WO2012108108A1 - Lead assembly, electrical stimulation device, and lead - Google Patents

Lead assembly, electrical stimulation device, and lead Download PDF

Info

Publication number
WO2012108108A1
WO2012108108A1 PCT/JP2011/079772 JP2011079772W WO2012108108A1 WO 2012108108 A1 WO2012108108 A1 WO 2012108108A1 JP 2011079772 W JP2011079772 W JP 2011079772W WO 2012108108 A1 WO2012108108 A1 WO 2012108108A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
lumen
stimulation
electrical stimulation
unit
Prior art date
Application number
PCT/JP2011/079772
Other languages
French (fr)
Japanese (ja)
Inventor
美仁 福井
政弘 小野田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2012108108A1 publication Critical patent/WO2012108108A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor

Definitions

  • the present invention relates to a lead assembly, an electrical stimulation device using the lead assembly, and a lead constituting the lead assembly, and more particularly to a lead assembly, an electrical stimulation device, and a lead used by being implanted in a living body.
  • Spinal cord electrical stimulation therapy which is one type of electrical stimulation therapy, is a stimulation therapy that electrically stimulates the spinal cord in order to relieve pain transmitted to the brain through the spinal cord.
  • a trial period of 24 hours to several weeks is usually set up to confirm the effectiveness of pain relief by electrical stimulation.
  • the electrode lead is generally punctured from the back side and the stimulation electrode is placed in the epidural space outside the spinal dura covering the spinal cord, and then the electrode lead is connected to an external stimulation device.
  • the degree of pain relief can be examined under various stimulation patterns. Then, when a predetermined effect is recognized during the trial period, the main implantation is performed.
  • the electrode lead placed during the trial period is removed, and then a new electrode lead stimulation electrode is placed again in the epidural space, and the electrode lead passes through the subcutaneous tunnel to the waist and abdomen. Or led to the chest. The electrode lead is then connected to the stimulator and implanted subcutaneously.
  • the electrode leads are connected to an external stimulator, which can reduce the risk of infection, the patient's activity limitation, or the limitation of this activity. There was a problem of affecting the effectiveness judgment.
  • a leadless micro stimulator having electrodes at both ends of the housing has been considered (see Patent Document 1).
  • This micro stimulator is configured to be completely implanted in a living body in a state where the provided electrode is arranged near the nerve. This makes it possible to reduce the risk of infection and minimize the restriction of patient activity.
  • the coil part (configuration for receiving electromagnetic waves from the programmer) can be placed under the skin of the abdomen or the body side, with at least the position of the electrodes of the microstimulator, the communication with the microstimulator is performed. Can be operated within the reach of the programmer.
  • the coil part is built in the lead, and this lead is extended from the back part (or waist) to the body side (or the abdomen via the body side).
  • a method of implanting the living body so as to guide it is conceivable.
  • the skin from the back (or lower back) to the body side (or the abdomen via the body side) is extremely curved, implanting the lead under the skin like that is a normal stylet, guide wire, etc. Even if was used, it was difficult.
  • the present invention has been made in view of such a point, and an object thereof is to provide a lead assembly, an electrical stimulation device, and a lead that can be easily implanted into a curved subcutaneous skin.
  • a lead assembly includes a lead implanted in a living body and a long-shaped lead operation body that moves the lead to adjust the implantation position.
  • the lead is locked to a first lumen that communicates from the base end to a predetermined position, a second lumen that communicates from the predetermined position to the tip and has a smaller diameter than the first lumen, and a boundary between the first lumen and the second lumen A lead body having a portion formed thereon.
  • the lead operating body has an elongated operating portion that can be inserted into the second lumen, and is continuous with the operating portion. When the operating portion is inserted into the second lumen through the first lumen, A to-be-engaged locked portion.
  • the lead can be implanted (the lead is moved in the living body) by pulling the operating portion protruding from the tip of the lead, the lead is bent during the implantation and advanced into the living body. Can be prevented from becoming difficult. As a result, there is an effect that the lead can be easily implanted into, for example, an extremely curved subcutaneous tunnel.
  • FIG. 2A is a schematic diagram showing a cross section in the axial direction near the tip of the second lead according to the embodiment of the present invention.
  • FIG. 2B is a schematic diagram showing the second lead with the guide wire inserted.
  • It is a block diagram which shows the function of the stimulation circuit which concerns on embodiment of this invention, and a programmer. It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body.
  • Example Embodiment> 1. Configuration of electrical stimulation device 2. Functions of the stimulation circuit 3. Programmer functions Implanting procedure of electrical stimulation device ⁇ Modification>
  • FIG. 1 is a perspective view showing an entire electrical stimulation apparatus according to an embodiment of the present invention.
  • the electrical stimulation device 101 is configured to be implanted in a living body, and stimulates nerves and muscles such as the spinal cord in the living body with an electrical stimulation signal (hereinafter referred to as “electrical stimulation signal”).
  • the electrical stimulation device 101 includes a first lead 102 for stimulating nerves, a stimulation device 103 for supplying an electrical stimulation signal to the first lead 102, and a second lead for controlling the operation of the stimulation device 103. 104 (lead).
  • the electrical stimulation device 101 further includes a guide wire 130 (lead operating body) for implanting the second lead 104 into the living body.
  • the first lead 102 includes four stimulation electrodes 105 for stimulating nerves and the like, and a body 106 that fixes each stimulation electrode 105 so as to be exposed to the living body when the first lead 102 is disposed in the living body.
  • the number of stimulation electrodes 105 is four, but this is only an example, and the number of stimulation electrodes 105 can be arbitrarily set.
  • the stimulation electrode 105 is made of a conductive and biocompatible material such as platinum or a platinum alloy (for example, platinum 90% / iridium 10% alloy), and is formed in a hollow, substantially cylindrical shape. ing.
  • a conductive and biocompatible material such as platinum or a platinum alloy (for example, platinum 90% / iridium 10% alloy)
  • platinum 90% / iridium 10% alloy for example, platinum 90% / iridium 10% alloy
  • the stimulation electrode 105 is made of a conductive and biocompatible material such as platinum or a platinum alloy (for example, platinum 90% / iridium 10% alloy), and is formed in a hollow, substantially cylindrical shape. ing.
  • the first lead 102 is implanted in the epidural space where the distance between the spinal dura mater and the spinal column is about 5 mm.
  • the outer diameter of is preferably about 1 to 3 mm.
  • the inner diameter of the stimulation electrode 105 needs to be set larger than the diameter of a stylet lumen 109 described later. This is
  • each stimulation electrode 105 and the stimulation circuit 117 are electrically connected.
  • the four conductive wires 205 are completely embedded in the body 106.
  • the body 106 is made of a flexible and biocompatible material, for example, a resin material such as silicone or polyurethane, and has a substantially cylindrical shape.
  • a hole having a circular opening shape that opens to the proximal end 108 and communicates to the vicinity of the distal end 107 is formed in the axial direction.
  • This hole is a stylet lumen 109 for inserting the stylet 150.
  • the diameter of the stylet lumen 109 needs to be approximately equal to or slightly larger than the diameter of the stylet 150.
  • the stylet 150 can be used when the first lead 102 is implanted in the living body. As a result, the first lead 102 can be more easily implanted in the living body, and the accuracy of the placement of the stimulation electrode 105 in the living body can be further improved.
  • the outer diameter of the body 106 is substantially equal to the outer diameter of the stimulation electrode 105 so that the stimulation electrode 105 is exposed.
  • a part of the first lead 102 is equal to at least the three vertebral bodies in the spine in the epidural space. It must be longer than the length. Therefore, the axial length of the body 106 is longer than the length equal to the three vertebral bodies in the spine plus 15 cm.
  • the length of 15 cm here is an average length from the puncture site of the back skin to the epidural space, and an extra length for tearing the slit of the epidural needle described later near the proximal end 108. Equivalent to the sum.
  • FIG. 2 is an explanatory view showing the vicinity of the tip of the second lead 104 according to the embodiment of the present invention.
  • FIG. 2A is a schematic diagram showing a cross section of the second lead 104 in the axial direction
  • FIG. 2B is a schematic diagram showing the second lead 104 in a state where the guide wire 130 is completely inserted.
  • the body 110 (lead body) of the second lead 104 is made of a flexible and biocompatible material such as a resin material such as silicone or polyurethane. It is formed in a substantially cylindrical shape.
  • the axial length of the body 110 is, for example, about 1/4 of the abdominal circumference of the patient when the second lead 104 is disposed in the living body so as to be guided from the waist (or back) to the body side. It is preferable that However, when the second lead 104 is arranged so as to be guided from the waist to the abdomen through the body side, the length of the body 110 in the axial direction needs to be about 1 ⁇ 2 of the abdominal circumference of the patient.
  • the vicinity of the tip 112 of the body 110 is formed in a tapered shape as shown in FIG.
  • the body 110 penetrates from the distal end 112 to the proximal end 113 and has a through-hole having a circular opening shape.
  • This through hole is a guide wire lumen 114 for penetrating the guide wire 130.
  • the guide wire lumen 114 includes a first lumen 114a and a second lumen 114b having a diameter smaller than the diameter of the first lumen 114a.
  • the first lumen 114a is formed from the base end 113 of the body 110 to a predetermined position near the distal end 112, and the second lumen 114b is formed from the predetermined position to the distal end 112.
  • a portion forming a boundary between the first lumen 114 a and the second lumen 114 b corresponds to the locking portion 202, and the coil portion 111 is embedded on the tip 112 side from the locking portion 202. ing. Since the portion where the coil portion 111 is embedded is thicker than the other portions, the entire coil portion 111 can be reliably incorporated in the body 110. Thereby, when the 2nd lead 104 is implanted, it can prevent that the coil part 111 contacts a biological body.
  • the coil portion 111 is placed under the skin where human hands reach such as the body side and the abdomen. can do.
  • a fixing mechanism 115 that holds the position of the second lead 104 when the second lead 104 is implanted in the living body is provided near the tip 112 of the body 110.
  • the fixing mechanism 115 includes a plurality of branch portions 115 a protruding from the outer peripheral surface of the body 110.
  • the branch part 115a is made of the same material as the body 110 and is formed in a substantially rod shape, and one end face thereof is rounded. The other end face is joined to the body 110.
  • branch portions 115 a are arranged at equiangular intervals along the circumferential direction of the outer peripheral surface of the body 110, and are inclined toward the base end 113 side with respect to the axis of the body 110. Accordingly, when the body 110 is pulled toward the proximal end 113, the branch portion 115a is prevented from being caught by a living tissue and the position of the distal end 112 is prevented from being shifted.
  • a joining method of the branch part 115a to the body 110 for example, a method by fusion (thermal fusion, high-frequency fusion, ultrasonic fusion, etc.), a method by adhesion (adhesion with an adhesive or a solvent), or the like. Can be mentioned.
  • the coil unit 111 is a circuit including, for example, a coil in which an electric wire is spirally wound, and a stimulation device 103 to be described later via a conductive wire 204 (see FIG. 3).
  • the stimulation circuit 117 is electrically connected.
  • the conducting wire 204 is completely embedded in the body 110.
  • the stimulation device 103 includes a housing 116 and a stimulation circuit 117 housed and fixed in the housing 116.
  • the casing 116 is made of a material such as a relatively hard and biocompatible metal or resin, such as titanium or epoxy, or ceramic, and is formed in a substantially rectangular parallelepiped shape.
  • the casing 116 has through holes 118a and 118b with circular openings.
  • the diameter of one through hole 118a is substantially equal to the outer diameter of the body 106 of the first lead 102, and the portion from the base end 108 of the body 106 to a predetermined position is inserted and fixed in the through hole 118a.
  • the stylet lumen 109 that opens to the base end 108 of the body 106 can be exposed from one side surface of the housing 116, and the stylet 150 can be inserted into the stylet lumen 109.
  • the diameter of the other through hole 118b is substantially equal to the outer diameter of the body 110 of the second lead 104, and a portion from the base end 113 of the body 110 to a predetermined position is inserted and fixed in the through hole 118b.
  • the guide wire lumen 114 opened to the base end 113 of the body 110 can be exposed from the other side surface of the housing 116, and the guide wire 130 can be inserted into the guide wire lumen 114.
  • the stimulation circuit 117 is a circuit in which a small part such as a custom IC is mounted on a circuit board, and generates an electrical stimulation signal.
  • the stimulation circuit 117 is electrically connected to four conductors 205 (see FIG. 3) embedded in the body 106 so as to supply the generated electrical stimulation signal to each stimulation electrode 105 independently. ing.
  • the stimulation circuit 117 is electrically connected to the coil unit 111 via the conductive wire 204 (see FIG. 3). The functional configuration of the stimulation circuit 117 will be described later with reference to FIG.
  • the guide wire 130 has an elongated shape and is made of a metal wire such as a superelastic alloy or stainless steel as a core. A resin coating or the like can be provided on the surface of the core as necessary.
  • the guide wire 130 is inserted into the guide wire lumen 114 from the distal end through an opening formed in the base end 113, and penetrates into the second lead 104 as shown in FIG. 2B. Used in the state. Therefore, the length of the guide wire 130 in the axial direction must be sufficiently longer than the length of the second lead 104 in the axial direction.
  • the guide wire 130 is provided with a first operation portion 131 (operation portion), a locked portion 132, and a second operation portion 133 in order from the distal end side.
  • the first operation part 131 is formed in a substantially cylindrical shape. As shown in FIG. 2B, the diameter of the first operation portion 131 is substantially equal to or smaller than the diameter of the second lumen 114b, and the first operation portion 131 has the first lumen 114a. Of course, it is possible to pass through the second lumen 114b.
  • a scale 203 indicating the length of the first operation unit 131 in the axial direction is formed on the surface of the first operation unit 131.
  • the locked portion 132 is formed in a substantially cylindrical shape having the same axis as the first operation portion 131.
  • the locked portion 132 can be formed, for example, by welding a pipe-shaped metal member on the core.
  • the diameter of the locked portion 132 is larger than the diameter of the second lumen 114b and equal to or less than the diameter of the first lumen 114a, and the locked portion 132 can pass only the first lumen 114a.
