WO2012108113A1 - Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor - Google Patents

Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor Download PDF

Info

Publication number
WO2012108113A1
WO2012108113A1 PCT/JP2012/000003 JP2012000003W WO2012108113A1 WO 2012108113 A1 WO2012108113 A1 WO 2012108113A1 JP 2012000003 W JP2012000003 W JP 2012000003W WO 2012108113 A1 WO2012108113 A1 WO 2012108113A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
secondary battery
negative electrode
lithium ion
powder
Prior art date
Application number
PCT/JP2012/000003
Other languages
French (fr)
Japanese (ja)
Inventor
安田 幸司
木崎 信吾
下崎 新二
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2012556762A priority Critical patent/JP5662485B2/en
Priority to KR1020137023529A priority patent/KR101567181B1/en
Priority to CN2012800081506A priority patent/CN103348513A/en
Publication of WO2012108113A1 publication Critical patent/WO2012108113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a powder for a negative electrode material that can be used for a lithium ion secondary battery, has a large discharge capacity, has good cycle characteristics, and can obtain a lithium ion secondary battery that can withstand use at a practical level.
  • the present invention also relates to a lithium ion secondary battery negative electrode and capacitor negative electrode, and a lithium ion secondary battery and capacitor using the negative electrode material powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c, and lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
  • carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries.
  • a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • Silicon oxide can be a negative electrode active material with a larger effective charge / discharge capacity because it has less degradation such as collapse of the crystal structure and generation of irreversible materials due to insertion and extraction of lithium ions during charge and discharge. Therefore, by using silicon oxide as a negative electrode active material, lithium has a higher capacity than when carbon is used, and has better cycle characteristics than when a high capacity negative electrode material such as Si or Sn alloy is used. An ion secondary battery has been obtained.
  • silicon oxide powder is used as the negative electrode active material
  • carbon powder or the like is generally mixed as a conductive aid in order to compensate for the low electrical conductivity of silicon oxide.
  • the electrical conductivity of the contact part vicinity of a silicon oxide powder and a conductive support agent is securable.
  • electrical conductivity cannot be ensured at a location away from the contact portion, and it is difficult to function as a negative electrode active material.
  • Patent Document 1 a carbon film is formed by CVD (chemical vapor deposition) on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide.
  • CVD chemical vapor deposition
  • Patent Document 1 describes that, according to the method proposed in this document, a uniform conductive carbon film can be formed on silicon oxide particles.
  • the lithium ion secondary battery using the conductive silicon composite of the same document has problems such as sudden decrease in capacity at a certain point when charging and discharging are repeated. This is probably because silicon dioxide in which microcrystals of silicon are dispersed is used as the negative electrode material, so that lithium ions occlude and expand and contract during discharge. Further, the discharge capacity and cycle characteristics were not sufficient.
  • the present inventors have made various studies on silicon oxide, which is considered to be a negative electrode material powder (negative electrode active material) that can increase the capacity of a lithium ion secondary battery.
  • the decrease in initial efficiency (the value of the ratio of the discharge capacity to the charge capacity at the time of the first charge / discharge (at the time of the first charge / discharge) after the manufacture of the lithium ion secondary battery) is Li 4 led to think to be due to the formation of SiO 4.
  • Li 22 Si 5 in the first term on the right side is a component responsible for reversible capacity (discharge capacity)
  • Li 4 SiO 4 in the second term is a component responsible for irreversible capacity. Li 4 SiO 4 cannot release lithium ions.
  • the theoretical characteristic of the lithium ion secondary battery when silicon oxide (SiO x ) is used as the negative electrode material powder and x 1 is a reversible capacity of 2007 mAh / g, The initial efficiency was found to be 76%.
  • Conventional lithium ion secondary batteries using silicon oxide as a negative electrode material powder have a reversible capacity of about 1500 mAh / g, so a lithium ion secondary battery using silicon oxide as a negative electrode material powder. It was found that there is still room for improvement in the reversible capacity of the battery.
  • the present inventors are particularly concerned with silicon oxide having a carbon film that can make the cycle characteristics of lithium ion secondary batteries relatively good among silicon oxide materials used as powders for negative electrode materials. investigated.
  • silicon oxide having a carbon film that can make the cycle characteristics of lithium ion secondary batteries relatively good among silicon oxide materials used as powders for negative electrode materials. investigated.
  • Patent Document 1 using a rotary kiln having a baffle plate on the inner surface of the core tube, using silicon oxide powder having a carbon film formed on the surface using the thermal decomposition reaction of hydrocarbon gas The obtained lithium ion secondary battery was found to have insufficient cycle characteristics.
  • the present invention has been made in view of this problem, and has a large discharge capacity, good cycle characteristics, and a negative electrode material powder for a lithium ion secondary battery that can withstand use at a practical level, and the negative electrode material. It is an object to provide a lithium ion secondary battery negative electrode and a capacitor negative electrode, and a lithium ion secondary battery and a capacitor using the powder for use.
  • the present inventors investigated a silicon oxide powder on which a carbon film was formed under the conditions described in Patent Document 1. Specifically, the silicon oxide powder was observed using a transmission electron microscope. As a result, the method proposed in this document has a certain effect on the homogenization of the carbon film to be formed, but the thickness of the carbon film is the same on the surface on the opposite side even with the same particle. It has been found that it cannot be said that it is sufficiently uniform, for example, it is larger than that.
  • the inventors of the present invention have made the inner surface of a quartz core tube made of quartz rough by sandblasting, so that small collapse of the silicon oxide powder occurs frequently when the core tube rotates, and the silicon oxide powder tends to roll. As a result, the thickness of the carbon film formed on the surface of the silicon oxide powder could be made almost uniform. This is because by making the inner surface of the core tube rough, the effect of stirring the silicon oxide powder was enhanced and secondary agglomeration of the particles was sufficiently suppressed, so that the entire surface of each particle was thermally decomposed uniformly. It is assumed that a reaction has occurred.
  • the stress generated in the carbon film as the silicon oxide powder expands during charging and discharging of the lithium ion secondary battery can be alleviated uniformly in all directions. Since the destruction of the film can be suppressed, the cycle characteristics are considered to be good.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows. (1) to (5) Lithium ion secondary battery negative electrode powder, (6) Lithium ion secondary battery negative electrode And a capacitor negative electrode of the following (7), a lithium ion secondary battery of the following (8), and a capacitor of the following (9).
  • the surface of the lower silicon oxide powder has a conductive carbon film, and the average thickness of the conductive carbon film measured at 24 locations of one particle of the lower silicon oxide powder is ta,
  • the average value Fa of the variation coefficient F of 10 particles is 0.01 ⁇ Fa ⁇ 0.4.
  • the “lower silicon oxide powder” is an SiO x powder satisfying x ⁇ 0.4 ⁇ x ⁇ 1.2.
  • x of SiO x the proportion of the conductive carbon film in the negative electrode material powder, and the tar component content will be described later.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a diagram showing a method for measuring the thickness of the conductive carbon film.
  • FIG. 3 is a diagram showing a configuration example of a silicon oxide production apparatus.
  • Powder for negative electrode material of lithium ion secondary battery of the present invention has a conductive carbon film on the surface of a lower silicon oxide powder, and the thickness of the carbon film of 10 particles.
  • the average value Fa of the variation coefficient F of the thickness satisfies 0.01 ⁇ Fa ⁇ 0.4.
  • the lower silicon oxide powder is a SiO x powder in which x satisfies 0.4 ⁇ x ⁇ 1.2.
  • the reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated due to charge / discharge cycles, and 1.2. This is because the capacity of the battery is reduced when the value exceeds.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the discharge capacity of a lithium ion secondary battery using this lower silicon oxide powder as a negative electrode material powder can be improved.
  • the average variation coefficient is an index of the uniformity of the thickness of the conductive carbon film, and the smaller the value, the closer the thickness of the conductive carbon film is.
  • the powder for a lithium ion secondary battery negative electrode material of the present invention satisfies the average variation coefficient Fa of 0.01 ⁇ Fa ⁇ 0.4.
  • the average variation coefficient Fa preferably satisfies 0.01 ⁇ Fa ⁇ 0.2. A method for calculating the average coefficient of variation will be described later.
  • the proportion of the conductive carbon film (hereinafter referred to as “carbon film ratio”) is preferably 0.5 mass% or more and 10 mass% or less. This is due to the following reason.
  • the carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery as in the case of lower silicon oxide, but its charge / discharge capacity per unit mass is smaller than that of lower silicon oxide. Therefore, the carbon film rate of the negative electrode material powder is preferably 10% by mass or less from the viewpoint of securing the charge / discharge capacity of the lithium ion secondary battery. On the other hand, if the carbon film ratio is less than 0.5% by mass, the effect of imparting conductivity by the conductive carbon film cannot be obtained, and the lithium ion secondary battery using the negative electrode material powder is difficult to function as a battery. .
  • the carbon film rate is more preferably 0.5% by mass or more and 2.5% by mass or less.
  • the total content of the tar component is preferably 1 mass ppm or more and 3500 mass ppm or less.
  • the tar component is generated when the conductive carbon film is formed, as will be described later.
  • the total content of the tar components is more than 3500 mass ppm, the resistance to expansion and contraction of the negative electrode accompanying charge / discharge of the lithium ion secondary battery is poor, and the cycle characteristics are poor.
  • it is 3500 ppm by mass or less, a lithium ion secondary battery having good initial efficiency and cycle characteristics can be obtained, and the cycle characteristics are particularly good. At 2000 mass ppm or less, initial efficiency and cycle characteristics are further improved.
  • the total content of the tar component is set to 1 mass ppm or less because the time for vacuum treatment of the negative electrode material powder for the lithium ion secondary battery becomes longer and the manufacturing cost is increased. From these things, it is more preferable that the total content of the tar component is 40 mass ppm or more and 2000 mass ppm or less.
  • the specific resistance of the powder for a lithium ion secondary battery negative electrode material of the present invention is preferably 10,000 ⁇ cm or less. This is because when the specific resistance is larger than 10,000 ⁇ cm, it is difficult to act as an electrode active material of the lithium ion secondary battery. The smaller the specific resistance, the better the electric conduction and the better the electrode active material of the lithium ion secondary battery, so there is no need to provide a lower limit.
  • the powder for a lithium ion secondary battery negative electrode material of the present invention satisfies 1 ⁇ m ⁇ D50 ⁇ 10 ⁇ m in the particle size distribution.
  • Dn (0 ⁇ n ⁇ 100) is the particle size when the cumulative frequency from the smaller particle size reaches n%.
  • D50 ⁇ 1 ⁇ m bubbles are likely to be generated during the production of the slurry, and thus the adhesion between the electrode substrate and the negative electrode is weakened.
  • 10 ⁇ m ⁇ D50 the roughness of the negative electrode surface increases, and in this case also, the adhesion between the electrode substrate and the negative electrode is weakened. It is more preferable that D50 satisfies 3 ⁇ m ⁇ D50 ⁇ 10 ⁇ m.
