WO2012108248A1 - Q-switched fiber laser - Google Patents

Q-switched fiber laser Download PDF

Info

Publication number
WO2012108248A1
WO2012108248A1 PCT/JP2012/051210 JP2012051210W WO2012108248A1 WO 2012108248 A1 WO2012108248 A1 WO 2012108248A1 JP 2012051210 W JP2012051210 W JP 2012051210W WO 2012108248 A1 WO2012108248 A1 WO 2012108248A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
fiber laser
fiber
resonator
Prior art date
Application number
PCT/JP2012/051210
Other languages
French (fr)
Japanese (ja)
Inventor
将邦 三室
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2012108248A1 publication Critical patent/WO2012108248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression

Definitions

  • the present invention relates to a Q-switch type fiber laser that generates an optical pulse having high pulse energy and a wide pulse width (for example, about 100 ns to 500 ns) as an optical pulse used for a light source of a laser processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2011-024833 for which it applied on February 8, 2011, and uses the content here.
  • a Q-switch method is known as a method for obtaining an output light pulse having a high pulse energy from a solid-state laser.
  • the Q switch method while pumping is performed in the gain medium, a high gain can be obtained without oscillation by setting the quality factor Q of the resonator to a low value. Also, by returning the quality factor Q of the resonator to a high value, the energy stored in the atoms excited to the upper level is suddenly converted into photons in the resonator, and the output light with high pulse energy. A pulse can be obtained.
  • a Q-switch type fiber laser based on such a Q-switch method is widely used for processing such as welding, cutting and drilling of industrial materials, that is, laser processing.
  • an optical pulse used as a light source of such a laser processing apparatus an optical pulse having high pulse energy and a wide pulse width of about 100 ns to 500 ns is desired.
  • Non-Patent Document 1 As a method of widening the pulse width of an output optical pulse by using a Q-switch type fiber laser that outputs an optical pulse of high pulse energy, the circulation time of the optical pulse propagating in the resonator is increased by increasing the resonator length.
  • a method for increasing the length is known.
  • the laser rod is the same, the reflectivity of the mirrors at both ends of the resonator and the power of the pumping light are the same, and two Q-switched lasers with different resonator lengths have the resonator length
  • a Q-switched laser with a longer length has a longer resonator lifetime and a wider pulse width ”(see FIG. 26.9 of Non-Patent Document 1).
  • the pulse width of the resonator output pulse shape is relatively wide, but it corresponds to the circulation time.
  • the plurality of small signal light pulses are overlapped. For this reason, when the circulation time is long, the sum of small signal light pulses generated at a period corresponding to the circulation time creates a peak and a valley in the entire pulse shape, and relatively large fluctuations in the resonator output pulse shape ( Hereinafter, this will be described as “swell”) (FIG. 11).
  • the generation cycle of this small signal light pulse corresponds to the time for which the light circulates in the resonator.
  • the undulation generated in the output light pulse emitted from the Q-switch type fiber laser increases the variation in the characteristics of the output light pulse for each product at the time of product manufacture. As a result, it takes a long time to adjust the pumping light power of the semiconductor laser mounted in the Q-switch type fiber laser, and the pulse width or output power of the output light pulse cannot be adjusted within the product specifications. In some cases.
  • Patent Document 1 a method of obtaining an ultrashort light pulse whose pulse width or repetition frequency does not change by the optical soliton effect. See, for example, a method of obtaining a pulse output by changing a fiber length after branching an optical pulse with an optical coupler (see, for example, Patent Document 2), and a fiber laser using an acoustooptic element as a Q switch device.
  • a method of adjusting the timing from the generation of an optical pulse to pulse amplification to stabilize the optical pulse (see, for example, Patent Document 3), and efficiently using the pump combiner to pump light into the power amplifier
  • a method for example, refer to Non-Patent Document 2 that obtains a 10 W-class output light pulse by introducing it is known.
  • the optical pulse propagating in the resonator is obtained by increasing the resonator length of the Q-switched fiber laser while keeping the pulse energy of the output light pulse at a high level.
  • the circulation time is increased and the pulse width is increased to about 100 ns to 500 ns, there is a problem that the output light pulse is swelled.
  • the present invention has been made against the background described above, and an object thereof is to eliminate undulations appearing in the pulse shape of an optical pulse having a high pulse power and a wide pulse width (for example, 100 ns to 500 ns).
  • the present invention also provides a Q-switched fiber laser that outputs such an optical pulse.
  • the inventors of the present invention have solved the above-mentioned problem by providing a partial feedback optical path in the resonator of the Q-switch type fiber laser that can prevent the output light pulse from being waved.
  • a Q-switched fiber laser includes a resonator optical fiber, a rare-earth doped optical fiber for optical pulse amplification, a Q-switch device, and a resonance for resonating spontaneous emission or stimulated emission light. And a partial feedback optical path having a branching portion and a propagation distance extending portion and provided in the resonator.
  • the branching unit separates the light incident on the partial feedback optical path into light emitted to the resonator optical fiber and light emitted to the propagation distance extension unit at a constant optical power ratio. Is configured to do.
  • the propagation distance extension unit is configured to extend the propagation distance of the light by propagating the light incident on the partial feedback optical path within a certain optical path length and to enter the branching unit again. ing.
  • a partial feedback optical path having a branch portion and a propagation distance extension portion is provided inside the resonator.
  • the propagation distance of the light branched in the direction of the propagation distance extension at the branching portion is extended by the propagation distance extension provided in the partial feedback optical path.
  • This structure is substantially equivalent to a configuration in which multiple resonators having different optical path lengths are arranged.
  • “eliminating waviness” includes reducing waviness.
  • an optical fiber coupler having an incident waveguide and an output waveguide is provided as a branching portion of the partial feedback optical path, and an optical fiber is used as a propagation distance extending portion. It is preferable that both ends of the optical fiber are connected to the incident waveguide and the output waveguide.
  • the configuration is simple and the resonator is configured at a relatively low cost. can do.
  • the Q-switched fiber laser according to the third aspect of the present invention is the Q-switched fiber laser according to the second aspect, wherein the power ratio of light branched from the optical fiber coupler to the optical fiber is 60% ⁇ 20. % Is preferable.
  • the optical power ratio of the optical pulse branched from the optical fiber coupler of the partial feedback optical path to the optical fiber for the propagation distance extension is within the range of 60% ⁇ 20%.
  • a Q-switched fiber laser according to a fourth aspect of the present invention is the Q-switched fiber laser according to the first aspect, wherein a fiber Bragg grating is provided as a branch part of the partial feedback optical path, and is reflected by the fiber Bragg grating.
  • a fiber Bragg grating is provided as a branch part of the partial feedback optical path, reflected by the fiber Bragg grating, propagated through the resonator, and again incident on the fiber Bragg grating.
  • the light propagation path up to this point functions as a propagation distance extension. For this reason, the space required for installing the partial feedback optical path is reduced, and the entire resonator of the Q-switch type fiber laser can be downsized.
  • the Q-switched fiber laser according to the fifth aspect of the present invention is the Q-switched fiber laser according to the fourth aspect, wherein the reflectance of the fiber Bragg grating is preferably in the range of 1% to 10%. .
  • the reflectance of the fiber Bragg grating in the partial feedback optical path is in the range of 1% to 10%. For this reason, the shape of the optical pulse output from the Q switch type fiber laser can be made into a smooth pulse shape without undulation.
  • an acousto-optic element is preferably provided as a Q-switch device.
  • an acousto-optic element is provided as a Q-switch device. For this reason, the loss of the Q switch can be precisely controlled, and the driving time can be shortened, so that the response of the output light pulse emitted from the Q switch type fiber laser can be made high speed.
  • the Q-switched fiber laser according to the seventh aspect of the present invention is preferably the same as the Q-switched fiber laser according to any one of the first to sixth aspects, wherein a Fabry-Perot resonator is provided as a resonator. .
  • the fiber length of the resonator can be shortened and the number of components can be reduced by providing the Fabry-Perot resonator in the Q-switched fiber laser.
  • the Q-switched fiber laser according to any one of the first to third aspects is preferably provided with a ring resonator as a resonator.
  • the loss in the resonator can be reduced by providing the ring-type resonator in the Q-switched fiber laser.
  • the Q-switched fiber laser of the present invention it is possible to generate an optical pulse without undulation in the pulse shape, and even when an optical pulse having a high pulse energy and a wide pulse width is obtained, an optical pulse without undulation is obtained. Can be generated. Therefore, the problem that it takes time to adjust each product when a Q-switch type fiber laser product is actually manufactured, or the problem that the product cannot be adjusted is solved.
  • FIG. 1 is a schematic diagram showing the overall configuration of a Q-switched fiber laser according to a first embodiment of the present invention. It is the schematic which shows the whole structure of the Q switch type fiber laser by the 2nd Embodiment of this invention.
  • an optical fiber coupler is provided as a branch part of the partial feedback optical path, and an optical fiber is provided as a propagation distance extension part of the partial feedback optical path. It is the schematic which shows the whole structure of a Q switch type fiber laser.
  • FIG. 2 is a schematic view showing the overall configuration of a Q-switched fiber laser that functions as a light propagation path from the inside of the resonator until it enters the fiber Bragg grating again.
  • a Q switch is provided with an optical fiber coupler as a branch part of the partial feedback optical path and an optical fiber as a propagation distance extension part of the partial feedback optical path
  • an optical fiber as a propagation distance extension part of the partial feedback optical path
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a Q-switched fiber laser used in Example 1.
  • FIG. 3 is a graph showing a relationship of optical power with respect to time of an output optical pulse emitted from a Q-switch type fiber laser in Example 1.
  • FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path. The case where the branching amount is 30% is shown.
  • FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path. The case where the branching amount is 70% is shown.
  • FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path.
  • the case where the branching amount is 90% is shown.
  • the graph which showed the relationship of the optical power with respect to the time of the output optical pulse in the Q switch type fiber laser in Example 3 and has shown the case where the feedback length in a partial feedback optical path is 2000 mm.
  • FIG. 1 shows a Q-switched fiber laser according to a first embodiment of the present invention.
  • This Q-switch type fiber laser is a Fabry-Perot type resonance comprising a high reflectivity structure 1 and a low reflectivity structure 2 arranged in a resonator optical fiber 8 as a resonator for resonating spontaneous emission light or stimulated emission light.
  • a rare earth doped optical fiber 3 Between the high reflectivity structure 1 and the low reflectivity structure 2, a rare earth doped optical fiber 3, a partial feedback optical path 5, and a Q switch device 4 are provided.
  • the Q switch device 4 instantaneously emits an optical pulse after sufficiently storing energy in the resonator.
  • the partial feedback optical path 5 includes a branching part 5A and a propagation distance extension part 5B.
  • An optical fiber coupler 5a is disposed as the branching portion 5A, and an optical fiber 5b is disposed as the propagation distance extending portion 5B.
  • the optical fiber coupler 5a has an incident waveguide and an output waveguide.
  • the optical fiber for resonator 5 and one end (first end) of the optical fiber 5b having the function of the propagation distance extension 5B are connected to the incident waveguide of the optical fiber coupler 5a.
  • the output waveguide of the optical fiber coupler 5a is connected to the resonator optical fiber 8 and the other end (second end) of the optical fiber 5b having the function of the propagation distance extension 5B.
  • the end of the optical fiber 5b connected to the output waveguide has a structure that leads to the incident waveguide of the optical fiber coupler 5a.
  • a driver (drive unit) (not shown) is provided in the pumping light source or the Q-switch device, but the configuration of the driver itself may be the same as that in the past.
  • the positions where the optical fiber coupler 5a and the optical fiber 5b are inserted into the Q switch type fiber laser are between the rare earth doped optical fiber 3 and the Q switch device 4 or between the Q switch device 4 and the low reflectivity structure 2. Any one is acceptable. Further, the optical fiber coupler 5a and the optical fiber 5b can be inserted between the high reflectivity structure 1 and the rare earth-doped optical fiber 3, and in this case, the transmittance of the pumping light at the branching portion is close to 100%. Is desirable.
  • the excitation light incident on the Fabry-Perot resonator of the Q-switched fiber laser propagates through the resonator optical fiber 8, passes through the high reflectivity structure 1, and the Q value of the resonator is set low by the Q switch device 4.
  • the light is incident on the rare earth doped optical fiber 3 to excite the rare earth element of the rare earth doped optical fiber 3.