  • the locked portion 132 is in contact with the locking portion 202 when the first operating portion 131 is completely inserted into the second lumen 114b. .
  • the second operation part 133 is formed in a substantially cylindrical shape having the same axis as the locked part 132.
  • the diameter of the second operation portion 133 is substantially equal to or smaller than the diameter of the second lumen 114b as in the first operation portion 131.
  • the second operation unit 133 only needs to be configured to be able to pass through the first lumen 114a, and the diameter of the second operation unit 133 only needs to be approximately equal to or smaller than the diameter of the first lumen 114a. That is, the length of extension of the locked portion 132 may be increased, and the locked portion 132 may also serve as the second operation portion 133.
  • FIG. 3 is a block diagram illustrating functions of the stimulation circuit and the programmer according to the embodiment of the present invention.
  • the stimulation circuit 117 includes a rechargeable battery 303, a charging unit 304, a communication unit 305, a control unit 306, a stimulation parameter setting unit 307, an electrode configuration setting unit 308, an oscillation unit 309, and a stimulation electrode switch unit 310. Is provided.
  • the rechargeable battery 303 is a rechargeable battery such as a lithium ion battery.
  • the rechargeable battery 303 supplies the accumulated power to each block constituting the stimulation circuit 117.
  • the coil unit 111 built in the second lead 104 is a resonance circuit composed of, for example, a coil and a capacitor.
  • the coil unit 111 receives a charging electromagnetic wave transmitted from a programmer 350 described later. Then, an alternating current generated from the coil unit 111 with this reception is output to the charging unit 304.
  • the coil unit 111 receives an electromagnetic wave on which predetermined information is transmitted, which is transmitted from the programmer 350, and the received electromagnetic wave is output from the coil unit 111 to the communication unit 305.
  • the charging unit 304 has a built-in rectifier circuit, converts the alternating current output from the coil unit 111 into a direct current, and acquires power. Then, the rechargeable battery 303 is charged with the acquired power.
  • the communication unit 305 demodulates the electromagnetic wave received by the coil unit 111 and extracts information carried on the electromagnetic wave. The extracted information is output to the control unit 306.
  • the control unit 306 is a microcomputer, for example, and controls each block of the stimulation circuit 117.
  • the control unit 306 stores information input from the communication unit 305. However, when information is already stored, this information is replaced with newly input information and stored. Therefore, the control unit 306 stores the latest information input from the communication unit 305.
  • the information stored in the control unit 306 is stimulation parameters and electrode configuration information.
  • the stimulation parameter is information regarding the stimulation intensity of the electrical stimulation signal, and is information indicating the value of the pulse voltage, pulse current, pulse width, or frequency that determines the stimulation intensity of the electrical stimulation signal. Is output.
  • the electrode configuration information is information related to the electrode configuration, and information for changing the polarity of the electrical stimulation signal and information for causing the stimulation electrode switch unit 310 to select the stimulation electrode 105 that outputs the electrical stimulation signal. And is output to the electrode configuration setting unit 308.
  • the stimulation parameter setting unit 307 generates a stimulation intensity change signal for changing the stimulation intensity of the electrical stimulation signal generated by the oscillation unit 309 based on the input stimulation parameter.
  • the electrode configuration setting unit 308 generates an electrode configuration selection signal for selecting the stimulation electrode 105 that outputs the electrical stimulation signal generated by the oscillation unit 309 based on the input electrode configuration information. Note that the stimulation intensity change signal output from the stimulation parameter setting unit 307 is output to the oscillation unit 309, and the electrode configuration selection signal output from the electrode configuration setting unit 308 is output to the stimulation electrode switch unit 310.
  • the oscillation unit 309 generates an electrical stimulation signal based on the stimulation intensity change signal input from the stimulation parameter setting unit 307 and outputs the electrical stimulation signal to the stimulation electrode switch unit 310.
  • the stimulation electrode switch unit 310 determines the stimulation electrode 105 that outputs the electrical stimulation signal input from the oscillation unit 309 based on the electrode configuration selection signal input from the electrode configuration setting unit 308.
  • the programmer 350 is an example of an external device used from outside the body, and performs communication and the like with the electrical stimulation device 101 implanted in the living body.
  • the programmer 350 includes a power supply unit 351, a control unit 352, a communication unit 353, and a coil unit 354.
  • the power supply unit 351 supplies the accumulated power to each block constituting the programmer 350.
  • a primary battery or a rechargeable battery is used for the power supply unit 351.
  • the control unit 352 includes, for example, a microcomputer, and controls the communication unit 353 based on an operation of a user such as a doctor. This operation is performed, for example, by operating an operation unit (not shown) provided in the programmer 350.
  • the communication unit 353 When there is a power supply instruction from the user, the communication unit 353 generates a power supply electromagnetic wave based on the control of the control unit 352. Then, the generated electromagnetic wave for power supply is transmitted to the coil unit 111 of the electrical stimulation apparatus 101 via the coil unit 354.
  • the communication unit 353 when there is an instruction to change the stimulation intensity or the like of the electrical stimulation signal from the user, the communication unit 353 generates an electromagnetic wave on which stimulation parameters and electrode configuration information are placed based on the control of the control unit 352. . Then, the generated electromagnetic wave is transmitted to the coil unit 111 of the electrical stimulation apparatus 101 via the coil unit 354.
  • the coil unit 354 may be any coil that can transmit electromagnetic waves to the electrical stimulation device 101, and may be, for example, a wire wound in a circular shape or a spiral shape.
  • FIGS. 4 to 6 are longitudinal sectional views of the human body showing the vicinity of the back, and FIGS. 7 to 10 are explanatory views of the human body viewed from the back side.
  • the doctor determines a target spinal cord stimulation site in advance based on the patient's pain distribution. Then, as shown in FIG. 4, a split or epidural needle 406 with a slit is inserted from the patient's back side into the epidural space 405 under fluoroscopy.
  • the position where the epidural needle 406 is inserted into the epidural space 405 is generally selected to be three or more vertebral bodies in the spine 403 from the target stimulation site.
  • the stylet 150 is completely inserted into the stylet lumen 109 (see FIG. 1) formed on the first lead 102. Then, as shown in FIG. 5, the tip 107 of the first lead 102 into which the stylet 150 is inserted is passed through the epidural needle 406, and the first lead 102 is inserted into the living body 404. Then, the first lead 102 is inserted into the epidural space 405 by pushing the proximal end 150 a of the stylet 150 in the axial direction.
  • the proximal end 150a of the stylet 150 is further pushed in the axial direction, the first lead 102 is directed upward into the epidural space 405, and the stimulation electrode 105 of the first lead 102 is brought close to the target stimulation site. Position.
  • the first lead 102 is inserted into and removed from the living body 404 and the stimulation electrode 105 is moved little by little, and the programmer 350 is operated to perform nerve stimulation.
  • the stimulation apparatus 103 an electrical stimulation signal having a predetermined stimulation intensity is generated based on the operation of the doctor, and the generated electrical stimulation signal is output to the stimulation electrode 105, and the position of the stimulation electrode 105 is determined. Neural stimulation of the part close to Then, the doctor determines the optimal position of the stimulation electrode 105 while listening to the patient's response to the nerve stimulation.
  • the doctor holds the first lead 102 and the stylet 150 so that the stimulation electrode 105 does not move from the determined optimal position, and the stylet lumen of the first lead 102.
  • the epidural needle 406 is removed from the living body 404.
  • the slit portion (not shown) of the epidural needle 406 is torn, and the epidural needle 406 is removed from the surface of the first lead 102.
  • protruding portion a part of the body 106 protruding from the body (hereinafter referred to as “protruding portion”) corresponds to an excessive portion for removing the epidural needle 406 from the living body 404 described with reference to FIG.
  • a small incision 408 is formed at the insertion site of the first lead 102 on the back side, and the stylet 150 is taken out from the stylet lumen 109 of the first lead 102. Then, the body 106 of the first lead 102 is sewn to the tissue exposed by the small incision 408 with a thread (not shown) and fixed. Thereby, it is possible to prevent the determined position of the stimulation electrode 105 from shifting.
  • a subcutaneous tunnel (not shown) that penetrates the small incision 408 and the small incision 410 is formed in the living body 404 using a tunneling tool (not shown).
  • the doctor holds the second operation unit 133 (see FIG. 1) of the guide wire 130 and the first operation unit 131 is formed at the proximal end 113 of the second lead 104.
  • the first lumen 114a is inserted through the opening.
  • the doctor holds the second lead 104 with the hand that does not have the guide wire 130 so that the second lead 104 does not move.
  • the 1st operation part 131 will advance in the 1st lumen 114a, and will be inserted in the 2nd lumen 114b.
  • the locked portion 132 comes into contact with the locking portion 202 and the movement of the guide wire 130 is stopped as shown in FIG. At this time, the first operation unit 131 protrudes from the tip 112 of the second lead 104.
  • the doctor inserts the first operation unit 131 protruding from the tip 112 of the second lead 104 into a subcutaneous tunnel (not shown) through an opening formed in the small incision 408. And the 1st operation part 131 is pushed to the axial direction. As a result, the first operation unit 131 advances through the subcutaneous tunnel (not shown), and the tip of the first operation unit 131 protrudes from the small incision 410 as shown in FIG.
  • the doctor grasps the tip of the first operation unit 131 and pulls it in the direction from the small incision 410 toward the outside of the body (for example, the direction indicated by the white arrow in FIG. 8).
  • the locking portion 202 (see FIG. 2B) of the second lead 104 is pushed by the locked portion 132 of the guide wire 130.
  • the second lead 104 is moved together with the guide wire 130 in the direction indicated by the white arrow in FIG. 8, and the second lead 104 is moved from the distal end 112 through the opening formed in the small incision 408 to the subcutaneous tunnel ( (Not shown).
  • the doctor when the doctor further pulls the first operation unit 131 in the direction indicated by the white arrow in FIG. 8, the second lead 104 advances through the subcutaneous tunnel as shown in FIG. At this time, the doctor can know the implantation position of the second lead 104 by checking the scale 203 (see FIG. 2) of the first operation unit 131.
  • the second operation portion of the guide wire is supported while supporting the second lead 104 so that the implantation position of the second lead 104 does not change.
  • the guide wire 130 is taken out from the guide wire lumen 114 of the second lead 104.
  • the body 110 of the second lead 104 is sewn and fixed to the tissue exposed by the small incision 408 with a thread (not shown).
  • the body portions protruding from the small incision 408 of the first and second leads 102 and 104 are bundled, and implanted under the small incision 408 together with the stimulator 103.
  • a suture hole (not shown) formed in the casing 116 (see FIG. 1) of the stimulation device 103 so that the electrical stimulation device 101 is fixed in a state of being completely implanted in the living body 404.
  • Is threaded (not shown), and the stimulator 103 is sewn to the tissue of the living body 404.
  • the small incisions 408 and 410 are respectively sutured with the suture thread 409.
  • This treatment is intended to prevent the stimulating device 103 from moving within the living body 404 or prevent an infection from being caused from the insertion port of the electrical stimulating device 101.
  • the second lead 104 by pulling the first operation portion 131 of the guide wire 130 while the guide wire 130 is completely penetrated into the second lead 104, the second lead 104. Can be implanted in vivo. Since the second lead 104 is implanted by pulling the guide wire 130, it is possible to prevent the second lead 104 from being bent during the implantation and difficult to advance into the living body. As a result, there is an effect that the second lead 104 can be easily implanted in, for example, an extremely curved subcutaneous tunnel.
  • the first and second leads 102 and 104 and the stimulation device 103 are described as the electrical stimulation device 101.
  • the electrical stimulation device 101 including the programmer 350 is further described.
  • a structure constituted by the second lead 104 and the guide wire 130 corresponds to a lead assembly.
  • a connector for detachably connecting various leads (the first lead 102 or the second lead 104) and the stimulation device 103 may be provided in the various leads and the stimulation device 103.
  • the stimulation electrode 105 or the coil unit 111 and the stimulation circuit 117 are electrically connected.
  • the epidural needle 406 (see FIG. 6) used for implantation of the first lead 102 is removed from the first lead 102 without tearing. be able to. As a result, it is not necessary to provide an extra portion in the body 106 (see FIG. 1) for tearing the epidural needle 406, and the axial length of the body 106 can be shortened.
  • the epidural needle 406 used for implantation of the first lead 102 can be removed from the first lead 102 without tearing, so that the epidural needle 406 used for implantation is used. Needless to say, it does not have to be divided or slitted.
  • the electrical stimulation device 101 includes the coil part 111 in the second lead 104.
  • a part other than the coil part 111 may be included.
  • a reed switch that can switch on / off the stimulation circuit from outside the body may be used.
  • a guide wire lumen 114 such as the second lead 104 may be formed on the first lead 102.
  • the second lead 104 is implanted in the living body so as to be guided from the waist (back) to the body side.
  • the second lead 104 is passed from the waist to the body side through the abdomen. It can also be implanted in the living body so as to guide it.
  • the electrical stimulation apparatus 101 can be implanted in other places in the living body by the same procedure.
  • DESCRIPTION OF SYMBOLS 101 Electrical stimulation apparatus, 102 ... 1st lead, 103 ... Stimulation apparatus, 104 ... 2nd lead, 105 ... Stimulation electrode, 106, 110 ... Body, 109 ... Lumen for stylet, 111 ... Coil part, 114 ... Guide wire 114a ... first lumen, 114b ... second lumen, 115 ... fixing mechanism, 116 ... housing, 117 ... stimulation circuit, 130 ... guide wire, 131 ... first operation part, 132 ... locked part, 133 2nd operation unit, 150 ... stylet, 202 ... locking unit, 303 ... rechargeable battery, 304 ... charging unit, 305 ... communication unit, 306 ...
  • control unit 307 ... stimulation parameter setting unit, 308 ... electrode configuration setting unit 309: Oscillating unit 310 ... Stimulation electrode switch unit 350 350 Programmer 351 Power supply unit 352 Control unit 353 Communication unit 354 Coil , 403 ... spine, 404 ... biological, 405 ... epidural space, 406 ... epidural needle, 408, 410 ... small incision, 409 ... suture