  • the powder for a negative electrode material for a lithium ion secondary battery of the present invention preferably has a specific surface area measured by the BET method of 3.0 m 2 / g or less. If the specific surface area is larger than 3.0 m 2 / g, the surface area becomes considerably large, so the ratio of the SEI film (Solid Electrolyte Interface, irreversible capacity component) formed on the particle surface increases, and the lithium ion secondary battery Capacity may be reduced.
  • SEI film Solid Electrolyte Interface, irreversible capacity component
  • the thickness of the conductive carbon film of the negative electrode material for a lithium ion secondary battery is measured using a transmission electron microscope (Transmission Electron Microscope; TEM).
  • TEM Transmission Electron Microscope
  • the observation sample is deposited with a metal layer of several nm on the powder of the sample to be observed, mixed with bisphenol A type epoxy resin, and dried for 12 hours or more. Make it.
  • the prepared observation sample is processed by a focused ion beam (FIB) method to produce an observation region having a width of 10 ⁇ m and a depth of 10 ⁇ m.
  • FIB focused ion beam
  • the entire particle can be completely observed, and includes at least one powder for a negative electrode material of a lithium ion secondary battery that is processed to a thickness of 100 nm by the FIB method and has a long diameter of 2 ⁇ m or more after processing. This is the pass area.
  • the particles of the negative electrode powder for the lithium ion secondary battery in the pass region the particles with the largest major axis are the observation targets.
  • Table 1 shows the apparatus used for the FIB method, and the TEM used and the observation conditions using the TEM.
  • FIG. 2 is a diagram showing a method for measuring the thickness of the conductive carbon film.
  • the midpoint of the major axis of the observed particle is defined as a center 21a, and straight lines passing through the center are drawn every 15 ° from the major axis.
  • the thickness of the carbon film 22 at the intersection between each straight line and the surface of the silicon oxide powder 21 is measured.
  • the thickness of the carbon film 22 is the shortest distance from the intersection of each straight line and the surface of the silicon oxide powder 21 to the surface of the carbon film 22.
  • Calculation method of x of SiO x x of SiO x is a molar ratio (O / Si) of O content and Si content in the powder for a negative electrode of a lithium ion secondary battery, for example, O measured by the following measurement method It can calculate using a content rate and Si content rate.
  • Measuring method of O content O content in powder for lithium ion secondary battery negative electrode material was analyzed by 10% of sample by inert gas melting / infrared absorption method using oxygen concentration analyzer (Leco, TC436). It is calculated from the O content in the sample quantitatively evaluated.
  • Si content in the negative electrode powder for lithium ion secondary batteries was determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and then adding the resulting solution to an ICP emission spectrometer (Shimadzu Corporation). It is calculated from the Si content in the sample quantitatively evaluated by analyzing the product.
  • the Si / C is preferably 0.05 or less, and more preferably 0.02 or less. “Si / C is 0.02 or less” is a state in which most of the surface of the lower silicon oxide powder is covered with C and Si is hardly exposed.
  • Carbon film ratio measurement method The carbon film ratio is determined by measuring the mass of the powder for the negative electrode material of the lithium ion secondary battery and the CO 2 gas by an oxygen gas flow combustion-infrared absorption method using a carbon concentration analyzer (Leco, CS400). It is calculated from the result of carbon amount quantitatively evaluated by analysis.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • TPD-MS Temporal Programmed Desorption-Mass Spectroscopy
  • the tar component is a high molecular weight component such as an aromatic hydrocarbon generated when a hydrocarbon or organic gas is thermally decomposed.
  • the total amount of components having molecular weights of 57, 106, 178, 202, 252 and 276 is defined as the residual tar component amount (see Table 5 described later).
  • Representative chemical species of each molecular weight are 106 for xylene, 178 for phenanthrene and anthracene, 202 for pyrene, 252 for perylene and benzopyrene, and 276 for pentacene and picene.
  • the specific resistance ⁇ ( ⁇ cm) of the powder for a negative electrode material for a lithium ion secondary battery is calculated using the following equation (2).
  • R ⁇ A / L
  • R electrical resistance ( ⁇ ) of the sample
  • A bottom area (cm 2 ) of the sample
  • L thickness (cm) of the sample.
  • the electrical resistance of the sample can be measured, for example, by a two-terminal method using a digital multimeter (VOAC7513, manufactured by Iwatatsu Measurement Co., Ltd.).
  • the sample was filled with 0.20 g of the sample in a powder resistance measurement jig (jig part: stainless steel with an inner diameter of 20 mm, frame part: made of polytetrafluoroethylene), and pressurized at 20 kgf / cm 2 for 60 seconds.
  • the thickness of the molded sample is measured with a micrometer.
  • D50 can be measured using a laser diffraction particle size distribution measuring device. The measurement conditions are as shown in Table 3. A 2 g sample is placed in the apparatus, and 2 g / L sodium hexametaphosphate is added as a dispersant. The measurement range is 0.02 ⁇ m to 2000 ⁇ m, and the weight distribution is measured. D50 is the particle size when the cumulative frequency from the smaller particle size reaches 50%.
  • FIG. 3 is a diagram showing a configuration example of a silicon oxide production apparatus.
  • This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous silicon oxide generated by sublimation in the raw material chamber 6.
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • a mixed granulated raw material 9 in which silicon powder and silicon dioxide powder are blended at a predetermined ratio as a raw material, mixed, granulated and dried is used.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as lower silicon oxide 12. Thereafter, the lower silicon oxide 12 deposited from the deposition base 11 is removed and pulverized using a ball mill or the like to obtain a lower silicon oxide powder.
  • the conductive carbon film is formed on the surface of the lower silicon oxide powder having the adjusted particle size by CVD or the like. Specifically, a rotary kiln is used as an apparatus, and a hydrocarbon gas as a carbon source or a mixed gas of an organic substance-containing gas and an inert gas is used as a gas.
  • the rotary kiln can be made by using sandblasting with the inner surface of a quartz core tube made of quartz roughened.
  • the roughness of the inner surface of the core tube is the maximum height (Rz) specified in JIS B0601: 2001, and is preferably 40 ⁇ m or more. This is because when the Rz is less than 40 ⁇ m, the lower silicon oxide powder hardly rolls even when the core tube rotates, and the thickness of the conductive carbon film is difficult to be uniform.
  • hydrocarbon gas consisting only of C and H is preferable as the carbon source.
  • a hydrocarbon gas is used as the carbon source, an aromatic composed of only C and H is generated as a tar component, and components having molecular weights of 57, 106, 178, 202, 252 and 276 are the main components.
  • the forming temperature of the conductive carbon film is 700 ° C. or higher and 750 ° C. or lower. Moreover, although processing time is set between 20 minutes or more and 120 minutes or less according to the gas flow rate and the thickness of the conductive carbon film to form, it is so preferable that it is short.
  • This treatment condition is a range in which a conductive carbon film having low crystallinity can be obtained. Moreover, it is also the range in which the production
  • the conductive carbon film has better cycle characteristics of the lithium ion secondary battery when the crystallinity is lower. This is considered to be due to the fact that the higher the crystallinity of the conductive carbon film, the lower the lithium ion acceptance rate and the lower the ability to relax the expansion and contraction of silicon oxide. Further, SiC is generated near the interface between the surface of the lower silicon oxide powder and the carbon film when the heating temperature is excessively high. Since generation of SiC reduces the amount of Si that can contribute to the capacity of the battery, it is preferable to suppress generation of SiC.
  • Vacuum treatment method of lower silicon oxide powder with conductive carbon film formed The lower silicon oxide powder with conductive carbon film formed under vacuum at a temperature of 600 ° C. or higher and 750 ° C. or lower for 10 minutes or longer and 1 hour or shorter Apply vacuum treatment to hold.
  • the vacuum treatment is performed in a state where the lower silicon oxide powder is housed in a vacuum chamber, and the internal pressure of the vacuum chamber is maintained at 1 Pa or less using an oil diffusion pump. This internal pressure is measured using a Pirani gauge.
  • the tar component generated during the formation of the carbon film can be volatilized and removed from the carbon film by vacuum treatment. Moreover, when the heating holding temperature is in the above range, the generation of SiC in the vicinity of the interface between the silicon oxide and the carbon film is suppressed.
  • Configuration of Lithium Ion Secondary Battery A configuration example of a coin-shaped lithium ion secondary battery using the powder for a lithium ion secondary battery negative electrode material and the lithium ion secondary battery negative electrode of the present invention is described with reference to FIG. explain. The basic configuration of the lithium ion secondary battery shown in FIG.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support agent, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention.
  • the conductive assistant for example, acetylene black or carbon black can be used
  • the binder for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
  • the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • Test conditions 1-1 Configuration of Lithium Ion Secondary Battery
  • the configuration of the lithium ion secondary battery was the coin shape shown in FIG.
  • the negative electrode 2 will be described. Silicon powder and silicon dioxide powder were blended at a predetermined ratio, and mixed, granulated and dried mixed granulation raw materials were used as raw materials, and lower silicon oxide was deposited on the deposition substrate using the apparatus shown in FIG. .
  • a conductive carbon film was formed on the surface of the lower silicon oxide powder to obtain a negative electrode material powder for a lithium ion secondary battery.
  • a rotary kiln was used as the apparatus, a mixed gas of propane and Ar was used as the gas, and the processing temperature was 700 ° C.
  • the average coefficient of variation and the carbon film ratio were as shown in Table 4 and Table 5.
  • test numbers 1 to 4 shown in Table 4 the value of the average coefficient of variation was changed by changing the roughness (Rz) of the inner surface of the core tube.
  • the value of Rz was controlled by the particle size of the sand used for sandblasting.
  • Test Nos. 1 to 3 are examples of the present invention, and the average coefficient of variation satisfied the provisions of the present invention.
  • Test No. 4 was a comparative example, and the value of the average variation coefficient was larger than the specified range of the present invention.
  • a vacuum treatment was performed after forming a conductive carbon film.
  • the holding temperature of the vacuum treatment was 750 ° C.
  • the holding time was as shown in the table
  • the internal pressure of the vacuum chamber was kept at 1 Pa or less using an oil diffusion pump.
  • a slurry is prepared by adding n-methylpyrrolidone to a mixture of 65% by mass of the negative electrode material powder for lithium ion secondary battery, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
  • the counter electrode 1c was a lithium foil.
  • LiPF 6 lithium phosphorous hexafluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyethylene porous film having a thickness of 30 ⁇ m was used as the separator.
  • Test Results A charge / discharge test was performed on the lithium ion secondary battery manufactured under the above conditions, and evaluation was performed using the cycle capacity maintenance rate as an index. Moreover, the carbon film rate was also measured about the powder for lithium ion secondary battery negative electrode materials. For test numbers 1, 7 and 8, the total content of tar components was also measured. These values are shown in Table 4 and Table 5 together with the test conditions.