  • the Q value of the resonator is increased by the Q switch device 4 so that the spontaneous emission light generated in the excited rare earth-doped optical fiber 3 has a high reflectance. Reflected by the structure 1 or the low reflectivity structure 2 into the resonator. When the reflected light enters the excited rare-earth doped optical fiber 3, stimulated emission is generated, optically amplified, and incident on the partial feedback optical path 5.
  • the optical pulse incident on the partial feedback optical path 5 is split into light A (first light) and light B (second light) at a constant optical power ratio by the optical fiber coupler 5a.
  • the light A passes through the Q switch device 4 via the resonator optical fiber 8 and is reflected by the low reflectivity structure 2.
  • the light B is incident on the optical fiber 5b of the partial feedback optical path 5 and propagates to extend the propagation distance of one round of the optical fiber 5b, and returns to the optical fiber coupler 5a again.
  • the light B returned to the optical fiber coupler 5 a is branched into light C (third light) and light D (fourth light) at a constant power ratio, and the light C propagates to the Q switch device 4.
  • the other light D enters the optical fiber 5b again, the propagation distance for one round of the optical fiber 5b is extended, and returns to the optical fiber coupler 5a again.
  • This partial feedback operation is repeated, and the light propagation distance is extended according to the number of times of feedback. Then, as a result of the superposition of a plurality of small signal light pulses generated at a period according to the circulation time in the resonator on the output light pulse, the low reflectance structure 2 is changed into a pulse shape via the resonator optical fiber 8. An unpulsed light pulse is output.
  • the power ratio of the light branched to the optical fiber 5b (the power ratio of the branched light to the power of the light incident on the optical fiber coupler 5a) is 60% ⁇ 20%. It is desirable to be within the range. When the power ratio is in the range of 60% ⁇ 20%, the shape of the light pulse emitted from the Q-switch type fiber laser becomes extremely smooth. If the power ratio is less than 40%, the undulation of the pulse shape is not improved, and even if it exceeds 80%, the undulation of the pulse shape is not improved. Further, by increasing the population inversion ratio in the rare earth-doped optical fiber 3, the amplification of the light pulse is promoted, and the pulse energy of the light pulse is increased. Considering the feasibility, it is desirable that the addition density of the rare earth element is in the range of 2.0 ⁇ 1025 to 4.0 ⁇ 1025 [/ m 3 ]. When the addition density is lowered, the pulse power of the output light pulse is lowered.
  • FIG. 2 shows a Q-switched fiber laser according to a second embodiment of the present invention.
  • the same members as those of the Q-switch type fiber laser shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the same members as those in the Q-switch type fiber laser shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • a fiber Bragg grating 5c is provided as a branching part 5A of the partial feedback optical path 5.
  • the Q-switch type fiber laser of the second embodiment is reflected by the fiber Bragg grating 5c, propagates through the resonator, is reflected by the high reflectivity structure 1, and enters the fiber Bragg grating 5c again.
  • the light propagation path has a structure that functions as the propagation distance extension 5B.
  • the position where the optical fiber Bragg grating 5c is inserted into the Q-switch type fiber laser must be between the Q-switch device 4 and the low reflectivity structure 2.
  • the light incident on the partial feedback optical path 5 is branched into light E (fifth light) and light F (sixth light) according to the reflectance of the fiber Bragg grating 5c, and the light E passes through the fiber Bragg grating 5c. It is transmitted and reflected by the low reflectivity structure 2.
  • the light F is reflected by the fiber Bragg grating 5c, propagates through the resonator optical fiber 8, is reflected by the high reflectivity structure 1 through the Q switch device 4 and the rare earth-doped optical fiber 3, and again is added to the rare earth-doped optical fiber 3. Is incident on.
  • the light F generates stimulated emission light in the rare earth-doped optical fiber 3, passes through the Q switch device 4, and enters the fiber Bragg grating 5 c again.
  • the propagation distance extension 5B in the partial feedback optical path 5 of the embodiment of FIG. 2 passes through the rare-earth-doped optical fiber 3 and the Q switch device from the exit end face of the high reflectivity structure 1 via the resonator optical fiber 8. It becomes a light propagation path to a position reflected by the fiber Bragg grating 5c.
  • the extended propagation distance is the reciprocal distance of the propagation path.
  • the above-described operation in the partial feedback optical path 5 extends the light propagation distance according to the number of feedbacks.
  • the low reflectance structure 2 is changed into a pulse shape via the resonator optical fiber 8. An unpulsed light pulse is output.
  • the reflectance of the fiber Bragg grating 5c (the ratio of the power of the light reflected by the fiber Bragg grating 5c to the power of the light incident on the fiber Bragg grating 5c) is 1% to 10%. It is desirable to be within the range. If the reflectance is in the range of 1% to 10%, the undulation of the shape of the light pulse emitted from the Q-switch type fiber laser is eliminated. If the reflectance is less than 1%, the number of feedbacks is small, and thus the pulse shape undulation is not improved. On the other hand, if the reflectivity exceeds 10%, the resonator output power may be lowered, resulting in a decrease in pulse energy.
  • FIG. 3 shows a Q-switched fiber laser according to a third embodiment of the present invention.
  • the Q-switch type fiber laser of the third embodiment shown in FIG. 3 has a configuration in which an acoustooptic device 4 a is disposed as the Q-switch device 4.
  • a fiber Bragg grating 5c is provided as a branching part 5A of the partial feedback optical path 5 in the Q-switched fiber laser of the third embodiment shown in FIG.
  • the position where the fiber Bragg grating 5c is inserted into the Q-switched fiber laser must be between the acoustooptic device 4a and the low reflectivity structure 2 as shown in FIG.
  • FIG. 5 shows a Q-switch type fiber laser according to a fourth embodiment of the present invention.
  • This Q-switch type fiber laser has a ring resonator composed of a pump coupler 1a and an output coupler 2a disposed in the resonator optical fiber 8 as a resonator for resonating spontaneous emission light or stimulated emission light.
  • This Q-switch type fiber laser has a rare-earth doped optical fiber 3, a band-pass filter 6, a Q-switch device 4, an optical fiber coupler 5a as a branching section 5A and a propagation distance from the side (position) close to the pumping coupler 1a.
  • the partial feedback optical path 5 having the optical fiber 5b as the extension 5B is arranged.
  • the position where this partial feedback optical path 5 is inserted into the Q-switch type fiber laser is the position between the rare earth-doped optical fiber 3 and the band-pass filter 6, and between the band-pass filter 6 and the Q-switch device 4. It is one of the position, the position between the Q switch device 4 and the output coupler 2a, and the position between the output coupler 2a and the excitation coupler 1a.
  • the effect of the present invention can be obtained even if the arrangement of the bandpass filter 6 and the Q switch device 4 is exchanged, and the effect of the present invention can be obtained even if the arrangement of the Q switch device 4 and the output coupler 2a is exchanged. can get.
  • the pumping light incident on this ring resonator passes through the pumping coupler 1a and enters the rare earth-doped optical fiber 3 to excite the rare earth element.
  • Light generated in the excited rare earth-doped optical fiber 3 passes through the bandpass filter 6 and the Q switch device 4 and enters the partial feedback optical path 5.
  • the incident light is branched into light A and light B at a constant optical power ratio by the optical fiber coupler 5a which is the branching part 5A of the partial feedback optical path 5, and the light A propagates to the output coupler 2a.
  • the light B is incident on the optical fiber 5b which is the propagation distance extending portion 5B and propagates through a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again.
  • the light B returned to the optical fiber coupler 5a is branched into light C and light D at a constant optical power ratio, the light C propagates to the output coupler 2a, and the other optical pulse D is again transmitted to the optical fiber 5b.
  • Incident light is propagated through a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again.
  • the optical pulse incident on the output coupler 2a is branched at a constant optical power ratio, and one optical pulse (first optical pulse) is emitted as an output optical pulse emitted from the resonator, while the other light is emitted.
  • the pulse (second optical pulse) again passes through the excitation coupler 1 a and enters the rare earth-doped optical fiber 3. At this time, stimulated emission light is generated in the rare earth-doped optical fiber 3, and the stimulated emission light excites the ring-shaped resonator optical fiber 8.
  • the light propagating through the resonator optical fiber 8 is again incident on the rare-earth doped optical fiber 3 in the excited state, whereby an optical pulse is generated, and a plurality of small signal lights generated at a period corresponding to the circulation time in the resonator.
  • an optical pulse having no undulation in the pulse shape is output.
  • Example 1 The overall configuration of the Q-switched fiber laser used in Example 1 is shown in FIG.
  • this Q switch type fiber laser based on the configuration of the Q switch type fiber laser of the first embodiment, a high reflection fiber Bragg grating 1b as a high reflectivity structure 1 and a low reflection fiber as a low reflectivity structure 2 are used.
  • the semiconductor laser 7 and the acoustooptic device 4a are equipped with a driver (not shown).
  • the pumping light emitted from the semiconductor laser 7 passes through the highly reflective fiber Bragg grating 1b, and the acoustooptic element 4a sets the Q value to be low. It enters 3a and excites the Yb element. As a result, the inversion distribution of the Yb-doped optical fiber 3a is increased.
  • the Q value of the resonator is increased by the acoustooptic device 4a in this state, the spontaneous emission light generated in the Yb-doped optical fiber 3a is converted into a highly reflective fiber Bragg grating. The light is reflected into the resonator by 1b and the low reflection fiber Bragg grating 2b.
  • the reflected light is incident on the excited Yb-doped optical fiber 3a to generate stimulated emission light.
  • the stimulated emission light is reflected into the resonator by the high reflection fiber Bragg grating 1b and the low reflection fiber Bragg grating 2b.
  • the reflected light is incident again on the Yb-doped optical fiber 3a in the excited state, so that an optical pulse is generated.
  • Light incident on the partial feedback optical path 5 during the generation of the optical pulse is branched into light A and light B at a constant optical power ratio by the optical fiber coupler 5a of the partial feedback optical path 5, and the light A is acousto-optic. Propagate to element 4a.
  • the light B propagates to the optical fiber 5b of the partial feedback optical path 5 and propagates a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again.
  • the light B returned to the optical fiber coupler 5a is branched into light C and light D at a constant optical power ratio, and the light C propagates to the acoustooptic device 4a.
  • the other light D is again propagated to the optical fiber 5b and propagates a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again.
  • This partial feedback operation is repeated, and the light propagation distance is extended according to the number of times of feedback.
  • FIG. 7 shows output light pulses obtained when the optical components having the optical characteristics shown in Table 1 are arranged in the Q-switched fiber laser shown in FIG.
  • the pulse power is high, the pulse width is 100 ns to 500 ns, and the smooth pulse without the small signal pulse or the undulation It was confirmed that a light pulse having a shape was generated.
  • Example 2 A Q-switched fiber laser having the same configuration as in Example 1 was used.
  • the optical power branched to the optical fiber 5b which is the propagation distance extension 5B is 30%, 70% and 90% of the optical pulse incident on the partial feedback optical path 5.
  • the output light pulse waveforms when changed are shown in FIGS. 8A to 8C.
  • Table 2 shows measurement results of fluctuations in the pulse width and average power of the output light pulse when a lateral pressure is applied to the resonator optical fiber 8.
  • Example 2 by setting the power branching amount of the light incident on the propagation distance extension portion with respect to the light incident on the partial feedback optical path in the partial feedback optical path of the Q-switched fiber laser to 70%, It was confirmed that the fluctuation of the pulse width of the output light pulse and the fluctuation of the average power with respect to the side pressure can be remarkably reduced.
  • Example 3 A Q-switched fiber laser having the same configuration as in Example 1 was used.
  • the optical power branched to the optical fiber 5b which is the propagation distance extension 5B is fixed to 70% of the optical pulse incident on the partial feedback optical path 5, and the optical fiber 5b.
  • 9A to 9C show output light pulse waveforms when the length (feedback length) is changed to 1000 mm, 2000 mm, and 3000 mm.
  • the peak of the center power does not collapse, and a large swell Neither has occurred.
  • Table 3 shows the measurement results of the fluctuation of the pulse width of the output light pulse and the fluctuation of the average power when the lateral pressure is applied to the resonator optical fiber 8.
  • the fluctuation of the average power of the output optical pulse is remarkably low when the length of the optical fiber 5b in the partial feedback optical path is 1000 mm, compared to the resonator length of 2000 mm of the Q-switch type fiber laser.
  • the optical power branched into the optical fiber 5b that is the propagation distance extension 5B is incident on the partial feedback optical path 5.
  • the feedback length of the partial feedback optical path is preferably in the range of 500 mm to 1500 mm with respect to the resonator length of 2000 mm.
  • the feedback length is It is necessary to select appropriately according to the length.
  • Example 4 The configuration of the Q-switched fiber laser used in Example 4 is based on the configuration of the Q-switched fiber laser of the second embodiment. Specifically, a fiber Bragg grating having a reflectance of 4% is provided as a branch part of the partial feedback optical path, reflected by the fiber Bragg grating 5c, propagated through the resonator, reflected by the high reflectance structure 1, and again. The light propagation path until it enters the fiber Bragg grating 5c functions as the propagation distance extension 5B.
  • the output light pulse waveform obtained from this Q-switch type fiber laser is shown in FIG.