Abstract

A lead assembly includes a lead that is implanted in a living body and a lead manipulator with a long shape that moves the lead in order to adjust the implantation location. The lead comprises the following: a first lumen that communicates from the base end to a predetermined position; a second lumen that communicates from that predetermined position to the tip and has a smaller diameter than the first lumen; and a lead main body on which is formed a locking unit at the boundary between the first lumen and the second lumen. The lead manipulator comprises the following: a manipulation unit with a long shape that can penetrate the second lumen; and a lock-engaging unit that connects to the manipulation unit and comes into contact with the locking unit in a state where the manipulation unit has passed through the first lumen in order to penetrate the second lumen.

Description

リード組立体、電気刺激装置およびリードLead assembly, electrical stimulator and lead
 本発明は、リード組立体、このリード組立体を用いた電気刺激装置およびリード組立体を構成するリードに関し、特に、生体内に植え込んで使用されるリード組立体、電気刺激装置およびリードに関する。 The present invention relates to a lead assembly, an electrical stimulation device using the lead assembly, and a lead constituting the lead assembly, and more particularly to a lead assembly, an electrical stimulation device, and a lead used by being implanted in a living body.
 現在のところ、痛み治療において、従来の薬物療法、神経ブロック療法あるいは外科的療法に効果を示さない場合や、副作用などによりその治療が継続できない場合に、神経を電気刺激することにより痛みを緩和する電気刺激療法が効果を上げている。電気刺激療法の1つである脊髄電気刺激療法は、脊髄を介して脳へ伝播する痛みを緩和するために、脊髄を電気刺激する刺激療法である。 At present, pain is alleviated by electrical stimulation of nerves when it is not effective in conventional drug therapy, nerve block therapy or surgical therapy, or when the treatment cannot be continued due to side effects. Electrical stimulation therapy is effective. Spinal cord electrical stimulation therapy, which is one type of electrical stimulation therapy, is a stimulation therapy that electrically stimulates the spinal cord in order to relieve pain transmitted to the brain through the spinal cord.
 脊髄電気刺激療法では、通常、電気刺激による疼痛緩和の有効性を確かめるために、24時間から数週間のトライアル期間が設けられる。トライアル期間では、一般的に、電極リードを背中側から穿刺して脊髄を覆う脊髄硬膜の外側にある硬膜外腔に刺激電極を留置した後、電極リードを体外の刺激装置と接続して様々な刺激パターンの下で疼痛緩和の程度が調べられる。そして、トライアル期間において所定の効果が認められた場合に、本植え込みが実施される。 In spinal cord electrical stimulation therapy, a trial period of 24 hours to several weeks is usually set up to confirm the effectiveness of pain relief by electrical stimulation. In the trial period, the electrode lead is generally punctured from the back side and the stimulation electrode is placed in the epidural space outside the spinal dura covering the spinal cord, and then the electrode lead is connected to an external stimulation device. The degree of pain relief can be examined under various stimulation patterns. Then, when a predetermined effect is recognized during the trial period, the main implantation is performed.
 本植え込みを行う場合には、トライアル期間に留置された電極リードが抜去された後、再び硬膜外腔に新たな電極リードの刺激電極が留置され、電極リードは皮下トンネルを通って腰部や腹部、あるいは胸部に導かれる。そして、電極リードが刺激装置と接続されて皮下に植え込まれる。 When performing this implantation, the electrode lead placed during the trial period is removed, and then a new electrode lead stimulation electrode is placed again in the epidural space, and the electrode lead passes through the subcutaneous tunnel to the waist and abdomen. Or led to the chest. The electrode lead is then connected to the stimulator and implanted subcutaneously.
 脊髄電気刺激療法におけるトライアル期間では、電極リードが体外の刺激装置と接続されているために、感染の危険性や、患者の活動の制限、あるいは、この活動の制限がストレスとなって疼痛緩和の有効性判断に影響を及ぼすという問題があった。 During the trial period of spinal cord stimulation, the electrode leads are connected to an external stimulator, which can reduce the risk of infection, the patient's activity limitation, or the limitation of this activity. There was a problem of affecting the effectiveness judgment.
 この問題を解決するために、ハウジングの両端に電極を備えた、リードレスの微小刺激装置が考えられた(特許文献1を参照)。この微小刺激装置は、備える電極が神経の近くに配置された状態において、生体内に完全に植え込まれるように構成されている。これにより、感染の危険性を軽減するとともに、患者の活動の制限を極力少なくすることを可能としている。 In order to solve this problem, a leadless micro stimulator having electrodes at both ends of the housing has been considered (see Patent Document 1). This micro stimulator is configured to be completely implanted in a living body in a state where the provided electrode is arranged near the nerve. This makes it possible to reduce the risk of infection and minimize the restriction of patient activity.
米国特許第5,193,539号明細書US Pat. No. 5,193,539
 ところで、特許文献1に記載の微小刺激装置による刺激の強度等を変更する際には、微小刺激装置と電磁結合方式で通信を行うプログラマが用いられる。しかしながら、電磁結合方式での通信では、微小刺激装置のコイルとプログラマのコイルが近接対向しなければならない。そのため、微小刺激装置を硬膜外腔内に配置する必要のある脊髄神経刺激療法の場合は、プログラマを背中に当てて微小刺激装置と通信を行わなければならない。このようなプログラマの操作は患者によっては困難な場合があり、またその操作を非常にわずらわしく感じる患者もいた。 By the way, when changing the intensity of stimulation by the micro stimulator described in Patent Document 1, a programmer that communicates with the micro stimulator by an electromagnetic coupling method is used. However, in the electromagnetic coupling type communication, the coil of the micro stimulator and the coil of the programmer must be close to each other. Therefore, in the case of spinal nerve stimulation therapy that requires the microstimulator to be placed in the epidural space, the programmer must be placed on the back to communicate with the microstimulator. The operation of such a programmer may be difficult for some patients, and some patients feel the operation very troublesome.
 この点、微小刺激装置の少なくとも電極の位置をそのままにして、コイル部(プログラマから電磁波を受信するための構成)だけを腹部や体側の皮下に配置することができれば、微小刺激装置と通信を行うためのプログラマの操作を手の届く範囲で行うことができる。 In this regard, if only the coil part (configuration for receiving electromagnetic waves from the programmer) can be placed under the skin of the abdomen or the body side, with at least the position of the electrodes of the microstimulator, the communication with the microstimulator is performed. Can be operated within the reach of the programmer.
 ここで、コイル部を腹部や体側の皮下に配置するためには、例えば、コイル部をリードに内蔵して、このリードを、背部(あるいは腰部)から体側(あるいは、体側を介して腹部)まで導くように生体内に植え込むという方法が考えられる。しかしながら、背部(あるいは腰部)から体側(あるいは、体側を介して腹部)までの皮膚は極端に湾曲しているので、そのような皮下にリードを植え込むことは、たとえ通常のスタイレットやガイドワイヤ等を用いたとしても困難であった。 Here, in order to arrange the coil part under the skin of the abdomen or the body side, for example, the coil part is built in the lead, and this lead is extended from the back part (or waist) to the body side (or the abdomen via the body side). A method of implanting the living body so as to guide it is conceivable. However, since the skin from the back (or lower back) to the body side (or the abdomen via the body side) is extremely curved, implanting the lead under the skin like that is a normal stylet, guide wire, etc. Even if was used, it was difficult.
 本発明はかかる点に鑑みてなされたものであり、湾曲した皮下への植え込みが容易なリード組立体、電気刺激装置およびリードを提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide a lead assembly, an electrical stimulation device, and a lead that can be easily implanted into a curved subcutaneous skin.
 上記課題を解決するため、本発明のリード組立体は、生体内に植え込まれるリードと、このリードを移動させて植え込み位置の調節を行う長尺体状のリード操作体とを含む。
 リードは、基端から所定位置まで連通する第1ルーメン、該所定位置から先端まで連通するとともに第1ルーメンよりも径が小さい第2ルーメン、並びに第1ルーメンおよび第2ルーメン間の境界に係止部が形成されたリード本体を備える。
 リード操作体は、第2ルーメンに貫入可能な長尺体状の操作部と、操作部に連続し、該操作部が第1ルーメンを通じて第2ルーメンに貫入された状態において、係止部と当接する被係止部と、を備える。
In order to solve the above-mentioned problems, a lead assembly according to the present invention includes a lead implanted in a living body and a long-shaped lead operation body that moves the lead to adjust the implantation position.
The lead is locked to a first lumen that communicates from the base end to a predetermined position, a second lumen that communicates from the predetermined position to the tip and has a smaller diameter than the first lumen, and a boundary between the first lumen and the second lumen A lead body having a portion formed thereon.
The lead operating body has an elongated operating portion that can be inserted into the second lumen, and is continuous with the operating portion. When the operating portion is inserted into the second lumen through the first lumen, A to-be-engaged locked portion.
 本発明の上述した構成によれば、リードの基端の開口からリード操作体を挿入して係止部と被係止部とを当接させた状態では、リードの先端から操作部の少なくとも一部が突出する。そして、この突出部分を引っ張ると、係止部が被係止部に押されてリードが移動する。 According to the above-described configuration of the present invention, in a state where the lead operating body is inserted from the opening at the base end of the lead and the locking portion and the locked portion are in contact with each other, at least one of the operating portion from the tip of the lead The part protrudes. When the protruding portion is pulled, the locking portion is pushed by the locked portion, and the lead moves.
 本発明によれば、リードの先端から突出した操作部を引っ張ることにより、リードの植え込み(生体内でリードを移動させること)が行えるので、当該植え込みの最中にリードが折れ曲がって生体内に進めることが困難になることを防止できる。その結果、例えば極端に湾曲した皮下トンネルなどにも容易にリードを植え込むことができる、という効果がある。 According to the present invention, since the lead can be implanted (the lead is moved in the living body) by pulling the operating portion protruding from the tip of the lead, the lead is bent during the implantation and advanced into the living body. Can be prevented from becoming difficult. As a result, there is an effect that the lead can be easily implanted into, for example, an extremely curved subcutaneous tunnel.
本発明の実施形態に係る電気刺激装置の全体を示す斜視図である。It is a perspective view showing the whole electrical stimulation device concerning an embodiment of the present invention. 図2(a):本発明の実施形態に係る第2リードの先端付近における軸方向の断面を示す模式図である。 図2(b):ガイドワイヤが挿入された状態の第2リードを示す模式図である。FIG. 2A is a schematic diagram showing a cross section in the axial direction near the tip of the second lead according to the embodiment of the present invention. FIG. 2B is a schematic diagram showing the second lead with the guide wire inserted. 本発明の実施形態に係る刺激回路およびプログラマの機能を示すブロック図である。It is a block diagram which shows the function of the stimulation circuit which concerns on embodiment of this invention, and a programmer. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body. 本発明の実施形態に係る電気刺激装置を生体内に植え込む手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which implants the electrical stimulation apparatus which concerns on embodiment of this invention in the biological body.
 以下、本発明を実施するための形態例について説明する。以下に述べる実施の形態例は、本発明の好適な具体例である。そのため、技術的に好ましい種々の限定が付されている。しかしながら、本発明の範囲は、下記の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。例えば、以下の説明で挙げる各パラメータの数値的条件は好適例に過ぎず、説明に用いた各図における寸法、形状および配置関係も概略的なものである。 Hereinafter, embodiments for carrying out the present invention will be described. The embodiments described below are preferable specific examples of the present invention. Therefore, various technically preferable limitations are attached. However, the scope of the present invention is not limited to these embodiments unless otherwise specified in the following description. For example, the numerical conditions of each parameter given in the following description are only suitable examples, and the dimensions, shapes, and arrangement relationships in the drawings used for the description are also schematic.
 以下の手順で説明を行う。
<実施形態例>
1.電気刺激装置の構成
2.刺激回路の機能
3.プログラマの機能
4.電気刺激装置の植え込み手順
<変形例>
The description will be made in the following procedure.
<Example Embodiment>
1. 1. Configuration of electrical stimulation device 2. Functions of the stimulation circuit 3. Programmer functions Implanting procedure of electrical stimulation device <Modification>
<実施形態例>
 本発明の実施形態の例を、図1~10を参照して説明する。
[1.電気刺激装置の構成]
 図1は、本発明の実施形態に係る電気刺激装置の全体を示す斜視図である。
<Example Embodiment>
Examples of embodiments of the present invention will be described with reference to FIGS.
[1. Configuration of electrical stimulation device]
FIG. 1 is a perspective view showing an entire electrical stimulation apparatus according to an embodiment of the present invention.
 電気刺激装置101は、生体に植え込み可能に構成されており、電気的な刺激信号(以下、「電気的刺激信号」という)により、生体内における脊髄等の神経や筋肉を刺激するものである。この電気刺激装置101は、神経等を刺激するための第1リード102と、第1リード102に電気的刺激信号を供給する刺激装置103と、刺激装置103の動作を制御するための第2リード104(リード)と、を備える。電気刺激装置101は、第2リード104を生体内に植え込むためのガイドワイヤ130(リード操作体)をさらに有する。 The electrical stimulation device 101 is configured to be implanted in a living body, and stimulates nerves and muscles such as the spinal cord in the living body with an electrical stimulation signal (hereinafter referred to as “electrical stimulation signal”). The electrical stimulation device 101 includes a first lead 102 for stimulating nerves, a stimulation device 103 for supplying an electrical stimulation signal to the first lead 102, and a second lead for controlling the operation of the stimulation device 103. 104 (lead). The electrical stimulation device 101 further includes a guide wire 130 (lead operating body) for implanting the second lead 104 into the living body.
 まず、第1リード102について説明する。
 第1リード102は、神経等を刺激するための4つの刺激電極105と、第1リード102を生体内に配置した際に各刺激電極105が生体に対して剥き出しになるように固定するボディ106とを備える。ここでは、刺激電極105の数を4つとしたが、これはあくまでも一例であって、刺激電極105の数は任意に設定可能である。
First, the first lead 102 will be described.
The first lead 102 includes four stimulation electrodes 105 for stimulating nerves and the like, and a body 106 that fixes each stimulation electrode 105 so as to be exposed to the living body when the first lead 102 is disposed in the living body. With. Here, the number of stimulation electrodes 105 is four, but this is only an example, and the number of stimulation electrodes 105 can be arbitrarily set.
