WO2012108155A1 - 基地局装置及び送信方法 - Google Patents

基地局装置及び送信方法 Download PDF

Info

Publication number
WO2012108155A1
WO2012108155A1 PCT/JP2012/000732 JP2012000732W WO2012108155A1 WO 2012108155 A1 WO2012108155 A1 WO 2012108155A1 JP 2012000732 W JP2012000732 W JP 2012000732W WO 2012108155 A1 WO2012108155 A1 WO 2012108155A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
configuration
abs
henb
configuration pattern
Prior art date
Application number
PCT/JP2012/000732
Other languages
English (en)
French (fr)
Inventor
継峰 李
将彦 南里
泰雄 小出
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12744287.9A priority Critical patent/EP2675225A1/en
Priority to JP2012556780A priority patent/JPWO2012108155A1/ja
Priority to US13/977,454 priority patent/US20130279419A1/en
Publication of WO2012108155A1 publication Critical patent/WO2012108155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a base station apparatus and a transmission method.
  • a small base station device has been developed to form a cell having a smaller communication area than a conventional cell.
  • a small base station apparatus for example, there are devices called PicoPeNB and Home eNB (in the following description, these are collectively referred to as HeNB for convenience).
  • HeNB is laid for the purpose of covering only a limited narrow area such as in each home or office. Therefore, compared with a large base station apparatus (macro base station (Macro eNB), hereinafter referred to as MeNB)) for forming a cell having a large communication area, the HeNB has a small cell, and thus traffic concentration. Congestion hardly occurs and high throughput can be expected.
  • Macro base station Micro eNB
  • the HeNB (particularly the HeNB installed in the home) can be changed by the end user to an arbitrary location, and it is difficult for the communication carrier to manage the operational status of the HeNB.
  • the HeNB uses the same frequency band as MeNB (macro base station), it becomes a problem that interference may arise between HeNB and MeNB.
  • FIG. 1 is a diagram for explaining interference that occurs between the HeNB and the MeNB.
  • one HeNB is installed in the communication area of the MeNB, and a mobile station (Macro User Equipment; hereinafter referred to as MUE) communicating with the MeNB is located (located).
  • MUE Micro User Equipment
  • HUE Home User Equipment
  • the HUE when the distance between the MeNB and the HeNB is relatively short, the HUE receives not only the downlink signal (solid line) from the HeNB that is the desired wave but also the downlink signal (dashed line) from the MeNB that is the interference wave. It will be. In this case, there is a problem that the reception quality of the HUE deteriorates and the throughput decreases.
  • the MUE shown in FIG. 1 approaches the HeNB communication area, the MUE receives not only the downlink signal (desired wave) from the MeNB but also the downlink signal (interference wave) from the HeNB. In this case, the MUE receives interference, which causes a problem that the reception quality of the MUE deteriorates and the throughput decreases.
  • Non-Patent Document 1 As a method for solving this problem, for example, a method called ABS (Almost Blank Subframe) disclosed in Non-Patent Document 1 has been studied.
  • the MeNB periodically stops transmission (downlink transmission) on the downlink.
  • downlink transmission is stopped by the MeNB setting a non-transmission subframe every 4 subframes.
  • the interfered base station (victim. HeNB in FIG. 2) receives interference.
  • the throughput of UEs located in the interfered base station is improved.
  • Non-Patent Document 1 when transmission is stopped using ABS, throughput is reduced due to no transmission in the interfering base station (MeNB).
  • MeNB interfering base station
  • FIG. 2 when a MeNB with a wide coverage stops transmission, the number of terminals (MUEs) that are affected by a decrease in throughput due to no transmission increases, resulting in a decrease in throughput of the entire network. It will be connected.
  • An object of the present invention is to provide a base station apparatus and a transmission method capable of minimizing interference between base stations (MeNB and HeNB) and improving the throughput of the entire network.
  • the base station apparatus is a subframe configuration pattern represented by a combination of a transmission subframe that transmits a signal and a non-transmission subframe that stops signal transmission.
  • a determination unit that determines a configuration pattern used by the own device from a plurality of configuration patterns; a transmission unit that transmits a signal to a terminal device connected to the own device according to the determined configuration pattern; The structure which comprises is taken.
  • a transmission method is a subframe configuration pattern represented by a combination of a transmission subframe for transmitting a signal and a non-transmission subframe for stopping signal transmission,
  • the plurality of base station apparatuses based on presence / absence of interference between the own apparatus and another base station apparatus other than the own apparatus
  • the configuration pattern used by the own device is determined from among the configuration patterns, and a signal is transmitted to the terminal device connected to the own device according to the determined configuration pattern.
  • the present invention it is possible to minimize interference between base stations (MeNB and HeNB) and improve the throughput of the entire network.
  • the figure which shows the structure of the network system which consists of MeNB and HeNB Diagram for explaining ABS The figure which shows the structure of the network system which concerns on Embodiment 1 of this invention.
  • the block diagram which shows the structure of the small base station which concerns on Embodiment 1 of this invention.
  • the figure which shows the ABS pattern which concerns on Embodiment 1 of this invention The figure which shows the ABS white list which concerns on Embodiment 1 of this invention.
  • FIG. 3 shows a configuration example of a network system (communication system) according to the present embodiment.
  • the cell ID is a number assigned uniquely to the base station.
  • MUEs 11 to 13 are located in the communication area of MeNB1, HUE11 is located in the communication area of HeNB1, and HUE21 is located in the communication area of HeNB2.
  • each base station (MeNB and HeNB) located in the network system shown in FIG. 3 transmits a signal using one of a plurality of different ABS patterns.
  • the ABS pattern is a subframe configuration pattern represented by a combination of a transmission subframe that transmits a signal and a non-transmission subframe that stops signal transmission.
  • OMC Operaation and Maintenance Center
  • MeNB2 HeNB1 and HeNB2 as well as MeNB2 and MeNB3 (not shown), respectively.
  • a management device having a function of managing a configuration).
  • FIG. 4 is a block diagram showing the configuration of the HeNB (for example, HeNB1 and HeNB2 shown in FIG. 3).
  • the HeNB 100 illustrated in FIG. 4 collects information (cell ID and the like) of neighboring base stations (MeNB and HeNB) immediately after power-on.
  • HeNB100 may perform this information collection regularly (for example, once a day).
  • the receiving unit 101 receives downlink signals (downlink radio signals) from neighboring base stations (MeNB and HeNB) when the HeNB 100 is powered on.
  • the received signal includes, for example, a reference signal, a synchronization signal, an ABS configuration transmitted from another base station, and the like. Note that the ABS configuration is transmitted (broadcast) on a broadcast channel, for example.
  • the receiving unit 101 outputs the received downlink signal to the searching unit 103.
  • the control unit 102 instructs the search unit 103 to search for a base station located in the vicinity of the HeNB 100, using the power-on of the HeNB 100 as a trigger. For example, the control unit 102 instructs the search unit 103 to measure RSRQ (Reference Signal Received Quality).