Abstract

This Q-switched fiber laser is equipped with a resonator-use optical fiber (8), rare earth-doped optical fiber (3) for optical pulse amplification, a Q-switching device (4), resonators (1, 2) for resonating emitted natural light or emitted stimulated light, a partial feedback optical path (5) that has a branching part (5A) and a propagation distance extending part (5B) and is provided between the resonators (1, 2). The branching part (5A) is configured such that light incident into the partial feedback optical path (5) is separated into light to be output into the resonator-use optical fiber (8) and light to be output into the propagation distance extending part (5B) at a pre-determined optical power ratio. The propagation distance extending part (5B) is configured such that by propagating the light incident into the partial feedback optical path (5) within a predetermined optical path length, the propagation distance of the light is extended before the light is emitted into the branching part (5A) again.

Description

Qスイッチ式ファイバレーザQ-switched fiber laser
 本発明は、レーザ加工装置の光源などに使用される光パルスとして、パルスエネルギーが高く、しかも広いパルス幅(例えば100ns~500ns程度)である光パルスを生成するQスイッチ式ファイバレーザに関する。
 本願は、2011年2月8日に出願された特願2011-024833号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a Q-switch type fiber laser that generates an optical pulse having high pulse energy and a wide pulse width (for example, about 100 ns to 500 ns) as an optical pulse used for a light source of a laser processing apparatus.
This application claims priority based on Japanese Patent Application No. 2011-024833 for which it applied on February 8, 2011, and uses the content here.
 固体レーザからパルスエネルギーの高い出力光パルスを得る方法として、Qスイッチ法が知られている。Qスイッチ法においては、利得媒体内でポンピングの行われている間は、共振器の品質因子Qを低い値にすることにより、発振しない状態で高い利得が得られる。また、前記共振器の品質因子Qを高い値に戻すことにより、上位準位に励起されていた原子に蓄えられていたエネルギーが急激に共振器内の光子に変換され、高パルスエネルギーの出力光パルスを得ることができる。このようなQスイッチ法に基づいたQスイッチ式ファイバレーザは、工業用材料の溶接、切断、穴あけなどの加工、すなわちレーザ加工に広く使われている。このようなレーザ加工装置の光源として使用される光パルスとしては、パルスエネルギーが高く、かつパルス幅が100ns~500ns程度に広い光パルスが望まれる。 A Q-switch method is known as a method for obtaining an output light pulse having a high pulse energy from a solid-state laser. In the Q switch method, while pumping is performed in the gain medium, a high gain can be obtained without oscillation by setting the quality factor Q of the resonator to a low value. Also, by returning the quality factor Q of the resonator to a high value, the energy stored in the atoms excited to the upper level is suddenly converted into photons in the resonator, and the output light with high pulse energy. A pulse can be obtained. A Q-switch type fiber laser based on such a Q-switch method is widely used for processing such as welding, cutting and drilling of industrial materials, that is, laser processing. As an optical pulse used as a light source of such a laser processing apparatus, an optical pulse having high pulse energy and a wide pulse width of about 100 ns to 500 ns is desired.
 高パルスエネルギーの光パルスを出力するQスイッチ式ファイバレーザを用いて出力光パルスのパルス幅を広くする方法としては、共振器長を長くすることにより、共振器内を伝搬する光パルスの周回時間を長くする方法が公知である。例えば、非特許文献1には、『レーザロッドが同じであり、共振器両端のミラーの反射率および励起光のパワーが等しく、共振器長が異なる2つのQスイッチ式レーザにおいては、共振器長が長いQスイッチ式レーザの方が、共振器の寿命時間が長くなり、パルス幅が広くなる』ことが記載されている(非特許文献1の図26.9参照)。 As a method of widening the pulse width of an output optical pulse by using a Q-switch type fiber laser that outputs an optical pulse of high pulse energy, the circulation time of the optical pulse propagating in the resonator is increased by increasing the resonator length. A method for increasing the length is known. For example, in Non-Patent Document 1, “the laser rod is the same, the reflectivity of the mirrors at both ends of the resonator and the power of the pumping light are the same, and two Q-switched lasers with different resonator lengths have the resonator length It is described that a Q-switched laser with a longer length has a longer resonator lifetime and a wider pulse width ”(see FIG. 26.9 of Non-Patent Document 1).
 Qスイッチ式ファイバレーザの共振器長を長くすることにより共振器内を伝搬する光パルスの周回時間を長くする方法では、共振器出力パルス形状のパルス幅は比較的広くなるが、周回時間に対応した小信号光パルスが複数重ねあわされた形状となる。このため、周回時間が長い場合、周回時間に相当した周期で発生する小信号光パルスの足し合わせにより、パルス形状全体に山と谷の部分ができ、共振器出力パルス形状に比較的大きな変動(以下、“うねり”と記載する)が発生する(図11)。この小信号光パルスの発生周期は、共振器内を光が周回する時間に相当する。 In the method of increasing the circulation time of the optical pulse propagating in the resonator by increasing the cavity length of the Q-switch type fiber laser, the pulse width of the resonator output pulse shape is relatively wide, but it corresponds to the circulation time. The plurality of small signal light pulses are overlapped. For this reason, when the circulation time is long, the sum of small signal light pulses generated at a period corresponding to the circulation time creates a peak and a valley in the entire pulse shape, and relatively large fluctuations in the resonator output pulse shape ( Hereinafter, this will be described as “swell”) (FIG. 11). The generation cycle of this small signal light pulse corresponds to the time for which the light circulates in the resonator.
 前述のような、Qスイッチ式ファイバレーザから出射される出力光パルスに生じるうねりは、製品製造時における製品ごとの出力光パルスの特性のばらつきを大きくする。その結果、Qスイッチ式ファイバレーザ内に装着されている半導体レーザの励起光パワーを調節する作業に長時間を要し、また、製品の規格内に出力光パルスのパルス幅又は出力パワーを調整できない場合もある。 As described above, the undulation generated in the output light pulse emitted from the Q-switch type fiber laser increases the variation in the characteristics of the output light pulse for each product at the time of product manufacture. As a result, it takes a long time to adjust the pumping light power of the semiconductor laser mounted in the Q-switch type fiber laser, and the pulse width or output power of the output light pulse cannot be adjusted within the product specifications. In some cases.
 ところで、ファイバレーザの出力光パルスの安定化を図った公知文献に示される従来技術としては、光ソリトン効果により、パルス幅又は繰り返し周波数が変わらない超短光パルスを得る方法(例えば、特許文献1参照。)、光カプラで光パルスを分岐した後にファイバ長を変化させることによりパルス出力を得る方法(例えば、特許文献2参照。)、音響光学素子をQスイッチ装置として用いたファイバレーザにおいて、種光パルスが発生してから、パルス増幅までのタイミングを調整し、光パルスの安定化を図る方法(例えば、特許文献3参照。)、ポンプコンバイナを用いて励起光をパワー増幅部に効率的に導入することにより10W級の出力光パルスを得る方法(例えば、非特許文献2参照。)が知られている。 By the way, as a conventional technique shown in the publicly known literature which aims to stabilize the output light pulse of the fiber laser, a method of obtaining an ultrashort light pulse whose pulse width or repetition frequency does not change by the optical soliton effect (for example, Patent Document 1). See, for example, a method of obtaining a pulse output by changing a fiber length after branching an optical pulse with an optical coupler (see, for example, Patent Document 2), and a fiber laser using an acoustooptic element as a Q switch device. A method of adjusting the timing from the generation of an optical pulse to pulse amplification to stabilize the optical pulse (see, for example, Patent Document 3), and efficiently using the pump combiner to pump light into the power amplifier A method (for example, refer to Non-Patent Document 2) that obtains a 10 W-class output light pulse by introducing it is known.
 しかしながら、上述の各文献に示されるいずれの従来技術においても、Qスイッチ式ファイバレーザで生成された出力光パルスに表れるうねりの発生を防止することは考慮されていなかったのが実情である。 However, in any of the conventional techniques shown in the above-mentioned documents, it has not been considered to prevent the occurrence of undulations appearing in the output light pulse generated by the Q-switched fiber laser.
特開平5-102582号公報JP-A-5-102582 特開平10-125983号公報Japanese Patent Laid-Open No. 10-125983 特開2007-234943号公報JP 2007-234943 A
 前述のように、従来のQスイッチ式ファイバレーザにおいては、出力光パルスのパルスエネルギーを高い状態に保ちながらQスイッチ式ファイバレーザの共振器長を長くすることにより、共振器内を伝搬する光パルスの周回時間を長くして、パルス幅を100ns~500ns程度まで広げようとした場合、出力光パルスにうねりが生じるという問題があった。 As described above, in the conventional Q-switched fiber laser, the optical pulse propagating in the resonator is obtained by increasing the resonator length of the Q-switched fiber laser while keeping the pulse energy of the output light pulse at a high level. When the circulation time is increased and the pulse width is increased to about 100 ns to 500 ns, there is a problem that the output light pulse is swelled.
 本発明は、上述の事情を背景としてなされたもので、パルスパワーが高く、パルス幅が広い(例えば100ns~500ns)光パルスのパルス形状に現れるうねりをなくすことを課題とする。また、本発明は、このような光パルスを出力するQスイッチ式ファイバレーザを提供する。 The present invention has been made against the background described above, and an object thereof is to eliminate undulations appearing in the pulse shape of an optical pulse having a high pulse power and a wide pulse width (for example, 100 ns to 500 ns). The present invention also provides a Q-switched fiber laser that outputs such an optical pulse.
 本発明者らは、出力光パルスにうねりが発生することを防ぐことができる部分的フィードバック光路を、Qスイッチ式ファイバレーザの共振器内に設けることによって、前記課題を解決することとした。 The inventors of the present invention have solved the above-mentioned problem by providing a partial feedback optical path in the resonator of the Q-switch type fiber laser that can prevent the output light pulse from being waved.
 次に、本発明における第1~第8の態様のQスイッチ式ファイバレーザについて説明する。 Next, the Q-switch type fiber laser according to the first to eighth aspects of the present invention will be described.
 本発明の第1の態様のQスイッチ式ファイバレーザは、共振器用光ファイバと、光パルス増幅用の希土類添加光ファイバと、Qスイッチ装置と、自然放出光または誘導放出光を共振させるための共振器と、分岐部及び伝搬距離延長部を有し、前記共振器内に設けられた部分的フィードバック光路とを備える。ここで、前記分岐部は、前記部分的フィードバック光路内に入射した光を、一定の光パワー比で、前記共振器用光ファイバに出射する光と、前記伝搬距離延長部に出射する光とに分離するように構成されている。また、前記伝搬距離延長部は、前記部分的フィードバック光路に入射した光を一定の光路長内で伝搬させることにより前記光の伝搬距離を延長して、再び前記分岐部に入射させるように構成されている。 A Q-switched fiber laser according to a first aspect of the present invention includes a resonator optical fiber, a rare-earth doped optical fiber for optical pulse amplification, a Q-switch device, and a resonance for resonating spontaneous emission or stimulated emission light. And a partial feedback optical path having a branching portion and a propagation distance extending portion and provided in the resonator. Here, the branching unit separates the light incident on the partial feedback optical path into light emitted to the resonator optical fiber and light emitted to the propagation distance extension unit at a constant optical power ratio. Is configured to do. The propagation distance extension unit is configured to extend the propagation distance of the light by propagating the light incident on the partial feedback optical path within a certain optical path length and to enter the branching unit again. ing.
 上述の第1の態様のQスイッチ式ファイバレーザにおいては、共振器内部に分岐部と伝搬距離延長部を有する部分的フィードバック光路が設けられている。この構造により、部分的フィードバック光路に設けられた伝搬距離延長部にて、分岐部において伝搬距離延長部の方向に分岐された光の伝搬距離が延長される。この構造は、実質的に、光路長が異なる共振器を多重に配置されている構成と等価になる。その結果として、共振器内での周回時間に応じた周期で発生する複数の小信号光パルスが出力光パルスに重ね合わされ、出力光パルスのうねりの谷の部分がなくなり、Qスイッチ式ファイバレーザからうねりのないパルス形状の光パルスを得ることができる。
 なお、本発明において、「うねりをなくす」とは、うねりを低減することを含む。
In the Q-switched fiber laser of the first aspect described above, a partial feedback optical path having a branch portion and a propagation distance extension portion is provided inside the resonator. With this structure, the propagation distance of the light branched in the direction of the propagation distance extension at the branching portion is extended by the propagation distance extension provided in the partial feedback optical path. This structure is substantially equivalent to a configuration in which multiple resonators having different optical path lengths are arranged. As a result, a plurality of small signal light pulses generated with a period corresponding to the circulation time in the resonator are superimposed on the output light pulse, so that the undulation valley portion of the output light pulse disappears, and the Q-switch type fiber laser It is possible to obtain a pulse-shaped light pulse without undulation.