 刺激電極105は、導電性があって生体適合性がある素材、例えばプラチナやプラチナ合金(例えば、プラチナ90%/イリジウム10%合金)等の素材でできており、中空の略円筒状に形成されている。例えば、脊髄の神経を刺激する際には、脊髄硬膜と脊柱背側との距離が約5mmの硬膜外腔に第1リード102が植え込まれることになるので、この場合の刺激電極105の外径は、約1~3mmであることが好ましい。また、刺激電極105の内径は、後述するスタイレット用ルーメン109の直径よりも大きく設定する必要がある。これは、刺激電極105でスタイレット用ルーメン109を塞がないようにするためである。 The stimulation electrode 105 is made of a conductive and biocompatible material such as platinum or a platinum alloy (for example, platinum 90% / iridium 10% alloy), and is formed in a hollow, substantially cylindrical shape. ing. For example, when the nerve of the spinal cord is stimulated, the first lead 102 is implanted in the epidural space where the distance between the spinal dura mater and the spinal column is about 5 mm. The outer diameter of is preferably about 1 to 3 mm. Further, the inner diameter of the stimulation electrode 105 needs to be set larger than the diameter of a stylet lumen 109 described later. This is to prevent the stimulation electrode 105 from blocking the stylet lumen 109.
 4つの刺激電極105には、4本の導線205(図3を参照)の一端がそれぞれ接続されている。そして、4本の導線205の他端が、後述する刺激装置103の刺激回路117とそれぞれ接続されている。これにより、各刺激電極105と刺激回路117とが電気的に接続されている。なお、4本の導線205は、ボディ106内部に完全に埋め込まれている。 4 ends of four conducting wires 205 (see FIG. 3) are connected to the four stimulation electrodes 105, respectively. The other ends of the four conductive wires 205 are connected to a stimulation circuit 117 of the stimulation apparatus 103 described later. Thereby, each stimulation electrode 105 and the stimulation circuit 117 are electrically connected. The four conductive wires 205 are completely embedded in the body 106.
 ボディ106は、柔軟性があって、かつ生体適合性がある素材、例えばシリコーンやポリウレタン等の樹脂素材でできており、略円筒形状に形成されている。そして、ボディ106には、基端108に開口して先端107付近まで連通する、開口形が円形の孔が軸方向に開けられている。この孔が、スタイレット150を挿入するためのスタイレット用ルーメン109である。スタイレット用ルーメン109の直径は、スタイレット150の直径とほぼ等しいか、それより少し大きい必要がある。 The body 106 is made of a flexible and biocompatible material, for example, a resin material such as silicone or polyurethane, and has a substantially cylindrical shape. In the body 106, a hole having a circular opening shape that opens to the proximal end 108 and communicates to the vicinity of the distal end 107 is formed in the axial direction. This hole is a stylet lumen 109 for inserting the stylet 150. The diameter of the stylet lumen 109 needs to be approximately equal to or slightly larger than the diameter of the stylet 150.
 このようなスタイレット用ルーメン109を第1リード102に形成したことにより、第1リード102を生体内に植え込む際に、スタイレット150を利用できる。その結果、第1リード102の生体内への植え込みをより容易に行うことができるとともに、刺激電極105の生体内への配置の正確性をより向上させることができる。 Since the stylet lumen 109 is formed on the first lead 102, the stylet 150 can be used when the first lead 102 is implanted in the living body. As a result, the first lead 102 can be more easily implanted in the living body, and the accuracy of the placement of the stimulation electrode 105 in the living body can be further improved.
 また、ボディ106の外径は、刺激電極105が剥き出しになるようにするため、刺激電極105の外径とほぼ等しい。ところで、硬膜外腔に第1リード102を植え込む場合、刺激電極105が安定して配置されるためには、第1リード102の一部が硬膜外腔に少なくとも脊椎における3椎体に等しい長さ以上入っている必要がある。そのため、ボディ106の軸方向の長さは、脊椎における3椎体に等しい長さプラス15cmよりも長くなっている。ここでの15cmという長さは、背中の皮膚の穿刺部位から硬膜外腔までの平均的な長さと、後述する硬膜外針のスリットを基端108付近で引き裂くための余剰の長さの和に相当する。 Also, the outer diameter of the body 106 is substantially equal to the outer diameter of the stimulation electrode 105 so that the stimulation electrode 105 is exposed. By the way, when the first lead 102 is implanted in the epidural space, in order for the stimulation electrode 105 to be stably disposed, a part of the first lead 102 is equal to at least the three vertebral bodies in the spine in the epidural space. It must be longer than the length. Therefore, the axial length of the body 106 is longer than the length equal to the three vertebral bodies in the spine plus 15 cm. The length of 15 cm here is an average length from the puncture site of the back skin to the epidural space, and an extra length for tearing the slit of the epidural needle described later near the proximal end 108. Equivalent to the sum.
 次に、第2リード104について、図1に加えてさらに図2を参照して説明する。
 図2は、本発明の実施形態に係る第2リード104の先端付近を示す説明図である。
 図2(a)は第2リード104の軸方向の断面を示す模式図、図2(b)はガイドワイヤ130が完全に挿入された状態の第2リード104を示す模式図である。
Next, the second lead 104 will be described with reference to FIG. 2 in addition to FIG.
FIG. 2 is an explanatory view showing the vicinity of the tip of the second lead 104 according to the embodiment of the present invention.
FIG. 2A is a schematic diagram showing a cross section of the second lead 104 in the axial direction, and FIG. 2B is a schematic diagram showing the second lead 104 in a state where the guide wire 130 is completely inserted.
 第2リード104のボディ110(リード本体)は、第1リード102のボディ106と同様に、柔軟性があって、かつ生体適合性がある素材、例えばシリコーンやポリウレタン等の樹脂素材でできており、略円筒形状に形成されている。 Like the body 106 of the first lead 102, the body 110 (lead body) of the second lead 104 is made of a flexible and biocompatible material such as a resin material such as silicone or polyurethane. It is formed in a substantially cylindrical shape.
 ボディ110の軸方向の長さは、例えば第2リード104を、腰部(あるいは背部)から体側まで導かれるように生体内に配置する場合には、患者の腹囲の約1/4程度の長さであることが好ましい。ただし、腰部から体側を通じて腹部まで導かれるように第2リード104を配置する場合には、ボディ110の軸方向の長さは患者の腹囲の約1/2程度の長さにする必要がある。 The axial length of the body 110 is, for example, about 1/4 of the abdominal circumference of the patient when the second lead 104 is disposed in the living body so as to be guided from the waist (or back) to the body side. It is preferable that However, when the second lead 104 is arranged so as to be guided from the waist to the abdomen through the body side, the length of the body 110 in the axial direction needs to be about ½ of the abdominal circumference of the patient.
 また、ボディ110は、第2リード104の生体内への挿入を容易にするために、その先端112付近が図2(a)に示すようにテーパー状に形成されている。そして、ボディ110は、先端112から基端113まで貫通し、開口形が円形の貫通孔を有している。この貫通孔が、ガイドワイヤ130を貫入するためのガイドワイヤ用ルーメン114である。 Further, in order to facilitate the insertion of the second lead 104 into the living body, the vicinity of the tip 112 of the body 110 is formed in a tapered shape as shown in FIG. The body 110 penetrates from the distal end 112 to the proximal end 113 and has a through-hole having a circular opening shape. This through hole is a guide wire lumen 114 for penetrating the guide wire 130.
 ガイドワイヤ用ルーメン114は、図2(a),(b)に示すように、第1ルーメン114aと、この第1ルーメン114aの直径よりも小さい直径を有する第2ルーメン114bとからなる。第1ルーメン114aはボディ110の基端113から先端112付近の所定位置まで形成されており、第2ルーメン114bは、当該所定位置から先端112まで形成されている。 As shown in FIGS. 2A and 2B, the guide wire lumen 114 includes a first lumen 114a and a second lumen 114b having a diameter smaller than the diameter of the first lumen 114a. The first lumen 114a is formed from the base end 113 of the body 110 to a predetermined position near the distal end 112, and the second lumen 114b is formed from the predetermined position to the distal end 112.
 また、ボディ110において、第1ルーメン114aと第2ルーメン114bとの境目を形成している部分が係止部202に相当し、この係止部202よりも先端112側にコイル部111が埋め込まれている。コイル部111が埋め込まれている部分は、その他の部分に比べて厚みがあるので、コイル部111全体を確実にボディ110に内蔵することができる。これにより、第2リード104を植え込んだ際に、コイル部111が生体に接触することを防止できる。その上、第2リード104を腰部から体側(あるいは、体側を通じて腹部)まで導かれるように生体内に植え込んだ際に、体側や腹部などの人の手が届く場所の皮下にコイル部111を配置することができる。 Further, in the body 110, a portion forming a boundary between the first lumen 114 a and the second lumen 114 b corresponds to the locking portion 202, and the coil portion 111 is embedded on the tip 112 side from the locking portion 202. ing. Since the portion where the coil portion 111 is embedded is thicker than the other portions, the entire coil portion 111 can be reliably incorporated in the body 110. Thereby, when the 2nd lead 104 is implanted, it can prevent that the coil part 111 contacts a biological body. In addition, when the second lead 104 is implanted into the living body so that the second lead 104 is guided from the waist to the body side (or the abdomen through the body side), the coil portion 111 is placed under the skin where human hands reach such as the body side and the abdomen. can do.
 また、ボディ110の先端112付近には、第2リード104を生体内に植え込んだ際に、第2リード104の位置を保持する固定機構115が設けられている。固定機構115は、ボディ110の外周面から突出した複数の枝部115aからなる。枝部115aは、ボディ110と同じ素材で略棒状に形成されており、その一方の端面が丸みを帯びている。そして、他方の端面がボディ110と接合している。 Further, a fixing mechanism 115 that holds the position of the second lead 104 when the second lead 104 is implanted in the living body is provided near the tip 112 of the body 110. The fixing mechanism 115 includes a plurality of branch portions 115 a protruding from the outer peripheral surface of the body 110. The branch part 115a is made of the same material as the body 110 and is formed in a substantially rod shape, and one end face thereof is rounded. The other end face is joined to the body 110.
 これらの枝部115aは、ボディ110の外周面の周方向に沿って、等角度間隔に配置されており、ボディ110の軸に対して基端113側に向かって傾斜している。これにより、ボディ110が基端113側に引っ張られた場合に、枝部115aが生体の組織に引っ掛かって先端112の位置がずれるのを防ぐ。なお、枝部115aのボディ110への接合方法としては、例えば、融着(熱融着、高周波融着、超音波融着等)による方法、接着(接着剤や溶媒による接着)による方法等が挙げられる。 These branch portions 115 a are arranged at equiangular intervals along the circumferential direction of the outer peripheral surface of the body 110, and are inclined toward the base end 113 side with respect to the axis of the body 110. Accordingly, when the body 110 is pulled toward the proximal end 113, the branch portion 115a is prevented from being caught by a living tissue and the position of the distal end 112 is prevented from being shifted. In addition, as a joining method of the branch part 115a to the body 110, for example, a method by fusion (thermal fusion, high-frequency fusion, ultrasonic fusion, etc.), a method by adhesion (adhesion with an adhesive or a solvent), or the like. Can be mentioned.
 コイル部111は、図2(a),(b)に示すように、例えば電線をらせん状に巻いたコイルを含む回路であり、導線204(図3を参照)を介して後述する刺激装置103の刺激回路117と電気的に接続されている。なお、導線204は、ボディ110内部に完全に埋め込まれている。 As shown in FIGS. 2A and 2B, the coil unit 111 is a circuit including, for example, a coil in which an electric wire is spirally wound, and a stimulation device 103 to be described later via a conductive wire 204 (see FIG. 3). The stimulation circuit 117 is electrically connected. The conducting wire 204 is completely embedded in the body 110.
 次に、刺激装置103について説明する。
 刺激装置103は、筐体116およびこの筐体116に収納・固定された刺激回路117を備えている。
 筐体116は、比較的硬く、生体適合性がある金属や樹脂、例えばチタンやエポキシ等、あるいはセラミック等の素材でできており、略直方体状に形成されている。この筐体116には、開口形が円形の貫通孔118a,118bが開けられている。
Next, the stimulation apparatus 103 will be described.
The stimulation device 103 includes a housing 116 and a stimulation circuit 117 housed and fixed in the housing 116.
The casing 116 is made of a material such as a relatively hard and biocompatible metal or resin, such as titanium or epoxy, or ceramic, and is formed in a substantially rectangular parallelepiped shape. The casing 116 has through holes 118a and 118b with circular openings.
 一方の貫通孔118aの直径は、第1リード102のボディ106の外径とほぼ等しく、ボディ106の基端108から所定の位置までの部分がこの貫通孔118aに挿入・固定されている。これにより、筐体116の一方の側面から、ボディ106の基端108に開口するスタイレット用ルーメン109を露出させることができ、スタイレット150を当該スタイレット用ルーメン109に挿入可能にしている。 The diameter of one through hole 118a is substantially equal to the outer diameter of the body 106 of the first lead 102, and the portion from the base end 108 of the body 106 to a predetermined position is inserted and fixed in the through hole 118a. As a result, the stylet lumen 109 that opens to the base end 108 of the body 106 can be exposed from one side surface of the housing 116, and the stylet 150 can be inserted into the stylet lumen 109.
 また、他方の貫通孔118bの直径は、第2リード104のボディ110の外径とほぼ等しく、ボディ110の基端113から所定の位置までの部分がこの貫通孔118bに挿入・固定される。これにより、筐体116の他方の側面から、ボディ110の基端113に開口するガイドワイヤ用ルーメン114を露出させることができ、ガイドワイヤ130を当該ガイドワイヤ用ルーメン114に挿入可能にしている。 Further, the diameter of the other through hole 118b is substantially equal to the outer diameter of the body 110 of the second lead 104, and a portion from the base end 113 of the body 110 to a predetermined position is inserted and fixed in the through hole 118b. Thereby, the guide wire lumen 114 opened to the base end 113 of the body 110 can be exposed from the other side surface of the housing 116, and the guide wire 130 can be inserted into the guide wire lumen 114.
 刺激回路117は、回路基板上にカスタムICなどの小型部品を実装した回路であり、電気的刺激信号を生成する。この刺激回路117は、生成した電気的刺激信号を各刺激電極105に独立して供給するように、ボディ106に埋め込まれている4本の導線205(図3を参照)と電気的に接続されている。また、刺激回路117は、コイル部111と導線204(図3を参照)を介して電気的に接続されている。なお、刺激回路117の機能的な構成については、図3にて後述する。 The stimulation circuit 117 is a circuit in which a small part such as a custom IC is mounted on a circuit board, and generates an electrical stimulation signal. The stimulation circuit 117 is electrically connected to four conductors 205 (see FIG. 3) embedded in the body 106 so as to supply the generated electrical stimulation signal to each stimulation electrode 105 independently. ing. In addition, the stimulation circuit 117 is electrically connected to the coil unit 111 via the conductive wire 204 (see FIG. 3). The functional configuration of the stimulation circuit 117 will be described later with reference to FIG.
 次に、ガイドワイヤ130について説明する。
 ガイドワイヤ130は、長尺体状であって超弾性合金やステンレスなどの金属線をコアとしてできている。コアの表面には必要に応じて樹脂被覆などを設けることができる。ガイドワイヤ130は、図1に示すように、基端113に形成された開口を通じてガイドワイヤ用ルーメン114にその先端から挿入され、図2(b)に示すように、第2リード104に貫入された状態で使用される。そのため、ガイドワイヤ130の軸方向の長さは、第2リード104の軸方向の長さよりも十分に長くなければならない。
Next, the guide wire 130 will be described.
The guide wire 130 has an elongated shape and is made of a metal wire such as a superelastic alloy or stainless steel as a core. A resin coating or the like can be provided on the surface of the core as necessary. As shown in FIG. 1, the guide wire 130 is inserted into the guide wire lumen 114 from the distal end through an opening formed in the base end 113, and penetrates into the second lead 104 as shown in FIG. 2B. Used in the state. Therefore, the length of the guide wire 130 in the axial direction must be sufficiently longer than the length of the second lead 104 in the axial direction.
 このガイドワイヤ130には、その先端側から順番に、第1操作部131(操作部)、被係止部132および第2操作部133が設けられている。 The guide wire 130 is provided with a first operation portion 131 (operation portion), a locked portion 132, and a second operation portion 133 in order from the distal end side.