  • RSRQ Reference Signal Received Quality
  • Search unit 103 searches for base stations located around HeNB 100 and is used by base stations located around HeNB 100 in accordance with instructions from control unit 102 (that is, triggered by power-on of HeNB 100).
  • ABS Configuration that is, ABS pattern
  • the search unit 103 searches for other base stations (MeNB and HeNB) located in the vicinity of the own device based on the downlink signal (synchronization signal) received by the reception unit 101.
  • the search part 103 specifies the searched other base station as an apparatus with which interference occurs with an own apparatus.
  • the search unit 103 monitors broadcast channels from other searched base stations, and acquires an ABS configuration indicating an ABS pattern used by the base station.
  • the search part 103 measures RSRQ using the reference signal from the searched other base station.
  • the smaller the measured value of RSRQ the smaller the amount of interference with HeNB 100.
  • the search unit 103 outputs the acquired ABS configuration to the determination unit 104. Note that details of the search processing of the neighboring base stations in the search unit 103 will be described later.
  • the determination unit 104 determines the ABS configuration used by the HeNB 100 based on the ABS configuration acquired by the search unit 103. For example, the determination unit 104 uses an ABS configuration (ABS) that the HeNB 100 uses, from among a plurality of ABS configurations (ABS patterns) that can be set in the HeNB 100, an ABS configuration that is different from the ABS configuration collected by the search unit 103. Pattern). That is, the determination unit 104 determines any ABS configuration other than the ABS configuration used by the peripheral base station of the HeNB 100 (an apparatus that causes interference with the HeNB 100) as the ABS configuration used by the HeNB 100. Then, the determination unit 104 outputs the determined ABS configuration (ABS pattern) to the transmission unit 105. Details of the ABS Configuration determination process in the determination unit 104 will be described later.
  • the HeNB 100 applies the ABS configuration determined by the determination unit 104 to the UE (HUE) connected to the HeNB 100. Therefore, the transmission part 105 transmits a signal with respect to the terminal (HUE) connected to the own apparatus according to the ABS ⁇ ⁇ ⁇ ⁇ Configuration (ABS pattern) determined by the determination part 104. Further, the transmission unit 105 reports the ABS configuration (ABS configuration used by the HeNB 100) input from the determination unit 104 to the OMC.
  • each base station such as MeNB and HeNB (including HeNB100) has an ABS Configuration table as shown in FIG. 5, for example.
  • m represents a counter that increases every subframe. That is, transmission / non-transmission on the downlink for 40 subframes is defined in the ABS pattern C ABS (m) shown in FIG.
  • a subframe in which a downlink signal is transmitted is represented by “0”
  • a subframe in which transmission of the downlink signal is stopped is represented by “1”.
  • each base station such as MeNB and HeNB (including HeNB 100) has an ABS white list indicating an ABS configuration that can be used by the own apparatus, as shown in FIG. 6, for example.
  • the ABS Configuration corresponding to the parameter “1” is usable, and the ABS Configuration corresponding to the parameter “0” is unusable.
  • FIG. 7 shows a flowchart showing the flow of the search process of the neighboring base station and the determination process of the ABS configuration in the HeNB 100 according to the present embodiment.
  • processing in HeNB2 (during suspension) in FIG. 3 will be described.
  • search unit 103 of HeNB2 initializes an ABS white list (see, for example, FIG. 6). Specifically, the search unit 103 initializes all the availability states of the ABS configuration shown in the ABS white list to usable ('1').
  • search section 103 determines whether or not the cell ID (T PCID ) to be measured exceeds PCID MAX .
  • search section 103 When the measurement target cell ID (T PCID ) does not exceed PCID MAX (ST103: No), in ST104, search section 103 generates a replica of the synchronization signal.
  • synchronization signals There are two types of synchronization signals: a first synchronization signal (Primary Synchronization Signal: PSS) and a second synchronization signal (Secondary Synchronization Signal: SSS).
  • search section 103 performs cell search using a replica of the synchronization signal (PSS and SSS) generated in ST104. Specifically, the search unit 103 performs a correlation operation between the received signal and the replica of the synchronization signal (PSS and SSS). Then, when the correlation value between the received signal and the replica of the synchronization signal is equal to or greater than a preset threshold, the search unit 103 has a base station of the measurement target cell ID (T PCID ) in the vicinity of the own device (HeNB2) (That is, the cell search is considered successful).
  • T PCID measurement target cell ID
  • HeNB2 the own device
  • the search unit 103 determines that the base station of the measurement target cell ID (T PCID ) is not present in the vicinity of the own device (HeNB2). Judge (ie, consider cell search failure). If the cell search is successful (ST105: Yes), the process proceeds to ST106, and if the cell search is not successful (ST105: No), the process proceeds to ST111.
  • search section 103 monitors the broadcast channel from the base station of the cell ID (T PCID ) to be measured, and collects the ABS Configuration (C PCID ) used by the base station.
  • T PCID cell ID
  • C PCID ABS Configuration
  • search section 103 updates the ABS white list by setting the availability state corresponding to the ABS Configuration (C PCID ) collected in ST 106 to unavailable ('0') in the ABS white list. To do.
  • search section 103 monitors the downlink reference signal from the base station of the cell ID (T PCID ) to be measured, and measures RSRQ (P RSRQ ).
  • search section 103 compares the the P MIN RSRQ (P RSRQ) measured at ST 108. If P RSRQ is smaller than P MIN (ST109: Yes), in ST110, search section 103 updates P MIN to P RSRQ and C MIN to C PCID . By repeatedly performing the processing of ST108 to ST110 on the measurement target base station, the base station having the smallest RSRQ among the measurement target base stations (that is, the base station having the smallest amount of interference with the own device) ) Is used for the ABS Configuration (C MIN ). On the other hand, if P RSRQ is equal to or greater than P MIN (ST109: No), the process proceeds to ST111.
  • search section 103 updates the measurement target base station by incrementing TPCID indicating the measurement target cell ID, and returns to the process of ST103.
  • Search section 103 repeats the processing of ST 103 to 111 until T PCID becomes PCID MAX (until ST 103: Yes).
  • the determination unit 104 determines the ABS configuration of HeNB2. Specifically, in ST112, the determination unit 104 refers to the ABS white list updated in ST107 and determines whether there is an ABS configuration that can be used in the own device (HeNB2) (that is, all ABS configurations are used). Whether or not it is impossible).
  • the ABS configuration having the smallest number may be selected from the available ABS configurations. For example, in FIG. 5, the ABS Configuration with a smaller number has fewer non-transmission subframes. Therefore, by selecting the ABS Configuration having the smallest number, it is possible to reduce the number of non-transmission subframes that stop transmission of downlink signals as much as possible.
  • the determination unit 104 uses the ABS Configuration (C MIN ) of the base station corresponding to the minimum RSRQ set in ST110 in its own device (HeNB2). Set to ABS Configuration. That is, when all of the plurality of ABS Configurations (ABS patterns) are used by a plurality of other base stations, the determination unit 104 has the smallest amount of interference with the own device among the plurality of other base stations.