  • the cycle capacity retention rate is a value obtained by dividing the discharge capacity at the 10th cycle by the initial discharge capacity, and the larger the value, the better the cycle characteristics.
  • test number 4 the value of the average variation coefficient was larger than the specified range of the present invention, and the initial discharge capacity was as small as 71.2%.
  • the value of the average variation coefficient was within the range defined by the present invention, and the initial discharge capacity was an excellent value of 88.1% or more.
  • any of the lithium ion secondary batteries of test numbers 1 to 6 had a sufficient carbon coverage and an excellent discharge capacity.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Powder for a negative-electrode material of a lithium-ion secondary battery, which has conductive carbon film formed on the surface of lower silicon-oxide powder, and which is characterized in satisfying a relationship of 0.01 ≤ Fa ≤ 0.4, wherein Fa is the average value of F of 10 particles, F is a coefficient of variation of the thickness of the carbon film and is defined as F = σ/ta, and ta is the average value and σ is the standard deviation of the thickness of the conductive carbon film measured at 24 points of a particle of the lower silicon-oxide powder. The proportion of the conductive carbon film is preferably a mass percent of 0.5% to 10%. The total content of tar constituent measured with a TPD-MS is preferably a mass ppm of 1 ppm to 3500 ppm, and the resistivity is preferably not more than 10,000 Ωcm. The maximum value (P1) of a halo due to SiOx derived by an XRD measurement, and a peak value (P2) of the strongest line of Si(111) preferably satisfy a relationship of P2/P1 < 0.01. With such a configuration, powder for a negative-electrode material to be used in a lithium-ion secondary battery that has large discharging capacity, good cycling characteristic, and that can withstand practical-level usage, is able to be provided.

Description

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタPowder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
 本発明は、リチウムイオン二次電池に用いることにより放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末に関する。また本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタに関する。 The present invention relates to a powder for a negative electrode material that can be used for a lithium ion secondary battery, has a large discharge capacity, has good cycle characteristics, and can obtain a lithium ion secondary battery that can withstand use at a practical level. The present invention also relates to a lithium ion secondary battery negative electrode and capacitor negative electrode, and a lithium ion secondary battery and capacitor using the negative electrode material powder.
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for the development of secondary batteries with high energy density from the viewpoints of economy and miniaturization and weight reduction of the devices. Currently, high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries. Among these, lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、図1に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。 FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery. As shown in FIG. 1, the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4. When charging / discharging is performed, lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。 The positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c, and lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) are mainly used for the counter electrode 1c. The negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
 従来、リチウムイオン二次電池の負極活物質としては、カーボン系材料が用いられている。従来のものよりもリチウムイオン二次電池を高容量とする新規負極活物質として、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。 Conventionally, carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries. As a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones, a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、リチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。 However, although all of these negative electrode active materials can improve the charge / discharge capacity and increase the energy density, expansion and contraction at the time of occlusion and release of lithium ions are increased. Therefore, lithium ion secondary batteries using these negative electrode active materials are insufficient in sustainability of discharge capacity (hereinafter referred to as “cycle characteristics”) due to repeated charge and discharge.
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される酸化珪素の粉末を用いることが、従来から試みられている。酸化珪素は、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化が小さいことから、有効な充放電容量がより大きな負極活物質となり得る。そのため、酸化珪素を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。 On the other hand, it has been attempted to use silicon oxide powder represented by SiO x (0 <x ≦ 2) such as SiO as the negative electrode active material. Silicon oxide can be a negative electrode active material with a larger effective charge / discharge capacity because it has less degradation such as collapse of the crystal structure and generation of irreversible materials due to insertion and extraction of lithium ions during charge and discharge. Therefore, by using silicon oxide as a negative electrode active material, lithium has a higher capacity than when carbon is used, and has better cycle characteristics than when a high capacity negative electrode material such as Si or Sn alloy is used. An ion secondary battery has been obtained.
 負極活物質として酸化珪素粉末を用いる場合、酸化珪素の電気伝導度の低さを補うために、一般に導電助剤としてカーボン粉末等が混合される。これにより、酸化珪素粉末と導電助剤との接触部近辺の電気伝導性は確保できる。しかし、接触部から離れた箇所では電気伝導性が確保できず、負極活物質として機能しにくい。 When silicon oxide powder is used as the negative electrode active material, carbon powder or the like is generally mixed as a conductive aid in order to compensate for the low electrical conductivity of silicon oxide. Thereby, the electrical conductivity of the contact part vicinity of a silicon oxide powder and a conductive support agent is securable. However, electrical conductivity cannot be ensured at a location away from the contact portion, and it is difficult to function as a negative electrode active material.
 この問題を解決するため、特許文献1では、珪素の微結晶が二酸化珪素に分散した構造を有する粒子(導電性珪素複合体)の表面にCVD(化学気相成長)で炭素の皮膜を形成した非水電解質二次電池負極材用の導電性珪素複合体およびその製造方法が提案されている。 In order to solve this problem, in Patent Document 1, a carbon film is formed by CVD (chemical vapor deposition) on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide. A conductive silicon composite for a nonaqueous electrolyte secondary battery negative electrode material and a method for producing the same have been proposed.
特許第3952180号公報Japanese Patent No. 3952180
 特許文献1には、同文献で提案された方法によれば、酸化珪素粒子に均一な導電性炭素皮膜を形成することができると記載されている。しかし、本発明者らの検討によると、同文献の導電性珪素複合体を用いたリチウムイオン二次電池は、充放電を繰り返すと、ある時点で容量が突然低下する等の課題があった。これは、珪素の微結晶が分散した二酸化珪素を負極材として用いるため、充放電時におけるリチウムイオンの吸蔵、放出時の膨張、収縮が大きくなったためと考えられる。また、放電容量およびサイクル特性が十分ではなかった。 Patent Document 1 describes that, according to the method proposed in this document, a uniform conductive carbon film can be formed on silicon oxide particles. However, according to the study by the present inventors, the lithium ion secondary battery using the conductive silicon composite of the same document has problems such as sudden decrease in capacity at a certain point when charging and discharging are repeated. This is probably because silicon dioxide in which microcrystals of silicon are dispersed is used as the negative electrode material, so that lithium ions occlude and expand and contract during discharge. Further, the discharge capacity and cycle characteristics were not sufficient.
 また、本発明者らは、特にリチウムイオン二次電池の高容量化を図れる負極材用粉末(負極活物質)であると考えられる酸化珪素について種々検討を行った。その結果、初期効率(リチウムイオン二次電池の製造後、最初の充放電時(初回充放電時)の、放電容量の充電容量に対する比の値)の低下は、下記(1)式に示すLiSiOの生成によるものと考えるに至った。(1)式の右辺第1項のLi22Siが可逆容量(放電容量)、第2項のLiSiOが不可逆容量を担う成分である。LiSiOはリチウムイオンを放出することができない。
  SiO+(44-x)/10Li+(44-x)/10e
   → (4-x)/20Li22Si+x/4LiSiO …(1)
In addition, the present inventors have made various studies on silicon oxide, which is considered to be a negative electrode material powder (negative electrode active material) that can increase the capacity of a lithium ion secondary battery. As a result, the decrease in initial efficiency (the value of the ratio of the discharge capacity to the charge capacity at the time of the first charge / discharge (at the time of the first charge / discharge) after the manufacture of the lithium ion secondary battery) is Li 4 led to think to be due to the formation of SiO 4. In the expression (1), Li 22 Si 5 in the first term on the right side is a component responsible for reversible capacity (discharge capacity), and Li 4 SiO 4 in the second term is a component responsible for irreversible capacity. Li 4 SiO 4 cannot release lithium ions.
SiO x + (44−x) / 10Li + + (44−x) / 10e
→ (4-x) / 20Li 22 Si 5 + x / 4Li 4 SiO 4 (1)
 本発明者らの検討によると、酸化珪素(SiO)を負極材用粉末とし、x=1である場合のリチウムイオン二次電池の理論上の特性は、可逆容量が2007mAh/gであり、初期効率は76%であることがわかった。これまでの酸化珪素を負極材用粉末として用いたリチウムイオン二次電池では可逆容量の大きいものであっても1500mAh/g程度であったため、酸化珪素を負極材用粉末として用いたリチウムイオン二次電池の可逆容量には未だに改善の余地があることがわかった。 According to the study by the present inventors, the theoretical characteristic of the lithium ion secondary battery when silicon oxide (SiO x ) is used as the negative electrode material powder and x = 1 is a reversible capacity of 2007 mAh / g, The initial efficiency was found to be 76%. Conventional lithium ion secondary batteries using silicon oxide as a negative electrode material powder have a reversible capacity of about 1500 mAh / g, so a lithium ion secondary battery using silicon oxide as a negative electrode material powder. It was found that there is still room for improvement in the reversible capacity of the battery.
 さらに、本発明者らは、負極材用粉末として用いられる酸化珪素系材料の中でも、特にリチウムイオン二次電池のサイクル特性を比較的良好とすることが可能な、炭素皮膜を形成した酸化珪素について調査した。その結果、特許文献1に記載の条件で、炉心管の内面に邪魔板を設けたロータリーキルンを用いて、炭化水素ガスの熱分解反応を利用して表面に炭素皮膜を形成した酸化珪素粉末を使用したリチウムイオン二次電池は、サイクル特性が十分ではないことがわかった。 Furthermore, the present inventors are particularly concerned with silicon oxide having a carbon film that can make the cycle characteristics of lithium ion secondary batteries relatively good among silicon oxide materials used as powders for negative electrode materials. investigated. As a result, under the conditions described in Patent Document 1, using a rotary kiln having a baffle plate on the inner surface of the core tube, using silicon oxide powder having a carbon film formed on the surface using the thermal decomposition reaction of hydrocarbon gas The obtained lithium ion secondary battery was found to have insufficient cycle characteristics.
 本発明は、この課題に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池の負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタを提供することを目的とする。 The present invention has been made in view of this problem, and has a large discharge capacity, good cycle characteristics, and a negative electrode material powder for a lithium ion secondary battery that can withstand use at a practical level, and the negative electrode material. It is an object to provide a lithium ion secondary battery negative electrode and a capacitor negative electrode, and a lithium ion secondary battery and a capacitor using the powder for use.
 上記の課題を解決するために、本発明者らは、特許文献1に記載の条件で炭素皮膜を形成した酸化珪素粉末について調査した。具体的には、この酸化珪素粉末について透過型電子顕微鏡を用いて観察を行った。その結果、同文献で提案された方法は、形成される炭素皮膜の均一化には一定の効果はあるものの、同一粒子でも、炭素皮膜の厚さが、ある側の面ではその逆側の面よりも大きくなっているなど、十分に均一化がなされているとはいえないことを知見した。 In order to solve the above problems, the present inventors investigated a silicon oxide powder on which a carbon film was formed under the conditions described in Patent Document 1. Specifically, the silicon oxide powder was observed using a transmission electron microscope. As a result, the method proposed in this document has a certain effect on the homogenization of the carbon film to be formed, but the thickness of the carbon film is the same on the surface on the opposite side even with the same particle. It has been found that it cannot be said that it is sufficiently uniform, for example, it is larger than that.