 第1操作部131は略円柱形状に形成されている。この第1操作部131の直径は、図2(b)に示すように、第2ルーメン114bの直径とほぼ等しいか、それよりも小さくなっており、第1操作部131は、第1ルーメン114aはもちろん第2ルーメン114bを通過可能としている。この第1操作部131の表面には、第1操作部131の軸方向の長さを示す目盛り203が形成されている。 The first operation part 131 is formed in a substantially cylindrical shape. As shown in FIG. 2B, the diameter of the first operation portion 131 is substantially equal to or smaller than the diameter of the second lumen 114b, and the first operation portion 131 has the first lumen 114a. Of course, it is possible to pass through the second lumen 114b. A scale 203 indicating the length of the first operation unit 131 in the axial direction is formed on the surface of the first operation unit 131.
 被係止部132は、第1操作部131と同じ軸を有する略円柱形状に形成されている。被係止部132は、例えばコア上にパイプ状の金属部材を溶接などによって形成することができる。被係止部132の直径は、第2ルーメン114bの直径よりも大きく、第1ルーメン114aの直径以下となっており、被係止部132は第1ルーメン114aのみを通過可能としている。これにより、図2(b)に示すように、第1操作部131が第2ルーメン114bに完全に貫入された状態においては、被係止部132が係止部202に当接した状態となる。 The locked portion 132 is formed in a substantially cylindrical shape having the same axis as the first operation portion 131. The locked portion 132 can be formed, for example, by welding a pipe-shaped metal member on the core. The diameter of the locked portion 132 is larger than the diameter of the second lumen 114b and equal to or less than the diameter of the first lumen 114a, and the locked portion 132 can pass only the first lumen 114a. As a result, as shown in FIG. 2B, the locked portion 132 is in contact with the locking portion 202 when the first operating portion 131 is completely inserted into the second lumen 114b. .
 第2操作部133は、被係止部132と同じ軸を有する略円柱形状に形成されている。図1および図2(b)に示す例では、第2操作部133の直径は、第1操作部131と同じく第2ルーメン114bの直径とほぼ等しいか、それよりも小さくなっている。しかしながら、第2操作部133は第1ルーメン114aを通過可能となるように構成されていればよく、その直径は、第1ルーメン114aの直径とほぼ等しいか、それよりも小さければよい。すなわち、被係止部132の延在長を長くして、被係止部132で第2操作部133を兼ねるようにしてもよい。 The second operation part 133 is formed in a substantially cylindrical shape having the same axis as the locked part 132. In the example shown in FIG. 1 and FIG. 2B, the diameter of the second operation portion 133 is substantially equal to or smaller than the diameter of the second lumen 114b as in the first operation portion 131. However, the second operation unit 133 only needs to be configured to be able to pass through the first lumen 114a, and the diameter of the second operation unit 133 only needs to be approximately equal to or smaller than the diameter of the first lumen 114a. That is, the length of extension of the locked portion 132 may be increased, and the locked portion 132 may also serve as the second operation portion 133.
 次に、刺激回路117および刺激回路117への指示をコイル部111に送るためのプログラマ350の機能的な構成について図3を参照して説明する。
 図3は、本発明の実施形態に係る刺激回路およびプログラマの機能を示すブロック図である。
Next, a functional configuration of the programmer 350 for sending the instruction to the stimulation circuit 117 and the stimulation circuit 117 to the coil unit 111 will be described with reference to FIG.
FIG. 3 is a block diagram illustrating functions of the stimulation circuit and the programmer according to the embodiment of the present invention.
 [2.刺激回路の機能]
 まず、刺激回路117の機能的な構成について説明する。
 刺激回路117は、充電池303と、充電部304と、通信部305と、制御部306と、刺激パラメータ設定部307と、電極構成設定部308と、発振部309と、刺激電極スイッチ部310とを備える。
[2. Function of stimulation circuit]
First, the functional configuration of the stimulation circuit 117 will be described.
The stimulation circuit 117 includes a rechargeable battery 303, a charging unit 304, a communication unit 305, a control unit 306, a stimulation parameter setting unit 307, an electrode configuration setting unit 308, an oscillation unit 309, and a stimulation electrode switch unit 310. Is provided.
 充電池303は、例えばリチウムイオン電池等の充電可能な電池である。この充電池303は、蓄積している電力を、刺激回路117を構成する各ブロックに供給している。 The rechargeable battery 303 is a rechargeable battery such as a lithium ion battery. The rechargeable battery 303 supplies the accumulated power to each block constituting the stimulation circuit 117.
 第2リード104に内蔵されたコイル部111は、例えばコイルとコンデンサとで構成される共振回路である。コイル部111は、充電池303の充電を行う場合、後述するプログラマ350から送信される充電用の電磁波を受信する。そして、この受信に伴ってコイル部111から発生する交流電流が充電部304に出力される。また、コイル部111はプログラマ350から送信される、所定の情報がのせられた電磁波を受信し、受信した電磁波がコイル部111から通信部305に出力される。 The coil unit 111 built in the second lead 104 is a resonance circuit composed of, for example, a coil and a capacitor. When the rechargeable battery 303 is charged, the coil unit 111 receives a charging electromagnetic wave transmitted from a programmer 350 described later. Then, an alternating current generated from the coil unit 111 with this reception is output to the charging unit 304. The coil unit 111 receives an electromagnetic wave on which predetermined information is transmitted, which is transmitted from the programmer 350, and the received electromagnetic wave is output from the coil unit 111 to the communication unit 305.
 充電部304は、整流回路を内蔵し、コイル部111から出力された交流電流を直流電流に変換して電力を取得する。そして、取得した電力で充電池303の充電を行う。 The charging unit 304 has a built-in rectifier circuit, converts the alternating current output from the coil unit 111 into a direct current, and acquires power. Then, the rechargeable battery 303 is charged with the acquired power.
 通信部305は、コイル部111が受信した電磁波を復調し、電磁波にのせられている情報を取り出す。取り出された情報は制御部306に出力される。 The communication unit 305 demodulates the electromagnetic wave received by the coil unit 111 and extracts information carried on the electromagnetic wave. The extracted information is output to the control unit 306.
 制御部306は、例えばマイクロコンピュータ等であり、刺激回路117の各ブロックを制御している。この制御部306は、通信部305から入力された情報を記憶する。ただし、すでに情報が記憶されている場合には、この情報を新たに入力された情報に置き換えて記憶する。そのため、制御部306は、通信部305から入力された最新の情報を記憶している。 The control unit 306 is a microcomputer, for example, and controls each block of the stimulation circuit 117. The control unit 306 stores information input from the communication unit 305. However, when information is already stored, this information is replaced with newly input information and stored. Therefore, the control unit 306 stores the latest information input from the communication unit 305.
 ここで、制御部306が記憶している情報は刺激パラメータおよび電極構成情報である。
 刺激パラメータは、電気的刺激信号の刺激強度に関する情報であり、電気的刺激信号の刺激強度を決定するパルス電圧、パルス電流、パルス幅あるいは周波数の値を示す情報であり、刺激パラメータ設定部307に出力される。
Here, the information stored in the control unit 306 is stimulation parameters and electrode configuration information.
The stimulation parameter is information regarding the stimulation intensity of the electrical stimulation signal, and is information indicating the value of the pulse voltage, pulse current, pulse width, or frequency that determines the stimulation intensity of the electrical stimulation signal. Is output.
 また、電極構成情報は、電極構成に関する情報であり、電気的刺激信号の極性を変更するための情報と、電気的刺激信号を出力する刺激電極105を刺激電極スイッチ部310に選択させるための情報とを含む情報であり、電極構成設定部308に出力される。 The electrode configuration information is information related to the electrode configuration, and information for changing the polarity of the electrical stimulation signal and information for causing the stimulation electrode switch unit 310 to select the stimulation electrode 105 that outputs the electrical stimulation signal. And is output to the electrode configuration setting unit 308.
 刺激パラメータ設定部307は、入力された刺激パラメータに基づいて、発振部309で発生する電気的刺激信号の刺激強度を変更するための刺激強度変更信号を生成する。 The stimulation parameter setting unit 307 generates a stimulation intensity change signal for changing the stimulation intensity of the electrical stimulation signal generated by the oscillation unit 309 based on the input stimulation parameter.
 電極構成設定部308は、入力された電極構成情報に基づいて、発振部309で発生する電気的刺激信号を出力する刺激電極105を選択するための電極構成選択信号を生成する。なお、刺激パラメータ設定部307から出力される刺激強度変更信号は発振部309に出力され、電極構成設定部308から出力される電極構成選択信号は刺激電極スイッチ部310に出力される。 The electrode configuration setting unit 308 generates an electrode configuration selection signal for selecting the stimulation electrode 105 that outputs the electrical stimulation signal generated by the oscillation unit 309 based on the input electrode configuration information. Note that the stimulation intensity change signal output from the stimulation parameter setting unit 307 is output to the oscillation unit 309, and the electrode configuration selection signal output from the electrode configuration setting unit 308 is output to the stimulation electrode switch unit 310.
 発振部309は、刺激パラメータ設定部307から入力される刺激強度変更信号に基づいて、電気的刺激信号を生成して刺激電極スイッチ部310に出力する。 The oscillation unit 309 generates an electrical stimulation signal based on the stimulation intensity change signal input from the stimulation parameter setting unit 307 and outputs the electrical stimulation signal to the stimulation electrode switch unit 310.
 刺激電極スイッチ部310は、電極構成設定部308から入力される電極構成選択信号に基づいて、発振部309から入力される電気的刺激信号を出力する刺激電極105を決定する。 The stimulation electrode switch unit 310 determines the stimulation electrode 105 that outputs the electrical stimulation signal input from the oscillation unit 309 based on the electrode configuration selection signal input from the electrode configuration setting unit 308.
 [3.プログラマの機能]
 次に、プログラマ350の機能的な構成について説明する。
 プログラマ350は、体外から使用される外部装置の一例であり、生体内に植え込まれた電気刺激装置101に対して通信等を行うものである。このプログラマ350は、電源部351と、制御部352と、通信部353と、コイル部354とを備える。
[3. Programmer function]
Next, a functional configuration of the programmer 350 will be described.
The programmer 350 is an example of an external device used from outside the body, and performs communication and the like with the electrical stimulation device 101 implanted in the living body. The programmer 350 includes a power supply unit 351, a control unit 352, a communication unit 353, and a coil unit 354.
 電源部351は、蓄積している電力を、プログラマ350を構成する各ブロックに供給している。電源部351には、例えば一次電池や充電池が用いられる。 The power supply unit 351 supplies the accumulated power to each block constituting the programmer 350. For the power supply unit 351, for example, a primary battery or a rechargeable battery is used.
 制御部352は、例えばマイクロコンピュータを含み、医師等のユーザの操作に基づいて、通信部353を制御する。この操作は、例えばプログラマ350が備える操作部(不図示)を操作することにより行われる。 The control unit 352 includes, for example, a microcomputer, and controls the communication unit 353 based on an operation of a user such as a doctor. This operation is performed, for example, by operating an operation unit (not shown) provided in the programmer 350.
 通信部353は、ユーザからの給電指示があった場合、制御部352の制御に基づいて、給電用電磁波を生成する。そして、生成した給電用電磁波を、コイル部354を介して電気刺激装置101のコイル部111に送信する。 When there is a power supply instruction from the user, the communication unit 353 generates a power supply electromagnetic wave based on the control of the control unit 352. Then, the generated electromagnetic wave for power supply is transmitted to the coil unit 111 of the electrical stimulation apparatus 101 via the coil unit 354.
 また、通信部353は、ユーザからの電気的刺激信号の刺激強度等を変更する指示があった場合、制御部352の制御に基づいて、刺激パラメータや電極構成情報がのせられた電磁波を生成する。そして、生成した電磁波を、コイル部354を介して電気刺激装置101のコイル部111に送信する。 In addition, when there is an instruction to change the stimulation intensity or the like of the electrical stimulation signal from the user, the communication unit 353 generates an electromagnetic wave on which stimulation parameters and electrode configuration information are placed based on the control of the control unit 352. . Then, the generated electromagnetic wave is transmitted to the coil unit 111 of the electrical stimulation apparatus 101 via the coil unit 354.
 コイル部354は、電磁波を電気刺激装置101へ送信できるコイルであればよく、例えば電線を円形あるいはらせん状に巻いたものでもよい。 The coil unit 354 may be any coil that can transmit electromagnetic waves to the electrical stimulation device 101, and may be, for example, a wire wound in a circular shape or a spiral shape.
 [4.電気刺激装置の植え込み手順]
 次に、硬膜外腔から脊髄の神経の電気刺激を行う場合の電気刺激装置101を植え込む手順について図4~10を参照して説明する。
 図4~6は背中付近を示す人体の縦断面図、図7~10は人体を背中側から見た説明図である。
[4. Procedure for implanting electrical stimulator]
Next, a procedure for implanting the electrical stimulation device 101 when electrical stimulation of spinal nerves is performed from the epidural space will be described with reference to FIGS.
4 to 6 are longitudinal sectional views of the human body showing the vicinity of the back, and FIGS. 7 to 10 are explanatory views of the human body viewed from the back side.
 まず、医師は、患者の痛みの分布状況に基づき、予め目標とする脊髄の刺激部位を決定する。そして、図4に示すように、分割式あるいはスリット付きの硬膜外針406を、X線透視下で患者の背中側から穿刺して硬膜外腔405まで挿入する。この硬膜外針406が硬膜外腔405に挿入される位置は、一般的に、目標とする刺激部位から脊椎403における3椎体以上低位が選ばれる。 First, the doctor determines a target spinal cord stimulation site in advance based on the patient's pain distribution. Then, as shown in FIG. 4, a split or epidural needle 406 with a slit is inserted from the patient's back side into the epidural space 405 under fluoroscopy. The position where the epidural needle 406 is inserted into the epidural space 405 is generally selected to be three or more vertebral bodies in the spine 403 from the target stimulation site.
 次に、第1リード102に形成されたスタイレット用ルーメン109(図1を参照)に、スタイレット150を完全に挿入する。そして、図5に示すように、スタイレット150が挿入された第1リード102の先端107を硬膜外針406に通し、当該第1リード102を生体404内に挿入する。そして、スタイレット150の基端150aを軸方向に押すことにより、第1リード102が硬膜外腔405内に挿入される。 Next, the stylet 150 is completely inserted into the stylet lumen 109 (see FIG. 1) formed on the first lead 102. Then, as shown in FIG. 5, the tip 107 of the first lead 102 into which the stylet 150 is inserted is passed through the epidural needle 406, and the first lead 102 is inserted into the living body 404. Then, the first lead 102 is inserted into the epidural space 405 by pushing the proximal end 150 a of the stylet 150 in the axial direction.
 続いて、スタイレット150の基端150aを軸方向にさらに押して、硬膜外腔405内に第1リード102を上向させ、第1リード102の刺激電極105を目標とする刺激部位の近くに位置させる。 Subsequently, the proximal end 150a of the stylet 150 is further pushed in the axial direction, the first lead 102 is directed upward into the epidural space 405, and the stimulation electrode 105 of the first lead 102 is brought close to the target stimulation site. Position.