  • the ABS Configuration (ABS pattern) used by is determined as the ABS Configuration (ABS pattern) used by the own device.
  • the transmission unit 105 reports to the OMC the ABS Configuration used by the own device, determined by the determination unit 104 in ST113 or ST114.
  • the HeNB2 (HeNB100) illustrated in FIG. 3 regards a base station (for example, HeNB1) that can be detected by the own device as a base station that the own device can interfere with, and uses the ABS configuration that the base station uses. Set the ABS Configuration different from that in the local device.
  • the base stations (HeNB1 and HeNB2) that interfere with each other use the same ABSAConfiguration, the non-transmission subframes are completely overlapped. As a result, interference between base stations that interfere with each other cannot be suppressed.
  • different ABS configurations are used between base stations that interfere with each other (for example, HeNB1 and HeNB2).
  • the interfered base station does not need to receive interference, and the throughput of the UE located in the interfered base station can be improved.
  • the HeNB 100 sets the ABS Configuration (C MIN ) of the base station corresponding to the minimum RSRQ at its own device (HeNB2).
  • C MIN ABS Configuration
  • HeNB2 the HeNB 100 automatically sets the ABS Configuration of the neighboring base station with the smallest interference with the own device (the ABS Configuration of the base station corresponding to the minimum RSRQ).
  • the HeNB100 and a periphery base station use the same ABS Configuration, it becomes possible to suppress the interference between the said base stations to the minimum.
  • the HeNB 100 may determine the ABSAConfiguration of its own device so that different ABS Configurations are set with the base stations (base stations that can interfere with the HeNB 100) detected by the neighboring base station search. .
  • the HeNB 100 may set the same ABS Configuration as the ABS Configuration used by a base station (a base station that cannot interfere with the HeNB 100) that is not detected by the neighboring base station search, in its own device. That is, HeNB100 (deciding part 104) is between base stations (HeNB100) searched by HeNB100 (search part 103) among a plurality of base stations (MeNB and HeNB) located in a network system (communication system).
  • ABS Configuration ABS Configuration
  • ABS Configuration ABS Configuration
  • N HeNBs when there are N HeNBs in the communication area of the MeNB and the N HeNBs do not interfere with any HeNB (when each HeNB has not detected another HeNB), the N HeNBs are the same.
  • Each ABS Configuration may be set.
  • HeNB1 can interfere with MeNB and does not interfere with HeNB2-4. Therefore, the HeNB 1 sets an ABS configuration (ABS conf. # 1) different from the ABS configuration (ABS conf. # 0) of the MeNB. At this time, HeNB1 may set the same ABS Configuration (HeBS2 and HeNB4 ABS Conf. # 1 in FIG. 8) as HeNB2 to HeNB4 that do not interfere.
  • HeNB4 can interfere with HeNB3 and does not interfere with MeNB, HeNB1, and HeNB2. Therefore, HeNB4 sets an ABS Configuration (ABS Conf.
  • the HeNB 4 may set the same ABS Configuration as the MeNB, HeNB1, and HeNB2 that do not interfere (ABS Conf. # 1 of the HeNB1 and HeNB2 in FIG. 8).
  • other base stations (MeNB, HeNB2, and HeNB3) set the ABS configuration of the own apparatus.
  • each base station can select from a plurality of ABS configurations (ABS patterns) based on the presence / absence of interference between its own device and another base station other than its own device.
  • each base station identifies a peripheral base station that can be detected by the own device as a device that causes interference with the own device, and is used by the neighboring base station. Set the ABS configuration that is different from the existing ABS configuration.
  • each base station independently sets the optimum ABS configuration for the own device. Thereby, the interference between each base station can be suppressed to the minimum.
  • Non-Patent Document 1 not only MeNB applies ABS, but HeNB can also reduce the number of non-transmission subframes in MeNB by applying ABS, improving throughput as a whole network. It becomes possible to do.
  • the determination unit 104 monitors the ABS ⁇ ⁇ Configuration of the neighboring base stations. did.
  • the HeNB 100 may monitor the ABS configuration of the peripheral base station in parallel with the search for the peripheral base station. As a result, it is possible to further reduce the processing amount of the search process for the neighboring base stations and the monitoring process for the ABS configuration.
  • the HeNB searches for neighboring base stations, whereas in this embodiment, the HeNB does not search for neighboring base stations.
  • HeNB which concerns on this Embodiment takes the structure which does not comprise the control part 102 and the search part 103 among HeNB100 which concerns on Embodiment 1 shown in FIG.
  • the determination unit 104 measures the amount of interference from another base station (MeNB or HeNB) using the downlink signal received by the reception unit 101.
  • the determination unit 104 increments the currently set ABS Configuration candidate and sets a new ABS ⁇ ⁇ Configuration candidate.
  • the determination unit 104 determines the currently set ABSAConfiguration candidate as the ABS Configuration of the own device.
  • the determination unit 104 determines the ABS Configuration (ABS pattern) in which the amount of interference from other base stations other than its own device is less than the threshold (allowable value) among the plurality of ABS Configurations (ABS patterns) It is determined as the ABS configuration (ABS pattern) used by the device itself.
  • the transmission unit 105 reports the ABS configuration finally determined by the determination unit 104 to the OMC.
  • each base station is based on the presence or absence of interference between the own apparatus and other base stations other than the own apparatus, from a plurality of ABS Configurations (ABS patterns), Determine the ABS configuration used by the device itself.
  • ABS Configurations ABS patterns
  • each base station uses an ABS configuration that has a small amount of interference with other base stations (the amount of interference is less than a threshold).
  • the interfered base station does not need to receive interference, and the throughput of the UE located in the interfered base station can be improved.
  • the HeNB 100 sets the ABS configuration corresponding to the minimum interference amount to the ABS configuration used in its own device when the interference amount exceeds the threshold in all ABS configurations. May be. That is, even if the amount of interference with other base stations cannot be less than the allowable value, the HeNB can minimize interference between base stations by setting the ABS Configuration with the smallest amount of interference in its own device. Is possible.
  • the HeNB has been described as acquiring peripheral base station information when the power is turned on.
  • the acquisition of the neighboring base station information in the HeNB may be performed periodically, for example, once a day.
  • the HeNB reports the ABS configuration to the OMC.
  • the HeNB may directly report an ABS pattern composed of a total of 40 bits shown in FIG. 5 to the OMC.
  • the present invention is suitable for a mobile communication system having MeNB, MUE, HeNB and HUE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 各基地局(MeNB及びHeNB)間での干渉を最小限に抑え、ネットワーク全体のスループットを改善することができる基地局装置。信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームのABS(Almost Blank Subframe)パターンであって、異なる複数のABSパターンのいずれかを用いて信号の送信を行う基地局を複数有する通信システムにおいて、決定部(104)は、HeNB(100)と、HeNB(100)以外の他の基地局との間の干渉の有無に基づいて、複数のABSパターンの中から、HeNB(100)が使用するABSパターンを決定し、送信部(105)は、決定されたABSパターンに従って、HeNB(100)に接続している端末に対して信号を送信する。