In the present invention, “eliminating waviness” includes reducing waviness.
 本発明の第2の態様によるQスイッチ式ファイバレーザにおいては、前記部分的フィードバック光路の分岐部として、入射導波路及び出射導波路を有する光ファイバカプラが設けられ、伝搬距離延長部として光ファイバが設けられ、前記光ファイバの両端が前記入射導波路及び前記出射導波路に接続されていることが好ましい。 In the Q-switched fiber laser according to the second aspect of the present invention, an optical fiber coupler having an incident waveguide and an output waveguide is provided as a branching portion of the partial feedback optical path, and an optical fiber is used as a propagation distance extending portion. It is preferable that both ends of the optical fiber are connected to the incident waveguide and the output waveguide.
 第2の態様のQスイッチ式ファイバレーザにおいては、部分的フィードバック光路の分岐部および伝搬距離延長部として光ファイバカプラおよび光ファイバを設けることにより、構成が単純で、比較的安価に共振器を構成することができる。 In the Q-switch type fiber laser of the second aspect, by providing an optical fiber coupler and an optical fiber as a branching portion and a propagation distance extending portion of a partial feedback optical path, the configuration is simple and the resonator is configured at a relatively low cost. can do.
 本発明の第3の態様によるQスイッチ式ファイバレーザは、前記第2の態様のQスイッチ式ファイバレーザにおいて、前記光ファイバカプラから前記光ファイバに分岐される光のパワー比率は、60%±20%の範囲内であることが好ましい。 The Q-switched fiber laser according to the third aspect of the present invention is the Q-switched fiber laser according to the second aspect, wherein the power ratio of light branched from the optical fiber coupler to the optical fiber is 60% ± 20. % Is preferable.
 第3の態様のQスイッチ式ファイバレーザにおいては、部分的フィードバック光路の光ファイバカプラから、伝搬距離延長部用の光ファイバに分岐される光パルスの光パワー比率を60%±20%の範囲内とすることにより、Qスイッチ式ファイバレーザから出力される光パルスの形状を、うねりのない滑らかなパルス形状にすることができる。 In the Q-switched fiber laser of the third aspect, the optical power ratio of the optical pulse branched from the optical fiber coupler of the partial feedback optical path to the optical fiber for the propagation distance extension is within the range of 60% ± 20%. By doing so, the shape of the optical pulse output from the Q-switch type fiber laser can be made into a smooth pulse shape without undulation.
 本発明の第4の態様によるQスイッチ式ファイバレーザは、前記第1の態様のQスイッチ式ファイバレーザにおいて、前記部分的フィードバック光路の分岐部として、ファイバブラッググレーティングが設けられ、ファイバブラッググレーティングで反射され、前記共振器内を伝搬し、再びファイバブラッググレーティングに入射するまでの光の伝搬経路が伝搬距離延長部として機能していることが好ましい。 A Q-switched fiber laser according to a fourth aspect of the present invention is the Q-switched fiber laser according to the first aspect, wherein a fiber Bragg grating is provided as a branch part of the partial feedback optical path, and is reflected by the fiber Bragg grating. In addition, it is preferable that a light propagation path that propagates through the resonator and enters the fiber Bragg grating again functions as a propagation distance extension.
 第4の態様のQスイッチ式ファイバレーザにおいては、部分的フィードバック光路の分岐部としてファイバブラッググレーティングが設けられ、ファイバブラッググレーティングで反射され、前記共振器内を伝搬し、再びファイバブラッググレーティングに入射するまでの光の伝搬経路が伝搬距離延長部として機能している。このため、部分的フィードバック光路設置に必要なスペースが縮小され、Qスイッチ式ファイバレーザの共振器全体の小型化を実現できる。 In the Q-switch type fiber laser of the fourth aspect, a fiber Bragg grating is provided as a branch part of the partial feedback optical path, reflected by the fiber Bragg grating, propagated through the resonator, and again incident on the fiber Bragg grating. The light propagation path up to this point functions as a propagation distance extension. For this reason, the space required for installing the partial feedback optical path is reduced, and the entire resonator of the Q-switch type fiber laser can be downsized.
 本発明の第5の態様によるQスイッチ式ファイバレーザは、前記第4の態様のQスイッチ式ファイバレーザにおいて、前記ファイバブラッググレーティングの反射率は、1%~10%の範囲内であることが好ましい。 The Q-switched fiber laser according to the fifth aspect of the present invention is the Q-switched fiber laser according to the fourth aspect, wherein the reflectance of the fiber Bragg grating is preferably in the range of 1% to 10%. .
 第5の態様のQスイッチ式ファイバレーザにおいては、部分的フィードバック光路のファイバブラッググレーティングの反射率は1%~10%の範囲内である。このため、Qスイッチ式ファイバレーザから出力される光パルスの形状を、うねりのない滑らかなパルス形状にすることができる。 In the Q-switched fiber laser of the fifth aspect, the reflectance of the fiber Bragg grating in the partial feedback optical path is in the range of 1% to 10%. For this reason, the shape of the optical pulse output from the Q switch type fiber laser can be made into a smooth pulse shape without undulation.
 本発明の第6の態様によるQスイッチ式ファイバレーザは、前記第1の態様~第5の態様のいずれかのQスイッチ式ファイバレーザにおいて、Qスイッチ装置として音響光学素子を設けたことが好ましい。 In the Q-switched fiber laser according to the sixth aspect of the present invention, in the Q-switched fiber laser according to any one of the first to fifth aspects, an acousto-optic element is preferably provided as a Q-switch device.
 第6の態様のQスイッチ式ファイバレーザにおいては、Qスイッチ装置として音響光学素子が設けられている。このため、Qスイッチの損失を精密に制御することができ、さらに駆動時間を短くすることができるため、Qスイッチ式ファイバレーザから出射される出力光パルスの応答を高速にすることができる。 In the Q-switch type fiber laser of the sixth aspect, an acousto-optic element is provided as a Q-switch device. For this reason, the loss of the Q switch can be precisely controlled, and the driving time can be shortened, so that the response of the output light pulse emitted from the Q switch type fiber laser can be made high speed.
 本発明の第7の態様によるQスイッチ式ファイバレーザは、前記第1の態様~第6の態様のいずれかのQスイッチ式ファイバレーザにおいて、共振器としてファブリーペロー型共振器を設けたことが好ましい。 The Q-switched fiber laser according to the seventh aspect of the present invention is preferably the same as the Q-switched fiber laser according to any one of the first to sixth aspects, wherein a Fabry-Perot resonator is provided as a resonator. .
 第7の態様のQスイッチ式ファイバレーザにおいては、Qスイッチ式ファイバレーザにファブリーペロー型共振器を設けることにより、共振器のファイバ長を短くし、構成部品の数を減らすことができる。 In the Q-switched fiber laser of the seventh aspect, the fiber length of the resonator can be shortened and the number of components can be reduced by providing the Fabry-Perot resonator in the Q-switched fiber laser.
 本発明の第8の態様によるQスイッチ式ファイバレーザは、第1の態様~第3の態様のいずれかのQスイッチ式ファイバレーザにおいて、共振器としてリング型共振器を設けたことが好ましい。 In the Q-switched fiber laser according to the eighth aspect of the present invention, the Q-switched fiber laser according to any one of the first to third aspects is preferably provided with a ring resonator as a resonator.
 第8の態様のQスイッチ式ファイバレーザにおいては、Qスイッチ式ファイバレーザにおいて、リング型共振器を設けることにより、共振器内の損失を低くすることができる。 In the Q-switched fiber laser of the eighth aspect, the loss in the resonator can be reduced by providing the ring-type resonator in the Q-switched fiber laser.
 本発明のQスイッチ式ファイバレーザによれば、パルス形状にうねりのない光パルスを発生させることができ、特にパルスエネルギーも高く、かつパルス幅が広い光パルスを得る場合でも、うねりのない光パルスを発生させることができる。そのため、Qスイッチ式ファイバレーザ製品を実際に製造した場合の製品ごとに調節するのに時間を要するという問題、又は製品の調節が不可能になるという問題も解決する。 According to the Q-switched fiber laser of the present invention, it is possible to generate an optical pulse without undulation in the pulse shape, and even when an optical pulse having a high pulse energy and a wide pulse width is obtained, an optical pulse without undulation is obtained. Can be generated. Therefore, the problem that it takes time to adjust each product when a Q-switch type fiber laser product is actually manufactured, or the problem that the product cannot be adjusted is solved.
本発明の第1の実施形態によるQスイッチ式ファイバレーザの全体構成を示す概略図である。1 is a schematic diagram showing the overall configuration of a Q-switched fiber laser according to a first embodiment of the present invention. 本発明の第2の実施形態によるQスイッチ式ファイバレーザの全体構成を示す概略図である。It is the schematic which shows the whole structure of the Q switch type fiber laser by the 2nd Embodiment of this invention. 本発明の第3の実施形態によるQスイッチ式ファイバレーザであって、部分的フィードバック光路の分岐部として光ファイバカプラが設けられ、前記部分的フィードバック光路の伝搬距離延長部として光ファイバが設けられたQスイッチ式ファイバレーザの全体構成を示す概略図である。In the Q-switched fiber laser according to the third embodiment of the present invention, an optical fiber coupler is provided as a branch part of the partial feedback optical path, and an optical fiber is provided as a propagation distance extension part of the partial feedback optical path. It is the schematic which shows the whole structure of a Q switch type fiber laser. 本発明の第3の実施形態によるQスイッチ式ファイバレーザであって、部分的フィードバック光路の分岐部としてファイバブラッググレーティングが設けられ、前記部分的フィードバック光路の伝搬距離延長部として前記ファイバブラッググレーティングで反射され、前記共振器内を伝搬し、再びファイバブラッググレーティングに入射するまでの光の伝搬経路を機能させたQスイッチ式ファイバレーザの全体構成を示す概略図である。A Q-switched fiber laser according to a third embodiment of the present invention, wherein a fiber Bragg grating is provided as a branch part of a partial feedback optical path, and is reflected by the fiber Bragg grating as a propagation distance extension part of the partial feedback optical path. FIG. 2 is a schematic view showing the overall configuration of a Q-switched fiber laser that functions as a light propagation path from the inside of the resonator until it enters the fiber Bragg grating again. 本発明の第4の実施形態によるQスイッチ式ファイバレーザにおいて、部分的フィードバック光路の分岐部として光ファイバカプラが設けられ、前記部分的フィードバック光路の伝搬距離延長部として光ファイバが設けられたQスイッチ式ファイバレーザの全体構成を示す概略図である。In the Q-switch type fiber laser according to the fourth embodiment of the present invention, a Q switch is provided with an optical fiber coupler as a branch part of the partial feedback optical path and an optical fiber as a propagation distance extension part of the partial feedback optical path It is the schematic which shows the whole structure of an optical fiber laser. 実施例1で使用したQスイッチ式ファイバレーザの全体構成を示す概略図である。1 is a schematic diagram illustrating an overall configuration of a Q-switched fiber laser used in Example 1. FIG. 実施例1におけるQスイッチ式ファイバレーザから出射される出力光パルスの時間に対する光パワーの関係を示したグラフである。3 is a graph showing a relationship of optical power with respect to time of an output optical pulse emitted from a Q-switch type fiber laser in Example 1. 実施例2におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路に入射する入射光パルスに対する光遅延付加部に入射する入射光パルスのパワー分岐量が30%である場合を示している。FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path. The case where the branching amount is 30% is shown. 実施例2におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路に入射する入射光パルスに対する光遅延付加部に入射する入射光パルスのパワー分岐量が70%である場合を示している。FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path. The case where the branching amount is 70% is shown. 実施例2におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路に入射する入射光パルスに対する光遅延付加部に入射する入射光パルスのパワー分岐量が90%である場合を示している。FIG. 6 is a graph showing the relationship of the optical power with respect to the time of the output optical pulse in the Q-switched fiber laser in Example 2, and the power of the incident optical pulse incident on the optical delay adding unit with respect to the incident optical pulse incident on the partial feedback optical path. The case where the branching amount is 90% is shown. 実施例3におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路におけるフィードバック長(ループ長)が1000mmある場合を示している。It is the graph which showed the relationship of the optical power with respect to the time of the output optical pulse in the Q switch type fiber laser in Example 3, and has shown the case where the feedback length (loop length) in a partial feedback optical path is 1000 mm. 実施例3におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路におけるフィードバック長が2000mmある場合を示している。It is the graph which showed the relationship of the optical power with respect to the time of the output optical pulse in the Q switch type fiber laser in Example 3, and has shown the case where the feedback length in a partial feedback optical path is 2000 mm. 実施例3におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフであり、部分的フィードバック光路におけるフィードバック長が3000mmある場合を示している。It is the graph which showed the relationship of the optical power with respect to the time of the output optical pulse in the Q switch type fiber laser in Example 3, and has shown the case where the feedback length in a partial feedback optical path is 3000 mm. 実施例4におけるQスイッチ式ファイバレーザにおける出力光パルスの時間に対する光パワーの関係を示したグラフである。6 is a graph showing a relationship of optical power with respect to time of an output light pulse in a Q-switch type fiber laser in Example 4. 従来のQスイッチ式ファイバレーザにおいて、共振器長を長くすることで、共振器内を伝搬する光パルスの周回時間を長くした場合の、出力光パルスの時間に対する光パワーの関係を示したグラフである。In a conventional Q-switched fiber laser, a graph showing the relationship of the optical power with respect to the time of the output optical pulse when the circulation time of the optical pulse propagating in the resonator is increased by increasing the resonator length. is there.
