기 설정된 경로에 따라 절삭(Cutting)을 수행하는 수술로봇(400); 을 포함하는 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템.A surgical robot 400 for cutting according to a path corrected through the motion detecting unit 300 or a preset path; Bone motion detection and path correction system using a three-dimensional optical measuring device comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 광학 측정부(200)는,The optical measuring unit 200,
    상기 광학 표적부(100)의 초기좌표를 추출하며, 뼈의 움직임이 발생한 경우, 상기 광학 표적부(100)의 변화된 좌표(이하, '변환좌표')를 추출하는 좌표 추출모듈(210); 및 A coordinate extraction module 210 for extracting initial coordinates of the optical target unit 100 and extracting changed coordinates (hereinafter, referred to as 'conversion coordinates') of the optical target unit 100 when bone movement occurs; And
    상기 좌표 추출모듈(210)을 통해 추출된 변환좌표와 상기 초기좌표와의 변화량을 추출하는 변화량 추출모듈(220); 을 포함하는 것을 특징으로 하는 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템.A change amount extracting module 220 for extracting a change amount between the transformed coordinate extracted through the coordinate extracting module 210 and the initial coordinate; Bone motion detection and path correction system using a three-dimensional optical measuring device comprising a.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 움직임 감지부(300)는,The motion detector 300,
    상기 광학 측정부(200)를 통해 추출된 광학 표적부(100)의 변환좌표와 초기좌표간의 변화량이 입력됨에 따라, 뼈의 움직임 여부를 감지하고, 상기 변화량(Rotation, Translation)을 이용하여 수술로봇(400)의 경로에 적용시킬 변환행렬(T-Matrix)을 계산하는 움직임 감지모듈(310); As the amount of change between the transformed coordinate and the initial coordinate of the optical target unit 100 extracted through the optical measuring unit 200 is input, the movement of the bone is sensed, and the surgical robot is operated using the change amount (Rotation, Translation). A motion detection module 310 for calculating a transformation matrix T-Matrix to be applied to the path of 400;
    상기 움직임 감지모듈(310)을 통해 계산된 변환행렬을 바탕으로, 뼈가 움직인 위치만큼 이동된 보정경로를 계산하는 보정경로 계산모듈(320); 을 포함하는 것을 특징으로 하는 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템.A correction path calculation module 320 that calculates a correction path that is moved by a position where the bone is moved based on the conversion matrix calculated by the motion detection module 310; Bone motion detection and path correction system using a three-dimensional optical measuring device comprising a.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 움직임 감지부(300)는,The motion detector 300,
    상기 변화량을 바탕으로 기 설정된 거리 이상 벗어나는지 여부를 판단하여, 기 설정된 거리 이상 벗어난 경우, 수술로봇(400)을 정지시키고, 음성 또는 영상으로 경고 메시지를 출력하는 경보모듈(330); 을 포함하는 것을 특징으로 하는 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템.An alarm module 330 for determining whether the deviation is greater than or equal to a predetermined distance based on the change amount, and stopping the surgical robot 400 and outputting a warning message by voice or video when the deviation is greater than or equal to a predetermined distance; Bone motion detection and path correction system using a three-dimensional optical measuring device comprising a.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 광학 측정부(200)는,The optical measuring unit 200,
    상기 움직임 감지부(300)를 통한 보정경로 계산이 완료될 경우, When the calculation of the correction path through the motion detection unit 300 is completed,
    상기 광학 표적부(100)의 초기좌표를 다시 측정하여, 현재의 위치를 초기좌표로 설정하는 것을 특징으로 하는 3차원 광학 측정기를 이용한 뼈 움직임 감지 및 경로 보정 시스템.Bone motion detection and path correction system using a three-dimensional optical measuring device, characterized in that by measuring the initial coordinate of the optical target unit 100 again, the current position is set to the initial coordinate.
PCT/KR2011/002189 2011-02-11 2011-03-30 System for bone motion monitoring and path correction using a three-dimensional optical measuring unit WO2012108578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0012356 2011-02-11
KR1020110012356A KR101195994B1 (en) 2011-02-11 2011-02-11 Bone motion monitoring and path regenerating system using three-dimensional optical tracker

Publications (1)

Publication Number Publication Date
WO2012108578A1 true WO2012108578A1 (en) 2012-08-16

Family

ID=46638782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002189 WO2012108578A1 (en) 2011-02-11 2011-03-30 System for bone motion monitoring and path correction using a three-dimensional optical measuring unit

Country Status (2)

Country Link
KR (1) KR101195994B1 (en)
WO (1) WO2012108578A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103431A1 (en) * 2018-11-23 2020-05-28 北京天智航医疗科技股份有限公司 Method and device for detecting accuracy of surgical robot positioning system
CN113081272A (en) * 2021-03-22 2021-07-09 珞石(北京)科技有限公司 Knee joint replacement surgery auxiliary positioning system guided by virtual wall

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371053B1 (en) * 2015-06-04 2022-03-10 큐렉소 주식회사 Surgical robot system
KR101985915B1 (en) * 2017-08-18 2019-09-03 서울대학교산학협력단 System and method for controlling bone position using robot
KR102274175B1 (en) * 2019-09-18 2021-07-12 큐렉소 주식회사 Surgical navigation apparatus and the method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018008A (en) * 2000-06-28 2003-03-04 드파이 인터내셔널 리미티드 Apparatus for positioning a surgical instrument
US20040097952A1 (en) * 2002-02-13 2004-05-20 Sarin Vineet Kumar Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
KR20060003685A (en) * 2004-07-07 2006-01-11 한국과학기술원 An acetabular cup orientator in a total hip replacement
JP2009537230A (en) * 2006-05-19 2009-10-29 マコ サージカル コーポレーション System and method for verifying calibration of a surgical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245820A1 (en) 2004-04-28 2005-11-03 Sarin Vineet K Method and apparatus for verifying and correcting tracking of an anatomical structure during surgery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018008A (en) * 2000-06-28 2003-03-04 드파이 인터내셔널 리미티드 Apparatus for positioning a surgical instrument
US20040097952A1 (en) * 2002-02-13 2004-05-20 Sarin Vineet Kumar Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
KR20060003685A (en) * 2004-07-07 2006-01-11 한국과학기술원 An acetabular cup orientator in a total hip replacement
JP2009537230A (en) * 2006-05-19 2009-10-29 マコ サージカル コーポレーション System and method for verifying calibration of a surgical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103431A1 (en) * 2018-11-23 2020-05-28 北京天智航医疗科技股份有限公司 Method and device for detecting accuracy of surgical robot positioning system
CN113081272A (en) * 2021-03-22 2021-07-09 珞石(北京)科技有限公司 Knee joint replacement surgery auxiliary positioning system guided by virtual wall
CN113081272B (en) * 2021-03-22 2023-02-03 珞石(北京)科技有限公司 Knee joint replacement surgery auxiliary positioning system guided by virtual wall

Also Published As

Publication number Publication date
KR20120092355A (en) 2012-08-21
KR101195994B1 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
US9788904B2 (en) Proximity-triggered computer-assisted surgery system and method
WO2012108578A1 (en) System for bone motion monitoring and path correction using a three-dimensional optical measuring unit
US6322567B1 (en) Bone motion tracking system
CA2808661C (en) Proximity-triggered computer-assisted surgery system and method
EP3284433B1 (en) Surgical robot system for stereotactic surgery
EP3265009B1 (en) Redundant reciprocal tracking system
WO2014077613A1 (en) Robot for repositioning procedure, and method for controlling operation thereof
EP4074275A1 (en) Navigation surgery system and registration method therefor, electronic device, and support apparatus
EP3653162B1 (en) Interactive guidance and manipulation detection arrangements for a surgical robotic system, and associated method
WO2018080086A2 (en) Surgical navigation system
WO2016024797A1 (en) Tracking system and tracking method using same
JP6977086B2 (en) Orthopedic marker position confirmation system and its confirmation method
WO2017043926A1 (en) Guiding method of interventional procedure using medical images, and system for interventional procedure therefor
WO2013162201A1 (en) Method for tracking motion of subject in real time and for correcting medical image
WO2019132427A1 (en) Laser target projection apparatus and control method thereof, and laser surgery induction system comprising laser target projection apparatus
KR20130132335A (en) Camera registration method for augmented reality of surgical navigation system
US11682122B2 (en) Auto-tracker characterization with robotics applications
WO2017043924A1 (en) Guiding method of interventional procedure using medical images, and system for interventional procedure therefor
CN103584876A (en) Automatic quality control of X-ray image
CA2744123A1 (en) C-arm rotation encoding methods and apparatus
WO2023177054A1 (en) Apparatus and method for controlling position of deboning robot
CN112677148A (en) Robot system
JP6226963B2 (en) Method for medical tracking interface to output tracking data, medical tracking interface and computer program
WO2021054659A2 (en) Device and method for surgical navigation
WO2021045546A2 (en) Device for guiding position of robot, method therefor, and system comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11858013

Country of ref document: EP

Kind code of ref document: A1