Description

基地局装置及び送信方法
 本発明は、基地局装置及び送信方法に関する。
 近年、携帯電話の不感地帯の補完、又は、セルの平均スループット及びセルエッジスループットの向上を目的として、従来のセルよりも通信エリアが小さいセルを形成するための小型基地局装置の開発が行われている。小型基地局装置としては、例えば、Pico eNB及びHome eNBと呼ばれるものがある(以下の説明では、便宜上、これらをHeNBと総称する)。HeNBは、各家庭内又はオフィス内のような限定された狭いエリアのみをカバーする目的で敷設される。よって、従来の通信エリアが大きいセルを形成するための大型基地局装置(マクロ基地局(Macro eNB)。以下、MeNBと称する。)と比較して、HeNBでは、セルが小さいため、トラフィック集中による混雑が生じにくく、高いスループットが期待できる。
 しかし、HeNB(特に家庭内に設置されたHeNB)はエンドユーザが設置場所を任意の場所に変更でき、通信事業者がHeNBの運用状況を管理することが難しい。また、HeNBは、MeNB(マクロ基地局)と同じ周波数帯域が利用されているため、HeNBとMeNBとの間で干渉が生じ得ることが問題となる。
 図1は、HeNBとMeNBとの間で生じる干渉について説明する図である。図1において、MeNBの通信エリア内に、HeNBが1台設置され、MeNBと通信する移動局(Macro User Equipment。以下、MUEと称する)が位置(在圏)する。また、HeNBの通信エリア内に、HeNBと通信する移動局(Home User Equipment。以下、HUEと称する)が位置(在圏)する。
 図1において、MeNBとHeNBとの距離が比較的近い場合、HUEは、所望波であるHeNBからの下り信号(実線)のみでなく、干渉波であるMeNBからの下り信号(破線)も受信することになる。この場合、HUEの受信品質が劣化し、スループットが低下するという課題が発生する。同様に、図1に示すMUEがHeNBの通信エリアに近づいた場合には、MUEは、MeNBからの下り信号(所望波)のみでなく、HeNBからの下り信号(干渉波)も受信する。この場合、MUEでは干渉を受けてしまい、MUEの受信品質が劣化し、スループットが低下するという課題が発生する。
 この課題を解決する方法として、例えば、非特許文献1に開示されているABS(Almost Blank Subframe)という方法が検討されている。非特許文献1に開示されているABSでは、MeNBが定期的に下り回線(Downlink)での送信(下り送信)を停止する。例えば、図2では、MeNBが4サブフレーム毎に無送信サブフレームを設定することで、下り送信を停止している。これにより、与干渉基地局(aggressor。図2ではMeNB)が送信を停止したサブフレーム(図2に示す無送信サブフレーム)では、被干渉基地局(victim。図2ではHeNB)は干渉を受けずに済み、被干渉基地局に在圏するUEのスループットが改善する。
 しかしながら、非特許文献1のように、ABSを用いて送信を停止すると、与干渉基地局(MeNB)では無送信によるスループットの低下が生じる。特に、非特許文献1(図2)に示すように、カバレッジが広いMeNBが送信を停止すると、無送信によるスループット低下の影響を受ける端末(MUE)が多くなってしまい、ネットワーク全体のスループット低下につながってしまう。
 本発明の目的は、各基地局(MeNB及びHeNB)間での干渉を最小限に抑え、ネットワーク全体のスループットを改善することができる基地局装置及び送信方法を提供することである。
 本発明の第1の態様に係る基地局装置は、信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームの構成パターンであって、異なる複数の前記構成パターンのいずれかを用いて信号の送信を行う基地局装置を複数有する通信システムにおいて、自装置と、自装置以外の他の基地局装置との間の干渉の有無に基づいて、前記複数の構成パターンの中から、自装置が使用する構成パターンを決定する決定手段と、決定された前記構成パターンに従って、自装置に接続している端末装置に対して信号を送信する送信手段と、を具備する構成を採る。
 本発明の第2の態様に係る送信方法は、信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームの構成パターンであって、異なる複数の前記構成パターンのいずれかを用いて信号の送信を行う基地局装置を複数有する通信システムにおいて、自装置と、自装置以外の他の基地局装置との間の干渉の有無に基づいて、前記複数の構成パターンの中から、自装置が使用する構成パターンを決定し、決定された前記構成パターンに従って、自装置に接続している端末装置に対して信号を送信する。
 本発明によれば、各基地局(MeNB及びHeNB)間での干渉を最小限に抑え、ネットワーク全体のスループットを改善することができる。
MeNB及びHeNBから成るネットワークシステムの構成を示す図 ABSの説明に供する図 本発明の実施の形態1に係るネットワークシステムの構成を示す図 本発明の実施の形態1に係る小型基地局の構成を示すブロック図 本発明の実施の形態1に係るABSパターンを示す図 本発明の実施の形態1に係るABSホワイトリストを示す図 本発明の実施の形態1に係る小型基地局の処理の流れを示す図 本発明の実施の形態1に係るABS Configurationの設定例を示す図
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。
 (実施の形態1)
 図3に、本実施の形態に係るネットワークシステム(通信システム)の構成例を示す。図3に示すように、MeNB1(セルID=2169)の通信エリア(セル範囲)内に、HeNB1(セルID=9711)及びHeNB2(セルID=11094)の2台のHeNBが設置されている。また、図3に示すHeNB1は稼働中であり、HeNB2は休止中(電源OFF状態)であるとする。なお、セルIDとは基地局固有に割り当てられた番号である。また、図3に示すように、MeNB1の通信エリア内にMUE11~13が在圏し、HeNB1の通信エリア内にHUE11が在圏し、HeNB2の通信エリア内にHUE21が在圏する。また、図3に示すネットワークシステムに位置する各基地局(MeNB及びHeNB)は、異なる複数のABSパターンのいずれかを用いて信号の送信を行う。ここで、ABSパターンとは、信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームの構成パターンである。また、図3において、OMC(Operation and Maintenance Center)は、MeNB1、HeNB1及びHeNB2に加え、図示しないMeNB2及びMeNB3と、それぞれ接続しており、各基地局装置のABSパターンの設定情報(以下、ABS Configurationと称する)を管理する機能を有する管理装置である。
 図4に、HeNB(例えば、図3に示すHeNB1及びHeNB2)の構成を示すブロック図を示す。図4に示すHeNB100は、電源投入直後、周辺基地局(MeNB及びHeNB)の情報(セルID等)を収集する。なお、HeNB100は、この情報収集を定期的(例えば1日1回)に行ってもよい。
 具体的には、図4に示すHeNB100において、受信部101は、HeNB100の電源が投入されると、周辺基地局(MeNB及びHeNB)からの下り信号(下り無線信号)を受信する。受信される信号には、例えば、他の基地局から送信された、参照信号、同期信号、及び、ABS Configuration等が含まれる。なお、ABS Configurationは、例えば、報知チャネルで送信(ブロードキャスト)される。受信部101は、受信した下り信号を探索部103に出力する。
 制御部102は、HeNB100の電源投入をトリガとして、探索部103に対して、HeNB100の周辺に位置する基地局の探索を指示する。例えば、制御部102は、探索部103に対して、RSRQ(Reference Signal Received Quality)の測定を指示する。
 探索部103は、制御部102からの指示に従って(つまり、HeNB100の電源投入をトリガとして)、HeNB100の周辺に位置する基地局の探索、及び、HeNB100の周辺に位置する基地局が使用しているABS Configuration(つまり、ABSパターン)の検出を行う。例えば、探索部103は、受信部101で受信した下り信号(同期信号)に基づいて、自装置の周辺に位置する他の基地局(MeNB及びHeNB)を探索する。このとき、探索部103は、探索された他の基地局を、自装置との間で干渉が生じる装置として特定する。更に、探索部103は、探索された他の基地局からの報知チャネルをモニタして、当該基地局が使用するABSパターンを示すABS Configurationを取得する。更に、探索部103は、探索された他の基地局からの参照信号を用いて、RSRQを測定する。ここで、RSRQの測定値が小さい他の基地局ほど、HeNB100との間の干渉量はより小さい。探索部103は、取得したABS Configurationを決定部104に出力する。なお、探索部103における周辺基地局の探索処理の詳細については後述する。
 決定部104は、探索部103で取得されたABS Configurationに基づいて、HeNB100が使用するABS Configurationを決定する。例えば、決定部104は、HeNB100に設定可能な複数のABS Configuration(ABSパターン)の中から、探索部103で収集されたABS Configurationと異なるABS Configurationのいずれかを、HeNB100が使用するABS Configuration(ABSパターン)として決定する。つまり、決定部104は、HeNB100の周辺基地局(HeNB100との間で干渉が生じる装置)が使用しているABS Configuration以外のABS Configurationのいずれかを、HeNB100が使用するABS Configurationとして決定する。そして、決定部104は、決定したABS Configuration(ABSパターン)を、送信部105に出力する。なお、決定部104におけるABS Configuration決定処理の詳細については後述する。