 そして、第1リード102を生体404内で挿抜して刺激電極105の位置を少しずつ移動させながら、プログラマ350を操作して神経刺激を行う。このとき、刺激装置103では、医師の操作に基づいて、所定の刺激強度の電気的刺激信号が生成され、生成された電気的刺激信号が刺激電極105に出力されて、当該刺激電極105の位置に近い部分の神経刺激が行われる。そして、医師は、患者の神経刺激に対する反応を聞きながら、最適な刺激電極105の位置を決定する。 Then, the first lead 102 is inserted into and removed from the living body 404 and the stimulation electrode 105 is moved little by little, and the programmer 350 is operated to perform nerve stimulation. At this time, in the stimulation apparatus 103, an electrical stimulation signal having a predetermined stimulation intensity is generated based on the operation of the doctor, and the generated electrical stimulation signal is output to the stimulation electrode 105, and the position of the stimulation electrode 105 is determined. Neural stimulation of the part close to Then, the doctor determines the optimal position of the stimulation electrode 105 while listening to the patient's response to the nerve stimulation.
 ここで、医師は、図6に示すように、決定した最適な位置から刺激電極105が移動しないように第1リード102とスタイレット150とを保持しながら、第1リード102のスタイレット用ルーメン109にスタイレット150が通った状態で硬膜外針406を生体404から抜く。そして、硬膜外針406のスリット部分(不図示)を引き裂いて、硬膜外針406を第1リード102の表面から取り去る。このとき、体から突出しているボディ106の一部(以下、「突出部」という)が、図1にて説明した、硬膜外針406を生体404から抜くための余剰の部分に相当する。 Here, as shown in FIG. 6, the doctor holds the first lead 102 and the stylet 150 so that the stimulation electrode 105 does not move from the determined optimal position, and the stylet lumen of the first lead 102. With the stylet 150 passing through 109, the epidural needle 406 is removed from the living body 404. Then, the slit portion (not shown) of the epidural needle 406 is torn, and the epidural needle 406 is removed from the surface of the first lead 102. At this time, a part of the body 106 protruding from the body (hereinafter referred to as “protruding portion”) corresponds to an excessive portion for removing the epidural needle 406 from the living body 404 described with reference to FIG.
 続いて、図7に示すように、背中側の第1リード102の刺入部位に小切開408を形成し、スタイレット150を第1リード102のスタイレット用ルーメン109から取り出す。そして、小切開408により露出した組織に第1リード102のボディ106を糸(不図示)で縫い付けて固定する。これにより、決定した刺激電極105の位置がずれないようにすることができる。 Subsequently, as shown in FIG. 7, a small incision 408 is formed at the insertion site of the first lead 102 on the back side, and the stylet 150 is taken out from the stylet lumen 109 of the first lead 102. Then, the body 106 of the first lead 102 is sewn to the tissue exposed by the small incision 408 with a thread (not shown) and fixed. Thereby, it is possible to prevent the determined position of the stimulation electrode 105 from shifting.
 続いて、医師は、体側にも小切開410を入れる。そして、トンネリングツール(不図示)を用いて、小切開408と小切開410とを貫通する皮下トンネル(不図示)を生体404に形成する。 Subsequently, the doctor makes a small incision 410 on the body side. Then, a subcutaneous tunnel (not shown) that penetrates the small incision 408 and the small incision 410 is formed in the living body 404 using a tunneling tool (not shown).
 以上の処理が完了した後、医師は、ガイドワイヤ130の第2操作部133(図1を参照)を手に持ち、第1操作部131を、第2リード104の基端113に形成された開口を通じて第1ルーメン114aに挿入する。このとき、第2リード104が動かないように、医師は、ガイドワイヤ130を持っていない方の手で第2リード104を保持する。 After the above processing is completed, the doctor holds the second operation unit 133 (see FIG. 1) of the guide wire 130 and the first operation unit 131 is formed at the proximal end 113 of the second lead 104. The first lumen 114a is inserted through the opening. At this time, the doctor holds the second lead 104 with the hand that does not have the guide wire 130 so that the second lead 104 does not move.
 そして、医師が、第2操作部133をその軸方向に押していくと、第1操作部131が第1ルーメン114a内を進み、第2ルーメン114b内に挿入される。第2操作部133をその軸方向にさらに押すと、図2(b)に示すように、係止部202に被係止部132が当接し、ガイドワイヤ130の移動が停止される。このとき、第1操作部131は第2リード104の先端112から突出している。 And when a doctor pushes the 2nd operation part 133 to the axial direction, the 1st operation part 131 will advance in the 1st lumen 114a, and will be inserted in the 2nd lumen 114b. When the second operating portion 133 is further pushed in the axial direction, the locked portion 132 comes into contact with the locking portion 202 and the movement of the guide wire 130 is stopped as shown in FIG. At this time, the first operation unit 131 protrudes from the tip 112 of the second lead 104.
 続いて、医師は、第2リード104の先端112から突出している第1操作部131を、小切開408に形成された開口を通じて皮下トンネル(不図示)内に挿入する。そして、第1操作部131をその軸方向に押す。これにより、第1操作部131が皮下トンネル(不図示)内を進み、図8に示すように、第1操作部131の先端が、小切開410から突出する。 Subsequently, the doctor inserts the first operation unit 131 protruding from the tip 112 of the second lead 104 into a subcutaneous tunnel (not shown) through an opening formed in the small incision 408. And the 1st operation part 131 is pushed to the axial direction. As a result, the first operation unit 131 advances through the subcutaneous tunnel (not shown), and the tip of the first operation unit 131 protrudes from the small incision 410 as shown in FIG.
 続いて、医師は、第1操作部131の先端を掴み、小切開410から体外へ向かう方向(例えば、図8中の白抜き矢印で示される方向)に引っ張る。すると、第2リード104の係止部202(図2(b)を参照)がガイドワイヤ130の被係止部132により押される。これにより、ガイドワイヤ130とともに第2リード104が、図8中の白抜き矢印で示される方向に動かされ、第2リード104はその先端112から、小切開408に形成された開口を通じて皮下トンネル(不図示)内に挿入される。 Subsequently, the doctor grasps the tip of the first operation unit 131 and pulls it in the direction from the small incision 410 toward the outside of the body (for example, the direction indicated by the white arrow in FIG. 8). Then, the locking portion 202 (see FIG. 2B) of the second lead 104 is pushed by the locked portion 132 of the guide wire 130. As a result, the second lead 104 is moved together with the guide wire 130 in the direction indicated by the white arrow in FIG. 8, and the second lead 104 is moved from the distal end 112 through the opening formed in the small incision 408 to the subcutaneous tunnel ( (Not shown).
 そして、医師が、図8中の白抜き矢印で示される方向に第1操作部131をさらに引っ張ることで、第2リード104が、図9に示すように、皮下トンネル内を進んでいく。このとき、医師は、第1操作部131の目盛り203(図2を参照)を確認することで、第2リード104の植え込み位置を知ることができる。 Then, when the doctor further pulls the first operation unit 131 in the direction indicated by the white arrow in FIG. 8, the second lead 104 advances through the subcutaneous tunnel as shown in FIG. At this time, the doctor can know the implantation position of the second lead 104 by checking the scale 203 (see FIG. 2) of the first operation unit 131.
 そして、医師は、適切な位置に第2リード104が植え込まれたことを確認すると、第2リード104の植え込み位置が変わらないように第2リード104を支えつつ、ガイドワイヤの第2操作部133を引っ張って、第2リード104のガイドワイヤ用ルーメン114からガイドワイヤ130を取り出す。そして、小切開408により露出した組織に第2リード104のボディ110を糸(不図示)で縫い付けて固定する。そして、第1および第2リード102,104の小切開408から突出したボディ部分を束ねて、刺激装置103とともに小切開408の皮下に植え込みを行う。 Then, when the doctor confirms that the second lead 104 has been implanted at an appropriate position, the second operation portion of the guide wire is supported while supporting the second lead 104 so that the implantation position of the second lead 104 does not change. By pulling 133, the guide wire 130 is taken out from the guide wire lumen 114 of the second lead 104. Then, the body 110 of the second lead 104 is sewn and fixed to the tissue exposed by the small incision 408 with a thread (not shown). Then, the body portions protruding from the small incision 408 of the first and second leads 102 and 104 are bundled, and implanted under the small incision 408 together with the stimulator 103.
 続いて、電気刺激装置101が生体404内に完全に植え込まれた状態で固定されるようにするため、刺激装置103の筐体116(図1を参照)に形成された縫合孔(不図示)に糸(不図示)を通し、刺激装置103を生体404の組織に縫いつける。そして、図10に示すように、小切開408,410をそれぞれ縫合糸409で縫合する。この処置は、刺激装置103が生体404内で移動しないように、あるいは、電気刺激装置101の挿入口から感染症等を起こさないようにするためのものである。 Subsequently, a suture hole (not shown) formed in the casing 116 (see FIG. 1) of the stimulation device 103 so that the electrical stimulation device 101 is fixed in a state of being completely implanted in the living body 404. ) Is threaded (not shown), and the stimulator 103 is sewn to the tissue of the living body 404. Then, as shown in FIG. 10, the small incisions 408 and 410 are respectively sutured with the suture thread 409. This treatment is intended to prevent the stimulating device 103 from moving within the living body 404 or prevent an infection from being caused from the insertion port of the electrical stimulating device 101.
 以上説明したように、本発明の実施形態によれば、第2リード104にガイドワイヤ130が完全に貫入された状態で、ガイドワイヤ130の第1操作部131を引っ張ることにより、第2リード104を生体内に植え込むことができる。ガイドワイヤ130を引っ張って第2リード104の植え込みを行うため、当該植え込みの最中に第2リード104が折れ曲がって生体内に進めることが困難になることを防止できる。その結果、例えば極端に湾曲した皮下トンネルなどにも容易に第2リード104を植え込むことができる、という効果がある。 As described above, according to the embodiment of the present invention, by pulling the first operation portion 131 of the guide wire 130 while the guide wire 130 is completely penetrated into the second lead 104, the second lead 104. Can be implanted in vivo. Since the second lead 104 is implanted by pulling the guide wire 130, it is possible to prevent the second lead 104 from being bent during the implantation and difficult to advance into the living body. As a result, there is an effect that the second lead 104 can be easily implanted in, for example, an extremely curved subcutaneous tunnel.
 なお、上述した実施形態においては、第1および第2リード102,104と刺激装置103とからなるものを電気刺激装置101として説明しているが、さらにプログラマ350を含んだものを電気刺激装置101として広い概念で捉えることもできる。また、第2リード104とガイドワイヤ130とにより構成されるものがリード組立体に相当する。 In the embodiment described above, the first and second leads 102 and 104 and the stimulation device 103 are described as the electrical stimulation device 101. However, the electrical stimulation device 101 including the programmer 350 is further described. As a broad concept. Further, a structure constituted by the second lead 104 and the guide wire 130 corresponds to a lead assembly.
<変形例>
 なお、上述した実施形態において、各種リード(第1リード102または第2リード104)と刺激装置103とを着脱可能に接続するコネクタを、各種リードおよび刺激装置103に設けてもよい。この場合、各種リードと刺激装置103とがそれぞれのコネクタで接続されると、刺激電極105またはコイル部111と、刺激回路117とが電気的に接続される。これにより、各種リードをそれぞれ別々に植え込むことができ、植え込みの難度を低下させることができる。
<Modification>
In the above-described embodiment, a connector for detachably connecting various leads (the first lead 102 or the second lead 104) and the stimulation device 103 may be provided in the various leads and the stimulation device 103. In this case, when the various leads and the stimulation device 103 are connected by the respective connectors, the stimulation electrode 105 or the coil unit 111 and the stimulation circuit 117 are electrically connected. Thereby, various leads can be implanted separately, and the difficulty of implantation can be reduced.
 さらに、この場合、第1リード102だけを植え込むことができるので、この第1リード102の植え込みに使用する硬膜外針406(図6を参照)を引き裂くことなく、第1リード102から抜き去ることができる。その結果、硬膜外針406を引き裂くための余剰部分をボディ106(図1を参照)に設ける必要がなくなり、ボディ106の軸方向の長さを短くすることができる。 Further, in this case, since only the first lead 102 can be implanted, the epidural needle 406 (see FIG. 6) used for implantation of the first lead 102 is removed from the first lead 102 without tearing. be able to. As a result, it is not necessary to provide an extra portion in the body 106 (see FIG. 1) for tearing the epidural needle 406, and the axial length of the body 106 can be shortened.
 その上、上述したように、第1リード102の植え込みに使用する硬膜外針406を引き裂くことなく、第1リード102から抜き去ることができるので、植え込みの際に使用する硬膜外針406は、分割式やスリット付きのものでなくてもよいことはいうまでもない。 In addition, as described above, the epidural needle 406 used for implantation of the first lead 102 can be removed from the first lead 102 without tearing, so that the epidural needle 406 used for implantation is used. Needless to say, it does not have to be divided or slitted.
 また、上述した実施形態および変形例では、電気刺激装置101は、第2リード104にコイル部111を内蔵するようにしたが、コイル部111以外のものを内蔵するようにしてもよい。例えば、刺激回路のオン/オフを体外から切り替えることのできるリードスイッチなどでもよい。また、第1リード102に第2リード104のようなガイドワイヤ用ルーメン114を形成してもよい。 In the embodiment and the modification described above, the electrical stimulation device 101 includes the coil part 111 in the second lead 104. However, a part other than the coil part 111 may be included. For example, a reed switch that can switch on / off the stimulation circuit from outside the body may be used. Further, a guide wire lumen 114 such as the second lead 104 may be formed on the first lead 102.
 また、図4~図10では、第2リード104を腰部(背部)から体側まで導くように生体内に植え込む例について説明したが、同様にしてこの第2リード104を腰部から体側を通って腹部まで導くように生体内に植え込むこともできる。さらに、電気刺激装置101は、生体内のその他の場所にも同様の手順で植え込むことができる。 4 to 10, an example in which the second lead 104 is implanted in the living body so as to be guided from the waist (back) to the body side has been described. Similarly, the second lead 104 is passed from the waist to the body side through the abdomen. It can also be implanted in the living body so as to guide it. Furthermore, the electrical stimulation apparatus 101 can be implanted in other places in the living body by the same procedure.
 101…電気刺激装置、102…第1リード、103…刺激装置、104…第2リード、105…刺激電極、106,110…ボディ、109…スタイレット用ルーメン、111…コイル部、114…ガイドワイヤ用ルーメン、114a…第1ルーメン、114b…第2ルーメン、115…固定機構、116…筐体、117…刺激回路、130…ガイドワイヤ、131…第1操作部、132…被係止部、133…第2操作部、150…スタイレット、202…係止部、303…充電池、304…充電部、305…通信部、306…制御部、307…刺激パラメータ設定部、308…電極構成設定部、309…発振部、310…刺激電極スイッチ部、350…プログラマ、351…電源部、352…制御部、353…通信部、354…コイル部、403…脊椎、404…生体、405…硬膜外腔、406…硬膜外針、408,410…小切開、409…縫合糸 DESCRIPTION OF SYMBOLS 101 ... Electrical stimulation apparatus, 102 ... 1st lead, 103 ... Stimulation apparatus, 104 ... 2nd lead, 105 ... Stimulation electrode, 106, 110 ... Body, 109 ... Lumen for stylet, 111 ... Coil part, 114 ... Guide wire 114a ... first lumen, 114b ... second lumen, 115 ... fixing mechanism, 116 ... housing, 117 ... stimulation circuit, 130 ... guide wire, 131 ... first operation part, 132 ... locked part, 133 2nd operation unit, 150 ... stylet, 202 ... locking unit, 303 ... rechargeable battery, 304 ... charging unit, 305 ... communication unit, 306 ... control unit, 307 ... stimulation parameter setting unit, 308 ... electrode configuration setting unit 309: Oscillating unit 310 ... Stimulation electrode switch unit 350 350 Programmer 351 Power supply unit 352 Control unit 353 Communication unit 354 Coil , 403 ... spine, 404 ... biological, 405 ... epidural space, 406 ... epidural needle, 408, 410 ... small incision, 409 ... suture