 メタン等の炭化水素ガスの熱分解反応を利用して酸化珪素粉末の表面に炭素皮膜を形成する場合、ガスと酸化珪素粉末の各粒子とを均一に接触させないと、粒子の部位によって形成される皮膜の厚さにばらつきが出る。特許文献1に記載の方法では、ロータリーキルンの炉心管の内面に設けた邪魔板で粉末を攪拌しながら形成される炭素皮膜の厚さの均一化を図っている。しかし、邪魔板によって持ち上げられた粒子が塊状で落下するため、粒子の二次凝集を十分に抑制することができず、炭素皮膜の厚さが不均一となっていると推測される。 When a carbon film is formed on the surface of silicon oxide powder using the thermal decomposition reaction of hydrocarbon gas such as methane, it is formed by the part of the particles unless the gas and each particle of silicon oxide powder are in uniform contact with each other. Variations in film thickness. In the method described in Patent Document 1, the thickness of the carbon film formed while stirring the powder with a baffle plate provided on the inner surface of the core tube of the rotary kiln is made uniform. However, since the particles lifted by the baffle plate fall in a lump shape, secondary aggregation of the particles cannot be sufficiently suppressed, and it is assumed that the thickness of the carbon film is not uniform.
 本発明者らは、サンドブラストによって、石英からなる炉心管の内面を粗面とし、炉心管の回転時に酸化珪素粉末の小さな崩落が高頻度で発生し、酸化珪素粉末が転がりやすくなるようにした。その結果、酸化珪素粉末の表面に形成される炭素皮膜の厚さを均一に近い状態とすることができた。これは、炉心管の内面を粗面とすることにより、酸化珪素粉末の攪拌の効果を高め、粒子の二次凝集を十分に抑制することができたため、各粒子の全表面で均一に熱分解反応が生じたものと推測される。 The inventors of the present invention have made the inner surface of a quartz core tube made of quartz rough by sandblasting, so that small collapse of the silicon oxide powder occurs frequently when the core tube rotates, and the silicon oxide powder tends to roll. As a result, the thickness of the carbon film formed on the surface of the silicon oxide powder could be made almost uniform. This is because by making the inner surface of the core tube rough, the effect of stirring the silicon oxide powder was enhanced and secondary agglomeration of the particles was sufficiently suppressed, so that the entire surface of each particle was thermally decomposed uniformly. It is assumed that a reaction has occurred.
 また、ロータリーキルンの操業条件を種々に変化させて、炭素皮膜の厚さの均一性を変化させた粒子を用いたリチウムイオン二次電池について実験を行った。その結果、炭素皮膜の厚さの均一性が高いほど、リチウムイオン二次電池のサイクル特性が良好であり、炭素皮膜の厚さの変動係数が所定の値以下であれば十分なサイクル特性が得られることを知見した。炭素皮膜の厚さの変動係数については後述する。 Also, experiments were conducted on lithium ion secondary batteries using particles in which the thickness of the carbon film was changed by varying the operating conditions of the rotary kiln. As a result, the higher the uniformity of the thickness of the carbon film, the better the cycle characteristics of the lithium ion secondary battery, and if the coefficient of variation of the thickness of the carbon film is not more than a predetermined value, sufficient cycle characteristics can be obtained. I found out that The coefficient of variation of the thickness of the carbon film will be described later.
 炭素皮膜の厚さが均一であると、リチウムイオン二次電池の充放電時における、酸化珪素粉末の膨張に伴って炭素皮膜に発生する応力を、全方向に均一に緩和することができ、炭素皮膜の破壊を抑制することができるため、サイクル特性が良好となると考えられる。 When the thickness of the carbon film is uniform, the stress generated in the carbon film as the silicon oxide powder expands during charging and discharging of the lithium ion secondary battery can be alleviated uniformly in all directions. Since the destruction of the film can be suppressed, the cycle characteristics are considered to be good.
 本発明は、以上の知見に基づいてなされたものであり、その要旨は、下記(1)~(5)のリチウムイオン二次電池負極材用粉末、下記(6)のリチウムイオン二次電池負極および下記(7)のキャパシタ負極、ならびに下記(8)のリチウムイオン二次電池および下記(9)のキャパシタにある。 The present invention has been made on the basis of the above findings, and the gist thereof is as follows. (1) to (5) Lithium ion secondary battery negative electrode powder, (6) Lithium ion secondary battery negative electrode And a capacitor negative electrode of the following (7), a lithium ion secondary battery of the following (8), and a capacitor of the following (9).
(1)低級酸化珪素粉末の表面に導電性炭素皮膜を有し、前記低級酸化珪素粉末のうちの1個の粒子の24箇所で測定した前記導電性炭素皮膜の厚さの平均値をta、標準偏差をσとし、炭素皮膜の厚さの変動係数FをF=σ/taと定義したとき、10個の粒子の変動係数Fの平均値Faが、0.01≦Fa≦0.4を満足することを特徴とするリチウムイオン二次電池負極材用粉末。 (1) The surface of the lower silicon oxide powder has a conductive carbon film, and the average thickness of the conductive carbon film measured at 24 locations of one particle of the lower silicon oxide powder is ta, When the standard deviation is defined as σ and the variation coefficient F of the thickness of the carbon film is defined as F = σ / ta, the average value Fa of the variation coefficient F of 10 particles is 0.01 ≦ Fa ≦ 0.4. A powder for a negative electrode material for a lithium ion secondary battery, characterized by being satisfied.
(2)前記導電性炭素皮膜の占める割合が、0.5質量%以上、10質量%以下であることを特徴とする前記(1)のリチウムイオン二次電池負極材用粉末。 (2) The powder for a lithium ion secondary battery negative electrode material according to (1), wherein the proportion of the conductive carbon film is 0.5% by mass or more and 10% by mass or less.
(3)TPD-MSで測定したタール成分の合計含有率が、1質量ppm以上、3500質量ppm以下であることを特徴とする前記(1)または(2)のリチウムイオン二次電池負極材用粉末。 (3) The lithium ion secondary battery negative electrode material according to (1) or (2) above, wherein the total content of tar components measured by TPD-MS is 1 mass ppm or more and 3500 mass ppm or less Powder.
(4)比抵抗が10000Ωcm以下であることを特徴とする前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末。 (4) The powder for a negative electrode material for a lithium ion secondary battery according to any one of (1) to (3), wherein the specific resistance is 10,000 Ωcm or less.
(5)CuKα線を用いたXRDで測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2の関係が、P2/P1<0.01を満足することを特徴とする前記(1)~(4)のいずれかのリチウムイオン二次電池負極材用粉末。 (5) The maximum value P1 of halo derived from SiO x appearing at 2θ = 10 ° to 30 ° and Si appearing at 2θ = 28.4 ± 0.3 ° when measured by XRD using CuK α- ray The powder for a lithium ion secondary battery negative electrode material according to any one of the above (1) to (4), wherein the relationship of the value P2 of the strongest line peak of (111) satisfies P2 / P1 <0.01 .
(6)前記(1)~(5)のいずれかのリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。 (6) A lithium ion secondary battery negative electrode using the powder for a lithium ion secondary battery negative electrode material according to any one of (1) to (5).
(7)前記(1)~(5)のいずれかのリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。 (7) A capacitor negative electrode using the lithium ion secondary battery negative electrode powder according to any one of (1) to (5).
(8)前記(6)のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。 (8) A lithium ion secondary battery using the lithium ion secondary battery negative electrode of (6).
(9)前記(7)のキャパシタ負極を用いたキャパシタ。 (9) A capacitor using the capacitor negative electrode of (7).
 本発明において、「低級酸化珪素粉末」とは、xが0.4≦x≦1.2を満足するSiOの粉末である。SiOのx、負極材用粉末において導電性炭素皮膜の占める割合、およびタール成分含有率の、それぞれの測定方法については後述する。 In the present invention, the “lower silicon oxide powder” is an SiO x powder satisfying x ≦ 0.4 ≦ x ≦ 1.2. Each measuring method of x of SiO x , the proportion of the conductive carbon film in the negative electrode material powder, and the tar component content will be described later.
 低級酸化珪素粉末について「表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.1以下であることをいう。 As will be described later, “having a conductive carbon film on the surface” of the lower silicon oxide powder is a result of surface analysis using an X-ray photoelectron spectroscopic analyzer. As a result, the Si / C molar ratio value Si / C Is 0.1 or less.
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。 Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery. 図2は導電性炭素皮膜の厚さの測定方法を示す図である。FIG. 2 is a diagram showing a method for measuring the thickness of the conductive carbon film. 図3は酸化珪素の製造装置の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a silicon oxide production apparatus.
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末は、低級酸化珪素粉末の表面に導電性炭素皮膜を有し、10個の粒子の炭素皮膜の厚さの変動係数Fの平均値Faが、0.01≦Fa≦0.4を満足することを特徴とする。
1. Powder for negative electrode material of lithium ion secondary battery of the present invention The powder for negative electrode material of lithium ion secondary battery of the present invention has a conductive carbon film on the surface of a lower silicon oxide powder, and the thickness of the carbon film of 10 particles. The average value Fa of the variation coefficient F of the thickness satisfies 0.01 ≦ Fa ≦ 0.4.
 低級酸化珪素粉末とは、上述のように、xが0.4≦x≦1.2を満足するSiOの粉末である。xをこの範囲とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えると電池の容量が小さくなるからである。また、xは、0.8≦x≦1.05を満足するのが好ましい。 As described above, the lower silicon oxide powder is a SiO x powder in which x satisfies 0.4 ≦ x ≦ 1.2. The reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated due to charge / discharge cycles, and 1.2. This is because the capacity of the battery is reduced when the value exceeds. Further, x preferably satisfies 0.8 ≦ x ≦ 1.05.