 HeNB100は、決定部104で決定されたABS Configurationを、HeNB100に接続されたUE(HUE)に適用する。よって、送信部105は、決定部104で決定されたABS Configuration(ABSパターン)に従って、自装置に接続している端末(HUE)に対して信号を送信する。また、送信部105は、決定部104から入力されるABS Configuration(HeNB100が使用するABS Configuration)をOMCに報告する。
 次に、HeNB100における処理について詳細に説明する。
 なお、MeNB及びHeNB(HeNB100を含む)等の各基地局は、例えば、図5に示すような、ABS Configurationテーブルを有する。図5に示すABS Configurationテーブルは、ABS Configuration(0~7)とABSパターンCABS(m)(m=0~39)との関連付けを示す。ここで、mはサブフレーム毎に増加するカウンタを表す。すなわち、図5に示すABSパターンCABS(m)には40サブフレーム分の下り回線での送信/無送信が定義されている。図5では、下り信号が送信されるサブフレーム(送信サブフレーム)を‘0’で表し、下り信号の送信が停止されるサブフレーム(無送信サブフレーム)を‘1’で表す。例えば、図5に示すABS Configuration=0では、全てのサブフレームで下り信号が送信されることを意味し、ABS Configuration=1では、8サブフレーム毎に下り信号の送信が停止されることを意味する。
 また、MeNB及びHeNB(HeNB100を含む)等の各基地局は、例えば、図6に示すような、自装置が使用可能なABS Configurationを示すABSホワイトリストを有する。図6に示すABSホワイトリストにおいて、使用可否のパラメータが‘1’に該当するABS Configurationが使用可能であり、使用可否のパラメータが‘0’に該当するABS Configurationが使用不可である。例えば、図6では、ABS Configuration=0,4が使用不可であり、ABS Configuration=1,2,3,5,6,7が使用可能である。
 図7は、本実施の形態に係るHeNB100における周辺基地局の探索処理、及び、ABS Configurationの決定処理の流れを示すフロー図を示す。以下の説明では、図3におけるHeNB2(休止中)での処理について説明する。
 図7において、ステップ(以下、単に「ST」とする)101では、HeNB2の探索部103は、ABSホワイトリスト(例えば図6参照)を初期化する。具体的には、探索部103は、ABSホワイトリストに示される、ABS Configurationの使用可否の状態を全て使用可能(‘1’)に初期化する。
 ST102では、探索部103は各パラメータを初期化する。具体的には、探索部103は、測定対象のセルID(TPCID)として、ブラインド検出の対象とするセルID(PCID)の範囲(PCIDMIN~PCIDMAX)のうち、最も小さいセルID(PCIDMIN)を設定する。また、探索部103は、最小のRSRQを格納する最小RSRQバッファ(PMIN)として、HeNB2が測定し得る最大のRSRQ(PMAX)を設定する。また、探索部103は、最小RSRQを有する基地局のABS Configuration(CMIN)として、‘0’を設定する。例えば、一例として、PCIDMIN=0、PCIDMAX=65535、PMAX=24[dBm]とする。
 ST103では、探索部103は、測定対象のセルID(TPCID)がPCIDMAXを超えているか否かを判断する。
 測定対象のセルID(TPCID)がPCIDMAXを超えていない場合(ST103:No)、ST104では、探索部103は、同期信号のレプリカを生成する。この同期信号には、第1同期信号(Primary Synchronization Signal:PSS)及び第2同期信号(Secondary Synchronization Signal:SSS)の2種類がある。
 ST105では、探索部103は、ST104で生成した同期信号(PSS及びSSS)のレプリカを用いて、セルサーチを行う。具体的には、探索部103は、受信信号と同期信号(PSS及びSSS)のレプリカとの相関演算を行う。そして、探索部103は、受信信号と同期信号のレプリカとの相関値が予め設定された閾値以上の場合、測定対象のセルID(TPCID)の基地局が自装置(HeNB2)の周辺に存在していると判断する(つまり、セルサーチ成功と見なす)。一方、探索部103は、受信信号と同期信号のレプリカとの相関値が閾値未満の場合、測定対象のセルID(TPCID)の基地局が自装置(HeNB2)の周辺に存在していないと判断する(つまり、セルサーチ失敗と見なす)。セルサーチが成功した場合(ST105:Yes)、ST106の処理に進み、セルサーチが成功しなかった場合(ST105:No)、ST111の処理に進む。
 ST106では、探索部103は、測定対象のセルID(TPCID)の基地局からの報知チャネルをモニタして、当該基地局が使用しているABS Configuration(CPCID)を収集する。
 ST107では、探索部103は、ABSホワイトリストにおいて、ST106で収集したABS Configuration(CPCID)に対応する使用可否の状態を、使用不可(‘0’)に設定することで、ABSホワイトリストを更新する。
 ST108では、探索部103は、測定対象のセルID(TPCID)の基地局からの下り参照信号をモニタし、RSRQ(PRSRQ)を測定する。
 ST109では、探索部103は、ST108で測定されたRSRQ(PRSRQ)とPMINとを比較する。PRSRQがPMINよりも小さい場合(ST109:Yes)、ST110では、探索部103は、PMINをPRSRQに更新し、CMINをCPCIDに更新する。ST108~110の処理が測定対象の基地局に対して繰り返し行われることで、測定対象の基地局の中でRSRQが最も小さい基地局(つまり、自装置との間の干渉量が最も小さい基地局)が使用しているABS Configuration(CMIN)が特定される。一方、PRSRQがPMIN以上の場合(ST109:No)、ST111の処理に進む。
 ST111では、探索部103は、測定対象のセルIDを示すTPCIDをインクリメントすることで測定対象の基地局を更新して、ST103の処理に戻る。探索部103は、ST103~111の処理を、TPCIDがPCIDMAXとなるまで(ST103:Yesとなるまで)繰り返す。
 探索部103における周辺基地局探索処理が完了すると(ST103:Yes)、決定部104は、HeNB2のABS Configurationを決定する。具体的には、ST112では、決定部104は、ST107で更新されたABSホワイトリストを参照して、自装置(HeNB2)で使用可能なABS Configurationがあるか否か(つまり、ABS Configurationが全て使用不可であるか否か)を判断する。
 使用可能なABS Configurationがある場合(ST112:No)、ST113では、決定部104は、ABSホワイトリスト中の使用可能なABS Configuration(図6の場合、ABS Configuration=1,2,3,5,6,7)の中から、自装置(HeNB2)で使用するABS Configurationをランダムに選択する。換言すると、決定部104は、ABSホワイトリスト中の使用不可であるABS Configuration(図6の場合、ABS Configuration=0,4)、つまり、周辺基地局が使用しているABS Configurationを、自装置で使用するABS Configurationの対象(選択候補)としない。なお、自装置(HeNB2)で使用するABS Configurationの決定方法は、ランダムに決定する方法に限らず、例えば、使用可能なABS Configurationのうち、最も番号が小さいABS Configurationを選択してもよい。例えば、図5では、番号が小さいABS Configurationほど、無送信サブフレームがより少ない。よって、最も番号が小さいABS Configurationが選択されることで、下り信号の送信を停止する無送信サブフレームをできる限り少なくすることができる。
 使用可能なABS Configurationが無い場合(ST112:Yes)、ST114では、決定部104は、ST110で設定された最小RSRQに対応する基地局のABS Configuration(CMIN)を、自装置(HeNB2)で使用するABS Configurationに設定する。つまり、決定部104は、複数の他の基地局によって複数のABS Configuration(ABSパターン)のすべてが使用されている場合、複数の他の基地局のうち、自装置に対する干渉量が最も小さい基地局(最小RSRQに対応する基地局)が使用しているABS Configuration(ABSパターン)を、自装置が使用するABS Configuration(ABSパターン)として決定する。
 ST115では、送信部105は、ST113又はST114において決定部104で決定された、自装置で使用するABS Configurationを、OMCに報告する。