Claims (9)

  1.  生体内に植え込まれるリードと、該リードを移動させて植え込み位置の調節を行う長尺体状のリード操作体とを含むリード組立体であって、
     前記リードは、
     基端から所定位置まで連通する第1ルーメン、該所定位置から先端まで連通するとともに前記第1ルーメンよりも径が小さい第2ルーメン、並びに前記第1ルーメンおよび前記第2ルーメン間の境界に係止部が形成されたリード本体を備え、
     前記リード操作体は、
     前記第2ルーメンに貫入可能な長尺体状の操作部と、
     前記操作部に連続し、該操作部が前記第1ルーメンを通じて前記第2ルーメンに貫入された状態において、前記係止部と当接する被係止部と、を備える
     ことを特徴とするリード組立体。
    A lead assembly including a lead to be implanted in a living body, and a long-shaped lead operating body that moves the lead to adjust the implantation position,
    The lead is
    A first lumen communicating from the proximal end to a predetermined position, a second lumen communicating from the predetermined position to the distal end and having a smaller diameter than the first lumen, and locked to a boundary between the first lumen and the second lumen A lead body formed with a portion,
    The lead operating body is:
    An elongated operating portion that can penetrate into the second lumen;
    A lead assembly comprising: a locked portion that is continuous with the operating portion, and is in contact with the locking portion in a state where the operating portion is inserted into the second lumen through the first lumen. .
  2.  前記係止部と前記被係止部とが当接した状態では、前記リード本体の先端から前記操作部の少なくとも一部が前記第2ルーメンを通じて突出し、該突出している部分を引っ張ると、前記係止部が前記被係止部に押されて、前記リード操作体とともに前記リードが移動される
     ことを特徴とする請求項1に記載のリード組立体。
    In a state where the locking portion and the locked portion are in contact, at least a part of the operation portion protrudes from the tip of the lead main body through the second lumen, and when the protruding portion is pulled, The lead assembly according to claim 1, wherein a stop portion is pushed by the locked portion, and the lead is moved together with the lead operation body.
  3.  前記リードには、該リードを生体内に固定する固定機構が設けられている
     ことを特徴とする請求項1または2に記載のリード組立体。
    The lead assembly according to claim 1 or 2, wherein the lead is provided with a fixing mechanism for fixing the lead in a living body.
  4.  前記操作部は、その軸方向長さを示す目盛りを有する
     請求項1から3のいずれかに記載のリード組立体。
    The lead assembly according to any one of claims 1 to 3, wherein the operation portion has a scale indicating an axial length thereof.
  5.  刺激信号を生成する刺激回路を有する刺激装置と、該刺激装置に接続されるとともに生体内に留置されるリードと、該リードを移動させて植え込み位置の調節を行う長尺体状のリード操作体と、を含む電気刺激装置であって、
     前記リードは、
     基端から所定位置まで連通する第1ルーメン、該所定位置から先端まで連通するとともに前記第1ルーメンよりも径が小さい第2ルーメン、並びに前記第1ルーメンおよび前記第2ルーメン間の境界に係止部が形成されたリード本体を備え、
     前記リード操作体は、
     前記第2ルーメンに貫入可能な長尺体状の操作部と、
     前記操作部に連続し、該操作部が前記第1ルーメンを通じて前記第2ルーメンに貫入された状態において、前記係止部と当接する被係止部と、を備える
     ことを特徴とする電気刺激装置。
    A stimulation device having a stimulation circuit for generating a stimulation signal, a lead connected to the stimulation device and placed in the living body, and a long lead operation body for adjusting the implantation position by moving the lead An electrical stimulator comprising:
    The lead is
    A first lumen communicating from the proximal end to a predetermined position, a second lumen communicating from the predetermined position to the distal end and having a smaller diameter than the first lumen, and locked to a boundary between the first lumen and the second lumen A lead body formed with a portion,
    The lead operating body is:
    An elongated operating portion that can penetrate into the second lumen;
    An electrical stimulation device comprising: a locked portion that is continuous with the operating portion, and is in contact with the locking portion in a state where the operating portion is inserted into the second lumen through the first lumen. .
  6.  前記リードは、前記刺激信号が印加されて生体内の神経および/または筋肉を刺激する刺激電極を含む
     ことを特徴とする請求項5に記載の電気刺激装置。
    The electrical stimulation apparatus according to claim 5, wherein the lead includes a stimulation electrode that stimulates nerves and / or muscles in a living body when the stimulation signal is applied.
  7.  前記リードは、前記刺激回路の動作のオン/オフを切り替えるスイッチを含む
     ことを特徴とする請求項5に記載の電気刺激装置。
    The electrical stimulation apparatus according to claim 5, wherein the lead includes a switch that switches on / off operation of the stimulation circuit.
  8.  前記リードは、外部装置から発振された電磁波に応じて給電および/または通信を前記刺激回路に行うコイル部を含む
     ことを特徴とする請求項5に記載の電気刺激装置。
    The electrical stimulation device according to claim 5, wherein the lead includes a coil unit that performs power supply and / or communication with the stimulation circuit according to electromagnetic waves oscillated from an external device.
  9.  生体内に植え込まれるリードであって、
     基端から所定位置まで連通する第1ルーメン、該所定位置から先端まで連通するとともに前記第1ルーメンよりも径が小さい第2ルーメン、並びに前記第1ルーメンおよび前記第2ルーメン間の境界に係止部が形成されたリード本体を含む
     ことを特徴とするリード。
    A lead implanted in a living body,
    A first lumen communicating from the proximal end to a predetermined position, a second lumen communicating from the predetermined position to the distal end and having a smaller diameter than the first lumen, and locked to a boundary between the first lumen and the second lumen A lead comprising a lead body formed with a portion.
PCT/JP2011/079772 2011-02-08 2011-12-22 Lead assembly, electrical stimulation device, and lead WO2012108108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024541 2011-02-08
JP2011024541A JP2012161496A (en) 2011-02-08 2011-02-08 Lead assembly, electrical stimulation device, and lead