 絶縁体である低級酸化珪素粉末に導電性炭素皮膜を形成することで、この低級酸化珪素粉末を負極材用粉末として用いたリチウムイオン二次電池の放電容量を改善することができる。また、導電性炭素皮膜は厚さが均一に近いほど、リチウムイオン二次電池のサイクル特性が良好であり、導電性炭素皮膜の厚さの変動係数Fの平均値Fa(以下「平均変動係数」ともいう。)が0.4以下であれば、十分なサイクル特性を得ることができる。平均変動係数は、導電性炭素皮膜の厚さの均一性の指標であり、その値が小さいほど導電性炭素皮膜の厚さが均一に近い。低級酸化珪素粉末の粒子が破砕によって得られたものであり、不定形である場合には、平均変動係数を0.01よりも小さくするのは困難である。以上のことから、本発明のリチウムイオン二次電池負極材用粉末は、平均変動係数Faを0.01≦Fa≦0.4を満足することとする。平均変動係数Faは、0.01≦Fa≦0.2を満足することが好ましい。平均変動係数の算出方法については後述する。 By forming a conductive carbon film on the lower silicon oxide powder, which is an insulator, the discharge capacity of a lithium ion secondary battery using this lower silicon oxide powder as a negative electrode material powder can be improved. Further, the closer the thickness of the conductive carbon film is, the better the cycle characteristics of the lithium ion secondary battery are, and the average value Fa of the coefficient of variation F of the thickness of the conductive carbon film (hereinafter referred to as “average coefficient of variation”). If it is also 0.4) or less, sufficient cycle characteristics can be obtained. The average variation coefficient is an index of the uniformity of the thickness of the conductive carbon film, and the smaller the value, the closer the thickness of the conductive carbon film is. When the particles of the lower silicon oxide powder are obtained by crushing and are indefinite, it is difficult to make the average coefficient of variation smaller than 0.01. From the above, the powder for a lithium ion secondary battery negative electrode material of the present invention satisfies the average variation coefficient Fa of 0.01 ≦ Fa ≦ 0.4. The average variation coefficient Fa preferably satisfies 0.01 ≦ Fa ≦ 0.2. A method for calculating the average coefficient of variation will be described later.
 本発明のリチウムイオン二次電池負極材用粉末は、導電性炭素皮膜の占める割合(以下、「炭素皮膜率」という)を、0.5質量%以上、10質量%以下とするのが好ましい。これは、以下の理由による。 In the powder for a lithium ion secondary battery negative electrode material of the present invention, the proportion of the conductive carbon film (hereinafter referred to as “carbon film ratio”) is preferably 0.5 mass% or more and 10 mass% or less. This is due to the following reason.
 炭素皮膜も、低級酸化珪素と同様にリチウムイオン二次電池の充放電容量に寄与するものの、その単位質量あたりの充放電容量は低級酸化珪素に比較して小さい。そのため、負極材用粉末の炭素皮膜率は10質量%以下であることが、リチウムイオン二次電池の充放電容量を確保する観点から好ましい。一方、炭素皮膜率が0.5質量%よりも小さいと、導電性炭素皮膜による導電性付与の効果が得られず、この負極材用粉末を用いたリチウムイオン二次電池が電池として作用しにくい。炭素皮膜率は、0.5質量%以上、2.5質量%以下とするのがより好ましい。 The carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery as in the case of lower silicon oxide, but its charge / discharge capacity per unit mass is smaller than that of lower silicon oxide. Therefore, the carbon film rate of the negative electrode material powder is preferably 10% by mass or less from the viewpoint of securing the charge / discharge capacity of the lithium ion secondary battery. On the other hand, if the carbon film ratio is less than 0.5% by mass, the effect of imparting conductivity by the conductive carbon film cannot be obtained, and the lithium ion secondary battery using the negative electrode material powder is difficult to function as a battery. . The carbon film rate is more preferably 0.5% by mass or more and 2.5% by mass or less.
 本発明のリチウムイオン二次電池負極材用粉末は、タール成分の合計含有率を、1質量ppm以上、3500質量ppm以下とするのが好ましい。タール成分は、後述するように、導電性炭素皮膜を形成する際に生成する。タール成分の合計含有率が3500質量ppmよりも多いと、リチウムイオン二次電池の充放電に伴う負極の膨張、収縮への耐性が乏しく、サイクル特性に劣る。一方、3500質量ppm以下であると、初期効率およびサイクル特性が良好なリチウムイオン二次電池を得ることができ、特にサイクル特性が良好となる。2000質量ppm以下ではさらに初期効率およびサイクル特性が良好となる。また、タール成分の合計含有率を1質量ppm以下とするのには、リチウムイオン二次電池負極材用粉末の真空処理の時間が長くなり、製造コストがかかるからである。これらのことから、タール成分の合計含有率は、40質量ppm以上、2000質量ppm以下とするのがより好ましい。 In the lithium ion secondary battery negative electrode powder of the present invention, the total content of the tar component is preferably 1 mass ppm or more and 3500 mass ppm or less. The tar component is generated when the conductive carbon film is formed, as will be described later. When the total content of the tar components is more than 3500 mass ppm, the resistance to expansion and contraction of the negative electrode accompanying charge / discharge of the lithium ion secondary battery is poor, and the cycle characteristics are poor. On the other hand, when it is 3500 ppm by mass or less, a lithium ion secondary battery having good initial efficiency and cycle characteristics can be obtained, and the cycle characteristics are particularly good. At 2000 mass ppm or less, initial efficiency and cycle characteristics are further improved. Further, the total content of the tar component is set to 1 mass ppm or less because the time for vacuum treatment of the negative electrode material powder for the lithium ion secondary battery becomes longer and the manufacturing cost is increased. From these things, it is more preferable that the total content of the tar component is 40 mass ppm or more and 2000 mass ppm or less.
 本発明のリチウムイオン二次電池負極材用粉末は、比抵抗が10000Ωcm以下であることが好ましい。これは、比抵抗が10000Ωcmよりも大きいとリチウムイオン二次電池の電極活物質として作用しにくいからである。比抵抗は、小さければ小さいほど電気伝導が良好になり、リチウムイオン二次電池の電極活物質として好ましい状態となるため下限は特に設ける必要がない。 The specific resistance of the powder for a lithium ion secondary battery negative electrode material of the present invention is preferably 10,000 Ωcm or less. This is because when the specific resistance is larger than 10,000 Ωcm, it is difficult to act as an electrode active material of the lithium ion secondary battery. The smaller the specific resistance, the better the electric conduction and the better the electrode active material of the lithium ion secondary battery, so there is no need to provide a lower limit.
 本発明のリチウムイオン二次電池負極材用粉末は、CuKα線を用いたXRDで測定した場合に、10°≦2θ≦30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満足すること、すなわちアモルファスであることが好ましい。これは、負極材用粉末中の低級酸化珪素粉末が、結晶性を有する場合と比較して、アモルファスである場合にはリチウムイオンの侵入による膨張が緩和されやすく、リチウムイオン二次電池のサイクル特性に優れるからである。 The powder for a lithium ion secondary battery negative electrode material of the present invention has a maximum halo P1 derived from SiO x that appears at 10 ° ≦ 2θ ≦ 30 ° and 2θ = 2θ = when measured by XRD using CuK α rays. It is preferable that the value P2 of the strongest peak of Si (111) appearing at 28.4 ± 0.3 ° satisfies P2 / P1 <0.01, that is, amorphous. Compared to the case where the lower silicon oxide powder in the negative electrode material powder is amorphous, the expansion due to the intrusion of lithium ions is easier to relax, and the cycle characteristics of the lithium ion secondary battery are reduced. It is because it is excellent in.
 本発明のリチウムイオン二次電池負極材用粉末は、粒度分布において、1μm≦D50≦10μmを満足することが好ましい。Dn(0<n≦100)とは、粒径が小さい方からの積算頻度がn%に達する時の粒径である。D50<1μmでは、スラリーの作製時に気泡が発生しやすくなるため、電極基板と負極との密着性が弱くなる。一方、10μm<D50では、負極表面の粗さが大きくなり、この場合も電極基板と負極との密着性が弱くなる。D50は、3μm≦D50≦10μmを満足するのがより好ましい。 It is preferable that the powder for a lithium ion secondary battery negative electrode material of the present invention satisfies 1 μm ≦ D50 ≦ 10 μm in the particle size distribution. Dn (0 <n ≦ 100) is the particle size when the cumulative frequency from the smaller particle size reaches n%. When D50 <1 μm, bubbles are likely to be generated during the production of the slurry, and thus the adhesion between the electrode substrate and the negative electrode is weakened. On the other hand, when 10 μm <D50, the roughness of the negative electrode surface increases, and in this case also, the adhesion between the electrode substrate and the negative electrode is weakened. It is more preferable that D50 satisfies 3 μm ≦ D50 ≦ 10 μm.
 本発明のリチウムイオン二次電池負極材用粉末は、BET法で測定した比表面積を3.0m/g以下とするのが好ましい。比表面積が3.0m/gよりも大きいと、表面積が相当広くなるため、粒子表面に形成されるSEI膜(Solid Electrolyte Interface、不可逆容量成分)の比率が大きくなり、リチウムイオン二次電池の容量が小さくなるおそれがある。 The powder for a negative electrode material for a lithium ion secondary battery of the present invention preferably has a specific surface area measured by the BET method of 3.0 m 2 / g or less. If the specific surface area is larger than 3.0 m 2 / g, the surface area becomes considerably large, so the ratio of the SEI film (Solid Electrolyte Interface, irreversible capacity component) formed on the particle surface increases, and the lithium ion secondary battery Capacity may be reduced.
2.分析方法
2-1.変動係数の算出方法
 リチウムイオン二次電池負極材用粉末の導電性炭素皮膜の厚さの変動係数は、以下の方法で算出する。
2. Analysis method 2-1. Method of calculating coefficient of variation The coefficient of variation of the thickness of the conductive carbon film of the negative electrode powder for lithium ion secondary batteries is calculated by the following method.
 透過型電子顕微鏡(Transmission Electron Microscope;TEM)を用いてリチウムイオン二次電池負極材用粉末の導電性炭素皮膜の厚さを測定する。観察用試料は、皮膜の厚さの測定を容易にするため、観察対象とする試料の粉末に数nmの金属層を蒸着した後、ビスフェノールA型エポキシ樹脂と混合し、12時間以上乾燥させて作製する。作製した観察用試料は、集束イオンビーム(Focused Ion Beam;FIB)法によって加工し、幅10μm、深さ10μmの観察領域を作製する。観察領域のうち、粒子の全体を完全に観察可能であり、FIB法によって100nmの厚さに加工され、加工後の長径が2μm以上であるリチウムイオン二次電池負極材用粉末が1個以上含まれているものを、合格領域とする。合格領域のリチウムイオン二次電池負極材用粉末の粒子のうち、長径が最大のものを観察対象とする。表1は、FIB法に使用した装置、ならびに使用したTEMおよびTEMによる観察条件である。 The thickness of the conductive carbon film of the negative electrode material for a lithium ion secondary battery is measured using a transmission electron microscope (Transmission Electron Microscope; TEM). In order to facilitate the measurement of the thickness of the film, the observation sample is deposited with a metal layer of several nm on the powder of the sample to be observed, mixed with bisphenol A type epoxy resin, and dried for 12 hours or more. Make it. The prepared observation sample is processed by a focused ion beam (FIB) method to produce an observation region having a width of 10 μm and a depth of 10 μm. In the observation region, the entire particle can be completely observed, and includes at least one powder for a negative electrode material of a lithium ion secondary battery that is processed to a thickness of 100 nm by the FIB method and has a long diameter of 2 μm or more after processing. This is the pass area. Of the particles of the negative electrode powder for the lithium ion secondary battery in the pass region, the particles with the largest major axis are the observation targets. Table 1 shows the apparatus used for the FIB method, and the TEM used and the observation conditions using the TEM.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2は、導電性炭素皮膜の厚さの測定方法を示す図である。同図に示すように、観察された粒子の長径の中点を中心21aとし、その中心を通過する直線を長径から15°おきに引く。各直線と酸化珪素粉末21の表面との交点部分における炭素皮膜22の厚さを測定する。炭素皮膜22の厚さは、各直線と酸化珪素粉末21の表面との交点から、炭素皮膜22の表面までの最短距離とする。 FIG. 2 is a diagram showing a method for measuring the thickness of the conductive carbon film. As shown in the figure, the midpoint of the major axis of the observed particle is defined as a center 21a, and straight lines passing through the center are drawn every 15 ° from the major axis. The thickness of the carbon film 22 at the intersection between each straight line and the surface of the silicon oxide powder 21 is measured. The thickness of the carbon film 22 is the shortest distance from the intersection of each straight line and the surface of the silicon oxide powder 21 to the surface of the carbon film 22.
 各直線について炭素皮膜22の厚さtを測定し、合計24箇所の測定値の平均値taおよび標準偏差σを算出する。この平均値taおよび標準偏差σを用いて、その粒子の炭素皮膜22の厚さの変動係数FをF=σ/taと定義する。 The thickness t of the carbon film 22 is measured for each straight line, and the average value ta and the standard deviation σ of the total 24 measured values are calculated. Using the average value ta and the standard deviation σ, the variation coefficient F of the thickness of the carbon film 22 of the particle is defined as F = σ / ta.
 このような変動係数Fの算出を、10箇所の合格領域について行い、10個の粒子の変動係数Fの平均値である平均変動係数Faを試料としたリチウムイオン二次電池負極材用粉末の炭素皮膜の厚さの均一性の指標とする。 The calculation of such a coefficient of variation F is performed for 10 acceptable regions, and the carbon of the powder for a lithium ion secondary battery negative electrode material using the average coefficient of variation Fa, which is an average value of the coefficient of variation F of 10 particles, as a sample. It is used as an index of film thickness uniformity.
2-2.SiOのxの算出方法
 SiOのxは、リチウムイオン二次電池負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、例えば下記測定方法で測定したO含有率およびSi含有率を用いて算出することができる。
2-2. Calculation method of x of SiO x x of SiO x is a molar ratio (O / Si) of O content and Si content in the powder for a negative electrode of a lithium ion secondary battery, for example, O measured by the following measurement method It can calculate using a content rate and Si content rate.
2-3.O含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
2-3. Measuring method of O content O content in powder for lithium ion secondary battery negative electrode material was analyzed by 10% of sample by inert gas melting / infrared absorption method using oxygen concentration analyzer (Leco, TC436). It is calculated from the O content in the sample quantitatively evaluated.
2-4.Si含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価した試料中のSi含有量から算出する。
2-4. Method for Measuring Si Content The Si content in the negative electrode powder for lithium ion secondary batteries was determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and then adding the resulting solution to an ICP emission spectrometer (Shimadzu Corporation). It is calculated from the Si content in the sample quantitatively evaluated by analyzing the product.
2-5.導電性炭素皮膜の形成状態の評価方法
 本発明のリチウムイオン二次電池負極材用粉末において、「低級酸化珪素粉末の表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施した低級酸化珪素粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.1以下であることをいう。XPSの測定条件は表2に示す通りとする。リチウムイオン二次電池負極材用粉末に十分に電気伝導性を付与するには、Si/Cは、0.05以下が好ましく、0.02以下がさらに好ましい。「Si/Cが0.02以下」とは、低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
2-5. Method for Evaluating State of Formation of Conductive Carbon Film In the powder for a negative electrode material for a lithium ion secondary battery of the present invention, “having a conductive carbon film on the surface of a lower silicon oxide powder” means AlK α ray (1486.6 eV). When the surface analysis of the lower silicon oxide powder subjected to the conductive carbon film formation treatment was performed with an X-ray photoelectron spectroscopic analyzer (XPS) using Si, the molar ratio value Si / C of Si / C was It means 0.1 or less. The XPS measurement conditions are as shown in Table 2. In order to sufficiently impart electric conductivity to the powder for a negative electrode material for a lithium ion secondary battery, the Si / C is preferably 0.05 or less, and more preferably 0.02 or less. “Si / C is 0.02 or less” is a state in which most of the surface of the lower silicon oxide powder is covered with C and Si is hardly exposed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2-6.炭素皮膜率の測定方法
 炭素皮膜率は、リチウムイオン二次電池負極材用粉末の質量と、炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
2-6. Carbon film ratio measurement method The carbon film ratio is determined by measuring the mass of the powder for the negative electrode material of the lithium ion secondary battery and the CO 2 gas by an oxygen gas flow combustion-infrared absorption method using a carbon concentration analyzer (Leco, CS400). It is calculated from the result of carbon amount quantitatively evaluated by analysis. The crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
2-7.TPD-MSによるタール成分の含有量の測定方法
 リチウムイオン二次電池負極材用粉末の残留タール成分量は、以下のTPD-MS(Temperature Programmed Desorption‐Mass Spectroscopy;昇温熱脱離・質量分析法)によって測定することができる。試料50mgをシリカ製セルに入れ、50mL/minのヘリウムガスフロー中で、室温から1000℃まで10K/minの速度で昇温する。そして、発生したガスを質量分析計(株式会社島津製作所製、GC/MS QP5050A)で分析する。
2-7. Method of measuring content of tar component by TPD-MS The amount of residual tar component of the negative electrode material powder for lithium ion secondary batteries is determined by the following TPD-MS (Temperature Programmed Desorption-Mass Spectroscopy). Can be measured. A 50 mg sample is placed in a silica cell and heated from room temperature to 1000 ° C. at a rate of 10 K / min in a 50 mL / min helium gas flow. The generated gas is analyzed with a mass spectrometer (manufactured by Shimadzu Corporation, GC / MS QP5050A).
 タール成分とは、炭化水素または有機物のガスを熱分解した時に生じる、芳香族炭化水素等の高分子量成分をいう。本発明では、分子量が57、106、178、202、252および276の成分量の合計を、残留タール成分量とする(後述の表5参照)。各分子量の代表化学種は、106はキシレン、178はフェナントレンおよびアントラセン、202はピレン、252はペリレンおよびベンゾピレン、276はペンタセンおよびピセンである。 The tar component is a high molecular weight component such as an aromatic hydrocarbon generated when a hydrocarbon or organic gas is thermally decomposed. In the present invention, the total amount of components having molecular weights of 57, 106, 178, 202, 252 and 276 is defined as the residual tar component amount (see Table 5 described later). Representative chemical species of each molecular weight are 106 for xylene, 178 for phenanthrene and anthracene, 202 for pyrene, 252 for perylene and benzopyrene, and 276 for pentacene and picene.
2-8.比抵抗の測定方法
 リチウムイオン二次電池負極材用粉末の比抵抗ρ(Ωcm)は、下記(2)式を用いて算出する。
   ρ=R×A/L …(2)
  ここで、R:試料の電気抵抗(Ω)、A:試料の底面積(cm)、L:試料の厚さ(cm)である。
 試料の電気抵抗は、例えば、デジタルマルチメーター(岩通計測株式会社製、VOAC7513)を用いた二端子法によって測定することができる。この場合、試料は、粉末抵抗測定用治具(治具部:内径20mmのステンレス製、枠部:ポリテトラフルオロエチレン製)に試料0.20gを充填し、20kgf/cmで60秒間加圧して成形し、成形した試料の厚さはマイクロメーターで測定する。
2-8. Specific Resistance Measurement Method The specific resistance ρ (Ωcm) of the powder for a negative electrode material for a lithium ion secondary battery is calculated using the following equation (2).
ρ = R × A / L (2)
Here, R: electrical resistance (Ω) of the sample, A: bottom area (cm 2 ) of the sample, and L: thickness (cm) of the sample.
The electrical resistance of the sample can be measured, for example, by a two-terminal method using a digital multimeter (VOAC7513, manufactured by Iwatatsu Measurement Co., Ltd.). In this case, the sample was filled with 0.20 g of the sample in a powder resistance measurement jig (jig part: stainless steel with an inner diameter of 20 mm, frame part: made of polytetrafluoroethylene), and pressurized at 20 kgf / cm 2 for 60 seconds. The thickness of the molded sample is measured with a micrometer.
2-9.粒度分布におけるD50の測定方法
 D50は、レーザー回折式粒度分布測定装置を使用して測定することができる。測定条件は表3に示す条件とし、2gの試料を装置に入れて、分散剤として2g/Lのヘキサメタリン酸ナトリウムを添加する。測定範囲は0.02μmから2000μmまでとし、重量分布を測定する。D50は、粒径が小さい方からの積算頻度が50%に達する時の粒径である。
2-9. Method for Measuring D50 in Particle Size Distribution D50 can be measured using a laser diffraction particle size distribution measuring device. The measurement conditions are as shown in Table 3. A 2 g sample is placed in the apparatus, and 2 g / L sodium hexametaphosphate is added as a dispersant. The measurement range is 0.02 μm to 2000 μm, and the weight distribution is measured. D50 is the particle size when the cumulative frequency from the smaller particle size reaches 50%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
3.低級酸化珪素粉末の製造方法
 図3は、酸化珪素の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
3. Method for Producing Lower Silicon Oxide Powder FIG. 3 is a diagram showing a configuration example of a silicon oxide production apparatus. This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。 The raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof. As the heating source 10, for example, an electric heater can be used.
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状の酸化珪素を蒸着させるためのステンレス鋼からなる析出基体11が設けられる。 The deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8. A deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous silicon oxide generated by sublimation in the raw material chamber 6.
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。 A vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
 図3に示す製造装置を用いて低級酸化珪素を製造する場合、原料として珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、低級酸化珪素12として析出する。その後、析出基体11から析出した低級酸化珪素12を取り外し、ボールミル等を使用して粉砕することにより、低級酸化珪素粉末が得られる。 In the case of producing lower silicon oxide using the production apparatus shown in FIG. 3, a mixed granulated raw material 9 in which silicon powder and silicon dioxide powder are blended at a predetermined ratio as a raw material, mixed, granulated and dried is used. The mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO. Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as lower silicon oxide 12. Thereafter, the lower silicon oxide 12 deposited from the deposition base 11 is removed and pulverized using a ball mill or the like to obtain a lower silicon oxide powder.
4.導電性炭素皮膜の形成方法
 粒度を調整した低級酸化珪素粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭素源である炭化水素ガス、または有機物含有ガスと不活性ガスとの混合ガスを用いて行う。
4). Method for Forming Conductive Carbon Film The conductive carbon film is formed on the surface of the lower silicon oxide powder having the adjusted particle size by CVD or the like. Specifically, a rotary kiln is used as an apparatus, and a hydrocarbon gas as a carbon source or a mixed gas of an organic substance-containing gas and an inert gas is used as a gas.