 このように、例えば、図3に示すHeNB2(HeNB100)は、自装置で検出可能な基地局(例えば、HeNB1)を、自装置が干渉可能な基地局と見なし、当該基地局が使用するABS Configurationと異なるABS Configurationを自装置に設定する。ここで、図5に示すように、干渉を与え合う基地局同士(HeNB1及びHeNB2)が同一ABS Configurationを使用すると、無送信サブフレームが完全に重複してしまう。結果として、干渉を与え合う基地局間での干渉を抑圧することができない。これに対して、本実施の形態のように、干渉を与え合う基地局間(例えば、HeNB1及びHeNB2)で異なるABS Configurationを用いる。これにより、一方の基地局が送信サブフレームの時に、他方の基地局が無送信サブフレームである期間を確実に確保することができ、基地局間の干渉を抑圧することが可能となる。これにより、被干渉基地局は干渉を受けずに済み、被干渉基地局に在圏するUEのスループットを改善することができる。
 また、HeNB100は、周辺基地局探索の結果、使用可能なABS Configurationが無い場合(ST112:Yes)には、最小RSRQに対応する基地局のABS Configuration(CMIN)を、自装置(HeNB2)で使用するABS Configurationに設定する。つまり、HeNB100は、周辺基地局と異なるABS Configurationを自装置に設定できない場合には、自装置との干渉が最も小さい周辺基地局のABS Configuration(最小RSRQに対応する基地局のABS Configuration)を自装置に設定する。これにより、HeNB100と周辺基地局とが同一のABS Configurationを使用するものの、当該基地局間の干渉を最小限に抑えることが可能となる。
 なお、HeNB100は、周辺基地局探索によって検出された基地局(HeNB100と干渉し得る基地局)との間において、互いに異なるABS Configurationが設定されるように、自装置のABS Configurationを決定すればよい。換言すると、HeNB100は、周辺基地局探索によって検出されなかった基地局(HeNB100と干渉し得ない基地局)が使用するABS Configurationと同一のABS Configurationを自装置に設定してもよい。つまり、HeNB100(決定部104)は、ネットワークシステム(通信システム)内に位置する複数の基地局(MeNB及びHeNB)のうち、HeNB100(探索部103)で探索された基地局(HeNB100との間で干渉が生じる装置)以外の基地局が使用するABS Configuration(ABSパターン)と同一のABS Configuration(ABSパターン)を、自装置が使用するABS Configuration(ABSパターン)として決定してもよい。例えば、MeNBの通信エリア内にN個のHeNBが存在し、N個のHeNBにおいて、いずれのHeNBとも干渉しない場合(各HeNBが他のHeNBを検出しなかった場合)、N個のHeNBは同一のABS Configurationをそれぞれ設定してもよい。
 より詳細には、例えば、図8に示すように、MeNBの通信エリア内に、HeNB1~4が設置されているネットワークシステムを一例として説明する。図8では、HeNB1は、MeNBと干渉可能であり、HeNB2~4とは干渉しない。そこで、HeNB1は、MeNBのABS Configuration(ABS Conf.#0)と異なるABS Configuration(ABS Conf.#1)を設定する。このとき、HeNB1は、干渉しないHeNB2~4と同一のABS Configuration(図8ではHeNB2及びHeNB4のABS Conf.#1)を設定してもよい。同様に、図8では、HeNB4は、HeNB3と干渉可能であり、MeNB、HeNB1及びHeNB2とは干渉しない。そこで、HeNB4は、HeNB3のABS Configuration(ABS Conf.#2)と異なるABS Configuration(ABS Conf.#1)を設定する。このとき、HeNB4は、干渉しないMeNB、HeNB1及びHeNB2と同一のABS Configuration(図8ではHeNB1及びHeNB2のABS Conf.#1)を設定してもよい。他の基地局(MeNB、HeNB2及びHeNB3)についても同様にして自装置のABS Configurationを設定する。
 このようにして、本実施の形態では、各基地局は、自装置と、自装置以外の他の基地局との間の干渉の有無に基づいて、複数のABS Configuration(ABSパターン)の中から、自装置が使用するABS Configurationを決定する。具体的には、本実施の形態では、各基地局は、自装置で検出可能な周辺基地局を、自装置との間で干渉が生じる装置であると特定し、当該周辺基地局で使用されているABS Configurationと異なるABS Configurationを自装置に設定する。このようにして各基地局は、自装置に対する最適なABS Configurationを自主的に設定する。これにより、各基地局間での干渉を最小限に抑えることができる。また、非特許文献1のようにMeNBのみがABSを適用するのではなく、HeNBもABSを適用することで、MeNBでの無送信サブフレームを少なくすることも可能となり、ネットワーク全体としてスループットを改善することが可能となる。
 このように、本実施の形態によれば、各基地局(MeNB及びHeNB)間での干渉を最小限に抑え、ネットワーク全体のスループットを改善することができる。
 なお、本実施の形態では、図7に示すように、探索部103が周辺基地局の探索を行った後(セルサーチ後)、決定部104が周辺基地局のABS Configurationをモニタする場合について説明した。しかし、HeNB100は、周辺基地局の探索と並行して、周辺基地局のABS Configurationをモニタしてもよい。これにより、周辺基地局の探索処理及びABS Configurationのモニタ処理の処理量をより少なくすることが可能となる。
 (実施の形態2)
 実施の形態1では、HeNBが周辺基地局を探索したのに対して、本実施の形態では、HeNBは、周辺基地局を探索しない。
 以下、本実施の形態について具体的に説明する。
 例えば、本実施の形態に係るHeNBは、図4に示す実施の形態1に係るHeNB100のうち制御部102及び探索部103を具備しない構成を採る。
 本実施の形態に係るHeNBの決定部104は、まず、自装置で設定可能なABS Configuration(図5ではABS Configuration=0~7)のうち、例えば、最も番号が小さいABS Configuration(図5ではABS Configuration=0)を、自装置のABS Configuration候補に設定する。次いで、決定部104は、受信部101で受信した下り信号を用いて、他の基地局(MeNB又はHeNB)からの干渉量を測定する。そして、決定部104は、測定した干渉量が予め設定された閾値(許容干渉量)以上の場合、現在設定されているABS Configuration候補をインクリメントして、新たなABS Configuration候補を設定する。一方、決定部104は、測定した干渉量が閾値未満の場合、現在設定されているABS Configuration候補を、自装置のABS Configurationとして決定する。このようにして、決定部104は、複数のABS Configuration(ABSパターン)のうち、自装置以外の他の基地局からの干渉量が閾値(許容値)未満となるABS Configuration(ABSパターン)を、自装置が使用するABS Configuration(ABSパターン)として決定する。
 そして、送信部105は、決定部104で最終的に決定されたABS ConfigurationをOMCに報告する。
 このように、本実施の形態では、各基地局は、自装置と、自装置以外の他の基地局との間の干渉の有無に基づいて、複数のABS Configuration(ABSパターン)の中から、自装置が使用するABS Configurationを決定する。具体的には、本実施の形態では、各基地局は、他の基地局との間の干渉量が小さい(干渉量が閾値未満の)ABS Configurationを用いる。これにより、実施の形態1と同様、一方の基地局が送信サブフレームの時に、他方の基地局が無送信サブフレームである状態を確実に確保することができ、基地局間の干渉を抑圧することが可能となる。これにより、被干渉基地局は干渉を受けずに済み、被干渉基地局に在圏するUEのスループットを改善することができる。
 なお、本実施の形態において、HeNB100は、全てのABS Configurationにおいて、干渉量が閾値以上となった場合には、最小の干渉量に対応するABS Configurationを、自装置で使用するABS Configurationに設定してもよい。つまり、HeNBは、他の基地局との干渉量を許容値未満にできない場合でも、当該干渉量が最も小さいABS Configurationを自装置に設定することで、基地局間の干渉を最小限に抑えることが可能となる。
 このようにして、本実施の形態によれば、各基地局(MeNB及びHeNB)間での干渉を最小限に抑え、ネットワーク全体のスループットを改善することができる。
 以上、本発明の各実施の形態について説明した。
 なお、上記各実施の形態では、HeNBが電源投入時に周辺基地局情報を取得するものとして説明した。しかし、HeNBにおける上記周辺基地局情報の取得は、例えば1日1回など、定期的に行ってもよい。
 また、上記各実施の形態では、HeNBがABS ConfigurationをOMCに報告する場合について説明した。しかし、HeNBは、例えば、図5で示されている計40ビットで構成されるABSパターンをOMCに直接報告してもよい。
 2011年2月10日出願の特願2011-027449の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、MeNB、MUE、HeNB及びHUEを有する移動体通信システムに好適である。
 100 HeNB
 101 受信部
 102 制御部
 103 探索部
 104 決定部
 105 送信部