 以下に、本発明の実施の形態について、図1~図5を参照して以下で説明する。 Hereinafter, embodiments of the present invention will be described below with reference to FIGS.
 図1には、本発明の第1の実施形態のQスイッチ式ファイバレーザを示す。このQスイッチ式ファイバレーザは、自然放出光または誘導放出光を共振させるための共振器として、共振器用光ファイバ8に配置した高反射率構造1と低反射率構造2とから成るファブリーペロー型共振器を有する。高反射率構造1と低反射率構造2との間には、希土類添加光ファイバ3と、部分的フィードバック光路5と、Qスイッチ装置4とが設けられている。Qスイッチ装置4は、共振器内のエネルギーを十分に蓄えてから瞬間的に光パルスを放出させる。また、部分的フィードバック光路5は、分岐部5A及び伝搬距離延長部5Bを有する。分岐部5Aとしては、光ファイバカプラ5aが配置され、伝搬距離延長部5Bとしては光ファイバ5bが配置されている。光ファイバカプラ5aは、入射導波路と出射導波路とを有する。光ファイバカプラ5aの入射導波路には、共振器用光ファイバ8と、伝搬距離延長部5Bの機能を有する光ファイバ5bの片端(第1端)が接続されている。光ファイバカプラ5aの出射導波路には、共振器用光ファイバ8と、伝搬距離延長部5Bの機能を有する光ファイバ5bのもう一方の端(第2端)が接続されている。出射導波路と接続されている光ファイバ5bの端は、光ファイバカプラ5aの入射導波路に通じる構造を有する。
 なお、実際のQスイッチ式ファイバレーザにおいては、励起光源又はQスイッチ装置に図示しないドライバ(駆動部)が設けられるが、そのドライバ自体の構成は、従来と同様であればよい。
 光ファイバカプラ5aおよび光ファイバ5bがQスイッチ式ファイバレーザに挿入される位置は、希土類添加光ファイバ3とQスイッチ装置4との間、あるいはQスイッチ装置4と低反射率構造2との間であれば、いずれでも良い。また、光ファイバカプラ5aおよび光ファイバ5bを、高反射率構造1と希土類添加光ファイバ3との間に挿入することもでき、その場合は分岐部における励起光の透過率が100%に近いことが望ましい。
FIG. 1 shows a Q-switched fiber laser according to a first embodiment of the present invention. This Q-switch type fiber laser is a Fabry-Perot type resonance comprising a high reflectivity structure 1 and a low reflectivity structure 2 arranged in a resonator optical fiber 8 as a resonator for resonating spontaneous emission light or stimulated emission light. Has a vessel. Between the high reflectivity structure 1 and the low reflectivity structure 2, a rare earth doped optical fiber 3, a partial feedback optical path 5, and a Q switch device 4 are provided. The Q switch device 4 instantaneously emits an optical pulse after sufficiently storing energy in the resonator. The partial feedback optical path 5 includes a branching part 5A and a propagation distance extension part 5B. An optical fiber coupler 5a is disposed as the branching portion 5A, and an optical fiber 5b is disposed as the propagation distance extending portion 5B. The optical fiber coupler 5a has an incident waveguide and an output waveguide. The optical fiber for resonator 5 and one end (first end) of the optical fiber 5b having the function of the propagation distance extension 5B are connected to the incident waveguide of the optical fiber coupler 5a. The output waveguide of the optical fiber coupler 5a is connected to the resonator optical fiber 8 and the other end (second end) of the optical fiber 5b having the function of the propagation distance extension 5B. The end of the optical fiber 5b connected to the output waveguide has a structure that leads to the incident waveguide of the optical fiber coupler 5a.
In an actual Q-switch type fiber laser, a driver (drive unit) (not shown) is provided in the pumping light source or the Q-switch device, but the configuration of the driver itself may be the same as that in the past.
The positions where the optical fiber coupler 5a and the optical fiber 5b are inserted into the Q switch type fiber laser are between the rare earth doped optical fiber 3 and the Q switch device 4 or between the Q switch device 4 and the low reflectivity structure 2. Any one is acceptable. Further, the optical fiber coupler 5a and the optical fiber 5b can be inserted between the high reflectivity structure 1 and the rare earth-doped optical fiber 3, and in this case, the transmittance of the pumping light at the branching portion is close to 100%. Is desirable.
 次に、図1に示した第1の実施形態のQスイッチ式ファイバレーザの動作および機能を説明する。Qスイッチ式ファイバレーザのファブリーペロー型共振器に入射した励起光は、共振器用光ファイバ8内を伝搬し、高反射率構造1を通り、Qスイッチ装置4により共振器のQ値は低く設定された状態で、希土類添加光ファイバ3に入射し、希土類添加光ファイバ3の希土類元素を励起する。希土類添加光ファイバの反転分布率が高くなった状態で、Qスイッチ装置4により共振器のQ値を高くすることにより、励起状態の希土類添加光ファイバ3で発生した自然放出光が、高反射率構造1または低反射率構造2により共振器内部へ反射される。その反射光が励起状態の希土類添加光ファイバ3へ入射することで誘導放出が発生し、光増幅され、部分的フィードバック光路5に入射する。部分的フィードバック光路5に入射した光パルスは、光ファイバカプラ5aにて、一定の光パワー比で光A(第1光)と光B(第2光)に分岐される。光Aは、共振器用光ファイバ8を介して、Qスイッチ装置4を通り、低反射率構造2で反射される。一方、光Bは部分的フィードバック光路5の光ファイバ5bに入射し、伝搬することにより光ファイバ5b一周分の伝搬距離が延長され、再び光ファイバカプラ5aに戻る。光ファイバカプラ5aに戻された光Bは、一定のパワー比で光C(第3光)と光D(第4光)に分岐され、光CはQスイッチ装置4に伝搬する。もう一方の光Dは、再度、光ファイバ5bに入射し、光ファイバ5b一周分の伝搬距離が延長され、再び光ファイバカプラ5aに戻る。この部分的フィードバック動作が繰り返され、フィードバック回数に応じて光の伝搬距離が延長される。そして、共振器内での周回時間に応じた周期で発生する複数の小信号光パルスが出力光パルスに重ね合わされた結果、共振器用光ファイバ8を介して、低反射率構造2からパルス形状にうねりのない光パルスが出力される。 Next, the operation and function of the Q-switch type fiber laser of the first embodiment shown in FIG. 1 will be described. The excitation light incident on the Fabry-Perot resonator of the Q-switched fiber laser propagates through the resonator optical fiber 8, passes through the high reflectivity structure 1, and the Q value of the resonator is set low by the Q switch device 4. In this state, the light is incident on the rare earth doped optical fiber 3 to excite the rare earth element of the rare earth doped optical fiber 3. In the state in which the inversion distribution rate of the rare earth-doped optical fiber is high, the Q value of the resonator is increased by the Q switch device 4 so that the spontaneous emission light generated in the excited rare earth-doped optical fiber 3 has a high reflectance. Reflected by the structure 1 or the low reflectivity structure 2 into the resonator. When the reflected light enters the excited rare-earth doped optical fiber 3, stimulated emission is generated, optically amplified, and incident on the partial feedback optical path 5. The optical pulse incident on the partial feedback optical path 5 is split into light A (first light) and light B (second light) at a constant optical power ratio by the optical fiber coupler 5a. The light A passes through the Q switch device 4 via the resonator optical fiber 8 and is reflected by the low reflectivity structure 2. On the other hand, the light B is incident on the optical fiber 5b of the partial feedback optical path 5 and propagates to extend the propagation distance of one round of the optical fiber 5b, and returns to the optical fiber coupler 5a again. The light B returned to the optical fiber coupler 5 a is branched into light C (third light) and light D (fourth light) at a constant power ratio, and the light C propagates to the Q switch device 4. The other light D enters the optical fiber 5b again, the propagation distance for one round of the optical fiber 5b is extended, and returns to the optical fiber coupler 5a again. This partial feedback operation is repeated, and the light propagation distance is extended according to the number of times of feedback. Then, as a result of the superposition of a plurality of small signal light pulses generated at a period according to the circulation time in the resonator on the output light pulse, the low reflectance structure 2 is changed into a pulse shape via the resonator optical fiber 8. An unpulsed light pulse is output.
 なお、図1の実施形態において、光ファイバカプラ5aにおける、光ファイバ5bへ分岐する光のパワー比率(光ファイバカプラ5aに入射する光のパワーに対する分岐光のパワー比率)は、60%±20%の範囲内であることが望ましい。前記パワー比率が60%±20%の範囲内であれば、Qスイッチ式ファイバレーザから出射される光パルスの形状が極めて滑らかになる。前記パワー比率が40%未満では、パルス形状のうねりが改善しない状態となり、80%を超えてもパルス形状のうねりが改善しない状態となる。
 また、希土類添加光ファイバ3における反転分布率を高めることにより、光パルスの増幅が促進され、前記光パルスのパルスエネルギーが高まる。実施可能性から考えると、希土類元素の添加密度は2.0×1025~4.0×1025[/m]の範囲内とすることが望ましい。前記添加密度が低くなると、出力光パルスのパルスパワーが低下してしまう。
In the embodiment of FIG. 1, in the optical fiber coupler 5a, the power ratio of the light branched to the optical fiber 5b (the power ratio of the branched light to the power of the light incident on the optical fiber coupler 5a) is 60% ± 20%. It is desirable to be within the range. When the power ratio is in the range of 60% ± 20%, the shape of the light pulse emitted from the Q-switch type fiber laser becomes extremely smooth. If the power ratio is less than 40%, the undulation of the pulse shape is not improved, and even if it exceeds 80%, the undulation of the pulse shape is not improved.
Further, by increasing the population inversion ratio in the rare earth-doped optical fiber 3, the amplification of the light pulse is promoted, and the pulse energy of the light pulse is increased. Considering the feasibility, it is desirable that the addition density of the rare earth element is in the range of 2.0 × 1025 to 4.0 × 1025 [/ m 3 ]. When the addition density is lowered, the pulse power of the output light pulse is lowered.
 図2には、本発明の第2の実施形態のQスイッチ式ファイバレーザを示す。なお、図2において、図1に示したQスイッチ式ファイバレーザと同一部材には同一符号を付して、その説明は省略または簡略化する。また、以下に説明する各図においても、同様に、図1に示したQスイッチ式ファイバレーザと同一部材には同一符号を付して、その説明は省略または簡略化する。
 図2に示す第2の実施形態のQスイッチ式ファイバレーザにおいては、部分的フィードバック光路5の分岐部5Aとしてファイバブラッググレーティング5cが設けられている。また、第2の実施形態のQスイッチ式ファイバレーザは、ファイバブラッググレーティング5cで反射され、共振器内を伝搬して高反射率構造1で反射されて、再びファイバブラッググレーティング5cに入射するまでの光の伝搬経路が、伝搬距離延長部5Bとして機能させた構造を有する。なお、光ファイバブラッググレーティング5cがQスイッチ式ファイバレーザに挿入される位置は、Qスイッチ装置4と低反射率構造2との間でなければならない。
FIG. 2 shows a Q-switched fiber laser according to a second embodiment of the present invention. 2, the same members as those of the Q-switch type fiber laser shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted or simplified. Also, in each drawing described below, similarly, the same members as those in the Q-switch type fiber laser shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
In the Q-switched fiber laser of the second embodiment shown in FIG. 2, a fiber Bragg grating 5c is provided as a branching part 5A of the partial feedback optical path 5. The Q-switch type fiber laser of the second embodiment is reflected by the fiber Bragg grating 5c, propagates through the resonator, is reflected by the high reflectivity structure 1, and enters the fiber Bragg grating 5c again. The light propagation path has a structure that functions as the propagation distance extension 5B. The position where the optical fiber Bragg grating 5c is inserted into the Q-switch type fiber laser must be between the Q-switch device 4 and the low reflectivity structure 2.