 ロータリーキルンは、サンドブラストによって、石英からなる炉心管の内面を粗面としたものを用いることができる。炉心管の内面の粗さは、JIS B0601:2001に規定される最大高さ(Rz)で、40μm以上が好ましい。これは、Rzが40μm未満では、炉心管が回転しても低級酸化珪素粉末が転がりにくく、導電性炭素皮膜の厚さが均一になりにくいためである。 The rotary kiln can be made by using sandblasting with the inner surface of a quartz core tube made of quartz roughened. The roughness of the inner surface of the core tube is the maximum height (Rz) specified in JIS B0601: 2001, and is preferably 40 μm or more. This is because when the Rz is less than 40 μm, the lower silicon oxide powder hardly rolls even when the core tube rotates, and the thickness of the conductive carbon film is difficult to be uniform.
 ただし、炭素源として炭化水素以外の有機物を用いると、OやNといったCおよびH以外の成分が酸化珪素と反応し、SiOやSiを生成するため、リチウムイオンの収容、放出に寄与し得るSi量が減少し、リチウムイオン二次電池の容量が小さくなる。そのため、炭素源としてはCおよびHのみからなる炭化水素ガスが好ましい。炭素源として炭化水素ガスを用いた場合には、タール成分としてCとHのみからなる芳香族が生成し、分子量が57、106、178、202、252および276の成分がその主成分となる。 However, when organic substances other than hydrocarbons are used as the carbon source, components other than C and H such as O and N react with silicon oxide to generate SiO 2 and Si 3 N 4. The amount of Si that can contribute is reduced, and the capacity of the lithium ion secondary battery is reduced. Therefore, hydrocarbon gas consisting only of C and H is preferable as the carbon source. When a hydrocarbon gas is used as the carbon source, an aromatic composed of only C and H is generated as a tar component, and components having molecular weights of 57, 106, 178, 202, 252 and 276 are the main components.
 導電性炭素皮膜の形成処理温度は、700℃以上、750℃以下とする。また、処理時間は、ガス流量および形成する導電性炭素皮膜の厚さに応じて、20分以上、120分以下の間で設定するが、短いほど好ましい。この処理条件は、結晶性の低い導電性炭素皮膜を得られる範囲である。また、低級酸化珪素粉末の表面と炭素皮膜との界面近傍におけるSiCの生成が抑制される範囲でもある。 The forming temperature of the conductive carbon film is 700 ° C. or higher and 750 ° C. or lower. Moreover, although processing time is set between 20 minutes or more and 120 minutes or less according to the gas flow rate and the thickness of the conductive carbon film to form, it is so preferable that it is short. This treatment condition is a range in which a conductive carbon film having low crystallinity can be obtained. Moreover, it is also the range in which the production | generation of SiC in the interface vicinity of the surface of a lower silicon oxide powder and a carbon film is suppressed.
 本発明者らの調査によると、導電性炭素皮膜は結晶性が低い方がリチウムイオン二次電池のサイクル特性に優れていることがわかっている。これは、導電性炭素皮膜の結晶性が高いほど、リチウムイオンの受け入れ速度が小さく、かつ酸化珪素の膨張、収縮を緩和する能力が低いことに起因すると考えられる。また、SiCは、加熱温度が過度に高い場合に低級酸化珪素粉末の表面と炭素皮膜との界面近傍に生成する。SiCが生成すると電池の容量に寄与し得るSiの量が減少するため、SiCの生成は抑制することが好ましい。 According to the inventors' investigation, it is known that the conductive carbon film has better cycle characteristics of the lithium ion secondary battery when the crystallinity is lower. This is considered to be due to the fact that the higher the crystallinity of the conductive carbon film, the lower the lithium ion acceptance rate and the lower the ability to relax the expansion and contraction of silicon oxide. Further, SiC is generated near the interface between the surface of the lower silicon oxide powder and the carbon film when the heating temperature is excessively high. Since generation of SiC reduces the amount of Si that can contribute to the capacity of the battery, it is preferable to suppress generation of SiC.
5.導電性炭素皮膜を形成した低級酸化珪素粉末の真空処理方法
 導電性炭素皮膜を形成した低級酸化珪素粉末には、真空下で、600℃以上、750℃以下の温度に10分以上、1時間以下保持する真空処理を施す。真空処理は、低級酸化珪素粉末を真空槽に収容した状態で行い、真空槽の内圧は、油拡散ポンプを用いて1Pa以下に保つ。この内圧は、ピラニー真空計を用いて測定する。
5. Vacuum treatment method of lower silicon oxide powder with conductive carbon film formed The lower silicon oxide powder with conductive carbon film formed under vacuum at a temperature of 600 ° C. or higher and 750 ° C. or lower for 10 minutes or longer and 1 hour or shorter Apply vacuum treatment to hold. The vacuum treatment is performed in a state where the lower silicon oxide powder is housed in a vacuum chamber, and the internal pressure of the vacuum chamber is maintained at 1 Pa or less using an oil diffusion pump. This internal pressure is measured using a Pirani gauge.
 真空処理により、炭素皮膜の形成時に生成したタール成分を炭素皮膜から揮発除去することができる。また、加熱保持温度が上記範囲である場合には、酸化珪素と炭素皮膜との界面近傍におけるSiCの生成が抑制される。 The tar component generated during the formation of the carbon film can be volatilized and removed from the carbon film by vacuum treatment. Moreover, when the heating holding temperature is in the above range, the generation of SiC in the vicinity of the interface between the silicon oxide and the carbon film is suppressed.
6.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
6). Configuration of Lithium Ion Secondary Battery A configuration example of a coin-shaped lithium ion secondary battery using the powder for a lithium ion secondary battery negative electrode material and the lithium ion secondary battery negative electrode of the present invention is described with reference to FIG. explain. The basic configuration of the lithium ion secondary battery shown in FIG.
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明のリチウムイオン二次電池負極材用粉末を用いて構成する。具体的には、活物質である本発明のリチウムイオン二次電池負極材用粉末とその他の活物質と導電助剤とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明のリチウムイオン二次電池負極材用粉末の割合は20質量%以上とする。本発明のリチウムイオン二次電池負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助剤としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデンを使用することができる。 The negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support agent, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention. As the conductive assistant, for example, acetylene black or carbon black can be used, and as the binder, for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
 本発明のリチウムイオン二次電池は、上述の本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。 Since the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。 The powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。 In order to confirm the effect of the present invention, the following test using a lithium ion secondary battery was performed, and the result was evaluated.
1.試験条件
1-1.リチウムイオン二次電池の構成
 リチウムイオン二次電池の構成は、前記図1に示すコイン形状とした。
1. Test conditions 1-1. Configuration of Lithium Ion Secondary Battery The configuration of the lithium ion secondary battery was the coin shape shown in FIG.
 最初に負極2について説明する。珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図3に示す装置を用いて析出基板上に低級酸化珪素を析出させた。析出した低級酸化珪素は、アルミナ製ボールミルを使用して24時間粉砕してD50が4.8μmであり、BET比表面積が2.73m/gの粉末とした。この低級酸化珪素(SiO)の粉末は、x=1を満たしていた。 First, the negative electrode 2 will be described. Silicon powder and silicon dioxide powder were blended at a predetermined ratio, and mixed, granulated and dried mixed granulation raw materials were used as raw materials, and lower silicon oxide was deposited on the deposition substrate using the apparatus shown in FIG. . The deposited lower silicon oxide was pulverized for 24 hours using an alumina ball mill to obtain a powder having a D50 of 4.8 μm and a BET specific surface area of 2.73 m 2 / g. This lower silicon oxide (SiO x ) powder satisfied x = 1.
 低級酸化珪素粉末の表面には導電性炭素皮膜を形成し、リチウムイオン二次電池負極材用粉末とした。炭素皮膜の形成には、装置としてロータリーキルン、ガスとしてプロパンとArとの混合ガスを使用し、処理温度は700℃とした。平均変動係数および炭素皮膜率は、表4および表5に示す通りとした。 A conductive carbon film was formed on the surface of the lower silicon oxide powder to obtain a negative electrode material powder for a lithium ion secondary battery. For the formation of the carbon film, a rotary kiln was used as the apparatus, a mixed gas of propane and Ar was used as the gas, and the processing temperature was 700 ° C. The average coefficient of variation and the carbon film ratio were as shown in Table 4 and Table 5.
 表4に示す試験番号1~4では、炉心管の内面の粗さ(Rz)を変化させることによって平均変動係数の値を変化させた。Rzの値は、サンドブラストに使用するサンドの粒径によって制御した。試験番号1~3は本発明例であり、平均変動係数の値が本発明の規定を満足した。試験番号4は比較例であり、平均変動係数の値が本発明の規定の範囲よりも大きい値であった。 In test numbers 1 to 4 shown in Table 4, the value of the average coefficient of variation was changed by changing the roughness (Rz) of the inner surface of the core tube. The value of Rz was controlled by the particle size of the sand used for sandblasting. Test Nos. 1 to 3 are examples of the present invention, and the average coefficient of variation satisfied the provisions of the present invention. Test No. 4 was a comparative example, and the value of the average variation coefficient was larger than the specified range of the present invention.
 表5に示す試験番号5および6では、導電性炭素皮膜を形成した後、真空処理を施した。真空処理の保持温度は750℃、保持時間は同表に示す条件とし、真空槽の内圧は油拡散ポンプを用いて1Pa以下に保った。 In Test Nos. 5 and 6 shown in Table 5, a vacuum treatment was performed after forming a conductive carbon film. The holding temperature of the vacuum treatment was 750 ° C., the holding time was as shown in the table, and the internal pressure of the vacuum chamber was kept at 1 Pa or less using an oil diffusion pump.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 このリチウムイオン二次電池負極材用粉末を65質量%、アセチレンブラックを10質量%、PAAを25質量%とした混合物に、n‐メチルピロリドンを加えてスラリーを作製する。このスラリーを厚さ20μmの銅箔に塗布し、120℃の雰囲気下で30分乾燥した後、片面の面積が1cmとなる大きさに打ち抜いて負極2とした。 A slurry is prepared by adding n-methylpyrrolidone to a mixture of 65% by mass of the negative electrode material powder for lithium ion secondary battery, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 μm, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
 対極1cはリチウム箔とした。電解質は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPF(六フッ化リンリチウム)を1モル/リットルの割合となるように溶解させた溶液とした。セパレーターには厚さ30μmのポリエチレン製多孔質フィルムを用いた。 The counter electrode 1c was a lithium foil. As the electrolyte, LiPF 6 (lithium phosphorous hexafluoride) was dissolved in a mixed solution in which EC (ethylene carbonate) and DEC (diethyl carbonate) had a volume ratio of 1: 1 so as to have a ratio of 1 mol / liter. It was set as the solution. As the separator, a polyethylene porous film having a thickness of 30 μm was used.
1-2.充放電試験条件
 充放電試験には、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまでは1mAの定電流で行い、電圧が0Vに達した後は、0Vを維持したまま充電を行った。その後、電流値が20μAを下回った時点で充電を終了した。放電は、リチウムイオン二次電池の両極間の電圧が1.5Vに達するまでは1mAの定電流で行った。以上の充放電試験は10サイクル行った。
1-2. Charge / Discharge Test Conditions For the charge / discharge test, a secondary battery charge / discharge test apparatus (manufactured by Nagano Corporation) was used. Charging was performed at a constant current of 1 mA until the voltage between both electrodes of the lithium ion secondary battery reached 0 V, and after the voltage reached 0 V, charging was performed while maintaining 0 V. Thereafter, charging was terminated when the current value fell below 20 μA. The discharge was performed at a constant current of 1 mA until the voltage between both electrodes of the lithium ion secondary battery reached 1.5V. The above charge / discharge test was performed 10 cycles.
2.試験結果
 上記条件で作製したリチウムイオン二次電池について充放電試験を行い、サイクル容量維持率を指標として評価を行った。また、リチウムイオン二次電池負極材用粉末について、炭素皮膜率も測定した。試験番号1、7および8についてはタール成分の合計含有率も測定した。これらの値を試験条件と併せて前記表4および表5に示す。サイクル容量維持率とは、10サイクル目の放電容量を初回放電容量で除した値であり、この値が大きいほどサイクル特性が良好であることを示す。
2. Test Results A charge / discharge test was performed on the lithium ion secondary battery manufactured under the above conditions, and evaluation was performed using the cycle capacity maintenance rate as an index. Moreover, the carbon film rate was also measured about the powder for lithium ion secondary battery negative electrode materials. For test numbers 1, 7 and 8, the total content of tar components was also measured. These values are shown in Table 4 and Table 5 together with the test conditions. The cycle capacity retention rate is a value obtained by dividing the discharge capacity at the 10th cycle by the initial discharge capacity, and the larger the value, the better the cycle characteristics.
2-1.平均変動係数の影響
 前記表4に示す試験結果に基づいて、平均変動係数の値の影響について説明する。試験番号1~4の全てにおいて、炭素被覆率は本発明で好ましいとする範囲内であった。
2-1. Influence of Average Fluctuation Coefficient Based on the test results shown in Table 4, the influence of the average fluctuation coefficient value will be described. In all of the test numbers 1 to 4, the carbon coverage was within the range preferable in the present invention.
 試験番号4では、平均変動係数の値が本発明の規定の範囲よりも大きい値であり、初回放電容量は71.2%と小さかった。 In test number 4, the value of the average variation coefficient was larger than the specified range of the present invention, and the initial discharge capacity was as small as 71.2%.
 一方、試験番号1~3では平均変動係数の値は本発明の規定する範囲内であり、初回放電容量は88.1%以上と優れた値であった。 On the other hand, in the test numbers 1 to 3, the value of the average variation coefficient was within the range defined by the present invention, and the initial discharge capacity was an excellent value of 88.1% or more.
2-2.タール成分の合計含有率の影響
 前記表5に示す試験結果に基づいて、タール成分の合計含有率の影響について説明する。試験番号5および6のいずれも、比表面積、炭素被覆率および炭素皮膜の厚さは、本発明で好ましいとする範囲内であった。表5には、比較対象として試験番号1も記載している。
2-2. Influence of the total content of tar components Based on the test results shown in Table 5, the influence of the total content of tar components will be described. In each of Test Nos. 5 and 6, the specific surface area, the carbon coverage, and the thickness of the carbon film were within the ranges preferred in the present invention. Table 5 also shows test number 1 as a comparison target.
 表5に示すように、平均変動係数の値を試験番号1と同等とした試験番号5および6では、タール成分を除去し、タール成分の合計含有率を3500質量ppm以下とすることにより、初回放電容量がさらに優れた値となった。表5に示す結果から、真空処理時間が長いほど、タール成分の合計含有率が低下し、初回放電容量が大きいことがわかる。 As shown in Table 5, in Test Nos. 5 and 6 in which the value of the average variation coefficient was equal to that of Test No. 1, the tar component was removed, and the total content of the tar component was adjusted to 3500 mass ppm or less for the first time. The discharge capacity was even better. From the results shown in Table 5, it can be seen that the longer the vacuum treatment time, the lower the total content of tar components and the larger the initial discharge capacity.
 また、試験番号1~6のいずれのリチウムイオン二次電池とも、炭素被覆率が十分であり、放電容量が優れていたことを確認した。 Also, it was confirmed that any of the lithium ion secondary batteries of test numbers 1 to 6 had a sufficient carbon coverage and an excellent discharge capacity.
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。 Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
2:負極、 2a:作用極ケース、 2b:作用極集電体、
2c:作用極、 3:セパレーター、 4:ガスケット、
5:真空室、 6:原料室、 7:析出室、 8:原料容器、
9:混合造粒原料、 10:加熱源、 11:析出基体、
12:低級酸化珪素、 21:酸化珪素粉末、
21a:酸化珪素粉末の中心、 22:炭素皮膜
1: positive electrode, 1a: counter electrode case, 1b: counter electrode current collector, 1c: counter electrode,
2: negative electrode, 2a: working electrode case, 2b: working electrode current collector,
2c: working electrode, 3: separator, 4: gasket
5: Vacuum chamber, 6: Raw material chamber, 7: Deposition chamber, 8: Raw material container,
9: mixed granulation raw material, 10: heating source, 11: precipitation base,
12: Lower silicon oxide, 21: Silicon oxide powder,
21a: center of silicon oxide powder, 22: carbon film

Claims (9)

  1.  低級酸化珪素粉末の表面に導電性炭素皮膜を有し、
     前記低級酸化珪素粉末のうちの1個の粒子の24箇所で測定した前記導電性炭素皮膜の厚さの平均値をta、標準偏差をσとし、炭素皮膜の厚さの変動係数FをF=σ/taと定義したとき、10個の粒子の変動係数Fの平均値Faが、0.01≦Fa≦0.4を満足することを特徴とするリチウムイオン二次電池負極材用粉末。
    Having a conductive carbon film on the surface of the lower silicon oxide powder;
    The average value of the thickness of the conductive carbon film measured at 24 points of one particle of the lower silicon oxide powder is ta, the standard deviation is σ, and the variation coefficient F of the thickness of the carbon film is F = When defined as σ / ta, the average value Fa of the coefficient of variation F of 10 particles satisfies 0.01 ≦ Fa ≦ 0.4.
  2.  前記導電性炭素皮膜の占める割合が、0.5質量%以上、10質量%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。 2. The powder for a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the proportion of the conductive carbon film is 0.5% by mass or more and 10% by mass or less.
  3.  TPD-MSで測定したタール成分の合計含有率が、1質量ppm以上、3500質量ppm以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。 3. The powder for a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the total content of the tar components measured by TPD-MS is 1 mass ppm or more and 3500 mass ppm or less.
  4.  比抵抗が10000Ωcm以下であることを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末。 The powder for a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the specific resistance is 10,000 Ωcm or less.
  5.  CuKα線を用いたX線回折装置で測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2の関係が、P2/P1<0.01を満足することを特徴とする請求項1~4のいずれかに記載のリチウムイオン二次電池負極材用粉末。 When measured with an X-ray diffractometer using CuK α- ray, the maximum value P1 of halo derived from SiO x appearing at 2θ = 10 ° to 30 ° and Si appearing at 2θ = 28.4 ± 0.3 ° The powder for a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the relationship of the value P2 of the strongest peak of (111) satisfies P2 / P1 <0.01.
  6.  請求項1~5のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。 A lithium ion secondary battery negative electrode using the powder for a lithium ion secondary battery negative electrode material according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。 A capacitor negative electrode using the powder for a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5.
  8.  請求項6に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。 A lithium ion secondary battery using the lithium ion secondary battery negative electrode according to claim 6.
  9.  請求項7に記載のキャパシタ負極を用いたキャパシタ。 A capacitor using the capacitor negative electrode according to claim 7.
PCT/JP2012/000003 2011-02-09 2012-01-04 Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor WO2012108113A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012556762A JP5662485B2 (en) 2011-02-09 2012-01-04 Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
KR1020137023529A KR101567181B1 (en) 2011-02-09 2012-01-04 Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
CN2012800081506A CN103348513A (en) 2011-02-09 2012-01-04 Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-025639 2011-02-09
JP2011025639 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108113A1 true WO2012108113A1 (en) 2012-08-16

Family

ID=46638341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000003 WO2012108113A1 (en) 2011-02-09 2012-01-04 Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor

Country Status (4)

Country Link
JP (1) JP5662485B2 (en)
KR (1) KR101567181B1 (en)
CN (1) CN103348513A (en)
WO (1) WO2012108113A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002356A1 (en) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor
JP2015508559A (en) * 2012-11-30 2015-03-19 エルジー・ケム・リミテッド Silicon-based composite and method for producing the same
WO2015118593A1 (en) * 2014-02-07 2015-08-13 信越化学工業株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US20150303468A1 (en) * 2014-04-22 2015-10-22 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method of producing the same, negative electrode active material layer for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016164870A (en) * 2015-02-26 2016-09-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114692A1 (en) 2014-01-31 2015-08-06 株式会社豊田自動織機 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2004327190A (en) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2011076788A (en) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery and electrochemical capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004071542A (en) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP5100274B2 (en) * 2007-03-29 2012-12-19 富士フイルム株式会社 Casting die, dope casting method and solution casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (en) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004327190A (en) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2011076788A (en) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery and electrochemical capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002356A1 (en) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor
JP2015508559A (en) * 2012-11-30 2015-03-19 エルジー・ケム・リミテッド Silicon-based composite and method for producing the same
US9627681B2 (en) 2012-11-30 2017-04-18 Lg Chem, Ltd. Silicon-based composite and production method thereof
WO2015118593A1 (en) * 2014-02-07 2015-08-13 信越化学工業株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2015165482A (en) * 2014-02-07 2015-09-17 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
US20150303468A1 (en) * 2014-04-22 2015-10-22 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method of producing the same, negative electrode active material layer for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10686189B2 (en) * 2014-04-22 2020-06-16 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method of producing the same, negative electrode active material layer for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016164870A (en) * 2015-02-26 2016-09-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN103348513A (en) 2013-10-09
KR20130130824A (en) 2013-12-02
JP5662485B2 (en) 2015-01-28
KR101567181B1 (en) 2015-11-06
JPWO2012108113A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
KR101513820B1 (en) Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
JP5584299B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
KR101531451B1 (en) Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
JPWO2006011290A1 (en) SiO powder for secondary battery and method for producing the same
JP5497177B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5662485B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
KR101440207B1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
JP5430761B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5909552B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP4769319B2 (en) Negative electrode material for silicon oxide and lithium ion secondary battery
JP5584302B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
WO2012093651A1 (en) Powder for negative pole material of lithium ion secondary cell, negative pole of lithium ion secondary cell using same, and lithium ion secondary cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023529

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12744208

Country of ref document: EP

Kind code of ref document: A1