Publications (1)

Publication Number Publication Date
WO2012108108A1 true WO2012108108A1 (en) 2012-08-16

Family

ID=46638337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079772 WO2012108108A1 (en) 2011-02-08 2011-12-22 Lead assembly, electrical stimulation device, and lead

Country Status (2)

Country Link
JP (1) JP2012161496A (en)
WO (1) WO2012108108A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029480A (en) * 1999-07-23 2001-02-06 Terumo Corp Electrode lead implanted in organism
JP2001522287A (en) * 1997-04-25 2001-11-13 メドトロニック・インコーポレーテッド Medical lead connector system
JP2005507717A (en) * 2001-10-29 2005-03-24 メドトロニック・インコーポレーテッド Method and apparatus for intravenous pacing leads
JP2010509029A (en) * 2006-11-13 2010-03-25 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Stimulus programmer with clinical adaptation modality

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192280B1 (en) * 1999-06-02 2001-02-20 Medtronic, Inc. Guidewire placed implantable lead with tip seal
US7103418B2 (en) * 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
US20060041297A1 (en) * 2004-08-23 2006-02-23 Medtronic, Inc. Novel electrode assembly for medical electrical leads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522287A (en) * 1997-04-25 2001-11-13 メドトロニック・インコーポレーテッド Medical lead connector system
JP2001029480A (en) * 1999-07-23 2001-02-06 Terumo Corp Electrode lead implanted in organism
JP2005507717A (en) * 2001-10-29 2005-03-24 メドトロニック・インコーポレーテッド Method and apparatus for intravenous pacing leads
JP2010509029A (en) * 2006-11-13 2010-03-25 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Stimulus programmer with clinical adaptation modality

Also Published As

Publication number Publication date
JP2012161496A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
EP3429679B1 (en) Systems for anchoring a lead for neurostimulation of a target anatomy
EP2996763B1 (en) Electrical stimulation leads with anchoring unit and electrode arrangement and methods of making and using
WO2011016510A1 (en) Electric stimulator
JP2011055912A (en) Electric stimulator
EP3389763B1 (en) Electrical stimulation cuff devices and systems
US9782581B2 (en) Methods and systems for electrical stimulation including a shielded sheath
JP5456455B2 (en) Electrical stimulator
JP2012120665A (en) Electrostimulator, and electrode lead
JP2011087654A (en) Electrostimulation device
WO2011074339A1 (en) Electric stimulation device
WO2012108108A1 (en) Lead assembly, electrical stimulation device, and lead
JP2012045103A (en) Electrical stimulator device and electrode lead
JP2012157493A (en) Electric stimulation device
JP2012105907A (en) Electrical stimulator device and electrode lead
JP5427068B2 (en) Electrical stimulator
JP5523801B2 (en) Biological stimulator
WO2012026202A1 (en) Electrical stimulator device and electrode lead
WO2014073049A1 (en) Insertion tool
US20190001136A1 (en) Implantable Medical Device with a Stylet Channel
WO2013047015A1 (en) Lead-securing means and medical device
JP2011036283A (en) Electric stimulator
JP2012055482A (en) Electric stimulation device and control method for the same
JP2011083371A (en) Electrostimulator
JP2011172758A (en) Electric stimulation appliance
US20210370074A1 (en) System for neuromodulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858145

Country of ref document: EP

Kind code of ref document: A1