 次に、図2に示した第2の実施形態のQスイッチ式ファイバレーザにおける部分的フィードバック光路の動作および機能を説明する。部分的フィードバック光路5に入射した光は、ファイバブラッググレーティング5cの反射率に応じて、光E(第5光)と光F(第6光)に分岐され、光Eは、ファイバブラッググレーティング5cを透過し、低反射率構造2で反射される。光Fは、ファイバブラッググレーティング5cで反射され、共振器用光ファイバ8中を伝搬し、Qスイッチ装置4および希土類添加光ファイバ3を通って高反射率構造1で反射され、再び希土類添加光ファイバ3に入射する。そして、光Fは、希土類添加光ファイバ3で誘導放出光を発生させ、Qスイッチ装置4を通り、ファイバブラッググレーティング5cに再び入射する。したがって、図2の実施形態の部分的フィードバック光路5における伝搬距離延長部5Bは、高反射率構造1の出射端面から、共振器用光ファイバ8を介して希土類添加光ファイバ3およびQスイッチ装置を通り、ファイバブラッググレーティング5cで反射される位置までの光の伝搬経路となる。また、延長される伝搬距離は、前記伝搬経路の往復距離となる。部分的フィードバック光路5における前述の動作により、フィードバック回数に応じて光の伝搬距離が延長される。そして、共振器内での周回時間に応じた周期で発生する複数の小信号光パルスが出力光パルスに重ね合わされた結果、共振器用光ファイバ8を介して、低反射率構造2からパルス形状にうねりのない光パルスが出力される。 Next, the operation and function of the partial feedback optical path in the Q-switch type fiber laser of the second embodiment shown in FIG. 2 will be described. The light incident on the partial feedback optical path 5 is branched into light E (fifth light) and light F (sixth light) according to the reflectance of the fiber Bragg grating 5c, and the light E passes through the fiber Bragg grating 5c. It is transmitted and reflected by the low reflectivity structure 2. The light F is reflected by the fiber Bragg grating 5c, propagates through the resonator optical fiber 8, is reflected by the high reflectivity structure 1 through the Q switch device 4 and the rare earth-doped optical fiber 3, and again is added to the rare earth-doped optical fiber 3. Is incident on. Then, the light F generates stimulated emission light in the rare earth-doped optical fiber 3, passes through the Q switch device 4, and enters the fiber Bragg grating 5 c again. Accordingly, the propagation distance extension 5B in the partial feedback optical path 5 of the embodiment of FIG. 2 passes through the rare-earth-doped optical fiber 3 and the Q switch device from the exit end face of the high reflectivity structure 1 via the resonator optical fiber 8. It becomes a light propagation path to a position reflected by the fiber Bragg grating 5c. The extended propagation distance is the reciprocal distance of the propagation path. The above-described operation in the partial feedback optical path 5 extends the light propagation distance according to the number of feedbacks. Then, as a result of the superposition of a plurality of small signal light pulses generated at a period according to the circulation time in the resonator on the output light pulse, the low reflectance structure 2 is changed into a pulse shape via the resonator optical fiber 8. An unpulsed light pulse is output.
 なお、図2の実施形態において、ファイバブラッググレーティング5cの反射率(ファイバブラッググレーティング5cに入射する光のパワーに対する、ファイバブラッググレーティング5cで反射する光のパワーの比率)は、1%~10%の範囲内であることが望ましい。前記反射率が1%~10%の範囲内であれば、Qスイッチ式ファイバレーザから出射される光パルスの形状のうねりがなくなる。前記反射率が1%未満では、フィードバックの回数が少ないため、パルス形状のうねりが改善されない結果となる。一方、前記反射率が10%を超えれば、共振器出力パワーが低くなることによりパルスエネルギーの低下が生じることがある。 In the embodiment of FIG. 2, the reflectance of the fiber Bragg grating 5c (the ratio of the power of the light reflected by the fiber Bragg grating 5c to the power of the light incident on the fiber Bragg grating 5c) is 1% to 10%. It is desirable to be within the range. If the reflectance is in the range of 1% to 10%, the undulation of the shape of the light pulse emitted from the Q-switch type fiber laser is eliminated. If the reflectance is less than 1%, the number of feedbacks is small, and thus the pulse shape undulation is not improved. On the other hand, if the reflectivity exceeds 10%, the resonator output power may be lowered, resulting in a decrease in pulse energy.
 図3には、本発明の第3の実施形態のQスイッチ式ファイバレーザを示す。
 図3に示す第3の実施形態のQスイッチ式ファイバレーザは、Qスイッチ装置4として音響光学素子4aが配置された構成を有する。
FIG. 3 shows a Q-switched fiber laser according to a third embodiment of the present invention.
The Q-switch type fiber laser of the third embodiment shown in FIG. 3 has a configuration in which an acoustooptic device 4 a is disposed as the Q-switch device 4.
 図3において、音響光学素子4aの材料に対応する高周波信号の振幅を変化させることによって、音響光学素子4aの回折効率が変化し、音響光学素子4aが含まれるモジュールの損失が変化する。音響光学素子4aに入射した光パルスのパワーは、前記モジュールの損失の制御状態に応じて変化し、出射する。音響光学素子4aにより共振器損失が高い状態になっているときに、希土類添加光ファイバ3が励起され、反転分布率が所定のレベルよりも高くなったときに、音響光学素子4aにより共振器損失を低くすることで、パルスパワーが高い光パルスが出射される。 In FIG. 3, by changing the amplitude of the high-frequency signal corresponding to the material of the acoustooptic element 4a, the diffraction efficiency of the acoustooptic element 4a changes and the loss of the module including the acoustooptic element 4a changes. The power of the light pulse incident on the acousto-optic element 4a changes according to the loss control state of the module and is emitted. When the resonator loss is high by the acousto-optic element 4a, the rare-earth-doped optical fiber 3 is excited, and when the inversion distribution rate is higher than a predetermined level, the resonator loss is caused by the acousto-optic element 4a. By lowering, an optical pulse with high pulse power is emitted.
 次に、第3の実施形態のQスイッチ式ファイバレーザの変形例について、図4を参照して説明する。
 図4に示すQスイッチ式ファイバレーザの変形例においては、図3に示す第3の実施形態のQスイッチ式ファイバレーザにおける部分的フィードバック光路5の分岐部5Aとしてファイバブラッググレーティング5cが設けられ、ファイバブラッググレーティング5cで反射され、前記共振器内を伝搬し高反射率構造1で反射されて、再びファイバブラッググレーティングに入射するまでの光の伝搬経路が伝搬距離延長部5Bとして機能させている。なお、ファイバブラッググレーティング5cがQスイッチ式ファイバレーザに挿入される位置は、図4に示すように音響光学素子4aと低反射率構造2との間でなければならない。
Next, a modification of the Q-switch type fiber laser of the third embodiment will be described with reference to FIG.
In the modification of the Q-switched fiber laser shown in FIG. 4, a fiber Bragg grating 5c is provided as a branching part 5A of the partial feedback optical path 5 in the Q-switched fiber laser of the third embodiment shown in FIG. The propagation path of the light reflected by the Bragg grating 5c, propagating through the resonator, reflected by the high reflectivity structure 1, and entering the fiber Bragg grating again functions as the propagation distance extension 5B. It should be noted that the position where the fiber Bragg grating 5c is inserted into the Q-switched fiber laser must be between the acoustooptic device 4a and the low reflectivity structure 2 as shown in FIG.
 図5は、本発明の第4の実施形態のQスイッチ式ファイバレーザを示す。このQスイッチ式ファイバレーザは、自然放出光または誘導放出光を共振させるための共振器として、共振器用光ファイバ8に配置した励起カプラ1aと出力カプラ2aから成るリング型共振器を有する。このQスイッチ式ファイバレーザは、励起カプラ1aに近い側(位置)から、希土類添加光ファイバ3と、バンドパスフィルタ6と、Qスイッチ装置4と、分岐部5Aとしての光ファイバカプラ5aおよび伝搬距離延長部5Bとしての光ファイバ5bを有する部分的フィードバック光路5とが配置された構成を有する。 FIG. 5 shows a Q-switch type fiber laser according to a fourth embodiment of the present invention. This Q-switch type fiber laser has a ring resonator composed of a pump coupler 1a and an output coupler 2a disposed in the resonator optical fiber 8 as a resonator for resonating spontaneous emission light or stimulated emission light. This Q-switch type fiber laser has a rare-earth doped optical fiber 3, a band-pass filter 6, a Q-switch device 4, an optical fiber coupler 5a as a branching section 5A and a propagation distance from the side (position) close to the pumping coupler 1a. The partial feedback optical path 5 having the optical fiber 5b as the extension 5B is arranged.
 なお、この部分的フィードバック光路5がQスイッチ式ファイバレーザに挿入される位置は、希土類添加光ファイバ3とバンドパスフィルタ6との間の位置、バンドパスフィルタ6とQスイッチ装置4との間の位置、Qスイッチ装置4と出力カプラ2aとの間の位置、出力カプラ2aと励起カプラ1aとの間の位置のいずれかである。
 この実施形態において、バンドパスフィルタ6とQスイッチ装置4との配置を入れ替えても、本発明の効果が得られ、Qスイッチ装置4と出力カプラ2aの配置を入れ替えても、本発明の効果が得られる。
In addition, the position where this partial feedback optical path 5 is inserted into the Q-switch type fiber laser is the position between the rare earth-doped optical fiber 3 and the band-pass filter 6, and between the band-pass filter 6 and the Q-switch device 4. It is one of the position, the position between the Q switch device 4 and the output coupler 2a, and the position between the output coupler 2a and the excitation coupler 1a.
In this embodiment, the effect of the present invention can be obtained even if the arrangement of the bandpass filter 6 and the Q switch device 4 is exchanged, and the effect of the present invention can be obtained even if the arrangement of the Q switch device 4 and the output coupler 2a is exchanged. can get.
 次に、図5に示した第4の実施形態のQスイッチ式ファイバレーザの動作および機能を説明する。このリング型共振器に入射した励起光は、励起カプラ1aを通り、希土類添加光ファイバ3に入射し、希土類元素を励起する。励起状態の希土類添加光ファイバ3で発生した光は、バンドパスフィルタ6およびQスイッチ装置4を通り、部分的フィードバック光路5に入射する。入射した光は、部分的フィードバック光路5の分岐部5Aである光ファイバカプラ5aにて一定の光パワー比で光Aと光Bに分岐され、光Aは、出力カプラ2aに伝搬する。一方、光Bは、伝搬距離延長部5Bである光ファイバ5bに入射し、一定の光路長を伝搬することにより、伝搬距離が延長され、再び光ファイバカプラ5aに戻る。光ファイバカプラ5aに戻された光Bは一定の光パワー比で光Cと光Dに分岐され、光Cは、出力カプラ2aに伝搬し、もう一方の光パルスDは再度、光ファイバ5bに入射し、一定の光路長を伝搬することにより、伝搬距離が延長され、再び光ファイバカプラ5aに戻る。また、出力カプラ2aに入射した光パルスは、一定の光パワー比で分岐され、一方の光パルス(第1光パルス)は、共振器から出射される出力光パルスとして出射し、もう一方の光パルス(第2光パルス)は再び励起カプラ1aを通り、希土類添加光ファイバ3に入射する。このとき、希土類添加光ファイバ3内で誘導放出光が発生し、誘導放出光がリング状の共振器用光ファイバ8内を励振する。共振器用光ファイバ8を伝搬する光が再び励起状態の希土類添加光ファイバ3へ入射することにより、光パルスが発生し、共振器内での周回時間に応じた周期で発生する複数の小信号光パルスが出力光パルスに重ね合わされた結果、パルス形状にうねりのない光パルスが出力される。 Next, the operation and function of the Q-switch type fiber laser of the fourth embodiment shown in FIG. 5 will be described. The pumping light incident on this ring resonator passes through the pumping coupler 1a and enters the rare earth-doped optical fiber 3 to excite the rare earth element. Light generated in the excited rare earth-doped optical fiber 3 passes through the bandpass filter 6 and the Q switch device 4 and enters the partial feedback optical path 5. The incident light is branched into light A and light B at a constant optical power ratio by the optical fiber coupler 5a which is the branching part 5A of the partial feedback optical path 5, and the light A propagates to the output coupler 2a. On the other hand, the light B is incident on the optical fiber 5b which is the propagation distance extending portion 5B and propagates through a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again. The light B returned to the optical fiber coupler 5a is branched into light C and light D at a constant optical power ratio, the light C propagates to the output coupler 2a, and the other optical pulse D is again transmitted to the optical fiber 5b. Incident light is propagated through a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again. The optical pulse incident on the output coupler 2a is branched at a constant optical power ratio, and one optical pulse (first optical pulse) is emitted as an output optical pulse emitted from the resonator, while the other light is emitted. The pulse (second optical pulse) again passes through the excitation coupler 1 a and enters the rare earth-doped optical fiber 3. At this time, stimulated emission light is generated in the rare earth-doped optical fiber 3, and the stimulated emission light excites the ring-shaped resonator optical fiber 8. The light propagating through the resonator optical fiber 8 is again incident on the rare-earth doped optical fiber 3 in the excited state, whereby an optical pulse is generated, and a plurality of small signal lights generated at a period corresponding to the circulation time in the resonator. As a result of superimposing the pulse on the output optical pulse, an optical pulse having no undulation in the pulse shape is output.
(実施例1)
 この実施例1で使用したQスイッチ式ファイバレーザの全体構成を図6に示す。このQスイッチ式ファイバレーザにおいては、第1の実施形態のQスイッチ式ファイバレーザの構成に基づき、高反射率構造1としての高反射ファイバブラッググレーティング1bと、低反射率構造2としての低反射ファイバブラッググレーティング2bと、希土類添加光ファイバ3としてのYb添加光ファイバ3aと、Qスイッチ装置4としての音響光学素子4aと、部分的フィードバック光路5の分岐部5Aとしての光ファイバカプラ5aと、部分的フィードバック光路5の伝搬距離延長部5Bとしての光ファイバ5bとが同一の共振器用光ファイバ8上に配置され、励起光用光源として半導体レーザ7が設けられている。なお、半導体レーザ7および音響光学素子4aは、図示しないドライバを装備している。