Claims (8)

  1.  信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームの構成パターンであって、異なる複数の前記構成パターンのいずれかを用いて信号の送信を行う基地局装置を複数有する通信システムにおいて、
     自装置と、自装置以外の他の基地局装置との間の干渉の有無に基づいて、前記複数の構成パターンの中から、自装置が使用する構成パターンを決定する決定手段と、
     決定された前記構成パターンに従って、自装置に接続している端末装置に対して信号を送信する送信手段と、
     を具備する基地局装置。
  2.  自装置の周辺に位置する前記他の基地局装置を探索するとともに、探索された前記他の基地局装置が使用する構成パターンを取得する手段であって、探索された前記他の基地局装置は自装置との間で干渉が生じる装置として特定される、探索手段、を更に具備し、
     前記決定手段は、前記複数の構成パターンの中から、前記他の基地局装置が使用する構成パターンと異なる構成パターンを、自装置が使用する構成パターンとして決定する、
     請求項1記載の基地局装置。
  3.  前記探索手段は、自装置の電源投入をトリガとして、前記他の基地局装置が使用する構成パターンを取得する、
     請求項2記載の基地局装置。
  4.  前記決定手段は、複数の前記他の基地局装置によって前記複数の構成パターンのすべてが使用されている場合、前記複数の他の基地局装置のうち、自装置に対する干渉量が最も小さい基地局装置が使用している構成パターンを、自装置が使用する構成パターンとして決定する、
     請求項2記載の基地局装置。
  5.  前記決定手段は、前記通信システム内に位置する複数の基地局装置のうち、前記探索手段で探索された前記他の基地局装置以外の基地局装置が使用する構成パターンと同一の構成パターンを、自装置が使用する構成パターンとして決定する、
     請求項2記載の基地局装置。
  6.  前記決定手段は、前記複数の構成パターンのうち、自装置以外の前記他の基地局装置からの干渉量が予め設定された許容値未満となる構成パターンを、自装置が使用する構成パターンとして決定する、
     請求項1記載の基地局装置。
  7.  前記送信手段は、更に、決定された前記構成パターンを、複数の基地局装置が使用する構成パターンの設定を管理する管理装置に報告する、
     請求項1記載の基地局装置。
  8.  信号の送信を行う送信サブフレーム及び信号の送信を停止する無送信サブフレームの組み合わせで表されるサブフレームの構成パターンであって、異なる複数の前記構成パターンのいずれかを用いて信号の送信を行う基地局装置を複数有する通信システムにおいて、
     特定の基地局装置と、前記特定の基地局装置以外の他の基地局装置との間の干渉の有無に基づいて、前記複数の構成パターンの中から、前記特定の基地局装置が使用する構成パターンを決定し、
     決定された前記構成パターンに従って、前記特定の基地局装置に接続している端末装置に対して信号を送信する、
     送信方法。
PCT/JP2012/000732 2011-02-10 2012-02-03 基地局装置及び送信方法 WO2012108155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12744287.9A EP2675225A1 (en) 2011-02-10 2012-02-03 Base station device and transmitting method
JP2012556780A JPWO2012108155A1 (ja) 2011-02-10 2012-02-03 基地局装置及び送信方法
US13/977,454 US20130279419A1 (en) 2011-02-10 2012-02-03 Base station device and transmitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027449 2011-02-10
JP2011-027449 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108155A1 true WO2012108155A1 (ja) 2012-08-16