Example 1
The overall configuration of the Q-switched fiber laser used in Example 1 is shown in FIG. In this Q switch type fiber laser, based on the configuration of the Q switch type fiber laser of the first embodiment, a high reflection fiber Bragg grating 1b as a high reflectivity structure 1 and a low reflection fiber as a low reflectivity structure 2 are used. Bragg grating 2b, Yb-doped optical fiber 3a as rare earth-doped optical fiber 3, acoustooptic element 4a as Q-switch device 4, optical fiber coupler 5a as branching portion 5A of partial feedback optical path 5, and partial An optical fiber 5b as a propagation distance extension 5B of the feedback optical path 5 is disposed on the same resonator optical fiber 8, and a semiconductor laser 7 is provided as a pumping light source. The semiconductor laser 7 and the acoustooptic device 4a are equipped with a driver (not shown).
 図6に示すQスイッチ式ファイバレーザにおいては、半導体レーザ7から出射した励起光は、高反射ファイバブラッググレーティング1bを通り、音響光学素子4aでQ値が低く設定された状態で、Yb添加光ファイバ3aに入射し、Yb元素を励起する。これにより、Yb添加光ファイバ3aの反転分布が高くなり、この状態で音響光学素子4aにより共振器のQ値を高くすると、Yb添加光ファイバ3aで発生した自然放出光が、高反射ファイバブラッググレーティング1bと低反射ファイバブラッググレーティング2bにより、共振器内に反射される。前記反射光が励起状態のYb添加光ファイバ3aへ入射することで誘導放出光が発生し、前記誘導放出光が高反射ファイバブラッググレーティング1bと低反射ファイバブラッググレーティング2bにより、共振器内に反射される。前記反射光が再び励起状態のYb添加光ファイバ3aへ入射することで、光パルスが発生する。光パルスの発生途中で部分的フィードバック光路5に入射した光は、部分的フィードバック光路5の光ファイバカプラ5aにて一定の光パワー比で光Aと光Bに分岐され、光Aは、音響光学素子4aに伝搬する。一方、光Bは、部分的フィードバック光路5の光ファイバ5bに伝搬し、一定の光路長を伝搬することにより、伝搬距離が延長され、再び光ファイバカプラ5aに戻る。光ファイバカプラ5aに戻された光Bは一定の光パワー比で光Cと光Dに分岐され、光Cは音響光学素子4aに伝搬する。もう一方の光Dは再度、光ファイバ5bに伝搬され、一定の光路長を伝搬することにより、伝搬距離が延長され、再び光ファイバカプラ5aに戻る。この部分的フィードバック動作が繰り返され、フィードバック回数に応じて光の伝搬距離が延長される。前述のQスイッチ式ファイバレーザの動作により、共振器内での周回時間に応じた周期で発生する複数の小信号光パルスが出力光パルスに重ね合わされた結果、低反射ファイバブラッググレーティング2bから、パルス形状にうねりのない光パルスが出力される。 In the Q-switched fiber laser shown in FIG. 6, the pumping light emitted from the semiconductor laser 7 passes through the highly reflective fiber Bragg grating 1b, and the acoustooptic element 4a sets the Q value to be low. It enters 3a and excites the Yb element. As a result, the inversion distribution of the Yb-doped optical fiber 3a is increased. When the Q value of the resonator is increased by the acoustooptic device 4a in this state, the spontaneous emission light generated in the Yb-doped optical fiber 3a is converted into a highly reflective fiber Bragg grating. The light is reflected into the resonator by 1b and the low reflection fiber Bragg grating 2b. The reflected light is incident on the excited Yb-doped optical fiber 3a to generate stimulated emission light. The stimulated emission light is reflected into the resonator by the high reflection fiber Bragg grating 1b and the low reflection fiber Bragg grating 2b. The The reflected light is incident again on the Yb-doped optical fiber 3a in the excited state, so that an optical pulse is generated. Light incident on the partial feedback optical path 5 during the generation of the optical pulse is branched into light A and light B at a constant optical power ratio by the optical fiber coupler 5a of the partial feedback optical path 5, and the light A is acousto-optic. Propagate to element 4a. On the other hand, the light B propagates to the optical fiber 5b of the partial feedback optical path 5 and propagates a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again. The light B returned to the optical fiber coupler 5a is branched into light C and light D at a constant optical power ratio, and the light C propagates to the acoustooptic device 4a. The other light D is again propagated to the optical fiber 5b and propagates a certain optical path length, thereby extending the propagation distance and returning to the optical fiber coupler 5a again. This partial feedback operation is repeated, and the light propagation distance is extended according to the number of times of feedback. As a result of the operation of the above-described Q-switched fiber laser, a plurality of small signal light pulses generated at a period corresponding to the circulation time in the resonator are superimposed on the output light pulse. As a result, the low reflection fiber Bragg grating 2b An optical pulse with no undulations is output.
 図6に示すQスイッチ式ファイバレーザにおいて、表1に示す光学特性の光部品を配置して構成したときに得られた出力光パルスを図7に示す。 FIG. 7 shows output light pulses obtained when the optical components having the optical characteristics shown in Table 1 are arranged in the Q-switched fiber laser shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように実施例1の部分的フィードバック光路が設けられたQスイッチ式ファイバレーザによれば、パルスパワーが高く、パルス幅が100ns~500nsであり、かつ小信号パルス又はうねりのない滑らかなパルス形状を有する光パルスが生成されることが確認された。 As described above, according to the Q switch type fiber laser provided with the partial feedback optical path of the first embodiment, the pulse power is high, the pulse width is 100 ns to 500 ns, and the smooth pulse without the small signal pulse or the undulation It was confirmed that a light pulse having a shape was generated.
(実施例2)
 実施例1と同様の構成を有するQスイッチ式ファイバレーザを用いた。部分的フィードバック光路5の光ファイバカプラ5aにおいて、伝搬距離延長部5Bである光ファイバ5bに分岐される光パワーを、部分的フィードバック光路5に入射する光パルスの30%、70%、90%と変化させたときの、出力光パルス波形を図8A~図8Cに示す。また、共振器用光ファイバ8に側圧を加えたときの出力光パルスのパルス幅の変動、および平均パワーの変動の測定結果を表2に示す。
(Example 2)
A Q-switched fiber laser having the same configuration as in Example 1 was used. In the optical fiber coupler 5a of the partial feedback optical path 5, the optical power branched to the optical fiber 5b which is the propagation distance extension 5B is 30%, 70% and 90% of the optical pulse incident on the partial feedback optical path 5. The output light pulse waveforms when changed are shown in FIGS. 8A to 8C. Table 2 shows measurement results of fluctuations in the pulse width and average power of the output light pulse when a lateral pressure is applied to the resonator optical fiber 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例2に示すように、Qスイッチ式ファイバレーザの部分的フィードバック光路における部分的フィードバック光路へ入射する光に対する伝搬距離延長部へ入射する光のパワー分岐量を70%とすることにより、出力光パルスのパルス幅のうねり、および平均パワーの側圧に対する変動を著しく小さくし得ることが確認された。 As shown in Example 2 above, by setting the power branching amount of the light incident on the propagation distance extension portion with respect to the light incident on the partial feedback optical path in the partial feedback optical path of the Q-switched fiber laser to 70%, It was confirmed that the fluctuation of the pulse width of the output light pulse and the fluctuation of the average power with respect to the side pressure can be remarkably reduced.
(実施例3)
 実施例1と同様の構成を有するQスイッチ式ファイバレーザを用いた。部分的フィードバック光路5の光ファイバカプラ5aにおいて、伝搬距離延長部5Bである光ファイバ5bに分岐される光パワーを、部分的フィードバック光路5に入射する光パルスの70%に固定し、光ファイバ5bの長さ(フィードバック長)を1000mm、2000mm、3000mmと変化させたときの、出力光パルス波形を図9A~図9Cに示す。Qスイッチ式ファイバレーザの部分的フィードバック光路の光ファイバ5bの長さを1000mm、2000mm、3000mmと変化させたときのいずれの出力光パルス波形においても、中心のパワーのピークが崩れることなく、大きなうねりも発生していない。
 さらに、共振器用光ファイバ8に側圧を加えたときの出力光パルスのパルス幅の変動、および平均パワーの変動の測定結果を表3に示す。出力光パルスの平均パワーの変動は、Qスイッチ式ファイバレーザの共振器長2000mmに対して、部分的フィードバック光路の光ファイバ5bの長さを1000mmとしたときに著しく低くなっている。
(Example 3)
A Q-switched fiber laser having the same configuration as in Example 1 was used. In the optical fiber coupler 5a of the partial feedback optical path 5, the optical power branched to the optical fiber 5b which is the propagation distance extension 5B is fixed to 70% of the optical pulse incident on the partial feedback optical path 5, and the optical fiber 5b. 9A to 9C show output light pulse waveforms when the length (feedback length) is changed to 1000 mm, 2000 mm, and 3000 mm. In any output optical pulse waveform when the length of the optical fiber 5b of the partial feedback optical path of the Q switch type fiber laser is changed to 1000 mm, 2000 mm, and 3000 mm, the peak of the center power does not collapse, and a large swell Neither has occurred.
Further, Table 3 shows the measurement results of the fluctuation of the pulse width of the output light pulse and the fluctuation of the average power when the lateral pressure is applied to the resonator optical fiber 8. The fluctuation of the average power of the output optical pulse is remarkably low when the length of the optical fiber 5b in the partial feedback optical path is 1000 mm, compared to the resonator length of 2000 mm of the Q-switch type fiber laser.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の実施例3に示すように、Qスイッチ式ファイバレーザの部分的フィードバック光路において、伝搬距離延長部5Bである光ファイバ5bに分岐される光パワーが部分的フィードバック光路5に入射する光パルスの70%である場合には、フィードバック長によらず、うねりのない出力光パルスが得られた。特に、共振器長2000mmに対して部分的フィードバック光路のフィードバック長を1000mmとすることにより、出力光パルス形状を極めて滑らかにし、出力光パルスの平均パワーの側圧に対する変動を著しく小さくし得ることが確認された。なお、共振器長2000mmに対して部分的フィードバック光路のフィードバック長は500mm~1500mmの範囲内が好適であることが確認されているが、共振器長が異なる場合には、フィードバック長はその共振器長に応じて適切に選択する必要がある。 As shown in Example 3 above, in the partial feedback optical path of the Q-switched fiber laser, the optical power branched into the optical fiber 5b that is the propagation distance extension 5B is incident on the partial feedback optical path 5. In the case of 70%, an output light pulse without undulation was obtained regardless of the feedback length. In particular, it has been confirmed that by setting the feedback length of the partial feedback optical path to 1000 mm with respect to the resonator length of 2000 mm, the output optical pulse shape can be made extremely smooth and the fluctuation of the average power of the output optical pulse with respect to the side pressure can be significantly reduced. It was done. It has been confirmed that the feedback length of the partial feedback optical path is preferably in the range of 500 mm to 1500 mm with respect to the resonator length of 2000 mm. However, when the resonator length is different, the feedback length is It is necessary to select appropriately according to the length.
(実施例4)
 実施例4で使用したQスイッチ式ファイバレーザの構成は、第2の実施形態のQスイッチ式ファイバレーザの構成に基づいている。具体的に、部分的フィードバック光路の分岐部として反射率4%のファイバブラッググレーティングが設けられ、ファイバブラッググレーティング5cで反射され、共振器内を伝搬して高反射率構造1で反射されて、再びファイバブラッググレーティング5cに入射するまでの光の伝搬経路を伝搬距離延長部5Bとして機能させている。このQスイッチ式ファイバレーザから得られた出力光パルス波形を図10に示す。
Example 4
The configuration of the Q-switched fiber laser used in Example 4 is based on the configuration of the Q-switched fiber laser of the second embodiment. Specifically, a fiber Bragg grating having a reflectance of 4% is provided as a branch part of the partial feedback optical path, reflected by the fiber Bragg grating 5c, propagated through the resonator, reflected by the high reflectance structure 1, and again. The light propagation path until it enters the fiber Bragg grating 5c functions as the propagation distance extension 5B. The output light pulse waveform obtained from this Q-switch type fiber laser is shown in FIG.
 図10に示すように、実施例4の場合も出力光パルス形状のうねりがなくなることが確認された。 As shown in FIG. 10, it was confirmed that the undulation of the output light pulse shape was eliminated also in the case of Example 4.
1 高反射率構造
1a 励起カプラ
1b 高反射ファイバブラッググレーティング
2 低反射率構造
2a 出力カプラ
2b 低反射ファイバブラッググレーティング
3 希土類添加光ファイバ
3a Yb添加光ファイバ
4 Qスイッチ装置
4a 音響光学素子
5 部分的フィードバック光路
5A 分岐部
5B 伝搬距離延長部
5a 光ファイバカプラ
5b 光ファイバ
5c ファイバブラッググレーティング
6 バンドパスフィルタ
7 半導体レーザ
8 共振器用光ファイバ
 
DESCRIPTION OF SYMBOLS 1 High reflectivity structure 1a Excitation coupler 1b High reflection fiber Bragg grating 2 Low reflectivity structure 2a Output coupler 2b Low reflection fiber Bragg grating 3 Rare earth addition optical fiber 3a Yb addition optical fiber 4 Q switch apparatus 4a Acoustooptic element 5 Partial feedback Optical path 5A Branch part 5B Propagation distance extension part 5a Optical fiber coupler 5b Optical fiber 5c Fiber Bragg grating 6 Bandpass filter 7 Semiconductor laser 8 Optical fiber for resonator

Claims (8)

  1.  Qスイッチ式ファイバレーザであって、
     共振器用光ファイバと、
     光パルス増幅用の希土類添加光ファイバと、
     Qスイッチ装置と、
     自然放出光または誘導放出光を共振させるための共振器と、
     分岐部及び伝搬距離延長部を有し、前記共振器内に設けられた部分的フィードバック光路と、
     を備え、
     前記分岐部は、前記部分的フィードバック光路内に入射した光を、一定の光パワー比で、前記共振器用光ファイバに出射する光と、前記伝搬距離延長部に出射する光とに分離するように構成され、
     前記伝搬距離延長部は、前記部分的フィードバック光路に入射した光を一定の光路長内で伝搬させることにより前記光の伝搬距離を延長して、再び前記分岐部に入射させるように構成されている
     ことを特徴とするQスイッチ式ファイバレーザ。
    A Q-switched fiber laser,
    An optical fiber for a resonator;
    A rare earth doped optical fiber for optical pulse amplification;
    A Q switch device;
    A resonator for resonating spontaneous emission or stimulated emission; and
    A partial feedback optical path having a bifurcation and a propagation distance extension and provided in the resonator;
    With
    The branching unit is configured to separate light incident on the partial feedback optical path into light emitted to the resonator optical fiber and light emitted to the propagation distance extension unit at a constant optical power ratio. Configured,
    The propagation distance extension unit is configured to extend the propagation distance of the light by propagating light incident on the partial feedback optical path within a certain optical path length, and to enter the branching unit again. Q-switch type fiber laser characterized by the above.
  2.  請求項1に記載のQスイッチ式ファイバレーザにおいて、
     前記部分的フィードバック光路の分岐部として、入射導波路及び出射導波路を有する光ファイバカプラが設けられ、
     伝搬距離延長部として光ファイバが設けられ、
     前記光ファイバの両端が前記入射導波路及び前記出射導波路に接続されている
     ことを特徴とするQスイッチ式ファイバレーザ。
    The Q-switched fiber laser according to claim 1,
    As a branch of the partial feedback optical path, an optical fiber coupler having an incident waveguide and an output waveguide is provided,
    An optical fiber is provided as a propagation distance extension,
    Both ends of the optical fiber are connected to the incident waveguide and the output waveguide. A Q-switched fiber laser, wherein:
  3.  請求項2に記載のQスイッチ式ファイバレーザにおいて、
     前記光ファイバカプラから前記光ファイバに分岐される光のパワー比率は、60%±20%の範囲内である
     ことを特徴とするQスイッチ式ファイバレーザ。
    The Q-switched fiber laser according to claim 2,
    The Q-switch type fiber laser, wherein a power ratio of light branched from the optical fiber coupler to the optical fiber is in a range of 60% ± 20%.
  4.  請求項1に記載のQスイッチ式ファイバレーザにおいて、
     前記部分的フィードバック光路の分岐部として、ファイバブラッググレーティングが設けられ、
     ファイバブラッググレーティングで反射され、前記共振器内を伝搬し、再びファイバブラッググレーティングに入射するまでの光の伝搬経路が伝搬距離延長部として機能している
     ことを特徴とする光Qスイッチ式ファイバレーザ。
    The Q-switched fiber laser according to claim 1,
    As a branch of the partial feedback optical path, a fiber Bragg grating is provided,
    An optical Q-switch type fiber laser characterized in that a light propagation path from a light reflected by a fiber Bragg grating, propagated through the resonator, and again incident on the fiber Bragg grating functions as a propagation distance extension.
  5.  請求項4に記載のQスイッチ式ファイバレーザにおいて、
     前記ファイバブラッググレーティングの反射率は、1%~10%の範囲内である
     ことを特徴とするQスイッチ式ファイバレーザ。
    The Q-switched fiber laser according to claim 4,
    The Q-switch type fiber laser, wherein the reflectance of the fiber Bragg grating is in the range of 1% to 10%.
  6.  請求項1~請求項5のうちのいずれかの請求項に記載のQスイッチ式ファイバレーザにおいて、
     前記Qスイッチ装置として、音響光学素子を設けたことを特徴とするQスイッチ式ファイバレーザ。
    In the Q-switched fiber laser according to any one of claims 1 to 5,
    A Q-switch type fiber laser comprising an acousto-optic device as the Q-switch device.
  7.  請求項1~請求項6のうちのいずれかの請求項に記載のQスイッチ式ファイバレーザにおいて、
     前記共振器として、ファブリーペロー型共振器を設けたことを特徴とするQスイッチ式ファイバレーザ。
    In the Q-switched fiber laser according to any one of claims 1 to 6,
    A Q-switch type fiber laser comprising a Fabry-Perot resonator as the resonator.
  8.  請求項1~請求項3のうちのいずれかの請求項に記載のQスイッチ式ファイバレーザにおいて、
     前記共振器として、リング型共振器を設けたことを特徴とするQスイッチ式ファイバレーザ。
    In the Q-switched fiber laser according to any one of claims 1 to 3,
    A Q-switch type fiber laser comprising a ring-type resonator as the resonator.
PCT/JP2012/051210 2011-02-08 2012-01-20 Q-switched fiber laser WO2012108248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024833 2011-02-08
JP2011024833A JP2012164860A (en) 2011-02-08 2011-02-08 Q switch type fiber laser

Publications (1)

Publication Number Publication Date
WO2012108248A1 true WO2012108248A1 (en) 2012-08-16

Family

ID=46638466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051210 WO2012108248A1 (en) 2011-02-08 2012-01-20 Q-switched fiber laser

Country Status (2)

Country Link
JP (1) JP2012164860A (en)
WO (1) WO2012108248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199418A (en) * 2013-04-11 2013-07-10 杭州镭克普光电技术有限公司 Periodical domain reversal crystal electro-optic Q-switched-based pulse optical fiber laser
CN109845053A (en) * 2016-10-21 2019-06-04 株式会社藤仓 Fiber laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134927A (en) * 2014-07-25 2014-11-05 上海交通大学 Nonlinear effect Q-switched fiber laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260479A (en) * 1989-03-30 1990-10-23 Toshiba Corp Laser oscillator
JPH04287384A (en) * 1990-11-20 1992-10-12 General Instr Corp Longitudinal mode selection laser
JPH06291395A (en) * 1993-03-30 1994-10-18 Ando Electric Co Ltd Optical fiber ring laser capable of changing wavelength
JP2004356485A (en) * 2003-05-30 2004-12-16 Ishikawajima Harima Heavy Ind Co Ltd Resonator
JP2005500705A (en) * 2001-08-21 2005-01-06 ジェンドロン、デニス、ジェイ. Suppression of mode beat noise in Q-switched pulse laser using new Q-switch device
JP2008235340A (en) * 2007-03-16 2008-10-02 Fujikura Ltd Optical pulse generator and optical fiber laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260479A (en) * 1989-03-30 1990-10-23 Toshiba Corp Laser oscillator
JPH04287384A (en) * 1990-11-20 1992-10-12 General Instr Corp Longitudinal mode selection laser
JPH06291395A (en) * 1993-03-30 1994-10-18 Ando Electric Co Ltd Optical fiber ring laser capable of changing wavelength
JP2005500705A (en) * 2001-08-21 2005-01-06 ジェンドロン、デニス、ジェイ. Suppression of mode beat noise in Q-switched pulse laser using new Q-switch device
JP2004356485A (en) * 2003-05-30 2004-12-16 Ishikawajima Harima Heavy Ind Co Ltd Resonator
JP2008235340A (en) * 2007-03-16 2008-10-02 Fujikura Ltd Optical pulse generator and optical fiber laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199418A (en) * 2013-04-11 2013-07-10 杭州镭克普光电技术有限公司 Periodical domain reversal crystal electro-optic Q-switched-based pulse optical fiber laser
CN109845053A (en) * 2016-10-21 2019-06-04 株式会社藤仓 Fiber laser device
EP3531513A4 (en) * 2016-10-21 2020-06-03 Fujikura Ltd. Fiber laser device
US11070021B2 (en) 2016-10-21 2021-07-20 Fujikura Ltd. Fiber laser device

Also Published As

Publication number Publication date
JP2012164860A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP2017126088A (en) Cascaded Raman fiber laser system based on filter fiber
JP2006005349A (en) Pulse laser equipment and method therefor
US20120069860A1 (en) Gain-Switched Fiber Laser
US7457329B2 (en) Method and system for a high power low-coherence pulsed light source
JP4708109B2 (en) Fiber laser equipment
CN111373614B (en) Device for providing optical radiation
WO2013111271A1 (en) Fiber laser device
EP3107159A2 (en) Laser light-source apparatus and laser pulse light generating method
EP3005496B1 (en) Multimode fabry-perot fiber laser
WO2012108248A1 (en) Q-switched fiber laser
JP2011204834A (en) Fiber laser light source and wavelength conversion laser device using the same
JPWO2003067723A1 (en) Multimode optical fiber, fiber laser amplifier and fiber laser oscillator
JP2005203430A (en) Optical fiber laser and laser beam generating method using the same
JP2012156175A (en) Fiber laser light source device and wavelength conversion laser light source device using the same
KR102448364B1 (en) Optical Fiber Femtosecond Laser Osillator and Apparatus Including The Same
EP3309912B1 (en) Laser light-source apparatus and laser pulse light generating method
JP5341096B2 (en) Mode-locked fiber laser and pulsed laser beam oscillation method using mode-locked fiber laser
WO2016125919A2 (en) Laser light-source apparatus and laser pulse light generating method
JP2012129423A (en) Fiber laser and continuous light oscillation method for fiber laser
JP4897960B2 (en) Pulse laser equipment
JP2007234948A (en) Multi-wavelength light source
JP6093511B2 (en) Pulse fiber laser device and pulse light output control method
JP2008227341A (en) High repetition and high peak output fiber laser
Liao et al. Modified oscillating-amplifying integrated fiber laser for stimulated Raman scattering suppression
US9031098B1 (en) All fiber passively Q-switched laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744200

Country of ref document: EP

Kind code of ref document: A1