Family

ID=46638382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000732 WO2012108155A1 (ja) 2011-02-10 2012-02-03 基地局装置及び送信方法

Country Status (4)

Country Link
US (1) US20130279419A1 (ja)
EP (1) EP2675225A1 (ja)
JP (1) JPWO2012108155A1 (ja)
WO (1) WO2012108155A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107667A (ja) * 2012-11-27 2014-06-09 Softbank Mobile Corp マクロセル基地局、フェムトセル基地局、通信システム、基地局システム、リソース割り当て方法、分配方法、リソース割り当てプログラム、及び分配プログラム
WO2014176147A1 (en) * 2013-04-24 2014-10-30 Alcatel Lucent Method and apparatus for determination of almost blank subframe pattern by network listening
US20150249530A1 (en) * 2012-09-27 2015-09-03 Broadcom Corporation Method to coordinate resource allocation to address inter-cell interference
US20160006528A1 (en) * 2013-03-06 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for interference cancellation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935583B2 (ja) * 2012-08-07 2016-06-15 富士通株式会社 小規模基地局、通信システムおよび通信方法
US10004084B2 (en) 2014-01-21 2018-06-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for coordinating resource scheduling between wireless networks
CN105917698B (zh) 2014-01-21 2019-08-02 瑞典爱立信有限公司 用于在无线网络之间协调资源调度的方法和装置
EP3130170B1 (en) * 2014-04-09 2019-12-18 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for coordinating resources between different networks
US10075267B2 (en) 2014-07-11 2018-09-11 Huawei Technologies Co., Ltd. Interference coordination method and base station
US9906973B2 (en) 2014-11-28 2018-02-27 Industrial Technology Research Institute Evolved NodeB and traffic dispatch method thereof
US10028273B2 (en) * 2015-11-20 2018-07-17 Industrial Technology Research Institute Method for interference coordination, network server and communication system using the same
US11705979B2 (en) * 2021-09-24 2023-07-18 Apple Inc. Joint detection for primary synchronization signal (PSS) and other synchronization signal symbols in target cell search

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027449A (ja) 2009-07-22 2011-02-10 Hioki Ee Corp 漏れ電流測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016684B2 (en) * 2003-12-01 2006-03-21 Interdigital Technology Corporation Wireless communication method and apparatus for implementing access point startup and initial channel selection processes
CN101926214B (zh) * 2008-03-24 2013-08-21 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率
US8675537B2 (en) * 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US8787468B2 (en) * 2009-06-19 2014-07-22 Motorola Mobility Llc Method and apparatus for multi-radio coexistence
US8644273B2 (en) * 2009-07-01 2014-02-04 Apple Inc. Methods and apparatus for optimization of femtocell network management
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027449A (ja) 2009-07-22 2011-02-10 Hioki Ee Corp 漏れ電流測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on OAM coordination for Macro- Femto Enhanced ICIC, R3-103212", DISCUSSION ON OAM COORDINATION FOR MACRO- FEMTO ENHANCED ICIC, R3-103212, 15 November 2010 (2010-11-15), XP050496452, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_70/Docs/R3-103212.zip> [retrieved on 20120307] *
LG ELECTRONICS INC: "Consideration on a pico with interferences from multiple macros, R3- 110114", CONSIDERATION ON A PICO WITH INTERFERENCES FROM MULTIPLE MACROS, R3- 110114, 17 January 2011 (2011-01-17), XP050610426, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG3Iu/TSGR370bis/Docs/R3-110114.zip> [retrieved on 20120307] *
TELEFONICA: "Fast response eICIC approaches, R2-106195", FAST RESPONSE EICIC APPROACHES, R2-106195, 15 November 2010 (2010-11-15), XP050489641, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2RL2/TSGR272/Docs/R2-106195.zip> [retrieved on 20120307] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249530A1 (en) * 2012-09-27 2015-09-03 Broadcom Corporation Method to coordinate resource allocation to address inter-cell interference
US10181932B2 (en) 2012-09-27 2019-01-15 Avago Technologies International Sales Pte. Limited Method to coordinate resource allocation to address inter-cell interference
JP2014107667A (ja) * 2012-11-27 2014-06-09 Softbank Mobile Corp マクロセル基地局、フェムトセル基地局、通信システム、基地局システム、リソース割り当て方法、分配方法、リソース割り当てプログラム、及び分配プログラム
US20160006528A1 (en) * 2013-03-06 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for interference cancellation
US9860008B2 (en) * 2013-03-06 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation for interference cancellation
WO2014176147A1 (en) * 2013-04-24 2014-10-30 Alcatel Lucent Method and apparatus for determination of almost blank subframe pattern by network listening
KR20150133282A (ko) * 2013-04-24 2015-11-27 알까뗄 루슨트 네트워크 리스닝에 의한 거의 빈 서브프레임 패턴의 결정을 위한 방법 및 장치
US9345023B2 (en) 2013-04-24 2016-05-17 Alcatel Lucent Method and apparatus for determination of almost blank subframe pattern by network listening
KR101725705B1 (ko) 2013-04-24 2017-04-10 알까뗄 루슨트 네트워크 리스닝에 의한 거의 빈 서브프레임 패턴의 결정을 위한 방법 및 장치

Also Published As

Publication number Publication date
US20130279419A1 (en) 2013-10-24
EP2675225A1 (en) 2013-12-18
JPWO2012108155A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2012108155A1 (ja) 基地局装置及び送信方法
US9294950B2 (en) Radio communication system and method, radio terminal, radio station, and operation administration and maintenance server apparatus
US9750042B2 (en) Method and arrangement in a wireless communication system
US10623969B2 (en) Measuring and sending method, apparatus and system for interference coordination
JP5967254B2 (ja) 通信品質予測装置、無線基地局、通信品質予測方法、およびプログラム
US9210593B2 (en) System and apparatus for indicating cell identifiers
CN102484802B (zh) 扰码选择
US20060172707A1 (en) Method and apparatus for improving network resource planning in a wireless communication network
EP2709395A1 (en) Method for dynamically adjusting subframe in wireless communication system, base station, and system
KR20120062761A (ko) 기지국으로부터의 전송을 위한 다운링크 파워를 안정시키는 방법
WO2013163181A1 (en) Interference management and network performance optimization in small cells
EP2139278B1 (en) Method of detecting an outage of a radio cell
US10382179B2 (en) Adapting reference signal density
US10375701B2 (en) Controlling adaptive reference signal patterns
US10491350B2 (en) Adaptive reference signal patterns
US20200045564A1 (en) Centralized Controller for Nomadic Mobile Relay Network Elements
WO2013139291A1 (zh) 确定发射功率的方法和设备
GB2547724A (en) Adapting reference signal density
GB2547721A (en) Controlling adaptive reference signal patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556780

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977454

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012744287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012744287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE